WorldWideScience

Sample records for low-dimensional dynamical models

  1. Dynamic colloidal assembly pathways via low dimensional models

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu [Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Thyagarajan, Raghuram; Ford, David M. [Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

    2016-05-28

    Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterized by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.

  2. Are low-dimensional dynamics typical in magnetically confined plasmas?

    International Nuclear Information System (INIS)

    Ball, R.; Dewar, R.L.

    2000-01-01

    Full text: Since 1988 there have been many serious attempts to construct low-dimensional dynamical systems that model L-H transitions and associated oscillatory phenomena in magnetically confined plasmas. Such models usually consist of coupled ordinary differential equations in a few dynamical state variables and several parameters that represent physical properties or external controls. The advantages of a unified, low-dimensional approach to modelling plasma behaviour are multifold. Most importantly, the qualitative analysis of nonlinear ODE and algebraic systems is supported by a substantial body of theory. The toolkits of singularity and stability theory are well-developed and accessible, and contain the right tools for the job of charting the state and parameter space. One of the driving forces behind the development of low-dimensional dynamical models is the predictive potential of a parameter map. For example, a model that talks of the shape and extent of hysteresis in the L-H transition would help engineers who are interested in controlling access to H-mode. We can express this problem another way: given the enormous number of variables and parameters that could be varied around a hysteretic regime, it would be cheaper to know in advance which ones actually do influence the quality and quantity of the hysteresis. The quest for a low-dimensional state space that contains the qualitative dynamics of L-H transitions also introduces other problems. We need to identify the essential (few) dynamical variables and the essential (few) independent parameter groups, clarify the mechanisms for the feedback that is modelled by nonlinear terms, and identify symmetries in the physics. Before jumping the gun on these questions the fundamental issue should be addressed of whether a confined plasma, having many important length and time scales, steep gradients, strong anisotropy, and an uncountable multiplicity of states, can indeed exhibit low-dimensional dynamics. In this

  3. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    Science.gov (United States)

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  4. PREFACE: Dynamics of low-dimensional systems Dynamics of low-dimensional systems

    Science.gov (United States)

    Bernasconi, M.; Miret-Artés, S.; Toennies, J. P.

    2012-03-01

    vibrational spectra of clusters and carbon-based nanostructures, just to name a few of the low-dimensional systems addressed in this special issue, can be both accurately computed from first principles and measured experimentally. Even less computationally demanding semi-empirical simulations based on tight-binding or continuum models play a crucial role in assessing, for instance, the interplay between morphology, defects and the elastic properties of low-dimensional systems. The impressive amount of work and progress achieved in the past decade within the general theory and spectroscopy of the dynamics of low-dimensional systems is marked by several relevant trends that are exemplified by the contributions gathered together in this special issue. They span a wide spectrum of experimental and theoretical methods applied to the study of the dynamical properties of low-dimensional systems and new emerging phenomena at the nanoscale, such as the peculiar optical properties of ring shaped quantum dots, plasmon dynamics in metallic nanoclusters and the relaxation dynamics of nanomagnets. This issue is dedicated to our esteemed colleague Giorgio Benedek on the occasion of his 70th birthday. It collects together a number of papers written by authors from all over the world with a recognized reputation in the above mentioned fields where Giorgio Benedek has made important and fundamental contributions. Dynamics of low-dimensional systems contents Narratives Giorgio Benedek: an extraordinary universal scientist M Bernasconi, S Miret-Artés and J P Toennies Helium and carbon: two friends for life Giorgio Benedek Special Issue Papers Temperature dependence in atom-surface scattering Eli Pollak and J R Manson Density functional study of the decomposition pathways of SiH3 and GeH3 at the Si(100) and Ge(100) surfaces M Ceriotti, F Montalenti and M Bernasconi Comparative study of vibrations in submonolayer structures of potassium on Pt(111) G G Rusina, S V Eremeev, S D Borisova and E V

  5. A low dimensional dynamical system for the wall layer

    Science.gov (United States)

    Aubry, N.; Keefe, L. R.

    1987-01-01

    Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.

  6. Low dimensional modeling of wall turbulence

    Science.gov (United States)

    Aubry, Nadine

    2015-11-01

    In this talk we will review the original low dimensional dynamical model of the wall region of a turbulent boundary layer [Aubry, Holmes, Lumley and Stone, Journal of Fluid Dynamics 192, 1988] and discuss its impact on the field of fluid dynamics. We will also invite a few researchers who would like to make brief comments on the influence Lumley had on their research paths. In collaboration with Philip Holmes, Program in Applied and Computational Mathematics and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.

  7. Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models

    International Nuclear Information System (INIS)

    Derzhko, O.

    2007-01-01

    The idea of mapping quantum spin lattice model onto fermionic lattice model goes back to Jordan and Wigner (1928) who transformed s = 1/2 operators which commute at different lattice sites into fermionic operators. Later on the Jordan-Wigner transformation was used for mapping one-dimensional s = 1/2 isotropic XY (XX) model onto an exactly solvable tight-binding model of spinless fermions (Lieb, Schultz and Mattis, 1961). Since that times the Jordan-Wigner transformation is known as a powerful tool in the condensed matter theory especially in the theory of low-dimensional quantum spin systems. The aim of these lectures is to review the applications of the Jordan-Wigner fermionization technique for calculating dynamic properties of low-dimensional quantum spin models. The dynamic quantities (such as dynamic structure factors or dynamic susceptibilities) are observable directly or indirectly in various experiments. The frequency and wave-vector dependence of the dynamic quantities yields valuable information about the magnetic structure of materials. Owing to a tremendous recent progress in synthesizing low-dimensional magnetic materials detailed comparisons of theoretical results with direct experimental observation are becoming possible. The lectures are organized as follows. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several low-dimensional quantum spin models. We start from a famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four

  8. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  9. Damage-spreading and out-of-equilibrium dynamics in the low-temperature regime of the two-dimensional ± J Edwards–Anderson model

    International Nuclear Information System (INIS)

    Rubio Puzzo, M L; Romá, F; Bustingorry, S; Gleiser, P M

    2010-01-01

    We present results showing the correlation between the out-of-equilibrium dynamics and the equilibrium damage-spreading process in the two-dimensional ± J Edwards–Anderson model at low temperatures. A key ingredient in our analysis is the projection of finite temperature spin configurations onto the ground state topology of the system. In particular, through numerical simulations we correlate ground state information with the out-of-equilibrium dynamics. We also analyse how the propagation of a small perturbation in equilibrated systems is related to the ground state topology. This damage-spreading study unveils the presence of rigid clusters of spins. We claim that these clusters give rise to the slow out-of-equilibrium dynamics observed in the temperature range between the glass temperature T g = 0 of the two-dimensional ± J Edwards–Anderson model and the critical temperature T c of the pure ferromagnetic Ising model

  10. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    Science.gov (United States)

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering

  11. Predictability analysis and validation of a low-dimensional model - an application to the dynamics of cereal crops observed from satellite

    Science.gov (United States)

    Mangiarotti, Sylvain; Drapeau, Laurent

    2013-04-01

    The global modeling approach aims to obtain parsimonious models of observed dynamics from few or single time series (Letellier et al. 2009). Specific algorithms were developed and validated for this purpose (Mangiarotti et al. 2012a). This approach was applied to the dynamics of cereal crops in semi-arid region using the vegetation index derived from satellite data as a proxy of the dynamics. A low-dimensional autonomous model could be obtained. The corresponding attractor is characteristic of weakly dissipative chaos and exhibits a toroidal-like structure. At present, only few theoretical cases of such chaos are known, and none was obtained from real world observations. Under smooth conditions, a robust validation of three-dimensional chaotic models can be usually performed based on the topological approach (Gilmore 1998). Such approach becomes more difficult for weakly dissipative systems, and almost impossible under noisy observational conditions. For this reason, another validation approach is developed which consists in comparing the forecasting skill of the model to other forecasts for which no dynamical model is required. A data assimilation process is associated to the model to estimate the model's skill; several schemes are tested (simple re-initialization, Extended and Ensemble Kalman Filters and Back and Forth Nudging). Forecasts without model are performed based on the search of analogous states in the phase space (Mangiarotti et al. 2012b). The comparison reveals the quality of the model's forecasts at short to moderate horizons and contributes to validate the model. These results suggest that the dynamics of cereal crops can be reasonably approximated by low-dimensional chaotic models, and also bring out powerful arguments for chaos. Chaotic models have often been used as benchmark to test data assimilation schemes; the present work shows that such tests may not only have a theoretical interest, but also almost direct applicative potential. Moreover

  12. Low-Dimensional Models of "Neuro-Glio-Vascular Unit" for Describing Neural Dynamics under Normal and Energy-Starved Conditions.

    Science.gov (United States)

    Chhabria, Karishma; Chakravarthy, V Srinivasa

    2016-01-01

    The motivation of developing simple minimal models for neuro-glio-vascular (NGV) system arises from a recent modeling study elucidating the bidirectional information flow within the NGV system having 89 dynamic equations (1). While this was one of the first attempts at formulating a comprehensive model for neuro-glio-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low--dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the NGV system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system, which takes neural firing rate as input and returns an "energy" variable (analogous to ATP) as output. To this end, we present two models: biophysical neuro-energy (Model 1 with five variables), comprising KATP channel activity governed by neuronal ATP dynamics, and the dynamic threshold (Model 2 with three variables), depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes, such as continuous spiking, phasic, and tonic bursting depending on the ATP production coefficient, ɛp, and external current. We then demonstrate that in a network comprising such energy-dependent neuron units, ɛp could modulate the local field potential (LFP) frequency and amplitude. Interestingly, low-frequency LFP dominates under low ɛp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed "neuron-energy" unit may be implemented in building models of NGV networks to simulate data obtained from multimodal neuroimaging systems, such as functional near infrared spectroscopy coupled to electroencephalogram and functional magnetic resonance imaging coupled to electroencephalogram. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies, such as

  13. Low-dimensional models of ‘Neuro-glio-vascular unit’ for describing neural dynamics under normal and energy-starved conditions

    Directory of Open Access Journals (Sweden)

    Karishma eChhabria

    2016-03-01

    Full Text Available The motivation of developing simple minimal models for neuro-glio-vascular system arises from a recent modeling study elucidating the bidirectional information flow within the neuro-glio-vascular system having 89 dynamic equations (Chander and Chakravarthy 2012. While this was one of the first attempts at formulating a comprehensive model for neuro-glia-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the neuro-glio-vascular system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system which takes neural firing rate as input and returns an ‘energy’ variable (analogous to ATP as output. To this end we present two models: Biophysical neuro-energy (Model #1 with 5 variables, comprising of KATP channel activity governed by neuronal ATP dynamics and the Dynamic threshold (Model #2 with 3 variables depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes such as continuous spiking, phasic and tonic bursting depending on the ATP production coefficient, εp and external current. We then demonstrate that in a network comprising of such energy-dependent neuron units, εp could modulate the Local field potential (LFP frequency and amplitude. Interestingly, low frequency LFP dominates under low εp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed ‘neuron-energy’ unit may be implemented in building models of neuro-glio-vascular networks to simulate data obtained from multimodal neuroimaging systems such as fNIRS-EEG and fMRI-EEG. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies such as non-invasive brain stimulation for

  14. Low-dimensional model of resistive interchange convection in magnetized plasma

    International Nuclear Information System (INIS)

    Bazdenkov, S.; Sato, Tetsuya

    1997-09-01

    Self-organization and generation of large shear flow component in turbulent resistive interchange convection in magnetized plasma is considered. The effect of plasma density-electrostatic potential coupling via the inertialess electron dynamics along the magnetic field is shown to play significant role in the onset of shear component. The results of large-scale numerical simulation and low-dimensional (reduced) model are presented and compared. (author)

  15. Inference in High-dimensional Dynamic Panel Data Models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Tang, Haihan

    We establish oracle inequalities for a version of the Lasso in high-dimensional fixed effects dynamic panel data models. The inequalities are valid for the coefficients of the dynamic and exogenous regressors. Separate oracle inequalities are derived for the fixed effects. Next, we show how one can...

  16. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  17. High dimensional model representation method for fuzzy structural dynamics

    Science.gov (United States)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  18. ABC-model analysis of gain-switched pulse characteristics in low-dimensional semiconductor lasers

    Science.gov (United States)

    Bao, Xumin; Liu, Yuejun; Weng, Guoen; Hu, Xiaobo; Chen, Shaoqiang

    2018-01-01

    The gain-switching dynamics of low-dimensional semiconductor lasers is simulated numerically by using a two-dimensional rate-equation model. Use is also made of the ABC model, where the carrier recombination rate is described by a function of carrier densities including Shockley - Read - Hall (SRH) recombination coefficient A, spontaneous emission coefficient B and Auger recombination coefficient C. Effects of the ABC parameters on the ultrafast gain-switched pulse characteristics with high-density pulse excitation are analysed. It is found that while the parameter A has almost no obvious effects, the parameters B and C have distinctly different effects: B influences significantly the delay time of the gain-switched pulse, while C affects mainly the pulse intensity.

  19. Dynamic critical phenomena in two-dimensional fully frustrated Coulomb gas model with disorder

    International Nuclear Information System (INIS)

    Zhang Wei; Luo Mengbo

    2008-01-01

    The dynamic critical phenomena near depinning transition in two-dimensional fully frustrated square lattice Coulomb gas model with disorders was studied using Monte Carlo technique. The ground state of the model system with disorder σ=0.3 is a disordered state. The dependence of charge current density J on electric field E was investigated at low temperatures. The nonlinear J-E behavior near critical depinning field can be described by a scaling function proposed for three-dimensional flux line system [M.B. Luo, X. Hu, Phys. Rev. Lett. 98 (2007) 267002]. We evaluated critical exponents and found an Arrhenius creep motion for field region E c /2 c . The scaling law of the depinning transition is also obtained from the scaling function

  20. Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics.

    Science.gov (United States)

    Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli

    2007-11-16

    We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.

  1. Ultrafast dynamics of confined and localised excitons and biexcitons in low-dimensional semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Langbein, Wolfgang; Borri, Paola

    1999-01-01

    Coherent optical spectroscopy in the form of nonlinear transient four-wave mixing (TFWM) and linear resonant Rayleigh scattering (RRS) has been applied to investigate the exciton dynamics of low-dimensional semiconductor heterostructures. The dephasing times of excitons are determined from...

  2. Cluster dynamics models of irradiation damage accumulation in ferritic iron. II. Effects of reaction dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Kohnert, Aaron A.; Wirth, Brian D. [University of Tennessee, Knoxville, Tennessee 37996-2300 (United States)

    2015-04-21

    The black dot damage features which develop in iron at low temperatures exhibit significant mobility during in situ irradiation experiments via a series of discrete, intermittent, long range hops. By incorporating this mobility into cluster dynamics models, the temperature dependence of such damage structures can be explained with a surprising degree of accuracy. Such motion, however, is one dimensional in nature. This aspect of the physics has not been fully considered in prior models. This article describes one dimensional reaction kinetics in the context of cluster dynamics and applies them to the black dot problem. This allows both a more detailed description of the mechanisms by which defects execute irradiation-induced hops while allowing a full examination of the importance of kinetic assumptions in accurately assessing the development of this irradiation microstructure. Results are presented to demonstrate whether one dimensional diffusion alters the dependence of the defect population on factors such as temperature and defect hop length. Finally, the size of interstitial loops that develop is shown to depend on the extent of the reaction volumes between interstitial clusters, as well as the dimensionality of these interactions.

  3. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    International Nuclear Information System (INIS)

    Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.

    2013-01-01

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model

  4. Dynamics of the two-dimensional directed Ising model in the paramagnetic phase

    Science.gov (United States)

    Godrèche, C.; Pleimling, M.

    2014-05-01

    We consider the nonconserved dynamics of the Ising model on the two-dimensional square lattice, where each spin is influenced preferentially by its east and north neighbours. The single-spin flip rates are such that the stationary state is Gibbsian with respect to the usual ferromagnetic Ising Hamiltonian. We show the existence, in the paramagnetic phase, of a dynamical transition between two regimes of violation of the fluctuation-dissipation theorem in the nonequilibrium stationary state: a regime of weak violation where the stationary fluctuation-dissipation ratio is finite, when the asymmetry parameter is less than a threshold value, and a regime of strong violation where this ratio vanishes asymptotically above the threshold. This study suggests that this novel kind of dynamical transition in nonequilibrium stationary states, already found for the directed Ising chain and the spherical model with asymmetric dynamics, might be quite general. In contrast with the latter models, the equal-time correlation function for the two-dimensional directed Ising model depends on the asymmetry.

  5. REVIEW One-Dimensional Dynamical Modeling of Earthquakes: A Review

    Directory of Open Access Journals (Sweden)

    Jeen-Hwa Wang

    2008-01-01

    Full Text Available Studies of the power-law relations of seismicity and earthquake source parameters based on the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model, especially those studies conducted by Taiwan¡¦s scientists, are reviewed in this article. In general, velocity- and/or state-dependent friction is considered to control faulting. A uniform distribution of breaking strengths (i.e., the static friction strength is taken into account in some studies, and inhomogeneous distributions in others. The scaling relations in these studies include: Omori¡¦s law, the magnitude-frequency or energy-frequency relation, the relation between source duration time and seismic moment, the relation between rupture length and seismic moment, the frequency-length relation, and the source power spectra. The main parameters of the one-dimensional (1-D Burridge-Knopoff¡¦s (BK dynamical lattice model include: the decreasing rate (r of dynamic friction strength with sliding velocity; the type and degree of heterogeneous distribution of the breaking strengths, the stiffness ratio (i.e., the ratio between the stiffness of the coil spring connecting two mass elements and that of the leaf spring linking a mass element and the moving plate; the frictional drop ratio of the minimum dynamic friction strength to the breaking strength; and the maximum breaking strength. For some authors, the distribution of the breaking strengths was considered to be a fractal function. Hence, the fractal dimension of such a distribution is also a significant parameter. Comparison between observed scaling laws and simulation results shows that the 1-D BK dynamical lattice model acceptably approaches fault dynamics.

  6. Scientific data interpolation with low dimensional manifold model

    Science.gov (United States)

    Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

    2018-01-01

    We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  7. Scientific data interpolation with low dimensional manifold model

    International Nuclear Information System (INIS)

    Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.

    2017-01-01

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  8. Kantowski-Sachs multidimensional cosmological models and dynamical dimensional reduction

    International Nuclear Information System (INIS)

    Demianski, M.; Rome Univ.; Golda, Z.A.; Heller, M.; Szydlowski, M.

    1988-01-01

    Einstein's field equations are solved for a multidimensional spacetime (KS) x Tsup(m), where (KS) is a four-dimensional Kantowski-Sachs spacetime and Tsup(m) is an m-dimensional torus. Among all possible vacuum solutions there is a large class of spacetimes in which the macroscopic space expands and the microscopic space contracts to a finite volume. We also consider a non-vacuum case and we explicitly solve the field equations for the matter satisfying the Zel'dovich equation of state. In non-vacuum models, with matter satisfying an equation of state p = γρ, O ≤ γ < 1, at a sufficiently late stage of evolution the microspace always expands and the dynamical dimensional reduction does not occur. (author)

  9. Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model

    Science.gov (United States)

    Hashimoto, Hiroshi; Ishihara, Sumio

    2017-07-01

    Transient quantum dynamics in an interacting fermion-phonon system are investigated with a focus on a charge order (CO) melting after a short optical-pulse irradiation and the roles of the quantum phonons in the transient dynamics. A spinless-fermion model in a one-dimensional chain coupled with local phonons is analyzed numerically. The infinite time-evolving block decimation algorithm is adopted as a reliable numerical method for one-dimensional quantum many-body systems. Numerical results for the photoinduced CO melting dynamics without phonons are well interpreted by the soliton picture for the CO domains. This interpretation is confirmed by numerical simulation of an artificial local excitation and the classical soliton model. In the case of large phonon frequencies corresponding to the antiadiabatic condition, CO melting is induced by propagations of the polaronic solitons with the renormalized soliton velocity. On the other hand, in the case of small phonon frequencies corresponding to the adiabatic condition, the first stage of the CO melting dynamics occurs due to the energy transfer from the fermionic to phononic systems, and the second stage is brought about by the soliton motions around the bottom of the soliton band. The analyses provide a standard reference for photoinduced CO melting dynamics in one-dimensional many-body quantum systems.

  10. Multi spin-flip dynamics: a solution of the one-dimensional Ising model

    International Nuclear Information System (INIS)

    Novak, I.

    1990-01-01

    The Glauber dynamics of interacting Ising spins (the single spin-flip dynamics) is generalized to p spin-flip dynamics with a simultaneous flip of up to p spins in a single configuration move. The p spin-flip dynamics is studied of the one-dimensional Ising model with uniform nearest-neighbour interaction. For this case, an exact relation is given for the time dependence of magnetization. It was found that the critical slowing down in this model could be avoided when p spin-flip dynamics with p>2 was considered. (author). 17 refs

  11. Low-dimensional modeling of a driven cavity flow with two free parameters

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann; Sørensen, Jens Nørkær; Brøns, Morten

    2003-01-01

    . By carrying out such a procedure one obtains a low-dimensional model consisting of a reduced set of Ordinary Differential Equations (ODEs) which models the original equations. A technique called Sequential Proper Orthogonal Decomposition (SPOD) is developed to perform decompositions suitable for low...... parameters to appear in the inhomogeneous boundary conditions without the addition of any constraints. This is necessary because both the driving lid and the rotating rod are controlled simultaneously. Apparently, the results reported for this model are the first to be obtained for a low-dimensional model...

  12. Dynamic model of organic pollutant degradation in three dimensional packed bed electrode reactor.

    Science.gov (United States)

    Pang, Tianting; Wang, Yan; Yang, Hui; Wang, Tianlei; Cai, Wangfeng

    2018-04-21

    A dynamic model of semi-batch three-dimensional electrode reactor was established based on the limiting current density, Faraday's law, mass balance and a series of assumptions. Semi-batch experiments of phenol degradation were carried out in a three-dimensional electrode reactor packed with activated carbon under different conditions to verify the model. The factors such as the current density, the electrolyte concentration, the initial pH value, the flow rate of organic and the initial organic concentration were examined to know about the pollutant degradation in the three-dimensional electrode reactor. The various concentrations and logarithm of concentration of phenol with time were compared with the dynamic model. It was shown that the calculated data were in good agreement with experimental data in most cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

    Science.gov (United States)

    Sapsis, Themistoklis P; Majda, Andrew J

    2013-08-20

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.

  14. Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells

    International Nuclear Information System (INIS)

    Wang Shihong; Xie Yuanfang; Qu Zhilin

    2008-01-01

    Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e. the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable

  15. Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow

    Science.gov (United States)

    Gonzalez, M.

    2018-04-01

    The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.

  16. Blended particle filters for large-dimensional chaotic dynamical systems

    Science.gov (United States)

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  17. Tangent map intermittency as an approximate analysis of intermittency in a high dimensional fully stochastic dynamical system: The Tangled Nature model.

    Science.gov (United States)

    Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto

    2016-12-01

    It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional

  18. Effective method for construction of low-dimensional models for heat transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, D.G.; Prokopov, V.G.; Sherenkovskii, Y.V.; Fialko, N.M.; Yurchuk, V.L. [National Academy of Sciences of Ukraine, Kiev (Ukraine). Inst. of Engineering Thermophysics

    2004-12-01

    A low-dimensional model based on the method of proper orthogonal decomposition (POD) and the method of polyargumental systems (MPS) for thermal conductivity problems with strongly localized source of heat has been presented. The key aspect of these methods is that they enable to avoid weak points of other projection methods, which consists in a priori choice of basis functions. It enables us to use the MPS method and the POD method as convenient means to construct low-dimensional models of heat and mass transfer problems. (Author)

  19. Topological organization of (low-dimensional) chaos

    International Nuclear Information System (INIS)

    Tufillaro, N.B.

    1992-01-01

    Recent progress toward classifying low-dimensional chaos measured from time series data is described. This classification theory assigns a template to the time series once the time series is embedded in three dimensions. The template describes the primary folding and stretching mechanisms of phase space responsible for the chaotic motion. Topological invariants of the unstable periodic orbits in the closure of the strange set are calculated from the (reconstructed) template. These topological invariants must be consistent with ampersand ny model put forth to describe the time series data, and are useful in invalidating (or gaining confidence in) any model intended to describe the dynamical system generating the time series

  20. Low-dimensional chaotic attractors in drift wave turbulence

    International Nuclear Information System (INIS)

    Persson, M.; Nordman, H.

    1991-01-01

    Simulation results of toroidal η i -mode turbulence are analyzed using mathematical tools of nonlinear dynamics. Low-dimensional chaotic attractors are found in the strongly nonlinear regime while in the weakly interacting regime the dynamics is high dimensional. In both regimes, the solutions are found to display sensitive dependence on initial conditions, characterized by a positive largest Liapunov exponent. (au)

  1. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  2. Treatment of dynamical processes in two-dimensional models of the troposphere and stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1980-07-01

    The physical structure of the troposphere and stratosphere is the result of an intricate interplay among a large number of radiative, chemical, and dynamical processes. Because it is not possible to model the global environment in the laboratory, theoretical models must be relied on, subject to observational verification, to simulate atmospheric processes. Of particular concern in recent years has been the modeling of those processes affecting the structure of ozone and other trace species in the stratosphere and troposphere. Zonally averaged two-dimensional models with spatial resolution in the vertical and meridional directions can provide a much more realistic representation of tracer transport than one-dimensional models, yet are capable of the detailed representation of chemical and radiative processes contained in the one-dimensional models. The purpose of this study is to describe and analyze existing approaches to representing global atmospheric transport processes in two-dimensional models and to discuss possible alternatives to these approaches. A general description of the processes controlling the transport of trace constituents in the troposphere and stratosphere is given

  3. On low-dimensional models at NMR line shape analysis in nanomaterial systems

    Science.gov (United States)

    Kucherov, M. M.; Falaleev, O. V.

    2018-03-01

    We present a model of localized spin dynamics at room temperature for the low-dimensional solid-state spin system, which contains small ensembles of magnetic nuclei (N ~ 40). The standard spin Hamiltonian (XXZ model) is the sum of the Zeeman term in a strong external magnetic field and the magnetic dipole interaction secular term. The 19F spins in a single crystal of fluorapatite [Ca5(PO4)3F] have often been used to approximate a one-dimensional spin system. If the constant external field is parallel to the c axis, the 3D 19F system may be treated as a collection of many identical spin chains. When considering the longitudinal part of the secular term, we suggest that transverse component of a spin in a certain site rotates in a constant local magnetic field. This field changes if the spin jumps to another site. On return, this spin continues to rotate in the former field. Then we expand the density matrix in a set of eigenoperators of the Zeeman Hamiltonian. A system of coupled differential equations for the expansion coefficients then solved by straightforward numerical methods, and the fluorine NMR line shapes of fluorapatite for different chain lengths are calculated.

  4. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures

    Science.gov (United States)

    Savin, Alexander V.; Kosevich, Yuriy A.; Cantarero, Andres

    2012-08-01

    We present a detailed description of semiquantum molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination of temperature in quantum lattice systems, to which the equipartition limit is not applied. We show that one can determine the temperature of such a system from the measured power spectrum and temperature- and relaxation-rate-independent density of vibrational (phonon) states. We simulate the specific heat and heat transport in carbon nanotubes, as well as the heat transport in molecular nanoribbons with perfect (atomically smooth) and rough (porous) edges, and in nanoribbons with strongly anharmonic periodic interatomic potentials. We show that the effects of quantum statistics of phonons are essential for the carbon nanotube in the whole temperature range T<500K, in which the values of the specific heat and thermal conductivity of the nanotube are considerably less than that obtained within the description based on classical statistics of phonons. This conclusion is also applicable to other carbon-based materials and systems with high Debye temperature like graphene, graphene nanoribbons, fullerene, diamond, diamond nanowires, etc. We show that the existence of rough edges and quantum statistics of phonons change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the nanoribbon with perfect edges and classical phonon dynamics and statistics. The semiquantum molecular

  5. Low dimensional chaotic models for the plague epidemic in Bombay (1896–1911)

    International Nuclear Information System (INIS)

    Mangiarotti, Sylvain

    2015-01-01

    A plague epidemic broke out in Bombay in 1896 and became endemic. From 1905 to 1911, the epidemic was closely monitored by an Advisory Committee appointed to investigate the causes of the disease in any way. An impressive quantity of information was gathered, analyzed and published. Published data include records of the number of people who died from plague, and of the two main populations of rodents which were infected by plague in Bombay city. In the present paper, these data are revisited using a global modeling technique. This technique is applied to both single and multivariate observational time series. Several models are obtained for which a chaotic behavior can be observed. Obtaining such models proves that the dynamics of plague can be approximated by low-dimensional deterministic systems that can produce chaos. The multivariate models give a strong argument for interactive couplings between the epidemic and the epizootics of the two main species of rat. An interpretation of this coupling is given.

  6. A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference

    KAUST Repository

    Tegner, Jesper; Zenil, Hector; Kiani, Narsis A.; Ball, Gordon; Gomez-Cabrero, David

    2016-01-01

    Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems.

  7. A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference

    KAUST Repository

    Tegner, Jesper

    2016-10-04

    Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems.

  8. Analysing spatially extended high-dimensional dynamics by recurrence plots

    Energy Technology Data Exchange (ETDEWEB)

    Marwan, Norbert, E-mail: marwan@pik-potsdam.de [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Humboldt Universität zu Berlin, Institut für Physik (Germany); Nizhny Novgorod State University, Department of Control Theory, Nizhny Novgorod (Russian Federation); Foerster, Saskia [GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing, Telegrafenberg, 14473 Potsdam (Germany)

    2015-05-08

    Recurrence plot based measures of complexity are capable tools for characterizing complex dynamics. In this letter we show the potential of selected recurrence plot measures for the investigation of even high-dimensional dynamics. We apply this method on spatially extended chaos, such as derived from the Lorenz96 model and show that the recurrence plot based measures can qualitatively characterize typical dynamical properties such as chaotic or periodic dynamics. Moreover, we demonstrate its power by analysing satellite image time series of vegetation cover with contrasting dynamics as a spatially extended and potentially high-dimensional example from the real world. - Highlights: • We use recurrence plots for analysing partially extended dynamics. • We investigate the high-dimensional chaos of the Lorenz96 model. • The approach distinguishes different spatio-temporal dynamics. • We use the method for studying vegetation cover time series.

  9. Analytical Modeling of Transient Process In Terms of One-Dimensional Problem of Dynamics With Kinematic Action

    Directory of Open Access Journals (Sweden)

    Kravets Victor V.

    2016-05-01

    Full Text Available One-dimensional dynamic design of a component characterized by inertia coefficient, elastic coefficient, and coefficient of energy dispersion. The component is affected by external action in the form of time-independent initial kinematic disturbances and varying ones. Mathematical model of component dynamics as well as a new form of analytical representation of transient in terms of one-dimensional problem of kinematic effect is provided. Dynamic design of a component is being carried out according to a theory of modal control.

  10. Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation.

    Science.gov (United States)

    Goh, Segun; Menzel, Andreas M; Löwen, Hartmut

    2018-05-23

    Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles. Novel phenomena, such as the variation of the overall mechanical properties by external magnetic fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled. In this paper, we consider a one-dimensional chain consisting of magnetic dipoles and elastic springs between them as a simple model for ferrogels. The model is evaluated by corresponding simulations. To probe the dynamics theoretically, we investigate a continuum limit of the energy governing the system and the corresponding equation of motion. We provide general classification scenarios for the dynamics, elucidating the touching/detachment dynamics of the magnetic particles along the chain. In particular, it is verified in certain cases that the long-time relaxation corresponds to solutions of shock-wave propagation, while formations of particle pairs underlie the initial stage of the dynamics. We expect that these results will provide insight into the understanding of the dynamics of more realistic models with randomness in parameters and time-dependent magnetic fields.

  11. Hierarchy of the low-lying excitations for the (2+1-dimensional q=3 Potts model in the ordered phase

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nishiyama

    2017-03-01

    Full Text Available The (2+1-dimensional q=3 Potts model was simulated with the exact diagonalization method. In the ordered phase, the elementary excitations (magnons are attractive, forming a series of bound states in the low-energy spectrum. We investigate the low-lying spectrum through a dynamical susceptibility, which is readily tractable with the exact diagonalization method via the continued-fraction expansion. As a result, we estimate the series of (scaled mass gaps, m2,3,4/m1 (m1: single-magnon mass, in proximity to the transition point.

  12. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  13. Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines

    International Nuclear Information System (INIS)

    Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng

    2016-01-01

    Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.

  14. A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.

    Science.gov (United States)

    Suemitsu, Yoshikazu; Nara, Shigetoshi

    2004-09-01

    Chaotic dynamics introduced into a neural network model is applied to solving two-dimensional mazes, which are ill-posed problems. A moving object moves from the position at t to t + 1 by simply defined motion function calculated from firing patterns of the neural network model at each time step t. We have embedded several prototype attractors that correspond to the simple motion of the object orienting toward several directions in two-dimensional space in our neural network model. Introducing chaotic dynamics into the network gives outputs sampled from intermediate state points between embedded attractors in a state space, and these dynamics enable the object to move in various directions. System parameter switching between a chaotic and an attractor regime in the state space of the neural network enables the object to move to a set target in a two-dimensional maze. Results of computer simulations show that the success rate for this method over 300 trials is higher than that of random walk. To investigate why the proposed method gives better performance, we calculate and discuss statistical data with respect to dynamical structure.

  15. Measuring the Dynamic Characteristics of a Low Specific Speed Pump—Turbine Model

    Directory of Open Access Journals (Sweden)

    Eve Cathrin Walseth

    2016-03-01

    Full Text Available This paper presents results from an experiment performed to obtain the dynamic characteristics of a reversible pump-turbine model. The characteristics were measured in an open loop system where the turbine initially was run on low rotational speed before the generator was disconnected allowing the turbine to go towards runaway. The measurements show that the turbine experience damped oscillations in pressure, speed and flow rate around runaway corresponding with presented stability criterion in published literature. Results from the experiment is reproduced by means of transient simulations. A one dimensional analytical turbine model for representation of the pump-turbine is used in the calculations. The simulations show that it is possible to reproduce the physics in the measurement by using a simple analytical model for the pump-turbine as long as the inertia of the water masses in the turbine are modeled correctly.

  16. Dielectric spectroscopy studies of low-disorder and low-dimensional materials

    OpenAIRE

    Tripathi, Pragya

    2016-01-01

    In this thesis we employ dielectric spectroscopy (in different implementations) to study the dielectric properties of different materials ranging from completely disordered supercooled liquids to low-disorder solids with only ratcheting reorientational motions, to low-dimensional systems such as thin films or needle-like crystals. The probed material properties include the electrical conductivity, the space-charge processes due to sample heterogeneities, molecular dynamics, hydrogen-bond dyna...

  17. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza; Validi, AbdoulAhad; Iaccarino, Gianluca

    2013-01-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  18. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza

    2013-08-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  19. Three-Dimensional Model Retrieval Using Dynamic Multi-Descriptor Fusion

    Institute of Scientific and Technical Information of China (English)

    Jau-Ling Shi; Chang-Hsing Lee; Yao-Wen Hou; Po-Ting Yeh

    2017-01-01

    In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by using each individual descriptor. Second, we propose an automatic relevant/irrelevant models selection (ARMS) approach to selecting the relevant and irrelevant 3D models automatically without any user interaction. A weighted distance, in which the weight associated with each individual descriptor is learnt by using the selected relevant and irrelevant models, is used to measure the similarity between two 3D models. Furthermore, a descriptor-dependent adaptive query point movement (AQPM) approach is employed to update every feature vector. This set of new feature vectors is used to index 3D models in the next search process. Four 3D model databases are used to compare the retrieval accuracy of our proposed DMDF approach with several descriptors as well as some well-known information fusion methods. Experimental results have shown that our proposed DMDF approach provides a promising retrieval result and always yields the best retrieval accuracy.

  20. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-03-22

    The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.

  1. Dynamics of a two-dimensional discrete-time SIS model

    Directory of Open Access Journals (Sweden)

    Jaime H. Barrera

    2012-04-01

    Full Text Available We analyze a two-dimensional discrete-time SIS model with a non-constant total population. Our goal is to determine the interaction between the total population, the susceptible class and the infective class, and the implications this may have for the disease dynamics. Utilizing a constant recruitment rate in the susceptible class, it is possible to assume the existence of an asymptotic limiting equation, which enables us to reduce the system of, two-equations into a single, dynamically equivalent equation. In this case, we are able to demonstrate the global stability of the disease-free and the endemic equilibria when the basic reproductive number (Ro is less than one and greater than one, respectively. When we consider a non-constant recruitment rate, the total population bifurcates as we vary the birth rate and the death rate. Using computer simulations, we observe different behavior among the infective class and the total population, and possibly, the occurrence of a strange attractor.

  2. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kyrki-Rajamaeki, R. [VTT Energy, Espoo (Finland)

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.).

  3. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.)

  4. A Low-Cost PC-Based Image Workstation for Dynamic Interactive Display of Three-Dimensional Anatomy

    Science.gov (United States)

    Barrett, William A.; Raya, Sai P.; Udupa, Jayaram K.

    1989-05-01

    A system for interactive definition, automated extraction, and dynamic interactive display of three-dimensional anatomy has been developed and implemented on a low-cost PC-based image workstation. An iconic display is used for staging predefined image sequences through specified increments of tilt and rotation over a solid viewing angle. Use of a fast processor facilitates rapid extraction and rendering of the anatomy into predefined image views. These views are formatted into a display matrix in a large image memory for rapid interactive selection and display of arbitrary spatially adjacent images within the viewing angle, thereby providing motion parallax depth cueing for efficient and accurate perception of true three-dimensional shape, size, structure, and spatial interrelationships of the imaged anatomy. The visual effect is that of holding and rotating the anatomy in the hand.

  5. Quasi-three dimensional dynamic modeling of a proton exchange membrane fuel cell with consideration of two-phase water transport through a gas diffusion layer

    International Nuclear Information System (INIS)

    Kang, Sanggyu

    2015-01-01

    Water management is one of the challenging issues for low-temperature PEMFCs (proton exchange membrane fuel cells). When liquid water is formed at the GDL (gas diffusion layer), the pathway of reactant gas can be blocked, which inhibits the electrochemical reaction of PEMFC. Thus, liquid water transport through GDL is a critical factor determining the performance of a PEMFC. In present study, quasi-three dimensional dynamic modeling of PEMFC with consideration of two-phase water transport through GDL is developed. To investigate the distributions of PEMFC characteristics, including current density, species mole fraction, and membrane hydration, the PEMFC was discretized into twenty control volumes along the anode channel. To resolve the mass and energy conservation, the PEMFC is discretized into eleven and fifteen control volumes in the perpendicular direction, respectively. The dynamic variation of PEMFC characteristics of cell voltage, overvoltage of activation and ohmic, liquid water saturation through a GDL, and oxygen concentration were captured during transient behavior. - Highlights: • A quasi-three dimensional two-phase dynamic model of PEMFC is developed. • Presented model is validated by comparison with experimental data. • Two-phase model is compared with one-phase model at steady-states and transients.

  6. Ten dimensional SO(10) G.U.T. models with dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Hanlon, B.E.; Joshi, G.C.

    1993-01-01

    To date, considerations on SO (10) models within Coset Space Dimensional Reduction (CSDR) have been diagonalized to the standard model or rely upon imaginative applications of Wilson lines so as to avoid the problem of the nonexistence of an intermediate Higgs mechanism. However, there is an alternative approach involving four fermion condensates, breaking symmetries by a dynamical mechanism. Indeed, dynamical symmetry breaking has been the direction taken in some SU(5) models within this framework in order to avoid the problems of electroweak symmetry breaking at the compactification scale. This paper presents realistic models which utilize this mechanism. It is shown that the appropriate fermionic representations can emerge from CSDR and the construction of such condensates within the constraints of this scheme is presented. By introducing discrete symmetries onto the internal manifold a strong breaking of the SO(10) G.U.T. is produced and, more importantly, eliminate Higgs fields of geometrical origin. 31 refs

  7. Emergence of geometry: A two-dimensional toy model

    International Nuclear Information System (INIS)

    Alfaro, Jorge; Espriu, Domene; Puigdomenech, Daniel

    2010-01-01

    We review the similarities between the effective chiral Lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D)xGL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zweibein is generated from a topological theory without any preexisting metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several nonstandard features this simple toy model appears to be renormalizable and at long distances is described by an effective Lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared regulator. The low-energy expansion is valid for momenta k>M, i.e. for supra-horizon scales. We briefly discuss a possible implementation of a similar mechanism in four dimensions.

  8. Magnetic properties of three-dimensional Hubbard-sigma model

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.

    1989-11-01

    It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)

  9. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding

    International Nuclear Information System (INIS)

    Pang Shengyong; Chen Liliang; Zhou Jianxin; Yin Yajun; Chen Tao

    2011-01-01

    A three-dimensional sharp interface model is proposed to investigate the self-consistent keyhole and weld pool dynamics in deep penetration laser welding. The coupling of three-dimensional heat transfer, fluid flow and keyhole free surface evolutions in the welding process is simulated. It is theoretically confirmed that under certain low heat input welding conditions deep penetration laser welding with a collapsing free keyhole could be obtained and the flow directions near the keyhole wall are upwards and approximately parallel to the keyhole wall. However, significantly different weld pool dynamics in a welding process with an unstable keyhole are numerically found. Many flow patterns in the welding process with an unstable keyhole, verified by x-ray transmission experiments, were successfully simulated and analysed. Periodical keyhole collapsing and bubble formation processes are also successfully simulated and believed to be in good agreement with experiments. The mechanisms of keyhole instability are found to be closely associated with the behaviour of humps on the keyhole wall, and it is found that the welding speed and surface tension are closely related to the formation of humps on the keyhole wall. It is also shown that the weld pool dynamics in laser welding with an unstable keyhole are closely associated with the transient keyhole instability and therefore modelling keyhole and weld pool in a self-consistent way is significant to understand the physics of laser welding.

  10. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  11. Universality and the dynamical space-time dimensionality in the Lorentzian type IIB matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuta [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimura, Jun [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies (SOKENDAI),1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Tsuchiya, Asato [Department of Physics, Shizuoka University,836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)

    2017-03-27

    The type IIB matrix model is one of the most promising candidates for a nonperturbative formulation of superstring theory. In particular, its Lorentzian version was shown to exhibit an interesting real-time dynamics such as the spontaneous breaking of the 9-dimensional rotational symmetry to the 3-dimensional one. This result, however, was obtained after regularizing the original matrix integration by introducing “infrared” cutoffs on the quadratic moments of the Hermitian matrices. In this paper, we generalize the form of the cutoffs in such a way that it involves an arbitrary power (2p) of the matrices. By performing Monte Carlo simulation of a simplified model, we find that the results become independent of p and hence universal for p≳1.3. For p as large as 2.0, however, we find that large-N scaling behaviors do not show up, and we cannot take a sensible large-N limit. Thus we find that there is a certain range of p in which a universal large-N limit can be taken. Within this range of p, the dynamical space-time dimensionality turns out to be (3+1), while for p=2.0, where we cannot take a sensible large-N limit, we observe a (5+1)d structure.

  12. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)

    2008-12-15

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)

  13. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    International Nuclear Information System (INIS)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A.; Cervello, C.

    2008-01-01

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation

  14. A multi-dimensional dynamic linear model for monitoring slaughter pig production

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Cornou, Cecile; Toft, Nils

    Scientists and farmers still lack an efficient way to unify the large number of different types of data series, which are increasingly being generated in relation to automatic herd monitoring. Such a unifying model should be able to account for the correlations between the various types of data......, feed-and water consumption), measured at different levels of detail (individual pig and double-pen level) and with different observational frequencies (weekly and daily), using series collected for the Danish PigIT project. The presented three-dimensional model serves as a proof of concept......, resulting in a model which could potentially yield more information than can be gained from the individual components separately. Here we present such a model for monitoring slaughter pig production, in the form of a multivariate dynamic linear model. This model unifies three types of data (live weight...

  15. Dynamical analysis and simulation of a 2-dimensional disease model with convex incidence

    Science.gov (United States)

    Yu, Pei; Zhang, Wenjing; Wahl, Lindi M.

    2016-08-01

    In this paper, a previously developed 2-dimensional disease model is studied, which can be used for both epidemiologic modeling and in-host disease modeling. The main attention of this paper is focused on various dynamical behaviors of the system, including Hopf and generalized Hopf bifurcations which yield bistability and tristability, Bogdanov-Takens bifurcation, and homoclinic bifurcation. It is shown that the Bogdanov-Takens bifurcation and homoclinic bifurcation provide a new mechanism for generating disease recurrence, that is, cycles of remission and relapse such as the viral blips observed in HIV infection.

  16. Chaotic dynamics in two-dimensional noninvertible maps

    CERN Document Server

    Mira, Christian; Cathala, Jean-Claude; Gardini, Laura

    1996-01-01

    This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea

  17. Charge carrier dynamics of methylammonium lead iodide: from PbI₂-rich to low-dimensional broadly emitting perovskites.

    Science.gov (United States)

    Klein, Johannes R; Flender, Oliver; Scholz, Mirko; Oum, Kawon; Lenzer, Thomas

    2016-04-28

    We provide an investigation of the charge carrier dynamics of the (MAI)(x)(PbI2)(1-x) system in the range x = 0.32-0.90 following the recently published "pseudobinary phase-composition processing diagram" of Song et al. (Chem. Mater., 2015, 27, 4612). The dynamics were studied using ultrafast pump-supercontinuum probe spectroscopy over the pump fluence range 2-50 μJ cm(-2), allowing for a wide variation of the initial carrier density. At high MAI excess (x = 0.90), low-dimensional perovskites (LDPs) are formed, and their luminescence spectra are significantly blue-shifted by ca. 50 nm and broadened compared to the 3D perovskite. The shift is due to quantum confinement effects, and the inhomogeneous broadening arises from different low-dimensional structures (predominantly 2D, but presumably also 1D and 0D). Accurate transient carrier temperatures are extracted from the transient absorption spectra. The regimes of carrier-carrier, carrier-optical phonon and acoustic phonon scattering are clearly distinguished. Perovskites with mole fractions x ≤ 0.71 exhibit extremely fast carrier cooling (ca. 300 fs) at low fluence of 2 μJ cm(-2), however cooling slows down significantly at high fluence of 50 μJ cm(-2) due to the "hot phonon effect" (ca. 2.8 ps). A kinetic analysis of the electron-hole recombination dynamics provides second-order recombination rate constants k2 which decrease from 5.3 to 1.5 × 10(-9) cm(3) s(-1) in the range x = 0.32-0.71. In contrast, recombination in the LDPs (x = 0.90) is more than one order of magnitude faster, 6.4 × 10(-8) cm(3) s(-1), which is related to the confined perovskite structure. Recombination in these LDPs should be however still slow enough for their potential application as efficient broadband emitters or solar light-harvesting materials.

  18. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  19. Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian

    2011-01-01

    The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...

  20. The emergence of geometry: a two-dimensional toy model

    CERN Document Server

    Alfaro, Jorge; Puigdomenech, Daniel

    2010-01-01

    We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...

  1. Low energy dynamics of monopoles in supersymmetric Yang-Mills theories with hypermultiplets

    International Nuclear Information System (INIS)

    Kim, Chanju

    2006-01-01

    We derive the low energy dynamics of monopoles and dyons in N = 2 supersymmetric Yang-Mills theories with hypermultiplets in arbitrary representations by utilizing a collective coordinate expansion. We consider the most general case that Higgs fields both in the vector multiplet and in the hypermultiplets have nonzero vacuum expectation values. The resulting theory is a supersymmetric quantum mechanics which has been obtained by a nontrivial dimensional reduction of two-dimensional (4,0) supersymmetric sigma models with potentials

  2. Renormalization group flows in σ-models coupled to two-dimensional dynamical gravity

    International Nuclear Information System (INIS)

    Penati, S.; Santambrogio, A.; Zanon, D.

    1997-01-01

    We consider a bosonic σ-model coupled to two-dimensional gravity. In the semiclassical limit, c→-∞, we compute the gravity dressing of the β-functions at two-loop order in the matter fields. We find that the corrections due to the presence of dynamical gravity are not expressible simply in terms of a multiplicative factor as previously obtained at the one-loop level. Our result indicates that the critical points of the theory are non-trivially influenced and modified by the induced gravity. (orig.)

  3. Two dimensional kicked quantum Ising model: dynamical phase transitions

    International Nuclear Information System (INIS)

    Pineda, C; Prosen, T; Villaseñor, E

    2014-01-01

    Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)

  4. Establishment and verification of three-dimensional dynamic model for heavy-haul train-track coupled system

    Science.gov (United States)

    Liu, Pengfei; Zhai, Wanming; Wang, Kaiyun

    2016-11-01

    For the long heavy-haul train, the basic principles of the inter-vehicle interaction and train-track dynamic interaction are analysed firstly. Based on the theories of train longitudinal dynamics and vehicle-track coupled dynamics, a three-dimensional (3-D) dynamic model of the heavy-haul train-track coupled system is established through a modularised method. Specifically, this model includes the subsystems such as the train control, the vehicle, the wheel-rail relation and the line geometries. And for the calculation of the wheel-rail interaction force under the driving or braking conditions, the large creep phenomenon that may occur within the wheel-rail contact patch is considered. For the coupler and draft gear system, the coupler forces in three directions and the coupler lateral tilt angles in curves are calculated. Then, according to the characteristics of the long heavy-haul train, an efficient solving method is developed to improve the computational efficiency for such a large system. Some basic principles which should be followed in order to meet the requirement of calculation accuracy are determined. Finally, the 3-D train-track coupled model is verified by comparing the calculated results with the running test results. It is indicated that the proposed dynamic model could simulate the dynamic performance of the heavy-haul train well.

  5. Critical Dynamics of the Xy-Model on the One-Dimensional Superlattice by Position Space Renormalization Group

    Science.gov (United States)

    Lima, J. P. De; Gonçalves, L. L.

    The critical dynamics of the isotropic XY-model on the one-dimensional superlattice is considered in the framework of the position space renormalization group theory. The decimation transformation is introduced by considering the equations of motion of the operators associated to the excitations of the system, and it corresponds to an extension of the procedure introduced by Stinchcombe and dos Santos (J. Phys. A18, L597 (1985)) for the homogeneous lattice. The dispersion relation is obtained exactly and the static and dynamic scaling forms are explicitly determined. The dynamic critical exponent is also obtained and it is shown that it is identical to the one of the XY-model on the homogeneous chain.

  6. Thermal conduction in classical low-dimensional lattices

    International Nuclear Information System (INIS)

    Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2003-01-01

    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable non-linear systems is briefly discussed. Finally, possible future research themes are outlined

  7. Three-dimensional biomechanical properties of human vocal folds: Parameter optimization of a numerical model to match in vitro dynamics

    Science.gov (United States)

    Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael

    2012-01-01

    The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511

  8. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Arneodo

    Full Text Available Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  9. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    Science.gov (United States)

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  10. Improvement of a three-dimensional atmospheric dynamic model and examination of its performance over complex terrain

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1994-11-01

    A three-dimensional atmospheric dynamic model (PHYSIC) was improved and its performance was examined using the meteorological data observed at a coastal area with a complex terrain. To introduce synoptic meteorological conditions into the model, the initial and boundary conditions were improved. By this improvement, the model can predict the temporal change of wind field for more than 24 hours. Moreover, the model successfully simulates the land and sea breeze observed at Shimokita area in the summer of 1992. (author)

  11. Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model

    Science.gov (United States)

    Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi

    2017-10-01

    We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., link ext-link-type="uri" xlink:href="https://doi.org/10.1103/PhysRevLett.103.177402" xlink:type="simple">Phys. Rev. Lett. 103, 177402 (2009)link>]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.

  12. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    Science.gov (United States)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  13. Non-equilibrium coherence dynamics in one-dimensional Bose gases

    DEFF Research Database (Denmark)

    Hofferberth, S.; Lesanovsky, Igor; Fischer, B.

    2007-01-01

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However......, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide...... range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena....

  14. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    Science.gov (United States)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization

  15. New developments in the theoretical treatment of low dimensional strongly correlated systems.

    Science.gov (United States)

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil; Tsvelik, Alexei M

    2017-10-09

    We review two important non-perturbative approaches for extracting the physics of low- dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of confor- mal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme- tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro- modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics. © 2017 IOP Publishing Ltd.

  16. The low-energy limiting behavior of the pseudofermion dynamical theory

    International Nuclear Information System (INIS)

    Carmelo, J.M.P.; Martelo, L.M.; Penc, K.

    2006-01-01

    In this paper we show that the general finite-energy spectral-function expressions provided by the pseudofermion dynamical theory for the one-dimensional Hubbard model lead to the expected low-energy Tomonaga-Luttinger liquid correlation function expressions. Moreover, we use the former general expressions to derive correlation-function asymptotic expansions in space and time which go beyond those obtained by conformal-field theory and bosonization: we derive explicit expressions for the pre-factors of all terms of such expansions and find that they have an universal form, as the corresponding critical exponents. Our results refer to all finite values of the on-site repulsion U and to a chain of length L very large and with periodic boundary conditions for the above model, but are of general nature for many integrable interacting models. The studies of this paper clarify the relation of the low-energy Tomonaga-Luttinger liquid behavior to the scattering mechanisms which control the spectral properties at all energy scales and provide a broader understanding of the unusual properties of quasi-one-dimensional nanostructures, organic conductors, and optical lattices of ultracold fermionic atoms. Furthermore, our results reveal the microscopic mechanisms which are behind the similarities and differences of the low-energy and finite-energy spectral properties of the model metallic phase

  17. Low Dimensional Semiconductor Structures Characterization, Modeling and Applications

    CERN Document Server

    Horing, Norman

    2013-01-01

    Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included h...

  18. Dynamics and stability of a tethered centrifuge in low earth orbit

    Science.gov (United States)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  19. Some problems of dynamical systems on three dimensional manifolds

    International Nuclear Information System (INIS)

    Dong Zhenxie.

    1985-08-01

    It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)

  20. When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, Kareem; Quataert, Eliot [Department of Astronomy, University of California, Berkeley, CA (United States); Wetzel, Andrew R.; Hopkins, Philip F. [TAPIR, California Institute of Technology, Pasadena, CA (United States); Geha, Marla [Department of Astronomy, Yale University, New Haven, CT (United States); Kereš, Dusan; Chan, T. K. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla (United States); Faucher-Giguère, Claude-André, E-mail: kelbadry@berkeley.edu [Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL (United States)

    2017-02-01

    In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test of the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.

  1. When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies

    International Nuclear Information System (INIS)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.; Hopkins, Philip F.; Geha, Marla; Kereš, Dusan; Chan, T. K.; Faucher-Giguère, Claude-André

    2017-01-01

    In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test of the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.

  2. A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects

    KAUST Repository

    Iliev, Oleg P.

    2013-05-15

    Paper production is a problem with significant importance for society; it is also a challenging topic for scientific investigation. This study is concerned with the simulation of the pressing section of a paper machine. A two-dimensional model is developed to account for the water flow within the pressing zone. A Richards-type equation is used to describe the flow in the unsaturated zone. The dynamic capillary pressure-saturation relation is adopted for the paper production process. The mathematical model accounts for the coexistence of saturated and unsaturated zones in a multilayer computational domain. The discretization is performed by the MPFA-O method. Numerical experiments are carried out for parameters that are typical of the production process. The static and dynamic capillary pressure-saturation relations are tested to evaluate the influence of the dynamic capillary effect. © 2013 Springer Science+Business Media Dordrecht.

  3. Computational Fluid Dynamics Modeling Three-Dimensional Unsteady Turbulent Flow and Excitation Force in Partial Admission Air Turbine

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2013-01-01

    Full Text Available Air turbines are widely used to convert kinetic energy into power output in power engineering. The unsteady performance of air turbines with partial admission not only influences the aerodynamic performance and thermodynamic efficiency of turbine but also generates strong excitation force on blades to impair the turbine safely operating. Based on three-dimensional viscous compressible Navier-stokes equations, the present study employs RNG (Renormalization group k-ε turbulence model with finite volume discretization on air turbine with partial admission. Numerical models of four different admission rates with full annulus are built and analyzed via CFD (computational fluid dynamics modeling unsteady flows. Results indicate that the unsteady time-averaged isentropic efficiency is lower than the steady isentropic efficiency, and this difference rises as unsteady isentropic efficiency fluctuates stronger when the admission rate is reduced. The rotor axial and tangential forces with time are provided for all four admission rates. The low frequency excitation forces generated by partial admission are extraordinarily higher than the high frequency excitation forces by stator wakes.

  4. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    Homer, Eric R; Schuh, Christopher A

    2010-01-01

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  5. Development of a dynamic model of a BWR nuclear power plant

    International Nuclear Information System (INIS)

    Nonboel, E.

    1975-12-01

    A description is given of a one-dimensional steady-state model of a high-pressure steam turbine, a low-pressure steam turbine, a moisture separator, a reheater, a condenser, feedwater heaters and feedwater pump for a nuclear power plant. The model is contained in the program ''TURBPLANT''. The dynamic part of this model is presented in part II of this report. (author)

  6. Optimal dimensionality reduction of complex dynamics: the chess game as diffusion on a free-energy landscape.

    Science.gov (United States)

    Krivov, Sergei V

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game--the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  7. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Shiro, Masanori [Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mathematical Neuroinformatics Group, Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, Nozomu; Mas, Paloma [Center for Research in Agricultural Genomics (CRAG), Consorci CSIC-IRTA-UAB-UB, Barcelona 08193 (Spain)

    2015-01-15

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

  8. Approximating high-dimensional dynamics by barycentric coordinates with linear programming.

    Science.gov (United States)

    Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma

    2015-01-01

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

  9. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

    International Nuclear Information System (INIS)

    Hirata, Yoshito; Aihara, Kazuyuki; Suzuki, Hideyuki; Shiro, Masanori; Takahashi, Nozomu; Mas, Paloma

    2015-01-01

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data

  10. Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics

    Science.gov (United States)

    Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike

    2014-05-01

    Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.

  11. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    Science.gov (United States)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  12. Magnetic properties of Hubbard-sigma model with three-dimensionality

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Tatara, Gen; Ichinose, Ikuo; Matsui, Tetsuo.

    1990-05-01

    It has been broadly accepted that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling and the spin-wave velocity with 'effective' ones determined by the concentration and the one-loop correction of hole fermions. Stationary-phase equations for the one-loop effective potential of S 2 model are analyzed. Based on them, various magnetic properties of the system, such as the behavior of Neel temperature, spin correlation length, staggered magnetization, specific heat and susceptibility as functions of anisotropic parameter, temperature, etc. are investigated in detail. The results show that our anisotropic field theory model with certain values of parameters gives a good description of the magnetic properties in both the ordered and the disordered phases indicated by experiments on La 2 CuO 4 . The part of the above results is supported by the renormalization-group analysis. In the doped case it is observed that the existence of holes destroys the long-range order and their hopping effect is large. (author)

  13. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    OpenAIRE

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  14. Three-dimensional computer simulation at vehicle collision using dynamic model. Application to various collision types; Rikigaku model ni yoru jidosha shototsuji no sanjigen kyodo simulation. Shushu no shototsu keitai eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Morisawa, M [Musashi Institute of Technology, Tokyo (Japan); Sato, T [Keio University, Tokyo (Japan); Kobayashi, K [Molex-Japan Co. Ltd., Tokyo (Japan)

    1997-10-01

    The past study of safety at vehicle collision pays attention to phenomena within the short time from starting collision, and the behavior of rollover is studied separating from that at collision. Most simulations of traffic accident are two-dimensional simulations. Therefore, it is indispensable for vehicle design to the analyze three-dimensional and continuous behavior from crash till stopping. Accordingly, in this study, the three-dimensional behavior of two vehicles at collision was simulated by computer using dynamic models. Then, by comparison of the calculated results with real vehicles` collision test data, it was confirmed that dynamic model of this study was reliable. 10 refs., 6 figs., 3 tabs.

  15. Development and application of a dynamic stall model for rotating wind turbine blades

    International Nuclear Information System (INIS)

    Xu, B F; Yuan, Y; Wang, T G

    2014-01-01

    In unsteady conditions of wind turbines, both the dynamic stall phenomenon and the three-dimensional (3D) rotational effect affect the rotor aerodynamics. The dynamic stall mechanism for rotating wind turbine blades is first investigated. Through the comparison of the aerodynamic data between the rotating blade and the two-dimensional (2D) airfoil, the normal force slope in the attached flow and the separation point expression in the separated flow are modified in the Beddoes-Leishman (B-L) dynamic stall model for rotating NREL wind turbine blades. The modified model is validated by the comparison between the calculation results and the experimental results of the lift and drag coefficients at different radial positions. Both the hysteresis loop shapes and the calculation values are closer to the experiment than the 2D dynamic stall model. The present dynamic stall model is then coupled to a free vortex wake model. The coupled model is used to calculate the unsteady blade aerodynamic loads and the low speed shaft torque of the NREL wind turbine in a yawed condition. The accuracy is greatly improved by the corrections presented in the paper

  16. Computer simulation of phase separation and ordering processes in low-dimensional systems

    DEFF Research Database (Denmark)

    Mouritsen, O.G.; Shah, P.J.; Vitting Andersen, J.

    1991-01-01

    An account is given of recent activity in the field of dynamics of phase separation and ordering processes in two-dimensional statistical mechanical models. The fundamental questions of the dynamics involve the form of the growth law, the value of the growth exponent, the dynamical scaling...... properties, and a possible universal classification of the late-stage dynamics. Evidence from kinetic lattice model calculations using computer-simulation techniques is presented in favor of a universal description of the dynamics in terms of algebraic growth laws with exponents which only depend...

  17. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    Science.gov (United States)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  18. Data-Driven Modeling of Complex Systems by means of a Dynamical ANN

    Science.gov (United States)

    Seleznev, A.; Mukhin, D.; Gavrilov, A.; Loskutov, E.; Feigin, A.

    2017-12-01

    The data-driven methods for modeling and prognosis of complex dynamical systems become more and more popular in various fields due to growth of high-resolution data. We distinguish the two basic steps in such an approach: (i) determining the phase subspace of the system, or embedding, from available time series and (ii) constructing an evolution operator acting in this reduced subspace. In this work we suggest a novel approach combining these two steps by means of construction of an artificial neural network (ANN) with special topology. The proposed ANN-based model, on the one hand, projects the data onto a low-dimensional manifold, and, on the other hand, models a dynamical system on this manifold. Actually, this is a recurrent multilayer ANN which has internal dynamics and capable of generating time series. Very important point of the proposed methodology is the optimization of the model allowing us to avoid overfitting: we use Bayesian criterion to optimize the ANN structure and estimate both the degree of evolution operator nonlinearity and the complexity of nonlinear manifold which the data are projected on. The proposed modeling technique will be applied to the analysis of high-dimensional dynamical systems: Lorenz'96 model of atmospheric turbulence, producing high-dimensional space-time chaos, and quasi-geostrophic three-layer model of the Earth's atmosphere with the natural orography, describing the dynamics of synoptical vortexes as well as mesoscale blocking systems. The possibility of application of the proposed methodology to analyze real measured data is also discussed. The study was supported by the Russian Science Foundation (grant #16-12-10198).

  19. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  20. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    Science.gov (United States)

    Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.

    2012-02-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.

  1. Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow

    Science.gov (United States)

    Narsipur, Shreyas

    Unsteady aerodynamics has been a topic of research since the late 1930's and has increased in popularity among researchers studying dynamic stall in helicopters, insect/bird flight, micro air vehicles, wind-turbine aerodynamics, and ow-energy harvesting devices. Several experimental and computational studies have helped researchers gain a good understanding of the unsteady ow phenomena, but have proved to be expensive and time-intensive for rapid design and analysis purposes. Since the early 1970's, the push to develop low-order models to solve unsteady ow problems has resulted in several semi-empirical models capable of effectively analyzing unsteady aerodynamics in a fraction of the time required by high-order methods. However, due to the various complexities associated with time-dependent flows, several empirical constants and curve fits derived from existing experimental and computational results are required by the semi-empirical models to be an effective analysis tool. The aim of the current work is to develop a low-order model capable of simulating incompressible dynamic-stall type ow problems with a focus on accurately modeling the unsteady ow physics with the aim of reducing empirical dependencies. The lumped-vortex-element (LVE) algorithm is used as the baseline unsteady inviscid model to which augmentations are applied to model unsteady viscous effects. The current research is divided into two phases. The first phase focused on augmentations aimed at modeling pure unsteady trailing-edge boundary-layer separation and stall without leading-edge vortex (LEV) formation. The second phase is targeted at including LEV shedding capabilities to the LVE algorithm and combining with the trailing-edge separation model from phase one to realize a holistic, optimized, and robust low-order dynamic stall model. In phase one, initial augmentations to theory were focused on modeling the effects of steady trailing-edge separation by implementing a non-linear decambering

  2. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    Science.gov (United States)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is

  3. Ferromagnetism in the two-dimensional periodic Anderson model

    International Nuclear Information System (INIS)

    Batista, C. D.; Bonca, J.; Gubernatis, J. E.

    2001-01-01

    Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calculations, but they were consistent with that obtained by density-matrix renormalization group calculations of the one-dimensional periodic Anderson model

  4. Physics of low-dimensional systems

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas

  5. Low-order dynamical system model of a fully developed turbulent channel flow

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under

  6. Nature versus nurture: Predictability in low-temperature Ising dynamics

    Science.gov (United States)

    Ye, J.; Machta, J.; Newman, C. M.; Stein, D. L.

    2013-10-01

    Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state (“nature”) versus the realization of the stochastic dynamics (“nurture”) in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞ to T=0. We performed Monte Carlo studies on the overlap between “identical twins” raised in independent dynamical environments, up to size L=500. Our results suggest an overlap decaying with time as t-θh with θh=0.22±0.02; the same exponent holds for a quench to low but nonzero temperature. This “heritability exponent” may equal the persistence exponent for the two-dimensional Ising ferromagnet, but the two differ more generally.

  7. Rhythmic dynamics and synchronization via dimensionality reduction: application to human gait.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system.

  8. Low-dimensional molecular metals

    CERN Document Server

    Toyota, Naoki; Muller, Jens

    2007-01-01

    Assimilating research in the field of low-dimensional metals, this monograph provides an overview of the status of research on quasi-one- and two-dimensional molecular metals, describing normal-state properties, magnetic field effects, superconductivity, and the phenomena of interacting p and d electrons.

  9. One-dimensional map-based neuron model: A logistic modification

    International Nuclear Information System (INIS)

    Mesbah, Samineh; Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Towhidkhah, Farzad

    2014-01-01

    A one-dimensional map is proposed for modeling some of the neuronal activities, including different spiking and bursting behaviors. The model is obtained by applying some modifications on the well-known Logistic map and is named the Modified and Confined Logistic (MCL) model. Map-based neuron models are known as phenomenological models and recently, they are widely applied in modeling tasks due to their computational efficacy. Most of discrete map-based models involve two variables representing the slow-fast prototype. There are also some one-dimensional maps, which can replicate some of the neuronal activities. However, the existence of four bifurcation parameters in the MCL model gives rise to reproduction of spiking behavior with control over the frequency of the spikes, and imitation of chaotic and regular bursting responses concurrently. It is also shown that the proposed model has the potential to reproduce more realistic bursting activity by adding a second variable. Moreover the MCL model is able to replicate considerable number of experimentally observed neuronal responses introduced in Izhikevich (2004) [23]. Some analytical and numerical analyses of the MCL model dynamics are presented to explain the emersion of complex dynamics from this one-dimensional map

  10. Dynamic transitions in a model of the hypothalamic-pituitary-adrenal axis

    Science.gov (United States)

    Čupić, Željko; Marković, Vladimir M.; Maćešić, Stevan; Stanojević, Ana; Damjanović, Svetozar; Vukojević, Vladana; Kolar-Anić, Ljiljana

    2016-03-01

    Dynamic properties of a nonlinear five-dimensional stoichiometric model of the hypothalamic-pituitary-adrenal (HPA) axis were systematically investigated. Conditions under which qualitative transitions between dynamic states occur are determined by independently varying the rate constants of all reactions that constitute the model. Bifurcation types were further characterized using continuation algorithms and scale factor methods. Regions of bistability and transitions through supercritical Andronov-Hopf and saddle loop bifurcations were identified. Dynamic state analysis predicts that the HPA axis operates under basal (healthy) physiological conditions close to an Andronov-Hopf bifurcation. Dynamic properties of the stress-control axis have not been characterized experimentally, but modelling suggests that the proximity to a supercritical Andronov-Hopf bifurcation can give the HPA axis both, flexibility to respond to external stimuli and adjust to new conditions and stability, i.e., the capacity to return to the original dynamic state afterwards, which is essential for maintaining homeostasis. The analysis presented here reflects the properties of a low-dimensional model that succinctly describes neurochemical transformations underlying the HPA axis. However, the model accounts correctly for a number of experimentally observed properties of the stress-response axis. We therefore regard that the presented analysis is meaningful, showing how in silico investigations can be used to guide the experimentalists in understanding how the HPA axis activity changes under chronic disease and/or specific pharmacological manipulations.

  11. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.

    1977-06-01

    A three-dimensional finite difference numerical methodology was developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity, selected such that the net angular momentum relative to the rotating frame is zero. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric toroids. For low thermal pressures, however, the collapsing cloud is unstable to initial perturbations. The fragmentation of protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to non-axisymmetric perturbations. The detailed evolution of the fragmenting toroid depends upon a non-dimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wavelengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into co-rotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  12. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    Science.gov (United States)

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  13. Monte Carlo investigation of the one-dimensional Potts model

    International Nuclear Information System (INIS)

    Karma, A.S.; Nolan, M.J.

    1983-01-01

    Monte Carlo results are presented for a variety of one-dimensional dynamical q-state Potts models. Our calculations confirm the expected universal value z = 2 for the dynamic scaling exponent. Our results also indicate that an increase in q at fixed correlation length drives the dynamics into the scaling regime

  14. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer.

    Science.gov (United States)

    Olszewski, Raphael; Szymor, Piotr; Kozakiewicz, Marcin

    2014-12-01

    Our study aimed to determine the accuracy of a low-cost, paper-based 3D printer by comparing a dry human mandible to its corresponding three-dimensional (3D) model using a 3D measuring arm. One dry human mandible and its corresponding printed model were evaluated. The model was produced using DICOM data from cone beam computed tomography. The data were imported into Maxilim software, wherein automatic segmentation was performed, and the STL file was saved. These data were subsequently analysed, repaired, cut and prepared for printing with netfabb software. These prepared data were used to create a paper-based model of a mandible with an MCor Matrix 300 printer. Seventy-six anatomical landmarks were chosen and measured 20 times on the mandible and the model using a MicroScribe G2X 3D measuring arm. The distances between all the selected landmarks were measured and compared. Only landmarks with a point inaccuracy less than 30% were used in further analyses. The mean absolute difference for the selected 2016 measurements was 0.36 ± 0.29 mm. The mean relative difference was 1.87 ± 3.14%; however, the measurement length significantly influenced the relative difference. The accuracy of the 3D model printed using the paper-based, low-cost 3D Matrix 300 printer was acceptable. The average error was no greater than that measured with other types of 3D printers. The mean relative difference should not be considered the best way to compare studies. The point inaccuracy methodology proposed in this study may be helpful in future studies concerned with evaluating the accuracy of 3D rapid prototyping models. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. A method of integration of atomistic simulations and continuum mechanics by collecting of dynamical systems with dimensional reduction

    International Nuclear Information System (INIS)

    Kaczmarek, J.

    2002-01-01

    Elementary processes responsible for phenomena in material are frequently related to scale close to atomic one. Therefore atomistic simulations are important for material sciences. On the other hand continuum mechanics is widely applied in mechanics of materials. It seems inevitable that both methods will gradually integrate. A multiscale method of integration of these approaches called collection of dynamical systems with dimensional reduction is introduced in this work. The dimensional reduction procedure realizes transition between various scale models from an elementary dynamical system (EDS) to a reduced dynamical system (RDS). Mappings which transform variables and forces, skeletal dynamical system (SDS) and a set of approximation and identification methods are main components of this procedure. The skeletal dynamical system is a set of dynamical systems parameterized by some constants and has variables related to the dimensionally reduced model. These constants are identified with the aid of solutions of the elementary dynamical system. As a result we obtain a dimensionally reduced dynamical system which describes phenomena in an averaged way in comparison with the EDS. Concept of integration of atomistic simulations with continuum mechanics consists in using a dynamical system describing evolution of atoms as an elementary dynamical system. Then, we introduce a continuum skeletal dynamical system within the dimensional reduction procedure. In order to construct such a system we have to modify a continuum mechanics formulation to some degree. Namely, we formalize scale of averaging for continuum theory and as a result we consider continuum with finite-dimensional fields only. Then, realization of dimensional reduction is possible. A numerical example of realization of the dimensional reduction procedure is shown. We consider a one dimensional chain of atoms interacting by Lennard-Jones potential. Evolution of this system is described by an elementary

  16. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  17. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.

    Science.gov (United States)

    Xiao, Perry; Imhof, Robert E

    2012-10-01

    Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and

  19. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and geomagnetic equators. The model runs in a normal personal computer (PC and generates color maps illustrating the

  20. Corruption dynamics model

    Science.gov (United States)

    Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal

    2017-07-01

    The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.

  1. One dimensional reactor core model

    International Nuclear Information System (INIS)

    Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.

    1984-01-01

    The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)

  2. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach

    Science.gov (United States)

    2013-09-30

    statistically extratropical storms and extremes, and link these to LFV modes. Mingfang Ting, Yochanan Kushnir, Andrew W. Robertson, Lei Wang...forecast models, as well as in the understanding they have generated. Adam Sobel, Daehyun Kim and Shuguang Wang. Extratropical variability and...predictability. Determine the extent to which extratropical monthly and seasonal low-frequency variability (LFV, i.e. PNA, NAO, as well as other regional

  3. Dynamic hysteresis behaviors for the two-dimensional mixed spin (2, 5/2) ferrimagnetic Ising model in an oscillating magnetic field

    Science.gov (United States)

    Ertaş, Mehmet

    2015-09-01

    Keskin and Ertaş (2009) presented a study of the magnetic properties of a mixed spin (2, 5/2) ferrimagnetic Ising model within an oscillating magnetic field. They employed dynamic mean-field calculations to find the dynamic phase transition temperatures, the dynamic compensation points of the model and to present the dynamic phase diagrams. In this work, we extend the study and investigate the dynamic hysteresis behaviors for the two-dimensional (2D) mixed spin (2, 5/2) ferrimagnetic Ising model on a hexagonal lattice in an oscillating magnetic field within the framework of dynamic mean-field calculations. The dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions and the effects of the Hamiltonian parameters on the dynamic hysteresis behaviors are discussed in detail. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and a qualitatively good agreement is found. Finally, the dynamic phase diagrams depending on the frequency of an oscillating magnetic field in the plane of the reduced temperature versus magnetic field amplitude is examined and it is found that the dynamic phase diagrams display richer dynamic critical behavior for higher values of frequency than for lower values.

  4. Three-Dimensional Dynamic Deformation Measurements Using Stereoscopic Imaging and Digital Speckle Photography

    International Nuclear Information System (INIS)

    Prentice, H. J.; Proud, W. G.

    2006-01-01

    A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical and numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses

  5. Graphics processing unit accelerated three-dimensional model for the simulation of pulsed low-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, Andrew, E-mail: andrew.fierro@ttu.edu; Dickens, James; Neuber, Andreas [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-12-15

    A 3-dimensional particle-in-cell/Monte Carlo collision simulation that is fully implemented on a graphics processing unit (GPU) is described and used to determine low-temperature plasma characteristics at high reduced electric field, E/n, in nitrogen gas. Details of implementation on the GPU using the NVIDIA Compute Unified Device Architecture framework are discussed with respect to efficient code execution. The software is capable of tracking around 10 × 10{sup 6} particles with dynamic weighting and a total mesh size larger than 10{sup 8} cells. Verification of the simulation is performed by comparing the electron energy distribution function and plasma transport parameters to known Boltzmann Equation (BE) solvers. Under the assumption of a uniform electric field and neglecting the build-up of positive ion space charge, the simulation agrees well with the BE solvers. The model is utilized to calculate plasma characteristics of a pulsed, parallel plate discharge. A photoionization model provides the simulation with additional electrons after the initial seeded electron density has drifted towards the anode. Comparison of the performance benefits between the GPU-implementation versus a CPU-implementation is considered, and a speed-up factor of 13 for a 3D relaxation Poisson solver is obtained. Furthermore, a factor 60 speed-up is realized for parallelization of the electron processes.

  6. Low energy dynamics of self-dual A1 strings

    International Nuclear Information System (INIS)

    Gustavsson, Andreas

    2003-01-01

    We examine the interrelation between the (2,0) supersymmetric six-dimensional effective action for the A 1 theory, and the corresponding low-energy theory for the collective coordinates associated to selfdual BPS strings. We argue that this low energy theory is a two-dimensional N=4 supersymmetric sigma model

  7. Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans

    Energy Technology Data Exchange (ETDEWEB)

    Skardal, Per Sebastian, E-mail: skardals@gmail.com [Departament d' Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Restrepo, Juan G., E-mail: juanga@colorado.edu [Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309 (United States)

    2014-12-15

    The spatiotemporal dynamics of cardiac tissue is an active area of research for biologists, physicists, and mathematicians. Of particular interest is the study of period-doubling bifurcations and chaos due to their link with cardiac arrhythmogenesis. In this paper, we study the spatiotemporal dynamics of a recently developed model for calcium-driven alternans in a one dimensional cable of tissue. In particular, we observe in the cable coexistence of regions with chaotic and multi-periodic dynamics over wide ranges of parameters. We study these dynamics using global and local Lyapunov exponents and spatial trajectory correlations. Interestingly, near nodes—or phase reversals—low-periodic dynamics prevail, while away from the nodes, the dynamics tend to be higher-periodic and eventually chaotic. Finally, we show that similar coexisting multi-periodic and chaotic dynamics can also be observed in a detailed ionic model.

  8. One-dimensional model of inertial pumping

    Science.gov (United States)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  9. An algorithm for engineering regime shifts in one-dimensional dynamical systems

    Science.gov (United States)

    Tan, James P. L.

    2018-01-01

    Regime shifts are discontinuous transitions between stable attractors hosting a system. They can occur as a result of a loss of stability in an attractor as a bifurcation is approached. In this work, we consider one-dimensional dynamical systems where attractors are stable equilibrium points. Relying on critical slowing down signals related to the stability of an equilibrium point, we present an algorithm for engineering regime shifts such that a system may escape an undesirable attractor into a desirable one. We test the algorithm on synthetic data from a one-dimensional dynamical system with a multitude of stable equilibrium points and also on a model of the population dynamics of spruce budworms in a forest. The algorithm and other ideas discussed here contribute to an important part of the literature on exercising greater control over the sometimes unpredictable nature of nonlinear systems.

  10. A reduced-order vortex model of three-dimensional unsteady non-linear aerodynamics

    Science.gov (United States)

    Eldredge, Jeff D.

    2014-11-01

    Rapid, large-amplitude maneuvers of low aspect ratio wings are inherent to biologically-inspired flight. These give rise to unsteady phenomena associated with the interactions among the coherent structures shed from wing edges. The objective of this work is to distill these phenomena into a low-order physics-based dynamical model. The model is based on interconnected vortex loops, composed of linear segments between a small number of vertices. Thus, the dynamics of the fluid are reduced to tracking the evolution of the vertices, whose motions are determined from the velocity field induced by the loops and wing motion. The feature that distinguishes this method from previous treatments is that the vortex loops, analogous to point vortices in our two-dimensional model, have time-varying strength. That is, the flux of vorticity from the wing is concentrated in the constituent segments. Chains of interconnected loops can be shed from any edge of the wing. The evolution equation for the loop vertices is based on the impulse matching principle developed in previous work. We demonstrate the model in various maneuvers, including impulse starts of low aspect ratio wings, oscillatory pitching, etc., and compare with experimental results and high-fidelity simulations where applicable. This work was supported by AFOSR under Award FA9550-11-1-0098.

  11. An Overview of Multi-Dimensional Models of the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Michael L. MacWilliams

    2016-12-01

    Full Text Available doi: https://doi.org/10.15447/sfews.2016v14iss4art2Over the past 15 years, the development and application of multi-dimensional hydrodynamic models in San Francisco Bay and the Sacramento–San Joaquin Delta has transformed our ability to analyze and understand the underlying physics of the system. Initial applications of three-dimensional models focused primarily on salt intrusion, and provided a valuable resource for investigating how sea level rise and levee failures in the Delta could influence water quality in the Delta under future conditions. However, multi-dimensional models have also provided significant insights into some of the fundamental biological relationships that have shaped our thinking about the system by exploring the relationship among X2, flow, fish abundance, and the low salinity zone. Through the coupling of multi-dimensional models with wind wave and sediment transport models, it has been possible to move beyond salinity to understand how large-scale changes to the system are likely to affect sediment dynamics, and to assess the potential effects on species that rely on turbidity for habitat. Lastly, the coupling of multi-dimensional hydrodynamic models with particle tracking models has led to advances in our thinking about residence time, the retention of food organisms in the estuary, the effect of south Delta exports on larval entrainment, and the pathways and behaviors of salmonids that travel through the Delta. This paper provides an overview of these recent advances and how they have increased our understanding of the distribution and movement of fish and food organisms. The applications presented serve as a guide to the current state of the science of Delta modeling and provide examples of how we can use multi-dimensional models to predict how future Delta conditions will affect both fish and water supply.

  12. Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.

    Science.gov (United States)

    Werner, J; Buse, M; Foegen, A

    1989-01-01

    In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.

  13. Data-assisted reduced-order modeling of extreme events in complex dynamical systems.

    Science.gov (United States)

    Wan, Zhong Yi; Vlachas, Pantelis; Koumoutsakos, Petros; Sapsis, Themistoklis

    2018-01-01

    The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in

  14. Data-assisted reduced-order modeling of extreme events in complex dynamical systems.

    Directory of Open Access Journals (Sweden)

    Zhong Yi Wan

    Full Text Available The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more

  15. Debris flow analysis with a one dimensional dynamic run-out model that incorporates entrained material

    Science.gov (United States)

    Luna, Byron Quan; Remaître, Alexandre; van Asch, Theo; Malet, Jean-Philippe; van Westen, Cees

    2010-05-01

    Estimating the magnitude and the intensity of rapid landslides like debris flows is fundamental to evaluate quantitatively the hazard in a specific location. Intensity varies through the travelled course of the flow and can be described by physical features such as deposited volume, velocities, height of the flow, impact forces and pressures. Dynamic run-out models are able to characterize the distribution of the material, its intensity and define the zone where the elements will experience an impact. These models can provide valuable inputs for vulnerability and risk calculations. However, most dynamic run-out models assume a constant volume during the motion of the flow, ignoring the important role of material entrained along its path. Consequently, they neglect that the increase of volume enhances the mobility of the flow and can significantly influence the size of the potential impact area. An appropriate erosion mechanism needs to be established in the analyses of debris flows that will improve the results of dynamic modeling and consequently the quantitative evaluation of risk. The objective is to present and test a simple 1D debris flow model with a material entrainment concept based on limit equilibrium considerations and the generation of excess pore water pressure through undrained loading of the in situ bed material. The debris flow propagation model is based on a one dimensional finite difference solution of a depth-averaged form of the Navier-Stokes equations of fluid motions. The flow is treated as a laminar one phase material, which behavior is controlled by a visco-plastic Coulomb-Bingham rheology. The model parameters are evaluated and the model performance is tested on a debris flow event that occurred in 2003 in the Faucon torrent (Southern French Alps).

  16. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  17. Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters

    Science.gov (United States)

    Bischi, G. I.; Tramontana, F.

    2010-10-01

    We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.

  18. Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study

    Science.gov (United States)

    Li, Jiaru; Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2017-08-01

    We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.

  19. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    Science.gov (United States)

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  20. Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

    International Nuclear Information System (INIS)

    Elliot-Ripley, Matthew

    2017-01-01

    Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai–Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai–Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai–Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond. (paper)

  1. Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary

    Directory of Open Access Journals (Sweden)

    Fitkevich Maxim

    2016-01-01

    Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.

  2. Fluctuation-Response Relation and modeling in systems with fast and slow dynamics

    Directory of Open Access Journals (Sweden)

    G. Lacorata

    2007-10-01

    Full Text Available We show how a general formulation of the Fluctuation-Response Relation is able to describe in detail the connection between response properties to external perturbations and spontaneous fluctuations in systems with fast and slow variables. The method is tested by using the 360-variable Lorenz-96 model, where slow and fast variables are coupled to one another with reciprocal feedback, and a simplified low dimensional system. In the Fluctuation-Response context, the influence of the fast dynamics on the slow dynamics relies in a non trivial behavior of a suitable quadratic response function. This has important consequences for the modeling of the slow dynamics in terms of a Langevin equation: beyond a certain intrinsic time interval even the optimal model can give just statistical prediction.

  3. Low Dimensionality Effects in Complex Magnetic Oxides

    Science.gov (United States)

    Kelley, Paula J. Lampen

    , Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.

  4. Stochastic volatility and multi-dimensional modeling in the European energy market

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Linda

    2012-07-01

    In energy prices there is evidence for stochastic volatility. Stochastic volatility has effect on the price of path-dependent options and therefore has to be modeled properly. We introduced a multi-dimensional non-Gaussian stochastic volatility model with leverage which can be used in energy pricing. It captures special features of energy prices like price spikes, mean-reversion, stochastic volatility and inverse leverage. Moreover it allows modeling dependencies between different commodities.The derived forward price dynamics based on this multi-variate spot price model, provides a very flexible structure. It includes cotango, backwardation and hump shape forward curves.Alternatively energy prices could be modeled by a 2-factor model consisting of a non-Gaussian stable CARMA process and a non-stationary trend models by a Levy process. Also this model is able to capture special features like price spikes, mean reversion and the low frequency dynamics in the market. An robust L1-filter is introduced to filter out the states of the CARMA process. When applying to German electricity EEX exchange data an overall negative risk-premium is found. However close to delivery a positive risk-premium is observed.(Author)

  5. Semiparametric modeling: Correcting low-dimensional model error in parametric models

    International Nuclear Information System (INIS)

    Berry, Tyrus; Harlim, John

    2016-01-01

    In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consists of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.

  6. Nonlinear dynamics of the magnetosphere and space weather

    Science.gov (United States)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  7. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods.

    Science.gov (United States)

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil J; Tsvelik, Alexei M

    2018-02-26

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1  +  1D quantum chromodynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  8. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    Science.gov (United States)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; Robinson, Neil J.; Tsvelik, Alexei M.

    2018-04-01

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb–Liniger model, 1  +  1D quantum chromodynamics, as well as Landau–Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  9. Dynamical class of a two-dimensional plasmonic Dirac system.

    Science.gov (United States)

    Silva, Érica de Mello

    2015-10-01

    A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.

  10. A study of low-dimensional inhomogeneous systems

    International Nuclear Information System (INIS)

    Arredondo Leon, Yesenia

    2009-01-01

    While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K c , which characterizes its decay at large distances. (orig.)

  11. A study of low-dimensional inhomogeneous systems

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo Leon, Yesenia

    2009-01-15

    While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K{sub c}, which characterizes its decay at large distances. (orig.)

  12. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, Troels F; Pedersen, Thomas G [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, 9220 Aalborg Oest (Denmark); Cornean, Horia D, E-mail: tfr@nanophysics.d [Department of Mathematical Sciences, Aalborg University, Frederik Bajers Vej 7G, 9220 Aalborg (Denmark)

    2010-11-26

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions m{sub e}/m{sub h} = {sigma} in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  13. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Roennow, Troels F; Pedersen, Thomas G; Cornean, Horia D

    2010-01-01

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions m e /m h = σ in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  14. Low dimensionality semiconductors: modelling of excitons via a fractional-dimensional space

    Science.gov (United States)

    Christol, P.; Lefebvre, P.; Mathieu, H.

    1993-09-01

    An interaction space with a fractionnal dimension is used to calculate in a simple way the binding energies of excitons confined in quantum wells, superlattices and quantum well wires. A very simple formulation provides this energy versus the non-integer dimensionality of the physical environment of the electron-hole pair. The problem then comes to determining the dimensionality α. We show that the latter can be expressed from the characteristics of the microstructure. α continuously varies from 3 (bulk material) to 2 for quantum wells and superlattices, and from 3 to 1 for quantum well wires. Quite a fair agreement is obtained with other theoretical calculations and experimental data, and this model coherently describes both three-dimensional limiting cases for quantum wells (L_wrightarrow 0 and L_wrightarrow infty) and the whole range of periods of the superlattice. Such a simple model presents a great interest for spectroscopists though it does not aim to compete with accurate but often tedious variational calculations. Nous utilisons un espace des interactions doté d'une dimension fractionnaire pour calculer simplement l'énergie de liaison des excitons confinés dans les puits quantiques, superréseaux et fils quantiques. Une formulation très simple donne cette énergie en fonction de la dimensionalité non-entière de l'environnement physique de la paire électron-trou. Le problème revient alors à déterminer cette dimensionalité α, dont nous montrons qu'une expression peut être déduite des caractéristiques de la microstructure. α varie continûment de 3 (matériau massif) à 2 pour un puits quantique ou un superréseau, et de 3 à 1 pour un fil quantique, selon le confinement du mouvement des porteurs. Les comparaisons avec d'autres calculs théoriques et données expérimentales sont toujours très convenables, et cette théorie décrit d'une façon cohérente les limites tridimensionnelles du puits quantique (L_wrightarrow 0 et L

  15. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  16. Adaptation dynamics of the quasispecies model

    Indian Academy of Sciences (India)

    We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly ...

  17. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    NARCIS (Netherlands)

    Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  18. A new (in)finite-dimensional algebra for quantum integrable models

    International Nuclear Information System (INIS)

    Baseilhac, Pascal; Koizumi, Kozo

    2005-01-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models

  19. Dynamical chaos and beam-beam models

    International Nuclear Information System (INIS)

    Izrailev, F.M.

    1990-01-01

    Some aspects of the nonlinear dynamics of beam-beam interaction for simple one-dimensional and two-dimensional models of round and flat beams are discussed. The main attention is paid to the stochasticity threshold due to the overlapping of nonlinear resonances. The peculiarities of a round beam are investigated in view of using the round beams in storage rings to get high luminosity. 16 refs.; 7 figs

  20. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...

  1. Root causes occurrence of low BIM adoption in Malaysia: System dynamics modelling approach

    Science.gov (United States)

    Mamter, Shahela; Aziz, Abdul Rashid Abdul; Zulkepli, Jafri

    2017-11-01

    The global implementation of BIM in the construction field is increasing worldwide. Due to the advantages offered by BIM, its implementation is considered important in the construction projects. Nevertheless, the Construction Industry Transformation Plan has reported that the adoption of Building Information Modelling (BIM) in Malaysia is still low and it is estimated at only 10 percent adoption amongst construction stake players. The barriers influencing the occurrence of low adoption BIM in Malaysia have been studied by some researchers. However, these researchers did not investigate the root causes which might lead to the recurring of the barriers to BIM adoption. Root causes that immediately occurrence of barriers, also known as precipitants or trigger causes. This conceptual paper developed the causal loop diagram (CLD) which presents the relationship between the perceived variables using system dynamic modelling approach. The findings revealed a novelty validated diagrams that design the holistic dynamic relationship on the root causes occurrence of low BIM adoption. Nonetheless, the diagram subject to more empirical testing for its practicability and further refinement upon more results expected to emerge as the research progresses.

  2. Three-dimensional model of a liquid-cooled, low energy booster, radio-frequency cavity tuner at the superconducting super collider

    International Nuclear Information System (INIS)

    Ranganathan, R.; Propp, A.; Campbell, B.; Dao, B.

    1994-01-01

    A three-dimensional computational heat transfer and fluid flow model was developed to analyze a forced-flow, liquid-cooled, low energy booster (LEB), radio-frequency (RF) cavity, tuner concept. The results for a commercial dielectric heat transfer fluid indicated safe temperatures in the ferrite

  3. Three-dimensional model of a liquid-cooled, low energy booster radio- frequency cavity tuner at the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, R.; Propp, A.; Campbell, B.; Dao, B.

    1993-04-01

    A three-dimensional computational heat transfer and fluid flow model was developed to analyze a forced-flow, liquid-cooled, low energy booster (LEB) radio-frequency (RF) cavity tuner concept. The results for a commercial dielectric heat transfer fluid indicated safe temperatures in the ferrite.

  4. Three-dimensional model of a liquid-cooled, low energy booster radio- frequency cavity tuner at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ranganathan, R.; Propp, A.; Campbell, B.; Dao, B.

    1993-04-01

    A three-dimensional computational heat transfer and fluid flow model was developed to analyze a forced-flow, liquid-cooled, low energy booster (LEB) radio-frequency (RF) cavity tuner concept. The results for a commercial dielectric heat transfer fluid indicated safe temperatures in the ferrite

  5. Three-dimensional particle tracking velocimetry using dynamic vision sensors

    Science.gov (United States)

    Borer, D.; Delbruck, T.; Rösgen, T.

    2017-12-01

    A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The "dynamic vision sensors" register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.

  6. Magnetic field line random walk in two-dimensional dynamical turbulence

    Science.gov (United States)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.

  7. Electron-hole liquid in semiconductors and low-dimensional structures

    Science.gov (United States)

    Sibeldin, N. N.

    2017-11-01

    The condensation of excitons into an electron-hole liquid (EHL) and the main EHL properties in bulk semiconductors and low-dimensional structures are considered. The EHL properties in bulk materials are discussed primarily in qualitative terms based on the experimental results obtained for germanium and silicon. Some of the experiments in which the main EHL thermodynamic parameters (density and binding energy) have been obtained are described and the basic factors that determine these parameters are considered. Topics covered include the effect of external perturbations (uniaxial strain and magnetic field) on EHL stability; phase diagrams for a nonequilibrium exciton-gas-EHL system; information on the size and concentration of electron-hole drops (EHDs) under various experimental conditions; the kinetics of exciton condensation and of recombination in the exciton-gas-EHD system; dynamic EHD properties and the motion of EHDs under the action of external forces; the properties of giant EHDs that form in potential wells produced by applying an inhomogeneous strain to the crystal; and effects associated with the drag of EHDs by nonequilibrium phonons (phonon wind), including the dynamics and formation of an anisotropic spatial structure of the EHD cloud. In discussing EHLs in low-dimensional structures, a number of studies are reviewed on the observation and experimental investigation of phenomena such as spatially indirect (dipolar) electron-hole and exciton (dielectric) liquids in GaAs/AlGaAs structures with double quantum wells (QWs), EHDs containing only a few electron-hole pairs (dropletons), EHLs in type-I silicon QWs, and spatially direct and dipolar EHLs in type-II silicon-germanium heterostructures.

  8. Two-dimensional models in statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Koberle, R.

    1980-01-01

    Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

  9. An evaluation of Dynamic TOPMODEL for low flow simulation

    Science.gov (United States)

    Coxon, G.; Freer, J. E.; Quinn, N.; Woods, R. A.; Wagener, T.; Howden, N. J. K.

    2015-12-01

    Hydrological models are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow predictions. However, simulating low flows and droughts is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of water resource system elements during low flow periods. These dynamic processes are typically not well represented in commonly used hydrological models due to data and model limitations. Furthermore, calibrated or behavioural models may not be effectively evaluated during more extreme drought periods. A better understanding of the processes that occur during low flows and how these are represented within models is thus required if we want to be able to provide robust and reliable predictions of future drought events. In this study, we assess the performance of dynamic TOPMODEL for low flow simulation. Dynamic TOPMODEL was applied to a number of UK catchments in the Thames region using time series of observed rainfall and potential evapotranspiration data that captured multiple historic droughts over a period of several years. The model performance was assessed against the observed discharge time series using a limits of acceptability framework, which included uncertainty in the discharge time series. We evaluate the models against multiple signatures of catchment low-flow behaviour and investigate differences in model performance between catchments, model diagnostics and for different low flow periods. We also considered the impact of surface water and groundwater abstractions and discharges on the observed discharge time series and how this affected the model evaluation. From analysing the model performance, we suggest future improvements to Dynamic TOPMODEL to improve the representation of low flow processes within the model structure.

  10. Dynamic characteristics of lead rubber bearings with dynamic two-dimensional test equipment

    International Nuclear Information System (INIS)

    Ohtori, Y.; Ishida, K.; Mazda, T.

    1994-01-01

    Although studies have previously been done on the static mechanical properties of lead rubber bearings, this study aims to grasp the dynamic characteristics of lead rubber bearings from experimental results, using two-dimensional dynamic test equipment which is designed to grasp in detail such dynamic characteristics as deformation capacity and proof stress. This paper describes the results from three types of tests: (1) dynamic mechanical properties tests, (2) cyclic loading tests, and (3) dynamic ultimate tests. Through these tests, it was confirmed that the dynamic characteristics of lead rubber bearings are independent of strain rate

  11. Generative Models of Conformational Dynamics

    OpenAIRE

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a...

  12. Generative Models of Conformational Dynamics

    Science.gov (United States)

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358

  13. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    Science.gov (United States)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  14. Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models

    KAUST Repository

    Ting, Chee-Ming

    2017-12-06

    We consider the challenges in estimating state-related changes in brain connectivity networks with a large number of nodes. Existing studies use sliding-window analysis or time-varying coefficient models which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms K-means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to resting-state fMRI data, our method successfully identifies modular organization in resting-state networks in consistency with other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.

  15. Method of solving conformal models in D-dimensional space I

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Palchik, M.Y.

    1996-01-01

    We study the Hilbert space of conformal field theory in D-dimensional space. The latter is shown to have model-independent structure. The states of matter fields and gauge fields form orthogonal subspaces. The dynamical principle fixing the choice of model may be formulated either in each of these subspaces or in their direct sum. In the latter case, gauge interactions are necessarily present in the model. We formulate the conditions specifying the class of models where gauge interactions are being neglected. The anomalous Ward identities are derived. Different values of anomalous parameters (D-dimensional analogs of a central charge, including operator ones) correspond to different models. The structure of these models is analogous to that of 2-dimensional conformal theories. Each model is specified by D-dimensional analog of null vector. The exact solutions of the simplest models of this type are examined. It is shown that these models are equivalent to Lagrangian models of scalar fields with a triple interaction. The values of dimensions of such fields are calculated, and the closed sets of differential equations for higher Green functions are derived. Copyright copyright 1996 Academic Press, Inc

  16. Revealing the Solvation Structure and Dynamics of Carbonate Electrolytes in Lithium-Ion Batteries by Two-Dimensional Infrared Spectrum Modeling.

    Science.gov (United States)

    Liang, Chungwen; Kwak, Kyungwon; Cho, Minhaeng

    2017-12-07

    Carbonate electrolytes in lithium-ion batteries play a crucial role in conducting lithium ions between two electrodes. Mixed solvent electrolytes consisting of linear and cyclic carbonates are commonly used in commercial lithium-ion batteries. To understand how the linear and cyclic carbonates introduce different solvation structures and dynamics, we performed molecular dynamics simulations of two representative electrolyte systems containing either linear or cyclic carbonate solvents. We then modeled their two-dimensional infrared (2DIR) spectra of the carbonyl stretching mode of these carbonate molecules. We found that the chemical exchange process involving formation and dissociation of lithium-ion/carbonate complexes is responsible for the growth of 2DIR cross peaks with increasing waiting time. In addition, we also found that cyclic carbonates introduce faster dynamics of dissociation and formation of lithium-ion/carbonate complexes than linear carbonates. These findings provide new insights into understanding the lithium-ion mobility and its interplay with solvation structure and ultrafast dynamics in carbonate electrolytes used in lithium-ion batteries.

  17. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.; Harlow, F.H.

    1978-01-01

    A three-dimensional finite difference numerical methodology has been developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high-speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric ellipsoids. For low thermal pressures, however, the collapsing cloud is unstable to perturbations. The resulting fragmentation of unstable protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to nonaxisymmetric perturbations. The detailed evolution of the fragmentation toroid depends upon a nondimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wave-lengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into corotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  18. Common phase diagram for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Michalak, Rudi

    2003-01-01

    A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality

  19. Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the modeling of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-variable case.

  20. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  1. Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections

    Science.gov (United States)

    Hermanns, M.; Kimchi, I.; Knolle, J.

    2018-03-01

    Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking, the topological order underlying quantum spin liquids is hard to detect experimentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tricoordinated lattices are chief counterexamples - they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including two-dimensional and three-dimensional fractionalization as well as dynamic correlations and behavior at finite temperatures. We discuss the different materials and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures.

  2. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...

  3. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  4. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  5. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.

    Science.gov (United States)

    Kawasaki, Takeshi; Tanaka, Hajime

    2010-06-16

    The physical understanding of glass transition remains a major challenge of physics and materials science. Among various glass-forming liquids, a colloidal liquid interacting with hard-core repulsion is now regarded as one of the most ideal model systems. Here we study the structure and dynamics of three-dimensional polydisperse colloidal liquids by Brownian dynamics simulations. We reveal that medium-range crystalline bond orientational order of the hexagonal close packed structure grows in size and lifetime with increasing packing fraction. We show that dynamic heterogeneity may be a direct consequence of this transient structural ordering, which suggests its origin is thermodynamic rather than kinetic. We also reveal that nucleation of crystals preferentially occurs in regions of high medium-range order, reflecting the low crystal-liquid interfacial energy there. These findings may shed new light not only on the fundamental nature of the glass transition, but also the mechanism of crystal nucleation.

  6. Simulated blood transport of low density lipoproteins in a three-dimensional and permeable T-junction.

    Science.gov (United States)

    Shibeshi, Shewaferaw S; Everett, Joseph; Venable, Demetrius D; Collins, William E

    2005-01-01

    Previous studies indicate that blood flow and transport of macromolecules in the cardiovascular system and tissues are essential to understand the genesis and progression of arterial diseases and for the effective implementation of arterial grafts, as well as to devise efficient drug delivery mechanisms. In the present study, we use computational fluid dynamics to simulate the blood flow and transport of low-density lipoproteins (LDL) in a three-dimensional and permeable T junction. The Navier-Stokes equation, Darcy's Law, and the advective diffusion equations are the mathematical models used to simulate the flow and transport phenomena of the system. In the numeric model to implement the finite volume method, we used the computational fluid dynamics software Fluent 6.1. The simulation shows higher LDL concentration in the luminal surface at the junction under physiologic flow conditions. At 1 mm depth into the artery from the luminal surface, the LDL concentration is approximately 40% of the lumenal concentration, and at 2 mm depth, it reduces to 20%. Ultimately, the concentration drops further and reaches zero at the outer wall boundary.

  7. A two-Lane model with anomalous slow dynamics

    Science.gov (United States)

    Linford, Dan; Richards, Trevor; Pleimling, Michel

    2011-10-01

    It is known that in one-dimensional equilibrium systems with short range interactions a phase transition cannot exist at finite, non-zero temperatures. However, far from equilibrium, one-dimensional systems with local interactions can exhibit a phase transition. The ABC model, a three species model defined on a chain characterized by non-symmetric exchanges between particles, is known to possess a non-equilibrium phase transition. This model exhibits anomalous slow dynamics that we investigate in some detail using two-time quantities. In addition we discuss an extension of this model to a case where this single lane is coupled to a one-dimensional particle bath. This coupling yields an additional phase transition that we discuss in some detail.

  8. Low-Dimensional Material: Structure-Property Relationship and Applications in Energy and Environmental Engineering

    Science.gov (United States)

    Xiao, Hang

    In the past several decades, low-dimensional materials (0D materials, 1D materials and 2D materials) have attracted much interest from both the experimental and theoretical points of view. Because of the quantum confinement effect, low-dimensional materials have exhibited a kaleidoscope of fascinating phenomena and unusual physical and chemical properties, shedding light on many novel applications. Despite the enormous success has been achieved in the research of low-dimensional materials, there are three fundamental challenges of research in low-dimensional materials: 1) Develop new computational tools to accurately describe the properties of low-dimensional materials with low computational cost. 2) Predict and synthesize new low-dimensional materials with novel properties. 3) Reveal new phenomenon induced by the interaction between low-dimensional materials and the surrounding environment. In this thesis, atomistic modelling tools have been applied to address these challenges. We first developed ReaxFF parameters for phosphorus and hydrogen to give an accurate description of the chemical and mechanical properties of pristine and defected black phosphorene. ReaxFF for P/H is transferable to a wide range of phosphorus and hydrogen containing systems including bulk black phosphorus, blue phosphorene, edge-hydrogenated phosphorene, phosphorus clusters and phosphorus hydride molecules. The potential parameters were obtained by conducting global optimization with respect to a set of reference data generated by extensive ab initio calculations. We extended ReaxFF by adding a 60° correction term which significantly improved the description of phosphorus clusters. Emphasis was placed on the mechanical response of black phosphorene with different types of defects. Compared to the nonreactive SW potential of phosphorene, ReaxFF for P/H systems provides a significant improvement in describing the mechanical properties of the pristine and defected black phosphorene, as well

  9. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

    Science.gov (United States)

    Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua

    2014-04-02

    The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.

  10. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  11. Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems

    International Nuclear Information System (INIS)

    Corini, Cosimo

    2009-01-01

    Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)

  12. Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Corini, Cosimo

    2009-06-12

    Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)

  13. Supporting Dynamic Quantization for High-Dimensional Data Analytics.

    Science.gov (United States)

    Guzun, Gheorghi; Canahuate, Guadalupe

    2017-05-01

    Similarity searches are at the heart of exploratory data analysis tasks. Distance metrics are typically used to characterize the similarity between data objects represented as feature vectors. However, when the dimensionality of the data increases and the number of features is large, traditional distance metrics fail to distinguish between the closest and furthest data points. Localized distance functions have been proposed as an alternative to traditional distance metrics. These functions only consider dimensions close to query to compute the distance/similarity. Furthermore, in order to enable interactive explorations of high-dimensional data, indexing support for ad-hoc queries is needed. In this work we set up to investigate whether bit-sliced indices can be used for exploratory analytics such as similarity searches and data clustering for high-dimensional big-data. We also propose a novel dynamic quantization called Query dependent Equi-Depth (QED) quantization and show its effectiveness on characterizing high-dimensional similarity. When applying QED we observe improvements in kNN classification accuracy over traditional distance functions. Gheorghi Guzun and Guadalupe Canahuate. 2017. Supporting Dynamic Quantization for High-Dimensional Data Analytics. In Proceedings of Ex-ploreDB'17, Chicago, IL, USA, May 14-19, 2017, 6 pages. https://doi.org/http://dx.doi.org/10.1145/3077331.3077336.

  14. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    Science.gov (United States)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  15. Static and dynamic properties of two-dimensional Coulomb clusters.

    Science.gov (United States)

    Ash, Biswarup; Chakrabarti, J; Ghosal, Amit

    2017-10-01

    We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.

  16. Semilogarithmic Nonuniform Vector Quantization of Two-Dimensional Laplacean Source for Small Variance Dynamics

    Directory of Open Access Journals (Sweden)

    Z. Peric

    2012-04-01

    Full Text Available In this paper high dynamic range nonuniform two-dimensional vector quantization model for Laplacean source was provided. Semilogarithmic A-law compression characteristic was used as radial scalar compression characteristic of two-dimensional vector quantization. Optimal number value of concentric quantization domains (amplitude levels is expressed in the function of parameter A. Exact distortion analysis with obtained closed form expressions is provided. It has been shown that proposed model provides high SQNR values in wide range of variances, and overachieves quality obtained by scalar A-law quantization at same bit rate, so it can be used in various switching and adaptation implementations for realization of high quality signal compression.

  17. Learning Low-Dimensional Metrics

    OpenAIRE

    Jain, Lalit; Mason, Blake; Nowak, Robert

    2017-01-01

    This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax)bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric;4) we also bound the accuracy ...

  18. A new approach for assimilation of two-dimensional radar precipitation in a high resolution NWP model

    Science.gov (United States)

    Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetman, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; GIll, Rasphal; Vedel, Henrik

    2014-05-01

    The DMI nowcasting system has been running in a pre-operational state for the past year. The system consists of hourly simulations with the High Resolution Limited Area weather model combined with surface and three-dimensional variational assimilation at each restart and nudging of satellite cloud products and radar precipitation. Nudging of a two-dimensional radar reflectivity CAPPI product is achieved using a new method where low level horizontal divergence is nudged towards pseudo observations. Pseudo observations are calculated based on an assumed relation between divergence and precipitation rate and the strength of the nudging is proportional to the offset between observed and modelled precipitation leading to increased moisture convergence below cloud base if there is an under-production of precipitation relative to the CAPPI product. If the model over-predicts precipitation, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. In this talk results will be discussed based on calculation of the fractions skill score in cases with heavy precipitation over Denmark. Furthermore, results from simulations combining reflectivity nudging and extrapolation of reflectivity will be shown. Results indicate that the new method leads to fast adjustment of the dynamical state of the model to facilitate precipitation release when the model precipitation intensity is too low. Removal of precipitation is also shown to be of importance and strong improvements were found in the position of the precipitation systems. Bias is reduced for low and extreme precipitation rates.

  19. Reduced-Order Computational Model for Low-Frequency Dynamics of Automobiles

    Directory of Open Access Journals (Sweden)

    A. Arnoux

    2013-01-01

    Full Text Available A reduced-order model is constructed to predict, for the low-frequency range, the dynamical responses in the stiff parts of an automobile constituted of stiff and flexible parts. The vehicle has then many elastic modes in this range due to the presence of many flexible parts and equipment. A nonusual reduced-order model is introduced. The family of the elastic modes is not used and is replaced by an adapted vector basis of the admissible space of global displacements. Such a construction requires a decomposition of the domain of the structure in subdomains in order to control the spatial wave length of the global displacements. The fast marching method is used to carry out the subdomain decomposition. A probabilistic model of uncertainties is introduced. The parameters controlling the level of uncertainties are estimated solving a statistical inverse problem. The methodology is validated with a large computational model of an automobile.

  20. The dynamics of low-β plasma clouds as simulated by a three-dimensional, electromagnetic particle code

    International Nuclear Information System (INIS)

    Neubert, T.; Miller, R.H.; Buneman, O.; Nishikawa, K.I.

    1992-01-01

    The dynamics of low-β plasma clouds moving perpendicular to an ambient magnetic field in vacuum and in a background plasma is simulated by means of a three-dimensional, electromagnetic, and relativistic particle simulation code. The simulations show the formation of the space charge sheaths at the sides of the cloud with the associated polarization electric field which facilitate the cross-field propagation, as well as the sheaths at the front and rear end of the cloud caused by the larger ion Larmor radius, which allows ions to move ahead and lag behind the electrons as they gyrate. Results on the cloud dynamics and electromagnetic radiation include the following: (1) In a background plasma, electron and ion sheaths expand along the magnetic field at the same rate, whereas in vacuum the electron sheath expands much faster than the ion sheath. (2) Sheath electrons are accelerated up to relativistic energies. This result indicates that artificial plasma clouds released in the ionosphere or magnetosphere may generate optical emissions (aurora) as energetic sheath electrons scatter in the upper atmosphere. (3) The expansion of the electron sheaths is analogous to the ejection of high-intensity electron beams from spacecraft. (4) Second-order and higher-order sheaths are formed which extend out into the ambient plasma. (5) Formation of the sheaths and the polarization field reduces the forward momentum of the cloud. (6) The coherent component of the particle gyromotion is damped in time as the particles establish a forward directed drift velocity. (7) The coherent particle gyrations generate electromagnetic radiation

  1. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  2. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  3. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    International Nuclear Information System (INIS)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-01-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three

  4. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  5. Kovacs effect in the one-dimensional Ising model: A linear response analysis

    Science.gov (United States)

    Ruiz-García, M.; Prados, A.

    2014-01-01

    We analyze the so-called Kovacs effect in the one-dimensional Ising model with Glauber dynamics. We consider small enough temperature jumps, for which a linear response theory has been recently derived. Within this theory, the Kovacs hump is directly related to the monotonic relaxation function of the energy. The analytical results are compared with extensive Monte Carlo simulations, and an excellent agreement is found. Remarkably, the position of the maximum in the Kovacs hump depends on the fact that the true asymptotic behavior of the relaxation function is different from the stretched exponential describing the relevant part of the relaxation at low temperatures.

  6. A multi-dimensional dynamic linear model for monitoring slaughter pig production

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Cornou, Cecile; Toft, Nils

    , feed- and water consumption), measured at different levels of detail (individual pig and double-pen level) and with different observational frequencies (weekly and daily), using series collected for the Danish PigIT project. The presented three-dimensional model serves as a proof of concept...

  7. Full evaporation dynamic headspace in combination with selectable one-dimensional/two-dimensional gas chromatography-mass spectrometry for the determination of suspected fragrance allergens in cosmetic products.

    Science.gov (United States)

    Devos, Christophe; Ochiai, Nobuo; Sasamoto, Kikuo; Sandra, Pat; David, Frank

    2012-09-14

    Suspected fragrance allergens were determined in cosmetic products using a combination of full evaporation-dynamic headspace (FEDHS) with selectable one-dimensional/two-dimensional GC-MS. The full evaporation dynamic headspace approach allows the non-discriminating extraction and injection of both apolar and polar fragrance compounds, without contamination of the analytical system by high molecular weight non-volatile matrix compounds. The method can be applied to all classes of cosmetic samples, including water containing matrices such as shower gels or body creams. In combination with selectable (1)D/(2)D GC-MS, consisting of a dedicated heart-cutting GC-MS configuration using capillary flow technology (CFT) and low thermal mass GC (LTM-GC), a highly flexible and easy-to-use analytical solution is offered. Depending on the complexity of the perfume fraction, analyses can be performed in one-dimensional GC-MS mode or in heart-cutting two-dimensional GC-MS mode, without the need of hardware reconfiguration. The two-dimensional mode with independent temperature control of the first and second dimension column is especially useful to confirm the presence of detected allergen compounds when mass spectral deconvolution is not possible. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations.

    Science.gov (United States)

    Wu, Shuang; Liu, Zhi-Ping; Qiu, Xing; Wu, Hulin

    2014-01-01

    The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.

  9. Dynameomics: a multi-dimensional analysis-optimized database for dynamic protein data.

    Science.gov (United States)

    Kehl, Catherine; Simms, Andrew M; Toofanny, Rudesh D; Daggett, Valerie

    2008-06-01

    The Dynameomics project is our effort to characterize the native-state dynamics and folding/unfolding pathways of representatives of all known protein folds by way of molecular dynamics simulations, as described by Beck et al. (in Protein Eng. Des. Select., the first paper in this series). The data produced by these simulations are highly multidimensional in structure and multi-terabytes in size. Both of these features present significant challenges for storage, retrieval and analysis. For optimal data modeling and flexibility, we needed a platform that supported both multidimensional indices and hierarchical relationships between related types of data and that could be integrated within our data warehouse, as described in the accompanying paper directly preceding this one. For these reasons, we have chosen On-line Analytical Processing (OLAP), a multi-dimensional analysis optimized database, as an analytical platform for these data. OLAP is a mature technology in the financial sector, but it has not been used extensively for scientific analysis. Our project is further more unusual for its focus on the multidimensional and analytical capabilities of OLAP rather than its aggregation capacities. The dimensional data model and hierarchies are very flexible. The query language is concise for complex analysis and rapid data retrieval. OLAP shows great promise for the dynamic protein analysis for bioengineering and biomedical applications. In addition, OLAP may have similar potential for other scientific and engineering applications involving large and complex datasets.

  10. Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere

    International Nuclear Information System (INIS)

    Qu, Yongfeng

    2011-01-01

    In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr

  11. Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh–Taylor turbulence and nonequilibrium layer dynamics at fine scales

    International Nuclear Information System (INIS)

    Mahalov, Alex

    2014-01-01

    Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)

  12. Modeling and Simulation of Longitudinal Dynamics for Low Energy Ring-High Energy Ring at the Positron-Electron Project

    International Nuclear Information System (INIS)

    Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.

    2007-01-01

    A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored

  13. Site-specific dissociation dynamics of H2/D2 on Ag(111) and Co(0001) and the validity of the site-averaging model

    International Nuclear Information System (INIS)

    Hu, Xixi; Jiang, Bin; Xie, Daiqian; Guo, Hua

    2015-01-01

    Dissociative chemisorption of polyatomic molecules on metal surfaces involves high-dimensional dynamics, of which quantum mechanical treatments are computationally challenging. A promising reduced-dimensional approach approximates the full-dimensional dynamics by a weighted average of fixed-site results. To examine the performance of this site-averaging model, we investigate two distinct reactions, namely, hydrogen dissociation on Co(0001) and Ag(111), using accurate first principles potential energy surfaces (PESs). The former has a very low barrier of ∼0.05 eV while the latter is highly activated with a barrier of ∼1.15 eV. These two systems allow the investigation of not only site-specific dynamical behaviors but also the validity of the site-averaging model. It is found that the reactivity is not only controlled by the barrier height but also by the topography of the PES. Moreover, the agreement between the site-averaged and full-dimensional results is much better on Ag(111), though quantitative in neither system. Further quasi-classical trajectory calculations showed that the deviations can be attributed to dynamical steering effects, which are present in both reactions at all energies

  14. Role of dimensionality in Axelrod's model for the dissemination of culture

    Science.gov (United States)

    Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; Miguel, Maxi San

    2003-09-01

    We analyze a model of social interaction in one- and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second-order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first-order transition between an ordered and a disordered state.

  15. Dynamic modelling and hardware-in-the-loop testing of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas; Soehn, Matthias; Nicoloso, Norbert; Hartkopf, Thomas [Technische Universitaet Darmstadt/Institut fuer Elektrische Energie wand lung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany); Lemes, Zijad; Maencher, Hubert [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany)

    2006-07-03

    Modelling and hardware-in-the-loop (HIL) testing of fuel cell components and entire systems open new ways for the design and advance development of FCs. In this work proton exchange membrane fuel cells (PEMFC) are dynamically modelled within MATLAB-Simulink at various operation conditions in order to establish a comprehensive description of their dynamic behaviour as well as to explore the modelling facility as a diagnostic tool. Set-up of a hardware-in-the-loop (HIL) system enables real time interaction between the selected hardware and the model. The transport of hydrogen, nitrogen, oxygen, water vapour and liquid water in the gas diffusion and catalyst layers of the stack are incorporated into the model according to their physical and electrochemical characteristics. Other processes investigated include, e.g., the membrane resistance as a function of the water content during fast load changes. Cells are modelled three-dimensionally and dynamically. In case of system simulations a one-dimensional model is preferred to reduce computation time. The model has been verified by experiments with a water-cooled stack. (author)

  16. Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach

    Science.gov (United States)

    Chowdhury, R.; Adhikari, S.

    2012-10-01

    Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.

  17. A qualitative numerical study of high dimensional dynamical systems

    Science.gov (United States)

    Albers, David James

    Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high-dimensional

  18. One-dimensional modelling of limit-cycle oscillation and H-mode power scaling

    DEFF Research Database (Denmark)

    Wu, Xingquan; Xu, Guosheng; Wan, Baonian

    2015-01-01

    To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...

  19. Low-Dimensional Network Formation in Molten Sodium Carbonate.

    Science.gov (United States)

    Wilding, Martin C; Wilson, Mark; Alderman, Oliver L G; Benmore, Chris; Weber, J K R; Parise, John B; Tamalonis, Anthony; Skinner, Lawrie

    2016-04-15

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F(x)(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to F(x)(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na(+) ions.

  20. Study of journal bearing dynamics using 3-dimensional motion picture graphics

    Science.gov (United States)

    Brewe, D. E.; Sosoka, D. J.

    1985-01-01

    Computer generated motion pictures of three dimensional graphics are being used to analyze journal bearings under dynamically loaded conditions. The motion pictures simultaneously present the motion of the journal and the pressures predicted within the fluid film of the bearing as they evolve in time. The correct prediction of these fluid film pressures can be complicated by the development of cavitation within the fluid. The numerical model that is used predicts the formation of the cavitation bubble and its growth, downstream movement, and subsequent collapse. A complete physical picture is created in the motion picture as the journal traverses through the entire dynamic cycle.

  1. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  2. Parameterizing Coefficients of a POD-Based Dynamical System

    Science.gov (United States)

    Kalb, Virginia L.

    2010-01-01

    A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter

  3. Metastability for Kawasaki dynamics at low temperature with two types of particles

    NARCIS (Netherlands)

    Hollander, den W.Th.F.; Nardi, F.R.; Troiani, A.

    2011-01-01

    This is the fi??rst in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large fi??nite box with an open boundary. Each pair of particles occupying neighboring sites has a negative

  4. Three-Dimensional, Transgenic Cell Models to Quantify Space Genotoxic Effects

    Science.gov (United States)

    Gonda, S. R.; Sognier, M. A.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.; Dawson, David L. (Technical Monitor)

    1999-01-01

    The space environment contains radiation and chemical agents known to be mutagenic and carcinogenic to humans. Additionally, microgravity is a complicating factor that may modify or synergize induced genotoxic effects. Most in vitro models fail to use human cells (making risk extrapolation to humans more difficult), overlook the dynamic effect of tissue intercellular interactions on genotoxic damage, and lack the sensitivity required to measure low-dose effects. Currently a need exists for a model test system that simulates cellular interactions present in tissue, and can be used to quantify genotoxic damage induced by low levels of radiation and chemicals, and extrapolate assessed risk to humans. A state-of-the-art, three-dimensional, multicellular tissue equivalent cell culture model will be presented. It consists of mammalian cells genetically engineered to contain multiple copies of defined target genes for genotoxic assessment,. NASA-designed bioreactors were used to coculture mammalian cells into spheroids, The cells used were human mammary epithelial cells (H184135) and Stratagene's (Austin, Texas) Big Blue(TM) Rat 2 lambda fibroblasts. The fibroblasts were genetically engineered to contain -a high-density target gene for mutagenesis (60 copies of lacl/LacZ per cell). Tissue equivalent spheroids were routinely produced by inoculation of 2 to 7 X 10(exp 5) fibroblasts with Cytodex 3 beads (150 micrometers in diameter). at a 20:1 cell:bead ratio, into 50-ml HARV bioreactors (Synthecon, Inc.). Fibroblasts were cultured for 5 days, an equivalent number of epithelial cells added, and the fibroblast/epithelial cell coculture continued for 21 days. Three-dimensional spheroids with diameters ranging from 400 to 600 micrometers were obtained. Histological and immunohistochemical Characterization revealed i) both cell types present in the spheroids, with fibroblasts located primarily in the center, surrounded by epithelial cells; ii) synthesis of extracellular matrix

  5. Modeling of the financial market using the two-dimensional anisotropic Ising model

    Science.gov (United States)

    Lima, L. S.

    2017-09-01

    We have used the two-dimensional classical anisotropic Ising model in an external field and with an ion single anisotropy term as a mathematical model for the price dynamics of the financial market. The model presented allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents with respect to the facts of financial markets. We have obtained the mean price in terms of the strong of the site anisotropy term Δ which reinforces the sensitivity of the agent's sentiment to external news.

  6. Fractional calculus phenomenology in two-dimensional plasma models

    Science.gov (United States)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  7. Dynamic sensitivity analysis of long running landslide models through basis set expansion and meta-modelling

    Science.gov (United States)

    Rohmer, Jeremy

    2016-04-01

    Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.

  8. Modelling floor heating systems using a validated two-dimensional ground coupled numerical model

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Roots, Peter

    2005-01-01

    This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......, that the foundation has a large impact on the energy consumption of buildings heated by floor heating. Consequently, this detail should be in focus when designing houses with floor heating....

  9. Non-equilibrium dynamics of one-dimensional Bose gases

    International Nuclear Information System (INIS)

    Langen, T.

    2013-01-01

    Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom

  10. Three-dimensional vortex-induced vibrations of supported pipes conveying fluid based on wake oscillator models

    Science.gov (United States)

    Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.

    2018-05-01

    The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.

  11. Nonlinear dynamic characterization of two-dimensional materials

    NARCIS (Netherlands)

    Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.

    2017-01-01

    Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's

  12. Three-dimensional dynamic modelling of Polymer-Electrolyte-Membrane-Fuel-Cell-Systems; Dreidimensionale dynamische Modellierung und Berechnung von Polymer-Elektrolyt-Membran-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas

    2008-12-15

    This thesis deals with dynamic and multi-dimensional modelling of Polymer- Electrolyte-Membrane-Fuel-Cells (PEMFC). The developed models include all the different layers of the fuel cell e.g. flow field, gas diffusion layer, catalyst layer and membrane with their particular physical, chemical and electrical characteristics. The simulation results have been verified by detailed measurements performed at the research centre for hydrogen and solar energy in Ulm (ZSW Ulm). The developed three dimensional model describes the time- and spatial-dependent charge and mass transport in a fuel cell. Additionally, this model allows the analysis of critical operating conditions. For example, the current density distribution for different membranes is shown during insufficient humidification which results in local overstraining and degradation. The model also allows to analyse extreme critical operating conditions, e.g. short time breakdown of the humidification. Furthermore, the model shows the available potential of improvement opportunities in power density and efficiency of PEMFC due to optimisation of the gas diffusion layer, the catalyst and membrane. In the second part of the work the application of PEMFC systems for combined heat and power units is described by one-dimensional models for an electrical power range between 1 kW and 5 kW. This model contains the necessary components, e.g. gas processing, humidification, gas supply, fuel cell stack, heat storage, pumps, auxiliary burner, power inverter und additional aggregates. As a main result, it is possible to distinctly reduce the energy demand and the carbon dioxide exhaust for different load profiles. Today the costs for fuel cell systems are considerably higher than that of the conventional electrical energy supply. (orig.)

  13. Low dimensional equivalence of core neutronics model and its application to transient analysis

    International Nuclear Information System (INIS)

    Song Hongbing; Zhao Fuyu

    2015-01-01

    Three-dimensional coupled neutronics thermal-hydraulics reactor analysis is time consuming and occupies huge memory. A one-dimensional model is preferable than the three one in nuclear system analysis, control system design and load following. In this paper, a corewide three dimensional to one dimensional equivalent method has been developed. On the basis of this method 1D axial few groups constants were obtained. The equivalent cross sections were calculated by general spatial homogenization while the transverse buckling was computed through an equivalence based on the 3D flux conservation. Three steady test cases were performed on one dimensional finite difference code ODTAC and the results were compared with TRIVAC-5. The comparison shows that the one dimensional axial power distribution computed by ODTAC correlates well with the three dimensional results calculated by TRIVAC-5. In this study, DRAGON-4 was used to generate the few-group constants of fuel assemblies and the reflector few-group parameters were calculated by WIMS-D4. These collapsed few-group constants were tabulated in a database sorted in ascending order of fuel temperature, coolant temperature and concentration of boric acid. Trilinear interpolation was adopted in cross sections feedback during the transient analysis. In this paper, G1 rod drop accident (RDA) and G1 rod ejection accident (REA) were performed on ODTAC and the computation results were consistent of the physical rules. (author)

  14. Modeling beam-front dynamics at low gas pressures

    International Nuclear Information System (INIS)

    Briggs, R.J.; Yu, S.

    1982-01-01

    The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development

  15. Controls/CFD Interdisciplinary Research Software Generates Low-Order Linear Models for Control Design From Steady-State CFD Results

    Science.gov (United States)

    Melcher, Kevin J.

    1997-01-01

    The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended

  16. Fully Coupled Three-Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær

    2014-01-01

    , which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency-and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison's equation, the aerodynamic loads are modeled by means of unsteady blade-element-momentum (BEM) theory...

  17. Anticipatory synchronization via low-dimensional filters

    International Nuclear Information System (INIS)

    Pyragiene, T.; Pyragas, K.

    2017-01-01

    An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.

  18. Anticipatory synchronization via low-dimensional filters

    Energy Technology Data Exchange (ETDEWEB)

    Pyragiene, T., E-mail: tatjana.pyragiene@ftmc.lt; Pyragas, K.

    2017-06-15

    An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.

  19. Ghosts in high dimensional non-linear dynamical systems: The example of the hypercycle

    International Nuclear Information System (INIS)

    Sardanyes, Josep

    2009-01-01

    Ghost-induced delayed transitions are analyzed in high dimensional non-linear dynamical systems by means of the hypercycle model. The hypercycle is a network of catalytically-coupled self-replicating RNA-like macromolecules, and has been suggested to be involved in the transition from non-living to living matter in the context of earlier prebiotic evolution. It is demonstrated that, in the vicinity of the saddle-node bifurcation for symmetric hypercycles, the persistence time before extinction, T ε , tends to infinity as n→∞ (being n the number of units of the hypercycle), thus suggesting that the increase in the number of hypercycle units involves a longer resilient time before extinction because of the ghost. Furthermore, by means of numerical analysis the dynamics of three large hypercycle networks is also studied, focusing in their extinction dynamics associated to the ghosts. Such networks allow to explore the properties of the ghosts living in high dimensional phase space with n = 5, n = 10 and n = 15 dimensions. These hypercyclic networks, in agreement with other works, are shown to exhibit self-maintained oscillations governed by stable limit cycles. The bifurcation scenarios for these hypercycles are analyzed, as well as the effect of the phase space dimensionality in the delayed transition phenomena and in the scaling properties of the ghosts near bifurcation threshold

  20. Site-specific dissociation dynamics of H{sub 2}/D{sub 2} on Ag(111) and Co(0001) and the validity of the site-averaging model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xixi [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Jiang, Bin [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Xie, Daiqian, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guo, Hua, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-09-21

    Dissociative chemisorption of polyatomic molecules on metal surfaces involves high-dimensional dynamics, of which quantum mechanical treatments are computationally challenging. A promising reduced-dimensional approach approximates the full-dimensional dynamics by a weighted average of fixed-site results. To examine the performance of this site-averaging model, we investigate two distinct reactions, namely, hydrogen dissociation on Co(0001) and Ag(111), using accurate first principles potential energy surfaces (PESs). The former has a very low barrier of ∼0.05 eV while the latter is highly activated with a barrier of ∼1.15 eV. These two systems allow the investigation of not only site-specific dynamical behaviors but also the validity of the site-averaging model. It is found that the reactivity is not only controlled by the barrier height but also by the topography of the PES. Moreover, the agreement between the site-averaged and full-dimensional results is much better on Ag(111), though quantitative in neither system. Further quasi-classical trajectory calculations showed that the deviations can be attributed to dynamical steering effects, which are present in both reactions at all energies.

  1. Quantum confinement effects in low-dimensional systems

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Quantum confinement effects in low-dimensional systems. Figure 5. (a) Various cuts of the three-dimensional data showing energy vs. momen- tum dispersion relations for Ag film of 17 ML thickness on Ge(111). (b) Photo- emission intensity maps along ¯M– ¯ – ¯K direction. (c) Substrate bands replotted ...

  2. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  3. Higher dimensional generalizations of the SYK model

    Energy Technology Data Exchange (ETDEWEB)

    Berkooz, Micha [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Narayan, Prithvi [International Centre for Theoretical Sciences, Hesaraghatta,Bengaluru North, 560 089 (India); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Simón, Joan [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom)

    2017-01-31

    We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains N Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.

  4. Modelling fruit-temperature dynamics within apple tree crowns using virtual plants.

    Science.gov (United States)

    Saudreau, M; Marquier, A; Adam, B; Sinoquet, H

    2011-10-01

    Fruit temperature results from a complex system involving the climate, the tree architecture, the fruit location within the tree crown and the fruit thermal properties. Despite much theoretical and experimental evidence for large differences (up to 10 °C in sunny conditions) between fruit temperature and air temperature, fruit temperature is never used in horticultural studies. A way of modelling fruit-temperature dynamics from climate data is addressed in this work. The model is based upon three-dimensional virtual representation of apple trees and links three-dimensional virtual trees with a physical-based fruit-temperature dynamical model. The overall model was assessed by comparing model outputs to field measures of fruit-temperature dynamics. The model was able to simulate both the temperature dynamics at fruit scale, i.e. fruit-temperature gradients and departure from air temperature, and at the tree scale, i.e. the within-tree-crown variability in fruit temperature (average root mean square error value over fruits was 1·43 °C). This study shows that linking virtual plants with the modelling of the physical plant environment offers a relevant framework to address the modelling of fruit-temperature dynamics within a tree canopy. The proposed model offers opportunities for modelling effects of the within-crown architecture on fruit thermal responses in horticultural studies.

  5. Detection of Subtle Context-Dependent Model Inaccuracies in High-Dimensional Robot Domains.

    Science.gov (United States)

    Mendoza, Juan Pablo; Simmons, Reid; Veloso, Manuela

    2016-12-01

    Autonomous robots often rely on models of their sensing and actions for intelligent decision making. However, when operating in unconstrained environments, the complexity of the world makes it infeasible to create models that are accurate in every situation. This article addresses the problem of using potentially large and high-dimensional sets of robot execution data to detect situations in which a robot model is inaccurate-that is, detecting context-dependent model inaccuracies in a high-dimensional context space. To find inaccuracies tractably, the robot conducts an informed search through low-dimensional projections of execution data to find parametric Regions of Inaccurate Modeling (RIMs). Empirical evidence from two robot domains shows that this approach significantly enhances the detection power of existing RIM-detection algorithms in high-dimensional spaces.

  6. Mode specificity in the OH + CHD3 reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    International Nuclear Information System (INIS)

    Song, Hongwei; Yang, Minghui; Lu, Yunpeng; Li, Jun; Guo, Hua

    2016-01-01

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD 3 reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  7. One-dimensional computational modeling on nuclear reactor problems

    International Nuclear Information System (INIS)

    Alves Filho, Hermes; Baptista, Josue Costa; Trindade, Luiz Fernando Santos; Heringer, Juan Diego dos Santos

    2013-01-01

    In this article, we present a computational modeling, which gives us a dynamic view of some applications of Nuclear Engineering, specifically in the power distribution and the effective multiplication factor (keff) calculations. We work with one-dimensional problems of deterministic neutron transport theory, with the linearized Boltzmann equation in the discrete ordinates (SN) formulation, independent of time, with isotropic scattering and then built a software (Simulator) for modeling computational problems used in a typical calculations. The program used in the implementation of the simulator was Matlab, version 7.0. (author)

  8. Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models

    Science.gov (United States)

    Kuznetsov, Sergey P.

    2015-05-01

    Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).

  9. Modeling high dimensional multichannel brain signals

    KAUST Repository

    Hu, Lechuan

    2017-03-27

    In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The primary challenges here are twofold: first, there are major statistical and computational difficulties for modeling and analyzing high dimensional multichannel brain signals; second, there is no set of universally-agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with sufficiently high order so that complex lead-lag temporal dynamics between the channels can be accurately characterized. However, such a model contains a large number of parameters. Thus, we will estimate the high dimensional VAR parameter space by our proposed hybrid LASSLE method (LASSO+LSE) which is imposes regularization on the first step (to control for sparsity) and constrained least squares estimation on the second step (to improve bias and mean-squared error of the estimator). Then to characterize connectivity between channels in a brain network, we will use various measures but put an emphasis on partial directed coherence (PDC) in order to capture directional connectivity between channels. PDC is a directed frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative all possible receivers in the network. Using the proposed modeling approach, we have achieved some insights on learning in a rat engaged in a non-spatial memory task.

  10. Modeling high dimensional multichannel brain signals

    KAUST Repository

    Hu, Lechuan; Fortin, Norbert; Ombao, Hernando

    2017-01-01

    In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The primary challenges here are twofold: first, there are major statistical and computational difficulties for modeling and analyzing high dimensional multichannel brain signals; second, there is no set of universally-agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with sufficiently high order so that complex lead-lag temporal dynamics between the channels can be accurately characterized. However, such a model contains a large number of parameters. Thus, we will estimate the high dimensional VAR parameter space by our proposed hybrid LASSLE method (LASSO+LSE) which is imposes regularization on the first step (to control for sparsity) and constrained least squares estimation on the second step (to improve bias and mean-squared error of the estimator). Then to characterize connectivity between channels in a brain network, we will use various measures but put an emphasis on partial directed coherence (PDC) in order to capture directional connectivity between channels. PDC is a directed frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative all possible receivers in the network. Using the proposed modeling approach, we have achieved some insights on learning in a rat engaged in a non-spatial memory task.

  11. Two-dimensional exactly and completely integrable dynamic systems (Monopoles, instantons, dual models, relativistic strings, Lund-Regge model, generalized Toda lattice, etc)

    International Nuclear Information System (INIS)

    Leznov, A.N.; Saveliev, M.V.

    1982-01-01

    An investigation of two-dimensional exactly and completely integrable dynamical systems associated with the local part of an arbitrary Lie algebra g whose grading is consistent with an arbitrary integral embedding of 3d-subalgebra in g has been carried out. The corresponding systems of nonlinear partial differential equations of the second order h been constructed in an explicit form and their genral solutions in the sense of a Goursat problem have been obtained. A method for the construction of a wide class of infinite-dimensional Lie algebras of finite growth has been proposed

  12. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  13. Low-dimensional chiral physics. Gross-Neveu universality and magnetic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Daniel David

    2012-09-27

    In this thesis, we investigate the 3-dimensional, chirally symmetric Gross-Neveu model with functional renormalization group methods. This low-dimensional quantum field theory describes the continuum limit of the low-energy sector in certain lattice systems. The functional renormalization group allows to study in a nonperturbative way the physical properties of many-body systems and quantum field theories. The starting point is a formally exact flow equation with 1-loop structure for the generating functional of 1-particle irreducible vertices. Within a gradient expansion - tailor-made for extracting the infrared asymptotics of the momentum and frequency dependent vertices of the theory - we study the strong-coupling fixed point of the Gross-Neveu model even beyond the formal limit of infinite flavor number. This fixed point controls a 2nd order quantum phase transition from a massless phase to a phase with massive Dirac fermions. After a first analysis of the purely fermionic theory, a Hubbard-Stratonovich transformation is used to partially bosonize the theory. Within this bosonized description, we find universal critical exponents that are in excellent quantitative agreement with available results from 1/N{sub f}-expansions and Monte Carlo simulations and are expected to improve upon earlier results. The renormalization group flow allows us to gain insights into the global and local structure of the critical manifold within given truncations and better understanding of the relevant directions in the space of couplings, which in general do not coincide with the Gaussian classification. Within the framework of the so-called ''asymptotic safety''-scenario relevant for the construction of proper field theories, the fixed-point theory could be determined exactly in the limit of infinite flavor number. Here, the Gross-Neveu model yields a simple and intuitive example for how to define a nonperturbatively renormalizable quantum field theory. Going

  14. Low-dimensional chiral physics. Gross-Neveu universality and magnetic catalysis

    International Nuclear Information System (INIS)

    Scherer, Daniel David

    2012-01-01

    In this thesis, we investigate the 3-dimensional, chirally symmetric Gross-Neveu model with functional renormalization group methods. This low-dimensional quantum field theory describes the continuum limit of the low-energy sector in certain lattice systems. The functional renormalization group allows to study in a nonperturbative way the physical properties of many-body systems and quantum field theories. The starting point is a formally exact flow equation with 1-loop structure for the generating functional of 1-particle irreducible vertices. Within a gradient expansion - tailor-made for extracting the infrared asymptotics of the momentum and frequency dependent vertices of the theory - we study the strong-coupling fixed point of the Gross-Neveu model even beyond the formal limit of infinite flavor number. This fixed point controls a 2nd order quantum phase transition from a massless phase to a phase with massive Dirac fermions. After a first analysis of the purely fermionic theory, a Hubbard-Stratonovich transformation is used to partially bosonize the theory. Within this bosonized description, we find universal critical exponents that are in excellent quantitative agreement with available results from 1/N f -expansions and Monte Carlo simulations and are expected to improve upon earlier results. The renormalization group flow allows us to gain insights into the global and local structure of the critical manifold within given truncations and better understanding of the relevant directions in the space of couplings, which in general do not coincide with the Gaussian classification. Within the framework of the so-called ''asymptotic safety''-scenario relevant for the construction of proper field theories, the fixed-point theory could be determined exactly in the limit of infinite flavor number. Here, the Gross-Neveu model yields a simple and intuitive example for how to define a nonperturbatively renormalizable quantum field theory. Going beyond the determination

  15. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  16. Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study

    Science.gov (United States)

    Bazhenov, Alexiev M.; Heyes, David M.

    1990-01-01

    The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.

  17. Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: high-dimensional Λ-term case

    Energy Technology Data Exchange (ETDEWEB)

    Pavluchenko, Sergey A. [Universidade Federal do Maranhao (UFMA), Programa de Pos-Graduacao em Fisica, Sao Luis, Maranhao (Brazil)

    2017-08-15

    In this paper we perform a systematic study of spatially flat [(3+D)+1]-dimensional Einstein-Gauss-Bonnet cosmological models with Λ-term. We consider models that topologically are the product of two flat isotropic subspaces with different scale factors. One of these subspaces is three-dimensional and represents our space and the other is D-dimensional and represents extra dimensions. We consider no ansatz of the scale factors, which makes our results quite general. With both Einstein-Hilbert and Gauss-Bonnet contributions in play, D = 3 and the general D ≥ 4 cases have slightly different dynamics due to the different structure of the equations of motion. We analytically study the equations of motion in both cases and describe all possible regimes with special interest on the realistic regimes. Our analysis suggests that the only realistic regime is the transition from high-energy (Gauss-Bonnet) Kasner regime, which is the standard cosmological singularity in that case, to the anisotropic exponential regime with expanding three and contracting extra dimensions. Availability of this regime allows us to put a constraint on the value of Gauss-Bonnet coupling α and the Λ-term - this regime appears in two regions on the (α, Λ) plane: α < 0, Λ > 0, αΛ ≤ -3/2 and α > 0, αΛ ≤ (3D{sup 2} - 7D + 6)/(4D(D-1)), including the entire Λ < 0 region. The obtained bounds are confronted with the restrictions on α and Λ from other considerations, like causality, entropy-to-viscosity ratio in AdS/CFT and others. Joint analysis constrains (α, Λ) even further: α > 0, D ≥ 2 with (3D{sup 2} - 7D + 6)/(4D(D-1)) ≥ αΛ ≥ -(D+2)(D+3)(D{sup 2} + 5D + 12)/(8(D{sup 2} + 3D + 6){sup 2}). (orig.)

  18. Mode specificity in the OH + CHD{sub 3} reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hongwei, E-mail: hwsong@wipm.ac.cn; Yang, Minghui [Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Lu, Yunpeng [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-04-28

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD{sub 3} reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  19. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives.

    Science.gov (United States)

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G; Farina, Dario

    2013-01-01

    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive

  20. Fusion of multimodal medical images. Application to dynamic tri dimensional study of vertebral column

    International Nuclear Information System (INIS)

    Brunie, L.

    1992-12-01

    The object of this thesis is to put in correspondence images coming from different ways. The area of application is biomedical imaging, particularly dynamic imaging in three dimensional calculations of spinal cord. The use of computers allows modeling. Then a study of validation by clinical experimentation on spinal cord proves the efficiency of the simulation

  1. Quantum Phenomena in Low-Dimensional Systems

    OpenAIRE

    Geller, Michael R.

    2001-01-01

    A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible.

  2. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  3. Two-dimensional photon-echo spectroscopy at a conical intersection: A two-mode pyrazine model with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Sala, Matthieu; Egorova, Dassia

    2016-12-20

    The multi-dimensional electronic spectroscopy of ultrafast nuclear dynamics at conical intersections (CI) is an emerging field of investigation, which profits also from the recent extension of the techniques to the UV domain. We present a detailed computational study of oscillatory signatures in two-dimensional (2D) photon-echo spectroscopy (also known as 2D electronic spectroscopy, 2DES) for the two-mode pyrazine model with dissipation. Conventional 2D signals as well as the resulting beating maps are considered. Although of a reduced character, the model captures quite well all the main signatures of the excited-state dynamics of the molecule. Due to the ultrafast relaxation via the CI and no excited-state absorption from the low-lying dark state, the oscillatory components of the signal are found to be predominantly determined by the ground state bleach contribution. They reflect, therefore, the ground-state vibrational coherence induced in the Raman active mode. Beating maps provide a way to experimentally differentiate between ground state bleach and stimulated emission oscillatory components. The ultrafast decay of the latter constitutes a clear indirect signature of the CI. In the considered model, because of the sign properties of the involved transition dipole moments, the dominance of the ground-state coherence leads to anti-correlated oscillations of cross peaks located at symmetric positions with respect to the main diagonal.

  4. Three-Dimensional Smoothed Particle Hydrodynamics Modeling of Preferential Flow Dynamics at Fracture Intersections on a High-Performance Computing Platform

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.

    2017-12-01

    The physical mechanisms that govern preferential flow dynamics in unsaturated fractured rock formations are complex and not well understood. Fracture intersections may act as an integrator of unsaturated flow, leading to temporal delay, intermittent flow and partitioning dynamics. In this work, a three-dimensional Pairwise-Force Smoothed Particle Hydrodynamics (PF-SPH) model is being applied in order to simulate gravity-driven multiphase flow at synthetic fracture intersections. SPH, as a meshless Lagrangian method, is particularly suitable for modeling deformable interfaces, such as three-phase contact dynamics of droplets, rivulets and free-surface films. The static and dynamic contact angle can be recognized as the most important parameter of gravity-driven free-surface flow. In SPH, surface tension and adhesion naturally emerges from the implemented pairwise fluid-fluid (sff) and solid-fluid (ssf) interaction force. The model was calibrated to a contact angle of 65°, which corresponds to the wetting properties of water on Poly(methyl methacrylate). The accuracy of the SPH simulations were validated against an analytical solution of Poiseuille flow between two parallel plates and against laboratory experiments. Using the SPH model, the complex flow mode transitions from droplet to rivulet flow of an experimental study were reproduced. Additionally, laboratory dimensionless scaling experiments of water droplets were successfully replicated in SPH. Finally, SPH simulations were used to investigate the partitioning dynamics of single droplets into synthetic horizontal fractures with various apertures (Δdf = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 mm) and offsets (Δdoff = -1.5, -1.0, -0.5, 0, 1.0, 2.0, 3.0 mm). Fluid masses were measured in the domains R1, R2 and R3. The perfect conditions of ideally smooth surfaces and the SPH inherent advantage of particle tracking allow the recognition of small scale partitioning mechanisms and its importance for bulk flow

  5. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model in 2D

    NARCIS (Netherlands)

    Reid, D.A.P.; Hildenbrandt, H.; Padding, J.T.; Hemelrijk, C.K.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  6. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  7. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  8. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  9. Low-dose ionizing radiation limitations to seed germination: Results from a model linking physiological characteristics and developmental-dynamics simulation strategy.

    Science.gov (United States)

    Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong

    2017-08-01

    There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The dynamical simulation of transient three-dimensional cryogenic liquid sloshing oscillations under low-gravity and microgravity

    Science.gov (United States)

    Chi, Yong Mann

    A numerical simulation model has been developed for the dynamical behavior of spacecraft propellant, both during the draining and the closing of the tank outlet at the onset of suction dip affected by the asymmetric combined gravity gradient and gravity jitter accelerations. In particular the effect of the surface tension of the fluids in the partially filled dewar (applicable to the Gravity Probe-B spacecraft dewar tank and fuel tanks for a liquid rocket) with rotation has been simulated and investigated. Two different cases of accelerations, one with gravity jitter dominated and the other equally weighted between gravity gradient and gravity jitter accelerations, are studied. In the development of this numerical simulation model, the NASA-VOF3D has been used as a supplement to the numerical program of this dissertation. The NASA-VOF3D code has been used for performing the three-dimensional incompressible flows with free surface. This is also used for controlling liquid sloshing inside the tank when the spacecraft is orbiting. To keep track of the location of the liquid, the fractional volume of fluid (VOF) technique was used. The VOF is based on the indicator function of the region occupied by the liquid with an Eulerian approach to solve the free surface phenomena between liquid and gas phases. For the calculation of surface tension force, the VOF model is also used. The newly developed simulation model is used to investigate the characteristics of liquid hydrogen draining in terms of the residual amount of trapped liquid at the onset of the suction dip and residual liquid volume at the time the dip of the liquid-vapor interface formed. This investigation simulates the characteristics of liquid oscillations due to liquid container outlet shut-off at the onset of suction dip. These phenomena checked how these mechanisms affected the excitation of slosh waves during the course of liquid draining and after shut-off tank outlet. In the present study, the dynamical

  11. A Few Integrable Dynamical Systems, Recurrence Operators, Expanding Integrable Models and Hamiltonian Structures by the r -Matrix Method

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Muhammad, Iqbal; Yue Chao

    2017-01-01

    We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov–Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. (paper)

  12. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    Science.gov (United States)

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gauge theory for finite-dimensional dynamical systems

    International Nuclear Information System (INIS)

    Gurfil, Pini

    2007-01-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory

  14. The magnetic flux dynamics in the critical state of one-dimensional discrete superconductor

    International Nuclear Information System (INIS)

    Ginzburg, S.L.; Nakin, A.V.; Savitskaya, N.E.

    2006-01-01

    We give a theoretical description of avalanche-like dynamics of magnetic flux in the critical state of discrete superconductors using a one-dimensional model of a multijunction SQUID. We show that the system under consideration demonstrates the self-organized criticality. The avalanches of vortices manifest themselves as jumps of the total magnetic flux in the sample. The sizes of these jumps have a power-law distribution. We argue that similarities in the behavior of discrete and usual type-II superconductors allows to extend our results for description of avalanche-like dynamics in type-II superconductors with strong pinning

  15. Future device applications of low-dimensional carbon superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath

    2005-03-01

    We observe superior transport properties in low-dimensional amorphous carbon (a-C) and superlattice structures fabricated by a number of different techniques. Low temperature conductivity of these materials is explained using argument based on the crossover of dimensionality of weak localization and electron-electron interactions along with a change of sign of the magneto-resistance. These trends are significantly different from many other well characterized ordered or oriented carbon structures, and, show direct evidence of high correlation length, mobility and an effect of the dimensionality in low-dimensional a-C films. We show routes to prepare bespoke features by tuning the phase relaxation time in order to make high-speed devices over large areas. The artificially grown multi-layer superlattice structures of diamond-like amorphous carbon films show high-frequency resonance and quantum conductance suggesting sufficiently high values of phase coherence length in the present disordered a-C system that could lead to fast switching multi-valued logic.

  16. On the Dynamics of the Fermi-Bose model

    DEFF Research Database (Denmark)

    Ögren, Magnus

    In this talk we formulate and prove results for the exponential matrix representing the dynamics of the Fermi-Bose model in an undepleted bosonic field approximation. A recent application of this model is molecular dimmers dissociating into its atomic compounds. The problem is solved in D spatial....... In particular the results can be used for studies of threedimensional physical systems of arbitrary geometry. We illustrate the generality of our approach by giving numerical results for the dynamics of Glauber type atomic pair correlation functions for a non-isotropic three-dimensional harmonically trapped...

  17. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  18. Nonlinear dynamical modeling and prediction of the terrestrial magnetospheric activity

    International Nuclear Information System (INIS)

    Vassiliadis, D.

    1992-01-01

    The irregular activity of the magnetosphere results from its complex internal dynamics as well as the external influence of the solar wind. The dominating self-organization of the magnetospheric plasma gives rise to repetitive, large-scale coherent behavior manifested in phenomena such as the magnetic substorm. Based on the nonlinearity of the global dynamics this dissertation examines the magnetosphere as a nonlinear dynamical system using time series analysis techniques. Initially the magnetospheric activity is modeled in terms of an autonomous system. A dimension study shows that its observed time series is self-similar, but the correlation dimension is high. The implication of a large number of degrees of freedom is confirmed by other state space techniques such as Poincare sections and search for unstable periodic orbits. At the same time a stability study of the time series in terms of Lyapunov exponents suggests that the series is not chaotic. The absence of deterministic chaos is supported by the low predictive capability of the autonomous model. Rather than chaos, it is an external input which is largely responsible for the irregularity of the magnetospheric activity. In fact, the external driving is so strong that the above state space techniques give results for magnetospheric and solar wind time series that are at least qualitatively similar. Therefore the solar wind input has to be included in a low-dimensional nonautonomous model. Indeed it is shown that such a model can reproduce the observed magnetospheric behavior up to 80-90 percent. The characteristic coefficients of the model show little variation depending on the external disturbance. The impulse response is consistent with earlier results of linear prediction filters. The model can be easily extended to contain nonlinear features of the magnetospheric activity and in particular the loading-unloading behavior of substorms

  19. Interacting-fermion approximation in the two-dimensional ANNNI model

    International Nuclear Information System (INIS)

    Grynberg, M.D.; Ceva, H.

    1990-12-01

    We investigate the effect of including domain-walls interactions in the two-dimensional axial next-nearest-neighbor Ising or ANNNI model. At low temperatures this problem is reduced to a one-dimensional system of interacting fermions which can be treated exactly. It is found that the critical boundaries of the low-temperature phases are in good agreement with those obtained using a free-fermion approximation. In contrast with the monotonic behavior derived from the free-fermion approach, the wall density or wave number displays reentrant phenomena when the ratio of the next-nearest-neighbor and nearest-neighbor interactions is greater than one-half. (author). 17 refs, 2 figs

  20. Exploring high dimensional data with Butterfly: a novel classification algorithm based on discrete dynamical systems.

    Science.gov (United States)

    Geraci, Joseph; Dharsee, Moyez; Nuin, Paulo; Haslehurst, Alexandria; Koti, Madhuri; Feilotter, Harriet E; Evans, Ken

    2014-03-01

    We introduce a novel method for visualizing high dimensional data via a discrete dynamical system. This method provides a 2D representation of the relationship between subjects according to a set of variables without geometric projections, transformed axes or principal components. The algorithm exploits a memory-type mechanism inherent in a certain class of discrete dynamical systems collectively referred to as the chaos game that are closely related to iterative function systems. The goal of the algorithm was to create a human readable representation of high dimensional patient data that was capable of detecting unrevealed subclusters of patients from within anticipated classifications. This provides a mechanism to further pursue a more personalized exploration of pathology when used with medical data. For clustering and classification protocols, the dynamical system portion of the algorithm is designed to come after some feature selection filter and before some model evaluation (e.g. clustering accuracy) protocol. In the version given here, a univariate features selection step is performed (in practice more complex feature selection methods are used), a discrete dynamical system is driven by this reduced set of variables (which results in a set of 2D cluster models), these models are evaluated for their accuracy (according to a user-defined binary classification) and finally a visual representation of the top classification models are returned. Thus, in addition to the visualization component, this methodology can be used for both supervised and unsupervised machine learning as the top performing models are returned in the protocol we describe here. Butterfly, the algorithm we introduce and provide working code for, uses a discrete dynamical system to classify high dimensional data and provide a 2D representation of the relationship between subjects. We report results on three datasets (two in the article; one in the appendix) including a public lung cancer

  1. Generation of dark solitons and their instability dynamics in two-dimensional condensates

    Science.gov (United States)

    Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish

    2017-04-01

    We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.

  2. Innovation Rather than Improvement: A Solvable High-Dimensional Model Highlights the Limitations of Scalar Fitness

    Science.gov (United States)

    Tikhonov, Mikhail; Monasson, Remi

    2018-01-01

    Much of our understanding of ecological and evolutionary mechanisms derives from analysis of low-dimensional models: with few interacting species, or few axes defining "fitness". It is not always clear to what extent the intuition derived from low-dimensional models applies to the complex, high-dimensional reality. For instance, most naturally occurring microbial communities are strikingly diverse, harboring a large number of coexisting species, each of which contributes to shaping the environment of others. Understanding the eco-evolutionary interplay in these systems is an important challenge, and an exciting new domain for statistical physics. Recent work identified a promising new platform for investigating highly diverse ecosystems, based on the classic resource competition model of MacArthur. Here, we describe how the same analytical framework can be used to study evolutionary questions. Our analysis illustrates how, at high dimension, the intuition promoted by a one-dimensional (scalar) notion of fitness can become misleading. Specifically, while the low-dimensional picture emphasizes organism cost or efficiency, we exhibit a regime where cost becomes irrelevant for survival, and link this observation to generic properties of high-dimensional geometry.

  3. Winter NH low-frequency variability in a hierarchy of low-order stochastic dynamical models of earth-atmosphere system

    Science.gov (United States)

    Zhao, Nan

    2018-02-01

    The origin of winter Northern Hemispheric low-frequency variability (hereafter, LFV) is regarded to be related to the coupled earth-atmosphere system characterized by the interaction of the jet stream with mid-latitude mountain ranges. On the other hand, observed LFV usually appears as transitions among multiple planetary-scale flow regimes of Northern Hemisphere like NAO + , AO +, AO - and NAO - . Moreover, the interaction between synoptic-scale eddies and the planetary-scale disturbance is also inevitable in the origin of LFV. These raise a question regarding how to incorporate all these aspects into just one framework to demonstrate (1) a planetary-scale dynamics of interaction of the jet stream with mid-latitude mountain ranges can really produce LFV, (2) such a dynamics can be responsible for the existence of above multiple flow regimes, and (3) the role of interaction with eddy is also clarified. For this purpose, a hierarchy of low-order stochastic dynamical models of the coupled earth-atmosphere system derived empirically from different timescale ranges of indices of Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific/North American (PNA), and length of day (LOD) and related probability density function (PDF) analysis are employed in this study. The results seem to suggest that the origin of LFV cannot be understood completely within the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain ranges, because (1) the existence of multiple flow regimes such as NAO+, AO+, AO- and NAO- resulted from processes with timescales much longer than LFV itself, which may have underlying dynamics other than topography-jet stream interaction, and (2) we find LFV seems not necessarily to come directly from the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain, although it can produce similar oscillatory behavior. The feedback/forcing of synoptic-scale eddies on the planetary

  4. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    Science.gov (United States)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  5. Three dimensional optimization of small-scale axial turbine for low temperature heat source driven organic Rankine cycle

    International Nuclear Information System (INIS)

    Al Jubori, Ayad; Al-Dadah, Raya K.; Mahmoud, Saad; Bahr Ennil, A.S.; Rahbar, Kiyarash

    2017-01-01

    Highlights: • Three-dimensional optimization of axial turbine stage is presented. • Six organic fluids suitable for low-temperature heat source are considered. • Three-dimensional optimization has been done for each working fluid. • The results showed highlight the potential of optimization technique. • The performance of optimized turbine has been improved off-design conditions. - Abstract: Advances in optimization techniques can be used to enhance the performance of turbines in various applications. However, limited work has been reported on using such optimization techniques to develop small-scale turbines for organic Rankine cycles. This paper investigates the use of multi-objective genetic algorithm to optimize the stage geometry of a small-axial subsonic turbine. This optimization is integrated with organic Rankine cycle analysis using wide range of high density organic working fluids like R123, R134a, R141b, R152a, R245fa and isobutane suitable for low temperature heat sources <100 °C such as solar energy to achieve the best turbine design and highest organic Rankine cycle efficiency. The isentropic efficiency of the turbine in most of the reported organic Rankine cycle studies was assumed constant, while the current work allows the turbine isentropic efficiency to change (dynamic value) with both operating conditions and working fluids. Three-dimensional computational fluid dynamics analysis and multi-objective genetic algorithm optimization were performed using three-dimensional Reynolds-averaged Navier-Stokes equations with k-omega shear stress transport turbulence model in ANSYS"R"1"7-CFX and design exploration for various working fluids. The optimization was carried out using eight design parameters for the turbine stage geometry optimization including stator and rotor number of blades, rotor leading edge beta angle, trailing edge beta angle, stagger angle, throat width, trailing half wedge angle and shroud tip clearance. Results showed that

  6. Fluid Dynamic Models for Bhattacharyya-Based Discriminant Analysis.

    Science.gov (United States)

    Noh, Yung-Kyun; Hamm, Jihun; Park, Frank Chongwoo; Zhang, Byoung-Tak; Lee, Daniel D

    2018-01-01

    Classical discriminant analysis attempts to discover a low-dimensional subspace where class label information is maximally preserved under projection. Canonical methods for estimating the subspace optimize an information-theoretic criterion that measures the separation between the class-conditional distributions. Unfortunately, direct optimization of the information-theoretic criteria is generally non-convex and intractable in high-dimensional spaces. In this work, we propose a novel, tractable algorithm for discriminant analysis that considers the class-conditional densities as interacting fluids in the high-dimensional embedding space. We use the Bhattacharyya criterion as a potential function that generates forces between the interacting fluids, and derive a computationally tractable method for finding the low-dimensional subspace that optimally constrains the resulting fluid flow. We show that this model properly reduces to the optimal solution for homoscedastic data as well as for heteroscedastic Gaussian distributions with equal means. We also extend this model to discover optimal filters for discriminating Gaussian processes and provide experimental results and comparisons on a number of datasets.

  7. Slow dynamics in translation-invariant quantum lattice models

    Science.gov (United States)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  8. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  9. A computationally exact method of Dawson's model for hole dynamics of one-dimensional plasma

    International Nuclear Information System (INIS)

    Kitahara, Kazuo; Tanno, Kohki; Takada, Toshio; Hatori, Tadatsugu; Urata, Kazuhiro; Irie, Haruyuki; Nambu, Mitsuhiro; Saeki, Kohichi.

    1990-01-01

    We show a simple but computationally exact solution of the one-dimensional plasma model, so-called 'Dawson's model'. Using this solution, we can describe the evolution of the plasma and find the relative stabilization of a big hole after the instability of two streams. (author)

  10. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  11. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  12. Intercalation compounds of NbSe2 und SnSe2. Model systems for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Herzinger, Michael

    2013-01-01

    experienced a renascence of research activities. Especially, since it represents a well-suited candidate for probing the multi-band model in a quasi-two-dimensional superconductor, due to the negligible vortex pinning in NbSe 2 single crystals. In order to enhance the anisotropic character we intercalated high quality 2H-NbSe 2 single crystals with the organometallic donor molecule cobaltocene, leading to an expansion of the lattice parameter in c direction from 12.53 Aa to 23.81 Aa. While the intercalation of organic compounds (which usually act as electron donors) reduces the superconducting transition temperature Tc from 7.1 K in 2H-NbSe 2 to temperatures below Tc 2 {CoCp 2 } 0.26 with Tc = 7.35 K. Furthermore, the strong increase of the upper critical magnetic field B c2 = 18.5 T in comparison to the native parent compound (B c2 (NbSe 2 ) = 14,5 T) indicates a more pronounced anisotropic behavior. Resistivity, susceptibility and specific heat studies parallel and perpendicular to the NbSe 2 -layers of 2H-NbSe 2 {CoCp 2 } 0.26 reveal both, a field-dependent reentrant superconductivity and a reversibility of the magnetization M(B) over a wide range above 3.5 T, also observed in the native parent NbSe2. Both intercalated materials NbSe 2 {CoCp 2 } x and SnSe2{CoCp 2 } x are good candidates for further theoretical investigation of the low dimensional superconductivity. The experimental results of the layered materials presented in this thesis will contribute to a better understanding of the low dimensional superconducting behavior.

  13. Study of fission dynamics of the excited nuclei produced in fusion reactions in the framework of the four-dimensional Langevin equations

    Energy Technology Data Exchange (ETDEWEB)

    Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)

    2014-12-01

    The dynamics of fission of excited nuclei has been studied by solving four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. The projection of the total spin of the compound nucleus to the symmetry axis, K, was considered as the fourth dimension in Langevin dynamical calculations. The average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy have been calculated in a wide range of fissile parameter for compound nuclei {sup 162}Yb, {sup 172}Yb, {sup 215}Fr, {sup 224}Th, {sup 248}Cf, {sup 260}Rf and results compared with the experimental data. Calculations were performed with a constant dissipation coefficient of K, {sub γK} (MeV zs){sup -1/2}, and with a non-constant dissipation coefficient. Comparison of the theoretical results for the average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy with the experimental data showed that the results of four-dimensional Langevin equations with a non-constant dissipation coefficient are in better agreement with the experimental data. Furthermore, the difference between the results of two models for compound nuclei with low fissile parameter is low whereas, for heavy compound nuclei, is high. (orig.)

  14. Low-Cost Monitoring System of Sensors for Evaluating Dynamic Solicitations of Semitrailer Structure

    Directory of Open Access Journals (Sweden)

    Pablo Luque

    2016-01-01

    Full Text Available Analysis of the fatigue life of a semitrailer structure necessitates identification of the loads and dynamic solicitations in the structure. These forces can be introduced in computer simulation software (multibody + finite element for analysing the response of different design solutions to them. These numerical models must be validated and some parameters need to be measured directly in a field test with real vehicles under various driving conditions. In this study, a low-cost monitoring system is developed for application to a real fleet of semitrailers. According to the definition of the numerical model, the guidance of a virtual vehicle is defined by the three-dimensional kinematics of the kingpin. For characterisation of these movements, a monitoring system having a low-cost inertial measurement unit (IMU and global positioning system (GPS antennas is developed with different configurations to enable analysis of the best cost-benefit (result accuracy solution, and an extended Kalman filter (EKF that characterises the kinematic guidance of the kingpin is proposed. A semitrailer was equipped with the experimental low-cost monitoring system and high-precision sensors (IMU, GPS in order to validate the results obtained by the experimental low-cost monitoring system and the inertial-extended Kalman filter developed. The validated system has applicability in the low-cost monitoring of a fleet of real vehicles.

  15. Dynamics of a two-dimensional order-disorder transition

    International Nuclear Information System (INIS)

    Sahni, P.S.; Dee, G.; Gunton, J.D.; Phani, M.; Lebowitz, J.L.; Kalos, M.

    1981-01-01

    We present results of a Monte Carlo study of the time development of a two-dimensional order-disorder model binary alloy following a quench to low temperature from a disordered, high-temperature state. The behavior is qualitatively quite similar to that seen in a recent study of a three-dimensional system. The structure function exhibits a scaling of the form K 2 (t)S(k,t) = G(k/K(t)) where the moment K(t) decreases with time approximately like t/sup -1/2/. If one interprets this moment as being inversely proportional to the domain size, the characteristic domain growth rate is proportional to t/sup -1/2/. Additional insight into this time evolution is obtained from studying the development of the short-range order, as well as from monitoring the growth of a compact ordered domain embedded in a region of opposite order. All these results are consistent with the picture of domain growth as proposed by Lifshitz and by Cahn and Allen

  16. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    OpenAIRE

    Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits...

  17. Quantum optimal control pathways of ozone isomerization dynamics subject to competing dissociation: A two-state one-dimensional model

    International Nuclear Information System (INIS)

    Kurosaki, Yuzuru; Ho, Tak-San; Rabitz, Herschel

    2014-01-01

    We construct a two-state one-dimensional reaction-path model for ozone open → cyclic isomerization dynamics. The model is based on the intrinsic reaction coordinate connecting the cyclic and open isomers with the O 2 + O asymptote on the ground-state 1 A ′ potential energy surface obtained with the high-level ab initio method. Using this two-state model time-dependent wave packet optimal control simulations are carried out. Two possible pathways are identified along with their respective band-limited optimal control fields; for pathway 1 the wave packet initially associated with the open isomer is first pumped into a shallow well on the excited electronic state potential curve and then driven back to the ground electronic state to form the cyclic isomer, whereas for pathway 2 the corresponding wave packet is excited directly to the primary well of the excited state potential curve. The simulations reveal that the optimal field for pathway 1 produces a final yield of nearly 100% with substantially smaller intensity than that obtained in a previous study [Y. Kurosaki, M. Artamonov, T.-S. Ho, and H. Rabitz, J. Chem. Phys. 131, 044306 (2009)] using a single-state one-dimensional model. Pathway 2, due to its strong coupling to the dissociation channel, is less effective than pathway 1. The simulations also show that nonlinear field effects due to molecular polarizability and hyperpolarizability are small for pathway 1 but could become significant for pathway 2 because much higher field intensity is involved in the latter. The results suggest that a practical control may be feasible with the aid of a few lowly excited electronic states for ozone isomerization

  18. Ordering phase transition in the one-dimensional Axelrod model

    Science.gov (United States)

    Vilone, D.; Vespignani, A.; Castellano, C.

    2002-12-01

    We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.

  19. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    Science.gov (United States)

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  20. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  1. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model.

    Science.gov (United States)

    Li, Jing; Zhang, Fangbing; Wei, Lisong; Yang, Tao; Lu, Zhaoyang

    2017-10-16

    Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  2. Modelling, simulation and applications of longitudinal train dynamics

    Science.gov (United States)

    Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan

    2017-10-01

    Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.

  3. Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning

    International Nuclear Information System (INIS)

    Ruan, Dan; Keall, Paul

    2010-01-01

    Accurate real-time prediction of respiratory motion is desirable for effective motion management in radiotherapy for lung tumor targets. Recently, nonparametric methods have been developed and their efficacy in predicting one-dimensional respiratory-type motion has been demonstrated. To exploit the correlation among various coordinates of the moving target, it is natural to extend the 1D method to multidimensional processing. However, the amount of learning data required for such extension grows exponentially with the dimensionality of the problem, a phenomenon known as the 'curse of dimensionality'. In this study, we investigate a multidimensional prediction scheme based on kernel density estimation (KDE) in an augmented covariate-response space. To alleviate the 'curse of dimensionality', we explore the intrinsic lower dimensional manifold structure and utilize principal component analysis (PCA) to construct a proper low-dimensional feature space, where kernel density estimation is feasible with the limited training data. Interestingly, the construction of this lower dimensional representation reveals a useful decomposition of the variations in respiratory motion into the contribution from semiperiodic dynamics and that from the random noise, as it is only sensible to perform prediction with respect to the former. The dimension reduction idea proposed in this work is closely related to feature extraction used in machine learning, particularly support vector machines. This work points out a pathway in processing high-dimensional data with limited training instances, and this principle applies well beyond the problem of target-coordinate-based respiratory-based prediction. A natural extension is prediction based on image intensity directly, which we will investigate in the continuation of this work. We used 159 lung target motion traces obtained with a Synchrony respiratory tracking system. Prediction performance of the low-dimensional feature learning

  4. The ising model on the dynamical triangulated random surface

    International Nuclear Information System (INIS)

    Aleinov, I.D.; Migelal, A.A.; Zmushkow, U.V.

    1990-01-01

    The critical properties of Ising model on the dynamical triangulated random surface embedded in D-dimensional Euclidean space are investigated. The strong coupling expansion method is used. The transition to thermodynamical limit is performed by means of continuous fractions

  5. Modelling sediment dynamics due to hillslope-river interactions : incorporating fluvial behaviour in landscape evolution model LAPSUS

    NARCIS (Netherlands)

    Baartman, Jantiene E. M.; van Gorp, Wouter; Temme, Arnaud J. A. M.; Schoorl, Jeroen M.

    Landscape evolution models (LEMs) simulate the three-dimensional development of landscapes over time. Different LEMs have different foci, e.g. erosional behaviour, river dynamics, the fluvial domain, hillslopes or a combination. LEM LAPSUS is a relatively simple cellular model operating on

  6. Low-order modelling of a drop on a highly-hydrophobic substrate: statics and dynamics

    Science.gov (United States)

    Wray, Alexander W.; Matar, Omar K.; Davis, Stephen H.

    2017-11-01

    We analyse the behaviour of droplets resting on highly-hydrophobic substrates. This problem is of practical interest due to its appearance in many physical contexts involving the spreading, wetting, and dewetting of fluids on solid substrates. In mathematical terms, it exhibits an interesting challenge as the interface is multi-valued as a function of the natural Cartesian co-ordinates, presenting a stumbling block to typical low-order modelling techniques. Nonetheless, we show that in the static case, the interfacial shape is governed by the Young-Laplace equation, which may be solved explicitly in terms of elliptic functions. We present simple low-order expressions that faithfully reproduce the shapes. We then consider the dynamic case, showing that the predictions of our low-order model compare favourably with those obtained from direct numerical simulations. We also examine the characteristic flow regimes of interest. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  7. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy.

    Science.gov (United States)

    Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei

    2012-04-07

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

  8. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    Science.gov (United States)

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  9. Dynamical properties of magnetized two-dimensional one-component plasma

    Science.gov (United States)

    Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios

    2018-05-01

    Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.

  10. Thickness determination in textile material design: dynamic modeling and numerical algorithms

    International Nuclear Information System (INIS)

    Xu, Dinghua; Ge, Meibao

    2012-01-01

    Textile material design is of paramount importance in the study of functional clothing design. It is therefore important to determine the dynamic heat and moisture transfer characteristics in the human body–clothing–environment system, which directly determine the heat–moisture comfort level of the human body. Based on a model of dynamic heat and moisture transfer with condensation in porous fabric at low temperature, this paper presents a new inverse problem of textile thickness determination (IPTTD). Adopting the idea of the least-squares method, we formulate the IPTTD into a function minimization problem. By means of the finite-difference method, quasi-solution method and direct search method for one-dimensional minimization problems, we construct iterative algorithms of the approximated solution for the IPTTD. Numerical simulation results validate the formulation of the IPTTD and demonstrate the effectiveness of the proposed numerical algorithms. (paper)

  11. Dynamical implications of sample shape for avalanches in 2-dimensional random-field Ising model with saw-tooth domain wall

    Science.gov (United States)

    Tadić, Bosiljka

    2018-03-01

    We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N =Lx ×Ly = 106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx /Ly ∈ [ 1 / 16 , 16 ] . The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx /Ly. The large fluctuations in the HLC, on the other

  12. Recurrence relations and time evolution in the three-dimensional Sawada model

    International Nuclear Information System (INIS)

    Lee, M.H.; Hong, J.

    1984-01-01

    Time-dependent behavior of the three-dimensional Sawada model is obtained by a method of recurrence relations. Exactly calculated quantities are the time evolution of the density-fluctuation operator and its random force. As an application, their linear coefficients, the relaxation and memory functions are used to obtain certain dynamic quantities, e.g., the mobility

  13. FitEM2EM--tools for low resolution study of macromolecular assembly and dynamics.

    Directory of Open Access Journals (Sweden)

    Ziv Frankenstein

    Full Text Available Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top.

  14. Poincare' maps of impulsed oscillators and two-dimensional dynamics

    International Nuclear Information System (INIS)

    Lupini, R.; Lenci, S.; Gardini, L.; Urbino Univ.

    1996-01-01

    The Poincare' map of one-dimensional linear oscillators subject to periodic, non-linear and time-delayed impulses is shown to reduce to a family of plane maps with possible non-uniqueness of the inverse. By restricting the analysis to a convenient form of the impulse function, a variety of interesting dynamical behaviours in this family are pointed out, including multistability and homoclinic bifurcations. Critical curves of two-dimensional endomorphisms are used to identify the structure of absorbing areas and their bifurcations

  15. Dynamics in discrete two-dimensional nonlinear Schrödinger equations in the presence of point defects

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties...... of the stationary solutions are examined. The essential importance of the existence of stable immobile solitons in the two-dimensional dynamics of the traveling pulses is demonstrated. The typical scenario of the two-dimensional quasicollapse of a moving intense pulse represents the formation of standing trapped...... narrow spikes. The influence of the point impurities on this dynamics is also investigated....

  16. The dynamics of aloof baby Skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, Petja; Sutcliffe, Paul [Department of Mathematical Sciences, Durham University,Durham DH1 3LE (United Kingdom)

    2016-01-25

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)-dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper we present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.

  17. The dynamics of aloof baby Skyrmions

    Science.gov (United States)

    Salmi, Petja; Sutcliffe, Paul

    2016-01-01

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)-dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper we present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.

  18. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf

    2017-07-31

    Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.

  19. A three-dimensional phase space dynamical model of the Earth's radiation belt

    International Nuclear Information System (INIS)

    Boscher, D. M.; Beutier, T.; Bourdarie, S.

    1996-01-01

    A three dimensional phase space model of the Earth's radiation belt is presented. We have taken into account the magnetic and electric radial diffusions, the pitch angle diffusions due to Coulomb interactions and interactions with the plasmaspheric hiss, and the Coulomb drag. First, a steady state of the belt is presented. Two main maxima are obtained, corresponding to the inner and outer parts of the belt. Then, we have modelled a simple injection at the external boundary. The particle transport seems like what was measured aboard satellites. A high energy particle loss is found, by comparing the model results and the measurements. It remains to be explained

  20. Recovering the observed b/c ratio in a dynamic spiral-armed cosmic ray model

    International Nuclear Information System (INIS)

    Benyamin, David; Piran, Tsvi; Shaviv, Nir J.; Nakar, Ehud

    2014-01-01

    We develop a fully three-dimensional numerical code describing the diffusion of cosmic rays (CRs) in the Milky Way. It includes the nuclear spallation chain up to oxygen, and allows the study of various CR properties, such as the CR age, grammage traversed, and the ratio between secondary and primary particles. This code enables us to explore a model in which a large fraction of the CR acceleration takes place in the vicinity of galactic spiral arms that are dynamic. We show that the effect of having dynamic spiral arms is to limit the age of CRs at low energies. This is because at low energies the time since the last spiral arm passage governs the CR age, and not diffusion. Using the model, the observed spectral dependence of the secondary to primary ratio is recovered without requiring any further assumptions such as a galactic wind, re-acceleration or various assumptions on the diffusivity. In particular, we obtain a secondary to primary ratio which increases with energy below about 1 GeV.

  1. Dynamics of a neuron model in different two-dimensional parameter-spaces

    Science.gov (United States)

    Rech, Paulo C.

    2011-03-01

    We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.

  2. Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)

    2006-11-15

    The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Role of thermal two-phonon scattering for impurity dynamics in a low-dimensional Bose-Einstein condensate

    Science.gov (United States)

    Lausch, Tobias; Widera, Artur; Fleischhauer, Michael

    2018-03-01

    We numerically study the relaxation dynamics of a single, heavy impurity atom interacting with a finite one- or two-dimensional, ultracold Bose gas. While there is a clear separation of time scales between processes resulting from single- and two-phonon scattering in three spatial dimensions, the thermalization in lower dimensions is dominated by two-phonon processes. This is due to infrared divergences in the corresponding scattering rates in the thermodynamic limit, which are a manifestation of the Mermin-Wagner-Hohenberg theorem. This makes it necessary to include second-order phonon scattering above a crossover temperature T2ph . T2ph scales inversely with the system size and is much smaller than currently experimentally accessible.

  4. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2002-06-01

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it satisfactorily reproduces the morphology of the continuous O3

  5. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it

  6. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  7. Foundations of modelling of nonequilibrium low-temperature plasmas

    Science.gov (United States)

    Alves, L. L.; Bogaerts, A.; Guerra, V.; Turner, M. M.

    2018-02-01

    This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma-surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.

  8. The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model: validation and parameter optimization

    Science.gov (United States)

    Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim

    2018-02-01

    We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower

  9. Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanesa M; Serra, Maria [Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona (Spain); Lopez, Eduardo; Llorca, Jordi [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain)

    2009-07-01

    A low-temperature ethanol reformer based on a cobalt catalyst for the production of hydrogen has been designed aiming the feed of a fuel cell for an autonomous low-scale power production unit. The reformer comprises three stages: ethanol dehydrogenation to acetaldehyde and hydrogen over SnO{sub 2} followed by acetaldehyde steam reforming over Co(Fe)/ZnO catalyst and water gas shift reaction. Kinetic data have been obtained under different experimental conditions and a dynamic model has been developed for a tubular reformer loaded with catalytic monoliths for the production of the hydrogen required to feed a 1 kW PEMFC. (author)

  10. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  11. Low-dimensional and Data Fusion Techniques Applied to a Rectangular Supersonic Multi-stream Jet

    Science.gov (United States)

    Berry, Matthew; Stack, Cory; Magstadt, Andrew; Ali, Mohd; Gaitonde, Datta; Glauser, Mark

    2017-11-01

    Low-dimensional models of experimental and simulation data for a complex supersonic jet were fused to reconstruct time-dependent proper orthogonal decomposition (POD) coefficients. The jet consists of a multi-stream rectangular single expansion ramp nozzle, containing a core stream operating at Mj , 1 = 1.6 , and bypass stream at Mj , 3 = 1.0 with an underlying deck. POD was applied to schlieren and PIV data to acquire the spatial basis functions. These eigenfunctions were projected onto their corresponding time-dependent large eddy simulation (LES) fields to reconstruct the temporal POD coefficients. This reconstruction was able to resolve spectral peaks that were previously aliased due to the slower sampling rates of the experiments. Additionally, dynamic mode decomposition (DMD) was applied to the experimental and LES datasets, and the spatio-temporal characteristics were compared to POD. The authors would like to acknowledge AFOSR, program manager Dr. Doug Smith, for funding this research, Grant No. FA9550-15-1-0435.

  12. Quantum phase transition and quench dynamics in the anisotropic Rabi model

    Science.gov (United States)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao

    2017-01-01

    We investigate the quantum phase transition (QPT) and quench dynamics in the anisotropic Rabi model when the ratio of the qubit transition frequency to the oscillator frequency approaches infinity. Based on the Schrieffer-Wolff transformation, we find an anti-Hermitian operator that maps the original Hamiltonian into a one-dimensional oscillator Hamiltonian within the spin-down subspace. We analytically derive the eigenenergy and eigenstate of the normal and superradiant phases and demonstrate that the system undergoes a second-order quantum phase transition at a critical border. The critical border is a straight line in a two-dimensional parameter space which essentially extends the dimensionality of QPT in the Rabi model. By combining the Kibble-Zurek mechanism and the adiabatic dynamics method, we find that the residual energy vanishes as the quench time tends to zero, which is a sharp contrast to the universal scaling where the residual energy diverges in the same limit.

  13. Containing Terrorism: A Dynamic Model

    Directory of Open Access Journals (Sweden)

    Giti Zahedzadeh

    2017-06-01

    Full Text Available The strategic interplay between counterterror measures and terror activity is complex. Herein, we propose a dynamic model to depict this interaction. The model generates stylized prognoses: (i under conditions of inefficient counterterror measures, terror groups enjoy longer period of activity but only if recruitment into terror groups remains low; high recruitment shortens the period of terror activity (ii highly efficient counterterror measures effectively contain terror activity, but only if recruitment remains low. Thus, highly efficient counterterror measures can effectively contain terrorism if recruitment remains restrained. We conclude that the trajectory of the dynamics between counterterror measures and terror activity is heavily altered by recruitment.

  14. Low-dimensional chaos in a hydrodynamic system

    International Nuclear Information System (INIS)

    Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.

    1983-01-01

    Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number

  15. Three Dimensional Thermal Modeling of Li-Ion Battery Pack Based on Multiphysics and Calorimetric Measurement

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    A three-dimensional multiphysics-based thermal model of a battery pack is presented. The model is intended to demonstrate the cooling mechanism inside the battery pack. Heat transfer (HT) and computational fluid dynamics (CFD) physics are coupled for both time-dependent and steady-state simulatio...

  16. Quantum dynamics of water dissociative chemisorption on rigid Ni(111): An approximate nine-dimensional treatment

    International Nuclear Information System (INIS)

    Jiang, Bin; Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-01-01

    The quantum dynamics of water dissociative chemisorption on the rigid Ni(111) surface is investigated using a recently developed nine-dimensional potential energy surface. The quantum dynamical model includes explicitly seven degrees of freedom of D 2 O at fixed surface sites, and the final results were obtained with a site-averaging model. The mode specificity in the site-specific results is reported and analyzed. Finally, the approximate sticking probabilities for various vibrationally excited states of D 2 O are obtained considering surface lattice effects and formally all nine degrees of freedom. The comparison with experiment reveals the inaccuracy of the density functional theory and suggests the need to improve the potential energy surface.

  17. Many-particle theory of optical properties in low-dimensional nanostructures. Dynamics in single-walled carbon nanotubes and semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Malic, Ermin

    2008-09-02

    This work focuses on the theoretical investigation of optical properties of low-dimensional nanostructures, specifically single-walled carbon nanotubes (CNTs) and self-assembled InAs/GaAs quantum dots (QDs). The density-matrix formalism is applied to explain recent experimental results and to give insight into the underlying physics. A microscopic calculation of the absorption coefficient and the Rayleigh scattering cross section is performed by a novel approach combining the density-matrix formalism with the tight-binding wave functions. The calculated spectra of metallic nanotubes show a double-peaked structure resulting from the trigonal warping effect. The intensity ratios of the four lowest-lying transitions in both absorption and Rayleigh spectra can be explained by the different behavior of the optical matrix elements along the high-symmetry lines K-{gamma} and K-M. The Rayleigh line shape is predicted to be asymmetric, with an enhanced cross section for lower photon energies arising from non-resonant contributions of the optical susceptibility. Furthermore, the Coulomb interaction is shown to be maximal when the momentum transfer is low. For intersubband processes with a perpendicular momentum transfer, the coupling strength is reduced to less than 5%. The chirality and diameter dependence of the excitonic binding energy and the transition frequency are presented in Kataura plots. Furthermore, the influence of the surrounding environment on the optical properties of CNTs is investigated. Extending the confinement to all three spatial dimensions, semiconductor Bloch equation are derived to describe the dynamics in QD semiconductor lasers and amplifiers. A detailed microscopic analysis of the nonlinear turn-on dynamics of electrically pumped InAs/GaAs QD lasers is performed, showing the generation of relaxation oscillations on a nanosecond time scale in both the photon and charge carrier density. The theory predicts a strong damping of relaxation oscillations

  18. Many-particle theory of optical properties in low-dimensional nanostructures. Dynamics in single-walled carbon nanotubes and semiconductor quantum dots

    International Nuclear Information System (INIS)

    Malic, Ermin

    2008-01-01

    This work focuses on the theoretical investigation of optical properties of low-dimensional nanostructures, specifically single-walled carbon nanotubes (CNTs) and self-assembled InAs/GaAs quantum dots (QDs). The density-matrix formalism is applied to explain recent experimental results and to give insight into the underlying physics. A microscopic calculation of the absorption coefficient and the Rayleigh scattering cross section is performed by a novel approach combining the density-matrix formalism with the tight-binding wave functions. The calculated spectra of metallic nanotubes show a double-peaked structure resulting from the trigonal warping effect. The intensity ratios of the four lowest-lying transitions in both absorption and Rayleigh spectra can be explained by the different behavior of the optical matrix elements along the high-symmetry lines K-Γ and K-M. The Rayleigh line shape is predicted to be asymmetric, with an enhanced cross section for lower photon energies arising from non-resonant contributions of the optical susceptibility. Furthermore, the Coulomb interaction is shown to be maximal when the momentum transfer is low. For intersubband processes with a perpendicular momentum transfer, the coupling strength is reduced to less than 5%. The chirality and diameter dependence of the excitonic binding energy and the transition frequency are presented in Kataura plots. Furthermore, the influence of the surrounding environment on the optical properties of CNTs is investigated. Extending the confinement to all three spatial dimensions, semiconductor Bloch equation are derived to describe the dynamics in QD semiconductor lasers and amplifiers. A detailed microscopic analysis of the nonlinear turn-on dynamics of electrically pumped InAs/GaAs QD lasers is performed, showing the generation of relaxation oscillations on a nanosecond time scale in both the photon and charge carrier density. The theory predicts a strong damping of relaxation oscillations

  19. Absence of vortex condensation in a two dimensional fermionic XY model

    International Nuclear Information System (INIS)

    Cecile, D. J.; Chandrasekharan, Shailesh

    2008-01-01

    Motivated by a puzzle in the study of two-dimensional lattice quantum electrodynamics with staggered fermions, we construct a two-dimensional fermionic model with a global U(1) symmetry. Our model can be mapped into a model of closed packed dimers and plaquettes. Although the model has the same symmetries as the XY model, we show numerically that the model lacks the well-known Kosterlitz-Thouless phase transition. The model is always in the gapless phase showing the absence of a phase with vortex condensation. In other words the low energy physics is described by a noncompact U(1) field theory. We show that by introducing an even number of layers one can introduce vortex condensation within the model and thus also induce a Kosterlitz-Thouless transition.

  20. Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model

    International Nuclear Information System (INIS)

    Huangfu, Yigeng; Gao, Fei; Abbas-Turki, Abdeljalil; Bouquain, David; Miraoui, Abdellatif

    2013-01-01

    Highlights: • A multiphysics, 1D, dynamic SOFC model is developed. • The presented model is validated experimentally in eight different operating conditions. • Electrochemical and thermal dynamic transient time expressions are given in explicit forms. • Parameter sensitivity is discussed for different semi-empirical parameters in the model. - Abstract: In this paper, a multiphysics solid oxide fuel cell (SOFC) dynamic model is developed by using a one dimensional (1D) modeling approach. The dynamic effects of double layer capacitance on the electrochemical domain and the dynamic effect of thermal capacity on thermal domain are thoroughly considered. The 1D approach allows the model to predict the non-uniform distributions of current density, gas pressure and temperature in SOFC during its operation. The developed model has been experimentally validated, under different conditions of temperature and gas pressure. Based on the proposed model, the explicit time constant expressions for different dynamic phenomena in SOFC have been given and discussed in detail. A parameters sensitivity study has also been performed and discussed by using statistical Multi Parameter Sensitivity Analysis (MPSA) method, in order to investigate the impact of parameters on the modeling accuracy

  1. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    Tadesse

    that low dimensional quantum gases exhibit not only highly fascinating .... 2009; Marquardt and Girvin, 2009; Law, 1995; Vitali et al., 2007). ... ideal playground to test correlations between light and mesoscopic objects, to understand the.

  2. Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation

    International Nuclear Information System (INIS)

    Agishtein, M.E.; Migdal, A.A.

    1992-01-01

    In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 x 10 4 simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths

  3. Computational fluid dynamics modeling of a lithium/thionyl chloride battery with electrolyte flow

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W.B.; Wang, C.Y.; Weidner, J.W.; Jungst, R.G.; Nagasubramanian, G.

    2000-02-01

    A two-dimensional model is developed to simulate discharge of a lithium/thionyl chloride primary battery. As in earlier one-dimensional models, the model accounts for transport of species and charge, and electrode porosity variations and electrolyte flow induced by the volume reduction caused by electrochemical reactions. Numerical simulations are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves for various temperatures show good agreement with published experimental data, and are essentially identical to results published for one-dimensional models. The detailed two-dimensional flow simulations show that the electrolyte is replenished from the cell head space predominantly through the separator into the front of the cathode during most parts of the discharge, especially for higher cell temperatures.

  4. Note: Interpolation for evaluation of a two-dimensional spatial profile of plasma densities at low gas pressures

    International Nuclear Information System (INIS)

    Oh, Se-Jin; Kim, Young-Chul; Chung, Chin-Wook

    2011-01-01

    An interpolation algorithm for the evaluation of the spatial profile of plasma densities in a cylindrical reactor was developed for low gas pressures. The algorithm is based on a collisionless two-dimensional fluid model. Contrary to the collisional case, i.e., diffusion fluid model, the fitting algorithm depends on the aspect ratio of the cylindrical reactor. The spatial density profile of the collisionless fitting algorithm is presented in two-dimensional images and compared with the results of the diffusion fluid model.

  5. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

    2016-01-01

    a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two-dimensional flow to be investigated. Results indicated a good qualitative...

  6. Comparison of three-dimensional ocean general circulation models on a benchmark problem

    International Nuclear Information System (INIS)

    Chartier, M.

    1990-12-01

    A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method

  7. Extracting Markov Models of Peptide Conformational Dynamics from Simulation Data.

    Science.gov (United States)

    Schultheis, Verena; Hirschberger, Thomas; Carstens, Heiko; Tavan, Paul

    2005-07-01

    A high-dimensional time series obtained by simulating a complex and stochastic dynamical system (like a peptide in solution) may code an underlying multiple-state Markov process. We present a computational approach to most plausibly identify and reconstruct this process from the simulated trajectory. Using a mixture of normal distributions we first construct a maximum likelihood estimate of the point density associated with this time series and thus obtain a density-oriented partition of the data space. This discretization allows us to estimate the transfer operator as a matrix of moderate dimension at sufficient statistics. A nonlinear dynamics involving that matrix and, alternatively, a deterministic coarse-graining procedure are employed to construct respective hierarchies of Markov models, from which the model most plausibly mapping the generating stochastic process is selected by consideration of certain observables. Within both procedures the data are classified in terms of prototypical points, the conformations, marking the various Markov states. As a typical example, the approach is applied to analyze the conformational dynamics of a tripeptide in solution. The corresponding high-dimensional time series has been obtained from an extended molecular dynamics simulation.

  8. Model-free inference of direct network interactions from nonlinear collective dynamics.

    Science.gov (United States)

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  9. Dynamic modelling of nuclear steam generators

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.

    1980-01-01

    Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)

  10. Two-dimensional integrated Z-pinch ICF design simulations

    International Nuclear Information System (INIS)

    Lash, J.S.

    1999-01-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility

  11. Two-dimensional integrated Z-pinch ICF design simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lash, J.S.

    1999-07-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility.

  12. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...

  13. Two-dimensional model of a freely expanding plasma

    International Nuclear Information System (INIS)

    Khalid, Q.

    1975-01-01

    The free expansion of an initially confined plasma is studied by the computer experiment technique. The research is an extension to two dimensions of earlier work on the free expansion of a collisionless plasma in one dimension. In the two-dimensional rod model, developed in this research, the plasma particles, electrons and ions are modeled as infinitely long line charges or rods. The line charges move freely in two dimensions normal to their parallel axes, subject only to a self-consistent electric field. Two approximations, the grid approximation and the periodic boundary condition are made in order to reduce the computation time. In the grid approximation, the space occupied by the plasma at a given time is divided into boxes. The particles are subject to an average electric field calculated for that box assuming that the total charge within each box is located at the center of the box. However, the motion of each particle is exactly followed. The periodic boundary condition allows us to consider only one-fourth of the total number of particles of the plasma, representing the remaining three-fourths of the particles as symmetrically placed images of those whose positions are calculated. This approximation follows from the expected azimuthal symmetry of the plasma. The dynamics of the expansion are analyzed in terms of average ion and electron positions, average velocities, oscillation frequencies and relative distribution of energy between thermal, flow and electric field energies. Comparison is made with previous calculations of one-dimensional models which employed plane, spherical or cylindrical sheets as charged particles. In order to analyze the effect of the grid approximation, the model is solved for two different grid sizes and for each grid size the plasma dynamics is determined. For the initial phase of expansion, the agreement for the two grid sizes is found to be good

  14. Local persistence and blocking in the two-dimensional blume-capel model

    OpenAIRE

    Silva, Roberto da; Dahmen, S. R.

    2004-01-01

    In this paper we study the local persistence of the two-dimensional Blume-Capel Model by extending the concept of Glauber dynamics. We verify that for any value of the ratio alpha = D/J between anisotropy D and exchange J the persistence shows a power law behavior. In particular for alpha 0 (a ¹ 1) we observe the occurrence of blocking.

  15. Signatures from an extra-dimensional seesaw model

    International Nuclear Information System (INIS)

    Blennow, Mattias; Melbeus, Henrik; Ohlsson, Tommy; Zhang He

    2010-01-01

    We study the generation of small neutrino masses in an extra-dimensional model, where singlet fermions are allowed to propagate in the extra dimension, while the standard model particles are confined to a brane. Motivated by the fact that extra-dimensional models are nonrenormalizable, we truncate the Kaluza-Klein towers at a maximal Kaluza-Klein number. This truncation, together with the structure of the bulk Majorana mass term, motivated by the Sherk-Schwarz mechanism, implies that the Kaluza-Klein modes of the singlet fermions pair to form Dirac fermions, except for a number of unpaired Majorana fermions at the top of each tower. These heavy Majorana fermions are the only sources of lepton number breaking in the model, and similarly to the type-I seesaw mechanism, they naturally generate small masses for the left-handed neutrinos. The lower Kaluza-Klein modes mix with the light neutrinos, and the mixing effects are not suppressed with respect to the light-neutrino masses. Compared to conventional fermionic seesaw models, such mixing can be more significant. We study the signals of this model at the Large Hadron Collider, and find that the current low-energy bounds on the nonunitarity of the leptonic mixing matrix are strong enough to exclude an observation.

  16. Towards realistic models from Higher-Dimensional theories with Fuzzy extra dimensions

    CERN Document Server

    Gavriil, D.; Zoupanos, G.

    2014-01-01

    We briefly review the Coset Space Dimensional Reduction (CSDR) programme and the best model constructed so far and then we present some details of the corresponding programme in the case that the extra dimensions are considered to be fuzzy. In particular, we present a four-dimensional $\\mathcal{N} = 4$ Super Yang Mills Theory, orbifolded by $\\mathbb{Z}_3$, which mimics the behaviour of a dimensionally reduced $\\mathcal{N} = 1$, 10-dimensional gauge theory over a set of fuzzy spheres at intermediate high scales and leads to the trinification GUT $SU(3)^3$ at slightly lower, which in turn can be spontaneously broken to the MSSM in low scales.

  17. Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2017-01-01

    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled straight glass capillary actuated by a piezoelectric transducer. Here......, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model explains the dynamical mechanism that leads to the formation...

  18. Solutions stability of one-dimensional parametric superconducting magnetic levitation model analysis by the first approximation

    International Nuclear Information System (INIS)

    Shvets', D.V.

    2009-01-01

    By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.

  19. A Standardized Generalized Dimensionality Discrepancy Measure and a Standardized Model-Based Covariance for Dimensionality Assessment for Multidimensional Models

    Science.gov (United States)

    Levy, Roy; Xu, Yuning; Yel, Nedim; Svetina, Dubravka

    2015-01-01

    The standardized generalized dimensionality discrepancy measure and the standardized model-based covariance are introduced as tools to critique dimensionality assumptions in multidimensional item response models. These tools are grounded in a covariance theory perspective and associated connections between dimensionality and local independence.…

  20. Bifurcation structures and transient chaos in a four-dimensional Chua model

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Anderson, E-mail: hoffande@gmail.com; Silva, Denilson T. da; Manchein, Cesar, E-mail: cesar.manchein@udesc.br; Albuquerque, Holokx A., E-mail: holokx.albuquerque@udesc.br

    2014-01-10

    A four-dimensional four-parameter Chua model with cubic nonlinearity is studied applying numerical continuation and numerical solutions methods. Regarding numerical solution methods, its dynamics is characterized on Lyapunov and isoperiodic diagrams and regarding numerical continuation method, the bifurcation curves are obtained. Combining both methods the bifurcation structures of the model were obtained with the possibility to describe the shrimp-shaped domains and their endoskeletons. We study the effect of a parameter that controls the dimension of the system leading the model to present transient chaos with its corresponding basin of attraction being riddled.

  1. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ali Mostofizadeh

    2011-01-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. Carbon nanomaterials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional carbon nanomaterials (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nanomaterials.

  2. Dynamics of a neuron model in different two-dimensional parameter-spaces

    International Nuclear Information System (INIS)

    Rech, Paulo C.

    2011-01-01

    We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades. - Research highlights: → We report parameter-spaces obtained for the Hindmarsh-Rose neuron model. → Regardless of the combination of parameters, a typical scenario is preserved. → The scenario presents a comb-shaped chaotic region immersed in a periodic region. → Periodic regions near the chaotic region are in period-adding bifurcation cascades.

  3. Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction

    Science.gov (United States)

    Sid, S.; Terrapon, V. E.; Dubief, Y.

    2018-02-01

    The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed

  4. Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz

    Directory of Open Access Journals (Sweden)

    Jan C. Zill, Tod M. Wright, Karen V. Kheruntsyan, Thomas Gasenzer, Matthew J. Davis

    2018-02-01

    Full Text Available We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.

  5. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  6. Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods

    International Nuclear Information System (INIS)

    Wang, Yan; Li, Jun; Guo, Hua; Chen, Liuyang; Yang, Minghui; Lu, Yunpeng

    2015-01-01

    An eight-dimensional quantum dynamical model is proposed and applied to the title reaction. The reaction probabilities and integral cross sections have been determined for both the ground and excited vibrational states of the two reactants. The results indicate that the H 2 stretching and CH 3 umbrella modes, along with the translational energy, strongly promote the reactivity, while the CH 3 symmetric stretching mode has a negligible effect. The observed mode specificity is confirmed by full-dimensional quasi-classical trajectory calculations. The mode specificity can be interpreted by the recently proposed sudden vector projection model, which attributes the enhancement effects of the reactant modes to their strong couplings with the reaction coordinate at the transition state

  7. Dynamic model tracking design for low inertia, high speed permanent magnet ac motors.

    Science.gov (United States)

    Stewart, P; Kadirkamanathan, V

    2004-01-01

    Permanent magnet ac (PMAC) motors have existed in various configurations for many years. The advent of rare-earth magnets and their associated highly elevated levels of magnetic flux makes the permanent magnet motor attractive for many high performance applications from computer disk drives to all electric racing cars. The use of batteries as a prime storage element carries a cost penalty in terms of the unladen weight of the vehicle. Minimizing this cost function requires the minimum electric motor size and weight to be specified, while still retaining acceptable levels of output torque. This tradeoff can be achieved by applying a technique known as flux weakening which will be investigated in this paper. The technique allows the speed range of a PMAC motor to be greatly increased, giving a constant power range of more than 4:1. A dynamic model reference controller is presented which has advantages in ease of implementation, and is particularly suited to dynamic low inertia applications such as clutchless gear changing in high performance electric vehicles. The benefits of this approach are to maximize the torque speed envelope of the motor, particularly advantageous when considering low inertia operation. The controller is examined experimentally, confirming the predicted performance.

  8. Two-dimensional sigma models: modelling non-perturbative effects of gauge theories

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1984-01-01

    The review is devoted to a discussion of non-perturbative effects in gauge theories and two-dimensional sigma models. The main emphasis is put on supersymmetric 0(3) sigma model. The instanton-based method for calculating the exact Gell-Mann-Low function and bifermionic condensate is considered in detail. All aspects of the method in simplifying conditions are discussed. The basic points are: the instanton measure from purely classical analysis; a non-renormalization theorem in self-dual external fields; existence of vacuum condensates and their compatibility with supersymmetry

  9. Neutron scattering studies of low dimensional magnetic systems

    DEFF Research Database (Denmark)

    Hansen, Ursula Bengård

    investigated at low temperaturesand in a longitudinal magnetic eld using neutron spectroscopy. Here we observe thehybridisation of the magnon bound states, inherent to the low dimensional nature ofCoCl2 · 2D2O.At higher temperature, signatures which can be attributed to Magnetic Bloch Oscillationsis observed...

  10. Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets.

    Science.gov (United States)

    Kalidindi, Surya R; Gomberg, Joshua A; Trautt, Zachary T; Becker, Chandler A

    2015-08-28

    Structure quantification is key to successful mining and extraction of core materials knowledge from both multiscale simulations as well as multiscale experiments. The main challenge stems from the need to transform the inherently high dimensional representations demanded by the rich hierarchical material structure into useful, high value, low dimensional representations. In this paper, we develop and demonstrate the merits of a data-driven approach for addressing this challenge at the atomic scale. The approach presented here is built on prior successes demonstrated for mesoscale representations of material internal structure, and involves three main steps: (i) digital representation of the material structure, (ii) extraction of a comprehensive set of structure measures using the framework of n-point spatial correlations, and (iii) identification of data-driven low dimensional measures using principal component analyses. These novel protocols, applied on an ensemble of structure datasets output from molecular dynamics (MD) simulations, have successfully classified the datasets based on several model input parameters such as the interatomic potential and the temperature used in the MD simulations.

  11. Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets

    International Nuclear Information System (INIS)

    Kalidindi, Surya R; Gomberg, Joshua A; Trautt, Zachary T; Becker, Chandler A

    2015-01-01

    Structure quantification is key to successful mining and extraction of core materials knowledge from both multiscale simulations as well as multiscale experiments. The main challenge stems from the need to transform the inherently high dimensional representations demanded by the rich hierarchical material structure into useful, high value, low dimensional representations. In this paper, we develop and demonstrate the merits of a data-driven approach for addressing this challenge at the atomic scale. The approach presented here is built on prior successes demonstrated for mesoscale representations of material internal structure, and involves three main steps: (i) digital representation of the material structure, (ii) extraction of a comprehensive set of structure measures using the framework of n-point spatial correlations, and (iii) identification of data-driven low dimensional measures using principal component analyses. These novel protocols, applied on an ensemble of structure datasets output from molecular dynamics (MD) simulations, have successfully classified the datasets based on several model input parameters such as the interatomic potential and the temperature used in the MD simulations. (paper)

  12. Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics

    International Nuclear Information System (INIS)

    Choi, Dae-Il; Chism, Will

    2002-01-01

    We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations

  13. Stochastic Wilson–Cowan models of neuronal network dynamics with memory and delay

    International Nuclear Information System (INIS)

    Goychuk, Igor; Goychuk, Andriy

    2015-01-01

    We consider a simple Markovian class of the stochastic Wilson–Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. (paper)

  14. Alternative dimensional models of personality disorder

    DEFF Research Database (Denmark)

    Widiger, Thomas A; Simonsen, Erik

    2005-01-01

    The recognition of the many limitations of the categorical model of personality disorder classification has led to the development of quite a number of alternative proposals for a dimensional classification. The purpose of this article is to suggest that future research work toward the integration...... of these alternative proposals within a common hierarchical structure. An illustration of a potential integration is provided using the constructs assessed within existing dimensional models. Suggestions for future research that will help lead toward a common, integrative dimensional model of personality disorder...

  15. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  16. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Yoon, Yeoheung; Lee, Hyoyoung; Lee, Keunsik

    2016-01-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp 2 -bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications. (topical review)

  17. Workshop on low-dimensional quantum field theory and its applications

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi

    1990-02-01

    The workshop on 'Low-Dimensional Quantum Field Theory and its Applications' was held at INS on December 18 - 20, 1989 with about seventy participants. Some pedagogical reviews and the latest results were delivered on the recent topics related to both solid-state and particle physics. Among them are quantum Hall effect, high T c superconductivity and related topics in low-dimensional quantum field theory. Many active discussions were made on these issues. (J.P.N.)

  18. On the stochastic dynamics of disordered spin models

    International Nuclear Information System (INIS)

    Semerjian, G.; Montanari, A.; Cugliandolo, L.F.

    2003-09-01

    In this article we discuss several aspects of the stochastic dynamics of spin models. The paper has two independent parts. Firstly, we explore a few properties of the multi-point correlations and responses of generic systems evolving in equilibrium with a thermal bath. We propose a fluctuation principle that allows us to derive fluctuation-dissipation relations for many-time correlations and linear responses. We also speculate on how these features will be modified in systems evolving slowly out of equilibrium, as finite-dimensional or dilute spin-glasses. Secondly, we present a formalism that allows one to derive a series of approximated equations that determine the dynamics of disordered spin models on random (hyper) graphs. (author)

  19. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  20. Canonical and symplectic analysis for three dimensional gravity without dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)

    2017-03-15

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  1. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2004-01-01

    We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion-proton inte......We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion...... chain subject to a substrate with two optical bands), both providing a bistability of the hydrogen-bonded proton. Exact two-component (kink and antikink) discrete solutions for these models are found numerically. We compare the soliton solutions and their properties in both the one- (when the heavy ions...... principal differences, like a significant difference in the stability switchings behavior for the kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where topological discrete (anti)kink states might exist....

  2. Computational fluid dynamics in three dimensional angiography: Preliminary hemodynamic results of various proximal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ha Youn; Park, Sung Tae; Bae, Won Kyoung; Goo, Dong Erk [Dept. of Radiology, Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2014-12-15

    We studied the influence of proximal geometry on the results of computational fluid dynamics (CFD). We made five models of different proximal geometry from three dimensional angiography of 63-year-old women with intracranial aneurysm. CFD results were analyzed as peak systolic velocity (PSV) at inlet and outlet as well as flow velocity profile at proximal level of internal carotid artery (ICA) aneurysm. Modified model of cavernous one with proximal tubing showed faster PSV at outlet than that at inlet. The PSV of outlets of other models were slower than that of inlets. The flow velocity profiles at immediate proximal to ICA aneurysm showed similar patterns in all models, suggesting that proximal vessel geometries could affect CFD results.

  3. An extended chain Ising model and its Glauber dynamics

    International Nuclear Information System (INIS)

    Zhao Xing-Yu; Fan Xiao-Hui; Huang Yi-Neng; Huang Xin-Ru

    2012-01-01

    It was first proposed that an extended chain Ising (ECI) model contains the Ising chain model, single spin double-well potentials and a pure phonon heat bath of a specific energy exchange with the spins. The extension method is easy to apply to high dimensional cases. Then the single spin-flip probability (rate) of the ECI model is deduced based on the Boltzmann principle and general statistical principles of independent events and the model is simplified to an extended chain Glauber—Ising (ECGI) model. Moreover, the relaxation dynamics of the ECGI model were simulated by the Monte Carlo method and a comparison with the predictions of the special chain Glauber—Ising (SCGI) model was presented. It was found that the results of the two models are consistent with each other when the Ising chain length is large enough and temperature is relative low, which is the most valuable case of the model applications. These show that the ECI model will provide a firm physical base for the widely used single spin-flip rate proposed by Glauber and a possible route to obtain the single spin-flip rate of other form and even the multi-spin-flip rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. A New Generation of Luminescent Materials Based on Low-Dimensional Perovskites

    KAUST Repository

    Pan, Jun

    2017-06-02

    Low-dimensional perovskites with high luminescence properties are promising materials for optoelectronic applications. In this article, properties of two emerging types of low-dimensional perovskites are discussed, including perovskite quantum dots CsPbX3 (X = Cl, Br or I) and zero-dimensional perovskite Cs4PbBr6. Moreover, their application for light down conversion in LCD backlighting systems and in visible light communication are also presented. With their superior optical properties, we believe that further development of these materials will potentially open more prospective applications, especially for optoelectronics devices.

  5. Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

    International Nuclear Information System (INIS)

    Sato, Koichi; Hinohara, Nobuo

    2011-01-01

    We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.

  6. Predicting the bounds of large chaotic systems using low-dimensional manifolds.

    Directory of Open Access Journals (Sweden)

    Asger M Haugaard

    Full Text Available Predicting extrema of chaotic systems in high-dimensional phase space remains a challenge. Methods, which give extrema that are valid in the long term, have thus far been restricted to models of only a few variables. Here, a method is presented which treats extrema of chaotic systems as belonging to discretised manifolds of low dimension (low-D embedded in high-dimensional (high-D phase space. As a central feature, the method exploits that strange attractor dimension is generally much smaller than parent system phase space dimension. This is important, since the computational cost associated with discretised manifolds depends exponentially on their dimension. Thus, systems that would otherwise be associated with tremendous computational challenges, can be tackled on a laptop. As a test, bounding manifolds are calculated for high-D modifications of the canonical Duffing system. Parameters can be set such that the bounding manifold displays harmonic behaviour even if the underlying system is chaotic. Thus, solving for one post-transient forcing cycle of the bounding manifold predicts the extrema of the underlying chaotic problem indefinitely.

  7. A low noise ASIC for two dimensional neutron gas detector with performance of high spatial resolution (Contract research)

    International Nuclear Information System (INIS)

    Yamagishi, Hideshi; Toh, Kentaro; Nakamura, Tatsuya; Sakasai, Kaoru; Soyama, Kazuhiko

    2012-02-01

    An ASD-ASIC (Amplifier-Shaper-Discriminator ASIC) with fast response and low noise performances has been designed for two-dimensional position sensitive neutron gas detectors (InSPaD). The InSPaD is a 2D neutron detector system with 3 He gas and provides a high spatial resolution by making distinction between proton and triton particles generated in the gas chamber. The new ASD-ASIC is required to have very low noise, a wide dynamic range, good output linearity and high counting rate. The new ASD-ASIC has been designed by using CMOS and consisted of 64-channel ASDs, a 16-channel multiplexer with LVTTL drivers and sum amplifier system for summing all analog signals. The performances were evaluated by the Spice simulation. It was confirmed that the new ASD-ASIC had very low noise performance, wide dynamic range and fast signal processing functions. (author)

  8. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.

    Science.gov (United States)

    Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen

    2006-05-01

    To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.

  9. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  10. Nonergodic dynamics of the two-dimensional random-phase sine-Gordon model: Applications to vortex-glass arrays and disordered-substrate surfaces

    International Nuclear Information System (INIS)

    Cule, D.; Shapir, Y.

    1995-01-01

    The dynamics of the random-phase sine-Gordon model, which describes two-dimensional vortex-glass arrays and crystalline surfaces on disordered substrates, is investigated using the self-consistent Hartree approximation. The fluctuation-dissipation theorem is violated below the critical temperature T c for large time t>t * where t * diverges in the thermodynamic limit. While above T c the averaged autocorrelation function diverges as Tln(t), for T c it approaches a finite value q * ∼1/(T c -T) as q(t)=q * -c(t/t * ) -ν (for t→t * ) where ν is a temperature-dependent exponent. On larger time scales t>t * the dynamics becomes nonergodic. The static correlations behave as ∼Tln|rvec x| for T>T c and for T c when x * with ξ * ∼exp{A/(T c -T)}. For scales x>ξ * , they behave as ∼m -1 Tln|rvec x| where m∼T/T c near T c , in general agreement with the variational replica-symmetry breaking approach and with recent simulations of the disordered-substrate surface. For strong coupling the transition becomes first order

  11. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    KAUST Repository

    Pelties, Christian

    2012-02-18

    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.

  12. Application of data mining in three-dimensional space time reactor model

    International Nuclear Information System (INIS)

    Jiang Botao; Zhao Fuyu

    2011-01-01

    A high-fidelity three-dimensional space time nodal method has been developed to simulate the dynamics of the reactor core for real time simulation. This three-dimensional reactor core mathematical model can be composed of six sub-models, neutron kinetics model, cay heat model, fuel conduction model, thermal hydraulics model, lower plenum model, and core flow distribution model. During simulation of each sub-model some operation data will be produced and lots of valuable, important information reflecting the reactor core operation status could be hidden in, so how to discovery these information becomes the primary mission people concern. Under this background, data mining (DM) is just created and developed to solve this problem, no matter what engineering aspects or business fields. Generally speaking, data mining is a process of finding some useful and interested information from huge data pool. Support Vector Machine (SVM) is a new technique of data mining appeared in recent years, and SVR is a transformed method of SVM which is applied in regression cases. This paper presents only two significant sub-models of three-dimensional reactor core mathematical model, the nodal space time neutron kinetics model and the thermal hydraulics model, based on which the neutron flux and enthalpy distributions of the core are obtained by solving the three-dimensional nodal space time kinetics equations and energy equations for both single and two-phase flows respectively. Moreover, it describes that the three-dimensional reactor core model can also be used to calculate and determine the reactivity effects of the moderator temperature, boron concentration, fuel temperature, coolant void, xenon worth, samarium worth, control element positions (CEAs) and core burnup status. Besides these, the main mathematic theory of SVR is introduced briefly next, on the basis of which SVR is applied to dealing with the data generated by two sample calculation, rod ejection transient and axial

  13. Simple Models for the Dynamic Modeling of Rotating Tires

    Directory of Open Access Journals (Sweden)

    J.C. Delamotte

    2008-01-01

    Full Text Available Large Finite Element (FE models of tires are currently used to predict low frequency behavior and to obtain dynamic model coefficients used in multi-body models for riding and comfort. However, to predict higher frequency behavior, which may explain irregular wear, critical rotating speeds and noise radiation, FE models are not practical. Detailed FE models are not adequate for optimization and uncertainty predictions either, as in such applications the dynamic solution must be computed a number of times. Therefore, there is a need for simpler models that can capture the physics of the tire and be used to compute the dynamic response with a low computational cost. In this paper, the spectral (or continuous element approach is used to derive such a model. A circular beam spectral element that takes into account the string effect is derived, and a method to simulate the response to a rotating force is implemented in the frequency domain. The behavior of a circular ring under different internal pressures is investigated using modal and frequency/wavenumber representations. Experimental results obtained with a real untreaded truck tire are presented and qualitatively compared with the simple model predictions with good agreement. No attempt is made to obtain equivalent parameters for the simple model from the real tire results. On the other hand, the simple model fails to represent the correct variation of the quotient of the natural frequency by the number of circumferential wavelengths with the mode count. Nevertheless, some important features of the real tire dynamic behavior, such as the generation of standing waves and part of the frequency/wavenumber behavior, can be investigated using the proposed simplified model.

  14. Sensitivity experiments with a one-dimensional coupled plume - iceflow model

    Science.gov (United States)

    Beckmann, Johanna; Perette, Mahé; Alexander, David; Calov, Reinhard; Ganopolski, Andrey

    2016-04-01

    Over the last few decades Greenland Ice sheet mass balance has become increasingly negative, caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers at the ice sheet margins. Glaciers speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and less obviously, by increased subglacial discharge. While ice-ocean processes potentially play an important role in recent and future mass balance changes of the Greenland Ice Sheet, their physical understanding remains poorly understood. In this work we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional iceflow model. First we investigated the sensitivity of submarine melt rate to changes in ocean properties (ocean temperature and salinity), to the amount of subglacial discharge and to the glacier's tongue geometry itself. A second set of experiments investigates the response of the coupled model, i.e. the dynamical response of the outlet glacier to altered submarine melt, which results in new glacier geometry and updated melt rates.

  15. Research on the optimal dynamical systems of three-dimensional Navier-Stokes equations based on weighted residual

    Science.gov (United States)

    Peng, NaiFu; Guan, Hui; Wu, ChuiJie

    2016-04-01

    In this paper, the theory of constructing optimal dynamical systems based on weighted residual presented by Wu & Sha is applied to three-dimensional Navier-Stokes equations, and the optimal dynamical system modeling equations are derived. Then the multiscale global optimization method based on coarse graining analysis is presented, by which a set of approximate global optimal bases is directly obtained from Navier-Stokes equations and the construction of optimal dynamical systems is realized. The optimal bases show good properties, such as showing the physical properties of complex flows and the turbulent vortex structures, being intrinsic to real physical problem and dynamical systems, and having scaling symmetry in mathematics, etc.. In conclusion, using fewer terms of optimal bases will approach the exact solutions of Navier-Stokes equations, and the dynamical systems based on them show the most optimal behavior.

  16. Low-mode truncation methods in the sine-Gordon equation

    International Nuclear Information System (INIS)

    Xiong Chuyu.

    1991-01-01

    In this dissertation, the author studies the chaotic and coherent motions (i.e., low-dimensional chaotic attractor) in some near integrable partial differential equations, particularly the sine-Gordon equation and the nonlinear Schroedinger equation. In order to study the motions, he uses low mode truncation methods to reduce these partial differential equations to some truncated models (low-dimensional ordinary differential equations). By applying many methods available to low-dimensional ordinary differential equations, he can understand the low-dimensional chaotic attractor of PDE's much better. However, there are two important questions one needs to answer: (1) How many modes is good enough for the low mode truncated models to capture the dynamics uniformly? (2) Is the chaotic attractor in a low mode truncated model close to the chaotic attractor in the original PDE? And how close is? He has developed two groups of powerful methods to help to answer these two questions. They are the computation methods of continuation and local bifurcation, and local Lyapunov exponents and Lyapunov exponents. Using these methods, he concludes that the 2N-nls ODE is a good model for the sine-Gordon equation and the nonlinear Schroedinger equation provided one chooses a 'good' basis and uses 'enough' modes (where 'enough' depends on the parameters of the system but is small for the parameter studied here). Therefore, one can use 2N-nls ODE to study the chaos of PDE's in more depth

  17. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  18. Spin dynamics in high-mobility two-dimensional electron systems embedded in GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Griesbeck, Michael

    2012-11-22

    Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.

  19. Three-dimensional fluid-structure interaction dynamics of a pool-reactor in-tank component

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    The safety evaluation of reactor-components often involves the analysis of various types of fluid/structural components interacting in three-dimensional space. For example, in the design of a pool-type reactor several vital in-tank components such as the primary pumps and the intermediate heat exchangers are contained within the primary tank. Typically, these components are suspended from the deck structure and largely submersed in the sodium pool. Because of this positioning these components are vulnerable to structural damage due to pressure wave propagation in the tank during a CDA. In order to assess the structural integrity of these components it is necessary to perform a dynamic analysis in three-dimensional space which accounts for the fluid-structure coupling. A model is developed which has many of the salient features of this fluid-structural component system

  20. Seizure Dynamics of Coupled Oscillators with Epileptor Field Model

    Science.gov (United States)

    Zhang, Honghui; Xiao, Pengcheng

    The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.

  1. Dynamic root uptake model for neutral lipophilic organics

    DEFF Research Database (Denmark)

    Trapp, Stefan

    2002-01-01

    and output to stem with the transpiration stream plus first-order metabolism and dilution by exponential growth. For chemicals with low or intermediate lipophilicity (log Kow , 2), there was no relevant difference between dynamic model and equilibrium approach. For lipophilic compounds, the dynamic model...

  2. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease

    NARCIS (Netherlands)

    Kooi, B.W.; Voorn, van G.A.K.; Das, pada Krishna

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator–prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  3. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease.

    NARCIS (Netherlands)

    Kooi, B.W.; van Voorn, G.A.K.; Pada Das, K.

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator-prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  4. Collision dynamics of two-dimensional non-Abelian vortices

    Science.gov (United States)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  5. Role of spatial heterogeneity in the collective dynamics of cilia beating in a minimal one-dimensional model

    Science.gov (United States)

    Dey, Supravat; Massiera, Gladys; Pitard, Estelle

    2018-01-01

    Cilia are elastic hairlike protuberances of the cell membrane found in various unicellular organisms and in several tissues of most living organisms. In some tissues such as the airway tissues of the lung, the coordinated beating of cilia induces a fluid flow of crucial importance as it allows the continuous cleaning of our bronchia, known as mucociliary clearance. While most of the models addressing the question of collective dynamics and metachronal wave consider homogeneous carpets of cilia, experimental observations rather show that cilia clusters are heterogeneously distributed over the tissue surface. The purpose of this paper is to investigate the role of spatial heterogeneity on the coherent beating of cilia using a very simple one-dimensional model for cilia known as the rower model. We systematically study systems consisting of a few rowers to hundreds of rowers and we investigate the conditions for the emergence of collective beating. When considering a small number of rowers, a phase drift occurs, hence, a bifurcation in beating frequency is observed as the distance between rower clusters is changed. In the case of many rowers, a distribution of frequencies is observed. We found in particular the pattern of the patchy structure that shows the best robustness in collective beating behavior, as the density of cilia is varied over a wide range.

  6. The role of dynamic surface water-groundwater exchange on streambed denitrification in a first-order, low-relief agricultural watershed

    Science.gov (United States)

    Rahimi, Mina; Essaid, Hedeff I.; Wilson, John T.

    2015-12-01

    The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.

  7. Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning

    DEFF Research Database (Denmark)

    Trujillo, Juan-José; Bingöl, Ferhat; Larsen, Gunner Chr.

    2011-01-01

    the instantaneous transversal wake position which is quantitatively compared with the prediction of the Dynamic Wake Meandering model. The results, shown for two 10-min time series, suggest that the conjecture of the wake behaving as a passive tracer is a fair approximation; this corroborates and expands...... the results of one-dimensional measurements already presented in the first part of this paper. Consequently, it is now possible to separate the deterministic and turbulent parts of the wake wind field, thus enabling capturing the wake in the meandering frame of reference. The results correspond, qualitatively...

  8. Individual-based models for adaptive diversification in high-dimensional phenotype spaces.

    Science.gov (United States)

    Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael

    2016-02-07

    Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dynamics of an impurity in a one-dimensional lattice

    International Nuclear Information System (INIS)

    Massel, F; Kantian, A; Giamarchi, T; Daley, A J; Törmä, P

    2013-01-01

    We study the non-equilibrium dynamics of an impurity in a harmonic trap that is kicked with a well-defined quasi-momentum, and interacts with a bath of free fermions or interacting bosons in a one-dimensional lattice configuration. Using numerical and analytical techniques we investigate the full dynamics beyond linear response, which allows us to quantitatively characterize states of the impurity in the bath for different parameter regimes. These vary from a tightly bound molecular state in a strongly interacting limit to a polaron (dressed impurity) and a free particle for weak interactions, with composite behaviour in the intermediate regime. These dynamics and different parameter regimes should be readily realizable in systems of cold atoms in optical lattices. (paper)

  10. Membrane solitons in eight-dimensional hyper-Kaehler backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Portugues, Ruben [DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)]. E-mail: R.Portugues@damtp.cam.ac.uk

    2004-03-01

    We derive the BPS equations satisfied by lump solitons in (2+1)-dimensional sigma models with toric 8-dimensional hyper-Kaehler (HK{sub 8}) target spaces and check they preserve 1/2 of the supersymmetry. We show how these solitons are realised in M theory as M2-branes wrapping holomorphic 2-cycles in the E{sup 1,2} x HK{sub 8} background. Using the {kappa}-symmetry of a probe M2-brane in this background we determine the supersymmetry they preserve, and note that there is a discrepancy in the fraction of supersymmetry preserved by these solitons as viewed from the low energy effective sigma model description of the M2-brane dynamics or the full M theory. Toric HK{sub 8} manifolds are dual to a Hanany-Witten setup of D3-branes suspended between 5-branes. In this picture the lumps correspond to vortices of the three dimensional N = 3 or N = 4 theory. (author)

  11. High-dimensional model estimation and model selection

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review concepts and algorithms from high-dimensional statistics for linear model estimation and model selection. I will particularly focus on the so-called p>>n setting where the number of variables p is much larger than the number of samples n. I will focus mostly on regularized statistical estimators that produce sparse models. Important examples include the LASSO and its matrix extension, the Graphical LASSO, and more recent non-convex methods such as the TREX. I will show the applicability of these estimators in a diverse range of scientific applications, such as sparse interaction graph recovery and high-dimensional classification and regression problems in genomics.

  12. Dynamic modeling and dynamical analysis of pump-turbines in S-shaped regions during runaway operation

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu; Lee, Jae-Myung; Jung, Kwang-Hyo

    2017-01-01

    Highlights: • Novel dynamic model of a pump-turbine in S-shaped regions is proposed. • A stability criterion of runaway point is given. • Global dynamic characteristics of the pump-turbine are investigated. • Effects of the slopes of the characteristic curve on the stability are studied. - Abstract: There is a region of pump-turbine operation, often called the S-shaped region, in which one unit rotational speed corresponds to three unit flows or torques. In this paper, the dynamic model of the pump-turbine in S-shaped regions is established by introducing the nonlinear piecewise function of relative parameters. Then, the global bifurcation diagrams of the pump-turbine are presented to analyze its dynamic characteristics in the S-shaped regions. Meanwhile, a stability criterion of runaway point is given based on the established theoretical model. The numerical experiments are conducted on the model and the results are in good agreement with the theoretical analysis. Furthermore, the effects of the characteristic curve slopes on the stability of the pump-turbine are studied by an innovative use of the three-dimensional bifurcation diagrams. Finally, the factors influencing the runaway stability of pump-turbines are also discussed, based on the dynamic analysis.

  13. System Dynamics Modeling in Entrepreneurship Research: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zali

    2014-11-01

    Full Text Available System dynamics is a strategic approach for modeling complex systems and analyzing their behavior. Dynamic behavior in entrepreneurial system can be modeled using System Dynamics Approach and dynamic hypotheses about the system`s behavior can be proposed and tested using simulation and computer aided tools. However, as the review of literature shows, studies which link system dynamics modeling with entrepreneurship are rare and fragmented. This article presents a review of studies on the subject followed by integration and discussion on main research issues that have been the focus of previous studies. The main aim of this review is to categorize the available research related to the application of system dynamics modeling in entrepreneurship to integrate research and enable recommendations for future research. The Results reveal that the previous research could be categorized under a two dimensional taxonomy composed of level of analysis and level of modeling. The Level of analysis has three categories: micro level, meso level and macro level. The Level of modeling has six hierarchical levels. This study identifies several gaps in the literature and discusses the future directions in this field.

  14. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds.

    Directory of Open Access Journals (Sweden)

    Viviane Hénaux

    Full Text Available There is growing interest in avian influenza (AI epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates, considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1-2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50-60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  15. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds

    Science.gov (United States)

    Hénaux, Viviane; Samuel, Michael D.; Bunck, Christine M.

    2010-01-01

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  16. Thermal ignition revisited with two-dimensional molecular dynamics: role of fluctuations in activated collisions

    OpenAIRE

    Sirmas, Nick; Radulescu, Matei I.

    2016-01-01

    The problem of thermal ignition in a homogeneous gas is revisited from a molecular dynamics perspective. A two-dimensional model is adopted, which assumes reactive disks of type A and B in a fixed area that react to form type C products if an activation threshold for impact is surpassed. Such a reaction liberates kinetic energy to the product particles, representative of the heat release. The results for the ignition delay are compared with those obtained from the continuum description assumi...

  17. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  18. Three-dimensional salt dynamics in well-mixed estuaries: influence of estuarine convergence, coriolis, and bathymetry

    OpenAIRE

    Wei, Xiaoyan; Kumar, Mohit; Schuttelaars, Henk M.

    2017-01-01

    A semianalytical three-dimensional model is set up to dynamically calculate the coupled water motion and salinity for idealized well-mixed estuaries and prognostically investigate the influence of each physical mechanism on the residual salt transport. As a study case, a schematized estuary with an exponentially converging width and a channel–shoal structure is considered. The temporal correlation between horizontal tidal velocities and tidal salinities is the dominant process for the landwar...

  19. MATHEMATICAL MODEL FOR RIVERBOAT DYNAMICS

    Directory of Open Access Journals (Sweden)

    Aleksander Grm

    2017-01-01

    Full Text Available Present work describes a simple dynamical model for riverboat motion based on the square drag law. Air and water interactions with the boat are determined from aerodynamic coefficients. CFX simulations were performed with fully developed turbulent flow to determine boat aerodynamic coefficients for an arbitrary angle of attack for the air and water portions separately. The effect of wave resistance is negligible compared to other forces. Boat movement analysis considers only two-dimensional motion, therefore only six aerodynamics coefficients are required. The proposed model is solved and used to determine the critical environmental parameters (wind and current under which river navigation can be conducted safely. Boat simulator was tested in a single area on the Ljubljanica river and estimated critical wind velocity.

  20. One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.

    Science.gov (United States)

    Lhomme, J; Bouvier, C; Mignot, E; Paquier, A

    2006-01-01

    A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.

  1. Dissipative quantum dynamics and nonlinear sigma-model

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1992-01-01

    Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs

  2. Dynamics of infinite-dimensional groups the Ramsey-Dvoretzky-Milman phenomenon

    CERN Document Server

    Pestov, Vladimir

    2006-01-01

    The "infinite-dimensional groups" in the title refer to unitary groups of Hilbert spaces, the infinite symmetric group, groups of homeomorphisms of manifolds, groups of transformations of measure spaces, etc. The book presents an approach to the study of such groups based on ideas from geometric functional analysis and from exploring the interplay between dynamical properties of those groups, combinatorial Ramsey-type theorems, and the phenomenon of concentration of measure. The dynamics of infinite-dimensional groups is very much unlike that of locally compact groups. For instance, every locally compact group acts freely on a suitable compact space (Veech). By contrast, a 1983 result by Gromov and Milman states that whenever the unitary group of a separable Hilbert space continuously acts on a compact space, it has a common fixed point. In the book, this new fast-growing theory is built strictly from well-understood examples up. The book has no close counterpart and is based on recent research articles. At t...

  3. Polarization dynamics and polarization time of random three-dimensional electromagnetic fields

    International Nuclear Information System (INIS)

    Voipio, Timo; Setaelae, Tero; Shevchenko, Andriy; Friberg, Ari T.

    2010-01-01

    We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields. For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization autocorrelation functions are introduced, one based on a geometric approach with the Poincare vectors and the other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate and strength of the polarization dynamics and enable the definition of a polarization time over which the state of polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.

  4. Collisional model for granular impact dynamics.

    Science.gov (United States)

    Clark, Abram H; Petersen, Alec J; Behringer, Robert P

    2014-01-01

    When an intruder strikes a granular material from above, the grains exert a stopping force which decelerates and stops the intruder. Many previous studies have used a macroscopic force law, including a drag force which is quadratic in velocity, to characterize the decelerating force on the intruder. However, the microscopic origins of the force-law terms are still a subject of debate. Here, drawing from previous experiments with photoelastic particles, we present a model which describes the velocity-squared force in terms of repeated collisions with clusters of grains. From our high speed photoelastic data, we infer that "clusters" correspond to segments of the strong force network that are excited by the advancing intruder. The model predicts a scaling relation for the velocity-squared drag force that accounts for the intruder shape. Additionally, we show that the collisional model predicts an instability to rotations, which depends on the intruder shape. To test this model, we perform a comprehensive experimental study of the dynamics of two-dimensional granular impacts on beds of photoelastic disks, with different profiles for the leading edge of the intruder. We particularly focus on a simple and useful case for testing shape effects by using triangular-nosed intruders. We show that the collisional model effectively captures the dynamics of intruder deceleration and rotation; i.e., these two dynamical effects can be described as two different manifestations of the same grain-scale physical processes.

  5. Low-dimensional filiform Lie algebras over finite fields

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)

    2011-01-01

    In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...

  6. NATO Advanced Research Workshop on Physicochemical Properties of Zeolitic Systems and Their Low Dimensionality

    CERN Document Server

    Derouane, Eric; Hölderich, Wolfgang

    1990-01-01

    Low dimensionality is a multifarious concept which applies to very diversified materials. Thus, examples of low-dimensional systems are structures with one or several layers, single lines or patterns of lines, and small clusters isolated or dispersed in solid systems. Such low­ dimensional features can be produced in a wide variety of materials systems with a broad spectrum of scientific and practical interests. These features, in turn, induce specific properties and, particularly, specific transport properties. In the case of zeolites, low dimensionality appears in the network of small-diameter pores of molecular size, extending in one, two or three di­ mensions, that these solids exhibit as a characteristic feature and which explains the term of "molecular sieves" currently used to name these ma­ terials. Indeed, a large number of industrial processes for separation of gases and liquids, and for catalysis are based upon the use of this low­ dimensional feature in zeolites. For instance, zeolites constit...

  7. Transition Manifolds of Complex Metastable Systems: Theory and Data-Driven Computation of Effective Dynamics.

    Science.gov (United States)

    Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof

    2018-01-01

    We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

  8. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges.

    Science.gov (United States)

    Li, Qi; Song, Xiaodong; Wu, Dingjun

    2014-05-01

    Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.

  9. Using a dynamic point-source percolation model to simulate bubble growth

    International Nuclear Information System (INIS)

    Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.

    2004-01-01

    Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined

  10. FITTING A THREE DIMENSIONAL PEM FUEL CELL MODEL TO MEASUREMENTS BY TUNING THE POROSITY AND

    DEFF Research Database (Denmark)

    Bang, Mads; Odgaard, Madeleine; Condra, Thomas Joseph

    2004-01-01

    the distribution of current density and further how thisaffects the polarization curve.The porosity and conductivity of the catalyst layer are some ofthe most difficult parameters to measure, estimate and especiallycontrol. Yet the proposed model shows how these two parameterscan have significant influence...... on the performance of the fuel cell.The two parameters are shown to be key elements in adjusting thethree-dimensional model to fit measured polarization curves.Results from the proposed model are compared to single cellmeasurements on a test MEA from IRD Fuel Cells.......A three-dimensional, computational fluid dynamics (CFD) model of a PEM fuel cell is presented. The model consists ofstraight channels, porous gas diffusion layers, porous catalystlayers and a membrane. In this computational domain, most ofthe transport phenomena which govern the performance of the...

  11. Global Search of a Three-dimensional Low Solidity Circular Cascade Diffuser for Centrifugal Blowers by Meta-model Assisted Optimization

    Science.gov (United States)

    Sakaguchi, Daisaku; Sakue, Daiki; Tun, Min Thaw

    2018-04-01

    A three-dimensional blade of a low solidity circular cascade diffuser in centrifugal blowers is designed by means of a multi-point optimization technique. The optimization aims at improving static pressure coefficient at a design point and at a small flow rate condition. Moreover, a clear definition of secondary flow expressed by positive radial velocity at hub side is taken into consideration in constraints. The number of design parameters for three-dimensional blade reaches to 10 in this study, such as a radial gap, a radial chord length and mean camber angle distribution of the LSD blade with five control points, control point between hub and shroud with two design freedom. Optimization results show clear Pareto front and selected optimum design shows good improvement of pressure rise in diffuser at small flow rate conditions. It is found that three-dimensional blade has advantage to stabilize the secondary flow effect with improving pressure recovery of the low solidity circular cascade diffuser.

  12. Symbolic dynamics of noisy chaos

    Energy Technology Data Exchange (ETDEWEB)

    Crutchfield, J P; Packard, N H

    1983-05-01

    One model of randomness observed in physical systems is that low-dimensional deterministic chaotic attractors underly the observations. A phenomenological theory of chaotic dynamics requires an accounting of the information flow fromthe observed system to the observer, the amount of information available in observations, and just how this information affects predictions of the system's future behavior. In an effort to develop such a description, the information theory of highly discretized observations of random behavior is discussed. Metric entropy and topological entropy are well-defined invariant measures of such an attractor's level of chaos, and are computable using symbolic dynamics. Real physical systems that display low dimensional dynamics are, however, inevitably coupled to high-dimensional randomness, e.g. thermal noise. We investigate the effects of such fluctuations coupled to deterministic chaotic systems, in particular, the metric entropy's response to the fluctuations. It is found that the entropy increases with a power law in the noise level, and that the convergence of the entropy and the effect of fluctuations can be cast as a scaling theory. It is also argued that in addition to the metric entropy, there is a second scaling invariant quantity that characterizes a deterministic system with added fluctuations: I/sub 0/, the maximum average information obtainable about the initial condition that produces a particular sequence of measurements (or symbols). 46 references, 14 figures, 1 table.

  13. Three-Dimensional Sediment Dynamics in Well-Mixed Estuaries : Importance of the Internally Generated Overtide, Spatial Settling Lag, and Gravitational Circulation

    NARCIS (Netherlands)

    Wei, X.; Kumar, M.; Schuttelaars, H.M.

    2018-01-01

    To investigate the dominant sediment transport and trapping mechanisms, a semi-analytical three-dimensional model is developed resolving the dynamic effects of salt intrusion on sediment in well-mixed estuaries in morphodynamic equilibrium. As a study case, a schematized estuary with a converging

  14. Characteristics of exciton photoluminescence kinetics in low-dimensional silicon structures

    CERN Document Server

    Sachenko, A V; Manojlov, E G; Svechnikov, S V

    2001-01-01

    The time-resolved visible photoluminescence of porous nanocrystalline silicon films obtained by laser ablation have been measured within the temperature range 90-300 K. A study has been made of the interrelationship between photoluminescence characteristics (intensity, emission spectra, relaxation times, their temperature dependencies and structural and dielectric properties (size and shapes of Si nanocrystals, oxide phase of nanocrystal coating, porosity). A photoluminescence model is proposed that describes photon absorption and emission occurring in quantum-size Si nanocrystals while coupled subsystems of electron-hole pairs and excitons take part in the recombination. Possible excitonic Auger recombination mechanism in low-dimensional silicon structures is considered

  15. Qualitative modeling of the dynamics of detonations with losses

    KAUST Repository

    Faria, Luiz; Kasimov, Aslan R.

    2015-01-01

    We consider a simplified model for the dynamics of one-dimensional detonations with generic losses. It consists of a single partial differential equation that reproduces, at a qualitative level, the essential properties of unsteady detonation waves, including pulsating and chaotic solutions. In particular, we investigate the effects of shock curvature and friction losses on detonation dynamics. To calculate steady-state solutions, a novel approach to solving the detonation eigenvalue problem is introduced that avoids the well-known numerical difficulties associated with the presence of a sonic point. By using unsteady numerical simulations of the simplified model, we also explore the nonlinear stability of steady-state or quasi-steady solutions. © 2014 The Combustion Institute.

  16. A low earth orbit dynamic model for the proton anisotropy validation

    Science.gov (United States)

    Badavi, Francis F.

    2011-11-01

    Ionizing radiation measurements at low earth orbit (LEO) form the ideal tool for the experimental validation of radiation environmental models, nuclear transport code algorithms and nuclear reaction cross sections. Indeed, prior measurements on the space transportation system (STS; shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the LEO environment. Previous studies using computer aided design (CAD) models of the international space station (ISS) have demonstrated that the dosimetric prediction for a spacecraft at LEO requires the description of an environmental model with accurate anisotropic as well as dynamic behavior. This paper describes such a model for the trapped proton. The described model is a component of a suite of codes collectively named GEORAD (GEOmagnetic RADiation) which computes cutoff rigidity, trapped proton and trapped electron environments. The web version of GEORAD is named OLTARIS (On-line Tool for the Assessment of Radiation in Space). GEORAD suite is applicable to radiation environment prediction at LEO, medium earth orbit (MEO) and geosynchronous earth orbit (GEO) at quiet solar periods. GEORAD interest is in the study of long term effect of the trapped environment and therefore it does not account for any short term external field contribution due to solar activity. With the concentration of the paper on the LEO protons only, the paper presents the validation of the trapped proton model within GEORAD with reported measurements from the compact environment anomaly sensor (CEASE) science instrument package, flown onboard the tri-service experiment-5 (TSX-5) satellite during the period of June 2000 to July 2006. The spin stabilized satellite was flown in a 410 × 1710 km, 69° inclination elliptical orbit, allowing it to be exposed to a broad range of the LEO regime. The paper puts particular emphasize on the validation of the

  17. Three-dimensional dose-response models of risk for radiation injury carcinogenesis

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1988-01-01

    The use of computer graphics in conjunction with three-dimensional models of dose-response relationships for chronic exposure to ionizing radiation dramaticly clarifies the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. As an example, the functionally injurious and carcinogenic responses after systemic uptake of Ra-226 by beagles, mice and people with consequent alpha particle irradiation of the bone are represented by three-dimensional dose-rate/time/response surfaces that demonstrate the contributions with the passage of time of the competing deleterious responses. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each effect. Radiation bone injury predominates at high dose rates and bone cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for bone cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to planning and evaluating epidemiological analyses and experimental studies

  18. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Gaurav [Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States); Raju, Mandhapati P. [General Motor R and D Tech Center, Warren, MI 48090 (United States); Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluid dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)

  19. On Kubo-Martin-Schwinger states of classical dynamical systems with the infinite-dimensional phase space

    International Nuclear Information System (INIS)

    Arsen'ev, A.A.

    1979-01-01

    Example of a classical dynamical system with the infinite-dimensional phase space, satisfying the analogue of the Kubo-Martin-Schwinger conditions for classical dynamics, is constructed explicitly. Connection between the system constructed and the Fock space dynamics is pointed out

  20. Universality and clustering in 1 + 1 dimensional superstring-bit models

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1996-01-01

    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problem encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting Polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an S-matrix for closed polymers of superstring-bits

  1. An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling

    Science.gov (United States)

    Li, Weixuan; Lin, Guang; Zhang, Dongxiao

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect-except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functions is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and demonstrated

  2. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application

    Science.gov (United States)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten

    2018-05-01

    The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results

  3. Low-dimensional geometry from euclidean surfaces to hyperbolic knots

    CERN Document Server

    Bonahon, Francis

    2009-01-01

    The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory o...

  4. Method of solving conformal models in D-dimensional space 2: A family of exactly solvable models in D > 2

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Palchik, M.Ya.

    1996-02-01

    We study a family of exactly solvable models of conformally-invariant quantum field theory in D-dimensional space. We demonstrate the existence of D-dimensional analogs of primary and secondary fields. Under the action of energy-momentum tensor and conserved currents, the primary fields creates an infinite set of (tensor) secondary fields of different generations. The commutators of secondary fields with zero components of current and energy-momentum tensor include anomalous operator terms. We show that the Hilbert space of conformal theory has a special sector which structure is solely defined by the Ward identities independently on the choice of dynamical model. The states of this sector are constructed from secondary fields. Definite self-consistent conditions on the states of the latter sector fix the choice of the field model uniquely. In particular, Lagrangian models do belong to this class of models. The above self-consistent conditions are formulated as follows. Special superpositions Q s , s = 1,2,... of secondary fields are constructed. Each superposition is determined by the requirement that the form of its commutators with energy-momentum tensor and current (i.e. transformation properties) should be identical to that of a primary field. Each equation Q s (x) = 0 is consistent, and defines an exactly solvable model for D ≥ 3. The structure of these models are analogous to that of well-known two dimensional conformal models. The states Q s (x) modul 0> are analogous to the null-vectors of two dimensional theory. In each of these models one can obtain a closed set of differential equations for all the higher Green functions, as well as algebraic equations relating the scale dimension of fundamental field to the D-dimensional analog of a central charge. As an example, we present a detailed discussion of a pair of exactly solvable models in even-dimensional space D ≥ 4. (author). 28 refs

  5. The Lagrangian and Hamiltonian Analysis of Integrable Infinite-Dimensional Dynamical Systems

    International Nuclear Information System (INIS)

    Bogolubov, Nikolai N. Jr.; Prykarpatsky, Yarema A.; Blackmorte, Denis; Prykarpatsky, Anatoliy K.

    2010-12-01

    The analytical description of Lagrangian and Hamiltonian formalisms naturally arising from the invariance structure of given nonlinear dynamical systems on the infinite- dimensional functional manifold is presented. The basic ideas used to formulate the canonical symplectic structure are borrowed from the Cartan's theory of differential systems on associated jet-manifolds. The symmetry structure reduced on the invariant submanifolds of critical points of some nonlocal Euler-Lagrange functional is described thoroughly for both differential and differential-discrete dynamical systems. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integral-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Backlund transformation. The connection of this hierarchy with integrable by Lax spatially two-dimensional systems is studied. (author)

  6. A one-dimensional Q-machine model taking into account charge-exchange collisions

    International Nuclear Information System (INIS)

    Maier, H.; Kuhn, S.

    1992-01-01

    The Q-machine is a nontrivial bounded plasma system which is excellently suited not only for fundamental plasma physics investigations but also for the development and testing of new theoretical methods for modeling such systems. However, although Q-machines have now been around for over thirty years, it appears that there exist no comprehensive theoretical models taking into account their considerable geometrical and physical complexity with a reasonable degree of self-consistency. In the present context we are concerned with the low-density, single-emitter Q-machine, for which the most widely used model is probably the (one-dimensional) ''collisionless plane-diode model'', which has originally been developed for thermionic diodes. Although the validity of this model is restricted to certain ''axial'' phenomena, we consider it a suitable starting point for extensions of various kinds. While a generalization to two-dimensional geometry (with still collisionless plasma) is being reported elsewhere, the present work represents a first extension to collisional plasma (with still one-dimensional geometry). (author) 12 refs., 2 figs

  7. Magnetic resonance of low dimensional magnetic solids

    Energy Technology Data Exchange (ETDEWEB)

    Gatteschi, D.; Ferraro, F.; Sessoli, R. (Florence Univ. (Italy))

    1994-06-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs.

  8. Magnetic resonance of low dimensional magnetic solids

    International Nuclear Information System (INIS)

    Gatteschi, D.; Ferraro, F.; Sessoli, R.

    1994-01-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs

  9. Low-frequency elastic vibrations localized near fracture in solid

    International Nuclear Information System (INIS)

    Kosevich, Yu.A.; Syrkin, E.S.

    1994-11-01

    We propose a consistent macroscopic description of the thermodynamic and dynamical properties of two-dimensional surface layers on the interface between two crystals or between different media. Such description enables one to elucidate the effect of two-dimensional defects (fracture) on the frequency, dispersion and polarization characteristics of surface waves and scattered on two-dimensional defects bulk waves of various nature, starting from rather general assumptions and without using of the microscopic models of surface or interface layers. A new thermodynamic variable for two-dimensional defect with an internal dynamical degree of freedom is introduced. The coupled long-wavelength and low-frequency equations of motion of the defect layer are obtained as a set of nontraditional boundary conditions for the bulk equations of the theory of elasticity. New types of surface and pseudo-surface (resonance) waves caused by two-dimensional absorbed or segregated layers with different strength of bonding with elastic substrate are analyzed. (author). 31 refs, 4 figs

  10. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    Science.gov (United States)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  11. Nonlinear dynamic response of whole pool multiple spent fuel racks subject to three-dimensional excitations

    International Nuclear Information System (INIS)

    Zhao, Y.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The seismic evaluation of submerged free standing spent fuel storage racks is more complicated than most other nuclear structural systems. When subjected to three dimensional (3-D) floor seismic excitations the dynamic responses of racks in a pool are hydro dynamically coupled with each other, with the fuel assemblies water in gaps. The motion behavior of the racks is significantly different from that observed using a 3D single rack mode. Few seismic analyses using 3-D whole pool multiple rack models are available in the literature. I this paper an analysis was performed for twelve racks using potential theory for the fluid-structure interaction, and using a 3-D whole pool multi-rack finite element model developed herein. The analysis includes the potential nonlinear dynamic behavior of the impact of fuel-rack, rack-rack and rack-pool wall, the tilting or uplift and the frictional sliding of rack supports, and the impact of the rack supports to the pool floor. (author). 12 refs., 7 figs., 1 tab

  12. Double and super-exchange model in one-dimensional systems

    International Nuclear Information System (INIS)

    Vallejo, E.; Navarro, O.; Avignon, M.

    2010-01-01

    We present an analytical and numerical study of the competition between double and super-exchange interactions in a one-dimensional model. For low super-exchange interaction energy we find phase separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interaction energy gets larger, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites depending on the conduction electron density and form a Wigner crystallization. A new phase separation is found between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained consistent with experimental results of the nickelate one-dimensional compound Y 2-x Ca x BaNiO 5 .

  13. Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions

    Science.gov (United States)

    Liao, C.; Zhuang, Q.

    2017-12-01

    Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.

  14. Muon studies of low-dimensional solid state systems

    International Nuclear Information System (INIS)

    Jestaedt, T.

    1999-04-01

    This thesis concerns the use of the technique of μSR, an abbreviation which stands for three separate types of experiments: muon spin rotation, muon spin relaxation and muon spin resonance. The experiments presented here were performed on beamlines at the ISIS facility at the Rutherford Appleton Laboratory (UK) and at the Paul Scherrer Institut (Villigen, Switzerland). The systems studied are linked by the common theme of reduced dimensionality. Results of μSR measurements on La 2-x Sr x NiO 4+δ (nickelates) are presented. In these systems the lattice constants are much smaller in two of the dimensions as compared to the third, leading to two dimensional magnetism. Earlier experiments using techniques other than μSR concentrated mainly on materials with x = 0 and δ ≠ 0. The work that I describe on La 2-x Sr x NiO 4+δ shows that, there are interesting magnetic features as a function of strontium doping, and the details of this dependence are examined. In each of the samples oscillations of the muon spin polarization were observed below a sample dependent temperature, showing that low temperature magnetic order occurs. μSR is also used to study Sr 2 LnMn 2 O 7 (the Ruddlesden- Popper phases), where Ln are various ions of the lanthanide series. These manganates have a layered structure, leading to a reduced dimensionality as compared to the related perovskite compounds of the MnO 3 series. Like the doped MnO 3 compounds, some of the Ruddlesden-Popper phases exhibit colossal magnetoresistance (CMR), all effect which initially stirred interest in the MnO 3 systems. In contrast to the MnO 3 systems, the relevant Mn 2 O 7 materials show this CMR effect over an extended temperature range. The μSR work is consistent with the existence of magnetic clusters in some of the Mn 2 O 7 materials and these clusters appear to be associated with the observation of CMR. The compound CaV 4 O 9 is the first known two-dimensional compound to exhibit a spin-gap and the effects

  15. Linking PCA and time derivatives of dynamic systems

    NARCIS (Netherlands)

    Stanimirovic, Olja; Hoefsloot, Huub C. J.; de Bokx, Pieter K.; Smilde, Age K.

    2006-01-01

    Low dimensional approximate descriptions of the high dimensional phase space of dynamic processes are very useful. Principal component analysis (PCA) is the most used technique to find the low dimensional subspace of interest. Here, it will be shown that mean centering of the process data across

  16. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  17. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    Science.gov (United States)

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  18. Superconductivity of the two-dimensional Penson-Kolb model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2001-01-01

    Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)

  19. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...

  20. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...

  1. Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach

    CERN Document Server

    Akbarov, Surkay D

    2015-01-01

    This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.

  2. A Two-Dimensional Multiphysics Coupling Model of a Middle and Low Temperature Solar Receiver/Reactor for Methanol Decomposition

    Directory of Open Access Journals (Sweden)

    Yanjuan Wang

    2017-10-01

    Full Text Available Abstract: In this paper, the endothermic methanol decomposition reaction is used to obtain syngas by transforming middle and low temperature solar energy into chemical energy. A two-dimensional multiphysics coupling model of a middle and low temperature of 150~300 °C solar receiver/reactor was developed, which couples momentum equation in porous catalyst bed, the governing mass conservation with chemical reaction, and energy conservation incorporating conduction/convection/radiation heat transfer. The complex thermochemical conversion process of the middle and low temperature solar receiver/reactor (MLTSRR system was analyzed. The numerical finite element method (FEM model was validated by comparing it with the experimental data and a good agreement was obtained, revealing that the numerical FEM model is reliable. The characteristics of chemical reaction, coupled heat transfer, the components of reaction products, and the temperature fields in the receiver/reactor were also revealed and discussed. The effects of the annulus vacuum space and the glass tube on the performance of the solar receiver/reactor were further studied. It was revealed that when the direct normal irradiation increases from 200 W/m2 to 800 W/m2, the theoretical efficiency of solar energy transformed into chemical energy can reach 0.14–0.75. When the methanol feeding rate is 13 kg/h, the solar flux increases from 500 W/m2 to 1000 W/m2, methanol conversion can fall by 6.8–8.9% with air in the annulus, and methanol conversion can decrease by 21.8–28.9% when the glass is removed from the receiver/reactor.

  3. Study of fission dynamics with the three-dimensional Langevin equations

    Energy Technology Data Exchange (ETDEWEB)

    Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)

    2011-11-15

    The dynamics of fission has been studied by solving one- and three-dimensional Langevin equations with dissipation generated through the chaos weighted wall and window friction formula. The average prescission neutron multiplicities, fission probabilities and the mean fission times have been calculated in a broad range of the excitation energy for compound nuclei {sup 210}Po and {sup 224}Th formed in the fusion-fission reactions {sup 4}He+{sup 206}Pb, {sup 16}O+{sup 208}Pb and results compared with the experimental data. The analysis of the results shows that the average prescission neutron multiplicities, fission probabilities and the mean fission times calculated by one- and three-dimensional Langevin equations are different from each other, and also the results obtained based on three-dimensional Langevin equations are in better agreement with the experimental data. (orig.)

  4. (2+1)-dimensional quantum gravity as the continuum limit of causal dynamical triangulations

    International Nuclear Information System (INIS)

    Benedetti, D.; Loll, R.; Zamponi, F.

    2007-01-01

    We perform a nonperturbative sum over geometries in a (2+1)-dimensional quantum gravity model given in terms of causal dynamical triangulations. Inspired by the concept of triangulations of product type introduced previously, we impose an additional notion of order on the discrete, causal geometries. This simplifies the combinatorial problem of counting geometries just enough to enable us to calculate the transfer matrix between boundary states labeled by the area of the spatial universe, as well as the corresponding quantum Hamiltonian of the continuum theory. This is the first time in dimension larger than 2 that a Hamiltonian has been derived from such a model by mainly analytical means, and it opens the way for a better understanding of scaling and renormalization issues

  5. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    Science.gov (United States)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  6. Dynamical regimes due to technological change in a microeconomical model of production

    Science.gov (United States)

    Hamacher, K.

    2012-09-01

    We develop a microeconomical model to investigate the impact of technological change onto production decisions of suppliers—modeling an effective feedback mechanism of the market. An important property—the time horizon of production planning—is related to the Kolmogorov entropy of the one-dimensional maps describing price dynamics. We simulate this price dynamics in an ensemble representing the whole macroeconomy. We show how this model can be used to support ongoing research in economic growth and incorporate the obtained microeconomic findings into the discussion about appropriate macroeconomic quantities such as the production function—thus effectively underpinning macroeconomics with microeconomical dynamics. From there we can show that the model exhibits different dynamical regimes (suggesting "phase transitions") with respect to an order parameter. The non-linear feedback under technological change was found to be the crucial mechanism. The implications of the obtained regimes are finally discussed.

  7. Four-dimensional strings: Phenomenology and model building

    International Nuclear Information System (INIS)

    Quiros, M.

    1989-01-01

    In these lectures we will review some of the last developments in string theories leading to the construction of realistic four-dimensional string models. Special attention will be paid to world-sheet and space-time supersymmetry, modular invariance and model building for supersymmetric and (tachyon-free) nonsupersymmetric ten and four-dimensional models. (orig.)

  8. Low-Dimensional Feature Representation for Instrument Identification

    Science.gov (United States)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  9. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  10. Molecular dynamics study of amorphous pocket formation in Si at low energies and its application to improve binary collision models

    International Nuclear Information System (INIS)

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes; Lopez, Pedro

    2007-01-01

    In this paper, we present classical molecular dynamics results about the formation of amorphous pockets in silicon for energy transfers below the displacement threshold. While in binary collision simulations ions with different masses generate the same number of Frenkel pairs for the same deposited nuclear energy, in molecular dynamics simulations the amount of damage and its complexity increase with ion mass. We demonstrate that low-energy transfers to target atoms are able to generate complex damage structures. We have determined the conditions that have to be fulfilled to produce amorphous pockets, showing that the order-disorder transition depends on the particular competition between melting and heat diffusion processes. We have incorporated these molecular dynamics results in an improved binary collision model that is able to provide a good description of damage with a very low computational cost

  11. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Zhijun; Wang, Qing

    Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.

  12. Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits

    International Nuclear Information System (INIS)

    Swatschina, P.

    2009-01-01

    The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and GOCE, that aim to map the Earths gravity field and its variation over time with unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO satellites. Furthermore, a wide range of additional science opportunities opens up with the capability to generate accurate LEO orbits. For all considered satellite missions, the primary measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to establish and implement methods for Precise Orbit Determination (POD) of LEO satellites using GPS. Striving for highest precision using yet efficient orbit generation strategies, the attained orbit solutions are aimed to be competitive with the most advanced solutions of other institutions. Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS measurements are introduced at the zero difference level in the ionosphere free linear combination. Appropriate procedures for GPS data screening and editing are established to detect erroneous data and to employ measurements of good quality only. For the dynamic orbit model a sophisticated force model, especially designed for LEO satellites, has been developed. In order to overcome the limitations that are induced by the deficiencies of the purely dynamical model, two different types of empirical parameters are introduced into the force model. These reduced-dynamic orbit models allow for the generation of much longer orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or piecewise constant accelerations. For both techniques highly efficient modeling algorithms are

  13. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Shape control synthesis of low-dimensional calcium sulfate .... C in mixed solvents of 50 mL ethanol and 30 mL water for different reaction times was characterized by .... Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66.

  14. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    Science.gov (United States)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  15. Interaction quantum quenches in the one-dimensional Fermi-Hubbard model

    Science.gov (United States)

    Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano

    2016-05-01

    We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.

  16. Massive quiver matrix models for massive charged particles in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Curtis T.; Denef, Frederik [Department of Physics, Columbia University,538 West 120th Street, New York, New York 10027 (United States); Dzienkowski, Eric [Department of Physics, Broida Hall, University of California Santa Barbara,Santa Barbara, California 93106 (United States)

    2016-01-11

    We present a new class of N=4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can be obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.

  17. Dynamics of two-dimensional solitary vortices in a low-β plasma with convective motion

    International Nuclear Information System (INIS)

    Makino, Mitsuhiro; Kamimura, Tetsuo; Taniuti, Tosiya.

    1980-12-01

    Numerical studies of the Hasegawa-Mima equation, derived in the context of drift waves but equivalent to the quasigeostrophic vortex potential equation for Rossby waves, show the stable properties of solitary vortices which are two dimensional, localized, steady and translating solutions of this same equation. A solitary vortex can propagate only in the direction (x-direction) perpendicular to the density gradient. When this solitary vortex solution is inclined at some angle with respect to the x-axis, its propagation direction oscillates in the x and y plane. In two dimensional collisions, i.e. head-on collision and overtaking, solitary vortices interact two-dimensionally and recover their initial shapes at the end of both types of collisions. (author)

  18. Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases

    International Nuclear Information System (INIS)

    Brandino, G. P.; Caux, J.-S.; Konik, R. M.

    2015-01-01

    Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking, we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.

  19. On the dynamical mass generation in gauge-invariant non-linear σ-models

    International Nuclear Information System (INIS)

    Diaz, A.; Helayel-Neto, J.A.; Smith, A.W.

    1987-12-01

    We argue that external gauge fields coupled in a gauge-invariant way to both the bosonic and supersymmetric two-dimensional non-linear σ-models acquire a dynamical mass term whenever the target space is restricted to be a group manifold. (author). 11 refs

  20. Some aspects of animal behavior and community dynamics

    Directory of Open Access Journals (Sweden)

    Vikas Rai

    2011-09-01

    Full Text Available We simulate the dynamical behavior of a few two - dimensional predator - prey systems in two - dimensional parameter spaces to gain insight into how functional responses affect community dynamics. The insight gained helps us design three dimensional systems. We construct models for a few ecosystems with three species and study them using computer simulations. The models have been developed by linking food chains which have both kinds of predators: specialist as well as generalist. The linking functions are weakly non-linear. The three dimensional model ecosystems have sexually reproducing top - predators. We perform extensive simulations to figure out dynamics of dynamical possibilities caused by changes in animal behavior. The animals change the foraging strategies and behave differently in different environments. At the end of the paper, we examine how diseases can govern transitions in meandering of dynamical models in bounded volume of their phase spaces.