WorldWideScience

Sample records for loratadine dysregulates cell

  1. Loratadine and Pregnancy

    Science.gov (United States)

    ... loratadine more frequently during pregnancy. Can taking loratadine cause other pregnancy problems? Loratadine is not expected to cause other pregnancy problems. A study of 161 women taking loratadine ...

  2. Study of Statin- and Loratadine-Induced Muscle Pain Mechanisms Using Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yat Hei Leung

    2017-10-01

    Full Text Available Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4. The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lactone forms, rosuvastatin, and loratadine on l-lactic acid transport using primary human skeletal muscle cells (SkMC. Loratadine (IC50 31 and 15 µM and atorvastatin (IC50 ~130 and 210 µM demonstrated the greatest potency for inhibition of l-lactic acid efflux at pH 7.0 and 7.4, respectively (~2.5-fold l-lactic acid intracellular accumulation. Simvastatin acid exhibited weak inhibitory potency on l-lactic acid efflux with an intracellular lactic acid increase of 25–35%. No l-lactic acid efflux inhibition was observed for simvastatin lactone or rosuvastatin. Pretreatment studies showed no change in inhibitory potential and did not affect lactic acid transport for all tested drugs. In conclusion, we have demonstrated that loratadine and atorvastatin can inhibit the efflux transport of l-lactic acid in SkMC. Inhibition of l-lactic acid efflux may cause an accumulation of intracellular l-lactic acid leading to the reported drug-induced myotoxicity.

  3. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability.

    Science.gov (United States)

    Wang, Jin; Chang, Ruimiao; Zhao, Yanan; Zhang, Jiye; Zhang, Ting; Fu, Qiang; Chang, Chun; Zeng, Aiguo

    2017-10-01

    Coamorphous systems using citric acid as a small molecular excipient were studied for improving physical stability and bioavailability of loratadine, a BCS class II drug with low water solubility and high permeability. Coamorphous loratadine-citric acid systems were prepared by solvent evaporation technique and characterized by differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Solid-state analysis proofed that coamorphous loratadine-citric acid system (1:1) was amorphous and homogeneous, had a higher T g over amorphous loratadine, and the intermolecular hydrogen bond interactions between loratadine and citric acid exist. The solubility and dissolution of coamorphous loratadine-citric acid system (1:1) were found to be significantly greater than those of crystalline and amorphous form. The pharmacokinetic study in rats proved that coamorphous loratadine-citric acid system (1:1) could significantly improve absorption and bioavailability of loratadine. Coamorphous loratadine-citric acid system (1:1) showed excellently physical stability over a period of 3 months at 25°C under 0% RH and 25°C under 60% RH conditions. The improved stability of coamorphous loratadine-citric acid system (1:1) could be related to an elevated T g over amorphous form and the intermolecular hydrogen bond interactions between loratadine and citric acid. These studies demonstrate that the developed coamorphous loratadine-citric acid system might be a promising oral formulation for improving solubility and bioavailability of loratadine.

  4. Physicochemical characterization and dissolution enhancement of loratadine by solid dispersion technique

    International Nuclear Information System (INIS)

    Bandari, Suresh; Jadav, Subash; Eedara, Basanth Babu; Jukanti, Raju; Veerareddy, Prabhakar Reddy

    2013-01-01

    The purpose of this investigation was to enhance the dissolution rate of loratadine using polyethylene glycol 6000 (PEG) solid dispersions (SDs). The solubility behavior of loratadine in the presence of polyethylene glycol 4000 and polyethylene glycol 6000 in water showed linear increase with increasing concentrations of PEG, indicating A L type solubility diagrams. SDs of loratadine with PEG 6000 were prepared at 1 : 1, 1 : 3, 1 : 5, 1 : 7 and 1 : 9 ratios by the solvent evaporation method. Solid dispersions were characterized for drug content, dissolution behavior and for physicochemical characteristics. The dissolution rate of loratadine was enhanced rapidly with increasing concentrations of PEG 6000 in SDs. Fourier transform infrared (FTIR) studies showed the stability of loratadine and the absence of a well-defined loratadine - PEG 6000 interaction. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD) studies revealed the amorphous state of loratadine in SDs of loratadine with PEG 6000 which was further confirmed from scanning electron microscopy (SEM) studies. The flow properties of the blend, physical characteristics and disintegration time of the tablets formulated indicated that PEG 6000 SD can be used to formulate fast release loratadine tablets

  5. Physicochemical characterization and dissolution enhancement of loratadine by solid dispersion technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandari, Suresh; Jadav, Subash; Eedara, Basanth Babu; Jukanti, Raju; Veerareddy, Prabhakar Reddy [St. Peter’s Institute of Pharmaceutical Sciences, Warangal (India)

    2013-01-15

    The purpose of this investigation was to enhance the dissolution rate of loratadine using polyethylene glycol 6000 (PEG) solid dispersions (SDs). The solubility behavior of loratadine in the presence of polyethylene glycol 4000 and polyethylene glycol 6000 in water showed linear increase with increasing concentrations of PEG, indicating A{sub L} type solubility diagrams. SDs of loratadine with PEG 6000 were prepared at 1 : 1, 1 : 3, 1 : 5, 1 : 7 and 1 : 9 ratios by the solvent evaporation method. Solid dispersions were characterized for drug content, dissolution behavior and for physicochemical characteristics. The dissolution rate of loratadine was enhanced rapidly with increasing concentrations of PEG 6000 in SDs. Fourier transform infrared (FTIR) studies showed the stability of loratadine and the absence of a well-defined loratadine - PEG 6000 interaction. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD) studies revealed the amorphous state of loratadine in SDs of loratadine with PEG 6000 which was further confirmed from scanning electron microscopy (SEM) studies. The flow properties of the blend, physical characteristics and disintegration time of the tablets formulated indicated that PEG 6000 SD can be used to formulate fast release loratadine tablets.

  6. UJI DISOLUSI DAN PENETAPAN KADAR TABLET LORATADIN INOVATOR DAN GENERIK BERMEREK

    Directory of Open Access Journals (Sweden)

    Mariana Raini

    2012-09-01

    Full Text Available Antihistamines Loratadin available in tablet form, as loratadin tablets innovator, branded generic preparations. Socializing generic drugs need information about quality of these drugs, to ensure that the quality of generic drugs not lower or similar to its innovator drugs. The impact of economic crisis caused the price of very expensive drugs. The information quality of generic drugs is expected to increase the use of generic drugs by health practitioners and public. It is necessary for the laboratory data that are qualityparameters, such as dissolution profiles, dissolution testing and determinationof drug dosage levels. Dissolution test method anddetermination of levelsconducted in accordanceto the requirements of the USP (United State of Pharmacopeia. Loratadin dissolution test resultsof tablets A, B and Cin accordancewith the requirements of the USP. Loratadin contentin tablet Ais 103, 73%, B=99,62% and C=100,21%. Loratadin levels in all of these tablets meet the requirements of the USP.   Key words: innovator,branded generic drug, dissolution, content

  7. Development, stability and in vitro delivery profile of new loratadine-loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jesus Rafael Rodriguez Amado

    2017-12-01

    Full Text Available Purpose: Loratadine is used as antihistaminic without side effects in nervous systems. This drug is a weak base and it is absorbed from the intestine. The nitrogen of the pyridine ring is protonated in the stomach affecting the oral bioavailability. The aim of this paper was obtaining, characterize and evaluate the release profiles and the stability of a gastroresistant loratadine nanosuspension. Methods: The nanosuspension was prepared by the solvent displacement evaporation method, using three different polymers (Eudragit® L 100 55, Kollicoat® MAE 100P and PEG 4000 and Polysorbate 80. Dynamic Light Scattering was used for evaluating the particle size (PS, zeta potential, and conductivity of the nanosuspension. Loratadine release profiles were evaluated in simulated gastrointestinal fluids. The shelf and accelerated stability were assessed during three months. Results: Nanosuspension particle size was 45.94 ± 0.50 nm, with a low polydispersion index (PdI, 0.300. Kollicoat® MAE 100P produced a hard and flexible coating layer. In simulated intestinal fluids, the 100 percent of loratadine was released in 40 min, while in simulated stomach fluids the release was lesser than 5%. Nanosuspension presented a good physicochemical stability showing a reduction in PS and PdI after three months (43.29 ± 0.16 and 0.250; respectively. Conclusions: A promissory loratadine nanosuspension for loratadine intestinal delivery was obtained, by using a low energy method, which is an advantage for a possible scale up for practical purpose.

  8. Determination of loratadine in pharmaceuticals by a spectrophotometric method

    Directory of Open Access Journals (Sweden)

    Pavalache Georgeta

    2015-06-01

    Full Text Available The spectrophotometric method for determination of loratadine using tetraiodomercurate has been applied in various pharmaceutical formulations. The results confirmed that recovery value is optimum and the method is valid, thus it can be used in quality control and evaluation of loratadine tablets, oral formulations of mixed composition, oral solutions, etc. The method is easy and simple to apply, does not require complicated equipment and spectrophotometric reading time is reduced, which allows a large number of analyzes in a relatively short time.

  9. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media.

    Science.gov (United States)

    Popović, Gordana; Cakar, Mira; Agbaba, Danica

    2009-01-15

    Acid-base equilibria in homogeneous and heterogeneous systems of two antihistaminics, loratadine and desloratadine were studied spectrophotometrically in Britton-Robinson's buffer at 25 degrees C. Acidity constant of loratadine was found to be pK(a) 5.25 and those of desloratadine pK(a1) 4.41 and pK(a2) 9.97. The values of intrinsic solubilities of loratadine and desloratadine were 8.65x10(-6) M and 3.82x10(-4) M, respectively. Based on the pK(a) values and intrinsic solubilities, solubility curves of these two drugs as a function of pH were calculated. The effects of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micelle concentration (cmc) on acid-base properties of loratadine and desloratadine, as well as on intrinsic solubility of loratadine were also examined. The results revealed a shift of pK(a) values in micellar media comparing to the values obtained in water. These shifts (DeltapK(a)) ranged from -2.24 to +1.24.

  10. The relative bioavailability of loratadine administered as a chewing gum formulation in healthy volunteers

    DEFF Research Database (Denmark)

    Nøhr-Jensen, Lene; Damkier, Per; Bidstrup, Tanja Busk

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the pharmacokinetics of loratadine and its active metabolite desloratadine after single-dose administration of loratadine as a conventional tablet, orally disintegrating tablet (smelt tablet) and a chewing gum formulation with and without...... of medicated chewing gum without collection of saliva and a 30-mg portion of medicated chewing gum with collection of saliva. Blood samples were taken at predefined sampling points 0-24 h after medication, and the plasma concentrations of loratadine and desloratadine were determined by high-performance liquid...... chromatography. Each study period was separated by a wash-out period of at least 7 days. RESULTS: The mean dose-corrected area under the plasma concentration-time curve extrapolated to infinity AUC(0-infinity) for the chewing gum formulation was statistically significantly increased compared to the tablet...

  11. Study of Statin- and Loratadine-Induced Muscle Pain Mechanisms Using Human Skeletal Muscle Cells

    OpenAIRE

    Yat Hei Leung; Jacques Turgeon; Veronique Michaud

    2017-01-01

    Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs) may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4). The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lact...

  12. Research Article. Kinetics and Mechanism of Drug Release from Loratadine Orodispersible Tablets Developed without Lactose

    Directory of Open Access Journals (Sweden)

    Ciurba Adriana

    2017-03-01

    Full Text Available Objective: The aim of this study is to develop lactose-free orodispersible tablets with loratadine for patients with lactose intolerance. Materials and methods: Seven compositions (F1-F7 of 10 mg loratadine were prepared in form of orally disintegrating tablets, by direct compression, using croscarmellose sodium and pre-gelatinized starch in various concentrations as superdisintegrants, diluted with microcrystalline cellulose and combined with mannitol and maltodextrin as binder agents. The tablets had been studied in terms of their pharmacotechnical characteristics, by determining: the weight uniformity of the tablets, their friability, breaking strength and disintegration time, drug content and the dissolution profile of loratadine. The statistical analyses were performed with GraphPad Prism Software Inc. As dependent variables, both the hardness of the tablets and their disintegration ability differ between batches due to their compositional differences (as independent variables. DDSolver were used for modeling the kinetic of the dissolution processes by fitting the dissolution profiles with time-dependent equations (Zero-order, First-order, Higuchi, Korsmeyer-Peppas, Peppas-Sahlin. Results: All proposed formulas shows rapid disintegration, in less than 15 seconds, and the dissolution loratadine spans a period of about 10 minutes. Akaike index as well as R2 adjusted parameter have demonstrated that the studied dissolution profiles are the best fitted by Zero-order kinetic. Conclusion: In conclusion, association of croscarmellose sodium (7.5% with pre-gelatinized starch (6% as superdisintegrants and mannitol as the binder agent (35%, positively influences the dissolution properties of loratadine from orally fast dispersible tablets.

  13. Evaluation of cytotoxic action of antihistamines desloratadine and loratadine using bulls spermatozoa as a test object

    OpenAIRE

    Kuzminov, O.; Ostapiv, D.; Alekhina, T.

    2014-01-01

    Antihistamines with active ingredients of loratadine and desloratadine are produced by Ukrainian pharmaceutical industry. According to the law, ther are assessed for their potential danger to human health and the environment, including alternative test objects. Evaluation has been carried out with regard to cytotoxic effect of pharmacological substances (loratadine and desloratadine) using the bull sperm suspension as test objects, standardized and highly sensitive to toxic substances. Sperm ...

  14. A comparative study of loratadine versus pheniramine maleate in chronic idiopathic urticaria

    Directory of Open Access Journals (Sweden)

    Raval Ranjan

    1995-01-01

    Full Text Available Fifty cases with chronic idiopathic urticaria of more than 3 months duration were selected and divided into two groups. Group ′A′ was given 10 mg loratadine once daily, while group ′B′ was given pheniramine maleate 25 mg, twice daily for one month. All patients were followed for one month more. 48% excellent response was observed in group ′A′ while 16% excellent response was observed in group ′B′. Good response was observed in 24% of patients in group ′A′, while in group ′B′ 16% of patients had good response. No side effects were observed in loratadine group, while drowsiness was observed in pheniramine group

  15. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Esther R Berko

    Full Text Available DNA mutational events are increasingly being identified in autism spectrum disorder (ASD, but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement

  16. Fabrication of lipidic nanocarriers of loratadine for facilitated intestinal permeation using multivariate design approach.

    Science.gov (United States)

    Verma, Samridhi; Singh, Sandeep Kumar; Verma, Priya Ranjan Prasad

    2016-01-01

    In this investigation, multivariate design approach was employed to develop self-nanoemulsifying drug delivery system (SNEDDS) of loratadine and to exploit its potential for intestinal permeability. Drug solubility was determined in various vehicles and existence of self-nanoemulsifying region was evaluated by phase diagram studies. The influence of formulation variables X1 (Capmul MCM C8) and X2 (Solutol HS15) on SNEDDS was assessed for mean globule sizes in different media (Y1-Y3), emulsification time (Y4) and drug-release parameters (Y5-Y6), to improve quality attributes of SNEDDS. Significant models were generated, statistically analyzed by analysis of variance and validated using the residual and leverage plots. The interaction, contour and response plots explicitly demonstrated the influence of one factor on the other and displayed trend of factor-effect on responses. The pH-independent optimized formulation was obtained with appreciable global desirability (0.9266). The strenuous act of determining emulsification time is innovatively replaced by the use of oil-soluble dye to produce visibly distinct globules that otherwise may be deceiving. TEM images displayed non-aggregated state of spherical globules (size < 25 nm) and also revealed the structural transitions occurring during emulsification. Optimized formulation exhibited non-Newtonian flow justified by the model-fit and also presented the stability to dilution effects and thermodynamic stress testing. The ex vivo permeation study using confocal laser scanning microscopy indicate strong potential of rhodamine 123-loaded loratadine-SNEDDS to inhibit P-gp efflux and facilitate intestinal permeation. To conclude, the effectiveness of design yields a stable optimized SNEDDS with enhanced permeation potential, which is expected to improve oral bioavailability of loratadine.

  17. Design Expert Supported Mathematical Optimization and Predictability Study of Buccoadhesive Pharmaceutical Wafers of Loratadine

    Directory of Open Access Journals (Sweden)

    Prithviraj Chakraborty

    2013-01-01

    Full Text Available Objective. The objective of this work encompasses the application of the response surface approach in the development of buccoadhesive pharmaceutical wafers of Loratadine (LOR. Methods. Experiments were performed according to a 32 factorial design to evaluate the effects of buccoadhesive polymer, sodium alginate (A, and lactose monohydrate as ingredient, of hydrophilic matrix former (B on the bioadhesive force, disintegration time, percent (% swelling index, and time taken for 70% drug release (t70%. The effect of the two independent variables on the response variables was studied by response surface plots and contour plots generated by the Design-Expert software. The desirability function was used to optimize the response variables. Results. The compatibility between LOR and the wafer excipients was confirmed by differential scanning calorimetry, FTIR spectroscopy, and X-ray diffraction (XRD analysis. Bioadhesion force, measured with TAXT2i texture analyzer, showed that the wafers had a good bioadhesive property which could be advantageous for retaining the drug into the buccal cavity. Conclusion. The observed responses taken were in agreement with the experimental values, and Loratadine wafers were produced with less experimental trials, and a patient compliant product was achieved with the concept of formulation by design.

  18. Design Expert Supported Mathematical Optimization and Predictability Study of Buccoadhesive Pharmaceutical Wafers of Loratadine

    Science.gov (United States)

    Dey, Surajit; Parcha, Versha; Bhattacharya, Shiv Sankar; Ghosh, Amitava

    2013-01-01

    Objective. The objective of this work encompasses the application of the response surface approach in the development of buccoadhesive pharmaceutical wafers of Loratadine (LOR). Methods. Experiments were performed according to a 32 factorial design to evaluate the effects of buccoadhesive polymer, sodium alginate (A), and lactose monohydrate as ingredient, of hydrophilic matrix former (B) on the bioadhesive force, disintegration time, percent (%) swelling index, and time taken for 70% drug release (t 70%). The effect of the two independent variables on the response variables was studied by response surface plots and contour plots generated by the Design-Expert software. The desirability function was used to optimize the response variables. Results. The compatibility between LOR and the wafer excipients was confirmed by differential scanning calorimetry, FTIR spectroscopy, and X-ray diffraction (XRD) analysis. Bioadhesion force, measured with TAXT2i texture analyzer, showed that the wafers had a good bioadhesive property which could be advantageous for retaining the drug into the buccal cavity. Conclusion. The observed responses taken were in agreement with the experimental values, and Loratadine wafers were produced with less experimental trials, and a patient compliant product was achieved with the concept of formulation by design. PMID:23781498

  19. Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite.

    Science.gov (United States)

    Al-Eryani, Laila; Waigel, Sabine; Jala, Venkatakrishna; Jenkins, Samantha F; States, J Christopher

    2017-09-15

    Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. HaCaT cells were exposed to 0 or 100nM NaAsO 2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Transcriptional dysregulation in NIPBL and cohesin mutant human cells.

    Directory of Open Access Journals (Sweden)

    Jinglan Liu

    2009-05-01

    Full Text Available Cohesin regulates sister chromatid cohesion during the mitotic cell cycle with Nipped-B-Like (NIPBL facilitating its loading and unloading. In addition to this canonical role, cohesin has also been demonstrated to play a critical role in regulation of gene expression in nondividing cells. Heterozygous mutations in the cohesin regulator NIPBL or cohesin structural components SMC1A and SMC3 result in the multisystem developmental disorder Cornelia de Lange Syndrome (CdLS. Genome-wide assessment of transcription in 16 mutant cell lines from severely affected CdLS probands has identified a unique profile of dysregulated gene expression that was validated in an additional 101 samples and correlates with phenotypic severity. This profile could serve as a diagnostic and classification tool. Cohesin binding analysis demonstrates a preference for intergenic regions suggesting a cis-regulatory function mimicking that of a boundary/insulator interacting protein. However, the binding sites are enriched within the promoter regions of the dysregulated genes and are significantly decreased in CdLS proband, indicating an alternative role of cohesin as a transcription factor.

  1. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  2. Comparative study on the predictability of statistical models (RSM and ANN) on the behavior of optimized buccoadhesive wafers containing Loratadine and their in vivo assessment.

    Science.gov (United States)

    Chakraborty, Prithviraj; Parcha, Versha; Chakraborty, Debarupa D; Ghosh, Amitava

    2016-01-01

    Buccoadhesive wafer dosage form containing Loratadine is formulated utilizing Formulation by Design (FbD) approach incorporating sodium alginate and lactose monohydrate as independent variable employing solvent casting method. The wafers were statistically optimized using Response Surface Methodology (RSM) and Artificial Neural Network algorithm (ANN) for predicting physicochemical and physico-mechanical properties of the wafers as responses. Morphologically wafers were tested using SEM. Quick disintegration of the samples was examined employing Optical Contact Angle (OCA). The comparison of the predictability of RSM and ANN showed a high prognostic capacity of RSM model over ANN model in forecasting mechanical and physicochemical properties of the wafers. The in vivo assessment of the optimized buccoadhesive wafer exhibits marked increase in bioavailability justifying the administration of Loratadine through buccal route, bypassing hepatic first pass metabolism.

  3. Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn Frej; Willerslev-Olsen, Andreas; Lindahl, Lise Maria

    2014-01-01

    a cascade of events involving cell-cell and asymmetric cytokine interactions between malignant and benign T cells, which stimulated the malignant T cells to express high levels of IL-10. Much evidence supports that malignant activation of the Stat3/IL-10 axis plays a key role in driving the immune...... dysregulation and severe immunodeficiency that characteristically develops in CTCL patients. The present findings thereby establish a novel link between SEs and immune dysregulation in CTCL strengthening the rationale for antibiotic treatment of colonized patients with severe or progressive disease....

  4. How dysregulated colonic crypt dynamics cause stem cell overpopulation and initiate colon cancer.

    Science.gov (United States)

    Boman, Bruce M; Fields, Jeremy Z; Cavanaugh, Kenneth L; Guetter, Arthur; Runquist, Olaf A

    2008-05-01

    Based on investigation of the earliest colonic tissue alteration in familial adenomatous polyposis (FAP) patients, we present the hypothesis that initiation of colorectal cancer by adenomatous polyposis coli (APC) mutation is mediated by dysregulation of two cellular mechanisms. One involves differentiation, which normally decreases the proportion (proliferative fraction) of colonic crypt cells that can proliferate; the other is a cell cycle mechanism that simultaneously increases the probability that proliferative cells are in S phase. In normal crypts, stem cells (SC) at the crypt bottom generate rapidly proliferating cells, which undergo differentiation while migrating up the crypt. Our modeling of normal crypts suggests that these transitions are mediated by mechanisms that regulate proliferative fraction and S-phase probability. In FAP crypts, the population of rapidly proliferating cells is shifted upwards, as indicated by the labeling index (LI; i.e., crypt distribution of cells in S phase). Our analysis of FAP indicates that these transitions are delayed because the proliferative fraction and S-phase probability change more slowly as a function of crypt level. This leads to expansion of the proliferative cell population, including a subpopulation that has a low frequency of S-phase cells. We previously reported that crypt SC overpopulation explains the LI shift. Here, we determine that SCs (or cells having high stemness) are proliferative cells with a low probability of being in S phase. Thus, dysregulation of mechanisms that control proliferative fraction and S-phase probability explains how APC mutations induce SC overpopulation at the crypt bottom, shift the rapidly proliferating cell population upwards, and initiate colon tumorigenesis.

  5. Epigenetic Dysregulation in Laryngeal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Thian-Sze Wong

    2012-01-01

    Full Text Available Laryngeal carcinoma is a common head and neck cancer with poor prognosis. Patients with laryngeal carcinoma usually present late leading to the reduced treatment efficacy and high rate of recurrence. Despite the advance in the use of molecular markers for monitoring human cancers in the past decades, there are still no reliable markers for use to screen laryngeal carcinoma and follow the patients after treatment. Epigenetics emerged as an important field in understanding the biology of the human malignancies. Epigenetic alterations refer to the dysregulation of gene, which do not involve the alterations of the DNA sequence. Major epigenetic changes including methylation imbalance, histone modification, and small RNA dysregulation could play a role in the development of human malignancies. Global epigenetic change is now regarded as a molecular signature of cancer. The characteristics and behavior of a cancer could be predicted based on the specific epigenetic pattern. We here provide a review on the understanding of epigenetic dysregulation in laryngeal carcinoma. Further knowledge on the initiation and progression of laryngeal carcinoma at epigenetic level could promote the translation of the knowledge to clinical use.

  6. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  7. Reconsidering Emotion Dysregulation.

    Science.gov (United States)

    D'Agostino, Alessandra; Covanti, Serena; Rossi Monti, Mario; Starcevic, Vladan

    2017-12-01

    This article aims to review the concept of emotion dysregulation, focusing on issues related to its definition, meanings and role in psychiatric disorders. Articles on emotion dysregulation published until May 2016 were identified through electronic database searches. Although there is no agreement about the definition of emotion dysregulation, the following five overlapping, not mutually exclusive dimensions of emotion dysregulation were identified: decreased emotional awareness, inadequate emotional reactivity, intense experience and expression of emotions, emotional rigidity and cognitive reappraisal difficulty. These dimensions characterise a number of psychiatric disorders in various proportions, with borderline personality disorder and eating disorders seemingly more affected than other conditions. The present review contributes to the literature by identifying the key components of emotion dysregulation and by showing how these permeate various forms of psychopathology. It also makes suggestions for improving research endeavours. Better understanding of the various dimensions of emotion dysregulation will have implications for clinical practice. Future research needs to address emotion dysregulation in all its multifaceted complexity so that it becomes clearer what the concept encompasses.

  8. Pre-existing neutralizing antibody mitigates B cell dysregulation and enhances the Env-specific antibody response in SHIV-infected rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Jaworski

    Full Text Available Our central hypothesis is that protection against HIV infection will be powerfully influenced by the magnitude and quality of the B cell response. Although sterilizing immunity, mediated by pre-formed abundant and potent antibodies is the ultimate goal for B cell-targeted HIV vaccine strategies, scenarios that fall short of this may still confer beneficial defenses against viremia and disease progression. We evaluated the impact of sub-sterilizing pre-existing neutralizing antibody on the B cell response to SHIV infection. Adult male rhesus macaques received passive transfer of a sub-sterilizing amount of polyclonal neutralizing immunoglobulin (Ig purified from previously infected animals (SHIVIG or control Ig prior to intra-rectal challenge with SHIVSF162P4 and extensive longitudinal sampling was performed. SHIVIG treated animals exhibited significantly reduced viral load and increased de novo Env-specific plasma antibody. Dysregulation of the B cell profile was grossly apparent soon after infection in untreated animals; exemplified by a ≈50% decrease in total B cells in the blood evident 2-3 weeks post-infection which was not apparent in SHIVIG treated animals. IgD+CD5+CD21+ B cells phenotypically similar to marginal zone-like B cells were highly sensitive to SHIV infection, becoming significantly decreased as early as 3 days post-infection in control animals, while being maintained in SHIVIG treated animals, and were highly correlated with the induction of Env-specific plasma antibody. These results suggest that B cell dysregulation during the early stages of infection likely contributes to suboptimal Env-specific B cell and antibody responses, and strategies that limit this dysregulation may enhance the host's ability to eliminate HIV.

  9. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation.

    Science.gov (United States)

    Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro

    2017-01-01

    Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  10. Cytokine-Mediated Loss of Blood Dendritic Cells During Epstein-Barr Virus-Associated Acute Infectious Mononucleosis: Implication for Immune Dysregulation.

    Science.gov (United States)

    Panikkar, Archana; Smith, Corey; Hislop, Andrew; Tellam, Nick; Dasari, Vijayendra; Hogquist, Kristin A; Wykes, Michelle; Moss, Denis J; Rickinson, Alan; Balfour, Henry H; Khanna, Rajiv

    2015-12-15

    Acute infectious mononucleosis (IM) is associated with altered expression of inflammatory cytokines and disturbed T-cell homeostasis, however, the precise mechanism of this immune dysregulation remains unresolved. In the current study we demonstrated a significant loss of circulating myeloid and plasmacytoid dendritic cells (DCs) during acute IM, a loss correlated with the severity of clinical symptoms. In vitro exposure of blood DCs to acute IM plasma resulted in loss of plasmacytoid DCs, and further studies with individual cytokines showed that exposure to interleukin 10 could replicate this effect. Our data provide important mechanistic insight into dysregulated immune homeostasis during acute IM. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Dysregulation of Cell Death and Its Epigenetic Mechanisms in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Haijing Wu

    2016-12-01

    Full Text Available Systemic lupus erythematosus (SLE is a systemic autoimmune disease involving multiple organs and tissues, which is characterized by the presence of excessive anti-nuclear autoantibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. Increasing evidence has shown that the genetic susceptibilities and environmental factors-induced abnormalities in immune cells, dysregulation of apoptosis, and defects in the clearance of apoptotic materials contribute to the development of SLE. As the main source of auto-antigens, aberrant cell death may play a critical role in the pathogenesis of SLE. In this review, we summarize up-to-date research progress on different levels of cell death—including increasing rate of apoptosis, necrosis, autophagy and defects in clearance of dying cells—and discuss the possible underlying mechanisms, especially epigenetic modifications, which may provide new insight in the potential development of therapeutic strategies for SLE.

  12. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-12-01

    Full Text Available Introduction: The dysregulation of pH by cancerous cells of solid tumors is able to create a unique milieu that is in favor of progression, invasion and metastasis as well as chemo-/immuno-resistance traits of solid tumors. Bioelements involved in pH dysregulation provide new set of oncotargets, inhibition of which may result in better clinical outcome. Methods: To study the impacts of pH dysregulation, we investigated the tumor development and progression in relation with Warburg effect, glycolysis and formation of aberrant tumor microenvironment. Results: The upregulation of glucose transporter GLUT-1 and several enzymes involve in glycolysis exacerbates this phenomenon. The accumulation of lactic acids in cancer cells provokes upregulation of several transport machineries (MCT-1, NHE-1, CA IX and H+ pump V-ATPase resulting in reinforced efflux of proton into extracellular fluid. This deviant event makes pH to be settled at 7.4 and 6.6 respectively in cancer cells cytoplasm and extracellular fluid within the tumor microenvironment, which in return triggers secretion of lysosomal components (various enzymes in acidic milieu with pH 5 into cytoplasm. All these anomalous phenomena make tumor microenvironment (TME to be exposed to cocktail of various enzymes with acidic pH, upon which extracellular matrix (ECM can be remodeled and even deformed, resulting in emergence of a complex viscose TME with high interstitial fluid pressure. Conclusion: It seems that pH dysregulation is able to remodel various physiologic functions and make solid tumors to become much more invasive and metastatic. It also can cause undesired resistance to chemotherapy and immunotherapy. Hence, cancer therapy needs to be reinforced using specific inhibitors of bioelements involved in pH dysregulation of TME in solid tumors.

  13. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells.

    Science.gov (United States)

    Kao, Yu-Hsun; Chen, Yao-Chang; Lin, Yung-Kuo; Shiu, Rong-Jie; Chao, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2014-08-01

    Fibroblast growth factor (FGF)-23 is a key regulator of phosphate homeostasis. Higher FGF-23 levels are correlated with poor outcomes in cardiovascular diseases. FGF-23 can produce cardiac hypertrophy and increase intracellular calcium, which can change cardiac electrical activity. However, it is not clear whether FGF-23 possesses arrhythmogenic potential through calcium dysregulation. Therefore, the purposes of this study were to evaluate the electrophysiological effects of FGF-23 and identify the underlying mechanisms. Patch clamp, confocal microscope with Fluo-4 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis and calcium regulatory proteins in HL-1 atrial myocytes with and without FGF-23 (10 and 25 ng/mL) incubation for 24 h. FGF-23 (25 ng/mL) increased L-type calcium currents, calcium transient and sarcoplasmic reticulum Ca(2+) contents in HL-1 cells. FGF-23 (25 ng/mL)-treated cells (n = 14) had greater incidences (57%, 17% and 15%, P calcium/calmodulin-dependent protein kinase IIδ and phospholamban (PLB) at threonine 17 but had similar phosphorylation extents of PLB at serine 16, total PLB and sarcoplasmic reticulum Ca(2+) -ATPase protein. Moreover, the FGF receptor inhibitor (PD173074, 10 nM), calmodulin inhibitor (W7, 5 μM) and phospholipase C inhibitor (U73122, 1 μM) attenuated the effects of FGF-23 on calcium/calmodulin-dependent protein kinase II phosphorylation. FGF-23 increases HL-1 cells arrhythmogenesis with calcium dysregulation through modulating calcium-handling proteins. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  14. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation

    Directory of Open Access Journals (Sweden)

    Heitor A. Paula Neto

    2017-11-01

    Full Text Available Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of “lean homeostasis” and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  15. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Liou Louis S

    2010-04-01

    Full Text Available Abstract Background MicroRNA regulate mRNA levels in a tissue specific way, either by inducing degradation of the transcript or by inhibiting translation or transcription. Putative mRNA targets of microRNA identified from seed sequence matches are available in many databases. However, such matches have a high false positive rate and cannot identify tissue specificity of regulation. Results We describe a simple method to identify direct mRNA targets of microRNA dysregulated in cancers from expression level measurements in patient matched tumor/normal samples. The word "direct" is used here in a strict sense to: a represent mRNA which have an exact seed sequence match to the microRNA in their 3'UTR, b the seed sequence match is strictly conserved across mouse, human, rat and dog genomes, c the mRNA and microRNA expression levels can distinguish tumor from normal with high significance and d the microRNA/mRNA expression levels are strongly and significantly anti-correlated in tumor and/or normal samples. We apply and validate the method using clear cell Renal Cell Carcinoma (ccRCC and matched normal kidney samples, limiting our analysis to mRNA targets which undergo degradation of the mRNA transcript because of a perfect seed sequence match. Dysregulated microRNA and mRNA are first identified by comparing their expression levels in tumor vs normal samples. Putative dysregulated microRNA/mRNA pairs are identified from these using seed sequence matches, requiring that the seed sequence be conserved in human/dog/rat/mouse genomes. These are further pruned by requiring a strong anti-correlation signature in tumor and/or normal samples. The method revealed many new regulations in ccRCC. For instance, loss of miR-149, miR-200c and mir-141 causes gain of function of oncogenes (KCNMA1, LOX, VEGFA and SEMA6A respectively and increased levels of miR-142-3p, miR-185, mir-34a, miR-224, miR-21 cause loss of function of tumor suppressors LRRC2, PTPN13, SFRP1

  16. Dysregulated miR-183 inhibits migration in breast cancer cells.

    LENUS (Irish Health Repository)

    Lowery, Aoife J

    2010-01-01

    The involvement of miRNAs in the regulation of fundamental cellular functions has placed them at the fore of ongoing investigations into the processes underlying carcinogenesis. MiRNA expression patterns have been shown to be dysregulated in numerous human malignancies, including breast cancer, suggesting their probable involvement as novel classes of oncogenes or tumour suppressor genes. The identification of differentially expressed miRNAs and elucidation of their functional roles may provide insight into the complex and diverse molecular mechanisms of tumorigenesis. MiR-183 is located on chromosome 7q32 and is part of a miRNA family which are dysregulated in numerous cancers. The aims of this study were to further examine the expression and functional role of miR-183 in breast cancer.

  17. Dysregulation of heat shock protein 27 expression in oral tongue squamous cell carcinoma

    International Nuclear Information System (INIS)

    Wang, Anxun; Liu, Xiqiang; Sheng, Shihu; Ye, Hui; Peng, Tingsheng; Shi, Fei; Crowe, David L; Zhou, Xiaofeng

    2009-01-01

    Recent proteomic studies identified Hsp27 as a highly over-expressed protein in oral squamous cell carcinoma (OSCC). Clinical studies that attempted to evaluate the prognostic values of Hsp27 yielded inconsistent results, which may be due to inclusion of OSCC cases from multiple anatomic sites. In this study, to determine the utility of Hsp27 for prognosis, we focused on oral tongue SCC (OTSCC), one of the most aggressive forms of OSCC. Archival clinical samples of 15 normal oral tongue mucosa, 31 dysplastic lesions, 80 primary OTSCC, and 32 lymph node metastases were examined for Hsp27 expression by immunohistochemistry (IHC). Statistical analyses were carried out to assess the prognostic value of Hsp27 expression for patients with this disease. Dysregulation of Hsp27 expression was observed in dysplastic lesions, primary OTSCC, and lymph node metastases, and appears to be associated with disease progression. Statistical analysis revealed that the reduced Hsp27 expression in primary tumor tissue was associated with poor differentiation. Furthermore, the higher expression of Hsp27 was correlated with better overall survival. Our study confirmed that the dysregulation of Hsp27 expression is a frequent event during the progression of OTSCC. The expression of Hsp27 appears to be an independent prognostic marker for patients with this disease

  18. Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-α and therapeutic targeting

    International Nuclear Information System (INIS)

    Xiong, J; Bian, J; Wang, L; Zhou, J-Y; Wang, Y; Zhao, Y; Wu, L-L; Hu, J-J; Li, B; Chen, S-J; Yan, C; Zhao, W-L

    2015-01-01

    Cancer cells have distinct metabolomic profile. Metabolic enzymes regulate key oncogenic signaling pathways and have an essential role on tumor progression. Here, serum metabolomic analysis was performed in 45 patients with T-cell lymphoma (TCL) and 50 healthy volunteers. The results showed that dysregulation of choline metabolism occurred in TCL and was related to tumor cell overexpression of choline kinase-α (Chokα). In T-lymphoma cells, pharmacological and molecular silencing of Chokα significantly decreased Ras-GTP activity, AKT and ERK phosphorylation and MYC oncoprotein expression, leading to restoration of choline metabolites and induction of tumor cell apoptosis/necropotosis. In a T-lymphoma xenograft murine model, Chokα inhibitor CK37 remarkably retarded tumor growth, suppressed Ras-AKT/ERK signaling, increased lysophosphatidylcholine levels and induced in situ cell apoptosis/necropotosis. Collectively, as a regulatory gene of aberrant choline metabolism, Chokα possessed oncogenic activity and could be a potential therapeutic target in TCL, as well as other hematological malignancies with interrupted Ras signaling pathways

  19. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Directory of Open Access Journals (Sweden)

    Luciana Frick

    2016-01-01

    Full Text Available There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD, Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS. The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain’s resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues.

  20. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Science.gov (United States)

    2016-01-01

    There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD), Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS). The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain's resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues. PMID:28053994

  1. Dysregulated DNA Methyltransferase 3A Upregulates IGFBP5 to Suppress Trophoblast Cell Migration and Invasion in Preeclampsia.

    Science.gov (United States)

    Jia, Yuanhui; Li, Ting; Huang, Xiaojie; Xu, Xianghong; Zhou, Xinyao; Jia, Linyan; Zhu, Jingping; Xie, Dandan; Wang, Kai; Zhou, Qian; Jin, Liping; Zhang, Jiqin; Duan, Tao

    2017-02-01

    Preeclampsia is a unique multiple system disorder during human pregnancy, which affects ≈5% to 8% of pregnancies. Its risks and complications have become the major causes of maternal and fetal morbidity and mortality. Although abnormal placentation to which DNA methylation dysregulation is always linked is speculated to be one of the reasons causing preeclampsia, the underlying mechanisms still remain elusive to date. Here we revealed that aberrant DNA methyltransferase 3A (DNMT3A) plays a critical role in preeclampsia. Our results show that the expression and localization of DNMT3A are dysregulated in preeclamptic placenta. Moreover, knockdown of DNMT3A obviously inhibits trophoblast cell migration and invasion. Mechanistically, IGFBP5 (insulin-like growth factor-binding protein 5), known as a suppressor, is upregulated by decreased DNMT3A because of promoter hypomethylation. Importantly, IGFBP5 downregulation can rescue the defects caused by DNMT3A knockdown, thereby, consolidating the significance of IGFBP5 in the downstream of DNMT3A in trophoblast. Furthermore, we detected low promoter methylation and high protein expression of IGFBP5 in the clinical samples of preeclamptic placenta. Collectively, our study suggests that dysregulation of DNMT3A and IGFBP5 is relevant to preeclampsia. Thus, we propose that DNMT3A and IGFBP5 can serve as potential markers and targets for the clinical diagnosis and therapy of preeclampsia. © 2017 American Heart Association, Inc.

  2. Early Dysregulation of Cell Adhesion and Extracellular Matrix Pathways in Breast Cancer Progression

    Science.gov (United States)

    Emery, Lyndsey A.; Tripathi, Anusri; King, Chialin; Kavanah, Maureen; Mendez, Jane; Stone, Michael D.; de las Morenas, Antonio; Sebastiani, Paola; Rosenberg, Carol L.

    2009-01-01

    Proliferative breast lesions, such as simple ductal hyperplasia (SH) and atypical ductal hyperplasia (ADH), are candidate precursors to ductal carcinoma in situ (DCIS) and invasive cancer. To better understand the relationship of breast lesions to more advanced disease, we used microdissection and DNA microarrays to profile the gene expression of patient-matched histologically normal (HN), ADH, and DCIS from 12 patients with estrogen receptor positive sporadic breast cancer. SH were profiled from a subset of cases. We found 837 differentially expressed genes between DCIS-HN and 447 between ADH-HN, with >90% of the ADH-HN genes also present among the DCIS-HN genes. Only 61 genes were identified between ADH-DCIS. Expression differences were reproduced in an independent cohort of patient-matched lesions by quantitative real-time PCR. Many breast cancer-related genes and pathways were dysregulated in ADH and maintained in DCIS. Particularly, cell adhesion and extracellular matrix interactions were overrepresented. Focal adhesion was the top pathway in each gene set. We conclude that ADH and DCIS share highly similar gene expression and are distinct from HN. In contrast, SH appear more similar to HN. These data provide genetic evidence that ADH (but not SH) are often precursors to cancer and suggest cancer-related genetic changes, particularly adhesion and extracellular matrix pathways, are dysregulated before invasion and even before malignancy is apparent. These findings could lead to novel risk stratification, prevention, and treatment approaches. PMID:19700746

  3. Dysregulation of the mitosis-meiosis switch in testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Almstrup, Kristian

    2013-01-01

    , except in spermatocytic seminoma (not derived from CIS). In conclusion, this study indicates that meiosis signalling is dysregulated in CIS cells and that a key regulator of the mitosis-meiosis switch, DMRT1, is expressed in 'early-stage' CIS cells but is down-regulated with further invasive...

  4. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.

    Science.gov (United States)

    Ungvari, Zoltan; Tucsek, Zsuzsanna; Sosnowska, Danuta; Toth, Peter; Gautam, Tripti; Podlutsky, Andrej; Csiszar, Agnes; Losonczy, Gyorgy; Valcarcel-Ares, M Noa; Sonntag, William E; Csiszar, Anna

    2013-08-01

    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.

  5. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis

    International Nuclear Information System (INIS)

    Arenz, Andrea; Ziemann, Frank; Wittig, Andrea; Preising, Stefanie; Engenhart-Cabillic, Rita; Mayer, Christina; Wagner, Steffen; Klussmann, Jens-Peter; Wittekindt, Claus; Dreffke, Kirstin

    2014-01-01

    Human Papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) respond favourably to radiotherapy as compared to HPV-unrelated HNSCC. We investigated DNA damage response in HPV-positive and HPV-negative HNSCC cell lines aiming to identify mechanisms, which illustrate reasons for the increased sensitivity of HPV-positive cancers of the oropharynx. Radiation response including clonogenic survival, apoptosis, DNA double-strand break (DSB) repair, and cell cycle redistribution in four HPV-positive (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) and four HPV-negative (UD-SCC-1, UM-SCC-6, UM-SCC-11b, UT-SCC-33) cell lines was evaluated. HPV-positive cells were more radiosensitive (mean SF2: 0.198 range: 0.22-0.18) than HPV-negative cells (mean SF2: 0.34, range: 0.45-0.27; p = 0.010). Irradiated HPV-positive cell lines progressed faster through S-phase showing a more distinct accumulation in G2/M. The abnormal cell cycle checkpoint activation was accompanied by a more pronounced increase of cell death after x-irradiation and a higher number of residual and unreleased DSBs. The enhanced responsiveness of HPV-related HNSCC to radiotherapy might be caused by a higher cellular radiosensitivity due to cell cycle dysregulation and impaired DNA DSB repair. (orig.) [de

  6. Myeloid Dysregulation in a Human Induced Pluripotent Stem Cell Model of PTPN11-Associated Juvenile Myelomonocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Sonia Mulero-Navarro

    2015-10-01

    Full Text Available Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML. Germline PTPN11 defects cause Noonan syndrome (NS, and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and upregulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were upregulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations, but not those without PTPN11 defects. Reducing miR-223’s function in NS/JMML hiPSCs normalized myelogenesis. MicroRNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover microRNA dysregulation, establishing a genotype-phenotype association for JMML and providing therapeutic targets.

  7. Emotion Dysregulation and Adolescent Psychopathology: A Prospective Study

    Science.gov (United States)

    Hatzenbuehler, Mark L.; Nolen-Hoeksema, Susan

    2011-01-01

    Background Emotion regulation deficits have been consistently linked to psychopathology in cross-sectional studies. However, the direction of the relationship between emotion regulation and psychopathology is unclear. This study examined the longitudinal and reciprocal relationships between emotion regulation deficits and psychopathology in adolescents. Methods Emotion dysregulation and symptomatology (depression, anxiety, aggressive behavior, and eating pathology) were assessed in a large, diverse sample of adolescents (N = 1,065) at two time points separated by seven months. Structural equation modeling was used to examine the longitudinal and reciprocal relationships between emotion dysregulation and symptoms of psychopathology. Results The three distinct emotion processes examined here (emotional understanding, dysregulated expression of sadness and anger, and ruminative responses to distress) formed a unitary latent emotion dysregulation factor. Emotion dysregulation predicted increases in anxiety symptoms, aggressive behavior, and eating pathology after controlling for baseline symptoms but did not predict depressive symptoms. In contrast, none of the four types of psychopathology predicted increases in emotion dysregulation after controlling for baseline emotion dysregulation. Conclusions Emotion dysregulation appears to be an important transdiagnostic factor that increases risk for a wide range of psychopathology outcomes in adolescence. These results suggest targets for preventive interventions during this developmental period of risk. PMID:21718967

  8. Interplay between Misplaced Müllerian-Derived Stem Cells and Peritoneal Immune Dysregulation in the Pathogenesis of Endometriosis

    Directory of Open Access Journals (Sweden)

    Antonio Simone Laganà

    2013-01-01

    Full Text Available In the genetic regulation of Müllerian structures development, a key role is played by Hoxa and Wnt clusters, because they lead the transcription of different genes according to the different phases of the organogenesis, addressing correctly cell-to-cell interactions, allowing, finally, the physiologic morphogenesis. Accumulating evidence is suggesting that dysregulation of Wnt and/or Hox genes may affect cell migration during organogenesis and differentiation of Müllerian structures of the female reproductive tract, with possible dislocation and dissemination of primordial endometrial stem cells in ectopic regions, which have high plasticity to differentiation. We hypothesize that during postpubertal age, under the influence of different stimuli, these misplaced and quiescent ectopic endometrial cells could acquire new phenotype, biological functions, and immunogenicity. So, these kinds of cells may differentiate, specializing in epithelium, glands, and stroma to form a functional ectopic endometrial tissue. This may provoke a breakdown in the peritoneal cavity homeostasis, with the consequent processes of immune alteration, documented by peripheral mononuclear cells recruitment and secretion of inflammatory cytokines in early phases and of angiogenic and fibrogenic cytokines in the late stages of the disease.

  9. Interplay between Misplaced Müllerian-Derived Stem Cells and Peritoneal Immune Dysregulation in the Pathogenesis of Endometriosis

    Science.gov (United States)

    Sturlese, Emanuele; Retto, Giovanni; Sofo, Vincenza; Triolo, Onofrio

    2013-01-01

    In the genetic regulation of Müllerian structures development, a key role is played by Hoxa and Wnt clusters, because they lead the transcription of different genes according to the different phases of the organogenesis, addressing correctly cell-to-cell interactions, allowing, finally, the physiologic morphogenesis. Accumulating evidence is suggesting that dysregulation of Wnt and/or Hox genes may affect cell migration during organogenesis and differentiation of Müllerian structures of the female reproductive tract, with possible dislocation and dissemination of primordial endometrial stem cells in ectopic regions, which have high plasticity to differentiation. We hypothesize that during postpubertal age, under the influence of different stimuli, these misplaced and quiescent ectopic endometrial cells could acquire new phenotype, biological functions, and immunogenicity. So, these kinds of cells may differentiate, specializing in epithelium, glands, and stroma to form a functional ectopic endometrial tissue. This may provoke a breakdown in the peritoneal cavity homeostasis, with the consequent processes of immune alteration, documented by peripheral mononuclear cells recruitment and secretion of inflammatory cytokines in early phases and of angiogenic and fibrogenic cytokines in the late stages of the disease. PMID:23843796

  10. NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation?

    Science.gov (United States)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Chouker, A.; Feuerecker, M.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.

    2011-01-01

    This poster paper reviews the use of 14 day undersea missions as a possible analog for short duration spaceflight for the study of immune system dysregulation. Sixteen subjects from the the NASA Extreme Enviro nment Mission Operations (NEEMO) 12, 13 and 14 missions were studied for immune system dysregulation. The assays that are presented in this poster are the Virleukocyte subsets, the T Cell functions, and the intracellular/secreted cytokine profiles. Other assays were performed, but are not included in this presntation.

  11. Dysregulation of chemokine receptor expression and function in leukocytes from ALS patients.

    Science.gov (United States)

    Perner, Caroline; Perner, Florian; Stubendorff, Beatrice; Förster, Martin; Witte, Otto W; Heidel, Florian H; Prell, Tino; Grosskreutz, Julian

    2018-03-28

    Amyotrophic lateral sclerosis (ALS) is rapidly progressive adult-onset motor neuron disease characterized by the neurodegeneration of both upper and lower motor neurons in the cortex and the spinal cord; the majority of patients succumb to respiratory failure. Although the etiology is not yet fully understood, there is compelling evidence that ALS is a multi-systemic disorder, with peripheral inflammation critically contributing to the disease process. However, the full extent and nature of this immunological dysregulation remains to be established, particularly within circulating blood cells. Therefore, the aim of the present study was to identify dysregulated inflammatory molecules in peripheral blood cells of ALS patients and analyze for functional consequences of the observed findings. To this end, we employed flow cytometry-based screening to quantify the surface expression of major chemokine receptors and integrins. A significantly increased expression of CXCR3, CXCR4, CCL2, and CCL5 was observed on T cells in ALS patients compared to healthy controls. Intriguingly, the expression was even more pronounced in patients with a slow progressive phenotype. To further investigate the functional consequences of this altered surface expression, we used a modified Boyden chamber assay to measure chemotaxis in ALS patient-derived lymphocytes. Interestingly, chemoattraction with the CXCR3-Ligand IP10 led to upregulated migratory behavior of ALS lymphocytes compared to healthy controls. Taken together, our data provides evidence for a functional dysregulation of IP10-directed chemotaxis in peripheral blood cells in ALS patients. However, whether the chemokine itself or its receptor CXCR3, or both, could serve as potential therapeutic targets in ALS requires further investigations.

  12. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    Science.gov (United States)

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American

  13. DEGAS: de novo discovery of dysregulated pathways in human diseases.

    Directory of Open Access Journals (Sweden)

    Igor Ulitsky

    Full Text Available BACKGROUND: Molecular studies of the human disease transcriptome typically involve a search for genes whose expression is significantly dysregulated in sick individuals compared to healthy controls. Recent studies have found that only a small number of the genes in human disease-related pathways show consistent dysregulation in sick individuals. However, those studies found that some pathway genes are affected in most sick individuals, but genes can differ among individuals. While a pathway is usually defined as a set of genes known to share a specific function, pathway boundaries are frequently difficult to assign, and methods that rely on such definition cannot discover novel pathways. Protein interaction networks can potentially be used to overcome these problems. METHODOLOGY/PRINCIPAL FINDINGS: We present DEGAS (DysrEgulated Gene set Analysis via Subnetworks, a method for identifying connected gene subnetworks significantly enriched for genes that are dysregulated in specimens of a disease. We applied DEGAS to seven human diseases and obtained statistically significant results that appear to home in on compact pathways enriched with hallmarks of the diseases. In Parkinson's disease, we provide novel evidence for involvement of mRNA splicing, cell proliferation, and the 14-3-3 complex in the disease progression. DEGAS is available as part of the MATISSE software package (http://acgt.cs.tau.ac.il/matisse. CONCLUSIONS/SIGNIFICANCE: The subnetworks identified by DEGAS can provide a signature of the disease potentially useful for diagnosis, pinpoint possible pathways affected by the disease, and suggest targets for drug intervention.

  14. Dysregulated sexuality and high sexual desire: distinct constructs?

    Science.gov (United States)

    Winters, Jason; Christoff, Kalina; Gorzalka, Boris B

    2010-10-01

    The literature on dysregulated sexuality, whether theoretical, clinical or empirical, has failed to differentiate the construct from high sexual desire. In this study, we tested three hypotheses which addressed this issue. A sample of 6458 men and 7938 women, some of whom had sought treatment for sexual compulsivity, addiction or impulsivity, completed an online survey comprised of various sexuality measures. Men and women who reported having sought treatment scored significantly higher on measures of dysregulated sexuality and sexual desire. For men, women, and those who had sought treatment, dysregulated sexuality was associated with increased sexual desire. Confirmatory factor analysis supported a one-factor model, indicating that, in both male and female participants, dysregulated sexuality and sexual desire variables loaded onto a single underlying factor. The results of this study suggest that dysregulated sexuality, as currently conceptualized, labelled, and measured, may simply be a marker of high sexual desire and the distress associated with managing a high degree of sexual thoughts, feelings, and needs.

  15. The primary vascular dysregulation syndrome: implications for eye diseases

    Science.gov (United States)

    2013-01-01

    Vascular dysregulation refers to the regulation of blood flow that is not adapted to the needs of the respective tissue. We distinguish primary vascular dysregulation (PVD, formerly called vasospastic syndrome) and secondary vascular dysregulation (SVD). Subjects with PVD tend to have cold extremities, low blood pressure, reduced feeling of thirst, altered drug sensitivity, increased pain sensitivity, prolonged sleep onset time, altered gene expression in the lymphocytes, signs of oxidative stress, slightly increased endothelin-1 plasma level, low body mass index and often diffuse and fluctuating visual field defects. Coldness, emotional or mechanical stress and starving can provoke symptoms. Virtually all organs, particularly the eye, can be involved. In subjects with PVD, retinal vessels are stiffer and more irregular, and both neurovascular coupling and autoregulation capacity are reduced while retinal venous pressure is often increased. Subjects with PVD have increased risk for normal-tension glaucoma, optic nerve compartment syndrome, central serous choroidopathy, Susac syndrome, retinal artery and vein occlusions and anterior ischaemic neuropathy without atherosclerosis. Further characteristics are their weaker blood–brain and blood-retinal barriers and the higher prevalence of optic disc haemorrhages and activated astrocytes. Subjects with PVD tend to suffer more often from tinnitus, muscle cramps, migraine with aura and silent myocardial ischaemic and are at greater risk for altitude sickness. While the main cause of vascular dysregulation is vascular endotheliopathy, dysfunction of the autonomic nervous system is also involved. In contrast, SVD occurs in the context of other diseases such as multiple sclerosis, retrobulbar neuritis, rheumatoid arthritis, fibromyalgia and giant cell arteritis. Taking into consideration the high prevalence of PVD in the population and potentially linked pathologies, in the current article, the authors provide

  16. Dysregulated RNA-Induced Silencing Complex (RISC) Assembly within CNS Corresponds with Abnormal miRNA Expression during Autoimmune Demyelination.

    Science.gov (United States)

    Lewkowicz, Przemysław; Cwiklińska, Hanna; Mycko, Marcin P; Cichalewska, Maria; Domowicz, Małgorzata; Lewkowicz, Natalia; Jurewicz, Anna; Selmaj, Krzysztof W

    2015-05-13

    MicroRNAs (miRNAs) associate with Argonaute (Ago), GW182, and FXR1 proteins to form RNA-induced silencing complexes (RISCs). RISCs represent a critical checkpoint in the regulation and bioavailability of miRNAs. Recent studies have revealed dysregulation of miRNAs in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE); however, the function of RISCs in EAE and MS is largely unknown. Here, we examined the expression of Ago, GW182, and FXR1 in CNS tissue, oligodendrocytes (OLs), brain-infiltrating T lymphocytes, and CD3(+)splenocytes (SCs) of EAE mic, and found that global RISC protein levels were significantly dysregulated. Specifically, Ago2 and FXR1 levels were decreased in OLs and brain-infiltrating T cells in EAE mice. Accordingly, assembly of Ago2/GW182/FXR1 complexes in EAE brain tissues was disrupted, as confirmed by immunoprecipitation experiments. In parallel with alterations in RISC complex content in OLs, we found downregulation of miRNAs essential for differentiation and survival of OLs and myelin synthesis. In brain-infiltrating T lymphocytes, aberrant RISC formation contributed to miRNA-dependent proinflammatory helper T-cell polarization. In CD3(+) SCs, we found increased expression of both Ago2 and FXR1 in EAE compared with nonimmunized mice. Therefore, our results demonstrate a gradient in expression of miRNA between primary activated T cells in the periphery and polarized CNS-infiltrating T cells. These results suggest that, in polarized autoreactive effector T cells, miRNA synthesis is inhibited in response to dysregulated RISC assembly, allowing these cells to maintain a highly specific proinflammatory program. Therefore, our findings may provide a mechanism that leads to miRNA dysregulation in EAE/MS. Copyright © 2015 the authors 0270-6474/15/357521-17$15.00/0.

  17. Cytosine methylation dysregulation in neonates following intrauterine growth restriction.

    Directory of Open Access Journals (Sweden)

    Francine Einstein

    2010-01-01

    Full Text Available Perturbations of the intrauterine environment can affect fetal development during critical periods of plasticity, and can increase susceptibility to a number of age-related diseases (e.g., type 2 diabetes mellitus; T2DM, manifesting as late as decades later. We hypothesized that this biological memory is mediated by permanent alterations of the epigenome in stem cell populations, and focused our studies specifically on DNA methylation in CD34+ hematopoietic stem and progenitor cells from cord blood from neonates with intrauterine growth restriction (IUGR and control subjects.Our epigenomic assays utilized a two-stage design involving genome-wide discovery followed by quantitative, single-locus validation. We found that changes in cytosine methylation occur in response to IUGR of moderate degree and involving a restricted number of loci. We also identify specific loci that are targeted for dysregulation of DNA methylation, in particular the hepatocyte nuclear factor 4alpha (HNF4A gene, a well-known diabetes candidate gene not previously associated with growth restriction in utero, and other loci encoding HNF4A-interacting proteins.Our results give insights into the potential contribution of epigenomic dysregulation in mediating the long-term consequences of IUGR, and demonstrate the value of this approach to studies of the fetal origin of adult disease.

  18. Induction of tumor cell death through targeting tubulin and evoking dysregulation of cell cycle regulatory proteins by multifunctional cinnamaldehydes.

    Science.gov (United States)

    Nagle, Amrita A; Gan, Fei-Fei; Jones, Gavin; So, Choon-Leng; Wells, Geoffrey; Chew, Eng-Hui

    2012-01-01

    Multifunctional trans-cinnamaldehyde (CA) and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA) and 5-fluoro-2-hydroxycinnamaldehyde (FHCA) being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA), were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G(2)/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G(2) phase. G(2) arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G(2) to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM) labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G(2) phase, resulting in apoptotic cell death characterized by emergence

  19. Deletion of Fanca or Fancd2 dysregulates Treg in mice

    Science.gov (United States)

    Du, Wei; Erden, Ozlem; Wilson, Andrew; Sipple, Jared M.; Schick, Jonathan; Mehta, Parinda; Myers, Kasiani C.; Steinbrecher, Kris A.; Davies, Stella M.

    2014-01-01

    Fanconi anemia (FA) is a genetic disorder associated with bone marrow (BM) failure and leukemia. Recent studies demonstrate variable immune defects in FA. However, the cause for FA immunodeficiency is unknown. Here we report that deletion of Fanca or Fancd2 dysregulates the suppressive activity of regulatory T cells (Tregs), shown functionally as exacerbation of graft-vs-host disease (GVHD) in mice. Recipient mice of Fanca−/− or Fancd2−/− BM chimeras exhibited severe acute GVHD after allogeneic BM transplantation (BMT). T cells from Fanca−/− or Fancd2−/− mice induced higher GVHD lethality than those from wild-type (WT) littermates. FA Tregs possessed lower proliferative suppression potential compared with WT Tregs, as demonstrated by in vitro proliferation assay and BMT. Analysis of CD25+Foxp3+ Tregs indicated that loss of Fanca or Fancd2 dysregulated Foxp3 target gene expression. Additionally, CD25+Foxp3+ Tregs of Fanca−/− or Fancd2−/− mice were less efficient in suppressing the production of GVHD-associated inflammatory cytokines. Consistently, aberrant NF-κB activity was observed in infiltrated T cells from FA GVHD mice. Conditional deletion of p65 in FA Tregs decreased GVHD mortality. Our study uncovers an essential role for FA proteins in maintaining Treg homeostasis, possibly explaining, at least in part, the immune deficiency reported in some FA patients. PMID:24501220

  20. Deletion of Fanca or Fancd2 dysregulates Treg in mice.

    Science.gov (United States)

    Du, Wei; Erden, Ozlem; Wilson, Andrew; Sipple, Jared M; Schick, Jonathan; Mehta, Parinda; Myers, Kasiani C; Steinbrecher, Kris A; Davies, Stella M; Pang, Qishen

    2014-03-20

    Fanconi anemia (FA) is a genetic disorder associated with bone marrow (BM) failure and leukemia. Recent studies demonstrate variable immune defects in FA. However, the cause for FA immunodeficiency is unknown. Here we report that deletion of Fanca or Fancd2 dysregulates the suppressive activity of regulatory T cells (Tregs), shown functionally as exacerbation of graft-vs-host disease (GVHD) in mice. Recipient mice of Fanca(-/-) or Fancd2(-/-) BM chimeras exhibited severe acute GVHD after allogeneic BM transplantation (BMT). T cells from Fanca(-/-) or Fancd2(-/-) mice induced higher GVHD lethality than those from wild-type (WT) littermates. FA Tregs possessed lower proliferative suppression potential compared with WT Tregs, as demonstrated by in vitro proliferation assay and BMT. Analysis of CD25(+)Foxp3(+) Tregs indicated that loss of Fanca or Fancd2 dysregulated Foxp3 target gene expression. Additionally, CD25(+)Foxp3(+) Tregs of Fanca(-/-) or Fancd2(-/-) mice were less efficient in suppressing the production of GVHD-associated inflammatory cytokines. Consistently, aberrant NF-κB activity was observed in infiltrated T cells from FA GVHD mice. Conditional deletion of p65 in FA Tregs decreased GVHD mortality. Our study uncovers an essential role for FA proteins in maintaining Treg homeostasis, possibly explaining, at least in part, the immune deficiency reported in some FA patients.

  1. Disruptive mood dysregulation disorder: current insights

    Directory of Open Access Journals (Sweden)

    Baweja R

    2016-08-01

    Full Text Available Raman Baweja, Susan D Mayes, Usman Hameed, James G Waxmonsky Department of Psychiatry, Penn State University College of Medicine, Hershey, PA, USA Abstract: Disruptive mood dysregulation disorder (DMDD was introduced as a new diagnostic entity under the category of depressive disorders in Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5. It was included in DSM-5 primarily to address concerns about the misdiagnosis and consequent overtreatment of bipolar disorder in children and adolescents. DMDD does provide a home for a large percentage of referred children with severe persistent irritability that did not fit well into any DSM, Fourth Edition (DSM-IV diagnostic category. However, it has been a controversial addition to the DSM-5 due to lack of published validity studies, leading to questions about its validity as a distinct disorder. In this article, the authors discuss the diagnostic criteria, assessment, epidemiology, criticism of the diagnosis, and pathophysiology, as well as treatment and future directions for DMDD. They also review the literature on severe mood dysregulation, as described by the National Institute of Mental Health, as the scientific support for DMDD is based primarily on studies of severe mood dysregulation. Keywords: disruptive mood dysregulation disorder, persistent irritability, temper outbursts 

  2. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael D; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C; Dandekar, Satya

    2003-07-20

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression.

  3. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    George, Michael D.; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C.; Dandekar, Satya

    2003-01-01

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression

  4. Cytosine Methylation Dysregulation in Neonates Following Intrauterine Growth Restriction

    Science.gov (United States)

    Bhagat, Tushar D.; Fazzari, Melissa J.; Verma, Amit; Barzilai, Nir; Greally, John M.

    2010-01-01

    Background Perturbations of the intrauterine environment can affect fetal development during critical periods of plasticity, and can increase susceptibility to a number of age-related diseases (e.g., type 2 diabetes mellitus; T2DM), manifesting as late as decades later. We hypothesized that this biological memory is mediated by permanent alterations of the epigenome in stem cell populations, and focused our studies specifically on DNA methylation in CD34+ hematopoietic stem and progenitor cells from cord blood from neonates with intrauterine growth restriction (IUGR) and control subjects. Methods and Findings Our epigenomic assays utilized a two-stage design involving genome-wide discovery followed by quantitative, single-locus validation. We found that changes in cytosine methylation occur in response to IUGR of moderate degree and involving a restricted number of loci. We also identify specific loci that are targeted for dysregulation of DNA methylation, in particular the hepatocyte nuclear factor 4α (HNF4A) gene, a well-known diabetes candidate gene not previously associated with growth restriction in utero, and other loci encoding HNF4A-interacting proteins. Conclusions Our results give insights into the potential contribution of epigenomic dysregulation in mediating the long-term consequences of IUGR, and demonstrate the value of this approach to studies of the fetal origin of adult disease. PMID:20126273

  5. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes?

    Science.gov (United States)

    Dayeh, Tasnim; Ling, Charlotte

    2015-10-01

    β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.

  6. Induction of tumor cell death through targeting tubulin and evoking dysregulation of cell cycle regulatory proteins by multifunctional cinnamaldehydes.

    Directory of Open Access Journals (Sweden)

    Amrita A Nagle

    Full Text Available Multifunctional trans-cinnamaldehyde (CA and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA and 5-fluoro-2-hydroxycinnamaldehyde (FHCA being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA, were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G(2/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G(2 phase. G(2 arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G(2 to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G(2 phase, resulting in apoptotic cell death characterized by

  7. MS4A1 dysregulation in asbestos-related lung squamous cell carcinoma is due to CD20 stromal lymphocyte expression.

    Directory of Open Access Journals (Sweden)

    Casey M Wright

    Full Text Available Asbestos-related lung cancer accounts for 4-12% of lung cancers worldwide. We have previously identified ADAM28 as a putative oncogene involved in asbestos-related lung adenocarcinoma (ARLC-AC. We hypothesised that similarly gene expression profiling of asbestos-related lung squamous cell carcinomas (ARLC-SCC may identify candidate oncogenes for ARLC-SCC. We undertook a microarray gene expression study in 56 subjects; 26 ARLC-SCC (defined as lung asbestos body (AB counts >20AB/gram wet weight (gww and 30 non-asbestos related lung squamous cell carcinoma (NARLC-SCC; no detectable lung asbestos bodies; 0AB/gww. Microarray and bioinformatics analysis identified six candidate genes differentially expressed between ARLC-SCC and NARLC-SCC based on statistical significance (p2-fold. Two genes MS4A1 and CARD18, were technically replicated by qRT-PCR and showed consistent directional changes. As we also found MS4A1 to be overexpressed in ARLC-ACs, we selected this gene for biological validation in independent test sets (one internal, and one external dataset (2 primary tumor sets. MS4A1 RNA expression dysregulation was validated in the external dataset but not in our internal dataset, likely due to the small sample size in the test set as immunohistochemical (IHC staining for MS4A1 (CD20 showed that protein expression localized predominantly to stromal lymphocytes rather than tumor cells in ARLC-SCC. We conclude that differential expression of MS4A1 in this comparative gene expression study of ARLC-SCC versus NARLC-SCC is a stromal signal of uncertain significance, and an example of the rationale for tumor cell enrichment in preparation for gene expression studies where the aim is to identify markers of particular tumor phenotypes. Finally, our study failed to identify any strong gene candidates whose expression serves as a marker of asbestos etiology. Future research is required to determine the role of stromal lymphocyte MS4A1 dysregulation in

  8. Disruptive Mood Dysregulation Disorder

    Science.gov (United States)

    ... Application Process Managing Grants Clinical Research Training Small Business Research Labs at NIMH Labs at NIMH Home Research ... Chat on Disruptive Mood Dysregulation Disorder (Archived Transcript) Research and ... Journal Articles: References and abstracts from MEDLINE/PubMed (National ...

  9. A Positive Affective Neuroendocrinology (PANE Approach to Reward and Behavioral Dysregulation

    Directory of Open Access Journals (Sweden)

    Keith eWelker

    2015-07-01

    Full Text Available Emerging lines of research suggest that both testosterone and maladaptive reward processing can modulate behavioral dysregulation. Yet to date, no integrative account has been provided that systematically explains neuroendocrine function, dysregulation of reward, and behavioral dysregulation in a unified perspective. This is particularly important given specific neuroendocrine systems are potential mechanisms underlying and giving rise to reward-relevant behaviors. In this review, we propose a forward thinking approach to study the mechanisms of reward and behavioral dysregulation from a positive affective neuroendocrinology (PANE perspective. This approach holds that testosterone increases reward processing, which increases the likelihood of behavioral dysregulation. Additionally, the PANE framework holds that reward processing mediates the effects of testosterone on behavioral dysregulation. We also explore sources of potential sex differences and the roles of age, cortisol, and individual differences within the PANE framework. Finally, we discuss future prospects for research questions and methodology in the emerging field of affective neuroendocrinology.

  10. Autoimmune dysregulation and purine metabolism in adenosine deaminase (ADA-deficiency

    Directory of Open Access Journals (Sweden)

    Aisha Vanessa Sauer

    2012-08-01

    Full Text Available Genetic defects in the adenosine deaminase (ADA gene are among the most common causes for severe combined immunodeficiency (SCID. ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT, enzyme replacement therapy with bovine ADA (PEG-ADA or hematopoietic stem cell gene therapy (HSC-GT. Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment.A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T and B cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties.

  11. Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes.

    Science.gov (United States)

    Auvergne, Romane M; Sim, Fraser J; Wang, Su; Chandler-Militello, Devin; Burch, Jaclyn; Al Fanek, Yazan; Davis, Danielle; Benraiss, Abdellatif; Walter, Kevin; Achanta, Pragathi; Johnson, Mahlon; Quinones-Hinojosa, Alfredo; Natesan, Sridaran; Ford, Heide L; Goldman, Steven A

    2013-06-27

    Glial progenitor cells (GPCs) are a potential source of malignant gliomas. We used A2B5-based sorting to extract tumorigenic GPCs from human gliomas spanning World Health Organization grades II-IV. Messenger RNA profiling identified a cohort of genes that distinguished A2B5+ glioma tumor progenitor cells (TPCs) from A2B5+ GPCs isolated from normal white matter. A core set of genes and pathways was substantially dysregulated in A2B5+ TPCs, which included the transcription factor SIX1 and its principal cofactors, EYA1 and DACH2. Small hairpin RNAi silencing of SIX1 inhibited the expansion of glioma TPCs in vitro and in vivo, suggesting a critical and unrecognized role of the SIX1-EYA1-DACH2 system in glioma genesis or progression. By comparing the expression patterns of glioma TPCs with those of normal GPCs, we have identified a discrete set of pathways by which glial tumorigenesis may be better understood and more specifically targeted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Dysregulated miR34a/diacylglycerol kinase ζ interaction enhances T-cell activation in acquired aplastic anemia.

    Science.gov (United States)

    Sun, Yuan-Xin; Li, Hui; Feng, Qi; Li, Xin; Yu, Ying-Yi; Zhou, Li-Wei; Gao, Yan; Li, Guo-Sheng; Ren, Juan; Ma, Chun-Hong; Gao, Cheng-Jiang; Peng, Jun

    2017-01-24

    Acquired aplastic anemia is an idiopathic paradigm of human bone marrow failure syndrome, which involves active destruction of hematopoietic stem cells and progenitors by cytotoxic T cells in the bone marrow. Aberrant expression of microRNAs in T cells has been shown to lead to development of certain autoimmune diseases. In the present study, we performed a microarray analysis of miRNA expression in bone marrow CD3+ T cells from patients with aplastic anemia and healthy controls. Overexpression of miR34a and underexpression of its target gene diacylglycerol kinase (DGK) ζ in bone marrow mononuclear cells were validated in 41 patients and associated with the severity of aplastic anemia. Further, the level of miR34a was higher in naïve T cells from patients than from controls. The role of miR34a and DGKζ in aplastic anemia was investigated in a murine model of immune-mediated bone marrow failure using miR34a-/- mice. After T-cell receptor stimulation in vitro, lymph node T cells from miR34a-/- mice demonstrated reduced activation and proliferation accompanied with a less profound down-regulation of DGKζ expression and decreased ERK phosphorylation compared to those from wild-type C57BL6 control mice. Infusion of 5 × 106 miR34a-/- lymph node T cells into sublethally irradiated CB6F1 recipients led to increased Lin-Sca1+CD117+ cells and less vigorous expansion of CD8+ T cells than injection of same number of wild-type lymph node cells. Our study demonstrates that the miR34a/DGKζ dysregulation enhances T-cell activation in aplastic anemia and targeting miR34a may represent a novel molecular therapeutic approach for patients with aplastic anemia.

  13. MicroRNA regulation and dysregulation in epilepsy

    Directory of Open Access Journals (Sweden)

    Danyella Barbosa Dogini

    2013-10-01

    Full Text Available Epilepsy, one of the most frequent neurological disorders, represents a group of diseases that have in common the clinical occurrence of seizures. The pathogenesis of different types of epilepsy involves many important biological pathways; some of which have been shown to be regulated by microRNAs (miRNAs. In this paper, we will critically review relevant studies regarding the role of miRNAs in epilepsy. Overall, the most common type of epilepsy in the adult population is temporal lobe epilepsy (TLE, and the form associated with mesial temporal sclerosis (MTS, called mesial TLE, is particularly relevant due to the high frequency of resistance to clinical treatment. There are several target studies, as well few genome-wide miRNA expression profiling studies reporting abnormal miRNA expression in tissue with MTS, both in patients and in animal models. Overall, these studies show a fine correlation between miRNA regulation/dysregulation and inflammation, seizure-induced neuronal death and other relevant biological pathways. Furthermore, expression of many miRNAs is dynamically regulated during neurogenesis and its dysregulation may play a role in the process of cerebral corticogenesis leading to malformations of cortical development (MCD, which represent one of the major causes of drug-resistant epilepsy. In addition, there are reports of miRNAs involved in cell proliferation, fate specification and neuronal maturation and these processes are tightly linked to the pathogenesis of MCD. Large-scale analyzes of miRNA expression in animal models with induced status epilepticus have demonstrated changes in a selected group of miRNAs thought to be involved in the regulation of cell death, synaptic reorganization, neuroinflammation and neural excitability. In addition, knocking-down specific miRNAs in these animals have demonstrated that this may consist in a promising therapeutic intervention.

  14. Abnormalities of thymic stroma may contribute to immune dysregulation in murine models of leaky severe combined immunodeficiency

    Directory of Open Access Journals (Sweden)

    Francesca eRucci

    2011-05-01

    Full Text Available Lymphostromal cross-talk in the thymus is essential to allow generation of a diversified repertoire of T lymphocytes and to prevent autoimmunity by self-reactive T cells. Hypomorphic mutations in genes that control T cell development have been associated with immunodeficiency and immune dysregulation both in humans and in mice. We have studied T cell development and thymic stroma architecture and maturation in two mouse models of leaky SCID, carrying hypomorphic mutations in Rag1 and Lig4 genes. Defective T cell development was associated with abnormalities of thymic architecture that predominantly affect the thymic medulla, with reduction of the pool of mature medullary thymic epithelial cells (mTECs. While the ability of mTECs to express Aire is preserved in mutant mice, the frequency of mature mTECs expressing Aire and tissue-specific antigens (TSAs is severely reduced. Similarly, the ability of CD4+ T cells to differentiate into Foxp3+ natural regulatory T cells is preserved in Rag1 and Lig4 mutant mice, but their number is greatly reduced. These data indicate that hypomorphic defects in T cell development may cause defective lymphostromal cross-talk and impinge on thymic stromal cells maturation, and thus favor immune dysregulation.

  15. Human cytomegalovirus infection dysregulates the canonical Wnt/β-catenin signaling pathway.

    Directory of Open Access Journals (Sweden)

    Magdalena Angelova

    Full Text Available Human Cytomegalovirus (HCMV is a ubiquitous herpesvirus that currently infects a large percentage of the world population. Although usually asymptomatic in healthy individuals, HCMV infection during pregnancy may cause spontaneous abortions, premature delivery, or permanent neurological disabilities in infants infected in utero. During infection, the virus exerts control over a multitude of host signaling pathways. Wnt/β-catenin signaling, an essential pathway involved in cell cycle control, differentiation, embryonic development, placentation and metastasis, is frequently dysregulated by viruses. How HCMV infection affects this critical pathway is not currently known. In this study, we demonstrate that HCMV dysregulates Wnt/β-catenin signaling in dermal fibroblasts and human placental extravillous trophoblasts. Infection inhibits Wnt-induced transcriptional activity of β-catenin and expression of β-catenin target genes in these cells. HCMV infection leads to β-catenin protein accumulation in a discrete juxtanuclear region. Levels of β-catenin in membrane-associated and cytosolic pools, as well as nuclear β-catenin, are reduced after infection; while transcription of the β-catenin gene is unchanged, suggesting enhanced degradation. Given the critical role of Wnt/β-catenin signaling in cellular processes, these findings represent a novel and important mechanism whereby HCMV disrupts normal cellular function.

  16. The Child Behavior Checklist Dysregulation Profile in Preschool Children: A Broad Dysregulation Syndrome.

    Science.gov (United States)

    Geeraerts, Sanne Barbara; Deutz, Marike Hester Francisca; Deković, Maja; Bunte, Tessa; Schoemaker, Kim; Espy, Kimberly Andrews; Prinzie, Peter; van Baar, Anneloes; Matthys, Walter

    2015-07-01

    Children with concurrent impairments in regulating affect, behavior, and cognition can be identified with the Anxious/Depressed, Aggressive Behavior, and Attention Problems scales (or AAA scales) of the Child Behavior Checklist (CBCL). Jointly, these scales form the Dysregulation Profile (DP). Despite persuasive evidence that DP is a marker for severe developmental problems, no consensus exists on the preferred conceptualization and operationalization of DP in preschool years. We addressed this concern by testing and validating the factor structure of DP in a group of predominantly clinically referred preschool children. Participants were 247 children (195 boys and 52 girls), aged 3.5 to 5.5 years. Children were assessed at baseline and 18 months later, using parent and teacher reports, a clinical interview with parents, behavioral observations, and neuropsychological tasks. Confirmatory factor analysis showed that a bifactor model, with a general DP factor and 3 specific factors representing the AAA scales, fitted the data better than a second-order model and a one-factor model for both parent-reported and teacher-reported child problem behavior. Criterion validity analyses showed that the DP factor was concurrently and longitudinally associated with markers of dysregulation and clinically relevant criteria, whereas the specific factors representing the AAA scales were more differentially related to those criteria. DP is best conceptualized as a broad syndrome of dysregulation that exists in addition to the specific syndromes as represented by the AAA scales. Implications for researchers and clinicians are discussed. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.

    Science.gov (United States)

    Martinelli, Simone; Krumbach, Oliver H F; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Buchholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G; Larsen, Douglas; Farwell, Kelly D; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Di Schiavi, Elia; Della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A; Chong, Jessica X; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D; Bamshad, Michael J; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C; Tartaglia, Marco; Mirzaa, Ghayda M

    2018-01-17

    Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status?

    Science.gov (United States)

    Gannon, Nicholas P; Schnuck, Jamie K; Vaughan, Roger A

    2018-03-01

    Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tributyltin exposure at noncytotoxic doses dysregulates pancreatic β-cell function in vitro and in vivo.

    Science.gov (United States)

    Chen, Ya-Wen; Lan, Kuo-Cheng; Tsai, Jing-Ren; Weng, Te-I; Yang, Ching-Yao; Liu, Shing-Hwa

    2017-09-01

    Tributyltin (TBT) is an endocrine disruptor. TBT can be found in food and in human tissues and blood. Several animal studies revealed that organotins induced diabetes with decreased insulin secretion. The detailed effect and mechanism of TBT on pancreatic β-cell function still remain unclear. We investigated the effect and mechanism of TBT exposure at noncytotoxic doses relevant to human exposure on β-cell function in vitro and in vivo. The β-cell-derived RIN-m5F cells and pancreatic islets from mouse and human were treated with TBT (0.05-0.2 μM) for 0.5-4 h. Adult male mice were orally exposed to TBT (25 μg/kg/day) with or without antioxidant N-acetylcysteine (NAC) for 1-3 weeks. Assays for insulin secretion and glucose metabolism were carried out. Unlike previous studies, TBT at noncytotoxic concentrations significantly increased glucose-stimulated insulin secretion and intracellular Ca 2+ ([Ca 2+ ] i ) in β-cells. The reactive oxygen species (ROS) production and phosphorylation of protein kinase C (PKC-pan) and extracellular signal-regulated kinase (ERK)1/2 were also increased. These TBT-triggered effects could be reversed by antiestrogen ICI182780 and inhibitors of ROS, [Ca 2+ ] i , and PKC, but not ERK. Similarly, islets treated with TBT significantly increased glucose-stimulated insulin secretion, which could be reversed by ICI182780, NAC, and PKC inhibitor. Mice exposed to TBT for 3 weeks significantly increased blood glucose and plasma insulin and induced glucose intolerance and insulin resistance, which could be reversed by NAC. These findings suggest that low/noncytotoxic doses of TBT induce insulin dysregulation and disturb glucose homeostasis, which may be mediated through the estrogen receptor-regulated and/or oxidative stress-related signaling pathways.

  20. HPRT deficiency coordinately dysregulates canonical Wnt and presenilin-1 signaling: a neuro-developmental regulatory role for a housekeeping gene?

    Directory of Open Access Journals (Sweden)

    Tae Hyuk Kang

    2011-01-01

    Full Text Available We have used microarray-based methods of global gene expression together with quantitative PCR and Western blot analysis to identify dysregulation of genes and aberrant cellular processes in human fibroblasts and in SH-SY5Y neuroblastoma cells made HPRT-deficient by transduction with a retrovirus stably expressing an shRNA targeted against HPRT. Analysis of the microarray expression data by Gene ontology (GO and Gene Set Enrichment Analysis (GSEA as well as significant pathway analysis by GeneSpring GX10 and Panther Classification System reveal that HPRT deficiency is accompanied by aberrations in a variety of pathways known to regulate neurogenesis or to be implicated in neurodegenerative disease, including the canonical Wnt/β-catenin and the Alzheimer's disease/presenilin signaling pathways. Dysregulation of the Wnt/β-catenin pathway is confirmed by Western blot demonstration of cytosolic sequestration of β-catenin during in vitro differentiation of the SH-SY5Y cells toward the neuronal phenotype. We also demonstrate that two key transcription factor genes known to be regulated by Wnt signaling and to be vital for the generation and function of dopaminergic neurons; i.e., Lmx1a and Engrailed 1, are down-regulated in the HPRT knockdown SH-SY5Y cells. In addition to the Wnt signaling aberration, we found that expression of presenilin-1 shows severely aberrant expression in HPRT-deficient SH-SY5Y cells, reflected by marked deficiency of the 23 kDa C-terminal fragment of presenilin-1 in knockdown cells. Western blot analysis of primary fibroblast cultures from two LND patients also shows dysregulated presenilin-1 expression, including aberrant proteolytic processing of presenilin-1. These demonstrations of dysregulated Wnt signaling and presenilin-1 expression together with impaired expression of dopaminergic transcription factors reveal broad pleitropic neuro-regulatory defects played by HPRT expression and suggest new directions for

  1. Disordered eating and emotion dysregulation among adolescents and their parents.

    Science.gov (United States)

    Hansson, Erika; Daukantaité, Daiva; Johnsson, Per

    2017-04-04

    Research on the relationships between adolescent and parental disordered eating (DE) and emotion dysregulation is scarce. Thus, the aim of this study was to explore whether mothers' and fathers' own DE, as measured by SCOFF questionnaire, and emotion dysregulation, as measured by the difficulties in emotion regulation scale (DERS), were associated with their daughters' or sons' DE and emotion dysregulation. Furthermore, the importance of shared family meals and possible parent-related predictors of adolescent DE were explored. The total sample comprised 1,265 adolescents (M age  = 16.19, SD = 1.21; age range 13.5-19 years, 54.5% female) whose parents had received a self-report questionnaire via mail. Of these, 235 adolescents (18.6% of the total sample) whose parents completed the questionnaire were used in the analyses. Parents' responses were matched and compared with those of their child. Adolescent girls showed greater levels of DE overall than did their parents. Furthermore, DE was associated with emotion dysregulation among both adolescents and parents. Adolescent and parental emotion dysregulation was associated, although there were gender differences in the specifics of this relationship. The frequency of shared dinner meals was the only variable that was associated to DE and emotion dysregulation among adolescents, while parental eating disorder was the only variable that enhanced the probability of adolescent DE. The present study contributes to the literature by demonstrating that there are significant associations between parents and their adolescent children in terms of DE, emotion dysregulation, and shared family meals. Future studies should break down these relationships among mothers, fathers, girls, and boys to further clarify the specific associational, and possibly predictive, directions.

  2. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    Science.gov (United States)

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  3. Emotion dysregulation and social competence: stability, change and predictive power.

    Science.gov (United States)

    Berkovits, L D; Baker, B L

    2014-08-01

    Social difficulties are closely linked to emotion dysregulation among children with typical development (TD). Children with developmental delays (DD) are at risk for poor social outcomes, but the relationship between social and emotional development within this population is not well understood. The current study examines the extent to which emotion dysregulation is related to social problems across middle childhood among children with TD or DD. Children with TD (IQ ≥ 85, n = 113) and children with DD (IQ ≤ 75, n = 61) participated in a longitudinal study. Annual assessments were completed at ages 7, 8 and 9 years. At each assessment, mothers reported on children's emotion dysregulation, and both mothers and teachers reported on children's social difficulties. Children with DD had higher levels of emotion dysregulation and social problems at each age than those with TD. Emotion dysregulation and social problems were significantly positively correlated within both TD and DD groups using mother report of social problems, and within the TD group using teacher report of social problems. Among children with TD, emotion dysregulation consistently predicted change in social problems from one year to the next. However, among children with DD, emotion dysregulation offered no unique prediction value above and beyond current social problems. Results suggested that the influence of emotion regulation abilities on social development may be a less salient pathway for children with DD. These children may have more influences, beyond emotion regulation, on their social behaviour, highlighting the importance of directly targeting social skill deficits among children with DD in order to ameliorate their social difficulties. © 2013 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  4. Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah U Morton

    Full Text Available Congenital myopathies are rare skeletal muscle diseases presenting in early age with hypotonia and weakness often linked to a genetic defect. Mutations in the gene for cofilin-2 (CFL2 have been identified in several families as a cause of congenital myopathy with nemaline bodies and cores. Here we explore the global messenger and microRNA expression patterns in quadriceps muscle samples from cofillin-2-null mice and compare them with sibling-matched wild-type mice to determine the molecular pathways and mechanisms involved. Cell cycle processes are markedly dysregulated, with altered expression of genes involved in mitotic spindle formation, and evidence of loss of cell cycle checkpoint regulation. Importantly, alterations in cell cycle, apoptosis and proliferation pathways are present in both mRNA and miRNA expression patterns. Specifically, p21 transcript levels were increased, and the expression of p21 targets, such as cyclin D and cyclin E, was decreased. We therefore hypothesize that deficiency of cofilin-2 is associated with interruption of the cell cycle at several checkpoints, hindering muscle regeneration. Identification of these pathways is an important step towards developing appropriate therapies against various congenital myopathies.

  5. Dysregulated metabolism contributes to oncogenesis

    Science.gov (United States)

    Hirschey, Matthew D.; DeBerardinis, Ralph J.; Diehl, Anna Mae E.; Drew, Janice E.; Frezza, Christian; Green, Michelle F.; Jones, Lee W.; Ko, Young H.; Le, Anne; Lea, Michael A.; Locasale, Jason W.; Longo, Valter D.; Lyssiotis, Costas A.; McDonnell, Eoin; Mehrmohamadi, Mahya; Michelotti, Gregory; Muralidhar, Vinayak; Murphy, Michael P.; Pedersen, Peter L.; Poore, Brad; Raffaghello, Lizzia; Rathmell, Jeffrey C.; Sivanand, Sharanya; Vander Heiden, Matthew G.; Wellen, Kathryn E.

    2015-01-01

    Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review “Hallmarks of Cancer”, where the dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results suggest that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it. PMID:26454069

  6. Endocrine Dysregulation in Anorexia Nervosa Update

    Science.gov (United States)

    2011-01-01

    Context: Anorexia nervosa is a primary psychiatric disorder with serious endocrine consequences, including dysregulation of the gonadal, adrenal, and GH axes, and severe bone loss. This Update reviews recent advances in the understanding of the endocrine dysregulation observed in this state of chronic starvation, as well as the mechanisms underlying the disease itself. Evidence Acquisition: Findings of this update are based on a PubMed search and the author's knowledge of this field. Evidence Synthesis: Recent studies have provided insights into the mechanisms underlying endocrine dysregulation in states of chronic starvation as well as the etiology of anorexia nervosa itself. This includes a more complex understanding of the pathophysiologic bases of hypogonadism, hypercortisolemia, GH resistance, appetite regulation, and bone loss. Nevertheless, the etiology of the disease remains largely unknown, and effective therapies for the endocrine complications and for the disease itself are lacking. Conclusions: Despite significant progress in the field, further research is needed to elucidate the mechanisms underlying the development of anorexia nervosa and its endocrine complications. Such investigations promise to yield important advances in the therapeutic approach to this disease as well as to the understanding of the regulation of endocrine function, skeletal biology, and appetite regulation. PMID:21976742

  7. Infant and toddler crying, sleeping and feeding problems and trajectories of dysregulated behavior across childhood.

    Science.gov (United States)

    Winsper, Catherine; Wolke, Dieter

    2014-01-01

    Infant and toddler regulatory problems (RPs) including crying, sleeping and feeding, are a frequent concern for parents and have been associated with negative behavioral outcomes in early and middle childhood. Uncertain is whether infant and toddler RPs predict stable, trait-like dysregulated behavior across childhood. We addressed this gap in the literature using data from the Avon Longitudinal Study of Parents and Children (ALSPAC). RPs at 6, 15-18, & 24-30 months and childhood dysregulated behavior at 4, 7, 8, & 9.5 years were assessed using mother report. Latent Class Growth Analysis (LCGA) indicated that trajectories of childhood dysregulated behavior were stable over time. All single RPs (i.e., crying, sleeping & feeding problems) were significantly associated with childhood dysregulated behavior. For example, crying problems at 6 months after controlling for confounders (Odds Ratios; 95% Confidence Intervals): Moderate dysregulated behavior: OR = 1.50, 95% CI [1.09 to 2.06], high dysregulated behavior: OR = 2.13, 95% CI [1.49 to 3.05] and very high dysregulated behavior: OR = 2.85, 95% CI [1.64 to 4.94]. Multiple RPs were especially strongly associated with dysregulated behavior. For example, the RP composite at 15-18 months: 1 RP, very high dysregulated behavior: OR = 2.79, 95% CI [2.17 to 3.57], 2 RPs, very high dysregulated behavior: OR = 3.46, 95% CI [2.38 to 5.01], 3 RPs, very high dysregulated behavior: OR = 12.57, 95% CI [6.38 to 24.74]. These findings suggest that RPs in infants and toddlers predict stable dysregulated behavior trajectories across childhood. Interventions for early RPs could help prevent the development of chronic, highly dysregulated behavior.

  8. Dysregulated Functions of Lung Macrophage Populations in COPD.

    Science.gov (United States)

    Kapellos, Theodore S; Bassler, Kevin; Aschenbrenner, Anna C; Fujii, Wataru; Schultze, Joachim L

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD.

  9. Dysregulated Functions of Lung Macrophage Populations in COPD

    Science.gov (United States)

    Bassler, Kevin; Aschenbrenner, Anna C.

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD. PMID:29670919

  10. Emotion Dysregulation Mediates the Relation between Mindfulness and Rejection Sensitivity.

    Science.gov (United States)

    Velotti, Patrizia; Garofalo, Carlo; Bizzi, Fabiola

    2015-09-01

    The role of rejection sensitivity (RS; the tendency to anxiously expect, readily perceive, and overreact to implied or overt interpersonal rejection) in psychopathology has mainly been studied with regard to borderline personality disorder (BPD). In the present study, we first sought to extend previous evidence of heightened RS in a clinical group with psychiatric disorders other than BPD, when compared with a community sample. Then, we tested whether emotion dysregulation and mindfulness were associated with RS in both sample, further hypothesizing that emotion dysregulation would mediate the relation between mindfulness deficits and RS. We adopted a cross-sectional design involving 191 psychiatric patients and 277 community participants (total N=468). All participants completed the Rejection Sensitivity Questionnaire, the Five Facet Mindfulness Questionnaire, and the Difficulties in Emotion Regulation Scale. Our hypotheses were supported, with psychiatric patients reporting greater levels of rejection sensitivity and emotion dysregulation, and lower level of mindfulness. Mindfulness deficits and emotion dysregulation explained a significant amount of variance in RS, in both samples. Finally, bootstrap analyses revealed that mindfulness deficits played an indirect effect on RS through the mediating role of emotion dysregulation. In particular, two different patterns emerged. Among psychiatric patients, an impairment in the ability to assume a non-judgmental stance towards own thoughts and feelings was related to RS through the mediation of limited access to emotion regulation strategies. Conversely, in the community sample, overall emotion dysregulation mediated the effect of lack of attention and awareness for present activities and experience on RS. Longitudinal studies could help in delineating etiological models of RS, and the joint role of deficits in mindfulness and emotion regulation should inform treatment programs.

  11. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Scarpa, Riccardo; Valenzise, Mariella; Rosado, Maria Manuela; Giorda, Ezio; Crinò, Antonino; Cappa, Marco; Barollo, Susi; Garelli, Silvia; Betterle, Corrado; Fierabracci, Alessandra

    2017-02-01

    APECED is a T-cell mediated disease with increased frequencies of CD8+ effector and reduction of FoxP3+ T regulatory cells. Antibodies against affected organs and neutralizing to cytokines are found in the peripheral blood. The contribution of B cells to multiorgan autoimmunity in Aire-/- mice was reported opening perspectives on the utility of anti-B cell therapy. We aimed to analyse the B cell phenotype of APECED patients compared to age-matched controls. FACS analysis was conducted on PBMC in basal conditions and following CpG stimulation. Total B and switched memory (SM) B cells were reduced while IgM memory were increased in patients. In those having more than 15 years from the first clinical manifestation the defect included also mature and transitional B cells; total memory B cells were increased, while SM were unaffected. In patients with shorter disease duration, total B cells were unaltered while SM and IgM memory behaved as in the total group. A defective B cell proliferation was detected after 4day-stimulation. In conclusion APECED patients show, in addition to a significant alteration of the B cell phenotype, a dysregulation of the B cell function involving peripheral innate immune mechanisms particularly those with longer disease duration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation.

    Science.gov (United States)

    Ferrari, Luca; Pistocchi, Anna; Libera, Laura; Boari, Nicola; Mortini, Pietro; Bellipanni, Gianfranco; Giordano, Antonio; Cotelli, Franco; Riva, Paola

    2014-07-30

    Chordoma is a rare malignant tumor that recapitulates the notochord phenotype and is thought to derive from notochord remnants not correctly regressed during development. Apoptosis is necessary for the proper notochord development in vertebrates, and the apoptotic pathway mediated by Fas and Fasl has been demonstrated to be involved in notochord cells regression. This study was conducted to investigate the expression of FAS/FASL pathway in a cohort of skull base chordomas and to analyze the role of fas/fasl homologs in zebrafish notochord formation. FAS/FASL expression was found to be dysregulated in chordoma leading to inactivation of the downstream Caspases in the samples analyzed. Both fas and fasl were specifically expressed in zebrafish notochord sorted cells. fas and fasl loss-of-function mainly resulted in larvae with notochord multi-cell-layer jumps organization, larger vacuolated notochord cells, defects in the peri-notochordal sheath structure and in vertebral mineralization. Interestingly, we observed the persistent expression of ntla and col2a1a, the zebrafish homologs of the human T gene and COL2A1 respectively, which are specifically up-regulated in chordoma. These results demonstrate for the first time the dysregulation of FAS/FASL in chordoma and their role in notochord formation in the zebrafish model, suggesting their possible implication in chordoma onset.

  13. Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-06-01

    Full Text Available Zhen Li,1 Qianlan Yao,1 Songjian Zhao,1 Yin Wang,2,3 Yixue Li,1,4 Zhen Wang4 1School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 2Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 3Collaborative Innovation Center for Genetics and Development, Fudan University, 4Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Esophageal squamous cell carcinoma (ESCC is one of the most common malignancies worldwide and occurs at a relatively high frequency in People’s Republic of China. However, the molecular mechanism underlying ESCC is still unclear. In this study, the mRNA and long non-coding RNA (lncRNA expression profiles of ESCC were downloaded from the Gene Expression Omnibus database, and then differential co-expression analysis was used to reveal the altered co-expression relationship of gene pairs in ESCC tumors. A total of 3,709 mRNAs and 923 lncRNAs were differentially co-expressed between normal and tumor tissues, and we found that most of the gene pairs lost associations in the tumor tissues. The differential regulatory networking approach deciphered that transcriptional dysregulation was ubiquitous in ESCC, and most of the differentially regulated links were modulated by 37 TFs. Our study also found that two novel lncRNAs (ADAMTS9-AS1 and AP000696.2 might be essential in the development of ectoderm and epithelial cells, which could significantly stratify ESCC patients into high-risk and low-risk groups, and were much better than traditional clinical tumor markers. Further inspection of two risk groups showed that the changes in TF-target regulation in the high-risk patients were significantly higher than those in the low-risk patients. In addition, four signal transduction-related DCmRNAs (ERBB3, ENSA, KCNK7, MFSD5

  14. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism.

    Science.gov (United States)

    Schuijers, Jurian; Manteiga, John Colonnese; Weintraub, Abraham Selby; Day, Daniel Sindt; Zamudio, Alicia Viridiana; Hnisz, Denes; Lee, Tong Ihn; Young, Richard Allen

    2018-04-10

    Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Silencing of RB1 and RB2/P130 during adipogenesis of bone marrow stromal cells results in dysregulated differentiation.

    Science.gov (United States)

    Capasso, Stefania; Alessio, Nicola; Di Bernardo, Giovanni; Cipollaro, Marilena; Melone, Mariarosa Ab; Peluso, Gianfranco; Giordano, Antonio; Galderisi, Umberto

    2014-01-01

    Bone marrow adipose tissue (BMAT) is different from fat found elsewhere in the body, and only recently have some of its functions been investigated. BMAT may regulate bone marrow stem cell niche and plays a role in energy storage and thermogenesis. BMAT may be involved also in obesity and osteoporosis onset. Given the paramount functions of BMAT, we decided to better clarify the human bone marrow adipogenesis by analyzing the role of the retinoblastoma gene family, which are key players in cell cycle regulation. Our data provide evidence that the inactivation of RB1 or RB2/P130 in uncommitted bone marrow stromal cells (BMSC) facilitates the first steps of adipogenesis. In cultures with silenced RB1 or RB2/P130, we observed an increase of clones with adipogenic potential and a higher percentage of cells accumulating lipid droplets. Nevertheless, the absence of RB1 or RB2/P130 impaired the terminal adipocyte differentiation and gave rise to dysregulated adipose cells, with alteration in lipid uptake and release. For the first time, we evidenced that RB2/P130 plays a role in bone marrow adipogenesis. Our data suggest that while the inactivation of retinoblastoma proteins may delay the onset of last cell division and allow more BMSC to be committed to adipocyte, it did not allow a permanent cell cycle exit, which is a prerequisite for adipocyte terminal maturation.

  16. GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways.

    Science.gov (United States)

    Guerenne, Laura; Beurlet, Stéphanie; Said, Mohamed; Gorombei, Petra; Le Pogam, Carole; Guidez, Fabien; de la Grange, Pierre; Omidvar, Nader; Vanneaux, Valérie; Mills, Ken; Mufti, Ghulam J; Sarda-Mantel, Laure; Noguera, Maria Elena; Pla, Marika; Fenaux, Pierre; Padua, Rose Ann; Chomienne, Christine; Krief, Patricia

    2016-01-27

    In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.

  17. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  18. Dysregulated behaviors in bulimia nervosa: a case-control study

    OpenAIRE

    Gonçalves, Sónia; Machado, Bárbara Freire Brito César; Martins, C.; Brandão, Isabel; Torres, António Roma; Machado, Paulo P. P.

    2014-01-01

    Background: Bulimia nervosa (BN) is often related to self-control difficulties and to dysregulated behaviours. This study aimed to evaluate the frequency of self-injurious behaviour, suicide attempts, and other dysregulated behaviours in BN, using two control groups (a healthy group and a general psychiatric group), and also to examine the association between these behaviours and alleged sexual abuse in BN.Method: Women (N = 233) aged between 13 and 38 years old were evaluated using a semi-st...

  19. African-American esophageal squamous cell carcinoma expression profile reveals dysregulation of stress response and detox networks.

    Science.gov (United States)

    Erkizan, Hayriye Verda; Johnson, Kory; Ghimbovschi, Svetlana; Karkera, Deepa; Trachiotis, Gregory; Adib, Houtan; Hoffman, Eric P; Wadleigh, Robert G

    2017-06-19

    Esophageal carcinoma is the third most common gastrointestinal malignancy worldwide and is largely unresponsive to therapy. African-Americans have an increased risk for esophageal squamous cell carcinoma (ESCC), the subtype that shows marked variation in geographic frequency. The molecular architecture of African-American ESCC is still poorly understood. It is unclear why African-American ESCC is more aggressive and the survival rate in these patients is worse than those of other ethnic groups. To begin to define genetic alterations that occur in African-American ESCC we conducted microarray expression profiling in pairs of esophageal squamous cell tumors and matched control tissues. We found significant dysregulation of genes encoding drug-metabolizing enzymes and stress response components of the NRF2- mediated oxidative damage pathway, potentially representing key genes in African-American esophageal squamous carcinogenesis. Loss of activity of drug metabolizing enzymes would confer increased sensitivity of esophageal cells to xenobiotics, such as alcohol and tobacco smoke, and may account for the high incidence and aggressiveness of ESCC in this ethnic group. To determine whether certain genes are uniquely altered in African-American ESCC we performed a meta-analysis of ESCC expression profiles in our African-American samples and those of several Asian samples. Down-regulation of TP53 pathway components represented the most common feature in ESCC of all ethnic groups. Importantly, this analysis revealed a potential distinctive molecular underpinning of African-American ESCC, that is, a widespread and prominent involvement of the NRF2 pathway. Taken together, these findings highlight the remarkable interplay of genetic and environmental factors in the pathogenesis of African-American ESCC.

  20. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  1. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    International Nuclear Information System (INIS)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo; Koya, Daisuke

    2012-01-01

    Sirtinol-induced inflammation and NF-κB activation associated with p62/Sqstm1 accumulation. In summary, SIRT1 inactivation induces inflammation through NF-κB activation and dysregulates autophagy via nutrient-sensing pathways such as the mTOR and AMPK pathways, in THP-1 cells.

  2. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Koya, Daisuke, E-mail: koya0516@kanazawa-med.ac.jp [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan)

    2012-10-12

    is implicated in decreased 5 Prime -AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes Sirtinol-induced inflammation and NF-{kappa}B activation associated with p62/Sqstm1 accumulation. In summary, SIRT1 inactivation induces inflammation through NF-{kappa}B activation and dysregulates autophagy via nutrient-sensing pathways such as the mTOR and AMPK pathways, in THP-1 cells.

  3. GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways

    Directory of Open Access Journals (Sweden)

    Laura Guerenne

    2016-01-01

    Full Text Available Abstract Background In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. Methods We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS and acute myeloid leukemia (AML post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. Results Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. Conclusions These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.

  4. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation.

    Science.gov (United States)

    Rajavel, Tamilselvam; Packiyaraj, Pandian; Suryanarayanan, Venkatesan; Singh, Sanjeev Kumar; Ruckmani, Kandasamy; Pandima Devi, Kasi

    2018-02-01

    β-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release. Moreover, generation of ROS species and subsequent DNA stand break were found upon BS treatment which was reversed by addition of ROS scavenger (NAC). Indeed BS treatment increased p53 expression and its phosphorylation at Ser15, while silencing the p53 expression by pifithrin-α, BS induced apoptosis was reduced in A549 cells. Furthermore, BS induced apoptosis was also observed in NCI-H460 cells (p53 wild) but not in the NCI-H23 cells (p53 mutant). Down-regulation of Trx/Trx1 reductase contributed to the BS induced ROS accumulation and mitochondrial mediated apoptotic cell death in A549 and NCI-H460 cells. Taken together, our findings provide evidence for the novel anti-cancer mechanism of BS which could be developed as a promising chemotherapeutic drug against NSCLC cancers.

  5. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency

    Directory of Open Access Journals (Sweden)

    Kavya Reddy

    2016-03-01

    Full Text Available Attenuated auto-lysosomal system has been associated with Alzheimer disease (AD, yet all underlying molecular mechanisms leading to this impairment are unknown. We show that the amino acid sensing of mechanistic target of rapamycin complex 1 (mTORC1 is dysregulated in cells deficient in presenilin, a protein associated with AD. In these cells, mTORC1 is constitutively tethered to lysosomal membranes, unresponsive to starvation, and inhibitory to TFEB-mediated clearance due to a reduction in Sestrin2 expression. Normalization of Sestrin2 levels through overexpression or elevation of nuclear calcium rescued mTORC1 tethering and initiated clearance. While CLEAR network attenuation in vivo results in buildup of amyloid, phospho-Tau, and neurodegeneration, presenilin-knockout fibroblasts and iPSC-derived AD human neurons fail to effectively initiate autophagy. These results propose an altered mechanism for nutrient sensing in presenilin deficiency and underline an importance of clearance pathways in the onset of AD.

  6. Behavioral evidence of emotion dysregulation in binge eaters.

    Science.gov (United States)

    Eichen, Dawn M; Chen, Eunice; Boutelle, Kerri N; McCloskey, Michael S

    2017-04-01

    Binge eating is the most common disordered eating symptom and can lead to the development of obesity. Previous self-report research has supported the hypothesis that individuals who binge eat report greater levels of general emotion dysregulation, which may facilitate binge-eating behavior. However, to date, no study has experimentally tested the relation between binge eating history and in-vivo emotion dysregulation. To do this, a sample of female college students who either endorsed binge eating (n = 40) or denied the presence of any eating pathology (n = 47) completed the Difficulties with Emotion Regulation Scale (DERS) and a behavioral distress tolerance task (the Paced Auditory Serial Addition Task-Computer: PASAT-C) known to induce negative affect and distress. The binge eating group was 2.96 times more likely to quit the PASAT-C early (χ 2  = 5.04, p = 0.025) and reported greater irritability (F(1,84) = 7.09 p = 0.009) and frustration (F(1,84) = 5.00, p = 0.028) after completing the PASAT-C than controls, controlling for initial levels of these emotions. Furthermore, across the entire sample, quitting early was associated with greater emotion dysregulation on the DERS (r pb  = 0.342, p < 0.01). This study is the first to demonstrate that individuals who binge eat show in-vivo emotional dysregulation on a laboratory task. Future studies should examine the PASAT-C to determine its potential clinical utility for individuals with or at risk of developing binge eating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Family enmeshment, adolescent emotional dysregulation, and the moderating role of gender.

    Science.gov (United States)

    Kivisto, Katherine Little; Welsh, Deborah P; Darling, Nancy; Culpepper, Christi L

    2015-08-01

    Enmeshment plays a key role in many families' dysfunctional interactions and may be especially detrimental for adolescents. Sixty-four adolescents completed ratings of family enmeshment, perceived distress tolerance, an interpersonal challenge task, and mood ratings before and immediately after the task. Before and during the challenge task, adolescents' respiratory sinus arrhythmia (an indicator of cardiac vagal tone) was recorded. Associations were tested between adolescents' perceptions of family enmeshment and 3 aspects of adolescent emotional dysregulation. Adolescents who perceived higher family enmeshment also demonstrated greater emotional dysregulation in several domains: negative global appraisals of distress tolerance, stronger increase in subjective negative mood from baseline to postchallenge, lower baseline vagal tone, and vagal augmentation during the challenge task. Gender differences also emerged, such that girls reported more negative distress appraisals overall and enmeshed boys showed greater emotional dysregulation across analyses. Findings are discussed in terms of how clinicians may dynamically assess and treat enmeshment and emotional dysregulation in families with male and female adolescents. (c) 2015 APA, all rights reserved).

  8. Self-Concept Clarity and Emotion Dysregulation in Nonsuicidal Self-Injury.

    Science.gov (United States)

    Lear, Mary K; Pepper, Carolyn M

    2016-12-01

    Recent research has linked identity instability with engagement in nonsuicidal self-injury (NSSI; Claes, Luyckx, & Bijttebier, 2014; Claes et al., 2015). This study examined the relationship between self-concept clarity (SCC), an index of identity stability, and NSSI in a sample of 147 college students, using a cross-sectional survey design. The relationship between SCC and emotion dysregulation in NSSI severity was also examined. SCC was significantly negatively associated with NSSI engagement, as well as NSSI frequency and versatility, above negative affect or age. SCC fully accounted for the variance originally explained by emotion dysregulation in NSSI versatility. NSSI frequency was not significantly predicted by emotion regulation, but self-concept clarity reached marginal significance. These findings provide preliminary support for identity instability as a contributing factor to a relationship between emotion dysregulation and NSSI severity. Possible explanations and future research directions are discussed.

  9. An Emerging Role for Long Non-Coding RNA Dysregulation in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Elio Scarpini

    2013-10-01

    Full Text Available A novel class of transcripts, long non coding RNAs (lncRNAs, has recently emerged as key players in several biological processes, including dosage compensation, genomic imprinting, chromatin regulation, embryonic development and segmentation, stem cell pluripotency, cell fate determination and potentially many other biological processes, which still are to be elucidated. LncRNAs are pervasively transcribed in the genome and several lines of evidence correlate dysregulation of different lncRNAs to human diseases including neurological disorders. Although their mechanisms of action are yet to be fully elucidated, evidence suggests lncRNA contributions to the pathogenesis of a number of diseases. In this review, the current state of knowledge linking lncRNAs to different neurological disorders is discussed and potential future directions are considered.

  10. An Emerging Role for Long Non-Coding RNA Dysregulation in Neurological Disorders

    Science.gov (United States)

    Fenoglio, Chiara; Ridolfi, Elisa; Galimberti, Daniela; Scarpini, Elio

    2013-01-01

    A novel class of transcripts, long non coding RNAs (lncRNAs), has recently emerged as key players in several biological processes, including dosage compensation, genomic imprinting, chromatin regulation, embryonic development and segmentation, stem cell pluripotency, cell fate determination and potentially many other biological processes, which still are to be elucidated. LncRNAs are pervasively transcribed in the genome and several lines of evidence correlate dysregulation of different lncRNAs to human diseases including neurological disorders. Although their mechanisms of action are yet to be fully elucidated, evidence suggests lncRNA contributions to the pathogenesis of a number of diseases. In this review, the current state of knowledge linking lncRNAs to different neurological disorders is discussed and potential future directions are considered. PMID:24129177

  11. The impact of attachment security and emotion dysregulation on anxiety in children and adolescents

    DEFF Research Database (Denmark)

    Bender, Patrick K.; Sømhovd, Mikael; Pons, Francisco

    2015-01-01

    Theoretical views and empirical findings suggest interrelations among attachment security, emotion dysregulation and anxiety in childhood and adolescence. However, the associations among the three constructs have rarely been investigated in children, and no study has yet addressed...... to anxiety and that emotion dysregulation would help explain the association between attachment security and anxiety. Results showed that more securely attached youths reported less emotion dysregulation and that youths who had fewer emotion regulation difficulties experienced less anxiety. The association...... between attachment security and anxiety was mediated by emotion dysregulation. The model was confirmed for both children and adolescents. Findings are discussed with respect to theoretical implications, as well as future directions....

  12. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, Andrea; Ziemann, Frank; Wittig, Andrea; Preising, Stefanie; Engenhart-Cabillic, Rita [Philipps-University, Department of Radiotherapy and Radiooncology, BMFZ - Biomedical Research Center, Marburg (Germany); Mayer, Christina; Wagner, Steffen; Klussmann, Jens-Peter; Wittekindt, Claus [Justus Liebig University, Department of Otorhinolaryngology and Head and Neck Surgery, Giessen (Germany); Dreffke, Kirstin [Philipps-University, Institute for Radiobiology and Molecular Radiooncology, Marburg (Germany)

    2014-09-15

    Human Papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) respond favourably to radiotherapy as compared to HPV-unrelated HNSCC. We investigated DNA damage response in HPV-positive and HPV-negative HNSCC cell lines aiming to identify mechanisms, which illustrate reasons for the increased sensitivity of HPV-positive cancers of the oropharynx. Radiation response including clonogenic survival, apoptosis, DNA double-strand break (DSB) repair, and cell cycle redistribution in four HPV-positive (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) and four HPV-negative (UD-SCC-1, UM-SCC-6, UM-SCC-11b, UT-SCC-33) cell lines was evaluated. HPV-positive cells were more radiosensitive (mean SF2: 0.198 range: 0.22-0.18) than HPV-negative cells (mean SF2: 0.34, range: 0.45-0.27; p = 0.010). Irradiated HPV-positive cell lines progressed faster through S-phase showing a more distinct accumulation in G2/M. The abnormal cell cycle checkpoint activation was accompanied by a more pronounced increase of cell death after x-irradiation and a higher number of residual and unreleased DSBs. The enhanced responsiveness of HPV-related HNSCC to radiotherapy might be caused by a higher cellular radiosensitivity due to cell cycle dysregulation and impaired DNA DSB repair. (orig.) [German] Fuer Patienten mit HPV-assoziierten Kopf-Hals-Tumoren (HNSCC) ist im Vergleich zu Patienten mit nicht-HPV-assoziierten Tumoren ein besseres Ueberleben nach Radiotherapie gesichert. Ziel der Untersuchung war die Identifizierung von Unterschieden in der zellulaeren DNA-Schadensantwort von HPV-positiven und HPV-negativen Zelllinien, wodurch die bereits in Erprobung stehende Deeskalation einer Radiotherapie bei Patienten mit HPV-assoziierten HNSCC durch experimentelle Daten abgesichert werden koennte. Klonogenes Ueberleben, Induktion von Apoptose, DNA-Doppelstrang-Reparatur und Zellzyklusverhalten wurden in vier HPV-positiven (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) und vier HPV

  13. Differential risk for late adolescent conduct problems and mood dysregulation among children with early externalizing behavior problems.

    Science.gov (United States)

    Okado, Yuko; Bierman, Karen L

    2015-05-01

    To investigate the differential emergence of antisocial behaviors and mood dysregulation among children with externalizing problems, the present study prospectively followed 317 high-risk children with early externalizing problems from school entry (ages 5-7) to late adolescence (ages 17-19). Latent class analysis conducted on their conduct and mood symptoms in late adolescence revealed three distinct patterns of symptoms, characterized by: 1) criminal offenses, conduct disorder symptoms, and elevated anger ("conduct problems"), 2) elevated anger, dysphoric mood, and suicidal ideation ("mood dysregulation"), and 3) low levels of severe conduct and mood symptoms. A diathesis-stress model predicting the first two outcomes was tested. Elevated overt aggression at school entry uniquely predicted conduct problems in late adolescence, whereas elevated emotion dysregulation at school entry uniquely predicted mood dysregulation in late adolescence. Experiences of low parental warmth and peer rejection in middle childhood moderated the link between early emotion dysregulation and later mood dysregulation but did not moderate the link between early overt aggression and later conduct problems. Thus, among children with early externalizing behavior problems, increased risk for later antisocial behavior or mood dysfunction may be identifiable in early childhood based on levels of overt aggression and emotion dysregulation. For children with early emotion dysregulation, however, increased risk for mood dysregulation characterized by anger, dysphoric mood, and suicidality--possibly indicative of disruptive mood dysregulation disorder--emerges only in the presence of low parental warmth and/or peer rejection during middle childhood.

  14. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism

    Directory of Open Access Journals (Sweden)

    Jurian Schuijers

    2018-04-01

    Full Text Available Summary: Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. : Schuijers et al. show that a conserved CTCF site at the promoter of the MYC oncogene plays an important role in enhancer-promoter looping with tumor-specific super-enhancers. Perturbation of this site provides a potential therapeutic vulnerability. Keywords: gene regulation, super-enhancers, chromosome structure, enhancer docking

  15. Does Emotion Dysregulation Mediate the Association Between Sluggish Cognitive Tempo and College Students' Social Impairment?

    Science.gov (United States)

    Flannery, Andrew J; Becker, Stephen P; Luebbe, Aaron M

    2016-09-01

    Studies demonstrate an association between sluggish cognitive tempo (SCT) and social impairment, although no studies have tested possible mechanisms of this association. This study aimed to (a) examine SCT in relation to college students' social functioning; (b) test if SCT is significantly associated with emotion dysregulation beyond depressive, anxious, and ADHD symptoms; and (c) test if emotion dysregulation mediates the association between SCT symptoms and social impairment. College students (N = 158) completed measures of psychopathology symptoms, emotion dysregulation, and social functioning. Participants with elevated SCT (12%) had higher ADHD, depressive, and anxious symptoms in addition to poorer emotion regulation and social adjustment than participants without elevated SCT. Above and beyond other psychopathologies, SCT was significantly associated with social impairment but not general interpersonal functioning. SCT was also associated with emotion dysregulation, even after accounting for the expectedly strong association between depression and emotion dysregulation. Further analyses supported emotion dysregulation as a mediator of the association between SCT and social impairment. These findings are important for theoretical models of SCT and underscore the need for additional, longitudinal research. © The Author(s) 2014.

  16. SI-SHY: Dysregulated Fear in Toddlerhood Predicts Kindergarten Social Withdrawal through Protective Parenting.

    Science.gov (United States)

    Kiel, Elizabeth J; Buss, Kristin A

    2014-05-01

    Two recent advances in the study of fearful temperament (behavioral inhibition) include the validation of dysregulated fear as a temperamental construct that more specifically predicts later social withdrawal and anxiety, and the use of conceptual and statistical models that place parenting as a mechanism of development from temperament to these outcomes. The current study further advances these areas by examining whether protective parenting mediated the relation between dysregulated fear in toddlerhood and social withdrawal in kindergarten. Participants included 93 toddlers and their mothers, who engaged in laboratory tasks assessing traditional fearful temperament, dysregulated fear, and protective parenting. When children reached kindergarten, they returned to the laboratory for a multimethod assessment of social withdrawal. Results confirmed the hypothesis that dysregulated fear predicted social withdrawal through protective parenting, and this occurred above and beyond the effect of traditional fearful temperament. These findings bolster support for the use of dysregulated fear as a temperamental construct related to, but perhaps more discerning of risk than traditionally measured fearful temperament/behavioral inhibition and highlight the importance of transactional influences between the individual and the caregiving environment in the development of social withdrawal.

  17. Emotional dysregulation and anxiety control in the psychopathological mechanism underlying drive for thinness

    Directory of Open Access Journals (Sweden)

    Francesca eFiore

    2014-04-01

    Full Text Available Emotional dysregulation is a process which consists in mitigating, intensifying or maintaining a given emotion and is the trigger for some psychological disorders. Research has shown that a anxiety control plays an important role in emotional expression and regulation and, in addition, for anorexia nervosa and, more in general, in drive for thinness. Scientific literature suggests that in anorexia nervosa there is a core of emotional dysregulation and anxiety control. The aim of this study is to explore the roles of emotional dysregulation and anxiety control as independent or third variables in a mediational regression model related to drive for thinness. 154 clinical individuals with anorexia participated in the study and all completed a set of self-report questionnaires: eating disorders inventory version 3 (EDI-3, DERS, and the anxiety control questionnaire (ACQ. The data confirmed a mediational model in which the relation between emotional dysregulation and drive for thinness is mediated by anxiety control. The current study partially supports a clinical model in which emotional dysregulation is a distal factor in eating disorders while the mediator variable anxiety control is a proximal factor in the psychopathological process underlying it.

  18. SI-SHY: Dysregulated Fear in Toddlerhood Predicts Kindergarten Social Withdrawal through Protective Parenting

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2014-01-01

    Two recent advances in the study of fearful temperament (behavioral inhibition) include the validation of dysregulated fear as a temperamental construct that more specifically predicts later social withdrawal and anxiety, and the use of conceptual and statistical models that place parenting as a mechanism of development from temperament to these outcomes. The current study further advances these areas by examining whether protective parenting mediated the relation between dysregulated fear in toddlerhood and social withdrawal in kindergarten. Participants included 93 toddlers and their mothers, who engaged in laboratory tasks assessing traditional fearful temperament, dysregulated fear, and protective parenting. When children reached kindergarten, they returned to the laboratory for a multimethod assessment of social withdrawal. Results confirmed the hypothesis that dysregulated fear predicted social withdrawal through protective parenting, and this occurred above and beyond the effect of traditional fearful temperament. These findings bolster support for the use of dysregulated fear as a temperamental construct related to, but perhaps more discerning of risk than traditionally measured fearful temperament/behavioral inhibition and highlight the importance of transactional influences between the individual and the caregiving environment in the development of social withdrawal. PMID:25242893

  19. Timing of birth: Parsimony favors strategic over dysregulated parturition.

    Science.gov (United States)

    Catalano, Ralph; Goodman, Julia; Margerison-Zilko, Claire; Falconi, April; Gemmill, Alison; Karasek, Deborah; Anderson, Elizabeth

    2016-01-01

    The "dysregulated parturition" narrative posits that the human stress response includes a cascade of hormones that "dysregulates" and accelerates parturition but provides questionable utility as a guide to understand or prevent preterm birth. We offer and test a "strategic parturition" narrative that not only predicts the excess preterm births that dysregulated parturition predicts but also makes testable, sex-specific predictions of the effect of stressful environments on the timing of birth among term pregnancies. We use interrupted time-series modeling of cohorts conceived over 101 months to test for lengthening of early term male gestations in stressed population. We use an event widely reported to have stressed Americans and to have increased the incidence of low birth weight and fetal death across the country-the terrorist attacks of September 2001. We tested the hypothesis that the odds of male infants conceived in December 2000 (i.e., at term in September 2001) being born early as opposed to full term fell below the value expected from those conceived in the 50 prior and 50 following months. We found that term male gestations exposed to the terrorist attacks exhibited 4% lower likelihood of early, as opposed to full or late, term birth. Strategic parturition explains observed data for which the dysregulated parturition narrative offers no prediction-the timing of birth among gestations stressed at term. Our narrative may help explain why findings from studies examining associations between population- and/or individual-level stressors and preterm birth are generally mixed. © 2015 Wiley Periodicals, Inc.

  20. PTSD, emotion dysregulation, and dissociative symptoms in a highly traumatized sample

    Science.gov (United States)

    Powers, Abigail; Cross, Dorthie; Fani, Negar; Bradley, Bekh

    2015-01-01

    Exposure to multiple traumas has been shown to result in many negative mental health outcomes, including posttraumatic stress disorder (PTSD). Dissociation, which involves disruptions in memory, identity, and perceptions, may be a component of PTSD, particularly among individuals who have experienced childhood trauma. Emotion regulation difficulties are also strongly associated with childhood trauma and emotion dysregulation may be a particularly important factor to consider in the development and maintenance of dissociative symptoms. The goal of the present study was to determine whether emotion dysregulation mediated the relationship between PTSD symptoms and dissociation in a sample of 154 (80% female, 97% African-American) adults recruited from a public, urban hospital. PTSD was measured using the Clinician Administered PTSD Scale, emotion dysregulation was measured using the Difficulties in Emotion Regulation Scale, and dissociation was measured using the Multiscale Dissociation Inventory. A linear regression analysis showed that both PTSD and emotion dysregulation were statistically significant predictors of dissociation even after controlling for trauma exposure. Alexithymia and an inability to use emotion regulation strategies in particular were predictive of dissociation above and beyond other predictor variables. Using bootstrapping techniques, we found that overall emotion dyregulation partially mediated the effect of PTSD symptoms on dissociative symptoms. Our results suggest that emotion dysregulation may be important in understanding the relation between PTSD and dissociative symptoms. Treatment approaches may consider a focus on training in emotional understanding and the development of adaptive regulation strategies as a way to address dissociative symptoms in PTSD patients. PMID:25573648

  1. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways

    Directory of Open Access Journals (Sweden)

    Q. Wang

    Full Text Available Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC based on the functional dependency among pathways. Protein-protein interaction (PPI information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN, where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.

  2. The dysregulated cluster in personality profiling research: Longitudinal stability and associations with bulimic behaviors and correlates

    Science.gov (United States)

    Slane, Jennifer D.; Klump, Kelly L.; Donnellan, M. Brent; McGue, Matthew; Iacono, William G.

    2013-01-01

    Among cluster analytic studies of the personality profiles associated with bulimia nervosa, a group of individuals characterized by emotional lability and behavioral dysregulation (i.e., a dysregulated cluster) has emerged most consistently. However, previous studies have all been cross-sectional and mostly used clinical samples. This study aimed to replicate associations between the dysregulated personality cluster and bulimic symptoms and related characteristics using a longitudinal, population-based sample. Participants were females assessed at ages 17 and 25 from the Minnesota Twin Family Study, clustered based on their personality traits. The Dysregulated cluster was successfully identified at both time points and was more stable across time than either the Resilient or Sensation Seeking clusters. Rates of bulimic symptoms and related behaviors (e.g., alcohol use problems) were also highest in the dysregulated group. Findings suggest that the dysregulated cluster is a relatively stable and robust profile that is associated with bulimic symptoms. PMID:23398096

  3. Identifying microRNA/mRNA dysregulations in ovarian cancer.

    Science.gov (United States)

    Miles, Gregory D; Seiler, Michael; Rodriguez, Lorna; Rajagopal, Gunaretnam; Bhanot, Gyan

    2012-03-27

    MicroRNAs are a class of noncoding RNA molecules that co-regulate the expression of multiple genes via mRNA transcript degradation or translation inhibition. Since they often target entire pathways, they may be better drug targets than genes or proteins. MicroRNAs are known to be dysregulated in many tumours and associated with aggressive or poor prognosis phenotypes. Since they regulate mRNA in a tissue specific manner, their functional mRNA targets are poorly understood. In previous work, we developed a method to identify direct mRNA targets of microRNA using patient matched microRNA/mRNA expression data using an anti-correlation signature. This method, applied to clear cell Renal Cell Carcinoma (ccRCC), revealed many new regulatory pathways compromised in ccRCC. In the present paper, we apply this method to identify dysregulated microRNA/mRNA mechanisms in ovarian cancer using data from The Cancer Genome Atlas (TCGA). TCGA Microarray data was normalized and samples whose class labels (tumour or normal) were ambiguous with respect to consensus ensemble K-Means clustering were removed. Significantly anti-correlated and correlated genes/microRNA differentially expressed between tumour and normal samples were identified. TargetScan was used to identify gene targets of microRNA. We identified novel microRNA/mRNA mechanisms in ovarian cancer. For example, the expression level of RAD51AP1 was found to be strongly anti-correlated with the expression of hsa-miR-140-3p, which was significantly down-regulated in the tumour samples. The anti-correlation signature was present separately in the tumour and normal samples, suggesting a direct causal dysregulation of RAD51AP1 by hsa-miR-140-3p in the ovary. Other pairs of potentially biological relevance include: hsa-miR-145/E2F3, hsa-miR-139-5p/TOP2A, and hsa-miR-133a/GCLC. We also identified sets of positively correlated microRNA/mRNA pairs that are most likely result from indirect regulatory mechanisms. Our findings identify

  4. Emotion dysregulation mediates the relationship between child maltreatment and psychopathology: A structural equation model.

    Science.gov (United States)

    Jennissen, Simone; Holl, Julia; Mai, Hannah; Wolff, Sebastian; Barnow, Sven

    2016-12-01

    The present study investigated the mediating effects of emotion dysregulation on the relationship between child maltreatment and psychopathology. An adult sample (N=701) from diverse backgrounds of psychopathology completed the Childhood Trauma Questionnaire (CTQ), the Difficulties in Emotion Regulation Scale (DERS), the Brief Symptom Inventory (BSI), and the negative affect subscale of the Positive and Negative Affect Schedule (PANAS) in a cross-sectional online survey. Correlational analyses showed that all types of child maltreatment were uniformly associated with emotion dysregulation, and dimensions of emotion dysregulation were strongly related to psychopathology. Limited access to strategies for emotion regulation emerged as the most powerful predictor. Structural equation modeling analyses revealed that emotion dysregulation partially mediated the relationship between child maltreatment and psychopathology, even after controlling for shared variance with negative affect. These findings emphasize the importance of emotion dysregulation as a possible mediating mechanism in the association between child maltreatment and later psychopathology. Additionally, interventions targeting specific emotion regulation strategies may be effective to reduce psychopathology in victims of child maltreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Emotion dysregulation and dyadic conflict in depressed and typical adolescents: Evaluating concordance across psychophysiological and observational measures

    Science.gov (United States)

    Crowell, Sheila E.; Baucom, Brian R.; Yaptangco, Mona; Bride, Daniel; Hsiao, Ray; McCauley, Elizabeth; Beauchaine, Theodore P.

    2014-01-01

    Many depressed adolescents experience difficulty regulating their emotions. These emotion regulation difficulties appear to emerge in part from socialization processes within families and then generalize to other contexts. However, emotion dysregulation is typically assessed within the individual, rather than in the social relationships that shape and maintain dysregulation. In this study, we evaluated concordance of physiological and observational measures of emotion dysregulation during interpersonal conflict, using a multilevel actor-partner interdependence model (APIM). Participants were 75 mother-daughter dyads, including 50 depressed adolescents with or without a history of self-injury, and 25 typically developing controls. Behavior dysregulation was operationalized as observed aversiveness during a conflict discussion, and physiological dysregulation was indexed by respiratory sinus arrhythmia (RSA). Results revealed different patterns of concordance for control versus depressed participants. Controls evidenced a concordant partner (between-person) effect, and showed increased physiological regulation during minutes when their partner was more aversive. In contrast, clinical dyad members displayed a concordant actor (within-person) effect, becoming simultaneously physiologically and behaviorally dysregulated. Results inform current understanding of emotion dysregulation across multiple levels of analysis. PMID:24607894

  6. The cost of empathy: Parent-adolescent conflict predicts emotion dysregulation for highly empathic youth.

    Science.gov (United States)

    Van Lissa, Caspar J; Hawk, Skyler T; Koot, Hans M; Branje, Susan; Meeus, Wim H J

    2017-09-01

    Empathy plays a key role in maintaining close relationships and promoting prosocial conflict resolution. However, research has not addressed the potential emotional cost of adolescents' high empathy, particularly when relationships are characterized by more frequent conflict. The present 6-year longitudinal study (N = 467) investigated whether conflict with parents predicted emotion dysregulation more strongly for high-empathy adolescents than for lower-empathy adolescents. Emotion dysregulation was operationalized at both the experiential level, using mood diary data collected for 3 weeks each year, and at the dispositional level, using annual self-report measures. In line with predictions, we found that more frequent adolescent-parent conflict predicted greater day-to-day mood variability and dispositional difficulties in emotion regulation for high-empathy adolescents, but not for average- and low-empathy adolescents. Mood variability and difficulties in emotion regulation, in turn, also predicted increased conflict with parents. These links were not moderated by empathy. Moreover, our research allowed for a novel investigation of the interplay between experiential and dispositional emotion dysregulation. Day-to-day mood variability predicted increasing dispositional difficulties in emotion regulation over time, which suggests that experiential dysregulation becomes consolidated into dispositional difficulties in emotion regulation. Moderated mediation analyses revealed that, for high-empathy adolescents, conflict was a driver of this dysregulation consolidation process. Finally, emotion dysregulation played a role in overtime conflict maintenance for high-empathy adolescents. This suggests that, through emotion dysregulation, high empathy may paradoxically also contribute to maintaining negative adolescent-parent interactions. Our research indicates that high empathy comes at a cost when adolescent-parent relationships are characterized by greater negativity

  7. Aldosterone dysregulation with aging predicts renal vascular function and cardiovascular risk.

    Science.gov (United States)

    Brown, Jenifer M; Underwood, Patricia C; Ferri, Claudio; Hopkins, Paul N; Williams, Gordon H; Adler, Gail K; Vaidya, Anand

    2014-06-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal vascular and cardiovascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1124 visits) in the General Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression to stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics and the renal vascular responses to dietary sodium manipulation and angiotensin II infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β=-4.60; Page and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (Page may interact to mediate renal vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease.

  8. Depressive Symptoms, Emotion Dysregulation, and Bulimic Symptoms in Youth With Type 1 Diabetes

    Science.gov (United States)

    Young-Hyman, Deborah L.; Peterson, Claire M.; Fischer, Sarah; Markowitz, Jessica T.; Muir, Andrew B.; Laffel, Lori M.

    2016-01-01

    This study evaluated the associations between depressive symptoms, emotion dysregulation and bulimic symptoms in youth with type 1 diabetes (T1D) in the context of the diagnosis and treatment of T1D. Study participants were 103 youth in 2 distinct groups: newly diagnosed (New) or transitioning to pump therapy (continuous subcutaneous insulin infusion [CSII]; “Pump”), who completed questionnaires regarding symptoms of depression, emotion dysregulation, and bulimia. Glycemic control (A1c), height, weight, and questionnaires were evaluated within 10 days of diagnosis (n = 58) or at education/clinic visit before starting insulin utilizing CSII (n = 45). In the newly diagnosed group, only depression accounted for significant variance in bulimia scores (β = .47, P symptoms and emotion dysregulation were associated with greater bulimic symptoms. Depressive symptoms and emotion dysregulation, an indicator of poor coping/behavioral control, could help explain adoption of disordered eating behaviors in youth with T1D who are transitioning to pump therapy. PMID:27137457

  9. The Mediating Role of Cognitive Flexibility, Shame and Emotion Dysregulation Between Neuroticism and Depression

    Directory of Open Access Journals (Sweden)

    Majid Zarei

    2018-03-01

    Discussion: These findings suggest that for student depression, emotion dysregulation might be important and future intervention works can examine the effects of targeting emotion dysregulation among university students with high levels of neuroticism and/or depression.

  10. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  11. Emotion dysregulation and dyadic conflict in depressed and typical adolescents: evaluating concordance across psychophysiological and observational measures.

    Science.gov (United States)

    Crowell, Sheila E; Baucom, Brian R; Yaptangco, Mona; Bride, Daniel; Hsiao, Ray; McCauley, Elizabeth; Beauchaine, Theodore P

    2014-04-01

    Many depressed adolescents experience difficulty in regulating their emotions. These emotion regulation difficulties appear to emerge in part from socialization processes within families and then generalize to other contexts. However, emotion dysregulation is typically assessed within the individual, rather than in the social relationships that shape and maintain dysregulation. In this study, we evaluated concordance of physiological and observational measures of emotion dysregulation during interpersonal conflict, using a multilevel actor-partner interdependence model (APIM). Participants were 75 mother-daughter dyads, including 50 depressed adolescents with or without a history of self-injury, and 25 typically developing controls. Behavior dysregulation was operationalized as observed aversiveness during a conflict discussion, and physiological dysregulation was indexed by respiratory sinus arrhythmia (RSA). Results revealed different patterns of concordance for control versus depressed participants. Controls evidenced a concordant partner (between-person) effect, and showed increased physiological regulation during minutes when their partner was more aversive. In contrast, clinical dyad members displayed a concordant actor (within-person) effect, becoming simultaneously physiologically and behaviorally dysregulated. Results inform current understanding of emotion dysregulation across multiple levels of analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia.

    Science.gov (United States)

    Hess, Jonathan L; Tylee, Daniel S; Barve, Rahul; de Jong, Simone; Ophoff, Roel A; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T; Glatt, Stephen J

    2016-10-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. Published by Elsevier B.V.

  13. Investigating multiple dysregulated pathways in rheumatoid arthritis ...

    Indian Academy of Sciences (India)

    Xian-Dong Song

    2018-03-09

    Mar 9, 2018 ... 5Department of Kidney Internal Medicine, Hongqi Hospital of ... on the gene expression profile, pathway data, and PPI information. ... controls. These 10 dysregulated pathways might be potential ... a significant burden on the healthcare systems (Yamada ... The risk of adverse effects and expensive treat-.

  14. Pediatric emotional dysregulation and behavioral disruptiveness treated with hypnosis: a time-series design.

    Science.gov (United States)

    Iglesias, Alex; Iglesias, Adam

    2014-01-01

    A case of pediatric oppositional defiant disorder (ODD) with concomitant emotional dysregulation and secondary behavioral disruptiveness was treated with hypnosis by means of the hypnotic hold, a method adapted by the authors. An A-B-A-B time-series design with multiple replications was employed to measure the relationship of the hypnotic treatment to the dependent measure: episodes of emotional dysregulation with accompanying behavioral disruptiveness. The findings indicated a statistically significant relationship between the degree of change from phase to phase and the treatment. Follow-up at 6 months indicated a significant reduction of the frequency of targeted episodes of emotional dysregulation and behavioral disruptiveness at home.

  15. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy.

    Science.gov (United States)

    Askou, Anne Louise; Alsing, Sidsel; Holmgaard, Andreas; Bek, Toke; Corydon, Thomas J

    2018-02-01

    MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Dysregulation of the Bmi-1/p16Ink4a pathway provokes an aging-associated decline of submandibular gland function

    Science.gov (United States)

    Yamakoshi, Kimi; Katano, Satoshi; Iida, Mayu; Kimura, Hiromi; Okuma, Atsushi; Ikemoto-Uezumi, Madoka; Ohtani, Naoko; Hara, Eiji; Maruyama, Mitsuo

    2015-01-01

    Bmi-1 prevents stem cell aging, at least partly, by blocking expression of the cyclin-dependent kinase inhibitor p16Ink4a. Therefore, dysregulation of the Bmi-1/p16Ink4a pathway is considered key to the loss of tissue homeostasis and development of associated degenerative diseases during aging. However, because Bmi-1 knockout (KO) mice die within 20 weeks after birth, it is difficult to determine exactly where and when dysregulation of the Bmi-1/p16Ink4a pathway occurs during aging in vivo. Using real-time in vivo imaging of p16Ink4a expression in Bmi-1-KO mice, we uncovered a novel function of the Bmi-1/p16Ink4a pathway in controlling homeostasis of the submandibular glands (SMGs), which secrete saliva into the oral cavity. This pathway is dysregulated during aging in vivo, leading to induction of p16Ink4a expression and subsequent declined SMG function. These findings will advance our understanding of the molecular mechanisms underlying the aging-related decline of SMG function and associated salivary gland hypofunction, which is particularly problematic among the elderly. PMID:25832744

  17. Rapid-onset obesity with hypothalamic dysregulation, hypoventilation, and autonomic dysregulation (ROHHAD syndrome): A case report and literature review.

    Science.gov (United States)

    Ibáñez-Micó, S; Marcos Oltra, A M; de Murcia Lemauviel, S; Ruiz Pruneda, R; Martínez Ferrández, C; Domingo Jiménez, R

    ROHHAD syndrome (rapid-onset obesity with hypothalamic dysregulation, hypoventilation, and autonomic dysregulation) is a rare and complex disease, presenting in previously healthy children at the age of 2-4 years. Up to 40% of cases are associated with neural crest tumours. We present the case of a 2-year-old girl with symptoms of rapidly progressing obesity, who a few months later developed hypothalamic dysfunction with severe electrolyte imbalance, behaviour disorder, hypoventilation, and severe autonomic dysregulation, among other symptoms. Although the pathophysiology of this syndrome remains unclear, an autoimmune hypothesis has been proposed for ROHHAD. Therefore, after obtaining a limited response to intravenous immunoglobulins, we decided to test the response to a high dose cyclophosphamide (low dose was not effective either). Unfortunately our patient experienced many severe complications (among them central pontine myelinolysis, from which the patient recovered, and failure to wean from the ventilator requiring tracheostomy and long term ventilation) that required a prolonged ICU stay. Although her behaviour improved, our patient unfortunately died suddenly at home at the age of 5 due to respiratory pathology. ROHHAD syndrome is a rare and little-known disease which requires a multidisciplinary approach because it involves complex symptoms and multiple organ system involvement. Alveolar hypoventilation should be identified early and appropriate treatment should be started promptly for the best possible outcome. Immunomodulatory treatment with immunoglobulins, cyclophosphamide, or rituximab has previously resulted in symptom improvement in some cases. Because of the low incidence of the syndrome, multi-centre studies must be carried out in order to gather more accurate information about ROHHAD pathophysiology and design an appropriate therapeutic approach. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All

  18. Childhood trauma and eating psychopathology: a mediating role for dissociation and emotion dysregulation?

    Science.gov (United States)

    Moulton, Stuart J; Newman, Emily; Power, Kevin; Swanson, Vivien; Day, Kenny

    2015-01-01

    The present study examined the relationship between different forms of childhood trauma and eating psychopathology using a multiple mediation model that included emotion dysregulation and dissociation as hypothesised mediators. 142 female undergraduate psychology students studying at two British Universities participated in this cross-sectional study. Participants completed measures of childhood trauma (emotional abuse, physical abuse, sexual abuse, emotional neglect and physical neglect), eating psychopathology, dissociation and emotion dysregulation. Multiple mediation analysis was conducted to investigate the study's proposed model. Results revealed that the multiple mediation model significantly predicted eating psychopathology. Additionally, both emotion dysregulation and dissociation were found to be significant mediators between childhood trauma and eating psychopathology. A specific indirect effect was observed between childhood emotional abuse and eating psychopathology through emotion dysregulation. Findings support previous research linking childhood trauma to eating psychopathology. They indicate that multiple forms of childhood trauma should be assessed for individuals with eating disorders. The possible maintaining role of emotion regulation processes should also be considered in the treatment of eating disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Environmental pollutants and dysregulation of male puberty--a comparison among species.

    Science.gov (United States)

    Magnusson, Ulf; Ljungvall, Karl

    2014-04-01

    The scientific literature on altered onset of puberty predominantly involves studies on females. This paper reviews current knowledge on the role of environmental pollutants in dysregulation of male puberty in humans, laboratory rodents and farm animals. The methods used to determine the onset of puberty are well developed in humans and farm animals, and standardized across studies in humans. In laboratory rodents standardized external morphological endpoints are used. There is an increasing weight of evidence from epidemiological studies in humans, as well as from experiments in animals, indicating that environmental pollutants dysregulate puberty in males. Most data are from studies on "classical" persistent environmental pollutants. Assessing the effect of multichemical environmental pollution on dysregulation of puberty in humans is more challenging; further solid epidemiological data would likely contribute most to our understanding, especially if combined with systematically collected field-data from selected wildlife. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Developmental delay and emotion dysregulation: Predicting parent-child conflict across early to middle childhood

    Science.gov (United States)

    Marquis, Willa A.; Noroña, Amanda N.; Baker, Bruce L.

    2016-01-01

    Cumulative risk research has increased understanding of how multiple risk factors impact various socioemotional and interpersonal outcomes across the life span. However, little is known about risk factors for parent-child conflict early in development, where identifying predictors of change could be highly salient for intervention. Given their established association with parent-child conflict, child developmental delay (DD) and emotion dysregulation were examined as predictors of change in conflict across early to middle childhood (ages 3 to 7 years). Participants (n=211) were part of a longitudinal study examining the development of psychopathology in children with or without DD. Level of parent-child conflict was derived from naturalistic home observations, while child dysregulation was measured using an adapted CBCL-Emotion Dysregulation Index. PROCESS was used to examine the conditional interactive effects of delay status (typically developing, DD) and dysregulation on change in conflict from child ages 3 to 5 and 5 to 7 years. Across both of these timeframes, parent-child conflict increased only for families of children with both DD and high dysregulation, providing support for an interactive risk model of parent-child conflict. Findings are considered in the context of developmental transitions, and implications for intervention are discussed. PMID:28054804

  1. Developmental delay and emotion dysregulation: Predicting parent-child conflict across early to middle childhood.

    Science.gov (United States)

    Marquis, Willa A; Noroña, Amanda N; Baker, Bruce L

    2017-04-01

    Cumulative risk research has increased understanding of how multiple risk factors impact various socioemotional and interpersonal outcomes across the life span. However, little is known about risk factors for parent-child conflict early in development, where identifying predictors of change could be highly salient for intervention. Given their established association with parent-child conflict, child developmental delay (DD) and emotion dysregulation were examined as predictors of change in conflict across early to middle childhood (ages 3 to 7 years). Participants (n = 211) were part of a longitudinal study examining the development of psychopathology in children with or without DD. Level of parent-child conflict was derived from naturalistic home observations, whereas child dysregulation was measured using an adapted CBCL-Emotion Dysregulation Index. PROCESS was used to examine the conditional interactive effects of delay status (typically developing, DD) and dysregulation on change in conflict from child ages 3 to 5 and 5 to 7 years. Across both of these timeframes, parent-child conflict increased only for families of children with both DD and high dysregulation, providing support for an interactive risk model of parent-child conflict. Findings are considered in the context of developmental transitions, and implications for intervention are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Lifetime Sexual Victimization and Poor Risk Perception: Does Emotion Dysregulation Account for the Links?

    Science.gov (United States)

    Walsh, Kate; DiLillo, David; Messman-Moore, Terri L.

    2012-01-01

    The present study examined whether and which facets of emotion dysregulation serve an intervening role in the association between prior victimization and risk perception in an analogue sexual assault vignette. Participants were 714 university women who completed self-report measures of sexual victimization, emotion dysregulation, and a…

  3. Negative parental attribution and emotional dysregulation in Chinese early adolescents: Harsh fathering and harsh mothering as potential mediators.

    Science.gov (United States)

    Wang, Mingzhong; Wang, Jing

    2018-04-21

    The current study examined the potential mediating roles of harsh fathering and harsh mothering in the association between negative parental attribution and emotional dysregulation in Chinese adolescents and explored the moderating role of child gender on this indirect association. 864 students (367 girls, mean age = 13.55 years) with their parents were recruited as participants from two middle schools in Shandong Province, People's Republic of China. The results demonstrated that both harsh fathering and harsh mothering could partially mediate the association between negative maternal attribution and child emotional dysregulation, whereas only harsh fathering could partially mediate the association between negative paternal attribution and child emotional dysregulation. Moreover, we found the moderating role of child gender only for the association between harsh fathering and child emotional dysregulation, in that harsh fathering could be associated with higher levels of emotional dysregulation in girls. These results shed light on efforts to prevent harsh parenting and child emotional dysregulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation

    Science.gov (United States)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.

    2010-01-01

    BACKGROUND Spaceflight-associated immune dysregulation (SAID) occurs during spaceflight and may represent specific clinical risks for exploration-class missions. An appropriate ground analog for spaceflight-associated immune dysregulation would offer a platform for ground-evaluation of various potential countermeasures. This study evaluated the NASA Undersea Mission Operations ( NEEMO ), consisting of 14 day undersea deployment at the Aquarius station, as an analog for SAID. Sixteen Aquanauts from missions NEEMO-12, 13 and 14 participated in the study. RESULTS Mid-mission alterations leukocyte distribution occurred, including granulocytosis and elevations in central-memory CD8+ T-cells. General T cell function was reduced during NEEMO missions in roughly 50% of subjects. Secreted cytokines profiles were evaluated following whole blood stimulation with CD3/CD28 (T cells) or LPS (monocytes). T cell production of IFNg, IL-5, IL-10, IL-2, TNFa and IL-6 were all reduced before and during the mission. Conversely, monocyte production of TNFa, IL-10, IL-6, IL-1b and IL-8 were elevated during mission, moreso at the MD-14 timepoint. Antibodies to Epstein-Barr virus (EBV) viral capsid antigen and early antigen were increased in approximately 40% of the subjects. Changes in EBV tetramer-positive CD8+ T-cells exhibited a variable pattern. Antibodies against Cytomegalovirus (CMV) were marginally increased during the mission. Herpesvirus reactivation was determined by PCR. EBV viral load was generally elevated at L-6. Higher levels of salivary EBV were found during the NEEMO mission than before and after as well as than the healthy controls. No VZV or CMV was found in any pre, during and after NEEMO mission or control samples. Plasma cortisol was elevated at L-6. CONCLUSION Unfortunately, L-6 may be too near to mission start to be an appropriate baseline measurement. The general immune changes in leukocyte distribution, T cell function, cytokine production, virus specific

  5. The effects of early positive parenting and developmental delay status on child emotion dysregulation.

    Science.gov (United States)

    Norona, A N; Baker, B L

    2017-02-01

    Emotion regulation has been identified as a robust predictor of adaptive functioning across a variety of domains (Aldao et al. ). Furthermore, research examining early predictors of competence and deficits in ER suggests that factors internal to the individual (e.g. neuroregulatory reactivity, behavioural traits and cognitive ability) and external to the individual (e.g. caregiving styles and explicit ER training) contribute to the development of ER (Calkins ). Many studies have focused on internal sources or external sources; however, few have studied them simultaneously within one model, especially in studies examining children with developmental delays (DD). Here, we addressed this specific research gap and examined the contributions of one internal factor and one external factor on emotion dysregulation outcomes in middle childhood. Specifically, our current study used structural equation modelling (SEM) to examine prospective, predictive relationships between DD status, positive parenting at age 4 years and child emotion dysregulation at age 7 years. Participants were 151 families in the Collaborative Family Study, a longitudinal study of young children with and without DD. A positive parenting factor was composed of sensitivity and scaffolding scores from mother-child interactions at home and in the research centre at child age 4 years. A child dysregulation factor was composed of a dysregulation code from mother-child interactions and a parent-report measure of ER and lability/negativity at age 7 years. Finally, we tested the hypothesis that positive parenting would mediate the relationship between DD and child dysregulation. Mothers of children with DD exhibited fewer sensitive and scaffolding behaviours compared with mothers of typically developing children, and children with DD were more dysregulated on all measures of ER. SEM revealed that both DD status and early positive parenting predicted emotion dysregulation in middle childhood. Furthermore

  6. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients.

    Science.gov (United States)

    Ershova, E S; Jestkova, E M; Chestkov, I V; Porokhovnik, L N; Izevskaya, V L; Kutsev, S I; Veiko, N N; Shmarina, G; Dolgikh, O; Kostyuk, S V

    2017-04-01

    Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The role of social support on emotion dysregulation and Internet addiction among Chinese adolescents: A structural equation model.

    Science.gov (United States)

    Mo, Phoenix K H; Chan, Virginia W Y; Chan, Samuel W; Lau, Joseph T F

    2018-07-01

    Internet addiction is prevalent among adolescents and is associated with various negative outcomes. Relatively few studies examined the role of emotion dysregulation and social support on Internet addiction in this population. The present examined the association between emotion dysregulation, social support, and Internet addiction among junior secondary school students in Hong Kong. The mediating role of emotion dysregulation and Internet use on the relationship between social support and Internet addiction and the gender difference in such association were also tested. A total of 862 junior secondary school students (grade 7 to 8) from 4 schools completed a cross-sectional survey. 10.9% scored above the cut-off for Internet addiction based on the Chen Internet Addiction Scale. Results from structural equation modeling revealed that social support was negatively related to emotion dysregulation and Internet usage, which in turn, were positively related to Internet addiction. Results from multi-group analysis by gender showed that the relationship between social support and emotion dysregulation, Internet usage, and Internet addiction, and those between emotion dysregulation and Internet addiction and between Internet usage and Internet addiction were stronger among female participants. Emotion dysregulation is a potential risk factor while social support is a potential protective factor for Internet addiction. The role of social support on emotion dysregulation and Internet addiction were stronger among female students. Gender-sensitive interventions on Internet Addiction for adolescents are warranted, such interventions should increase social support and improve emotion regulation. Copyright © 2018. Published by Elsevier Ltd.

  8. Understanding the connection between self-esteem and aggression: The mediating role of emotion dysregulation.

    Science.gov (United States)

    Garofalo, Carlo; Holden, Christopher J; Zeigler-Hill, Virgil; Velotti, Patrizia

    2016-01-01

    The purpose of the present study was to extend previous knowledge concerning the link between self-esteem and aggression by examining the mediating role of emotion dysregulation among offenders and community participants. A sample of 153 incarcerated violent offenders and a community sample of 197 individuals completed self-report measures of self-esteem level, emotion dysregulation, and trait aggression. Offenders reported lower levels of self-esteem than community participants, as well as greater levels of emotional nonacceptance and hostility. Bootstrapping analyses were performed to test whether emotion dysregulation mediated the association between self-esteem level and aggression. In the offender sample, mediation models were significant for three of the four aspects of trait aggression that were considered. Emotion dysregulation fully mediated the links that low self-esteem had with physical aggression, anger, and hostility. The same pattern (with the addition of full mediation for verbal aggression) was confirmed in the community sample. Our findings suggest that emotion dysregulation may play an important role in the connection between low self-esteem and aggression. Alternative models of the associations among these variables were tested and discussed. As a whole, the present results are consistent with those of other studies and suggest that it may be beneficial to include emotion regulation modules as part of prevention and treatment programs for violent offenders. © 2015 Wiley Periodicals, Inc.

  9. Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Directory of Open Access Journals (Sweden)

    Liana C L Portugal

    Full Text Available High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points.A sample of fifty-seven youth (mean age: 14.5 years; 32 males was selected from a multi-site study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI. Pattern regression analyses consisted of Relevance Vector Regression (RVR and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo. Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r and mean squared error (MSE to evaluate the models. Permutation test was applied to estimate significance levels.Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model

  10. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuru; Neverve, Jodi; Nekolla, Stephan G.; Schwaiger, Markus; Bengel, Frank M. [Nuklearmedizinische Klinik und Poliklinik der Technischen Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich (Germany); Abletshauser, Claudia [Department of Medicine, Novartis Pharma GmbH, Nuernberg (Germany); Schnell, Oliver; Standl, Eberhard [Institut fuer Diabetesforschung, Munich (Germany)

    2002-12-01

    In diabetic patients, a number of studies have suggested an impairment of vascular reactivity in response to vasodilatory stimuli. The pattern of dysregulation at the coronary microcirculatory level, however, has not been clearly defined. Thus, it was the aim of this study to characterise coronary microvascular function non-invasively in a homogeneous group of asymptomatic type 2 diabetic patients. In 46 patients with type 2 diabetes, myocardial blood flow (MBF) was quantified at baseline, in response to cold pressor test (CPT) and during adenosine-mediated vasodilation using positron emission tomography and nitrogen-13 ammonia. None of the patients had been treated with insulin, and none had symptoms of cardiac disease. Decreased MBF during CPT, indicating microvascular dysregulation, was observed in 16 patients (CPT-), while 30 patients demonstrated increased MBF during CPT (CPT+). Response to CPT was mildly, but significantly correlated with response to adenosine (r=0.44, P=0.0035). There was no difference in HbA1c, serum lipid levels or serum endothelial markers between the groups. Microvascular dysregulation in the CPT- group was associated with elevated baseline MBF (P<0.0001), reduced baseline vascular resistance (P=0.0026) and an abnormal increase in resistance during CPT (P=0.0002). In conclusion, coronary microvascular dysregulation is present in approximately one-third of asymptomatic, non-insulin-treated type 2 diabetic patients. Elevated baseline blood flow and reduced microvascular resistance at rest are characteristics of this dysregulation. These data suggest a state of activation of endothelial-dependent vasodilation at baseline which appears to limit the flow response to stress conditions. (orig.)

  11. The Relationship Between Emotion Dysregulation and Impulsive Aggression in Veterans With Posttraumatic Stress Disorder Symptoms.

    Science.gov (United States)

    Miles, Shannon R; Menefee, Deleene S; Wanner, Jill; Teten Tharp, Andra; Kent, Thomas A

    2016-06-01

    While Veterans in general are no more dangerous than the civilian population, Veterans with posttraumatic stress disorder (PTSD) have stronger associations with anger and hostility and certain forms of aggression, such as intimate partner violence, than civilians with PTSD. This is alarming because up to 21% of Veterans seeking Veterans Affairs (VA) health care are diagnosed with PTSD. Emotion regulation difficulties (emotion dysregulation) are also related to increased PTSD symptom severity and may play a role in aggressive behavior. Because the predominant form of aggression in PTSD appears to be the impulsive subtype, the authors sought to clarify the relationship between PTSD, emotion dysregulation, and impulsive aggression. We examined how emotion dysregulation influenced impulsive aggression in a Veteran sample (N = 479) seeking treatment for trauma sequelae. All Veterans completed measures that assessed demographic information, emotion dysregulation, aggression frequency and subtype, and PTSD symptoms. Men generally reported more aggression than women. The emotion dysregulation, aggression, and PTSD measures were significantly correlated. Two cross-sectional mediation models showed emotion dysregulation fully accounted for the relationship between PTSD and impulsive aggression (indirect path for men: b = .07, SE = .026, bias-correct and accelerated confidence interval [BCa CI] = [0.02, 0.13]; indirect path for women: b = .08, SE = .022, BCa CI = [0.05, 0.13]). PTSD can increase negative emotions yet does not always lead to aggressive behaviors. The ability to regulate emotions may be pivotal to inhibiting aggression in those with PTSD. PTSD interventions may benefit from augmentation with emotion regulation skills training. © The Author(s) 2015.

  12. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms.

    Science.gov (United States)

    Tartaglia, Marco; Gelb, Bruce D

    2010-12-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations. © 2010 New York Academy of Sciences.

  13. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Kristian M. Hargadon

    2016-08-01

    Full Text Available TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1’s contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed.

  14. Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls

    Directory of Open Access Journals (Sweden)

    Di Giannantonio Massimo

    2011-01-01

    Full Text Available Abstract Background The exact cause of schizophrenia is not known, although several aetiological theories have been proposed for the disease, including developmental or neurodegenerative processes, neurotransmitter abnormalities, viral infection and immune dysfunction or autoimmune mechanisms. Growing evidence suggests that specific cytokines and chemokines play a role in signalling the brain to produce neurochemical, neuroendocrine, neuroimmune and behavioural changes. A relationship between inflammation and schizophrenia was supported by abnormal cytokines production, abnormal concentrations of cytokines and cytokine receptors in the blood and cerebrospinal fluid in schizophrenia. Since the neuropathology of schizophrenia has recently been reported to be closely associated with microglial activation we aimed to determined whether spontaneous or LPS-induced peripheral blood mononuclear cell chemokines and cytokines production is dysregulated in schizophrenic patients compared to healthy subjects. We enrolled 51 untreated first-episode schizophrenics (SC and 40 healthy subjects (HC and the levels of MCP-1, MIP-1α, IL-8, IL-18, IFN-γ and RANTES were determined by Elisa method in cell-free supernatants of PBMC cultures. Results In the simultaneous quantification we found significantly higher levels of constitutively and LPS-induced MCP-1, MIP-1α, IL-8 and IL-18, and lower RANTES and IFNγ levels released by PBMC of SC patients compared with HC. In ten SC patients receiving therapy with risperidone, olanzapine or clozapine basal and LPS-induced production of RANTES and IL-18 was increased, while both basal and LPS-induced MCP-1 production was decreased. No statistically significant differences were detected in serum levels after therapy. Conclusion The observation that in schizophrenic patients the PBMC production of selected chemo-cytokines is dysregulated reinforces the hypothesis that the peripheral cyto-chemokine network is involved in the

  15. Optimal Versus Realized Trajectories of Physiological Dysregulation in Aging and Their Relation to Sex-Specific Mortality Risk

    DEFF Research Database (Denmark)

    Arbeev, Konstantin G; Cohen, Alan A; Arbeeva, Liubov S

    2016-01-01

    dysregulation is related to different aging-related characteristics such as decline in stress resistance and adaptive capacity (which typically are not observed in the data and thus can be analyzed only indirectly), and, ultimately, to estimate how such dynamic relationships increase mortality risk with age. We...... substantial sex differences in these processes, with women becoming dysregulated more quickly but with men showing a much greater sensitivity to dysregulation in terms of mortality risk....

  16. Adverse Childhood Experiences and Disordered Gambling: Assessing the Mediating Role of Emotion Dysregulation.

    Science.gov (United States)

    Poole, Julia C; Kim, Hyoun S; Dobson, Keith S; Hodgins, David C

    2017-12-01

    Adverse childhood experiences (ACEs), such as sexual and physical abuse, have been established as risk factors for the development of disordered gambling. The underlying mechanism by which ACEs influence disordered gambling, however, remains unknown. The aims of the present research were to comprehensively investigate ten types of childhood adversity and their relationships to disordered gambling in adulthood, and to test whether emotion dysregulation mediated the relationship between ACEs and disordered gambling. A sample of community gamblers (N = 414) completed self-report measures of ACEs, emotion dysregulation, and gambling severity. Results revealed a significant association between all but one type (physical abuse) of ACEs and disordered gambling. Further, the results highlighted the cumulative impact of ACEs on gambling. Specifically, individuals who experienced three or more types of ACEs were more than three times as likely to report disordered gambling as compared to individuals with no history of childhood adversity. Importantly, as hypothesized, emotion dysregulation mediated the relationship between ACEs and disordered gambling. Findings from this research describe the association between ACEs and gambling and indicate a causal link between childhood adversity and disordered gambling. Results suggest that treatment initiatives may do well to address both ACEs and emotion dysregulation in the treatment of problem gambling.

  17. A novel statistical approach shows evidence for multi-system physiological dysregulation during aging.

    Science.gov (United States)

    Cohen, Alan A; Milot, Emmanuel; Yong, Jian; Seplaki, Christopher L; Fülöp, Tamàs; Bandeen-Roche, Karen; Fried, Linda P

    2013-03-01

    Previous studies have identified many biomarkers that are associated with aging and related outcomes, but the relevance of these markers for underlying processes and their relationship to hypothesized systemic dysregulation is not clear. We address this gap by presenting a novel method for measuring dysregulation via the joint distribution of multiple biomarkers and assessing associations of dysregulation with age and mortality. Using longitudinal data from the Women's Health and Aging Study, we selected a 14-marker subset from 63 blood measures: those that diverged from the baseline population mean with age. For the 14 markers and all combinatorial sub-subsets we calculated a multivariate distance called the Mahalanobis distance (MHBD) for all observations, indicating how "strange" each individual's biomarker profile was relative to the baseline population mean. In most models, MHBD correlated positively with age, MHBD increased within individuals over time, and higher MHBD predicted higher risk of subsequent mortality. Predictive power increased as more variables were incorporated into the calculation of MHBD. Biomarkers from multiple systems were implicated. These results support hypotheses of simultaneous dysregulation in multiple systems and confirm the need for longitudinal, multivariate approaches to understanding biomarkers in aging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Pediatric Obesity-Related Asthma: The Role of Metabolic Dysregulation.

    Science.gov (United States)

    Vijayakanthi, Nandini; Greally, John M; Rastogi, Deepa

    2016-05-01

    The burden of obesity-related asthma among children, particularly among ethnic minorities, necessitates an improved understanding of the underlying disease mechanisms. Although obesity is an independent risk factor for asthma, not all obese children develop asthma. Several recent studies have elucidated mechanisms, including the role of diet, sedentary lifestyle, mechanical fat load, and adiposity-mediated inflammation that may underlie the obese asthma pathophysiology. Here, we review these recent studies and emerging scientific evidence that suggest metabolic dysregulation may play a role in pediatric obesity-related asthma. We also review the genetic and epigenetic factors that may underlie susceptibility to metabolic dysregulation and associated pulmonary morbidity among children. Lastly, we identify knowledge gaps that need further exploration to better define pathways that will allow development of primary preventive strategies for obesity-related asthma in children. Copyright © 2016 by the American Academy of Pediatrics.

  19. Dialectical behavior therapy skills use and emotion dysregulation in personality disorders and psychopathy: a community self-report study.

    Science.gov (United States)

    Neacsiu, Andrada D; Tkachuck, Mathew A

    2016-01-01

    Emotion dysregulation is a critical transdiagnostic mental health problem that needs to be further examined in personality disorders (PDs). The current study examined dialectical behavior therapy (DBT) skills use, emotion dysregulation, and dysfunctional coping among adults who endorsed symptoms of cluster B PDs and psychopathy. We hypothesized that skills taught in DBT and emotion dysregulation are useful for adults with PDs other than borderline personality disorder (BPD). Using a self-report questionnaire, we examined these constructs in three groups of community adults: those who reported symptoms consistent with borderline personality disorder (BPD; N = 29), those who reported symptoms consistent with any other cluster B PD (N = 22), and those with no reported cluster B PD symptoms (N = 77) as measured by the Personality Diagnostic Questionnaire-4 + . Both PD groups reported higher emotion dysregulation and dysfunctional coping when compared to the no PD group. Only the BPD group had significantly lower DBT skills use. DBT skills use was found to be a significant predictor of cluster B psychopathology but only before accounting for emotion dysregulation. When added to the regression model, emotion dysregulation was found to be a significant predictor of cluster B psychopathology but DBT skills use no longer had a significant effect. Across all groups, DBT skills use deficits and maladaptive coping, but not emotion dysregulation, predicted different facets of psychopathy. Emotion dysregulation and use of maladaptive coping are problems in cluster B PDs, outside of BPD, but not in psychopathy. Inability to use DBT skills may be unique to BPD. Because this study relied exclusively on self-report, this data is preliminary and warrants further investigation.

  20. Emotion dysregulation and interpersonal problems : The role of defensiveness

    NARCIS (Netherlands)

    Garofalo, C.; Velotti, Patrizia; Zavattini, Giulio Cesare; Kosson, D.S.

    2017-01-01

    Despite evidence that individual differences in defensiveness (typically measured with social desirability scales) may affect associations among self-report measures, little is known about the impact of defensiveness in the well-established relations between self-report emotion dysregulation and

  1. [Pain and emotional dysregulation: Cellular memory due to pain].

    Science.gov (United States)

    Narita, Minoru; Watanabe, Moe; Hamada, Yusuke; Tamura, Hideki; Ikegami, Daigo; Kuzumaki, Naoko; Igarashi, Katsuhide

    2015-08-01

    Genetic factors are involved in determinants for the risk of psychiatric disorders, and neurological and neurodegenerative diseases. Chronic pain stimuli and intense pain have effects at a cellular and/or gene expression level, and will eventually induce "cellular memory due to pain", which means that tissue damage, even if only transient, can elicit epigenetically abnormal transcription/translation and post-translational modification in related cells depending on the degree or kind of injury or associated conditions. Such cell memory/transformation due to pain can cause an abnormality in a fundamental intracellular response, such as a change in the three-dimensional structure of DNA, transcription, or translation. On the other hand, pain is a multidimensional experience with sensory-discriminative and motivational-affective components. Recent human brain imaging studies have examined differences in activity in the nucleus accumbens between controls and patients with chronic pain, and have revealed that the nucleus accumbens plays a role in predicting the value of a noxious stimulus and its offset, and in the consequent changes in the motivational state. In this review, we provide a very brief overview of a comprehensive understanding of chronic pain associated with emotional dysregulation due to transcriptional regulation, epigenetic modification and miRNA regulation.

  2. Sexual victimization, fear of sexual powerlessness, and cognitive emotion dysregulation as barriers to sexual assertiveness in college women.

    Science.gov (United States)

    Zerubavel, Noga; Messman-Moore, Terri L

    2013-12-01

    The current study examined sexual victimization and two barriers to young women's sexual assertiveness: fear of sexual powerlessness and cognitive emotion dysregulation. College women (N = 499) responded to surveys and indicated that fear of sexual powerlessness and, to a lesser extent, cognitive emotion dysregulation were barriers to sexual assertiveness. Compared with nonvictims, sexually victimized women had greater problems with sexual assertiveness, fear of sexual powerlessness, and cognitive emotion dysregulation. Among victims, fear of sexual powerlessness and emotion dysregulation interacted to impede sexual assertiveness. Findings support targeting identified barriers in interventions to improve sexual assertiveness and reduce risk for unwanted sexual experiences and sexual victimization.

  3. Role of Melanin in Melanocyte Dysregulation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Noah C. Jenkins

    2013-01-01

    Full Text Available We have recently reported a potential alternative tumor suppressor function for p16 relating to its capacity to regulate oxidative stress and observed that oxidative dysregulation in p16-depleted cells was most profound in melanocytes, compared to keratinocytes or fibroblasts. Moreover, in the absence of p16 depletion or exogenous oxidative insult, melanocytes exhibited significantly higher basal levels of reactive oxygen species (ROS than these other epidermal cell types. Given the role of oxidative stress in melanoma development, we speculated that this increased susceptibility of melanocytes to oxidative stress (and greater reliance on p16 for suppression of ROS may explain why genetic compromise of p16 is more commonly associated with predisposition to melanoma rather than other cancers. Here we show that the presence of melanin accounts for this differential oxidative stress in normal and p16-depleted melanocytes. Thus the presence of melanin in the skin appears to be a double-edged sword: it protects melanocytes as well as neighboring keratinocytes in the skin through its capacity to absorb UV radiation, but its synthesis in melanocytes results in higher levels of intracellular ROS that may increase melanoma susceptibility.

  4. Dysregulated Pathway Identification of Alzheimer's Disease Based on Internal Correlation Analysis of Genes and Pathways.

    Science.gov (United States)

    Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun

    2017-11-20

    Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Dysregulation of glucose metabolism even in Chinese PCOS women with normal glucose tolerance.

    Science.gov (United States)

    Li, Weiping; Li, Qifu

    2012-01-01

    To clarify the necessity of improving glucose metabolism in polycystic ovary syndrome (PCOS) women as early as possible, 111 PCOS women with normal glucose tolerance and 92 healthy age-matched controls were recruited to investigate glucose levels distribution, insulin sensitivity and β cell function. 91 PCOS women and 33 controls underwent hyperinsulinemic-euglycemic clamp to assess their insulin sensitivity, which was expressed as M value. β cell function was estimated by homeostatic model assessment (HOMA)-β index after adjusting insulin sensitivity (HOMA-βad index). Compared with lean controls, lean PCOS women had similar fasting plasma glucose (FPG), higher postprandial plasma glucose (PPG) (6.03±1.05 vs. 5.44±0.97 mmol/L, PPCOS women had higher levels of both FPG (5.24±0.58 vs. 4.90±0.39, PPCOS women separately, and the cutoff of BMI indicating impaired β cell function of PCOS women was 25.545kg/m². In conclusion, insulin resistance and dysregulation of glucose metabolism were common in Chinese PCOS women with normal glucose tolerance. BMI ≥ 25.545kg/m² indicated impaired β cell function in PCOS women with normal glucose tolerance.

  6. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Science.gov (United States)

    Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2011-01-01

    This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.

  7. Integrating Dialectical Behavior Therapy and Cognitive-Behavioral Couple Therapy: A Couples Skills Group for Emotion Dysregulation

    Science.gov (United States)

    Kirby, Jennifer S.; Baucom, Donald H.

    2007-01-01

    Given the reciprocal influences of emotion dysregulation and relationship functioning, it is important to target such emotional difficulties within an interpersonal context. Treating emotion dysregulation within intimate relationships can offer valuable opportunities for both emotional and relationship difficulties to be addressed. This paper…

  8. Dysregulation of TIM-3-galectin-9 pathway in the cystic fibrosis airways.

    LENUS (Irish Health Repository)

    Vega-Carrascal, Isabel

    2012-02-01

    The T-cell Ig and mucin domain-containing molecules (TIMs) have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. It has been reported that proinflammatory cytokine dysregulation and neutrophil-dominated inflammation are the main causes of morbidity in cystic fibrosis (CF). However, the role of TIM receptors in CF has not been investigated. In this study, we demonstrated that TIM-3 is constitutively overexpressed in the human CF airway, suggesting a link between CF transmembrane conductance regulator (CFTR) function and TIM-3 expression. Blockade of CFTR function with the CFTR inhibitor-172 induced an upregulation of TIM-3 and its ligand galectin-9 in normal bronchial epithelial cells. We also established that TIM-3 serves as a functional receptor in bronchial epithelial cells, and physiologically relevant concentrations of galectin-9 induced TIM-3 phosphorylation, resulting in increased IL-8 production. In addition, we have demonstrated that both TIM-3 and galectin-9 undergo rapid proteolytic degradation in the CF lung, primarily because of neutrophil elastase and proteinase-3 activity. Our results suggest a novel intrinsic defect that may contribute to the neutrophil-dominated immune response in the CF airways.

  9. Dysregulation of TIM-3-galectin-9 pathway in the cystic fibrosis airways.

    LENUS (Irish Health Repository)

    Vega-Carrascal, Isabel

    2011-03-01

    The T-cell Ig and mucin domain-containing molecules (TIMs) have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. It has been reported that proinflammatory cytokine dysregulation and neutrophil-dominated inflammation are the main causes of morbidity in cystic fibrosis (CF). However, the role of TIM receptors in CF has not been investigated. In this study, we demonstrated that TIM-3 is constitutively overexpressed in the human CF airway, suggesting a link between CF transmembrane conductance regulator (CFTR) function and TIM-3 expression. Blockade of CFTR function with the CFTR inhibitor-172 induced an upregulation of TIM-3 and its ligand galectin-9 in normal bronchial epithelial cells. We also established that TIM-3 serves as a functional receptor in bronchial epithelial cells, and physiologically relevant concentrations of galectin-9 induced TIM-3 phosphorylation, resulting in increased IL-8 production. In addition, we have demonstrated that both TIM-3 and galectin-9 undergo rapid proteolytic degradation in the CF lung, primarily because of neutrophil elastase and proteinase-3 activity. Our results suggest a novel intrinsic defect that may contribute to the neutrophil-dominated immune response in the CF airways.

  10. Adult attachment, emotion dysregulation, and symptoms of depression and generalized anxiety disorder.

    Science.gov (United States)

    Marganska, Anna; Gallagher, Michelle; Miranda, Regina

    2013-01-01

    Differences in attachment style have been linked to both emotion regulation and psychological functioning, but the emotion regulatory mechanism through which attachment style might impact symptoms of depression and anxiety is unclear. The present study examined the explanatory role of emotion dysregulation in the relation between adult attachment style and symptoms of depression and generalized anxiety disorder (GAD) in a sample of 284 adults. Secure attachment was associated with lower depression and GAD symptoms and lower emotion dysregulation, whereas insecure attachment styles were generally associated with higher depression and GAD scores and higher emotion dysregulation. Perceived inability to generate effective emotion regulation strategies mediated the relation between insecure attachment and both depression and GAD symptoms. Nonacceptance of negative emotions and inability to control impulsive behaviors emerged as additional mediators of the relation between insecure attachment styles and GAD symptoms. The differential contribution of attachment style and emotion regulation to the prediction of depression and GAD symptoms may reflect differences in vulnerability to depression and GAD. © 2013 American Orthopsychiatric Association.

  11. PTSD Symptoms, Emotion Dysregulation, and Alcohol-Related Consequences Among College Students With a Trauma History.

    Science.gov (United States)

    Tripp, Jessica C; McDevitt-Murphy, Meghan E; Avery, Megan L; Bracken, Katherine L

    2015-01-01

    Posttraumatic stress disorder (PTSD), alcohol use, and alcohol-related consequences have been linked to emotion dysregulation. Sex differences exist in both emotion regulation dimensions and alcohol use patterns. This investigation examined facets of emotion dysregulation as potential mediators of the relationship between PTSD symptoms and alcohol-related consequences and whether differences may exist across sexes. Participants were 240 college students with a trauma history who reported using alcohol within the past three months and completed measures of PTSD symptoms, emotion dysregulation, alcohol consumption, alcohol-related consequences, and negative affect. The six facets of emotion dysregulation were examined as mediators of the relationship between PTSD symptoms and alcohol-related consequences in the full sample and by sex. There were differences in sexes on several variables, with women reporting higher PTSD scores and lack of emotional awareness. Men reported significantly more drinks per week in a typical week and a heavy week. There were significant associations between the variables for the full sample, with PTSD showing associations with five facets of emotion dysregulation subscales: impulse control difficulties when upset, difficulties engaging in goal-directed behavior, nonacceptance of emotional responses, lack of emotional clarity, and limited access to emotion regulation strategies. Alcohol-related consequences were associated with four aspects of emotion dysregulation: impulse control difficulties when upset, difficulties engaging in goal-directed behavior, nonacceptance of emotional responses, and limited access to emotion regulation strategies. Two aspects of emotion regulation, impulse control difficulties and difficulties engaging in goal directed behavior, mediated the relationship between PTSD symptoms and alcohol-related consequences in the full sample, even after adjusting for the effects of negative affect. When examined separately by

  12. Systematic identification of core transcription factors mediating dysregulated links bridging inflammatory bowel diseases and colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Yun Xiao

    Full Text Available Accumulating evidence shows a tight link between inflammation and cancer. However, comprehensive identification of pivotal transcription factors (i.e., core TFs mediating the dysregulated links remains challenging, mainly due to a lack of samples that can effectively reflect the connections between inflammation and tumorigenesis. Here, we constructed a series of TF-mediated regulatory networks from a large compendium of expression profiling of normal colonic tissues, inflammatory bowel diseases (IBDs and colorectal cancer (CRC, which contains 1201 samples in total, and then proposed a network-based approach to characterize potential links bridging inflammation and cancer. For this purpose, we computed significantly dysregulated relationships between inflammation and their linked cancer networks, and then 24 core TFs with their dysregulated genes were identified. Collectively, our approach provides us with quite important insight into inflammation-associated tumorigenesis in colorectal cancer, which could also be applied to identify functionally dysregulated relationships mediating the links between other different disease phenotypes.

  13. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network.

    Science.gov (United States)

    Song, Xian-Dong; Song, Xian-Xu; Liu, Gui-Bo; Ren, Chun-Hui; Sun, Yuan-Bo; Liu, Ke-Xin; Liu, Bo; Liang, Shuang; Zhu, Zhu

    2018-03-01

    The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.

  14. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival.

    LENUS (Irish Health Repository)

    Bray, Isabella

    2009-01-01

    MiRNAs regulate gene expression at a post-transcriptional level and their dysregulation can play major roles in the pathogenesis of many different forms of cancer, including neuroblastoma, an often fatal paediatric cancer originating from precursor cells of the sympathetic nervous system. We have analyzed a set of neuroblastoma (n = 145) that is broadly representative of the genetic subtypes of this disease for miRNA expression (430 loci by stem-loop RT qPCR) and for DNA copy number alterations (array CGH) to assess miRNA involvement in disease pathogenesis. The tumors were stratified and then randomly split into a training set (n = 96) and a validation set (n = 49) for data analysis. Thirty-seven miRNAs were significantly over- or under-expressed in MYCN amplified tumors relative to MYCN single copy tumors, indicating a potential role for the MYCN transcription factor in either the direct or indirect dysregulation of these loci. In addition, we also determined that there was a highly significant correlation between miRNA expression levels and DNA copy number, indicating a role for large-scale genomic imbalances in the dysregulation of miRNA expression. In order to directly assess whether miRNA expression was predictive of clinical outcome, we used the Random Forest classifier to identify miRNAs that were most significantly associated with poor overall patient survival and developed a 15 miRNA signature that was predictive of overall survival with 72.7% sensitivity and 86.5% specificity in the validation set of tumors. We conclude that there is widespread dysregulation of miRNA expression in neuroblastoma tumors caused by both over-expression of the MYCN transcription factor and by large-scale chromosomal imbalances. MiRNA expression patterns are also predicative of clinical outcome, highlighting the potential for miRNA mediated diagnostics and therapeutics.

  15. Social exposure and emotion dysregulation: Main effects in relation to nonsuicidal self-injury.

    Science.gov (United States)

    Zelkowitz, Rachel L; Porter, Andrew C; Heiman, Ellen R; Cole, David A

    2017-10-01

    We examined the relation of interpersonal and media exposure to nonsuicidal self-injury (NSSI) among 340 university students in the southeastern United States (73.5% female, M age = 19.38 years, SD = 1.15). We also assessed interactions and main effects of each exposure and emotion dysregulation in relation to NSSI, testing the social learning hypothesis of NSSI. Most participants endorsed medium to high levels of exposure to NSSI via media sources. More than one-third of participants were somewhat or very familiar with someone who engaged in NSSI. Almost half reported occasional or frequent conversations about NSSI. Both exposure forms were significantly related to NSSI history. However, hurdle regression analyses revealed that interpersonal exposure and emotion dysregulation, but not media exposure, were significantly associated with NSSI history and frequency. We did not find evidence for an emotion dysregulation-by-interpersonal-exposure interaction. We discuss implications for theoretical models of NSSI, limitations, and future directions. Copyright © 2017. Published by Elsevier Ltd.

  16. The Pathogenesis and Treatment of Emotion Dysregulation in Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Andreas Laddis

    2015-01-01

    Full Text Available Uncontrollable emotional lability and impulsivity are a paramount phenomenon of Borderline Personality Disorder (BPD. This paper aims to review theories that entertain emotion dysregulation as the core deficit of BPD and a key factor in the etiology of BPD, in order, then, to propose the author’s own theory, which arguably transcends certain limitations of the earlier ones. The author asserts that his psychodynamic theory explains the symptoms of BPD more thoroughly and it inspires a more parsimonious interpretation of brain imaging findings. In closing, the author draws implications of the proposed theory for clinical practice. He reports an efficacy study for treatment of emotion dysregulation based on that theory.

  17. Maternal control and early child dysregulation: Moderating roles of ethnicity and child delay status.

    Science.gov (United States)

    Caplan, B; Baker, B L

    2017-02-01

    Maternal controlling behaviour has been found to influence child development, particularly in behavioural and emotional regulation. Given the higher rates of interfering parent control found in mothers of children with developmental delays (DD) and Latina mothers, their children could be at increased risk for behavioural and emotional dysregulation. While studies generally support this increased risk for children with DD, findings for Latino children are mixed and often attributed to cultural models of child rearing. The present study sought to determine the moderating roles of child DD and mother ethnicity in determining the relationships between two types of parent control (supportive directiveness and interference) and child dysregulation over time. The present study, involving 178 3-year old children with DD (n = 80) or typical development (n = 98), examined observed parent control (directive versus interfering) of Latina and Anglo mothers as it relates to change in preschool child dysregulation over 2 years. Interfering parent control was greater for children with DD and also for Latino mothers. Supportive directive parenting generally related to relatively greater decline in child behaviour and emotion dysregulation over time, while interfering parenting generally related to less decline in child behaviour dysregulation over time. In Anglo but not Latino families, these relationships tended to vary as a function of child disability. Parent directives that support, rather than deter, ongoing child activity may promote positive regulatory development. These results particularly hold for children with DD and Latino families, and have implications for parenting practices and intervention. © 2016 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  18. Pathway Interaction Network Analysis Identifies Dysregulated Pathways in Human Monocytes Infected by Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Wufeng Fan

    2017-01-01

    Full Text Available In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM based on pathway interaction network (PIN which presented the functional dependency between pathways. After genes were aligned to the pathways, principal component analysis (PCA was used to calculate the pathway activity for each pathway, followed by detecting seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs, and cellular pathways. Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy. To evaluate whether the PIN method was feasible or not, we compared the introduced method with standard network centrality measures. The pathway of RNA polymerase II pretranscription events was selected as the seed pathway. Taking this seed pathway as start, one pathway set (9 dysregulated pathways with AUC score of 1.00 was identified. Among the 5 hub pathways obtained using standard network centrality measures, 4 pathways were the common ones between the two methods. RNA polymerase II transcription and DNA replication owned a higher number of pathway genes and DEGs. These dysregulated pathways work together to influence the progression of LM infection, and they will be available as biomarkers to diagnose LM infection.

  19. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes

    Directory of Open Access Journals (Sweden)

    Elvezia Maria Paraboschi

    2015-09-01

    Full Text Available Abnormalities in RNA metabolism and alternative splicing (AS are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls, followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p = 0.0015 by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  20. Attention Biases Towards and Away from Threat Mark the Relation between Early Dysregulated Fear and the Later Emergence of Social Withdrawal.

    Science.gov (United States)

    Morales, Santiago; Pérez-Edgar, Koraly E; Buss, Kristin A

    2015-08-01

    Fearful temperament, mostly studied as behavioral inhibition (BI), has been extensively associated with social withdrawal in childhood and the later emergence of anxiety disorders, especially social anxiety disorder (SAD). Recent studies have characterized a distinct type of fearful temperament marked by high levels of fear in low threat situations - labeled dysregulated fear. Dysregulated fear has been related to SAD over and above risks associated with BI. However, the mechanism by which dysregulated fear is related to SAD has not been studied. Cognitive mechanisms, such as attentional bias towards threat, may be a possible conduit. We examined differences in attentional bias towards threat in six-year-olds who displayed a pattern of dysregulated fear at age two (N = 23) compared with children who did not display dysregulated fear (N = 33). Moreover, we examined the concurrent relation between attentional bias and social withdrawal. Results indicated that children characterized by dysregulated fear showed a significant bias away from threat, and that this bias was significantly different from the children without dysregulated fear, who showed no significant bias. Moreover, attentional bias towards threat was positively related to social withdrawal only for the dysregulated fear group. These results are discussed in consideration of the existing knowledge of attentional bias to threat in the developmental and pediatric anxiety literatures, as well as recent studies that find important heterogeneity in attentional bias.

  1. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast.

    Directory of Open Access Journals (Sweden)

    Melissa Bizzarri

    -specific genes and to activate meiosis in response to stress. We argue that sequence divergence within the chimeric a1-α2 heterodimer could be involved in the generation of negative epistasis, contributing to the allodiploid sterility and the dysregulation of cell identity.

  2. [Stress and autonomic dysregulation in patients with fibromyalgia syndrome].

    Science.gov (United States)

    Friederich, H-C; Schellberg, D; Mueller, K; Bieber, C; Zipfel, S; Eich, W

    2005-06-01

    The aim of the present study was to evaluate to what extent the orthostatic dysregulation of FMS patients can be attributed primarily to reduced baroreceptor-mediated activation of the sympathetic nervous system and whether a hyporeactive sympathetic nervous system can also be confirmed for mental stress. A total of 28 patients with primary FMS were examined and compared with 15 healthy subjects. Diagnostic investigations of the autonomic nervous system were based on measuring HRV in frequency range and assessing spontaneous baroreflex sensitivity (sBRS) under mental stress and passive orthostatism. Both under orthostatic and mental stress FMS patients exhibited reduced activation of the sympathetic nervous system as measured by the spectral power of HRV in the low-frequency range and the mean arterial blood pressure or heart rate. The present study provided no indications for dysregulation of sBRS. The results obtained confirm the hypothesis of a hyporeactive stress system in FMS patients for both peripherally and centrally mediated stimulation of the sympathetic nervous system.

  3. Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease

    Science.gov (United States)

    Beerman, Isabel; Rossi, Derrick J.

    2015-01-01

    Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761

  4. Dysregulation of RNA Mediated Gene Expression in Motor Neuron Diseases.

    Science.gov (United States)

    Gonçalves, Inês do Carmo G; Rehorst, Wiebke A; Kye, Min Jeong

    2016-01-01

    Recent findings indicate an important role for RNA-mediated gene expression in motor neuron diseases, including ALS (amyotrophic lateral sclerosis) and SMA (spinal muscular atrophy). ALS, also known as Lou Gehrig's disease, is an adult-onset progressive neurodegenerative disorder, whereby SMA or "children's Lou Gehrig's disease" is considered a pediatric neurodevelopmental disorder. Despite the difference in genetic causes, both ALS and SMA share common phenotypes; dysfunction/loss of motor neurons that eventually leads to muscle weakness and atrophy. With advanced techniques in molecular genetics and cell biology, current data suggest that these two distinct motor neuron diseases share more than phenotypes; ALS and SMA have similar cellular pathological mechanisms including mitochondrial dysfunction, oxidative stress and dysregulation in RNA-mediated gene expression. Here, we will discuss the current findings on these two diseases with specific focus on RNA-mediated gene regulation including miRNA expression, pre-mRNA processing and RNA binding proteins.

  5. Metacognitions or distress intolerance: The mediating role in the relationship between emotional dysregulation and problematic internet use.

    Science.gov (United States)

    Akbari, Mehdi

    2017-12-01

    Given the relevance of problematic Internet use (PIU) to everyday life, its relationship to emotional dysregulation and the importance of metacognitions and distress intolerance in process and intermediaries research, this study examined which of metacognitions and distress intolerance acts as an intermediary between emotional dysregulation and PIU. In the current study, 413 undergraduate students from the University of Tehran, Iran (202 females; mean age = 20.13) voluntarily completed a questionnaire package which included the Internet Addiction Test (IAT), Difficulties in Emotion Regulation Scale (DERS), Metacognitions Questionnaire 30 (MCQ-30(, and Distress Tolerance Scale (DTS). The data were then analyzed using structural equation modeling by LISREL software. Significant correlations were found between PIU and emotional dysregulation and both distress intolerance and metacognitions ( P  intolerance. Also, these findings emphasize that distress intolerance has a more significant mediating role than metacognition in the relationship between emotional dysregulation and PIU.

  6. Iron dysregulation combined with aging prevents sepsis-induced apoptosis.

    Science.gov (United States)

    Javadi, Pardis; Buchman, Timothy G; Stromberg, Paul E; Turnbull, Isaiah R; Vyas, Dinesh; Hotchkiss, Richard S; Karl, Irene E; Coopersmith, Craig M

    2005-09-01

    Sepsis, iron loading, and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Hfe-/- mice (a murine homologue of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24-26 months) or mature (16-18 months) Hfe-/- mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 h later and assessed for apoptosis and cytokine levels. Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe-/- mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe-/- mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe-/- mice than septic mature Hfe-/- animals. Interleukin-6 was elevated in septic aged Hfe-/- mice compared to sham mice. Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe-/- mice are able to mount an inflammatory response following CLP and mature Hfe-/- mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation.

  7. The Impact of Alexithymia on Emotion Dysregulation in Anorexia Nervosa and Bulimia Nervosa over Time.

    Science.gov (United States)

    Brown, Tiffany A; Avery, Jade C; Jones, Michelle D; Anderson, Leslie K; Wierenga, Christina E; Kaye, Walter H

    2018-03-01

    Research supports that anorexia nervosa-restricting subtype (AN-R) and bulimia nervosa (BN) are associated with emotion regulation difficulties and alexithymia. However, the impact of diagnosis on the relationship between these constructs is less well understood. The purpose of the present study was to examine whether eating disorder diagnosis moderated the association between admission alexithymia and emotion regulation through discharge. Adult patients with AN-R (n = 54) and BN (n = 60) completed assessments at treatment admission and discharge from a partial hospital program. Eating disorder diagnosis moderated the association between admission alexithymia levels and change in global emotion dysregulation, impulse control difficulties and access to emotion regulation strategies. At higher levels of admission alexithymia, there were no differences between AN-R and BN on emotion dysregulation, whereas at lower levels of alexithymia, AN-R patients demonstrated lower levels of emotion dysregulation. Results imply that difficulties with alexithymia appear to have a greater impact on emotion dysregulation for AN-R patients. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  8. The Impact of Age-Related Dysregulation of the Angiotensin System on Mitochondrial Redox Balance

    Directory of Open Access Journals (Sweden)

    Ramya eVajapey

    2014-11-01

    Full Text Available Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS. A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II by angiotensin-converting enzyme (ACE. Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R and type 2 (AT2R. The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS. This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell.AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b discuss the effect of age-related activation of RAS on generation of free radicals.

  9. Dysregulation of striatal projection neurons in Parkinson's disease.

    Science.gov (United States)

    Beck, Goichi; Singh, Arun; Papa, Stella M

    2018-03-01

    The loss of nigrostriatal dopamine (DA) is the primary cause of motor dysfunction in Parkinson's disease (PD), but the underlying striatal mechanisms remain unclear. In spite of abundant literature portraying structural, biochemical and plasticity changes of striatal projection neurons (SPNs), in the past there has been a data vacuum from the natural human disease and its close model in non-human primates. Recently, single-cell recordings in advanced parkinsonian primates have generated new insights into the altered function of SPNs. Currently, there are also human data that provide direct evidence of profoundly dysregulated SPN activity in PD. Here, we review primate recordings that are impacting our understanding of the striatal dysfunction after DA loss, particularly through the analysis of physiologic correlates of parkinsonian motor behaviors. In contrast to recordings in rodents, data obtained in primates and patients demonstrate similar major abnormalities of the spontaneous SPN firing in the alert parkinsonian state. Furthermore, these studies also show altered SPN responses to DA replacement in the advanced parkinsonian state. Clearly, there is yet much to learn about the striatal discharges in PD, but studies using primate models are contributing unique information to advance our understanding of pathophysiologic mechanisms.

  10. Dysregulation of angiopoietins is associated with placental malaria and low birth weight.

    Directory of Open Access Journals (Sweden)

    Karlee L Silver

    Full Text Available BACKGROUND: Placental malaria (PM is associated with adverse pregnancy outcomes including low birth weight (LBW. However, the precise mechanisms by which PM induces LBW are poorly defined. Based on the essential role of angiopoietin (ANG-1 and -2 in normal placental vascular development, we hypothesized that PM may result in the dysregulation of angiopoietins and thereby contribute to LBW outcomes. METHODS AND FINDINGS: In a mouse model of PM, we show that Plasmodium berghei ANKA infection of pregnant mice resulted in dysregulated angiopoietin levels and fetal growth restriction. PM lead to decreased ANG-1, increased ANG-2, and an elevated ratio of ANG-2/ANG-1 in the placenta and the serum. These observations were extended to malaria-exposed pregnant women: In a study of primigravid women prospectively followed over the course of pregnancy, Plasmodium falciparum infection was associated with a decrease in maternal plasma ANG-1 levels (P = 0.031 and an increase in the ANG-2:ANG-1 ratio (P = 0.048. ANG-1 levels recovered with successful treatment of peripheral parasitemia (P = 0.010. In a cross-sectional study of primigravidae at delivery, angiopoietin dysregulation was associated with PM (P = 0.002 and LBW (P = 0.041. Women with PM who delivered LBW infants had increased ANG-2:ANG-1 ratios (P = 0.002 compared to uninfected women delivering normal birth weight infants. CONCLUSIONS: These data support the hypothesis that dysregulation of angiopoietins is associated with PM and LBW outcomes, and suggest that ANG-1 and ANG-2 levels may be clinically informative biomarkers to identify P. falciparum-infected mothers at risk of LBW deliveries.

  11. Emotion Dysregulation Mediates Between Childhood Emotional Abuse and Motives for Substance Use.

    Science.gov (United States)

    Barahmand, Usha; Khazaee, Ali; Hashjin, Goudarz Sadeghi

    2016-12-01

    The purpose of this study is to assess the relative mediating effects of impulsivity and emotion dysregulation in the relationship between childhood maltreatment and motives for opiate use. Seventy four adolescent users of Tramadol, a synthetic opiate, were recruited from a boot camp for de-addiction and rehabilitation services for the study. Data were collected between May, 2014 and November, 2014. Participants completed assessments of childhood abuse history, difficulties regulating emotions, impulsiveness and motives for substance use as well as a socio-demographic information sheet. The results of the current study indicate that types of abuse may be associated with particular outcomes and can inform treatment planning for substance users. Findings from bootstrap mediator analyses indicated that emotion dysregulation, but not impulsiveness, mediated the relationship between childhood emotional abuse and expansion and enhancement motives for substance use. The current study provides preliminary evidence that difficulties regulating emotions may function as a mechanism linking prior childhood experiences of emotional abuse to subsequent motives for substance use. Clinical implications of these findings suggest that targeting emotion dysregulation problems may be an effective adjunct in the treatment of childhood emotional abuse adolescent victims at risk for substance use. Published by Elsevier Inc.

  12. Weight-Related Correlates of Psychological Dysregulation in Adolescent and Young Adult (AYA) Females with Severe Obesity

    Science.gov (United States)

    Gowey, Marissa A.; Reiter-Purtill, Jennifer; Becnel, Jennifer; Peugh, James; Mitchell, James E.; Zeller, Meg H.

    2016-01-01

    Objective Severe obesity is the fastest growing pediatric subgroup of excess weight levels. Psychological dysregulation (i.e., impairments in regulating cognitive, emotional, and/or behavioral processes) has been associated with obesity and poorer weight loss outcomes. The present study explored associations of dysregulation with weight-related variables among adolescent and young adult (AYA) females with severe obesity. Methods Fifty-four AYA females with severe obesity (MBMI=48.71 kg/m2; Mage=18.29, R=15–21 years; 59.3% White) completed self-report measures of psychological dysregulation and weight-related constructs including meal patterns, problematic eating behaviors, and body and weight dissatisfaction, as non-surgical comparison participants in a multi-site study of adolescent bariatric surgery outcomes. Pearson and bivariate correlations were conducted and stratified by age group to analyze associations between dysregulation subscales (affective, behavioral, cognitive) and weight-related variables. Results Breakfast was the most frequently skipped meal (consumed 3–4 times/week). Eating out was common (4–5 times/week) and mostly occurred at fast-food restaurants. Evening hyperphagia (61.11%) and eating in the absence of hunger (37.04%) were commonly endorsed, while unplanned eating (29.63%), a sense of loss of control over eating (22.22%), eating beyond satiety (22.22%), night eating (12.96%), and binge eating (11.11%) were less common. Almost half of the sample endorsed extreme weight dissatisfaction. Dysregulation was associated with most weight-related attitudes and behaviors of interest in young adults but select patterns emerged for adolescents. Conclusions Higher levels of psychological dysregulation are associated with greater BMI, problematic eating patterns and behaviors, and body dissatisfaction in AYA females with severe obesity. These findings have implications for developing novel intervention strategies for severe obesity in AYAs that may

  13. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/β-catenin signaling in the thymus resulting in altered thymocyte development

    International Nuclear Information System (INIS)

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-01

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/β-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/β-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4 + cells and a subpopulation of double-negative cells (DN; CD4 - CD8 - ), DN4 (CD44 - CD25 - ). Shh and Wnt/β-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/β-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  14. Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Space Flight

    Science.gov (United States)

    Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2010-01-01

    This slide presentation reviews a study that was conducted to ascertain if the immune system dysregulation, viral reactivation and stress from short duration space flight were a result of the stress of landing and readjustment to gravity. The objectives of the study were to replace several recent immune studies with one comprehensive study that will include in-flight sampling; address lack of in-flight data: (i.e., determine the in-flight status of immunity, physiological stress, viral immunity/reactivation); determine the clinical risk related to immune dysregulation for exploration class spaceflight; and determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  15. Gender moderates the relationship between attachment insecurities and emotion dysregulation

    NARCIS (Netherlands)

    Velotti, P.; D’Aguanno, M.; de Campora, G.; di Francescantonio, S.; Garofalo, C.; Giromini, L.; Petrocchi, C.; Terrasi, M.; Zavattini, G.C.

    2016-01-01

    The relation between attachment styles and emotion regulation is well documented, and emotion dysregulation is considered characteristic of individuals with insecure attachment styles. Although gender differences in emotion regulation have often been reported, it is not clear whether the association

  16. Aetiological pathways to Borderline Personality Disorder symptoms in early adolescence: childhood dysregulated behaviour, maladaptive parenting and bully victimisation.

    Science.gov (United States)

    Winsper, Catherine; Hall, James; Strauss, Vicky Y; Wolke, Dieter

    2017-01-01

    Developmental theories for the aetiology of Borderline Personality Disorder (BPD) suggest that both individual features (e.g., childhood dysregulated behaviour) and negative environmental experiences (e.g., maladaptive parenting, peer victimisation) may lead to the development of BPD symptoms during adolescence. Few prospective studies have examined potential aetiological pathways involving these two factors. We addressed this gap in the literature using data from the Avon Longitudinal Study of Parents and Children (ALSPAC). We assessed mother-reported childhood dysregulated behaviour at 4, 7 and 8 years using the Strengths and Difficulties Questionnaire (SDQ); maladaptive parenting (maternal hitting, punishment, and hostility) at 8 to 9 years; and bully victimisation (child and mother report) at 8, 9 and 10 years. BPD symptoms were assessed at 11 years using the UK Childhood Interview for DSM-IV BPD. Control variables included adolescent depression (assessed with the Short Moods and Feelings Questionnaire-SMFQ) and psychotic symptoms (assessed with the Psychosis-Like Symptoms Interview-PLIKS) at 11 to 14 years, and mother's exposure to family adversity during pregnancy (assessed with the Family Adversity Scale-FAI). In unadjusted logistic regression analyses, childhood dysregulated behaviour and all environmental risk factors (i.e., family adversity, maladaptive parenting, and bully victimisation) were significantly associated with BPD symptoms at 11 years. Within structural equation modelling controlling for all associations simultaneously, family adversity and male sex significantly predicted dysregulated behaviour across childhood, while bully victimisation significantly predicted BPD, depression, and psychotic symptoms. Children displaying dysregulated behaviour across childhood were significantly more likely to experience maladaptive parenting (β = 0.075, p  bullying (β = 0.097, p  < 0.001). While significant indirect associations

  17. Anxiety among adults with a history of childhood adversity: Psychological resilience moderates the indirect effect of emotion dysregulation.

    Science.gov (United States)

    Poole, Julia C; Dobson, Keith S; Pusch, Dennis

    2017-08-01

    Adverse childhood experiences (ACEs) have been widely identified as risk factors for increased symptoms of anxiety across the lifespan. Little is known, however, about the processes by which ACEs set the stage for increased symptoms of anxiety in adulthood. The current study evaluated whether emotion dysregulation and psychological resilience influence the association between ACEs and symptoms of anxiety. A sample of adult primary care patients (N=4006) completed self-report measures related to ACEs, symptoms of anxiety, emotion dysregulation, and psychological resilience. A moderated mediation analysis showed that emotion dysregulation mediated the association between ACEs and anxiety symptoms, and that the strength of this effect varied as a function of psychological resilience. Specifically, the influence of ACEs on emotional dysregulation was stronger among individuals with low levels of psychological resilience than among those with high levels of psychological resilience. These findings remained significant when controlling for a range of sociodemographic variables in the model. Cross-sectional designs preclude inferences about causality and self-report data may be susceptible to reporting biases. Other psychological variables that may be relevant to the current results, such as protective factors in childhood, were not assessed. These results have implications for the conceptualization of ACEs, emotion dysregulation, and psychological resilience in etiological models of anxiety. They also highlight the relevance of ACEs, emotion dysregulation, and psychological resilience to the detection, treatment, and prevention of anxiety disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol.

    Science.gov (United States)

    Brady, Lillian J; Bartley, Aundrea F; Li, Qin; McMeekin, Laura J; Hablitz, John J; Cowell, Rita M; Dobrunz, Lynn E

    2016-12-01

    Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α -/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α -/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α +/+ mice, but not PGC-1α -/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α +/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α -/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α +/+ mice but reduced the power of gamma oscillations in slices from PGC-1α -/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α +/+ mice, but not in PGC-1α -/- mice, which already have impaired nest building. The effects of

  19. Dysregulation of mitotic machinery genes precedes genome instability during spontaneous pre-malignant transformation of mouse ovarian surface epithelial cells

    Directory of Open Access Journals (Sweden)

    Ulises Urzúa

    2016-10-01

    Full Text Available Abstract Background Based in epidemiological evidence, repetitive ovulation has been proposed to play a role in the origin of ovarian cancer by inducing an aberrant wound rupture-repair process of the ovarian surface epithelium (OSE. Accordingly, long term cultures of isolated OSE cells undergo in vitro spontaneous transformation thus developing tumorigenic capacity upon extensive subcultivation. In this work, C57BL/6 mouse OSE (MOSE cells were cultured up to passage 28 and their RNA and DNA copy number profiles obtained at passages 2, 5, 7, 10, 14, 18, 23, 25 and 28 by means of DNA microarrays. Gene ontology, pathway and network analyses were focused in passages earlier than 20, which is a hallmark of malignancy in this model. Results At passage 14, 101 genes were up-regulated in absence of significant DNA copy number changes. Among these, the top-3 enriched functions (>30 fold, adj p < 0.05 comprised 7 genes coding for centralspindlin, chromosome passenger and minichromosome maintenance protein complexes. The genes Ccnb1 (Cyclin B1, Birc5 (Survivin, Nusap1 and Kif23 were the most recurrent in over a dozen GO terms related to the mitotic process. On the other hand, Pten plus the large non-coding RNAs Malat1 and Neat1 were among the 80 down-regulated genes with mRNA processing, nuclear bodies, ER-stress response and tumor suppression as relevant terms. Interestingly, the earliest discrete segmental aneuploidies arose by passage 18 in chromosomes 7, 10, 11, 13, 15, 17 and 19. By passage 23, when MOSE cells express the malignant phenotype, the dysregulated gene expression repertoire expanded, DNA imbalances enlarged in size and covered additional loci. Conclusion Prior to early aneuploidies, overexpression of genes coding for the mitotic apparatus in passage-14 pre-malignant MOSE cells indicate an increased proliferation rate suggestive of replicative stress. Concomitant down-regulation of nuclear bodies and RNA processing related genes

  20. Dysregulation of gene expression within the peroxisome proliferator activated receptor pathway in morbidly obese patients.

    Science.gov (United States)

    Hindle, A Katharine; Koury, Jadd; McCaffrey, Tim; Fu, Sidney W; Brody, Fred

    2009-06-01

    The causes of obesity are multifactorial but may include dysregulation of a family of related genes, such as the peroxisome proliferator activated receptor gamma (PPARgamma). When activated, the PPARgamma pathway promotes lipid metabolism. This study used microarray technology to evaluate differential gene expression profiles in obese patients undergoing bariatric surgery. The study enrolled six morbidly obese patients with a body mass index (BMI) exceeding 35 and four nonobese individuals. Blood samples were stabilized in PaxGene tubes (PreAnalytiX), and total RNA was extracted. Next, 100 ng of total RNA was amplified and labeled using the Ovation RNA Amplification System V2 with the Ovation whole-blood reagent (NuGen) before it was hybridized to an Affymetrix (Santa Clara, CA) focus array containing more than 8,500 verified genes. The data were analyzed using an analysis of variance (ANOVA) (p < 0.05) in the GeneSpring program, and potential pathways were identified with the Ingenuity program. Real-time quantitative reverse transcriptase-polymerase chain reaction was used to validate the array data. A total of 97 upregulated genes and 125 downregulated genes were identified. More than a 1.5-fold change was identified between the morbidly obese patients and the control subjects for a cluster of dysregulated genes involving pathways regulating cell metabolism and lipid formation. Specifically, the PPARgamma pathway showed a plethora of dysregulated genes including tumor necrosis factor-alpha (TNFalpha). In morbidly obese patients, TNFalpha expression was increased (upregulated) 1.6-fold. These findings were confirmed using quantitative polymerase chain reaction with a 2.8-fold change. Microarrays are a powerful tool for identifying biomarkers indicating morbid obesity by analyzing differential gene expression profiles. This study confirms the association of PPARgamma with morbid obesity. Also, these findings in blood support previous work documented in tissue

  1. Exposure to Violence, Posttraumatic Stress Symptoms, and Borderline Personality Pathology Among Adolescents in Residential Psychiatric Treatment: The Influence of Emotion Dysregulation.

    Science.gov (United States)

    Buckholdt, Kelly E; Weiss, Nicole H; Young, John; Gratz, Kim L

    2015-12-01

    Exposure to violence during adolescence is a highly prevalent phenomenon associated with a range of deleterious outcomes. Theoretical literature suggests that emotion dysregulation is one consequence of exposure to violence associated with the manifestation of posttraumatic stress symptoms (PTSS) and borderline personality (BP) pathology. Thus, the goal of the present study was to examine the mediating role of emotion dysregulation in the relation between exposure to violence and both PTSS and BP pathology in a sample of 144 adolescents (age 10- to 17-years; 51% male; 55% African American) admitted to a psychiatric residential treatment center. Exposure to violence was associated with greater emotion dysregulation, which, in turn, was associated with greater PTSS and BP pathology. Furthermore, emotion dysregulation mediated the associations between exposure to violence and both PTSS and BP pathology. Findings suggest the importance of assessing and treating emotion dysregulation among violence-exposed adolescents in psychiatric residential treatment.

  2. Weight-related correlates of psychological dysregulation in adolescent and young adult (AYA) females with severe obesity.

    Science.gov (United States)

    Gowey, Marissa A; Reiter-Purtill, Jennifer; Becnel, Jennifer; Peugh, James; Mitchell, James E; Zeller, Meg H

    2016-04-01

    Severe obesity is the fastest growing pediatric subgroup of excess weight levels. Psychological dysregulation (i.e., impairments in regulating cognitive, emotional, and/or behavioral processes) has been associated with obesity and poorer weight loss outcomes. The present study explored associations of dysregulation with weight-related variables among adolescent and young adult (AYA) females with severe obesity. Fifty-four AYA females with severe obesity (MBMI = 48.71 kg/m(2); Mage = 18.29, R = 15-21 years; 59.3% White) completed self-report measures of psychological dysregulation and weight-related constructs including meal patterns, problematic eating behaviors, and body and weight dissatisfaction, as non-surgical comparison participants in a multi-site study of adolescent bariatric surgery outcomes. Pearson and bivariate correlations were conducted and stratified by age group to analyze associations between dysregulation subscales (affective, behavioral, cognitive) and weight-related variables. Breakfast was the most frequently skipped meal (consumed 3-4 times/week). Eating out was common (4-5 times/week) and mostly occurred at fast-food restaurants. Evening hyperphagia (61.11%) and eating in the absence of hunger (37.04%) were commonly endorsed, while unplanned eating (29.63%), a sense of loss of control over eating (22.22%), eating beyond satiety (22.22%), night eating (12.96%), and binge eating (11.11%) were less common. Almost half of the sample endorsed extreme weight dissatisfaction. Dysregulation was associated with most weight-related attitudes and behaviors of interest in young adults but select patterns emerged for adolescents. Higher levels of psychological dysregulation are associated with greater BMI, problematic eating patterns and behaviors, and body dissatisfaction in AYA females with severe obesity. These findings have implications for developing novel intervention strategies for severe obesity in AYAs that may have a multidimensional

  3. Neglected Tropical Diseases: Treatment of Dermatological Manifestation of Filariasis with Combination Regimen of Albendazole, Ivermectin, and Loratadine: A Case Report from a Suburban Community in Nigeria

    Directory of Open Access Journals (Sweden)

    Osede Ignis Iribhogbe

    2017-06-01

    Full Text Available Threadlike filarial nematodes have been identified as the causative agent of filariasis. Cutaneous filariasis is caused primarily by Loa loa, Onchocerca volvulus, and Mansonella streptocerca. These parasites occupy the subcutaneous layer of the skin. However, other filarial parasites are usually associated with varying degrees of dermatological manifestations. In the present discourse, two cases of cutaneous filariasis were diagnosed in two female patients (21 and 40 years old, respectively in Remitch Clinic and Maternity located in a nonriverine community in Ekpoma, Edo State, Nigeria. In this report, patients with body mass index (BMI of 18.97 and 23.45 kg/m2, respectively, presented on two different occasions at least 6 months apart with hyperpigmented skin lesions in the upper and lower limbs, respectively. There was associated intense pruritus with no evidence of lymphadenopathy and lymphoedema. Following laboratory confirmation of filariasis, the patients were placed on a single oral dose combination of albendazole (400 mg + ivermectin (200 mcg/kg, while oral doses of loratadine 10 mg were administered daily for 5 days. Patients were carefully followed up for 6 weeks during which recession of the lesion and untoward reactions were monitored. It was observed that within 6 weeks of treatment, there was a dramatic recession of skin lesion. Adverse effect reported from use of the combination was mild. This case report revealed that cutaneous filariasis is not an uncommon presentation of filariasis infestation in Nigeria. The report also validates the safety and efficacy of the combination in the management of cutaneous manifestation of the disease.

  4. Dysregulation of the autonomic nervous system and its association with the presence and intensity of chronic widespread pain

    NARCIS (Netherlands)

    Barakat, A.; Vogelzangs, N.; Licht, C.M.M.; Geenen, R.; Macfarlane, G.J.; de Geus, E.J.C.; Smit, J.H.; Penninx, B.W.J.H.; Dekker, J.

    2012-01-01

    Objective To test the hypotheses that dysregulation of the autonomic nervous system (ANS) is associated with the presence of chronic widespread pain (CWP), and that dysregulation of the ANS is associated with higher pain intensity in CWP. Methods Cross-sectional data were obtained from 1,574

  5. Dysregulation of the Autonomic Nervous System and Its Association With the Presence and Intensity of Chronic Widespread Pain

    NARCIS (Netherlands)

    Barakat, Ansam; Vogelzangs, Nicole; Licht, Carmilla M. M.; Geenen, Rinie; Macfarlane, Gary J.; de Geus, Eco J. C.; Smit, Johannes H.; Penninx, Brenda W. J. H.; Dekker, Joost

    Objective. To test the hypotheses that dysregulation of the autonomic nervous system (ANS) is associated with the presence of chronic widespread pain (CWP), and that dysregulation of the ANS is associated with higher pain intensity in CWP. Methods. Cross-sectional data were obtained from 1,574

  6. Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells

    DEFF Research Database (Denmark)

    Raggi, Chiara; Gammella, Elena; Correnti, Margherita

    2017-01-01

    Cholangiocarcinoma (CCA) is a devastating liver tumour arising from malignant transformation of bile duct epithelial cells. Cancer stem cells (CSC) are a subset of tumour cells endowed with stem-like properties, which play a role in tumour initiation, recurrence and metastasis. In appropriate con...... compartment as a novel metabolic factor involved in CCA growth, may have implications for a better therapeutic approach....

  7. Emotion dysregulation mediates the relationship between trauma exposure, post-migration living difficulties and psychological outcomes in traumatized refugees.

    Science.gov (United States)

    Nickerson, Angela; Bryant, Richard A; Schnyder, Ulrich; Schick, Matthis; Mueller, Julia; Morina, Naser

    2015-03-01

    While emotion dysregulation represents an important mechanism underpinning psychological responses to trauma, little research has investigated this in refugees. In the current study, we examined the mediating role of emotion dysregulation in the relationship between refugee experiences (trauma and living difficulties) and psychological outcomes. Participants were 134 traumatized treatment-seeking refugees who completed measures indexing trauma exposure, post-migration living difficulties, difficulties in emotion regulation, posttraumatic stress disorder, depression, and explosive anger. Findings revealed distinctive patterns of emotion dysregulation associated with each of these psychological disorders. Results also indicated that emotion regulation difficulties mediated the association between both trauma and psychological symptoms, and living difficulties and psychological symptoms. Limitations include a cross-sectional design and the use of measures that had not been validated across all cultural groups in this study. These findings underscore the key role of emotion dysregulation in psychological responses of refugees, and highlight potential directions for treatment interventions for traumatized refugees. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The Relationship between Childhood Maltreatment and Emotional Dysregulation in Self Mutilation: An Investigation among Substance Dependent Patients.

    Science.gov (United States)

    Karagöz, Başak; Dağ, İhsan

    2015-03-01

    The present study aims to examine the role of emotion dysregulation and childhood maltreatment in self mutilation (SM) of substance dependent patients. Specifically, the present study examined whether emotion dysregulation and its dimensions, and childhood maltreatment and its dimensions were associated with SM. The relationship between emotion dysregulation and childhood maltreatment was also investigated. The sample of study consisted of 55 alcohol dependent and 24 opiate dependent patients (n=79). Substance dependence was diagnosed by means of the Structured Clinical Interview for DSM-IV-TR (SCID-I), Turkish version. Childhood Trauma Questionnaire (CTQ) and Difficulties in Emotion Regulation Scale (DERS) were used. Findings indicated that substance dependents with SM and without SM were differentiated in terms of overall emotion dysregulation. Results also suggest the relevance of three specific dimensions of emotion dysregulation to SM: Difficulties engaging in goal-directed behaviors when experiencing negative emotions, difficulties controlling impulsive behaviors when experiencing negative emotions, and limited access to effective emotion regulation strategies. These dimensions were predicted from childhood emotional maltreatment and neglect. It is also revealed that substance dependents with SM had higher points than those without SM on emotional childhood maltreatment and neglect, physical childhood maltreatment. Results were supported by the literature suggested that self-mutilation functions as a emotional regulation strategy. Findings also suggested that self- mutilation is related to early relationships take place in family environment in which individuals grow up.

  9. Posttraumatic stress and emotion dysregulation: Relationships with smoking to reduce negative affect and barriers to smoking cessation.

    Science.gov (United States)

    Short, Nicole A; Oglesby, Mary E; Raines, Amanda M; Zvolensky, Michael J; Schmidt, Norman B

    2015-08-01

    Many cigarette smokers have experienced a traumatic event, and elevated posttraumatic stress symptoms (PTSS) are associated with increased smoking levels. Previous research has found that elevated PTSS are associated with smoking to cope with negative affect, and it has been posited that perceptions of being unable to cope with the consequences of smoking cessation interfere with smoking cessation in this population. However, the mechanism of the relationship between PTSS and these smoking maintenance factors (i.e., smoking to reduce negative affect and barriers to cessation) has not been established. Emotion dysregulation is one potential mechanism as it is associated with PTSS as well as addictive behavior aimed at avoiding and reducing negative emotional states. We cross-sectionally tested the hypotheses that 1) PTSS and emotion dysregulation would be incrementally associated with smoking to reduce negative affect and barriers to cessation, and 2) that emotion dysregulation would mediate the relationships between PTSS, smoking to reduce negative affect, and barriers to cessation among a community sample of trauma-exposed individuals presenting for smoking cessation treatment (N=315). Results demonstrated that elevated PTSS were associated with increased smoking to reduce negative affect and barriers to cessation, and that emotion dysregulation mediated these relationships. These findings provide evidence of a mechanism between PTSS and psychological smoking maintenance factors, and suggest that emotion dysregulation may be a useful target for smoking cessation interventions among trauma-exposed individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Identification of the miRNA-mRNA regulatory network of small cell osteosarcoma based on RNA-seq.

    Science.gov (United States)

    Xie, Lin; Liao, Yedan; Shen, Lida; Hu, Fengdi; Yu, Sunlin; Zhou, Yonghong; Zhang, Ya; Yang, Yihao; Li, Dongqi; Ren, Minyan; Yuan, Zhongqin; Yang, Zuozhang

    2017-06-27

    Small cell osteosarcoma (SCO) is a rare subtype of osteosarcoma characterized by highly aggressive progression and a poor prognosis. The miRNA and mRNA expression profiles of peripheral blood mononuclear cells (PBMCs) were obtained in 3 patients with SCO and 10 healthy individuals using high-throughput RNA-sequencing. We identified 37 dysregulated miRNAs and 1636 dysregulated mRNAs in patients with SCO compared to the healthy controls. Specifically, the 37 dysregulated miRNAs consisted of 27 up-regulated miRNAs and 10 down-regulated miRNAs; the 1636 dysregulated mRNAs consisted of 555 up-regulated mRNAs and 1081 down-regulated mRNAs. The target-genes of miRNAs were predicted, and 1334 negative correlations between miRNAs and mRNAs were used to construct an miRNA-mRNA regulatory network. Dysregulated genes were significantly enriched in pathways related to cancer, mTOR signaling and cell cycle signaling. Specifically, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p were significantly dysregulated miRNAs and exhibited a high degree of connectivity with target genes. Overall, the expression of dysregulated genes in tumor tissues and peripheral blood samples of patients with SCO measured by quantitative real-time polymerase chain reaction corroborated with our bioinformatics analyses based on the expression profiles of PBMCs from patients with SCO. Thus, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p may be involved in SCO tumorigenesis.

  11. Longitudinal pathways from early maternal depression to children's dysregulated representations: a moderated mediation analysis of harsh parenting and gender.

    Science.gov (United States)

    Martoccio, Tiffany L; Brophy-Herb, Holly E; Maupin, Angela N; Robinson, Joann L

    2016-01-01

    There is some evidence linking maternal depression, harsh parenting, and children's internal representations of attachment, yet, longitudinal examinations of these relationships and differences in the developmental pathways between boys and girls are lacking. Moderated mediation growth curves were employed to examine harsh parenting as a mechanism underlying the link between maternal depression and children's dysregulated representations using a nationally-representative, economically-vulnerable sample of mothers and their children (n = 575; 49% boys, 51% girls). Dysregulation representations were measured using the MacArthur Story Stem Battery at five years of age (M = 5.14, SD = 0.29). Harsh parenting mediated the association between early maternal depression and dysregulated representations for girls. Though initial harsh parenting was a significant mediator for boys, a stronger direct effect of maternal depression to dysregulated representations emerged over time. Results are discussed in terms of their implications for intervention efforts aimed at promoting early supportive parenting.

  12. Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Takuya Sakurai

    2017-01-01

    Full Text Available Obesity-induced inflammatory changes in white adipose tissue (WAT, which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS, and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.

  13. Targeting emotion dysregulation in the treatment of self-injury.

    Science.gov (United States)

    Gratz, Kim L

    2007-11-01

    Clinically useful definitions of emotion regulation with respect to deliberate self-harm (referred to here as self-injury) focus on adaptive ways of responding to emotional distress rather than on the control of emotions or dampening of emotional arousal. According to one such definition, emotion regulation is a multifaceted construct involving a) the awareness, understanding, and acceptance of emotions; b) ability to engage in goal-directed behaviors, and inhibit impulsive behaviors, when experiencing negative emotions; c) the flexible use of situationally appropriate strategies to modulate the intensity and/or duration of emotional responses rather than to eliminate emotions entirely; and d) willingness to experience negative emotions as part of pursuing meaningful activities in life (Gratz & Roemer, 2004). This article addresses the role of emotion dysregulation in self-injury and discusses two treatments for self-injury that explicitly focus on increasing emotion regulation. These treatments are based on the premise that the reduction of emotion dysregulation will decrease the need for maladaptive behaviors that function to regulate emotions, such as self-injury. A case illustration describing how one of these treatments (an acceptance-based, emotion regulation group therapy) is used to treat self-injury is provided.

  14. Differentiating Bipolar Disorder--Not Otherwise Specified and Severe Mood Dysregulation

    Science.gov (United States)

    Towbin, Kenneth; Axelson, David; Leibenluft, Ellen; Birmaher, Boris

    2013-01-01

    Objective: Bipolar disorder--not otherwise specified (BP-NOS) and severe mood dysregulation (SMD) are severe mood disorders that were defined to address questions about the diagnosis of bipolar disorder (BD) in youth. SMD and BP-NOS are distinct phenotypes that differ in clinical presentation and longitudinal course. The purpose of this review is…

  15. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users.

    Directory of Open Access Journals (Sweden)

    Michael S Piepenbrink

    Full Text Available Injection drug use is a growing major public health concern. Injection drug users (IDUs have a higher incidence of co-morbidities including HIV, Hepatitis, and other infections. An effective humoral response is critical for optimal homeostasis and protection from infection; however, the impact of injection heroin use on humoral immunity is poorly understood. We hypothesized that IDUs have altered B cell and antibody profiles.A comprehensive systems biology-based cross-sectional assessment of 130 peripheral blood B cell flow cytometry- and plasma- based features was performed on HIV-/Hepatitis C-, active heroin IDUs who participated in a syringe exchange program (n = 19 and healthy control subjects (n = 19. The IDU group had substantial polydrug use, with 89% reporting cocaine injection within the preceding month. IDUs exhibited a significant, 2-fold increase in total B cells compared to healthy subjects, which was associated with increased activated B cell subsets. Although plasma total IgG titers were similar between groups, IDUs had significantly higher IgG3 and IgG4, suggestive of chronic B cell activation. Total IgM was also increased in IDUs, as well as HIV Envelope-specific IgM, suggestive of increased HIV exposure. IDUs exhibited numerous features suggestive of systemic inflammation, including significantly increased plasma sCD40L, TNF-α, TGF-α, IL-8, and ceramide metabolites. Machine learning multivariate analysis distilled a set of 10 features that classified samples based on group with absolute accuracy.These results demonstrate broad alterations in the steady-state humoral profile of IDUs that are associated with increased systemic inflammation. Such dysregulation may impact the ability of IDUs to generate optimal responses to vaccination and infection, or lead to increased risk for inflammation-related co-morbidities, and should be considered when developing immune-based interventions for this growing population.

  16. Dysregulated IER3 Expression is Associated with Enhanced Apoptosis in Titin-Based Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou

    2017-03-01

    Full Text Available Apoptosis (type I programmed cell death of cardiomyocytes is a major process that plays a role in the progression of heart failure. The early response gene IER3 regulates apoptosis in a wide variety of cells and organs. However, its role in heart failure is largely unknown. Here, we investigate the role of IER3 in an inducible heart failure mouse model. Heart failure was induced in a mouse model that imitates a human titin truncation mutation we found in a patient with dilated cardiomyopathy (DCM. Transferase dUTP nick end labeling (TUNEL and ssDNA stainings showed induction of apoptosis in titin-deficient cardiomyocytes during heart failure development, while IER3 response was dysregulated. Chromatin immunoprecipitation and knock-down experiments revealed that IER3 proteins target the promotors of anti-apoptotic genes and act as an anti-apoptotic factor in cardiomyocytes. Its expression is blunted during heart failure development in a titin-deficient mouse model. Targeting the IER3 pathway to reduce cardiac apoptosis might be an effective therapeutic strategy to combat heart failure.

  17. The presence of cytokines in Langerhans' cell histiocytosis

    NARCIS (Netherlands)

    deGraaf, JH; Tamminga, RYJ; DamMeiring, A; Kamps, WA; Timens, W

    1996-01-01

    Langerhans' cell histiocytosis (LCH) is characterized by an accumulation and/or proliferation of cells with a Langerhans' cell (LC) phenotype. The aetiology and pathogenesis of LCH are unknown; it is suggested that LCH is caused by an immunological dysregulation. Production of cytokines is a central

  18. Consequences of dysregulated complement regulators on red blood cells

    NARCIS (Netherlands)

    Thielen, Astrid J. F.; Zeerleder, Sacha; Wouters, Diana

    2018-01-01

    The complement system represents the first line of defense that is involved in the clearance of pathogens, dying cells and immune complexes via opsonization, induction of an inflammatory response and the formation of a lytic pore. Red blood cells (RBCs) are very important for the delivery of oxygen

  19. Adult Outcomes of Childhood Dysregulation: A 14-Year Follow-up Study

    Science.gov (United States)

    Althoff, Robert R.; Verhulst, Frank C.; Rettew, David C.; Hudziak, James J.; van der Ende, Jan

    2010-01-01

    Objective: Using a general population sample, the adult outcomes of children who presented with severe problems with self-regulation defined as being concurrently rated highly on attention problems, aggressive behavior, and anxious-depression on the Child Behavior Checklist-Dysregulation Profile (CBCL-DP) were examined. Method: Two thousand…

  20. Genome-Wide Association Study of the Child Behavior Checklist Dysregulation Profile

    Science.gov (United States)

    Mick, Eric; McGough, James; Loo, Sandra; Doyle, Alysa E.; Wozniak, Janet; Wilens, Timothy E.; Smalley, Susan; McCracken, James; Biederman, Joseph; Faraone, Stephen V.

    2011-01-01

    Objective: A potentially useful tool for understanding the distribution and determinants of emotional dysregulation in children is a Child Behavior Checklist profile, comprising the Attention Problems, Anxious/Depressed, and Aggressive Behavior clinical subscales (CBCL-DP). The CBCL-DP indexes a heritable trait that increases susceptibility for…

  1. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    Science.gov (United States)

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  2. Onco-GPCR signaling and dysregulated expression of microRNAs in human cancer.

    Science.gov (United States)

    Nohata, Nijiro; Goto, Yusuke; Gutkind, J Silvio

    2017-01-01

    The G-protein-coupled receptor (GPCR) family is the largest family of cell-surface receptors involved in signal transduction. Aberrant expression of GPCRs and G proteins are frequently associated with prevalent human diseases, including cancer. In fact, GPCRs represent the therapeutic targets of more than a quarter of the clinical drugs currently on the market. MiRNAs (miRNAs) are also aberrantly expressed in many human cancers, and they have significant roles in the initiation, development and metastasis of human malignancies. Recent studies have revealed that dysregulation of miRNAs and their target genes expression are associated with cancer progression. The emerging information suggests that miRNAs play an important role in the fine tuning of many signaling pathways, including GPCR signaling. We summarize our current knowledge of the individual functions of miRNAs regulated by GPCRs and GPCR signaling-associated molecules, and miRNAs that regulate the expression and activity of GPCRs, their endogenous ligands and their coupled heterotrimeric G proteins in human cancer.

  3. Dysregulated CD46 shedding interferes with Th1-contraction in systemic lupus erythematosus.

    Science.gov (United States)

    Ellinghaus, Ursula; Cortini, Andrea; Pinder, Christopher L; Le Friec, Gaelle; Kemper, Claudia; Vyse, Timothy J

    2017-07-01

    IFN-γ-producing T helper 1 (Th1) cell responses mediate protection against infections but uncontrolled Th1 activity also contributes to a broad range of autoimmune diseases. Autocrine complement activation has recently emerged as key in the induction and contraction of human Th1 immunity: activation of the complement regulator CD46 and the C3aR expressed by CD4 + T cells via autocrine generated ligands C3b and C3a, respectively, are critical to IFN-γ production. Further, CD46-mediated signals also induce co-expression of immunosuppressive IL-10 in Th1 cells and transition into a (self)-regulating and contracting phase. In consequence, C3 or CD46-deficient patients suffer from recurrent infections while dysregulation of CD46 signaling contributes to Th1 hyperactivity in rheumatoid arthritis and multiple sclerosis. Here, we report a defect in CD46-regulated Th1 contraction in patients with systemic lupus erythematosus (SLE). We observed that MMP-9-mediated increased shedding of soluble CD46 by Th1 cells was associated with this defect and that inhibition of MMP-9 activity normalized release of soluble CD46 and restored Th1 contraction in patients' T cells. These data may deliver the first mechanistic explanation for the increased serum CD46 levels observed in SLE patients and indicate that targeting CD46-cleaving proteases could be a novel avenue to modulate Th1 responses. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Trajectories of depressive symptoms in foster youth transitioning into adulthood: the roles of emotion dysregulation and PTSD.

    Science.gov (United States)

    Valdez, Christine E; Bailey, Brenda E; Santuzzi, Alecia M; Lilly, Michelle M

    2014-01-01

    Foster youth often experience considerable adversity both in and out of foster care, including histories of abuse and/or neglect, and further stressors within the foster system. These adverse experiences often occur at key developmental periods that can compromise emotional functioning and lead to posttraumatic symptomatology, including posttraumatic stress disorder (PTSD) and emotion dysregulation. In the face of difficult histories and ongoing mental health challenges, youth transitioning into adulthood may be particularly vulnerable to increases in depressive symptoms. We explored the trajectory of depressive symptoms in foster youth from age 17 to 19 using a piecewise linear growth model, examining the effects of PTSD and emotion dysregulation on youth's depressive symptoms over time. Results revealed depressive symptoms decreased from age 17 to 18 but increased from 18 to 19. PTSD and emotion dysregulation predicted greater baseline depressive symptoms and decreases in symptoms from age 17 to 18, whereas only PTSD predicted increases in depressive symptoms from 18 to 19. Females reported higher levels of depressive symptoms compared to males. Additionally, emotion dysregulation was a stronger predictor of depressive symptoms for females than males. Implications for service delivery for foster youth transitioning into adulthood are discussed. © The Author(s) 2014.

  5. Chronic complex dissociative disorders and borderline personality disorder: disorders of emotion dysregulation?

    Science.gov (United States)

    Brand, Bethany L; Lanius, Ruth A

    2014-01-01

    Emotion dysregulation is a core feature of chronic complex dissociative disorders (DD), as it is for borderline personality disorder (BPD). Chronic complex DD include dissociative identity disorder (DID) and the most common form of dissociative disorder not otherwise specified (DDNOS, type 1), now known as Other Specified Dissociative Disorders (OSDD, type 1). BPD is a common comorbid disorder with DD, although preliminary research indicates the disorders have some distinguishing features as well as considerable overlap. This article focuses on the epidemiology, clinical presentation, psychological profile, treatment, and neurobiology of chronic complex DD with emphasis placed on the role of emotion dysregulation in each of these areas. Trauma experts conceptualize borderline symptoms as often being trauma based, as are chronic complex DD. We review the preliminary research that compares DD to BPD in the hopes that this will stimulate additional comparative research.

  6. Questioned validity of Gene Expression Dysregulated Domains in Down's Syndrome [v1; ref status: indexed, http://f1000r.es/5ky

    Directory of Open Access Journals (Sweden)

    Long H. Do

    2015-07-01

    Full Text Available Recently, in studies examining fibroblasts obtained from the tissues of one set of monozygotic twins (i.e. fetuses derived from the same egg discordant for trisomy 21 (Down syndrome; DS, Letourneau et al., reported the presence of a defined pattern of dysregulation within specific genomic domains they referred to as Gene Expression Dysregulated Domains (GEDDs. GEDDs were described as alternating segments of increased or decreased gene expression affecting all chromosomes. Strikingly, GEDDs in fibroblasts were largely conserved in induced pluripotent cells (iPSCs generated from the twin’s fibroblasts as well as in fibroblasts from the Ts65Dn mouse model of DS. Our recent analysis failed to find GEDDs. We reexamined the human iPSCs RNAseq data from Letourneau et al., and data from this same research group published earlier examining iPSCs from the same monozygotic twins. An independent analysis of RNAseq data from Ts65Dn fibroblasts also failed to confirm presence of GEDDs. Our analysis questions the validity of GEDDs in DS.

  7. The child behavior checklist dysregulation profile predicts adolescent DSM-5 pathological personality traits 4 years later.

    Science.gov (United States)

    De Caluwé, Elien; Decuyper, Mieke; De Clercq, Barbara

    2013-07-01

    Emotional dysregulation in childhood has been associated with various forms of later psychopathology, although no studies have investigated the personality related adolescent outcomes associated with early emotional dysregulation. The present study uses a typological approach to examine how the child behavior checklist-dysregulation profile (CBCL-DP) predicts DSM-5 pathological personality traits (as measured with the personality inventory for the diagnostic and statistical manual of mental disorders 5 or PID-5 by Krueger et al. (Psychol Med 2012)) across a time span of 4 years in a sample of 243 children aged 8-14 years (57.2 % girls). The results showed that children assigned to the CBCL-DP class are at risk for elevated scores on a wide range of DSM-5 personality pathology features, including higher scores on hostility, risk taking, deceitfulness, callousness, grandiosity, irresponsibility, impulsivity and manipulativeness. These results are discussed in the context of identifying early manifestations of persistent regulation problems, because of their enduring impact on a child's personality development.

  8. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells.

  9. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J.

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells

  10. Impaired Epstein-Barr Virus-Specific Neutralizing Antibody Response during Acute Infectious Mononucleosis Is Coincident with Global B-Cell Dysfunction.

    Science.gov (United States)

    Panikkar, Archana; Smith, Corey; Hislop, Andrew; Tellam, Nick; Dasari, Vijayendra; Hogquist, Kristin A; Wykes, Michelle; Moss, Denis J; Rickinson, Alan; Balfour, Henry H; Khanna, Rajiv

    2015-09-01

    Here we present evidence for previously unappreciated B-cell immune dysregulation during acute Epstein-Barr virus (EBV)-associated infectious mononucleosis (IM). Longitudinal analyses revealed that patients with acute IM have undetectable EBV-specific neutralizing antibodies and gp350-specific B-cell responses, which were associated with a significant reduction in memory B cells and no evidence of circulating antibody-secreting cells. These observations correlate with dysregulation of tumor necrosis factor family members BAFF and APRIL and increased expression of FAS on circulating B cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  12. Dysregulated Fear in Toddlerhood Predicts Kindergarten Social Withdrawal through Protective Parenting

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2014-01-01

    Two recent advances in the study of fearful temperament (behavioural inhibition) include the validation of dysregulated fear as a temperamental construct that more specifically predicts later social withdrawal and anxiety, and the use of conceptual and statistical models that place parenting as a mechanism of development from temperament to these…

  13. In Search of HPA Axis Dysregulation in Child and Adolescent Depression

    Science.gov (United States)

    Guerry, John D.; Hastings, Paul D.

    2011-01-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in adults with major depressive disorder is among the most consistent and robust biological findings in psychiatry. Given the importance of the adolescent transition to the development and recurrence of depressive phenomena over the lifespan, it is important to have an integrative…

  14. Investigating the role of dimensions of UPPS-P model of impulsivity and age increasing in men’s emotion dysregulation

    Directory of Open Access Journals (Sweden)

    Hashem Jebraeili

    2018-04-01

    Results: The findings showed that there were significant coloration between all dimensions of impulsivity, with the exception of sensation seeking, and age with emotion dysregulation. Results of regression analysis showed that dimensions of impulsivity and age have significant role in prediction of emotion dysregulation and explain 47 percent of total variance of it (F=40.67, P

  15. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis

    Science.gov (United States)

    Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...

  16. Metabolic dysregulation and interventions in type 2 diabetes mellitus and HIV-lipodystrophy

    NARCIS (Netherlands)

    Wijk, J.P.H. van

    2005-01-01

    The focus of this thesis is on two aspects of metabolic dysregulation, type 2 diabetes mellitus and HIV-lipodystrophy, and the effects of insulin-sensitizing agents. Thiazolidinediones (TZDs) have received increasing attenttion for the treatment of hyperglycemia in type 2 diabetes. Currently,

  17. Preoccupied attachment and emotional dysregulation: specific aspects of borderline personality disorder or general dimensions of personality pathology?

    Science.gov (United States)

    Scott, Lori N; Kim, Yookyung; Nolf, Kimberly A; Hallquist, Michael N; Wright, Aidan G C; Stepp, Stephanie D; Morse, Jennifer Q; Pilkonis, Paul A

    2013-08-01

    Emotional dysregulation and impaired attachment are seen by many clinical researchers as central aspects of borderline personality disorder (BPD). Alternatively, these constructs may represent general impairments in personality that are nonspecific to BPD. Using multitraitmultimethod models, the authors examined the strength of associations among preoccupied attachment, difficulties with emotion regulation, BPD features, and features of two other personality disorders (i.e., antisocial and avoidant) in a combined psychiatric outpatient and community sample of adults. Results suggested that preoccupied attachment and difficulties with emotion regulation shared strong positive associations with each other and with each of the selected personality disorders. However, preoccupied attachment and emotional dysregulation were more strongly related to BPD features than to features of other personality disorders. Findings suggest that although impairments in relational and emotional domains may underlie personality pathology in general, preoccupied attachment and emotional dysregulation also have specificity for understanding core difficulties in those with BPD.

  18. Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and -146b in cardiovascular disease patients.

    Directory of Open Access Journals (Sweden)

    Ting-Yu Chang

    Full Text Available Functional impairment of endothelial colony-forming cells (ECFCs, a specific cell lineage of endothelial progenitor cells (EPCs is highly associated with the severity of coronary artery disease (CAD, the most common type of cardiovascular disease (CVD. Emerging evidence show that circulating microRNAs (miRNAs in CAD patients' body fluid hold a great potential as biomarkers. However, our knowledge of the role of circulating miRNA in regulating the function of ECFCs and the progression of CAD is still in its infancy. We showed that when ECFCs from healthy volunteers were incubated with conditioned medium or purified exosomes of cultured CAD ECFCs, the secretory factors from CAD ECFCs dysregulated migration and tube formation ability of healthy ECFCs. It is known that exosomes influence the physiology of recipient cells by introducing RNAs including miRNAs. By using small RNA sequencing (smRNA-seq, we deciphered the circulating miRNome in the plasma of healthy individual and CAD patients, and found that the plasma miRNA spectrum from CAD patients was significantly different from that of healthy control. Interestingly, smRNA-seq of both healthy and CAD ECFCs showed that twelve miRNAs that had a higher expression in the plasma of CAD patients also showed higher expression in CAD ECFCs when compared with healthy control. This result suggests that these miRNAs may be involved in the regulation of ECFC functions. For identification of potential mRNA targets of the differentially expressed miRNA in CAD patients, cDNA microarray analysis was performed to identify the angiogenesis-related genes that were down-regulated in CAD ECFCs and Pearson's correlation were used to identify miRNAs that were negatively correlated with the identified angiogenesis-related genes. RT-qPCR analysis of the five miRNAs that negatively correlated with the down-regulated angiogenesis-related genes in plasma and ECFC of CAD patients showed miR-146a-5p and miR-146b-5p up

  19. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  20. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2013-09-01

    Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.

  1. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways

    Science.gov (United States)

    Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia

    2015-01-01

    Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156

  2. Preoccupied Attachment and Emotional Dysregulation: Specific Aspects of Borderline Personality Disorder or General Dimensions of Personality Pathology?

    Science.gov (United States)

    Scott, Lori N.; Kim, Yookyung; Nolf, Kimberly A.; Hallquist, Michael N.; Wright, Aidan G.C.; Stepp, Stephanie D.; Morse, Jennifer Q.; Pilkonis, Paul A.

    2013-01-01

    Emotional dysregulation and impaired attachment are seen by many clinical researchers as central aspects of borderline personality disorder (BPD). Alternatively, these constructs may represent general impairments in personality that are nonspecific to BPD. Using multitrait-multimethod models, we examined the strength of associations among preoccupied attachment, difficulties with emotion regulation, BPD features, and features of two other personality disorders (i.e., antisocial and avoidant) in a combined psychiatric outpatient and community sample of adults. Results suggested that preoccupied attachment and difficulties with emotion regulation shared strong positive associations with each other and with each of the selected personality disorders. However, preoccupied attachment and emotional dysregulation were more strongly related to BPD features than to features of other personality disorders. Our findings suggest that although impairments in relational and emotional domains may underlie personality pathology in general, preoccupied attachment and emotional dysregulation also have specificity for understanding core difficulties in those with BPD. PMID:23586934

  3. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    International Nuclear Information System (INIS)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-01-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 μM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 μM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca 2+ and non-Ca 2+ divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 μM MeHg, 97.7% of Purkinje cells were viable. At 3 μM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 μM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca 2+ divalent cation released by MeHg in Purkinje neurons

  4. A Novel Group Therapy for Children with ADHD and Severe Mood Dysregulation

    Science.gov (United States)

    Waxmonsky, James G.; Wymbs, Fran A.; Pariseau, Meaghan E.; Belin, Peter J.; Waschbusch, Daniel A.; Babocsai, Lysett; Fabiano, Gregory A.; Akinnusi, Opeolowa O.; Haak, Jenifer L.; Pelham, William E.

    2013-01-01

    Objective: No psychosocial treatments have been developed for children with ADHD and severe mood dysregulation (SMD) despite the significant prevalence and morbidity of this combination. Therefore, the authors developed a novel treatment program for children with ADHD and SMD. Method: The novel therapy program integrates components of…

  5. The Dysregulation Profile in middle childhood and adolescence across reporters: factor structure, measurement invariance, and links with self-harm and suicidal ideation

    NARCIS (Netherlands)

    M.H.F. Deutz (Marike); S.B. Geeraert (Sanne Barbara); A.L. Van Baar (Anneloes); M. Deković (Maja); P.J. Prinzie (Peter)

    2016-01-01

    textabstractRecently, a phenotype of severe dysregulation, the Dysregulation Profile (DP), has been identified. DP consists of elevated scores on the Anxious/Depressed (AD), Aggressive Behavior (AGG) and Attention Problems (AP) scales of the Child Behavior Checklist (CBCL), Teacher Report Form

  6. miR2Pathway: A Novel Analytical Method to Discover MicroRNA-mediated Dysregulated Pathways Involved in Hepatocellular Carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Dinu, Valentin

    2018-03-22

    MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC. Copyright © 2018. Published by Elsevier Inc.

  7. Mild KCC2 hypofunction causes inconspicuous chloride dysregulation that degrades neural coding

    Directory of Open Access Journals (Sweden)

    Nicolas eDoyon

    2016-01-01

    Full Text Available Disinhibition caused by Cl- dysregulation is implicated in several neurological disorders. This form of disinhibition, which stems primarily from impaired Cl- extrusion through the co-transporter KCC2, is typically identified by a depolarizing shift in GABA reversal potential (EGABA. Here we show, using computer simulations, that intracellular [Cl-] exhibits exaggerated fluctuations during transient Cl- loads and recovers more slowly to baseline when KCC2 level is even modestly reduced. Using information theory and signal detection theory, we show that increased Cl- lability and settling time degrade neural coding. Importantly, these deleterious effects manifest after less KCC2 reduction than needed to produce the gross changes in EGABA required for detection by most experiments, which assess KCC2 function under weak Cl- load conditions. By demonstrating the existence and functional consequences of occult Cl- dysregulation, these results suggest that modest KCC2 hypofunction plays a greater role in neurological disorders than previously believed.

  8. No miR quirk: dysregulation of microRNAs in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Cheung, Philip Y; Szafranska-Schwarzbach, Anna E; Schlageter, Annette M; Andruss, Bernard F; Weiss, Glen J

    2012-01-01

    MicroRNAs are post-transcriptional regulators of gene expression with tissue-specific expression profiles. Dysregulation of microRNAs has been shown to play a role in carcinogenesis. Although progress has been made in the diagnosis and treatment of many cancers, pancreatic cancer remains an intractable public health problem, causing 6.58% of cancer deaths despite making up less than 3% of cancer diagnoses in the United States. No screening, diagnostic or imaging techniques exist with the sensitivity to detect pancreatic cancer in its early, operable stages. Risk factors include numerous inherited syndromes, diabetes mellitus, and hepatitis C virus infection. Here we review the literature regarding dysregulation of microRNA expression in native pancreas, pancreatic ductal adenocarcinoma (the dominant form of pancreatic cancer), and its risk factors to illuminate the biology and progression of this disease. We explore promising evidence for the use of microRNAs as prognostic and diagnostic tools, and discuss emerging reports on microRNA therapeutics.

  9. Specific mixing facilitates the comparative quantification of phosphorylation sites with significant dysregulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Bo [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Liu, Zheyi; Dong, Mingming; Mao, Jiawei; Zhou, Ye; Chen, Jin [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Fangjun, E-mail: wangfj@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Zou, Hanfa [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China)

    2017-01-15

    Mass spectrometry (MS) based quantitative analyses of proteome and proteome post-translational modifications (PTMs) play more and more important roles in biological, pharmaceutical and clinical studies. However, it is still a big challenge to accurately quantify the proteins or proteins PTM sites with extreme relative abundances in comparative protein samples, such as the significantly dysregulated ones. Herein, a novel quantification strategy, Mixing at Specific Ratio (MaSR) before isotope labeling, had been developed to improve the quantification accuracy and coverage of extreme proteins and protein phosphorylation sites. Briefly, the comparative protein samples were firstly mixed together at specific ratios of 9:1 and 1:9 (w/w), followed with mass differentiate light and heavy isotope labeling, respectively. The extreme proteins and protein phosphorylation sites, even if the newly expressed or disappeared ones, could be accurately quantified due to all of the proteins' relative abundances had been adjusted to 2 orders of magnitude (1/9-9) by this strategy. The number of quantified phosphorylation sites with more than 20 folds changes was improved about 10 times in comparative quantification of pervanadate stimulated phosphoproteome of HeLa cells, and 134 newly generated and 21 disappeared phosphorylation sites were solely quantified by the MaSR strategy. The significantly up-regulated phosphorylation sites were mainly involved in the key phosphoproteins regulating the insulin-related pathways, such as PI3K-AKT and RAS-MAPK pathways. Therefore, the MaSR strategy exhibits as a promising way in elucidating the biological processes with significant dysregulations. - Highlights: • All the proteins' relative abundances were adjusted into 2 orders of magnitude (1/9-9). • The quantification accuracy and coverage of extreme proteins and protein phosphorylation sites had been improved. • The newly expressed or disappeared proteins and protein

  10. Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.

    Science.gov (United States)

    Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E

    1997-01-01

    Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of

  11. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency.

    Science.gov (United States)

    Maglione, Paul J; Cols, Montserrat; Cunningham-Rundles, Charlotte

    2017-10-05

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.

  12. The Dysregulation Profile in middle childhood and adolescence across reporters: factor structure, measurement invariance, and links with self-harm and suicidal ideation

    NARCIS (Netherlands)

    Deutz, Marike; Geeraerts, Sanne; van Baar, Anneloes; Dekovic, Maja; Prinzie, Peter

    2016-01-01

    Recently, a phenotype of severe dysregulation, the Dysregulation Profile (DP), has been identified. DP consists of elevated scores on the Anxious/Depressed (AD), Aggressive Behavior (AGG) and Attention Problems (AP) scales of the Child Behavior Checklist (CBCL), Teacher Report Form (TRF), or Youth

  13. Cross-population validation of statistical distance as a measure of physiological dysregulation during aging.

    Science.gov (United States)

    Cohen, Alan A; Milot, Emmanuel; Li, Qing; Legault, Véronique; Fried, Linda P; Ferrucci, Luigi

    2014-09-01

    Measuring physiological dysregulation during aging could be a key tool both to understand underlying aging mechanisms and to predict clinical outcomes in patients. However, most existing indices are either circular or hard to interpret biologically. Recently, we showed that statistical distance of 14 common blood biomarkers (a measure of how strange an individual's biomarker profile is) was associated with age and mortality in the WHAS II data set, validating its use as a measure of physiological dysregulation. Here, we extend the analyses to other data sets (WHAS I and InCHIANTI) to assess the stability of the measure across populations. We found that the statistical criteria used to determine the original 14 biomarkers produced diverging results across populations; in other words, had we started with a different data set, we would have chosen a different set of markers. Nonetheless, the same 14 markers (or the subset of 12 available for InCHIANTI) produced highly similar predictions of age and mortality. We include analyses of all combinatorial subsets of the markers and show that results do not depend much on biomarker choice or data set, but that more markers produce a stronger signal. We conclude that statistical distance as a measure of physiological dysregulation is stable across populations in Europe and North America. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Cardiac mTORC1 Dysregulation Impacts Stress Adaptation and Survival in Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Daniel D. Child

    2018-04-01

    Full Text Available Summary: Huntington’s disease (HD is a dominantly inherited neurological disorder caused by CAG-repeat expansion in exon 1 of Huntingtin (HTT. But in addition to the neurological disease, mutant HTT (mHTT, which is ubiquitously expressed, impairs other organ systems. Indeed, epidemiological and animal model studies suggest higher incidence of and mortality from heart disease in HD. Here, we show that the protein complex mTORC1 is dysregulated in two HD mouse models through a mechanism that requires intrinsic mHTT expression. Moreover, restoring cardiac mTORC1 activity with constitutively active Rheb prevents mortality and relieves the mHTT-induced block to hypertrophic adaptation to cardiac stress. Finally, we show that chronic mTORC1 dysregulation is due in part to mislocalization of endogenous Rheb. These data provide insight into the increased cardiac-related mortality of HD patients, with cardiac mHTT expression inhibiting mTORC1 activity, limiting heart growth, and decreasing the heart’s ability to compensate to chronic stress. : Child et al. demonstrate that mTORC1 dysregulation is a key molecular mechanism in the Huntington’s disease (HD heart phenotype. Impaired cardiac mTORC1 activity in HD mouse models requires intrinsic mHTT expression and explains the limited adaptation to cardiac stress. Keywords: Huntington’s disease, heart, mTOR, Rheb

  15. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity.

    Science.gov (United States)

    Petersen, Frank; Yue, Xiaoyang; Riemekasten, Gabriela; Yu, Xinhua

    2017-06-01

    Monogenic autoimmune disorders provide a powerful tool for our understanding of the principles of autoimmunity due to the obvious impact of a single gene on the disease. So far, approximately 100 single gene defects causing murine monogenic autoimmune disorders have been reported and the functional characterization of these genes will provide significant progress in understanding the nature of autoimmunity. According to their function, genes leading to monogenic autoimmune disorders can be categorized into two groups. An expectable first group contains genes involved in the homeostasis of the immune system, including homeostasis of immune organs and immune cells. Intriguingly, the second group consists of genes functionally involved in the homeostasis of target tissues or autoantigens. According to our novel hypothesis, we propose that autoimmunity represents a consequence of a dysregulated homeostasis of the immune system and/or its targets including autoantigens and target tissues. In this review we refer to both aspects of homeostasis in autoimmunity with a highlight on the role of the homeostasis of target tissues and autoantigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Rapid-onset obesity, hypoventilation, hypothalamic dysfunction, autonomic dysregulation and neuroendocrine tumor syndrome with a homogenous enlargement of the pituitary gland: a case report.

    Science.gov (United States)

    Aljabban, Lama; Kassab, Lina; Bakoura, Nour Alhuda; Alsalka, Mohammad Fayez; Maksoud, Ismaeil

    2016-11-22

    Rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome is a rare pediatric disorder with a variable sequence of clinical presentations, undefined etiology, and high risk of mortality. Our patient presented an unusual course of the disease accompanied by a homogenous mild enlargement of her pituitary gland with an intact pituitary-endocrine axis which, to the best of our knowledge, represents a new finding in rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome. We present a documented case of a 4 years and 8-month-old Syrian Arabic girl with a distinctive course of signs and symptoms of rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome accompanied by mature ganglioneuroma in her chest, a homogenous mild enlargement of her pituitary gland, generalized cortical brain atrophy, and seizures. Three months after her first marked symptoms were noted she had a sudden progression of severe respiratory distress that ended with her death. The findings of this case could increase our understanding of the pathogenetic mechanisms of rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation, and place more emphases on pediatricians to consider rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome whenever early rapid onset of obesity, associated with any malfunction, is observed in children. This knowledge could be lifesaving for children with rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome.

  17. Just Breathe: The Effects of Emotional Dysregulation and Test Anxiety on GPA

    Science.gov (United States)

    Hartman, Samantha D.; Wasieleski, David T.; Whatley, Mark A.

    2017-01-01

    College is considered to be one of the most evaluative and stressful times during a student's academic career. A student's inability to regulate emotions may be correlated with an increased level of test anxiety. Previous research has indicated significant relationships between emotional dysregulation and generalized anxiety disorders (e.g.,…

  18. Immune System Dysregulation and Latent Herpesvirus Reactivation During Winterover at Concordia Station, Dome C, Antarctica

    Science.gov (United States)

    Crucian, B. E.; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Meta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.; hide

    2011-01-01

    Immune system dysregulation occurs during spaceflight and consists of altered peripheral leukocyte distribution, reductions in immunocyte function and altered cytokine production profiles. Causes may include stress, confinement, isolation, and disrupted circadian rhythms. All of these factors may be replicated to some degree in terrestrial environments. NASA is currently evaluating the potential for a ground-based analog for immune dysregulation, which would have utility for mechanistic investigations and countermeasures evaluation. For ground-based space physiology research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over, consisting of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation and disrupted circadian rhythms, is potentially a good ground-analog for spaceflight-associated immune dysregulation. Of all Antarctica bases, the French-Italian Concordia Station, may be the most appropriate to replicate spaceflight/exploration conditions. Concordia is an interior base located in harsh environmental conditions, and has been constructed to house small, international crews in a station-environment similar to what should be experienced by deep space astronauts. The ESA-NASA CHOICE study assessed innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. The study was conducted over two winterover missions in 2009 and 2010. Final study data from NASA participation in these missions will be presented.

  19. Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime.

    Science.gov (United States)

    McBrayer, MaryKate; Nixon, Ralph A

    2013-12-01

    Early-onset FAD (familial Alzheimer's disease) is caused by mutations of PS1 (presenilin 1), PS2 (presenilin 2) and APP (amyloid precursor protein). Beyond the effects of PS1 mutations on proteolytic functions of the γ-secretase complex, mutant or deficient PS1 disrupts lysosomal function and Ca2+ homoeostasis, both of which are considered strong pathogenic factors in FAD. Loss of PS1 function compromises assembly and proton-pumping activity of the vacuolar-ATPase on lysosomes, leading to defective lysosomal acidification and marked impairment of autophagy. Additional dysregulation of cellular Ca2+ by mutant PS1 in FAD has been ascribed to altered ion channels in the endoplasmic reticulum; however, rich stores of Ca2+ in lysosomes are also abnormally released in PS1-deficient cells secondary to the lysosomal acidification defect. The resultant rise in cytosolic Ca2+ activates Ca2+-dependent enzymes, contributing substantially to calpain overactivation that is a final common pathway leading to neurofibrillary degeneration in all forms of AD (Alzheimer's disease). In the present review, we discuss the close inter-relationships among deficits of lysosomal function, autophagy and Ca2+ homoeostasis as a pathogenic process in PS1-related FAD and their relevance to sporadic AD.

  20. From interleukin-23 to T-helper 17 cells: human T-helper cell differentiation revisited

    NARCIS (Netherlands)

    Boniface, Katia; Blom, Bianca; Liu, Yong-Jun; de Waal Malefyt, René

    2008-01-01

    Protracted inflammation leading to dysregulation of effector T-cell responses represents a common feature of a wide range of autoimmune diseases. The interleukin-12 (IL-12)/T-helper 1 (Th1) pathway was thought to be responsible for the pathogenesis of multiple chronic inflammatory diseases,

  1. EphrinB1 expression is dysregulated and promotes oncogenic signaling in medulloblastoma.

    Science.gov (United States)

    McKinney, Nicole; Yuan, Liangping; Zhang, Hongying; Liu, Jingbo; Cho, Yoon-Jae; Rushing, Elisabeth; Schniederjan, Matthew; MacDonald, Tobey J

    2015-01-01

    Eph receptors and ephrin ligands are master regulators of oncogenic signaling required for proliferation, migration, and metastasis. Yet, Eph/ephrin expression and activity in medulloblastoma (MB), the most common malignant brain tumor of childhood, remains poorly defined. We hypothesized that Eph/ephrins are differentially expressed by sonic hedgehog (SHH) and non-SHH MB and that specific members contribute to the aggressive phenotype. Affymetrix gene expression profiling of 29 childhood MB, separated into SHH (N = 11) and non-SHH (N = 18), was performed followed by protein validation of selected Eph/ephrins in another 60 MB and two MB cell lines (DAOY, D556). Functional assays were performed using MB cells overexpressing or deleted for selected ephrins. We found EPHB4 and EFNA4 almost exclusively expressed by SHH MB, whereas EPHA2, EPHA8, EFNA1 and EFNA3 are predominantly expressed by non-SHH MB. The remaining family members, except EFNB1, are ubiquitously expressed by over 70-90 % MB, irrespective of subgroup. EFNB1 is the only member differentially expressed by 28 % of SHH and non-SHH MB. Corresponding protein expression for EphB/ephrinB1 and B2 was validated in MB. Only ephrinB2 was also detected in fetal cerebellum, indicating that EphB/ephrinB1 expression is MB-specific. EphrinB1 immunopositivity localizes to tumor cells within MB with the highest proliferative index. EphrinB1 overexpression promotes EphB activation, alters F-actin distribution and morphology, decreases adhesion, and significantly promotes proliferation. Either silencing or overexpression of ephrinB1 impairs migration. These results indicate that EphrinB1 is uniquely dysregulated in MB and promotes oncogenic responses in MB cells, implicating ephrinB1 as a potential target.

  2. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  3. Negative reinforcement eating expectancies, emotion dysregulation, and symptoms of bulimia nervosa.

    Science.gov (United States)

    Hayaki, Jumi

    2009-09-01

    Research suggests that emotion dysregulation or difficulties in the modulation of emotional experience constitute risk for eating disorders. Recent work has also highlighted the role of certain eating-related cognitions, specifically expectations of negative emotional reinforcement from eating, in the development of disturbed eating patterns. However, it is unclear whether these expectancies are merely a dimension of a general inability to regulate emotions effectively or rather a unique cognitive-affective risk factor for the development of an eating disorder. This study examines the unique contribution of eating expectancies to symptoms of bulimia nervosa (BN) after controlling for two dimensions of emotion dysregulation (alexithymia and experiential avoidance) previously implicated in the phenomenology of eating disorders. Participants were 115 undergraduate women who self-reported demographics, alexithymia, experiential avoidance, eating expectancies, and symptoms of BN. Eating expectancies uniquely contributed 12.4% of the variance in symptoms of BN, F(2, 108) = 11.74, p symptoms of BN. These results suggest that individuals who expect eating to provide emotional relief may be especially susceptible to disordered eating. Findings are discussed in terms of emotional risk models and clinical interventions for BN.

  4. Neural Correlates of Reversal Learning in Severe Mood Dysregulation and Pediatric Bipolar Disorder

    Science.gov (United States)

    Adleman, Nancy E.; Kayser, Reilly; Dickstein, Daniel; Blair, R. James R.; Pine, Daniel; Leibenluft, Ellen

    2011-01-01

    Objective: Outcome and family history data differentiate children with severe mood dysregulation (SMD), a syndrome characterized by chronic irritability, from children with "classic" episodic bipolar disorder (BD). Nevertheless, the presence of cognitive inflexibility in SMD and BD highlights the need to delineate neurophysiologic similarities and…

  5. MicroRNA alterations in Barrett′s esophagus, esophageal adenocarcinoma, and esophageal adenocarcinoma cell lines following cranberry extract treatment: Insights for chemoprevention

    Directory of Open Access Journals (Sweden)

    Laura A Kresty

    2011-01-01

    Full Text Available Background: Aberrant expression of small noncoding endogenous RNA molecules known as microRNAs (miRNAs is documented to occur in multiple cancer types including esophageal adencarcinoma (EAC and its only known precursor, Barrett′s esophagus (BE. Recent studies have linked dysregulation of specific miRNAs to histological grade, neoplastic progression and metastatic potential. Materials and Methods: Herein, we present a summary of previously reported dysregulated miRNAs in BE and EAC tissues as well as EAC cell lines and evaluate a cranberry proanthocyanidin rich extract′s (C-PAC ability to modulate miRNA expression patterns of three human EAC cell lines (JHEso-Ad-1, OE33 and OE19. Results: A review of 13 published studies revealed dysregulation of 87 miRNAs in BE and EAC tissues, whereas 52 miRNAs have been reported to be altered in BE or EAC cell lines, with 48% overlap with miRNA changes reported in tissues. We report for the first time C-PAC-induced modulation of five miRNAs in three EAC cell lines resulting in 26 validated gene targets and identification of key signaling pathways including p53, angiogenesis, T-cell activation and apoptosis. Additionally, mutiple cancer related networks were ideintified as modulated by C-PAC utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG, Protein Analysis Through Evolutionary Relationships (PANTHER, and MetaCore analysis tools. Conclusions: Study results support the cancer inhibitory potential of C-PAC is in part attributable to C-PAC′s ability to modify miRNA profiles within EAC cells. A number of C-PAC-modulated miRNAs have been been identified as dysregulated in BE and EAC. Further insights into miRNA dysregulation and modulation by select cancer preventive agents will support improved targeted interventions in high-risk cohorts.

  6. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  7. Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic Hyp mice.

    Directory of Open Access Journals (Sweden)

    Kazuaki Miyagawa

    Full Text Available Osteocytes express multiple genes involved in mineral metabolism including PHEX, FGF23, DMP1 and FAM20C. In Hyp mice, a murine model for X-linked hypophosphatemia (XLH, Phex deficiency results in the overproduction of FGF23 in osteocytes, which leads to hypophosphatemia and impaired vitamin D metabolism. In this study, to further clarify the abnormality in osteocytes of Hyp mice, we obtained detailed gene expression profiles in osteoblasts and osteocytes isolated from the long bones of 20-week-old Hyp mice and wild-type (WT control mice. The expression of Fgf23, Dmp1, and Fam20c was higher in osteocytic cells than in osteoblastic cells in both genotypes, and was up-regulated in Hyp cells. Interestingly, the up-regulation of these genes in Hyp bones began before birth. On the other hand, the expression of Slc20a1 encoding the sodium/phosphate (Na+/Pi co-transporter Pit1 was increased in osteoblasts and osteocytes from adult Hyp mice, but not in Hyp fetal bones. The direct effects of extracellular Pi and 1,25-dihydroxyvitamin D3 [1,25(OH2D3] on isolated osteoblastic and osteocytic cells were also investigated. Twenty-four-hour treatment with 10-8 M 1,25(OH2D3 increased the expression of Fgf23 in WT osteoblastic cells but not in osteocytic cells. Dmp1 expression in osteocytic cells was increased due to the 24-hour treatment with 10 mM Pi and was suppressed by 10-8 M 1,25(OH2D3 in WT osteocytic cells. We also found the up-regulation of the genes for FGF1, FGF2, their receptors, and Egr-1 which is a target of FGF signaling, in Hyp osteocytic cells, suggesting the activation of FGF/FGFR signaling. These results implicate the complex gene dysregulation in osteoblasts and osteocytes of Hyp mice, which might contribute to the pathogenesis.

  8. B-Cell Dysregulation in Crohn's Disease Is Partially Restored with Infliximab Therapy.

    Directory of Open Access Journals (Sweden)

    Wilhelmina M C Timmermans

    Full Text Available B-cell depletion can improve a variety of chronic inflammatory diseases, but does not appear beneficial for patients with Crohn's disease.To elucidate the involvement of B cells in Crohn's disease, we here performed an 'in depth' analysis of intestinal and blood B-cells in this chronic inflammatory disease.Patients with Crohn's disease were recruited to study B-cell infiltrates in intestinal biopsies (n = 5, serum immunoglobulin levels and the phenotype and molecular characteristics of blood B-cell subsets (n = 21. The effects of infliximab treatment were studied in 9 patients.Granulomatous tissue showed infiltrates of B lymphocytes rather than Ig-secreting plasma cells. Circulating transitional B cells and CD21low B cells were elevated. IgM memory B cells were reduced and natural effector cells showed decreased replication histories and somatic hypermutation (SHM levels. In contrast, IgG and IgA memory B cells were normally present and their Ig gene transcripts carried increased SHM levels. The numbers of transitional and natural effector cells were normal in patients who responded clinically well to infliximab.B cells in patients with Crohn's disease showed signs of chronic stimulation with localization to granulomatous tissue and increased molecular maturation of IgA and IgG. Therapy with TNFα-blockers restored the defect in IgM memory B-cell generation and normalized transitional B-cell levels, making these subsets candidate markers for treatment monitoring. Together, these results suggest a chronic, aberrant B-cell response in patients with Crohn's disease, which could be targeted with new therapeutics that specifically regulate B-cell function.

  9. MicroRNA expression profiles of cancer stem cells in head and neck squamous cell carcinoma

    OpenAIRE

    YATA, KAZUYA; BEDER, LEVENT BEKIR; TAMAGAWA, SHUNJI; HOTOMI, MUNEKI; HIROHASHI, YOSHIHIKO; GRENMAN, REIDAR; YAMANAKA, NOBORU

    2015-01-01

    Increasing evidence indicates that cancer stem cells have essential roles in tumor initiation, progression, metastasis and resistance to chemo-radiation. Recent research has pointed out biological importance of microRNAs in cancer stem cell dysregulation. Total number of mature microRNAs in human genome increased to more than 2,500 with the recent up-date of the database. However, currently no information is available regarding microRNA expression profiles of cancer stem cells in head and nec...

  10. Prediction of Smoking, Alcohol, Drugs, and Psychoactive Drugs Abuse Based on Emotional Dysregulation and Child Abuse Experience in People with Borderline Personality Traits

    Directory of Open Access Journals (Sweden)

    M GannadiFarnood

    2014-12-01

    Full Text Available Objective: This research was an attempt to predict the tendency of people having borderline personality traits to smoking, drinking alcohol, and taking psychoactive drugs based on emotional dysregulation and child abuse. Method: This study employed a correlation method which is categorized in descriptive category. A sample including 600 male and female bachelor students of Tabriz University was selected by cluster sampling. Then, high risk behaviors scale, Emotional dysregulation Scale, Child abuse scale, and borderline personality scale (STB were distributed among this group. Findings: Stepwise multiple regression analysis suggested that emotional dysregulation and child abuse significantly predicted varying degrees of smoking, drug, and alcohol usage. Conclusion: The research findings suggest the basic role of initial biological vulnerability in terms of emotional regulation (dysregulation and invalidating family environment (child abuse in the prediction of catching the disorder of borderline personality traits and producing high riskbehaviorssuch as alcohol drink and drug usage.

  11. Severe Affective and Behavioural Dysregulation Is Associated with Significant Psychosocial Adversity and Impairment

    Science.gov (United States)

    Jucksch, Viola; Salbach-Andrae, Harriet; Lenz, Klaus; Goth, Kirstin; Dopfner, Manfred; Poustka, Fritz; Freitag, Christine M.; Lehmkuhl, Gerd; Lehmkuhl, Ulrike; Holtmann, Martin

    2011-01-01

    Background: Recently, a highly heritable behavioral phenotype of simultaneous deviance on the Anxious/Depressed, Attention Problems, and Aggressive Behavior syndrome scales has been identified on the Child Behavior Checklist (CBCL-Dysregulation Profile, CBCL-DP). This study aims to investigate psychosocial adversity and impairment of the CBCL-DP.…

  12. Robust analysis of the hydrophobic basic analytes loratadine and desloratadine in pharmaceutical preparations and biological fluids by sweeping-cyclodextrin-modified micellar electrokinetic chromatography.

    Science.gov (United States)

    El-Awady, Mohamed; Belal, Fathalla; Pyell, Ute

    2013-09-27

    The analysis of hydrophobic basic analytes by micellar electrokinetic chromatography (MEKC) is usually challenging because of the tendency of these analytes to be adsorbed onto the inner capillary wall in addition to the difficulty to separate these compounds as they exhibit extremely high retention factors. A robust and reliable method for the simultaneous determination of loratadine (LOR) and its major metabolite desloratadine (DSL) is developed based on cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) with acidic sample matrix and basic background electrolyte (BGE). The influence of the sample matrix on the reachable focusing efficiency is studied. It is shown that the application of a low pH sample solution mitigates problems associated with the low solubility of the hydrophobic basic analytes in aqueous solution while having advantages with regard to on-line focusing. Moreover, the use of a basic BGE reduces the adsorption of these analytes in the separation compartment. The separation of the studied analytes is achieved in less than 7min using a BGE consisting of 10mmolL(-1) disodium tetraborate buffer, pH 9.30 containing 40mmolL(-1) SDS and 20mmolL(-1) hydroxypropyl-β-CD while the sample solution is composed of 10mmolL(-1) phosphoric acid, pH 2.15. A full validation study of the developed method based on the pharmacopeial guidelines is performed. The method is successfully applied to the analysis of the studied drugs in tablets without interference of tablet additives as well as the analysis of spiked human urine without any sample pretreatment. Furthermore, DSL can be detected as an impurity in LOR bulk powder at the stated pharmacopeial limit (0.1%, w/w). The selectivity of the developed method allows the analysis of LOR and DSL in combination with the co-formulated drug pseudoephedrine. It is shown that in CD-MEKC with basic BGE, solute-wall interactions are effectively suppressed allowing the development of efficient and precise

  13. The emotion dysregulation inventory: Psychometric properties and item response theory calibration in an autism spectrum disorder sample.

    Science.gov (United States)

    Mazefsky, Carla A; Yu, Lan; White, Susan W; Siegel, Matthew; Pilkonis, Paul A

    2018-04-06

    Individuals with autism spectrum disorder (ASD) often present with prominent emotion dysregulation that requires treatment but can be difficult to measure. The Emotion Dysregulation Inventory (EDI) was created using methods developed by the Patient-Reported Outcomes Measurement Information System (PROMIS ® ) to capture observable indicators of poor emotion regulation. Caregivers of 1,755 youth with ASD completed 66 candidate EDI items, and the final 30 items were selected based on classical test theory and item response theory (IRT) analyses. The analyses identified two factors: (a) Reactivity, characterized by intense, rapidly escalating, sustained, and poorly regulated negative emotional reactions, and (b) Dysphoria, characterized by anhedonia, sadness, and nervousness. The final items did not show differential item functioning (DIF) based on gender, age, intellectual ability, or verbal ability. Because the final items were calibrated using IRT, even a small number of items offers high precision, minimizing respondent burden. IRT co-calibration of the EDI with related measures demonstrated its superiority in assessing the severity of emotion dysregulation with as few as seven items. Validity of the EDI was supported by expert review, its association with related constructs (e.g., anxiety and depression symptoms, aggression), higher scores in psychiatric inpatients with ASD compared to a community ASD sample, and demonstration of test-retest stability and sensitivity to change. In sum, the EDI provides an efficient and sensitive method to measure emotion dysregulation for clinical assessment, monitoring, and research in youth with ASD of any level of cognitive or verbal ability. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. This paper describes a new measure of poor emotional control called the Emotion Dysregulation Inventory (EDI). Caregivers of 1,755 youth with ASD completed candidate items, and advanced statistical

  14. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Katherine Devitt

    2014-01-01

    Full Text Available Hemophagocytic lymphohistiocytosis (HLH is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management.

  15. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma.

    Science.gov (United States)

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A; Chen, Benjamin J

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management.

  16. Dimensions of Emotion Dysregulation in Anorexia Nervosa and Bulimia Nervosa: A Conceptual Review of the Empirical Literature

    Science.gov (United States)

    Lavender, Jason M.; Wonderlich, Stephen A.; Engel, Scott G.; Gordon, Kathryn H.; Kaye, Walter H.; Mitchell, James E.

    2015-01-01

    Several existing conceptual models and psychological interventions address or emphasize the role of emotion dysregulation in eating disorders. The current article uses Gratz and Roemer’s (2004) multidimensional model of emotion regulation and dysregulation as a clinically relevant framework to review the extant literature on emotion dysregulation in anorexia nervosa (AN) and bulimia nervosa (BN). Specifically, the dimensions reviewed include: (1) the flexible use of adaptive and situationally appropriate strategies to modulate the duration and/or intensity of emotional responses, (2) the ability to successfully inhibit impulsive behavior and maintain goal-directed behavior in the context of emotional distress, (3) awareness, clarity, and acceptance of emotional states, and (4) the willingness to experience emotional distress in the pursuit of meaningful activities. The current review suggests that both AN and BN are characterized by broad emotion regulation deficits, with difficulties in emotion regulation across the four dimensions found to characterize both AN and BN, although a small number of more specific difficulties may distinguish the two disorders. The review concludes with a discussion of the clinical implications of the findings, as well as a summary of limitations of the existing empirical literature and suggestions for future research. PMID:26112760

  17. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.

    Science.gov (United States)

    Patterson, Susan L

    2015-09-01

    Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Human stem cell-derived retinal epithelial cells activate complement via collectin 11 in response to stress

    DEFF Research Database (Denmark)

    Fanelli, Giorgia; Gonzalez-Cordero, Anai; Gardner, Peter J

    2017-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness and is associated with complement dysregulation. The disease is a potential target for stem cell therapy but success is likely to be limited by the inflammatory response. We investigated the innate immune properties of human ind...

  19. The clinical correlation of regulatory T cells and cyclic adenosine monophosphate in enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Shih-Min Wang

    Full Text Available Brainstem encephalitis (BE and pulmonary edema (PE are notable complications of enterovirus 71 (EV71 infection.This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment.Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD or BE group, and the autonomic nervous system (ANS dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP levels, and the regulatory T cell (Tregs profiles of the patients were determined.Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4(+CD25(+Foxp3+ and CD4(+Foxp3(+ T cells compared with patients with HFMD or BE. The expression frequency of CD4-CD8- was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment.These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels.

  20. Understanding the connection between self-esteem and aggression : The mediating role of emotion dysregulation

    NARCIS (Netherlands)

    Garofalo, C.; Holden, C.J.; Zeigler-Hill, V.; Velotti, P.

    2016-01-01

    The purpose of the present study was to extend previous knowledge concerning the link between self-esteem and aggression by examining the mediating role of emotion dysregulation among offenders and community participants. A sample of 153 incarcerated violent offenders and a community sample of 197

  1. Emotion regulation and aggression : The incremental contribution of alexithymia, impulsivity, and emotion dysregulation facets

    NARCIS (Netherlands)

    Garofalo, C.; Velotti, Patrizia; Zavattini, Giulio Cesare

    2018-01-01

    Objective: Prior research has long emphasized the role of alexithymia and impulsivity to explain aggressive tendencies. Recently, a growing body of research seems to support the relevance of the broader construct of emotion dysregulation to understand aggression. The present study was the first to

  2. Depressive Symptoms, Emotion Dysregulation, and Bulimic Symptoms in Youth With Type 1 Diabetes: Varying Interactions at Diagnosis and During Transition to Insulin Pump Therapy.

    Science.gov (United States)

    Young-Hyman, Deborah L; Peterson, Claire M; Fischer, Sarah; Markowitz, Jessica T; Muir, Andrew B; Laffel, Lori M

    2016-07-01

    This study evaluated the associations between depressive symptoms, emotion dysregulation and bulimic symptoms in youth with type 1 diabetes (T1D) in the context of the diagnosis and treatment of T1D. Study participants were 103 youth in 2 distinct groups: newly diagnosed (New) or transitioning to pump therapy (continuous subcutaneous insulin infusion [CSII]; "Pump"), who completed questionnaires regarding symptoms of depression, emotion dysregulation, and bulimia. Glycemic control (A1c), height, weight, and questionnaires were evaluated within 10 days of diagnosis (n = 58) or at education/clinic visit before starting insulin utilizing CSII (n = 45). In the newly diagnosed group, only depression accounted for significant variance in bulimia scores (β = .47, P symptoms and emotion dysregulation were associated with greater bulimic symptoms. Depressive symptoms and emotion dysregulation, an indicator of poor coping/behavioral control, could help explain adoption of disordered eating behaviors in youth with T1D who are transitioning to pump therapy. © 2016 Diabetes Technology Society.

  3. Main and interactive effects of emotion dysregulation and HIV symptom severity on quality of life among persons living with HIV/AIDS.

    Science.gov (United States)

    Brandt, Charles P; Jardin, Charles; Sharp, Carla; Lemaire, Chad; Zvolensky, Michael J

    2017-04-01

    HIV symptoms are associated with a poorer quality of life (QOL) among persons living with HIV/AIDS (PLWHA). Yet, there is little understanding of emotional factors that impact the relation between HIV symptom severity and QOL. The present study examined the main and interactive effects of emotion dysregulation and HIV symptom severity on multiple indices of QOL, including physical (impact of physical problems related to HIV), psychological (frequency of negative feelings), independence (necessity of medical treatment to function in daily life), social (feelings of acceptance), environmental (satisfaction with living conditions and medical care), and spiritual (fear of the future and death) among a sample of 74 PLWHA. Participants (72.9% male; mean age = 48.24, SD = 7.85) were recruited from AIDS Service Organizations in the United States. Results indicated that higher HIV symptom severity is significantly associated with lower physical and independence QOL, whereas higher emotion dysregulation is significantly associated with lower scores on all measured aspects of QOL. Additionally, results indicated that the interaction of emotion dysregulation and HIV symptom severity was significantly associated with both physical and environmental QOL. The form of the observed significant interactions indicated that HIV symptom severity was related to poorer QOL among those with lower (versus higher) emotion dysregulation. The present findings indicate that emotion dysregulation is related to QOL among PLWHA and may interact with HIV symptom severity to negatively impact certain aspects of QOL. Given the profound impact that HIV has on QOL, this finding is important in understanding these relations mechanistically, and may be important in the development of novel psychological treatment strategies.

  4. Antireward, compulsivity, and addiction: seminal contributions of Dr. Athina Markou to motivational dysregulation in addiction.

    Science.gov (United States)

    Koob, George F

    2017-05-01

    Addiction is defined as a chronically relapsing disorder characterized by compulsive drug seeking that is hypothesized to derive from multiple sources of motivational dysregulation. Dr. Athina Markou made seminal contributions to our understanding of the neurobiology of addiction with her studies on the dysregulation of reward function using animal models with construct validity. Repeated overstimulation of the reward systems with drugs of abuse decreases reward function, characterized by brain stimulation reward and presumbably reflecting dysphoria-like states. The construct of negative reinforcement, defined as drug taking that alleviates a negative emotional state that is created by drug abstinence, is particularly relevant as a driving force in both the withdrawal/negative affect and preoccupation/anticipation stages of the addiction cycle. The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of key neurochemical circuits that drive incentive-salience/reward systems (dopamine, opioid peptides) in the ventral striatum and from the recruitment of brain stress systems (corticotropin-releasing factor, dynorphin) within the extended amygdala. As drug taking becomes compulsive-like, the factors that motivate behavior are hypothesized to shift to drug-seeking behavior that is driven not only by positive reinforcement but also by negative reinforcement. This shift in motivation is hypothesized to reflect the allostatic misregulation of hedonic tone such that drug taking makes the hedonic negative emotional state worse during the process of seeking temporary relief with compulsive drug taking.

  5. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    International Nuclear Information System (INIS)

    Fenger, Joelle M; Bear, Misty D; Volinia, Stefano; Lin, Tzu-Yin; Harrington, Bonnie K; London, Cheryl A; Kisseberth, William C

    2014-01-01

    While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Our findings

  6. Neurobiology of dysregulated motivational systems in drug addiction

    Science.gov (United States)

    Edwards, Scott; Koob, George F

    2010-01-01

    The progression from recreational drug use to drug addiction impacts multiple neurobiological processes and can be conceptualized as a transition from positive to negative reinforcement mechanisms driving both drug-taking and drug-seeking behaviors. Neurobiological mechanisms for negative reinforcement, defined as drug taking that alleviates a negative emotional state, involve changes in the brain reward system and recruitment of brain stress (or antireward) systems within forebrain structures, including the extended amygdala. These systems are hypothesized to be dysregulated by excessive drug intake and to contribute to allostatic changes in reinforcement mechanisms associated with addiction. Points of intersection between positive and negative motivational circuitry may further drive the compulsivity of drug addiction but also provide a rich neurobiological substrate for therapeutic intervention. PMID:20563312

  7. Pediatric Bipolar Disorder versus Severe Mood Dysregulation: Risk for Manic Episodes on Follow-Up

    Science.gov (United States)

    Stringaris, Argyris; Baroni, Argelinda; Haimm, Caroline; Brotman, Melissa; Lowe, Catherine H.; Myers, Frances; Rustgi, Eileen; Wheeler, Wanda; Kayser, Reilly; Towbin, Kenneth; Leibenluft, Ellen

    2010-01-01

    Objective: An important question in pediatric bipolar research is whether marked nonepisodic irritability is a manifestation of bipolar disorder in youth. This study tests the hypothesis that youth with severe mood dysregulation (SMD), a category created for the purpose of studying children presenting with severe nonepisodic irritability, will be…

  8. The Impact of Attachment Security and Emotion Dysregulation on Anxiety in Children and Adolescents

    Science.gov (United States)

    Bender, Patrick K.; Sømhovd, Mikael; Pons, Francisco; Reinholdt-Dunne, Marie L.; Esbjørn, Barbara H.

    2015-01-01

    Theoretical views and empirical findings suggest interrelations among attachment security, emotion dysregulation and anxiety in childhood and adolescence. However, the associations among the three constructs have rarely been investigated in children, and no study has yet addressed these associations in adolescence. The aim of the present study was…

  9. Microglial cell dysregulation in Brain Aging and Neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-07-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD. We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the

  10. Dysregulation in level of goal and action identification across psychological disorders

    Science.gov (United States)

    Watkins, Edward

    2011-01-01

    Goals, events, and actions can be mentally represented within a hierarchical framework that ranges from more abstract to more concrete levels of identification. A more abstract level of identification involves general, superordinate, and decontextualized mental representations that convey the meaning of goals, events, and actions, “why” an action is performed, and its purpose, ends, and consequences. A more concrete level of identification involves specific and subordinate mental representations that include contextual details of goals, events, and actions, and the specific “how” details of an action. This review considers three lines of evidence for considering that dysregulation of level of goal/action identification may be a transdiagnostic process. First, there is evidence that different levels of identification have distinct functional consequences and that in non-clinical samples level of goal/action identification appears to be regulated in a flexible and adaptive way to match the level of goal/action identification to circumstances. Second, there is evidence that level of goal/action identification causally influences symptoms and processes involved in psychological disorders, including emotional response, repetitive thought, impulsivity, problem solving and procrastination. Third, there is evidence that the level of goal/action identification is biased and/or dysregulated in certain psychological disorders, with a bias towards more abstract identification for negative events in depression, GAD, PTSD, and social anxiety. PMID:20579789

  11. Does school mobility place elementary school children at risk for lower math achievement? The mediating role of cognitive dysregulation.

    Science.gov (United States)

    Friedman-Krauss, Allison H; Raver, C Cybele

    2015-12-01

    Children growing up in poverty have a higher likelihood of exposure to multiple forms of adversity that jeopardize their chances of academic success. The current paper identifies school mobility, or changing schools, as 1 such poverty-related risk. Using a sample of low-income, predominantly ethnic-minority children (n = 381) in Chicago, this study tests the hypothesis that repeatedly changing schools during the 5-year period between Head Start (preschool) and third grade is a potent predictor of children's math achievement in fourth grade and that children's cognitive dysregulation serves as a mechanism through which school mobility may negatively affect children's math achievement. Hierarchical linear models controlling for baseline child and family characteristics (including children's early math and dysregulation measured during Head Start) revealed an inverse relation between the number of times low-income children changed schools between preschool and third grade and children's math achievement on state standardized tests in fourth grade. Furthermore, frequently changing schools (3 or 4 school changes over the same time period) was positively associated with teacher-reported cognitive dysregulation in third grade and negatively associated with children's math achievement in fourth grade. Evidence for the role of children's cognitive dysregulation as a partial statistical mediator was found for the relation between frequently changing schools and math achievement, even after accounting for baseline risk. Results are discussed in terms of school policies, practices, and intervention strategies to prevent the disruptive and potentially stressful experiences of school mobility for young, low-income children. (c) 2015 APA, all rights reserved).

  12. Does School Mobility Place Elementary School Children at Risk for Lower Math Achievement? The Mediating Role of Cognitive Dysregulation

    Science.gov (United States)

    Friedman-Krauss, Allison H.; Raver, C. Cybele

    2015-01-01

    Children growing up in poverty have a higher likelihood of exposure to multiple forms of adversity that jeopardize their chances of academic success. The current paper identifies school mobility, or changing schools, as 1 such poverty-related risk. Using a sample of low-income, predominantly ethnic-minority children (n = 381) in Chicago, this study tests the hypothesis that repeatedly changing schools during the 5-year period between Head Start (preschool) and third grade is a potent predictor of children’s math achievement in fourth grade and that children’s cognitive dysregulation serves as a mechanism through which school mobility may negatively affect children’s math achievement. Hierarchical linear models controlling for baseline child and family characteristics (including children’s early math and dysregulation measured during Head Start) revealed an inverse relation between the number of times low-income children changed schools between preschool and third grade and children’s math achievement on state standardized tests in fourth grade. Furthermore, frequently changing schools (3 or 4 school changes over the same time period) was positively associated with teacher-reported cognitive dysregulation in third grade and negatively associated with children’s math achievement in fourth grade. Evidence for the role of children’s cognitive dysregulation as a partial statistical mediator was found for the relation between frequently changing schools and math achievement, even after accounting for baseline risk. Results are discussed in terms of school policies, practices, and intervention strategies to prevent the disruptive and potentially stressful experiences of school mobility for young, low-income children. PMID:26436870

  13. Emotion Dysregulation and Anxiety in Adults with ASD: Does Social Motivation Play a Role?

    Science.gov (United States)

    Swain, Deanna; Scarpa, Angela; White, Susan; Laugeson, Elizabeth

    2015-01-01

    Young adults with ASD and no intellectual impairment are more likely to exhibit clinical levels of anxiety than typically developing peers (DSM-5, American Psychiatric Association, 2013). This study tests a mechanistic model in which anxiety culminates via emotion dysregulation and social motivation. Adults with ASD (49 males, 20 females)…

  14. How Parkinsonian Toxins Dysregulate the Autophagy Machinery

    Directory of Open Access Journals (Sweden)

    Ruben K. Dagda

    2013-11-01

    Full Text Available Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone have been widely employed as in vivo and in vitro chemical models of Parkinson’s disease (PD. Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD.

  15. Is Type-2 Diabetes a Glycogen Storage Disease of Pancreatic β-Cells?

    Science.gov (United States)

    Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F

    2018-01-01

    Elevated plasma glucose leads to pancreatic β-cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this ‘glucotoxicity’ via dysregulated biochemical pathways promoting β-cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β-cells in normoglycaemia and in diabetes. PMID:28683284

  16. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Nozomi Yabuuchi

    2016-12-01

    Full Text Available High mortality of acute kidney injury (AKI is associated with acute lung injury (ALI, which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS, in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5, in bilateral nephrectomy (BNx-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr, blood urea nitrogen (BUN and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.

  17. T Cell-Tumor Interaction Directs the Development of Immunotherapies in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    A. E. Albers

    2010-01-01

    Full Text Available The competent immune system controls disease effectively due to induction, function, and regulation of effector lymphocytes. Immunosurveillance is exerted mostly by cytotoxic T-lymphocytes (CTLs while specific immune suppression is associated with tumor malignancy and progression. In squamous cell carcinoma of the head and neck, the presence, activity, but also suppression of tumor-specific CTL have been demonstrated. Functional CTL may exert a selection pressure on the tumor cells that consecutively escape by a combination of molecular and cellular evasion mechanisms. Certain of these mechanisms target antitumor effector cells directly or indirectly by affecting cells that regulate CTL function. This results in the dysfunction or apoptosis of lymphocytes and dysregulated lymphocyte homeostasis. Another important tumor-escape mechanism is to avoid recognition by dysregulation of antigen processing and presentation. Thus, both induction of functional CTL and susceptibility of the tumor and its microenvironment to become T cell targets should be considered in CTL-based immunotherapy.

  18. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies-brief review.

    Science.gov (United States)

    Heilmann, Romy M; Allenspach, Karin

    2017-11-01

    Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.

  19. Getting too sweet: galectin-1 dysregulation in gestational diabetes mellitus.

    Science.gov (United States)

    Blois, Sandra M; Gueuvoghlanian-Silva, Barbara Y; Tirado-González, Irene; Torloni, Maria R; Freitag, Nancy; Mattar, Rosiane; Conrad, Melanie L; Unverdorben, Laura; Barrientos, Gabriela; Knabl, Julia; Toldi, Gergely; Molvarec, Attila; Rose, Matthias; Markert, Udo R; Jeschke, Udo; Daher, Silvia

    2014-07-01

    Galectin-1 (gal-1) is a prototype carbohydrate-binding protein, whose dysregulation is associated with adverse pregnancy outcomes such as spontaneous abortion and pre-eclampsia. Furthermore, it is known that faulty gal-1 protein production or gene regulation can be caused by single-nucleotide polymorphisms in the LGALS1 gene. Gestational diabetes mellitus (GDM) is also an adverse pregnancy outcome and the most common metabolic disorder during gestation. However, gal-1 expression patterns during GDM remain largely unknown. Our aims were to define local and peripheral gal-1 expression patterns during pregnancy, and to investigate LGALS1 gene polymorphisms in GDM patients. Circulating gal-1 levels were determined by ELISA in GDM patients and normal pregnant controls, and LGALS1 gene polymorphisms were assessed for association with GDM. Placental tissues were collected from control and GDM term pregnancies to evaluate local gal-1 expression by immunofluorescence. Our results show that GDM is associated with a failure to increase circulating gal-1 levels during the second and third trimester, as well as overexpression of gal-1 in placental tissue. Additionally, the LGALS1 polymorphism rs4820294 was associated with the development of GDM. In pregnancies complicated by GDM, we observed gal-1 dysregulation both locally in the placenta and peripherally in the circulation. Furthermore, the association between the LGALS1 polymorphism and GDM may indicate a genetic contribution to this adverse pregnancy outcome. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

    OpenAIRE

    Perryman, Scott V; Sylvester, Karl G

    2007-01-01

    This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the conc...

  1. A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signaling pathway and causes Lenz microphthalmia syndrome

    Science.gov (United States)

    Esmailpour, Taraneh; Riazifar, Hamidreza; Liu, Linan; Donkervoort, Sandra; Huang, Vincent H; Madaan, Shreshtha; Shoucri, Bassem M; Busch, Anke; Wu, Jie; Towbin, Alexander; Chadwick, Robert B; Sequeira, Adolfo; Vawter, Marquis P; Sun, Guoli; Johnston, Jennifer J; Biesecker, Leslie G; Kawaguchi, Riki; Sun, Hui; Kimonis, Virginia; Huang, Taosheng

    2014-01-01

    Introduction Lenz microphthalmia syndrome (LMS) is a genetically heterogeneous X-linked disorder characterised by microphthalmia/anophthalmia, skeletal abnormalities, genitourinary malformations, and anomalies of the digits, ears, and teeth. Intellectual disability and seizure disorders are seen in about 60% of affected males. To date, no gene has been identified for LMS in the microphthalmia syndrome 1 locus (MCOPS1). In this study, we aim to find the disease-causing gene for this condition. Methods and results Using exome sequencing in a family with three affected brothers, we identified a mutation in the intron 7 splice donor site (c.471+2T→A) of the N-acetyltransferase NAA10 gene. NAA10 has been previously shown to be mutated in patients with Ogden syndrome, which is clinically distinct from LMS. Linkage studies for this family mapped the disease locus to Xq27-Xq28, which was consistent with the locus of NAA10. The mutation co-segregated with the phenotype and cDNA analysis showed aberrant transcripts. Patient fibroblasts lacked expression of full length NAA10 protein and displayed cell proliferation defects. Expression array studies showed significant dysregulation of genes associated with genetic forms of anophthalmia such as BMP4, STRA6, and downstream targets of BCOR and the canonical WNT pathway. In particular, STRA6 is a retinol binding protein receptor that mediates cellular uptake of retinol/vitamin A and plays a major role in regulating the retinoic acid signalling pathway. A retinol uptake assay showed that retinol uptake was decreased in patient cells. Conclusions We conclude that the NAA10 mutation is the cause of LMS in this family, likely through the dysregulation of the retinoic acid signalling pathway. PMID:24431331

  2. Disruptive Mood Dysregulation Disorder Symptoms by Age in Autism, ADHD, and General Population Samples

    Science.gov (United States)

    Mayes, Susan Dickerson; Kokotovich, Cari; Mathiowetz, Christine; Baweja, Raman; Calhoun, Susan L.; Waxmonsky, James

    2017-01-01

    Disruptive mood dysregulation disorder (DMDD) is a controversial "DSM-5" diagnosis. It is not known how DMDD symptoms vary by age and if differences are similar for autism, ADHD, and general population samples. Our study analyzed the two DMDD symptoms (irritable-angry mood and temper outbursts) in 1,827 children with autism or ADHD (with…

  3. Steroid dysregulation and stomatodynia (burning mouth syndrome).

    Science.gov (United States)

    Woda, Alain; Dao, Thuan; Gremeau-Richard, Christelle

    2009-01-01

    Stomatodynia ( burning mouth syndrome) is characterized by a spontaneous, continuous burning pain felt in the oral mucosa typically of anxiodepressive menopausal women. Because there is no obvious organic cause, it is considered a nonspecific pain. This Focus Article proposes a hypothesis based on the following pathophysiological cascade: chronic anxiety or post traumatic stress leads to a dysregulation of the adrenal production of steroids. One consequence is a decreased or modified production of some major precursors for the neuroactive steroid synthesis occurring in the skin, mucosa, and nervous system. At menopause, the drastic fall of the other main precursor supply , the gonadal steroids, leads to a brisk alteration of the production of neuroactive steroids. This results in neurodegenerative alterations of small nerves fibers of the oral mucosa and /or some brain areas involved in oral somatic sensations. These neuropathic changes become irreversible and precipitate the burning pain, dysgeusia, and xerostomia associated with stomatodynia, which all involve thin nerve fibers.

  4. Parental Interpersonal Sensitivity and Youth Social Problems: A Mediational Role for Child Emotion Dysregulation

    Science.gov (United States)

    Suveg, Cynthia; Jacob, Marni L.; Payne, Mary

    2010-01-01

    We examined the relations between parental interpersonal sensitivity and youth social problems and explored the mediational role of child emotion dysregulation. Mothers (N = 42; M age = 39.38) and fathers (N = 41; M age = 39.38) of youth aged 7-12 (N = 42; M age = 9.12) completed measures of their own interpersonal sensitivity and reported on…

  5. Transmission of Neglect in Substance Abuse Families: The Role of Child Dysregulation and Parental SUD.

    Science.gov (United States)

    Dunn, Marija G.; Mezzich, Ada; Janiszewski, Susan; Kirisci, Levent; Tarter, Ralph E.

    2001-01-01

    Paternal and maternal models of transmission of child neglect were tested separately in offspring of men with a substance use disorder (SUD). Child dysregulation was independently related to neglect severity. SUD in the mother directly correlated with severity of neglectful parenting. (Contains 51 references and 2 tables.) (GCP)

  6. Coordinated Molecular Cross-Talk between Staphylococcus aureus, Endothelial Cells and Platelets in Bloodstream Infection

    Directory of Open Access Journals (Sweden)

    Carolina D. Garciarena

    2015-12-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen often carried asymptomatically on the human body. Upon entry to the otherwise sterile environment of the cardiovascular system, S. aureus can lead to serious complications resulting in organ failure and death. The success of S. aureus as a pathogen in the bloodstream is due to its ability to express a wide array of cell wall proteins on its surface that recognise host receptors, extracellular matrix proteins and plasma proteins. Endothelial cells and platelets are important cells in the cardiovascular system and are a major target of bloodstream infection. Endothelial cells form the inner lining of a blood vessel and provide an antithrombotic barrier between the vessel wall and blood. Platelets on the other hand travel throughout the cardiovascular system and respond by aggregating around the site of injury and initiating clot formation. Activation of either of these cells leads to functional dysregulation in the cardiovascular system. In this review, we will illustrate how S. aureus establish intimate interactions with both endothelial cells and platelets leading to cardiovascular dysregulation.

  7. From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation.

    Science.gov (United States)

    Bajic, Juliana E; Johnston, Ian N; Howarth, Gordon S; Hutchinson, Mark R

    2018-01-01

    The central nervous system and gastrointestinal tract form the primary targets of chemotherapy-induced toxicities. Symptoms associated with damage to these regions have been clinically termed chemotherapy-induced cognitive impairment and mucositis. Whilst extensive literature outlines the complex etiology of each pathology, to date neither chemotherapy-induced side-effect has considered the potential impact of one on the pathogenesis of the other disorder. This is surprising considering the close bidirectional relationship shared between each organ; the gut-brain axis. There are complex multiple pathways linking the gut to the brain and vice versa in both normal physiological function and disease. For instance, psychological and social factors influence motility and digestive function, symptom perception, and behaviors associated with illness and pathological outcomes. On the other hand, visceral pain affects central nociception pathways, mood and behavior. Recent interest highlights the influence of functional gut disorders, such as inflammatory bowel diseases and irritable bowel syndrome in the development of central comorbidities. Gut-brain axis dysfunction and microbiota dysbiosis have served as key portals in understanding the potential mechanisms associated with these functional gut disorders and their effects on cognition. In this review we will present the role gut-brain axis dysregulation plays in the chemotherapy setting, highlighting peripheral-to-central immune signaling mechanisms and their contribution to neuroimmunological changes associated with chemotherapy exposure. Here, we hypothesize that dysregulation of the gut-brain axis plays a major role in the intestinal, psychological and neurological complications following chemotherapy. We pay particular attention to evidence surrounding microbiota dysbiosis, the role of intestinal permeability, damage to nerves of the enteric and peripheral nervous systems and vagal and humoral mediated changes.

  8. Cortisol Predicts Behavioral Dysregulation and Length of Stay among Children Admitted for Psychiatric Inpatient Treatment

    Science.gov (United States)

    Luebbe, Aaron M.; Elledge, L. Christian; Kiel, Elizabeth J.; Stoppelbein, Laura

    2012-01-01

    Individual differences in behavioral regulation system (BRS) and stress response system (SRS) functioning may reflect greater biological sensitivity to context. The current study tested whether children's cortisol, a measure of the SRS, was related to observed dysregulated behavior, an indicator of the BRS, in a sample of children admitted for…

  9. An evaluation of anxiety sensitivity, emotional dysregulation, and negative affectivity among daily cigarette smokers: relation to smoking motives and barriers to quitting.

    Science.gov (United States)

    Gonzalez, Adam; Zvolensky, Michael J; Vujanovic, Anka A; Leyro, Teresa M; Marshall, Erin C

    2008-12-01

    The present investigation evaluated the relations between anxiety sensitivity and motivational bases of cigarette smoking, as well as barriers to quitting smoking, above and beyond concurrent substance use, negative affectivity, and emotional dysregulation among a community sample of 189 daily cigarette smokers (46% women; M(age)=24.97 years, SD=9.78). Results indicated that anxiety sensitivity was significantly related to coping, addictive, and habitual smoking motives, as well as greater perceived barriers to quitting. These effects were evident above and beyond the variance accounted for by concurrent tobacco, alcohol, and marijuana use and discernable from shared variance with negative affectivity and emotional dysregulation. Emotional dysregulation was significantly related to stimulation, habitual, and sensorimotor smoking motives and greater perceived barriers to quitting, whereas negative affectivity was only significantly related to smoking for relaxation. These findings uniquely add to a growing literature suggesting anxiety sensitivity is an important and unique cognitive factor for better understanding clinically-relevant psychological processes related to cigarette smoking.

  10. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  11. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  12. Redox Dysregulation in the Pathophysiology of Schizophrenia and Bipolar Disorder

    DEFF Research Database (Denmark)

    Kulak, Anita; Steullet, Pascal; Cabungcal, Jan-Harry

    2013-01-01

    Abstract Significance: Schizophrenia (SZ) and bipolar disorder (BD) are classified as two distinct diseases. However, accumulating evidence shows that both disorders share genetic, pathological, and epidemiological characteristics. Based on genetic and functional findings, redox dysregulation due...... abnormal prefrontal levels of glutathione (GSH), the major cellular redox regulator and antioxidant. Here we review experimental data from rodent models demonstrating that permanent as well as transient GSH deficit results in behavioral, morphological, electrophysiological, and neurochemical alterations...... hypofunction, elevated glutamate levels, impairment of parvalbumin GABA interneurons, abnormal neuronal synchronization, altered dopamine neurotransmission, and deficient myelination. Critical Issues: Treatment with the GSH precursor and antioxidant N-acetylcysteine normalizes some of those deficits in mice...

  13. Dysregulation of Dicer1 in Beta Cells Impairs Islet Architecture and Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Amitai D. Mandelbaum

    2012-01-01

    Full Text Available microRNAs (miRNAs play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islets in complex compensatory dynamics. Because loss of Dicer1 is also associated with changes in the distribution of membranous E-cadherin, we hypothesized that E-cadherin activity may play a role in beta cell survival or islet architecture. However, genetic loss of E-cadherin function does not impair islet architecture, suggesting that miRNAs likely function through other or redundant effectors in the endocrine pancreas.

  14. Soluble CD93 Is Involved in Metabolic Dysregulation but Does Not Influence Carotid Intima-Media Thickness

    NARCIS (Netherlands)

    Strawbridge, Rona J.; Hilding, Agneta; Silveira, Angela; Osterholm, Cecilia; Sennblad, Bengt; McLeod, Olga; Tsikrika, Panagiota; Foroogh, Fariba; Tremoli, Elena; Baldassarre, Damiano; Veglia, Fabrizio; Rauramaa, Rainer; Smit, Andries J.; Giral, Phillipe; Kurl, Sudhir; Mannarino, Elmo; Grossi, Enzo; Syvanen, Ann-Christine; Humphries, Steve E.; de Faire, Ulf; Ostenson, Claes-Goran; Maegdefessel, Lars; Hamsten, Anders; Backlund, Alexandra

    2016-01-01

    Type 2 diabetes and cardiovascular disease are complex disorders involving metabolic and inflammatory mechanisms. Here we investigated whether sCD93, a group XIV c-type lectin of the endosialin family, plays a role in metabolic dysregulation or carotid intima-media thickness (IMT). Although no

  15. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways.

    Science.gov (United States)

    Lalli, Matthew A; Jang, Jiwon; Park, Joo-Hye C; Wang, Yidi; Guzman, Elmer; Zhou, Hongjun; Audouard, Morgane; Bridges, Daniel; Tovar, Kenneth R; Papuc, Sorina M; Tutulan-Cunita, Andreea C; Huang, Yadong; Budisteanu, Magdalena; Arghir, Aurora; Kosik, Kenneth S

    2016-04-01

    Williams syndrome (WS) is a neurodevelopmental disorder caused by a genomic deletion of ∼28 genes that results in a cognitive and behavioral profile marked by overall intellectual impairment with relative strength in expressive language and hypersocial behavior. Advancements in protocols for neuron differentiation from induced pluripotent stem cells allowed us to elucidate the molecular circuitry underpinning the ontogeny of WS. In patient-derived stem cells and neurons, we determined the expression profile of the Williams-Beuren syndrome critical region-deleted genes and the genome-wide transcriptional consequences of the hemizygous genomic microdeletion at chromosome 7q11.23. Derived neurons displayed disease-relevant hallmarks and indicated novel aberrant pathways in WS neurons including over-activated Wnt signaling accompanying an incomplete neurogenic commitment. We show that haploinsufficiency of the ATP-dependent chromatin remodeler, BAZ1B, which is deleted in WS, significantly contributes to this differentiation defect. Chromatin-immunoprecipitation (ChIP-seq) revealed BAZ1B target gene functions are enriched for neurogenesis, neuron differentiation and disease-relevant phenotypes. BAZ1B haploinsufficiency caused widespread gene expression changes in neural progenitor cells, and together with BAZ1B ChIP-seq target genes, explained 42% of the transcriptional dysregulation in WS neurons. BAZ1B contributes to regulating the balance between neural precursor self-renewal and differentiation and the differentiation defect caused by BAZ1B haploinsufficiency can be rescued by mitigating over-active Wnt signaling in neural stem cells. Altogether, these results reveal a pivotal role for BAZ1B in neurodevelopment and implicate its haploinsufficiency as a likely contributor to the neurological phenotypes in WS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. The herpes simplex virus-induced demise of keratinocytes is associated with a dysregulated pattern of p63 expression.

    Science.gov (United States)

    Megyeri, Klára; Orosz, László; Kormos, Bernadett; Pásztor, Katalin; Seprényi, György; Ocsovszki, Imre; Mándi, Yvette; Bata-Csörgo, Zsuzsanna; Kemény, Lajos

    2009-01-01

    p63 plays a pivotal role in the development and maintenance of stratified epithelial tissues. In an effort to gain insight into the pathogenic mechanisms of skin infections caused by HSV-1 and HSV-2, we determined the patterns of p63 expression in primary keratinocytes and in the HaCaT cell line. The levels of DeltaNp63alpha and a 50kDa p73 isoform were decreased, Bax-alpha remained unaffected, while the expressions of the Bax-beta, TAp63gamma and a 44.5kDa p73 isoform were highly increased in both HSV-1-infected HaCaT cells and primary keratinocytes. In contrast, in response to HSV-2 infection the levels of DeltaNp63alpha, a 50kDa p73 isoform and a 44.5kDa p73 protein were decreased, Bax-alpha and TAp63gamma remained unaffected, while the expression of Bax-beta was slightly increased. The knockdown of TAp63 expression enhanced the viability of HSV-1-infected cells. Thus, HSV-1 and HSV-2 modulate the patterns of p63 and Bax expression in a serotype-specific manner. The dysregulated pattern of p63 expression observed in HSV-infected keratinocytes may comprise part of a mechanism by which these viruses perturb the functions of keratinocytes and lead to their demise.

  17. Is Type 2 Diabetes a Glycogen Storage Disease of Pancreatic β Cells?

    Science.gov (United States)

    Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F

    2017-07-05

    Elevated plasma glucose leads to pancreatic β cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this "glucotoxicity" via dysregulated biochemical pathways promoting β cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β cells in normoglycemia and in diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Impulsivity in borderline personality disorder: a matter of disturbed impulse control or a facet of emotional dysregulation?

    Science.gov (United States)

    Sebastian, Alexandra; Jacob, Gitta; Lieb, Klaus; Tüscher, Oliver

    2013-02-01

    Impulsivity is regarded as a clinical, diagnostic and pathophysiological hallmark of borderline personality disorder (BPD). Self-report measures of impulsivity consistently support the notion of higher impulsive traits in BPD patients as compared to healthy control subjects. Laboratory tests of impulsivity, i.e. neuropsychological tests of impulse control render weak and inconsistent results both across different cognitive components of impulse control and within the same cognitive component of impulse control. One important factor worsening impulsive behaviors and impulse control deficits in BPD is comorbid attention-deficit/hyperactivity disorder (ADHD). In addition, emotional dysregulation interacts with impulse control especially for BPD salient emotions. In sum, although basic mechanisms of impulse control seem not to be disturbed in BPD, clinically well observed impulsive behaviors may be explained by comorbid ADHD or may be the consequence of dysregulation of BPD salient emotions.

  19. The Effectiveness of the Unified Protocol on Emotional Dysregulation and Cognitive Emotion Regulation Strategies in Patients with Psychosomatic Disorders

    Directory of Open Access Journals (Sweden)

    Mina Mazaheri

    2014-01-01

    Full Text Available Background: The unified treatment approach (UP is an emotion-focused cognitive-behavioral therapy in which the main object of treatment is emotional processes. The aim of the present research was to examine the effectiveness of The Unified Protocol (UP on emotional dysregulation and cognitive emotion regulation strategies in patients with psychosomatic disorders. Methods: Emotion-focused cognitive behavioral therapy (ECBT, a unified treatment, with 12 weekly group sessions of 2 hours, was presented to 14 patients with psychosomatic complaints at the Subspecialty Center of Psychiatry in Isfahan in 2013. Pre- and post-intervention assessments were done by means of the self-report tests of Difficulties in Emotion Regulation Scale (DERS and Cognitive Emotion Regulation Questionnaire (CERQ. Results: Significant reductions in post-test scores of total emotional dysregulation (P < 0.01 as well as the factors of non-acceptance (P < 0.05 and strategy (P < 0.01 were seen, while the other factors (goal, impulse, awareness, and clarity did not change. Moreover, a significant reduction was observed in the catastrophizing strategy score (P < 0.05, in comparison with other cognitive strategies. Conclusion: This pilot study including 14 patients with psychosomatic disorders indicates that the Unified treatment approach is an effective treatment in improvement of emotional dysregulation and in reduction of utilizing maladaptive cognitive strategies.

  20. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  1. Lamotrigine use in patients with binge eating and purging, significant affect dysregulation, and poor impulse control.

    Science.gov (United States)

    Trunko, Mary Ellen; Schwartz, Terry A; Marzola, Enrica; Klein, Angela S; Kaye, Walter H

    2014-04-01

    Some patients with symptoms of binge eating and purging are successfully treated with specific serotonin reuptake inhibitors (SSRIs), but others experience only partial or no benefit. Significant affect dysregulation and poor impulse control may be characteristics that limit responsiveness. We report on the treatment of five patients with bulimia nervosa (BN), anorexia nervosa-binge/purge type (AN-B/P) or eating disorder not otherwise specified (EDNOS), using the anticonvulsant lamotrigine after inadequate response to SSRIs. Following addition of lamotrigine to an antidepressant in four cases, and switch from an antidepressant to lamotrigine in one case, patients experienced substantial improvement in mood reactivity and instability, impulsive drives and behaviors, and eating-disordered symptoms. These findings raise the possibility that lamotrigine, either as monotherapy or as an augmenting agent to antidepressants, may be useful in patients who binge eat and purge, and have significant affect dysregulation with poor impulse control. Copyright © 2013 Wiley Periodicals, Inc.

  2. Initial Development of a Measure of Emotional Dysregulation for Individuals with Cluster B Personality Disorders

    Science.gov (United States)

    Newhill, Christina E.; Mulvey, Edward P.; Pilkonis, Paul A.

    2004-01-01

    Individuals with DSM-IV Cluster B personality disorders are at particular risk of violence toward self or others. Emotional dysregulation is likely to be a factor in such incidents and is a central issue addressed in therapies with personality-disordered individuals. This article reports findings from a study that developed an original 18-item…

  3. Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease.

    Science.gov (United States)

    Winick-Ng, Warren; Rylett, R Jane

    2018-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.

  4. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation

    OpenAIRE

    Frank, N.; Hermida, P.; Sanchez?Londo?o, A.; Singh, R.; Gradil, C.M.; Uricchio, C.K.

    2017-01-01

    Background Octreotide is a somatostatin analog that suppresses insulin secretion. Hypothesis We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Animals Twelve horses, N = 5, ID = 7. Methods Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1....

  5. Dopamine dysregulation hypothesis: the common basis for motivational anhedonia in major depressive disorder and schizophrenia?

    Science.gov (United States)

    Szczypiński, Jan Józef; Gola, Mateusz

    2018-03-24

    Abnormalities in reward processing are crucial symptoms of major depressive disorder (MDD) and schizophrenia (SCH). Recent neuroscientific findings regarding MDD have led to conclusions about two different symptoms related to reward processing: motivational and consummatory anhedonia, corresponding, respectively, to impaired motivation to obtain rewards ('wanting'), and diminished satisfaction from consuming them ('liking'). One can ask: which of these is common for MDD and SCH. In our review of the latest neuroscientific studies, we show that MDD and SCH do not share consummatory anhedonia, as SCH patients usually have unaltered liking. Therefore, we investigated whether motivational anhedonia is the common symptom across MDD and SCH. With regard to the similarities and differences between the neural mechanisms of MDD and SCH, here we expand the current knowledge of motivation deficits and present the common underlying mechanism of motivational anhedonia - the dopamine dysregulation hypothesis - stating that any prolonged dysregulation in tonic dopamine signaling that exceeds the given equilibrium can lead to striatal dysfunction and motivational anhedonia. The implications for further research and treatment of MDD and SCH are also discussed.

  6. MAIT cells: new guardians of the liver

    OpenAIRE

    Kurioka, Ayako; Walker, Lucy J; Klenerman, Paul; Willberg, Christian B

    2016-01-01

    The liver is an important immunological organ that remains sterile and tolerogenic in homeostasis, despite continual exposure to non-self food and microbial-derived products from the gut. However, where intestinal mucosal defenses are breached or in the presence of a systemic infection, the liver acts as a second 'firewall', because of its enrichment with innate effector cells able to rapidly respond to infections or tissue dysregulation. One of the largest populations of T cells within the h...

  7. Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection.

    Science.gov (United States)

    Han, Su; Tang, Qiaoran; Lu, Xi; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli; Cao, Jianping

    2016-11-30

    Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of control and Clonorchis sinensis (C. sinensis)-infected rats. A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways. The present study revealed that the miRNA expression profiles of the host were changed by C. sinensis infection. This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.

  8. Resveratrol Ameliorates Dysregulation of Th1, Th2, Th17, and T Regulatory Cell-Related Transcription Factor Signaling in a BTBR T + tf/J Mouse Model of Autism.

    Science.gov (United States)

    Bakheet, Saleh A; Alzahrani, Mohammad Zeed; Ansari, Mushtaq Ahmad; Nadeem, Ahmed; Zoheir, Khairy M A; Attia, Sabry M; Al-Ayadhi, Laila Yousef; Ahmad, Sheikh Fayaz

    2017-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder. It is characterized by impaired social communication, abnormal social interactions, and repetitive behaviors and/or restricted interests. BTBR T + tf/J (BTBR) inbred mice are commonly used as a model for ASD. Resveratrol is used widely as a beneficial therapeutic in the treatment of an extensive array of pathologies, including neurodegenerative diseases. In the present study, the effect of resveratrol administration (20 and 40 mg/kg) was evaluated in both BTBR and C57BL/6 (B6) mice. Behavioral (self-grooming), Foxp3, T-bet, GATA-3, RORγt, and IL-17A in CD4 + T cells were assessed. Our study showed that BTBR control mice exhibited a distinct immune profile from that of the B6 control mice. BTBR mice were characterized by lower levels of Foxp3 + and higher levels of RORγt + , T-bet + , and GATA-3 + production in CD4 + T cells when compared with B6 control. Resveratrol (20 and 40 mg/kg) treatment to B6 and BTBR mice showed substantial induction of Foxp3 + and reduction of T-bet + , GATA-3 + , and IL-17A + expression in CD4 + cells when compared with the respective control groups. Moreover, resveratrol treatment resulted in upregulated expression of Foxp3 mRNA and decreased expression levels of T-bet, GATA-3, RORγt, and IL-17A in the spleen and brain tissues. Western blot analysis confirmed that resveratrol treatment decreased the protein expression of T-bet, GATA-3, RORγ, and IL-17 and that it increased Foxp3 in B6 and BTBR mice. Our results suggest that autism is associated with dysregulation of transcription factor signaling that can be corrected by resveratrol treatment.

  9. Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis.

    Science.gov (United States)

    Chen, Ching-Wen; Mittal, Rohit; Klingensmith, Nathan J; Burd, Eileen M; Terhorst, Cox; Martin, Greg S; Coopersmith, Craig M; Ford, Mandy L

    2017-09-15

    Sepsis is a leading cause of death in the United States, but the mechanisms underlying sepsis-induced immune dysregulation remain poorly understood. 2B4 (CD244, SLAM4) is a cosignaling molecule expressed predominantly on NK cells and memory CD8 + T cells that has been shown to regulate T cell function in models of viral infection and autoimmunity. In this article, we show that 2B4 signaling mediates sepsis lymphocyte dysfunction and mortality. 2B4 expression is increased on CD4 + T cells in septic animals and human patients at early time points. Importantly, genetic loss or pharmacologic inhibition of 2B4 significantly increased survival in a murine cecal ligation and puncture model. Further, CD4-specific conditional knockouts showed that 2B4 functions on CD4 + T cell populations in a cell-intrinsic manner and modulates adaptive and innate immune responses during sepsis. Our results illuminate a novel role for 2B4 coinhibitory signaling on CD4 + T cells in mediating immune dysregulation. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX syndrome: a paradigm of immunodeficiency with autoimmunity

    Directory of Open Access Journals (Sweden)

    Federica eBarzaghi

    2012-07-01

    Full Text Available Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX syndrome is a rare monogenic primary immunodeficiency (PID due to mutations of FOXP3, a key transcription factor for naturally occurring (n regulatory T (Treg cells. The dysfunction of Treg cells is the main pathogenic event leading to the multi-organ autoimmunity that characterizes IPEX syndrome, a paradigm of genetically determined PID with autoimmunity. IPEX has a severe early onset and can become rapidly fatal within the first year of life regardless of the type and site of the mutation. The initial presenting symptoms are severe enteritis and/or type 1 diabetes mellitus, alone or in combination with eczema and elevated serum IgE. Other autoimmune symptoms, such as hypothyroidism, cytopenia, hepatitis, nephropathy, arthritis, and alopecia, can develop in patients who survive the initial acute phase.The current therapeutic options for IPEX patients are limited. Supportive and replacement therapies combined with pharmacological immunosuppression are required to control symptoms at onset. However, these procedures can allow only a reduction of the clinical manifestations without a permanent control of the disease. The only known effective cure for IPEX syndrome is haematopoietic stem cell transplantation, but it is always limited by the availability of a suitable donor and the lack of specific guidelines for bone marrow transplant in the context of this disease.This review aims to summarize the clinical histories and genomic mutations of the IPEX patients described in the literature to date. We will focus on the clinical and immunological features that allow differential diagnosis of IPEX syndrome and distinguish it from other PID with autoimmunity. The efficacy of the current therapies will be reviewed, and possible innovative approaches, based on the latest highlights of the pathogenesis to treat this severe primary autoimmune disease of childhood, will be discussed.

  11. Defective Natural Killer cell antiviral capacity in paediatric HBV infection

    DEFF Research Database (Denmark)

    Heiberg, Ida Louise; Laura J., Pallett; Winther, Thilde Nordmann

    2015-01-01

    Natural Killer (NK) cells exhibit dysregulated effector function in adult chronic HBV infection (CHB), which may contribute to virus persistence. The role of NK cells in children infected perinatally with HBV is less studied. Access to a unique cohort enabled the cross-sectional evaluation of NK...... cell frequency, phenotype and function in HBV-infected children relative to uninfected children. We observed a selective defect in NK cell IFN-γ production, with conserved cytolytic function, mirroring the functional dichotomy observed in adult infection. Reduced expression of NKp30 on NK cells...

  12. Dynamic ligand modulation of EPO receptor pools, and dysregulation by polycythemia-associated EPOR alleles.

    Directory of Open Access Journals (Sweden)

    Seema Singh

    Full Text Available Erythropoietin (EPO and its cell surface receptor (EPOR are essential for erythropoiesis; can modulate non-erythroid target tissues; and have been reported to affect the progression of certain cancers. Basic studies of EPOR expression and trafficking, however, have been hindered by low-level EPOR occurrence, and the limited specificity of anti-EPOR antibodies. Consequently, these aspects of EPOR biology are not well defined, nor are actions of polycythemia- associated mutated EPOR alleles. Using novel rabbit monoclonal antibodies to intracellular, PY- activated and extracellular EPOR domains, the following properties of the endogenous hEPOR in erythroid progenitors first are unambiguously defined. 1 High- Mr EPOR forms become obviously expressed only when EPO is limited. 2 EPOR-68K plus -70K species sequentially accumulate, and EPOR-70K comprises an apparent cell surface EPOR population. 3 Brefeldin A, N-glycanase and associated analyses point to EPOR-68K as a core-glycosylated intracellular EPOR pool (of modest size. 4 In contrast to recent reports, EPOR inward trafficking is shown (in UT7epo cells, and primary proerythroblasts to be sharply ligand-dependent. Beyond this, when C-terminal truncated hEPOR-T mutant alleles as harbored by polycythemia patients are co-expressed with the wild-type EPOR in EPO-dependent erythroid progenitors, several specific events become altered. First, EPOR-T alleles are persistently activated upon EPO- challenge, yet are also subject to apparent turn-over (to low-Mr EPOR products. Furthermore, during exponential cell growth EPOR-T species become both over-represented, and hyper-activated. Interestingly, EPOR-T expression also results in an EPO dose-dependent loss of endogenous wild-type EPOR's (and, therefore, a squelching of EPOR C-terminal- mediated negative feedback effects. New knowledge concerning regulated EPOR expression and trafficking therefore is provided, together with new insight into mechanisms via

  13. Dynamic Ligand Modulation of EPO Receptor Pools, and Dysregulation by Polycythemia-Associated EPOR Alleles

    Science.gov (United States)

    Singh, Seema; Verma, Rakesh; Pradeep, Anamika; Leu, Karen; Mortensen, R. Bruce; Young, Peter R.; Oyasu, Miho; Schatz, Peter J.; Green, Jennifer M.; Wojchowski, Don M.

    2012-01-01

    Erythropoietin (EPO) and its cell surface receptor (EPOR) are essential for erythropoiesis; can modulate non-erythroid target tissues; and have been reported to affect the progression of certain cancers. Basic studies of EPOR expression and trafficking, however, have been hindered by low-level EPOR occurrence, and the limited specificity of anti-EPOR antibodies. Consequently, these aspects of EPOR biology are not well defined, nor are actions of polycythemia- associated mutated EPOR alleles. Using novel rabbit monoclonal antibodies to intracellular, PY- activated and extracellular EPOR domains, the following properties of the endogenous hEPOR in erythroid progenitors first are unambiguously defined. 1) High- Mr EPOR forms become obviously expressed only when EPO is limited. 2) EPOR-68K plus -70K species sequentially accumulate, and EPOR-70K comprises an apparent cell surface EPOR population. 3) Brefeldin A, N-glycanase and associated analyses point to EPOR-68K as a core-glycosylated intracellular EPOR pool (of modest size). 4) In contrast to recent reports, EPOR inward trafficking is shown (in UT7epo cells, and primary proerythroblasts) to be sharply ligand-dependent. Beyond this, when C-terminal truncated hEPOR-T mutant alleles as harbored by polycythemia patients are co-expressed with the wild-type EPOR in EPO-dependent erythroid progenitors, several specific events become altered. First, EPOR-T alleles are persistently activated upon EPO- challenge, yet are also subject to apparent turn-over (to low-Mr EPOR products). Furthermore, during exponential cell growth EPOR-T species become both over-represented, and hyper-activated. Interestingly, EPOR-T expression also results in an EPO dose-dependent loss of endogenous wild-type EPOR's (and, therefore, a squelching of EPOR C-terminal- mediated negative feedback effects). New knowledge concerning regulated EPOR expression and trafficking therefore is provided, together with new insight into mechanisms via which

  14. The human cell atlas

    DEFF Research Database (Denmark)

    Regev, Aviv; Teichmann, Sarah A.; Lander, Eric S.

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international...... collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells...... in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early...

  15. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes.

    Science.gov (United States)

    Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki

    2017-03-01

    Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.

  16. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System.

    Science.gov (United States)

    Withers, David R; Hepworth, Matthew R

    2017-01-01

    The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of "exogenous" signals, such as dietary metabolites and commensal microbes, and "endogenous" host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a "communications hub" in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell-cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases.

  17. Contextual Risk, Maternal Negative Emotionality, and the Negative Emotion Dysregulation of Preschool Children from Economically Disadvantaged Families

    Science.gov (United States)

    Brown, Eleanor D.; Ackerman, Brian P.

    2011-01-01

    Research Findings: This study examined relations between contextual risk, maternal negative emotionality, and preschool teacher reports of the negative emotion dysregulation of children from economically disadvantaged families. Contextual risk was represented by cumulative indexes of family and neighborhood adversity. The results showed a direct…

  18. Effect of Methylphenidate on Emotional Dysregulation in Children With Attention-Deficit/Hyperactivity Disorder + Oppositional Defiant Disorder/Conduct Disorder.

    Science.gov (United States)

    Kutlu, Ayse; Akyol Ardic, Ulku; Ercan, Eyup Sabri

    2017-04-01

    Emotional dysregulation (ED) is a frequent feature of attention-deficit/hyperactivity disorder (ADHD). It can be observed as a dysregulation profile or a deficient emotional self-regulation (DESR) profile. Oppositional defiant disorder/conduct disorder (ODD/CD) comorbidity is prevalent in ADHD and known to be related with ED. The first-line treatment of ADHD includes psychostimulants, but their effects on ED are not well studied. This study aimed to evaluate the outcomes of methylphenidate (MPH) treatment on ED in ADHD + ODD/CD cases. A total of 118 ADHD + ODD/CD patients with a mean age of 9.0 ± 1.9 years were treated with MPH for 1 year. Also, parents of cases were recruited for a parent-training program, which initiated after first month of MPH treatment. Symptom severity was assessed at baseline and 12th month by Turgay Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition-Based Child and Adolescent Behavior Disorders Screening and Rating Scale-Parent Form, Children Depression Inventory, Child Behavior Checklist 4-18 years, and Parental Acceptance and Rejection Questionnaire-Mother Form. Emotional dysregulation (DESR + DP) was present in 85.6% of cases. Conduct disorder was significantly higher in patients with DP, whereas ODD was significantly higher in the DESR and non-ED groups (P disorders as ODD and CD, which are comorbid with ADHD. The MPH treatment is effective on ED independently from other clinical determinants.

  19. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells.

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-10-12

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.

  20. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  1. Dysregulation of the unfolded protein response in db/db mice with diet induced steatohepatitis

    OpenAIRE

    Rinella, Mary E.; Siddiqui, M. Shaddab; Gardikiotes, Konstantina; Gottstein, Jeanne; Elias, Marc; Green, Richard M.

    2011-01-01

    In humans with non-alcoholic fatty liver, diabetes is associated with more advanced disease. We have previously shown that diabetic db/db mice are highly susceptible to methionine choline deficient diet (MCD) induced hepatic injury. Since activation of the unfolded protein response (UPR) is an important adaptive cellular mechanism in diabetes, obesity and fatty liver, we hypothesized that dysregulation of the UPR may partially explain how diabetes could promote liver injury.

  2. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Juhua Zhou

    Full Text Available While the immunological dysfunction in combat Veterans with post-traumatic stress disorder (PTSD has been well documented, the precise mechanisms remain unclear. The current study evaluated the role of microRNA (miR in immunological dysfunction associated with PTSD. The presence of peripheral blood mononuclear cells (PBMC and various lymphocyte subsets in blood collected from PTSD patients were analyzed. Our studies demonstrated that the numbers of both PBMC and various lymphocyte subsets increased significantly in PTSD patients. When T cells were further analyzed, the percentage of Th1 cells and Th17 cells increased, regulatory T cells(Tregs decreased, while Th2 cells remained unaltered in PTSD patients. These data correlated with increased plasma levels of IFN-γ and IL-17 while IL-4 showed no significant change. The increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients correlated with the clinical scores. High-throughput analysis of PBMCs for 1163 miRs showed that the expression of a significant number of miRs was altered in PTSD patients. Pathway analysis of dysregulated miRs seen in PTSD patients revealed relationship between selected miRNAs and genes that showed direct/indirect role in immunological signaling pathways consistent with the immunological changes seen in these patients. Of interest was the down-regulation of miR-125a in PTSD, which specifically targeted IFN-γ production. Together, the current study demonstrates for the first time that PTSD was associated with significant alterations in miRNAs, which may promote pro-inflammatory cytokine profile. Such epigenetic events may provide useful tools to identify potential biomarkers for diagnosis, and facilitate therapy of PTSD.

  3. Blood-brain barrier in vitro models as tools in drug discovery: assessment of the transport ranking of antihistaminic drugs.

    Science.gov (United States)

    Neuhaus, W; Mandikova, J; Pawlowitsch, R; Linz, B; Bennani-Baiti, B; Lauer, R; Lachmann, B; Noe, C R

    2012-05-01

    In the course of our validation program testing blood-brain barrier (BBB) in vitro models for their usability as tools in drug discovery it was evaluated whether an established Transwell model based on porcine cell line PBMEC/C1-2 was able to differentiate between the transport properties of first and second generation antihistaminic drugs. First generation antihistamines can permeate the BBB and act in the central nervous system (CNS), whereas entry to the CNS of second generation antihistamines is restricted by efflux pumps such as P-glycoprotein (P-gP) located in brain endothelial cells. P-gP functionality of PBMEC/C1-2 cells grown on Transwell filter inserts was proven by transport studies with P-gP substrate rhodamine 123 and P-gP blocker verapamil. Subsequent drug transport studies with the first generation antihistamines promethazine, diphenhydramine and pheniramine and the second generation antihistamines astemizole, ceterizine, fexofenadine and loratadine were accomplished in single substance as well as in group studies. Results were normalised to diazepam, an internal standard for the transcellular transport route. Moreover, effects after addition of P-gP inhibitor verapamil were investigated. First generation antihistamine pheniramine permeated as fastest followed by diphenhydramine, diazepam, promethazine and second generation antihistaminic drugs ceterizine, fexofenadine, astemizole and loratadine reflecting the BBB in vivo permeability ranking well. Verapamil increased the transport rates of all second generation antihistamines, which suggested involvement of P-gP during their permeation across the BBB model. The ranking after addition of verapamil was significantly changed, only fexofenadine and ceterizine penetrated slower than internal standard diazepam in the presence of verapamil. In summary, permeability data showed that the BBB model based on porcine cell line PBMEC/C1-2 was able to reflect the BBB in vivo situation for the transport of

  4. Inhibition of Geranylgeranyl Transferase-I Decreases Cell Viability of HTLV-1-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Cynthia A. Pise-Masison

    2011-10-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL, an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.

  5. Sleep and Physiological Dysregulation: A Closer Look at Sleep Intraindividual Variability.

    Science.gov (United States)

    Bei, Bei; Seeman, Teresa E; Carroll, Judith E; Wiley, Joshua F

    2017-09-01

    Variable daily sleep (ie, higher intraindividual variability; IIV) is associated with negative health consequences, but potential physiological mechanisms are poorly understood. This study examined how the IIV of sleep timing, duration, and quality is associated with physiological dysregulation, with diurnal cortisol trajectories as a proximal outcome and allostatic load (AL) as a multisystem distal outcome. Participants are 436 adults (Mage ± standard deviation = 54.1 ± 11.7, 60.3% women) from the Midlife in the United States study. Sleep was objectively assessed using 7-day actigraphy. Diurnal cortisol was measured via saliva samples (four/day for 4 consecutive days). AL was measured using 23 biomarkers from seven systems (inflammatory, hypothalamic-pituitary-adrenal axis, metabolic glucose and lipid, cardiovascular, parasympathetic, sympathetic) using a validated bifactor model. Linear and quadratic effects of sleep IIV were estimated using a validated Bayesian model. Controlling for covariates, more variable sleep timing (p = .04 for risetime, p = .097 for bedtime) and total sleep time (TST; p = .02), but not mean sleep variables, were associated with flatter cortisol diurnal slope. More variable sleep onset latency and wake after sleep onset, later average bedtime, and shorter TST were associated with higher AL adjusting for age and sex (p-values sleep patterns were associated with blunted diurnal cortisol trajectories but not with higher multisystem physiological dysregulation. The associations between sleep IIV and overall health are likely complex, including multiple biopsychosocial determinants and require further investigation. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  6. Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells.

    Science.gov (United States)

    Raulet, David H; Marcus, Assaf; Coscoy, Laurent

    2017-11-01

    Natural killer (NK) cells recognize and kill cancer cells and infected cells by engaging cell surface ligands that are induced preferentially or exclusively on these cells. These ligands are recognized by activating receptors on NK cells, such as NKG2D. In addition to activation by cell surface ligands, the acquisition of optimal effector activity by NK cells is driven in vivo by cytokines and other signals. This review addresses a developing theme in NK cell biology: that NK-activating ligands on cells, and the provision of cytokines and other signals that drive high effector function in NK cells, are driven by abnormalities that arise from transformation or the infected state. The pathways include genomic damage, which causes self DNA to be exposed in the cytosol of affected cells, where it activates the DNA sensor cGAS. The resulting signaling induces NKG2D ligands and also mobilizes NK cell activation. Other key pathways that regulate NKG2D ligands include PI-3 kinase activation, histone acetylation, and the integrated stress response. This review summarizes the roles of these pathways and their relevance in both viral infections and cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation

    Directory of Open Access Journals (Sweden)

    Silvana Obici

    2015-10-01

    Conclusions: Central dopamine dysregulation during VWR reinforces the link between MC4R function and molecular and behavioral responding to rewards. The data also suggest that exercise can be a successful lifestyle intervention in MC4R-haploinsufficient individuals despite reduced positive reinforcement during exercise training.

  8. Autoimmunity and autoinflammation: A systems view on signaling pathway dysregulation profiles.

    Directory of Open Access Journals (Sweden)

    Arsen Arakelyan

    Full Text Available Autoinflammatory and autoimmune disorders are characterized by aberrant changes in innate and adaptive immunity that may lead from an initial inflammatory state to an organ specific damage. These disorders possess heterogeneity in terms of affected organs and clinical phenotypes. However, despite the differences in etiology and phenotypic variations, they share genetic associations, treatment responses and clinical manifestations. The mechanisms involved in their initiation and development remain poorly understood, however the existence of some clear similarities between autoimmune and autoinflammatory disorders indicates variable degrees of interaction between immune-related mechanisms.Our study aims at contributing to a holistic, pathway-centered view on the inflammatory condition of autoimmune and autoinflammatory diseases. We have evaluated similarities and specificities of pathway activity changes in twelve autoimmune and autoinflammatory disorders by performing meta-analysis of publicly available gene expression datasets generated from peripheral blood mononuclear cells, using a bioinformatics pipeline that integrates Self Organizing Maps and Pathway Signal Flow algorithms along with KEGG pathway topologies.The results reveal that clinically divergent disease groups share common pathway perturbation profiles. We identified pathways, similarly perturbed in all the studied diseases, such as PI3K-Akt, Toll-like receptor, and NF-kappa B signaling, that serve as integrators of signals guiding immune cell polarization, migration, growth, survival and differentiation. Further, two clusters of diseases were identified based on specifically dysregulated pathways: one gathering mostly autoimmune and the other mainly autoinflammatory diseases. Cluster separation was driven not only by apparent involvement of pathways implicated in adaptive immunity in one case, and inflammation in the other, but also by processes not explicitly related to immune

  9. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger.

    Science.gov (United States)

    Wang, Gang G; Song, Jikui; Wang, Zhanxin; Dormann, Holger L; Casadio, Fabio; Li, Haitao; Luo, Jun-Li; Patel, Dinshaw J; Allis, C David

    2009-06-11

    Histone H3 lysine 4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.

  10. The Effects of Exercise Training on Obesity-Induced Dysregulated Expression of Adipokines in White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Takuya Sakurai

    2013-01-01

    Full Text Available Obesity is recognized as a risk factor for lifestyle-related diseases such as type 2 diabetes and cardiovascular disease. White adipose tissue (WAT is not only a static storage site for energy; it is also a dynamic tissue that is actively involved in metabolic reactions and produces humoral factors, such as leptin and adiponectin, which are collectively referred to as adipokines. Additionally, because there is much evidence that obesity-induced inflammatory changes in WAT, which is caused by dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein 1, contribute to the development of insulin resistance, WAT has attracted special attention as an organ that causes diabetes and other lifestyle-related diseases. Exercise training (TR not only leads to a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the inflammation-related adipokines in WAT. Therefore, TR is widely used as a tool for preventing and improving lifestyle-related diseases. This review outlines the impact of TR on the expression and secretory response of adipokines in WAT.

  11. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    Science.gov (United States)

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  12. Emotion Dysregulation and Anxiety in Adults with ASD: Does Social Motivation Play a Role?

    OpenAIRE

    Swain, Deanna; Scarpa-Friedman, Angela; White, Susan; Laugeson, Elizabeth

    2015-01-01

    Young adults with ASD and no intellectual impairment are more likely to exhibit clinical levels of anxiety than typically developing peers (DSM-5, American Psychiatric Association, 2013). This study tests a mechanistic model in which anxiety culminates via emotion dysregulation and social motivation. Adults with ASD (49 males, 20 females) completed self-report measures on emotion regulation, caregivers completed measures on ASD severity and both on social anxiety. Results indicated that emoti...

  13. Resveratrol Improves Cell Cycle Arrest in Chronic Prostatitis Rats, by C-kit/SCF Suppression.

    Science.gov (United States)

    He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Liu, Qi; Yang, Bo

    2017-08-01

    Chronic prostatitis (CP) with complex pathogenesis is difficult for treatment. c-kit has been associated with the control of cell proliferation of prostate cells. This study aims to evaluate the role of resveratrol, an activator of Sirt1, in regulating the expression of c-kit in CP and investigate the consequent effects on cell cycle. Rat model of CP was established through subcutaneous injections of diphtheria-pertussis-tetanus vaccine and subsequently treated with resveratrol. Hematoxylin and eosin staining was performed to identify the histopathological changes in prostates. Western blotting and immunohistochemical staining examined the expression level of c-kit, stem cell factor (SCF), Sirt1, and cell cycle-associated proteins. The model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Gland lumen diameter was also significantly smaller; the activity of c-kit/SCF in the CP rats was increased significantly compared to the control group. Meanwhile, the cell cycle proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. Dysregulation of cell cycle was involved in the pathological processes of CP, which was improved after resveratrol treatment by the downregulation of c-kit/SCF by activating Sirt1.

  14. HIV/SIV infection primes monocytes and dendritic cells for apoptosis.

    Directory of Open Access Journals (Sweden)

    Mireille Laforge

    2011-06-01

    Full Text Available Subversion or exacerbation of antigen-presenting cells (APC death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs. We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14(+ from SIV(+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV(+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV(+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection.

  15. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jun-jun [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Wang, Yan [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Ding, Jing-xin; Jin, Hong-yan [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Yang, Gong, E-mail: yanggong@fudan.edu.cn [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Hua, Ke-qin, E-mail: huakeqin@126.com [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China)

    2015-05-01

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 and OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis.

  16. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) Syndrome: A Case Report

    OpenAIRE

    Bagheri; Pourbakhtyaran; Talebi Kiasari; Taherkhanchi; Salarian; Sadeghi

    2016-01-01

    Introduction Rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation (ROHHAD) is a rare disease. To date, there have been only few reported cases of ROHHAD syndrome. Case Presentation We report a 5-year-old- Iranian girl who had normal growth and development until her 4th year of life. At that time, the patient developed weight gain, constipation, coldness in the extremities, and hyperhidros...

  17. Emotional self-control and dysregulation: A dual-process analysis of pathways to externalizing/internalizing symptomatology and positive well-being in younger adolescents.

    Science.gov (United States)

    Wills, Thomas A; Simons, Jeffrey S; Sussman, Steve; Knight, Rebecca

    2016-06-01

    There is little knowledge about how emotional regulation contributes to vulnerability versus resilience to substance use disorder. With younger adolescents, we studied the pathways through which emotion regulation attributes are related to predisposing factors for disorder. A sample of 3561 adolescents (M age 12.5 years) was surveyed. Measures for emotional self-control (regulation of sadness and anger), emotional dysregulation (angerability, affective lability, and rumination about sadness or anger), and behavioral self-control (planfulness and problem solving) were obtained. A structural model was analyzed with regulation attributes related to six intermediate variables that are established risk or protective factors for adolescent substance use (e.g., academic involvement, stressful life events). Criterion variables were externalizing and internalizing symptomatology and positive well-being. Indirect pathways were found from emotional regulation to symptomatology through academic competence, stressful events, and deviance-prone attitudes and cognitions. Direct effects were also found: from emotional dysregulation to externalizing and internalizing symptomatology; emotional self-control to well-being; and behavioral self-control (inverse) to externalizing symptomatology. Emotional self-control and emotional dysregulation had independent effects and different types of pathways. Adolescents scoring high on emotional dysregulation are at risk for substance dependence because of more externalizing and internalizing symptomatology. Independently, youth with better behavioral and emotional self-control are at lower risk. This occurs partly through relations of regulation constructs to environmental variables that affect levels of symptomatology (e.g., stressful events, poor academic performance). Effects of emotion regulation were found at an early age, before the typical onset of substance disorder. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd

  18. Dopaminergic Dysregulation, Artistic Expressiveness, and Parkinson's Disease

    Science.gov (United States)

    López-Pousa, S.; Lombardía-Fernández, C.; Olmo, J. Garre; Monserrat-Vila, S.; Vilalta-Franch, J.; Calvó-Perxas, L.

    2012-01-01

    Background The most frequent behavioral manifestations in Parkinson's disease (PD) are attributed to the dopaminergic dysregulation syndrome (DDS), which is considered to be secondary to the iatrogenic effects of the drugs that replace dopamine. Over the past few years some cases of patients improving their creative abilities after starting treatment with dopaminergic pharmaceuticals have been reported. These effects have not been clearly associated to DDS, but a relationship has been pointed out. Methods Case study of a patient with PD. The evolution of her paintings along medication changes and disease advance has been analyzed. Results The patient showed a compulsive increase of pictorial production after the diagnosis of PD was made. She made her best paintings when treated with cabergolide, and while painting, she reported a feeling of well-being, with loss of awareness of the disease and reduction of physical limitations. Conclusions Dopaminergic antagonists (DA) trigger a dopaminergic dysfunction that alters artistic creativity in patients having a predisposition for it. The development of these skills might be due to the dopaminergic overstimulation due to the therapy with DA, which causes a neurophysiological alteration that globally determines DDS. PMID:23185168

  19. The Human Cell Atlas.

    Science.gov (United States)

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  20. 78 FR 20925 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2013-04-08

    ... hydrochloride Desvenlafaxine Dutasteride; tamsulosin hydrochloride E Estramustine phosphate sodium Ethinyl... tromethamine L Loratadine M Miconazole Minocycline hydrochloride Mitotane N Nevirapine P Phentermine hydrochloride; topiramate R Rimexolone Rizatriptan benzoate [[Page 20926

  1. Evidence for widespread dysregulation of circadian clock progression in human cancer

    Directory of Open Access Journals (Sweden)

    Jarrod Shilts

    2018-01-01

    Full Text Available The ubiquitous daily rhythms in mammalian physiology are guided by progression of the circadian clock. In mice, systemic disruption of the clock can promote tumor growth. In vitro, multiple oncogenes can disrupt the clock. However, due to the difficulties of studying circadian rhythms in solid tissues in humans, whether the clock is disrupted within human tumors has remained unknown. We sought to determine the state of the circadian clock in human cancer using publicly available transcriptome data. We developed a method, called the clock correlation distance (CCD, to infer circadian clock progression in a group of samples based on the co-expression of 12 clock genes. Our method can be applied to modestly sized datasets in which samples are not labeled with time of day and coverage of the circadian cycle is incomplete. We used the method to define a signature of clock gene co-expression in healthy mouse organs, then validated the signature in healthy human tissues. By then comparing human tumor and non-tumor samples from twenty datasets of a range of cancer types, we discovered that clock gene co-expression in tumors is consistently perturbed. Subsequent analysis of data from clock gene knockouts in mice suggested that perturbed clock gene co-expression in human cancer is not caused solely by the inactivation of clock genes. Furthermore, focusing on lung cancer, we found that human lung tumors showed systematic changes in expression in a large set of genes previously inferred to be rhythmic in healthy lung. Our findings suggest that clock progression is dysregulated in many solid human cancers and that this dysregulation could have broad effects on circadian physiology within tumors. In addition, our approach opens the door to using publicly available data to infer circadian clock progression in a multitude of human phenotypes.

  2. Cocaine withdrawal causes delayed dysregulation of stress genes in the hippocampus.

    Directory of Open Access Journals (Sweden)

    M Julia García-Fuster

    Full Text Available Relapse, even following an extended period of withdrawal, is a major challenge in substance abuse management. Delayed neurobiological effects of the drug during prolonged withdrawal likely contribute to sustained vulnerability to relapse. Stress is a major trigger of relapse, and the hippocampus regulates the magnitude and duration of stress responses. Recent work has implicated hippocampal plasticity in various aspects of substance abuse. We asked whether changes in stress regulatory mechanisms in the hippocampus may participate in the neuroadaptations that occur during prolonged withdrawal. We therefore examined changes in the rat stress system during the course of withdrawal from extended daily access (5-hours of cocaine self-administration, an animal model of addiction. Tissue was collected at 1, 14 and 28 days of withdrawal. Plasma corticosterone levels were determined and corticosteroid receptors (GR, MR, MR/GR mRNA ratios and expression of other stress-related molecules (HSP90AA1 and HSP90AB1 mRNA were measured in hippocampal subfields using in situ hybridization. Results showed a delayed emergence of dysregulation of stress genes in the posterior hippocampus following 28 days of cocaine withdrawal. This included increased GR mRNA in DG and CA3, increased MR and HSP90AA1 mRNA in DG, and decreased MR/GR mRNA ratio in DG and CA1. Corticosterone levels progressively decreased during the course of withdrawal, were normalized following 28 days of withdrawal, and were correlated negatively with GR and positively with MR/GR mRNA ratio in DG. These results suggest a role for the posterior hippocampus in the neuroadaptations that occur during prolonged withdrawal, and point to a signaling partner of GR, HSP90AA1, as a novel dysregulated target during cocaine withdrawal. These delayed neurobiological effects of extended cocaine exposure likely contribute to sustained vulnerability to relapse.

  3. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells.

    Science.gov (United States)

    Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E

    1996-09-01

    Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.

  4. The detrimental effects of emotional process dysregulation on decision-making in substance dependence

    Science.gov (United States)

    Murphy, Anna; Taylor, Eleanor; Elliott, Rebecca

    2012-01-01

    Substance dependence is complex and multifactorial, with many distinct pathways involved in both the development and subsequent maintenance of addictive behaviors. Various cognitive mechanisms have been implicated, including impulsivity, compulsivity, and impaired decision-making. These mechanisms are modulated by emotional processes, resulting in increased likelihood of initial drug use, sustained substance dependence, and increased relapse during periods of abstinence. Emotional traits, such as sensation-seeking, are risk factors for substance use, and chronic drug use can result in further emotional dysregulation via effects on reward, motivation, and stress systems. We will explore theories of hyper and hypo sensitivity of the brain reward systems that may underpin motivational abnormalities and anhedonia. Disturbances in these systems contribute to the biasing of emotional processing toward cues related to drug use at the expense of natural rewards, which serves to maintain addictive behavior, via enhanced drug craving. We will additionally focus on the sensitization of the brain stress systems that result in negative affect states that continue into protracted abstinence that is may lead to compulsive drug-taking. We will explore how these emotional dysregulations impact upon decision-making controlled by goal-directed and habitual action selections systems, and, in combination with a failure of prefrontal inhibitory control, mediate maladaptive decision-making observed in substance dependent individuals such that they continue drug use in spite of negative consequences. An understanding of the emotional impacts on cognition in substance dependent individuals may guide the development of more effective therapeutic interventions. PMID:23162443

  5. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Penke, Melanie; Gorski, Theresa [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Gebhardt, Rolf [Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Weiss, Thomas S. [Children' s University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Kiess, Wieland; Garten, Antje [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany)

    2015-03-06

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  6. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Gebhardt, Rolf; Weiss, Thomas S.; Kiess, Wieland; Garten, Antje

    2015-01-01

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  7. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System

    Directory of Open Access Journals (Sweden)

    David R. Withers

    2017-10-01

    Full Text Available The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3 are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of “exogenous” signals, such as dietary metabolites and commensal microbes, and “endogenous” host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a “communications hub” in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell–cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases.

  8. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System

    Science.gov (United States)

    Withers, David R.; Hepworth, Matthew R.

    2017-01-01

    The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of “exogenous” signals, such as dietary metabolites and commensal microbes, and “endogenous” host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a “communications hub” in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell–cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases. PMID:29085366

  9. HCV Infection and B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Masahiko Ito

    2011-01-01

    Full Text Available Hepatitis C virus (HCV has been recognized as a major cause of chronic liver diseases worldwide. It has been suggested that HCV infects not only hepatocytes but also mononuclear lymphocytes including B cells that express the CD81 molecule, a putative HCV receptor. HCV infection of B cells is the likely cause of B-cell dysregulation disorders such as mixed cryoglobulinemia, rheumatoid factor production, and B-cell lymphoproliferative disorders that may evolve into non-Hodgkin's lymphoma (NHL. Epidemiological data indicate an association between HCV chronic infection and the occurrence of B-cell NHL, suggesting that chronic HCV infection is associated at least in part with B-cell lymphomagenesis. In this paper, we aim to provide an overview of recent literature, including our own, to elucidate a possible role of HCV chronic infection in B-cell lymphomagenesis.

  10. and Epigenetic Dysregulation in Diabetes-prone Bicongenic B6.NODC11bxC1tb Mice

    Directory of Open Access Journals (Sweden)

    Erin Garrigan

    2015-01-01

    Full Text Available In Type 1 diabetic (T1D human monocytes, STAT5 aberrantly binds to epigenetic regulatory sites of two proinflammatory genes, CSF2 (encoding granulocyte–macrophage colony-stimulating factor and PTGS2 (encoding prostaglandin synthase 2/cyclooxygenase 2. Bicongenic B6.NOD C11bxC1tb mice re-create this phenotype of T1D monocytes with only two nonobese diabetic (NOD Idd subloci (130.8 Mb–149.7 Mb, of Idd5 on Chr 1 and 32.08–53.85 Mb of Idd4.3 on Chr11 on C57BL/6 genetic background. These two Idd loci interact through STAT5 binding at upstream regulatory regions affecting Csf2 ( Chr 11 and Ptgs2 ( Chr 1 expression. B6.NODC11bxC1tb mice exhibited hyperglycemia and immune destruction of pancreatic islets between 8 and 30 weeks of age, with 12%–22% penetrance. Thus, B6.NODC11bxC1tb mice embody NOD epigenetic dysregulation of gene expression in myeloid cells, and this defect appears to be sufficient to impart genetic susceptibility to diabetes in an otherwise genetically nonautoimmune mouse.

  11. Lack of Resilience Is Related to Stress-Related Sleep Reactivity, Hyperarousal, and Emotion Dysregulation in Insomnia Disorder.

    Science.gov (United States)

    Palagini, Laura; Moretto, Umberto; Novi, Martina; Masci, Isabella; Caruso, Danila; Drake, Christopher L; Riemann, Dieter

    2018-05-15

    According to the diathesis-stress model of insomnia, insomnia may develop in vulnerable individuals in response to stress. Resilience is a psychobiological factor that determines an individual's capacity to adapt successfully to stressful events and low resilience increases vulnerability for development of mental disorders. The aim was to explore resilience in subjects with insomnia and its relationship with the factors that contribute to its development and perpetuation. The study consisted of 58 subjects with Insomnia Disorder according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and 38 good sleepers. Resilience Scale for Adults (RSA), Ford Insomnia Response to Stress Test (FIRST), Pre-sleep Arousal Scale (PSAS), and Difficulties in Emotion Regulation Scale (DERS) were administered while taking into account psychiatric symptoms. Differences in means between groups were assessed using t test or Mann-Whitney U /Wilcoxon test. Linear/multivariable regression analyses and mediation analyses were performed. Subjects with insomnia (24 females, mean age 49 ± 2.1 years) had lower RSA and higher FIRST, DERS, and PSAS scores than good sleepers (22 females, mean age 47.2 ± 1.2 years). After controlling for anxiety/depressive symptoms, low resilience correlated with high stress-related sleep reactivity ( P = .004), pre-sleep cognitive hyperarousal ( P = .01) and emotion dysregulation ( P = .01). Emotion dysregulation mediated the relationship between low resilience and cognitive hyperarousal (Z = 2.06, P = .03). Subjects with insomnia showed low resilience, which was related to high stress-related sleep reactivity, emotional dysregulation, and hyperarousal. If resilience helps to minimize the extent of pathogenesis in the developmental process, an early identification of vulnerable candidates should be useful for preventing insomnia development and maintenance. A commentary on this article appears in this issue on page 709. © 2018 American

  12. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Kenneth C. Valkenburg

    2011-04-01

    Full Text Available The ability of Wnt ligands to initiate a signaling cascade that results in cytoplasmic stabilization of, and nuclear localization of, β-catenin underlies their ability to regulate progenitor cell differentiation. In this review, we will summarize the current knowledge of the mechanisms underlying Wnt/β-catenin signaling and how the pathway regulates normal differentiation of stem cells in the intestine, mammary gland, and prostate. We will also discuss how dysregulation of the pathway is associated with putative cancer stem cells and the potential therapeutic implications of regulating Wnt signaling.

  13. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Science.gov (United States)

    Kowalewski, Ashley A.; Randall, R. Lor; Lessnick, Stephen L.

    2011-01-01

    Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22)(q24;q12). This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered. PMID:21052502

  14. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Ashley A. Kowalewski

    2011-01-01

    Full Text Available Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22(q24;q12. This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.

  15. Mindfulness and Modification Therapy for Behavioral Dysregulation: A Comparison Trial Focused on Substance Use and Aggression.

    Science.gov (United States)

    Wupperman, Peggilee; Cohen, Mia Gintoft; Haller, Deborah L; Flom, Peter; Litt, Lisa C; Rounsaville, Bruce J

    2015-10-01

    Disorders of behavioral dysregulation often involve more than one dsyregulated behavior (e.g., drug abuse and aggression, alcohol abuse and gambling). The high co-occurrence suggests the need of a transdiagnostic treatment that can be customized to target multiple specific behaviors. The current pilot study compared a 20-week, individual transdiagnostic therapy (mindfulness and modification therapy [MMT]) versus treatment as usual (TAU) in targeting alcohol problems, drug use, physical aggression, and verbal aggression in self-referred women. Assessments were administered at baseline, post-intervention, and 2-month follow-up. Wilcoxon signed-ranked tests and multilevel modeling showed that MMT (n = 13) displayed (a) significant and large decreases in alcohol/drug use, physical aggression, and verbal aggression; (b) significantly greater decreases in alcohol/drug use and physical aggression than did TAU (n = 8); and (c) minimal-to-no deterioration of effects at follow-up. Both conditions showed significant decreases in verbal aggression, with no statistically significant difference between conditions. MMT also displayed greater improvements in mindfulness. Preliminary findings support the feasibility and efficacy of MMT in decreasing multiple dysregulated behaviors. © 2015 Wiley Periodicals, Inc.

  16. Brief Report: Interleukin-17A-Dependent Asymmetric Stem Cell Divisions Are Increased in Human Psoriasis: A Mechanism Underlying Benign Hyperproliferation.

    Science.gov (United States)

    Charruyer, Alexandra; Fong, Stephen; Vitcov, Giselle G; Sklar, Samuel; Tabernik, Leah; Taneja, Monica; Caputo, Melinda; Soeung, Catherine; Yue, Lili; Uchida, Yoshi; Arron, Sarah T; Horton, Karen M; Foster, Robert D; Sano, Shigetoshi; North, Jeffrey P; Ghadially, Ruby

    2017-08-01

    The balance between asymmetric and symmetric stem cell (SC) divisions is key to tissue homeostasis, and dysregulation of this balance has been shown in cancers. We hypothesized that the balance between asymmetric cell divisions (ACDs) and symmetric cell divisions (SCDs) would be dysregulated in the benign hyperproliferation of psoriasis. We found that, while SCDs were increased in squamous cell carcinoma (SCC) (human and murine), ACDs were increased in the benign hyperproliferation of psoriasis (human and murine). Furthermore, while sonic hedgehog (linked to human cancer) and pifithrinα (p53 inhibitor) promoted SCDs, interleukin (IL)-1α and amphiregulin (associated with benign epidermal hyperproliferation) promoted ACDs. While there was dysregulation of the ACD:SCD ratio, no change in SC frequency was detected in epidermis from psoriasis patients, or in human keratinocytes treated with IL-1α or amphiregulin. We investigated the mechanism whereby immune alterations of psoriasis result in ACDs. IL17 inhibitors are effective new therapies for psoriasis. We found that IL17A increased ACDs in human keratinocytes. Additionally, studies in the imiquimod-induced psoriasis-like mouse model revealed that ACDs in psoriasis are IL17A-dependent. In summary, our studies suggest an association between benign hyperproliferation and increased ACDs. This work begins to elucidate the mechanisms by which immune alteration can induce keratinocyte hyperproliferation. Altogether, this work affirms that a finely tuned balance of ACDs and SCDs is important and that manipulating this balance may constitute an effective treatment strategy for hyperproliferative diseases. Stem Cells 2017;35:2001-2007. © 2017 AlphaMed Press.

  17. Effect of family structure and TPH2 G-703T on the stability of dysregulation profile throughout adolescence.

    Science.gov (United States)

    Nobile, Maria; Bianchi, Valentina; Monzani, Dario; Beri, Silvana; Bellina, Monica; Greco, Andrea; Colombo, Paola; Tesei, Alessandra; Caldirola, Daniela; Giorda, Roberto; Perna, Giampaolo; Molteni, Massimo

    2016-01-15

    Two different polymorphisms (TPH2 G-703T and 5-HTTLPR) involved in the serotonergic pathway have been reported to play a role, both alone and in interaction with the environment, in early and adult emotion regulation. As most of these studies are cross-sectional, we know little about the impact of these polymorphisms over time, particularly during adolescence. Because we were interested in the effects of these polymorphisms and environment (i.e., family structure) at different time-points on the emotional dysregulation profile, we performed a path analysis model in a general adolescent population sample of a five-year follow-up study. We found a high stability of Dysregulation Profile problems independently from the examined allelic variants. We also found that early family structure directly influences the levels of dysregulation problems in early adolescence, both alone and in interaction with TPH2, suggesting the presence of a gene-environment interaction effect. Furthermore, we found that in adolescents homozygous for the TPH2 G allele, the effect of the early family structure remains active during late adolescence, albeit mediated by earlier emotional problems. The high attrition rate, the use of only one source on behavioral problems of adolescents, and the focus on a single polymorphism in the investigated genes could limit the generalizability of the present results. These results suggest that early family structure could play a significant role in the development and maintenance of emotional and behavioral problems not only in early adolescence but also in late-adolescence, although this effect was mediated and moderated by behavioral and genetic variables. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Controlling destiny through chemistry: small-molecule regulators of cell fate.

    Science.gov (United States)

    Firestone, Ari J; Chen, James K

    2010-01-15

    Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics.

  19. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Khadjavi, Amina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Magnetto, Chiara [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Panariti, Alice [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Argenziano, Monica [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Gulino, Giulia Rossana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Rivolta, Ilaria [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Cavalli, Roberta [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Giribaldi, Giuliana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Guiot, Caterina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Prato, Mauro, E-mail: mauro.prato@unito.it [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino (Italy)

    2015-08-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  20. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    International Nuclear Information System (INIS)

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-01-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  1. Dopamine dysregulation syndrome in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    A V Nikitina

    2013-01-01

    Full Text Available Dopamine dysregulation syndrome (DDS is an iatrogenic disease developing during dopaminergic therapy. According to the data available in the literature, DDS develops in 3-4% of the Parkinson’s disease (PD cases. DDS in PD is frequently accompanied by other impulse control disorders (ICD: punding, compulsive shopping, hypersexuality, overeating. 246 patients with PD, of whom 16 (6.4% were found to have DDS, were examined. The patients’ age was 64±7.4 years. Women (n = 10 more often developed DDS than men (n = 6. The patients mainly suffered from the mixed form of the disease. Stages III and IV were diagnosed in 72 and 22%, respectively. The duration of PD was 12+2.6 years. In the PD patients with DDS, the quality-of-life indicators ranged from 19.8 to 90% (54+20.1%. The equivalent dose of levodopa is 1323.4+299 mg/day. DDS was concurrent with other types of ICD in 4 patients: panding in 2, compulsive shopping and punding in 1, and punding and hypersexuality. The doses of levodopa were corrected in patients receiving high doses of dopaminergic drugs. In the patients with DDS concurrent with punding or hypersexuality, the dose of dopaminergic receptor agonists was gradually reduced and subsequently discontinued.

  2. Confabulation: Developing the 'emotion dysregulation' hypothesis.

    Science.gov (United States)

    Turnbull, Oliver H; Salas, Christian E

    2017-02-01

    Confabulations offer unique opportunities for establishing the neurobiological basis of delusional thinking. As regards causal factors, a review of the confabulation literature suggests that neither amnesia nor executive impairment can be the sole (or perhaps even the primary) cause of all delusional beliefs - though they may act in concert with other factors. A key perspective in the modern literature is that many delusions have an emotionally positive or 'wishful' element, that may serve to modulate or manage emotional experience. Some authors have referred to this perspective as the 'emotion dysregulation' hypothesis. In this article we review the theoretical underpinnings of this approach, and develop the idea by suggesting that the positive aspects of confabulatory states may have a role in perpetuating the imbalance between cognitive control and emotion. We draw on existing evidence from fields outside neuropsychology, to argue for three main causal factors: that positive emotions are related to more global or schematic forms of cognitive processing; that positive emotions influence the accuracy of memory recollection; and that positive emotions make people more susceptible to false memories. These findings suggest that the emotions that we want to feel (or do not want to feel) can influence the way we reconstruct past experiences and generate a sense of self - a proposition that bears on a unified theory of delusional belief states. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Dysregulation of the hypothalamic pituitary adrenal (HPA) axis and physical performance at older ages: An individual participant meta-analysis

    NARCIS (Netherlands)

    Gardner, M.P.; Lightman, S.; Sayer, A.A.; Cooper, C.; Cooper, R.; Deeg, D.J.H.; Ebrahim, S.; Gallacher, J.; Kivimaki, M.; Kumari, M.; Kuh, D; Martin, R.M.; Peeters, G.; Ben-Shlomoa, Y.

    2013-01-01

    The association between functioning of the hypothalamic pituitary adrenal (HPA) axis and physical performance at older ages remains poorly understood. We carried out meta-analyses to test the hypothesis that dysregulation of the HPA axis, as indexed by patterns of diurnal cortisol release, is

  4. Correspondence between Physiological and Self-Report Measures of Emotion Dysregulation: A Longitudinal Investigation of Youth with and without Psychopathology

    Science.gov (United States)

    Vasilev, Christina A.; Crowell, Sheila E.; Beauchaine, Theodore P.; Mead, Hilary K.; Gatzke-Kopp, Lisa M.

    2009-01-01

    Background: Several theoretical perspectives suggest that emotion dysregulation is a predisposing risk factor for many psychiatric disorders. Yet despite a rapidly evolving literature, difficulties with emotion regulation (ER) are often measured inconsistently across studies, with little regard to whether different approaches capture the same…

  5. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers.

    Science.gov (United States)

    Palma, Marzia; Gentilcore, Giusy; Heimersson, Kia; Mozaffari, Fariba; Näsman-Glaser, Barbro; Young, Emma; Rosenquist, Richard; Hansson, Lotta; Österborg, Anders; Mellstedt, Håkan

    2017-03-01

    Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3 + cells and the CD8 + subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4 + and CD8 + cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients ( P =0.0003 and P =0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4 + and CD8 + subsets, with a significantly higher PD-1 expression. Higher numbers of CD4 + and CD8 + cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67 + ) and activated (CD69 + ) CD4 + and CD8 + cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls ( P leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways. Copyright© Ferrata Storti Foundation.

  6. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  7. The detrimental effects of emotional process dysregulation on decision making in substance dependence

    Directory of Open Access Journals (Sweden)

    Anna eMurphy

    2012-11-01

    Full Text Available Substance dependence is complex and multifactorial, with many distinct pathways involved in both the development and subsequent maintenance of addictive behaviours. Various cognitive mechanisms have been implicated, including impulsivity, compulsivity and impaired decision-making. These mechanisms are modulated by emotional processes, resulting in increased likelihood of initial drug use, sustained substance dependence, and increased relapse during periods of abstinence. Emotional traits, such as sensation seeking, are risk factors for substance use, and chronic drug use can result in further emotional dysregulation via effects on reward, motivation and stress systems. We will explore theories of hyper and hypo sensitivity of the brain reward systems that may underpin motivational abnormalities and anhedonia. Disturbances in these systems contribute to the biasing of emotional processing toward cues related to drug use at the expense of natural rewards, which serves to maintain addictive behaviour, via enhanced drug craving. We will additionally focus on the sensitization of the brain stress systems that result in negative affect states that continue into protracted abstinence that is may lead to compulsive drug taking. We will explore how these emotional dysregulations impact upon decision-making controlled by goal-directed and habitual action selections systems, and, in combination with a failure of prefrontal inhibitory control, mediate maladaptive decision-making observed in substance dependent individuals such that they continue drug use in spite of negative consequences. An understanding of the emotional impacts on cognition in substance dependent individuals may guide the development of more effective therapeutic interventions.

  8. R5-SHIV induces multiple defects in T cell function during early infection of rhesus macaques including accumulation of T reg cells in lymph nodes.

    Directory of Open Access Journals (Sweden)

    Michael Santosuosso

    2011-04-01

    Full Text Available HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues.Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation.We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.

  9. Reduced IRE1α mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor.

    Science.gov (United States)

    Son, S M; Byun, J; Roh, S-E; Kim, S J; Mook-Jung, I

    2014-04-17

    The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca(2+). Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer's and Parkinson diseases. One key regulator that underlies cell survival and Ca(2+) homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca(2+) dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca(2+) concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca(2+) through the InsP3 receptor (InsP3R). The Ca(2+) efflux in IRE1α-deficient cells correlates with dissociation of the Ca(2+)-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α-TRAF2-ASK1 complex. The increased cytosolic concentration of Ca(2+) induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca(2+) dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca(2+) influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca(2+) homeostasis and cell survival during ER stress and reveal a previously unknown Ca(2+)-mediated cell death signaling between the IRE1α-InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.

  10. Interacting effects of maternal responsiveness, infant regulatory problems and dopamine D4 receptor gene in the development of dysregulation during childhood: A longitudinal analysis.

    Science.gov (United States)

    Poustka, Luise; Zohsel, Katrin; Blomeyer, Dorothea; Jennen-Steinmetz, Christine; Schmid, Brigitte; Trautmann-Villalba, Patricia; Hohmann, Sarah; Becker, Katja; Esser, Günter; Schmidt, Martin H; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2015-11-01

    Recent longitudinal studies have indicated that affective and behavioral dysregulation in childhood is associated with an increased risk for various negative outcomes in later life. However, few studies to date have examined early mechanisms preceding dysregulation during early childhood. Aim of this study was to elucidate early mechanisms relating to dysregulation in later life using data from an epidemiological cohort study on the long-term outcome of early risk factors from birth to adulthood. At age 3 months, mothers and infants were videotaped during a nursing and playing situation. Maternal responsiveness was evaluated by trained raters. Infant regulatory problems were assessed on the basis of a parent interview and direct observation by trained raters. At age 8 and 11 years, 290 children (139 males) were rated on the Child Behavior Checklist (CBCL). Additionally, participants were genotyped for the dopamine D4 receptor (DRD4) exon 3 VNTR polymorphism. A significant three-way interaction between maternal responsiveness, DRD4 genotype and infant regulatory problems was detected predicting the CBCL-dysregulation profile (CBCL-DP). Carriers of the DRD4 7r allele with regulatory problems at age 3 months showed significantly more behavior problems associated with the CBCL-DP during childhood when exposed to less maternal responsiveness. In contrast, no effect of maternal responsiveness was observed in DRD4 7r carriers without infant regulatory problems and in non-carriers of the DRD4 7r allele. This prospective longitudinal study extends earlier findings regarding the association of the CBCL-DP with early parenting and later psychopathology, introducing both DRD4 genotype and infant regulatory problems as important moderators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency

    Directory of Open Access Journals (Sweden)

    Andrea Z. Tuckett

    2017-05-01

    Full Text Available Abstract Background Even though hematopoietic stem cell transplantation can be curative in patients with severe combined immunodeficiency, there is a need for additional strategies boosting T cell immunity in individuals suffering from genetic disorders of lymphoid development. Here we show that image-guided intrathymic injection of hematopoietic stem and progenitor cells in NOD-scid IL2rγnull mice is feasible and facilitates the generation of functional T cells conferring protective immunity. Methods Hematopoietic stem and progenitor cells were isolated from the bone marrow of healthy C57BL/6 mice (wild-type, Luciferase+, CD45.1+ and injected intravenously or intrathymically into both male and female, young or aged NOD-scid IL2rγnull recipients. The in vivo fate of injected cells was analyzed by bioluminescence imaging and flow cytometry of thymus- and spleen-derived T cell populations. In addition to T cell reconstitution, we evaluated mice for evidence of immune dysregulation based on diabetes development and graft-versus-host disease. T cell immunity following intrathymic injection of hematopoietic stem and progenitor cells in NOD-scid IL2rγnull mice was assessed in a B cell lymphoma model. Results Despite the small size of the thymic remnant in NOD-scid IL2rγnull mice, we were able to accomplish precise intrathymic delivery of hematopoietic stem and progenitor cells by ultrasound-guided injection. Thymic reconstitution following intrathymic injection of healthy allogeneic hematopoietic cells was most effective in young male recipients, indicating that even in the setting of severe immunodeficiency, sex and age are important variables for thymic function. Allogeneic T cells generated in intrathymically injected NOD-scid IL2rγnull mice displayed anti-lymphoma activity in vivo, but we found no evidence for severe auto/alloreactivity in T cell-producing NOD-scid IL2rγnull mice, suggesting that immune dysregulation is not a major concern

  12. Expression of Programmed Death-Ligand 1 by Human Colonic CD90+ Stromal Cells Differs Between Ulcerative Colitis and Crohn’s Disease and Determines Their Capacity to Suppress Th1 Cells

    Directory of Open Access Journals (Sweden)

    Ellen J. Beswick

    2018-05-01

    Full Text Available Background and AimsThe role of programmed cell death protein 1 (PD-1 and its ligands in the dysregulation of T helper immune responses observed in the inflammatory bowel disease (IBD is unclear. Recently, a novel concept emerged that CD90+ colonic (myofibroblasts (CMFs, also known as stromal cells, act as immunosuppressors, and are among the key regulators of acute and chronic inflammation. The objective of this study was to determine if the level of the PD-1 ligands is changed in the IBD inflamed colonic mucosa and to test the hypothesis that changes in IBD-CMF-mediated PD-1 ligand-linked immunosuppression is a mechanism promoting the dysregulation of Th1 cell responses.MethodsTissues and cells derived from Crohn’s disease (CD, ulcerative colitis (UC, and healthy individuals (N were studied in situ, ex vivo, and in culture.ResultsA significant increase in programmed death-ligand 1 (PD-L1 was observed in the inflamed UC colonic mucosa when compared to the non-inflamed matched tissue samples, CD, and healthy controls. UC-CMFs were among the major populations in the colonic mucosa contributing to the enhanced PD-L1 expression. In contrast, PD-L1 expression was decreased in CD-CMFs. When compared to CD-CMFs and N-CMFs, UC-CMFs demonstrated stronger suppression of IL-2, Th1 transcriptional factor Tbet, and IFN-γ expression by CD3/CD28-activated CD4+ T cells, and this process was PD-L1 dependent. Similar observations were made when differentiated Th1 cells were cocultured with UC-CMFs. In contrast, CD-CMFs showed reduced capacity to suppress Th1 cell activity and addition of recombinant PD-L1 Fc to CD-CMF:T cell cocultures partially restored the suppression of the Th1 type responses.ConclusionWe present evidence showing that increased PD-L1 expression suppresses Th1 cell activity in UC. In contrast, loss of PD-L1 expression observed in CD contributes to the persistence of the Th1 inflammatory milieu in CD. Our data suggest that

  13. Amelioration of NK cell function driven by Vα24+ invariant NKT cell activation in multiple myeloma.

    Science.gov (United States)

    Iyoda, Tomonori; Yamasaki, Satoru; Hidaka, Michihiro; Kawano, Fumio; Abe, Yu; Suzuki, Kenshi; Kadowaki, Norimitsu; Shimizu, Kanako; Fujii, Shin-Ichiro

    2018-02-01

    NK cells represent a first line of immune defense, but are progressively dysregulated in multiple myeloma (MM) patients. To restore and facilitate their antitumor effect, NK cells are required in sufficient quantities and must be stimulated. We initially assessed the proportions of NKT and NK cells in 34 MM patients. The frequencies of both in PBMC populations correlated with those in BMMNCs irrespective of low BMMNC numbers. We then assessed the adjunctive effect of stimulating NKT cells with CD1d and α-GalCer complexes on the NK cells. The expression of NKG2D on CD56 dim CD16 + NK cells and DNAM-1 on CD56 bright CD16 - NK cells increased after NKT cell activation. Apparently, NK cell-mediated anti-tumor effects were dependent on NKG2D and DNAM-1 ligands on myeloma cells. Thus, NK cell function in patients could be ameliorated, beyond the effect of immunosuppression, by NKT cell activation. This NKT-driven NK cell therapy could represent a potential new treatment modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cohesin Rad21 Mediates Loss of Heterozygosity and Is Upregulated via Wnt Promoting Transcriptional Dysregulation in Gastrointestinal Tumors

    Directory of Open Access Journals (Sweden)

    Huiling Xu

    2014-12-01

    Full Text Available Summary: Loss of heterozygosity (LOH of the adenomatous polyposis coli (APC gene triggers a series of molecular events leading to intestinal adenomagenesis. Haploinsufficiency of the cohesin Rad21 influences multiple initiating events in colorectal cancer (CRC. We identify Rad21 as a gatekeeper of LOH and a β-catenin target gene and provide evidence that Wnt pathway activation drives RAD21 expression in human CRC. Genome-wide analyses identified Rad21 as a key transcriptional regulator of critical CRC genes and long interspersed element (LINE-1 or L1 retrotransposons. Elevated RAD21 expression tracks with reactivation of L1 expression in human sporadic CRC, implicating cohesin-mediated L1 expression in global genomic instability and gene dysregulation in cancer. : Rad21 holds the cohesin complex together as part of its role in chromosome partitioning and DNA repair. Xu et al. identify Rad21 as a key mediator of Apc gene heterozygous loss, the event initiating intestinal tumorigenesis. The subsequent activation of the Wnt pathway further induces Rad21, global gene dysregulation, chromosome instability, and pervasive retrotransposon activation.

  15. Multiple mechanisms of MYCN dysregulation in Wilms tumour

    Science.gov (United States)

    Williams, Richard D.; Chagtai, Tasnim; Alcaide-German, Marisa; Apps, John; Wegert, Jenny; Popov, Sergey; Vujanic, Gordan; van Tinteren, Harm; van den Heuvel-Eibrink, Marry M.; Kool, Marcel; de Kraker, Jan; Gisselsson, David; Graf, Norbert; Gessler, Manfred; Pritchard-Jones, Kathy

    2015-01-01

    Genomic gain of the proto-oncogene transcription factor gene MYCN is associated with poor prognosis in several childhood cancers. Here we present a comprehensive copy number analysis of MYCN in Wilms tumour (WT), demonstrating that gain of this gene is associated with anaplasia and with poorer relapse-free and overall survival, independent of histology. Using whole exome and gene-specific sequencing, together with methylation and expression profiling, we show that MYCN is targeted by other mechanisms, including a recurrent somatic mutation, P44L, and specific DNA hypomethylation events associated with MYCN overexpression in tumours with high risk histologies. We describe parallel evolution of genomic copy number gain and point mutation of MYCN in the contralateral tumours of a remarkable bilateral case in which independent contralateral mutations of TP53 also evolve over time. We report a second bilateral case in which MYCN gain is a germline aberration. Our results suggest a significant role for MYCN dysregulation in the molecular biology of Wilms tumour. We conclude that MYCN gain is prognostically significant, and suggest that the novel P44L somatic variant is likely to be an activating mutation. PMID:25749049

  16. Imaging proteolytic activity in live cells and animal models.

    Directory of Open Access Journals (Sweden)

    Stefanie Galbán

    Full Text Available In addition to their degradative role in protein turnover, proteases play a key role as positive or negative regulators of signal transduction pathways and therefore their dysregulation contributes to many disease states. Regulatory roles of proteases include their hormone-like role in triggering G protein-coupled signaling (Protease-Activated-Receptors; their role in shedding of ligands such as EGF, Notch and Fas; and their role in signaling events that lead to apoptotic cell death. Dysregulated activation of apoptosis by the caspase family of proteases has been linked to diseases such as cancer, autoimmunity and inflammation. In an effort to better understand the role of proteases in health and disease, a luciferase biosensor is described which can quantitatively report proteolytic activity in live cells and mouse models. The biosensor, hereafter referred to as GloSensor Caspase 3/7 has a robust signal to noise (50-100 fold and dynamic range such that it can be used to screen for pharmacologically active compounds in high throughput campaigns as well as to study cell signaling in rare cell populations such as isolated cancer stem cells. The biosensor can also be used in the context of genetically engineered mouse models of human disease wherein conditional expression using the Cre/loxP technology can be implemented to investigate the role of a specific protease in living subjects. While the regulation of apoptosis by caspase's was used as an example in these studies, biosensors to study additional proteases involved in the regulation of normal and pathological cellular processes can be designed using the concepts presented herein.

  17. Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs.

    Science.gov (United States)

    Leoncini, Silvia; De Felice, Claudio; Signorini, Cinzia; Zollo, Gloria; Cortelazzo, Alessio; Durand, Thierry; Galano, Jean-Marie; Guerranti, Roberto; Rossi, Marcello; Ciccoli, Lucia; Hayek, Joussef

    2015-01-01

    An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.

  18. Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs

    Directory of Open Access Journals (Sweden)

    Silvia Leoncini

    2015-01-01

    Full Text Available An involvement of the immune system has been suggested in Rett syndrome (RTT, a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2 or, more rarely, cyclin-dependent kinase-like 5 (CDKL5. To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg response, as well as chemokines, were investigated in MECP2- (MECP2-RTT (n=16 and CDKL5-Rett syndrome (CDKL5-RTT (n=8, before and after ω-3 polyunsaturated fatty acids (PUFAs supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4 were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.

  19. Understanding periviable birth: A microeconomic alternative to the dysregulation narrative.

    Science.gov (United States)

    Catalano, Ralph; Bruckner, Tim; Avalos, Lyndsay A; Stewart, Holly; Karasek, Deborah; Kariv, Shachar; Gemmill, Alison; Saxton, Katherine; Casey, Joan

    2017-12-12

    Periviable infants (i.e., those born in the 20th through 26th weeks of gestation) suffer much morbidity and approximately half die in the first year of life. Attempts to explain and predict these births disproportionately invoke a "dysregulation" narrative. Research inspired by this narrative has not led to efficacious interventions. The clinical community has, therefore, urged novel approaches to the problem. We aim to provoke debate by offering the theory, inferred from microeconomics, that risk tolerant women carry, without cognitive involvement, high risk fetuses farther into pregnancy than do other women. These extended high-risk pregnancies historically ended in stillbirth but modern obstetric practices now convert a fraction to periviable births. We argue that this theory deserves testing because it suggests inexpensive and noninvasive screening for pregnancies that might benefit from the costly and invasive interventions clinical research will likely devise. Copyright © 2017. Published by Elsevier Ltd.

  20. Prevalence and correlates of psychopathology in children and adolescents evaluated with the strengths and difficulties questionnaire dysregulation profile in a clinical setting.

    Science.gov (United States)

    Carballo, Juan José; Serrano-Drozdowskyj, Elena; García Nieto, Rebeca; Díaz de Neira-Hernando, Mónica; Pérez-Fominaya, Margarita; Molina-Pizarro, Cristian Antonio; De León-Martínez, Victoria; Baca-García, Enrique

    2014-01-01

    The clinical presentation of children and adolescents referred to mental health services is frequently complicated by comorbid and severe affective and behavioral dysregulation. This dysregulation phenotype seems to be an indicator of overall psychopathology, symptom severity and functional impairment. Currently, this phenotype is assessed by the Child Behavior Checklist. However, the widely used Strengths and Difficulties Questionnaire (SDQ) has been recently validated to screen the Dysregulation Profile (SDQ-DP) in clinical settings. The objective of this study was to determine the prevalence and demographic, psychosocial and clinical correlates of the SDQ-DP phenotype in a Spanish clinical sample. In a clinical sample of 623 consecutively referred children and adolescents (4-17 years old), we compared clinical and sociodemographic correlates between subjects who met the SDQ-DP criteria (DP) and those who did not (NO_DP). Sociodemographic data, parent-rated SDQ, Children's Global Assessment Scale, Clinical Global Impression, family Apgar scale and clinical diagnoses were collected by experienced child and adolescent psychiatrists. Overall in our sample, 175 subjects (28.1%) met the SDQ-DP criteria (DP group). Compared with the NO_DP group, the DP subjects had significantly higher scores on internalizing and externalizing psychopathology, problems with peers and overall problems as well as significantly lower scores on prosocial behavior. Clinical diagnoses assigned revealed that DP subjects showed significantly greater psychiatric comorbidity. DP subjects also showed significantly worse family functioning and increased symptom severity and significantly lower scores on psychosocial functioning. A high prevalence of children and adolescents with the dysregulated profile, assessed by the SDQ-DP, was found in our clinical setting. The SDQ-DP may serve as an index of overall psychological severity and functional impairment. In addition, it may indicate family

  1. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.

    Science.gov (United States)

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-04-15

    B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. [Is emotional dysregulation a component of attention-deficit/hyperactivity disorder (ADHD)?].

    Science.gov (United States)

    Villemonteix, T; Purper-Ouakil, D; Romo, L

    2015-04-01

    the ventral striatum. Morphological alterations of the amygdala have also been reported in previous structural studies in children with ADHD. Emotional lability can result from different neurobiological mechanisms. In particular, bottom-up and top-down processes can be opposed. Bottom-up related emotional dysregulation involves an increased emotional reactivity, and is thought to be linked to the automatic evaluative activity of the amygdala. Top-down mechanisms are associated with the regulation of such activity, and rely on a prefrontal network including the lateral prefrontal cortex, the anterior cingulate cortex and the orbitofrontal cortex. Since various neuropsychological impairments and alterations in multiple brain networks have been implicated in the etiology of ADHD, contemporary models emphasize its neuropsychological heterogeneity. It is therefore likely that some but not all children with ADHD will exhibit neurobiological alterations in circuits dedicated to emotional regulation, possibly at different levels. Future research will have to identify the different causal pathways and to decide whether emotional lability represents a criterion to subtype ADHD diagnoses. Emotional dysregulation is now known to play a causal role regarding ADHD symptomatology. Along with executive functioning, reaction time variability and potentially delay aversion, emotional dysregulation should therefore be included in future theoretical models of ADHD, as well as in clinical practice when identifying the major impairments in this diagnostic group and when deciding therapeutic strategies. Copyright © 2014 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  3. Colorectal cancer cell lines made resistant to SN38-and Oxaliplatin: Roles of altered ion transporter function in resistance?

    DEFF Research Database (Denmark)

    Sandra, Christensen; Jensen, Niels Frank; Stoeckel, Johanne Danmark

    2013-01-01

    , respectively. Studies are ongoing to assess glutamate uptake in parental and resistant CRC cells and the effect of inhibition/knockdown of SLC1A1 and -3 on SN38- and Oxp resistance. In conclusion, SN38-and Oxp-resistance in CRC cells is associated with SLC1A1 and -3 dysregulation. As these transporters have...

  4. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Poghosyan, Anna, E-mail: pannagos@yahoo.com; Patel, Jamie K.; Clifford, Rachel L.; Knox, Alan J., E-mail: alan.knox@nottingham.ac.uk

    2016-08-05

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.

  5. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Poghosyan, Anna; Patel, Jamie K.; Clifford, Rachel L.; Knox, Alan J.

    2016-01-01

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.

  6. Review: hCG, Preeclampsia and Regulatory T cells

    OpenAIRE

    Norris, Wendy; Nevers, Tania; Sharma, Surendra; Kalkunte, Satyan

    2011-01-01

    Human chorionic gonadotropin (hCG) is crucial for successful pregnancy. Its many functions include angiogenesis and immune regulation. Despite years of research, the etiology of preeclampsia remains unknown. Marked by insufficient trophoblast invasion and poor spiral artery remodeling, preeclampsia has also been linked to immune dysregulation. Here we discuss the roles of hCG in the context of endovascular cross-talk between trophoblasts and endothelial cells and immune tolerance. We propose ...

  7. Upregulation of MicroRNA-4262 Targets Kaiso (ZBTB33) to Inhibit the Proliferation and EMT of Cervical Cancer Cells.

    Science.gov (United States)

    Feng, Jing

    2017-08-11

    More and more studies have reported that dysregulation of microRNAs (miRNAs) lead to the proliferation and EMT of multiple cancers. Recently, several reports have demonstrated that dysregulation of miR-4262 is in numerous cancers. However, its role and precise mechanism in human cervical cancer (CC) have not been well clarified. Hence, my study was aim to explore the biological roles and precise mechanisms of miR-4262 in CC cell lines. In my study, I found that the level of miR-4262 is significantly decreased in CC tissues and cell lines. Moreover, decreased expression of miR-4262 was closely related to increased expression of Kaiso (ZBTB33) that belongs to the BTB/POZ family in CC tissues and cell lines. The proliferation and EMT of CC cells were inhibited by miR-4262 mimic. However, down-regulation of miR-4262 enhanced the proliferation and EMT of CC cells. Next, bioinformatics analysis predicted that miR-4262 might directly target the Kaiso gene. Besides, luciferase reporter assay had confirmed this result. Moreover, introduction of Kaiso in CC cells partially blocked the effects of miR-4262 mimic. In conclusion, miR-4262 suppressed the proliferation and EMT of CC cells by directly down-regulation of Kaiso.

  8. Continuous stress-induced dopamine dysregulation augments PAP-I and PAP-II expression in melanotrophs of the pituitary gland

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Hiroyuki, E-mail: konishi@med.osaka-cu.ac.jp [Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, Osaka (Japan); The 21st Century COE Program ' Base to Overcome Fatigue' , Osaka City University Graduate School of Medicine, Osaka (Japan); Department of Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya (Japan); Ogawa, Tokiko, E-mail: togawa@med.osaka-cu.ac.jp [Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, Osaka (Japan); The 21st Century COE Program ' Base to Overcome Fatigue' , Osaka City University Graduate School of Medicine, Osaka (Japan); Kawahara, Shinichi, E-mail: kawahara@med.osaka-cu.ac.jp [Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, Osaka (Japan); Matsumoto, Sakiko, E-mail: s-matsumoto@med.osaka-cu.ac.jp [Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, Osaka (Japan); Department of Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya (Japan); Kiyama, Hiroshi, E-mail: kiyama@med.osaka-cu.ac.jp [Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, Osaka (Japan); The 21st Century COE Program ' Base to Overcome Fatigue' , Osaka City University Graduate School of Medicine, Osaka (Japan); Department of Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya (Japan)

    2011-04-01

    Research highlights: {yields} We focused on the rat pituitary intermediate lobe (IL) under continuous stress (CS). {yields} CS induced PAP-I and PAP-II expression in melanotrophs of the IL. {yields} This gene induction was triggered by CS-related dopamine dysregulation. {yields} PAP-I and PAP-II may sustain homeostasis of the IL under CS. -- Abstract: Under continuous stress (CS) in rats, melanotrophs, the predominant cell-type in the intermediate lobe (IL) of the pituitary, are hyperactivated to secrete {alpha}-melanocyte-stimulating hormone and thereafter degenerate. Although these phenomena are drastic, the molecular mechanisms underlying the cellular changes are mostly unknown. In this study, we focused on the pancreatitis-associated protein (PAP) family members of the secretory lectins and characterized their expression in the IL of CS model rats because we had identified two members of this family as up-regulated genes in our previous microarray analysis. RT-PCR and histological studies demonstrated that prominent PAP-I and PAP-II expression was induced in melanotrophs in the early stages of CS, while another family member, PAP-III, was not expressed. We further examined the regulatory mechanisms of PAP-I and PAP-II expression and revealed that both were induced by the decreased dopamine levels in the IL under CS. Because the PAP family members are implicated in cell survival and proliferation, PAP-I and PAP-II secreted from melanotrophs may function to sustain homeostasis of the IL under CS conditions in an autocrine or a paracrine manner.

  9. Continuous stress-induced dopamine dysregulation augments PAP-I and PAP-II expression in melanotrophs of the pituitary gland

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Ogawa, Tokiko; Kawahara, Shinichi; Matsumoto, Sakiko; Kiyama, Hiroshi

    2011-01-01

    Research highlights: → We focused on the rat pituitary intermediate lobe (IL) under continuous stress (CS). → CS induced PAP-I and PAP-II expression in melanotrophs of the IL. → This gene induction was triggered by CS-related dopamine dysregulation. → PAP-I and PAP-II may sustain homeostasis of the IL under CS. -- Abstract: Under continuous stress (CS) in rats, melanotrophs, the predominant cell-type in the intermediate lobe (IL) of the pituitary, are hyperactivated to secrete α-melanocyte-stimulating hormone and thereafter degenerate. Although these phenomena are drastic, the molecular mechanisms underlying the cellular changes are mostly unknown. In this study, we focused on the pancreatitis-associated protein (PAP) family members of the secretory lectins and characterized their expression in the IL of CS model rats because we had identified two members of this family as up-regulated genes in our previous microarray analysis. RT-PCR and histological studies demonstrated that prominent PAP-I and PAP-II expression was induced in melanotrophs in the early stages of CS, while another family member, PAP-III, was not expressed. We further examined the regulatory mechanisms of PAP-I and PAP-II expression and revealed that both were induced by the decreased dopamine levels in the IL under CS. Because the PAP family members are implicated in cell survival and proliferation, PAP-I and PAP-II secreted from melanotrophs may function to sustain homeostasis of the IL under CS conditions in an autocrine or a paracrine manner.

  10. Intracellular lipid dysregulation interferes with leukocyte function in the ovaries of meat-type hens under unrestricted feed intake.

    Science.gov (United States)

    Liu, Zu-Chen; Su, Chia-Ming; Xie, Yi-Lun; Chang, Chai-Ju; Chen, Jiang-Young; Wu, Shu-Wei; Chen, Yu-Hui; Walzem, Rosemary L; Huang, San-Yuan; Chen, Shuen-Ei

    2016-04-01

    Meat-type Red-feather country hens fed ad libitum (AD-hens) exhibit obesity-associated morbidities and a number of ovarian irregularities. Leukocyte participations in ovarian activities are unstudied in AD-hens. In contrast to feed-restricted hens (R-hens), ovulatory process of the F1 follicle appeared delayed in AD-hens in association with reduced F1 follicle progesterone content, gelatinase A (MMP-2) and collagenase-3 (MMP-13) activities coincident with elevated IL-1β and no production (Pcultures of granulosa cells with increasing numbers of leukocytes from either AD-hens or R-hens exhibited dose dependent reductions in progesterone production and increases in cell death. AD-hen leukocytes were less proapoptotic than their R counterparts (Pcultures with heterophils or monocytes in a dose-dependent manner (Pcultures than their respective counterparts (P<0.05). Both basal and LPS-induced IL-1β secretion and MMP-22 or MMP-2 activities in freshly isolated AD-hen leukocytes were reduced (P<0.05). Exposure of AD or R leukocytes to 0.5mM palmitate impaired IL-1β secretion and MMP-22 or MMP-2 activity. Inhibition of ceramide synthesis with FB1 and ROS production with n-MPG scavenging rescued MMP activity and IL-1β production in palmitate treated heterophils, but exacerbated monocyte suppression. These latter findings suggest that intracellular lipid dysregulation in leukocytes contributes to ovarian dysfunction in AD-hens. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    Science.gov (United States)

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. Methods To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. Results GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. Conclusions This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism. PMID:24739187

  12. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages.

    Science.gov (United States)

    Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola

    2014-04-17

    Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.

  13. Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment.

    Science.gov (United States)

    Hawk, Mark A; Schafer, Zachary T

    2018-01-16

    Non-transformed cells that become detached from the extracellular matrix (ECM) undergo dysregulation of redox homeostasis and cell death. In contrast, cancer cells often acquire the ability to mitigate programmed cell death pathways and recalibrate the redox balance to survive after ECM detachment, facilitating metastatic dissemination. Accordingly, recent studies of the mechanisms by which cancer cells overcome ECM detachment-induced metabolic alterations have focused on mechanisms in redox homeostasis. The insights into these mechanisms may inform the development of therapeutics that manipulate redox homeostasis to eliminate ECM-detached cancer cells. Here, we review how ECM-detached cancer cells balance redox metabolism for survival. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Strategies to overcome HBV-specific T cell exhaustion: checkpoint inhibitors and metabolic re-programming.

    Science.gov (United States)

    Fisicaro, Paola; Boni, Carolina; Barili, Valeria; Laccabue, Diletta; Ferrari, Carlo

    2018-01-29

    HBV-specific T cells play a key role in antiviral protection and failure to control HBV is associated with severely dysfunctional T cell responses. Therefore, functional T cell reconstitution represents a potential way to treat chronically infected patients. The growing understanding of the dysregulated transcriptional/epigenetic and metabolic programs underlying T cell exhaustion allows to envisage functional T cell reconstitution strategies based on the combined/sequential use of compounds able to induce decline of antigen load, checkpoint modulation, metabolic and epigenetic reprogramming with possible boosting of functionally restored responses by specific vaccines. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Potential Therapeutic Effects of Meditation for Treating Affective Dysregulation

    Directory of Open Access Journals (Sweden)

    Natalie T. Y. Leung

    2014-01-01

    Full Text Available Affective dysregulation is at the root of many psychopathologies, including stress induced disorders, anxiety disorders, and depression. The root of these disorders appears to be an attenuated, top-down cognitive control from the prefrontal cortices over the maladaptive subcortical emotional processing. A form of mental training, long-term meditation practice can trigger meditation-specific neuroplastic changes in the brain regions underlying cognitive control and affective regulation, suggesting that meditation can act as a kind of mental exercise to foster affective regulation and possibly a cost-effective intervention in mood disorders. Increasing research has suggested that the cultivation of awareness and acceptance along with a nonjudgmental attitude via meditation promotes adaptive affective regulation. This review examined the concepts of affective regulation and meditation and discussed behavioral and neural evidence of the potential clinical application of meditation. Lately, there has been a growing trend toward incorporating the “mindfulness” component into existing psychotherapeutic treatment. Promising results have been observed thus far. Future studies may consider exploring the possibility of integrating the element of “compassion” into current psychotherapeutic approaches.

  16. Neural Crossroads in the Hematopoietic Stem Cell Niche.

    Science.gov (United States)

    Agarwala, Sobhika; Tamplin, Owen J

    2018-05-29

    The hematopoietic stem cell (HSC) niche supports steady-state hematopoiesis and responds to changing needs during stress and disease. The nervous system is an important regulator of the niche, and its influence is established early in development when stem cells are specified. Most research has focused on direct innervation of the niche, however recent findings show there are different modes of neural control, including globally by the central nervous system (CNS) and hormone release, locally by neural crest-derived mesenchymal stem cells, and intrinsically by hematopoietic cells that express neural receptors and neurotransmitters. Dysregulation between neural and hematopoietic systems can contribute to disease, however new therapeutic opportunities may be found among neuroregulator drugs repurposed to support hematopoiesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A Pilot Trial of Mindfulness Meditation Training for ADHD in Adulthood: Impact on Core Symptoms, Executive Functioning, and Emotion Dysregulation.

    Science.gov (United States)

    Mitchell, John T; McIntyre, Elizabeth M; English, Joseph S; Dennis, Michelle F; Beckham, Jean C; Kollins, Scott H

    2017-11-01

    Mindfulness meditation training is garnering increasing empirical interest as an intervention for ADHD in adulthood, although no studies of mindfulness as a standalone treatment have included a sample composed entirely of adults with ADHD or a comparison group. The aim of this study was to assess the feasibility, acceptability, and preliminary efficacy of mindfulness meditation for ADHD, executive functioning (EF), and emotion dysregulation symptoms in an adult ADHD sample. Adults with ADHD were stratified by ADHD medication status and otherwise randomized into an 8-week group-based mindfulness treatment ( n = 11) or waitlist group ( n = 9). Treatment feasibility and acceptability were positive. In addition, self-reported ADHD and EF symptoms (assessed in the laboratory and ecological momentary assessment), clinician ratings of ADHD and EF symptoms, and self-reported emotion dysregulation improved for the treatment group relative to the waitlist group over time with large effect sizes. Improvement was not observed for EF tasks. Findings support preliminary treatment efficacy, though require larger trials.

  18. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  19. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis.

    Science.gov (United States)

    Ohsawa, Shizue; Vaughen, John; Igaki, Tatsushi

    2018-02-05

    Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Typical patterns of disordered eating among Swedish adolescents: associations with emotion dysregulation, depression, and self-esteem.

    Science.gov (United States)

    Hansson, Erika; Daukantaitė, Daiva; Johnsson, Per

    2016-01-01

    Using the person-oriented approach, we determined the relationships between four indicators (restraint and eating, shape, and weight concerns) of disordered eating (DE), as measured by the self-reported Eating Disorders Examination Questionnaire (EDE-Q), to identify typical DE patterns. We then related these patterns to clinical EDE-Q cut-off scores and emotion dysregulation, depression, self-esteem, and two categories of DE behaviors (≥2 or ≤1 "yes" responses on the SCOFF questionnaire). Typical patterns of DE were identified in a community sample of 1,265 Swedish adolescents ( M age  = 16.19, SD  = 1.21; age range 13.5-19 years) using a cluster analysis. Separate analyses were performed for girls ( n  = 689) and boys ( n  = 576). The cluster analysis yielded a six-cluster solution for each gender. Four of the six clusters for girls and five for boys showed scores above the clinical cut-off on at least one of the four DE indicators. For girls, the two clusters that scored above the clinical cut-offs on all four DE indicators reported severe psychological problems, including high scores on emotion dysregulation and depression and low scores on self-esteem. In contrast, for boys, although two clusters reported above the clinical cut-off on all four indicators, only the cluster with exceedingly high scores on shape and weight concerns reported high emotion dysregulation and depression, and extremely low self-esteem. Furthermore, significantly more girls and boys in the most problematic DE clusters reported ≥2 "yes" responses on the SCOFF questionnaire (as opposed to ≤1 response), indicating clear signs of DE and severe psychological difficulties. We suspect that the various problematic DE patterns will require different paths back to a healthy diet. However, more research is needed to determine the developmental trajectories of these DE patterns and ensure more precise clinical cut-off scores, especially for boys. Comprehensive understanding

  1. Sirt1 Protects Stressed Adult Hematopoietic Stem Cells | Center for Cancer Research

    Science.gov (United States)

    The immune system relies on a stable pool of hematopoietic stem and progenitor cells (HSPCs) to respond properly to injury or stress. Maintaining genomic integrity and appropriate gene expression is essential for HSPC homeostasis, and dysregulation can result in myeloproliferative disorders or loss of immune function. Sirt1 is a histone deacetylase that can protect embryonic

  2. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  3. Early life adversity potentiates the effects of later life stress on cumulative physiological dysregulation

    DEFF Research Database (Denmark)

    Dich, Nadya; Hansen, Åse Marie; Avlund, Kirsten

    2015-01-01

    tested this hypothesis by investigating whether experience of stressful events and circumstances (SEC) in childhood or adolescence amplified the effect of adulthood SEC on physiological dysregulation (allostatic load, AL) in later midlife. Design: Observational data were used in the present study....... Physiological functioning was measured in later midlife (participants' age ranged from 49 to 63). Both childhood/adolescence and adulthood SEC were reported retrospectively on the same occasion. Methods: Participants were 5,309 Danish men and women from Copenhagen Ageing and Midlife Biobank. SEC included socio......: The results provide further insight into the mechanisms behind the "biological embedding" of childhood stress....

  4. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  5. Pancreatic Islet Protein Complexes and Their Dysregulation in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Brunak, Søren

    2017-01-01

    Type 2 diabetes (T2D) is a complex disease that involves multiple genes. Numerous risk loci have already been associated with T2D, although many susceptibility genes remain to be identified given heritability estimates. Systems biology approaches hold potential for discovering novel T2D genes...... by considering their biological context, such as tissue-specific protein interaction partners. Pancreatic islets are a key T2D tissue and many of the known genetic risk variants lead to impaired islet function, hence a better understanding of the islet-specific dysregulation in the disease-state is essential...... to unveil the full potential of person-specific profiles. Here we identify 3,692 overlapping pancreatic islet protein complexes (containing 10,805 genes) by integrating islet gene and protein expression data with protein interactions. We found 24 of these complexes to be significantly enriched for genes...

  6. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells

    DEFF Research Database (Denmark)

    Guzzi, Nicola; Cieśla, Maciej; Ngoc, Phuong Cao Thi

    2018-01-01

    early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein...... biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing...

  7. Immune regulation in T1D and T2D: prospective role of Foxp3+ Treg cells in disease pathogenesis and treatment

    Directory of Open Access Journals (Sweden)

    Mara eKornete

    2013-06-01

    Full Text Available There is increasing evidence that dysregulated immune responses play key roles in the pathogenesis and complications of type 1 but also type 2 diabetes. Indeed, chronic inflammation and autoimmunity, which are salient features of type 1 diabetes, are now believed to actively contribute to the pathogenesis of type 2 diabetes. The accumulation of activated innate and adaptive immune cells in various metabolic tissues results in the release of inflammatory mediators, which promote insulin resistance and β-cell damage. Moreover, these dysregulated immune responses can also mutually influence the prevalence of both type 1 and 2 diabetes. In this review article, we discuss the central role of immune responses in the patho-physiology and complications of type 1 and 2 diabetes, and provide evidence that regulation of these responses, particularly through the action of regulatory T cells, may be a possible therapeutic avenue for the treatment of these disease and their respective complications.

  8. miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation

    NARCIS (Netherlands)

    McDonald, Robert A; White, Katie M; Wu, Junxi; Cooley, Brian C; Robertson, Keith E; Halliday, Crawford A; McClure, John D; Francis, Sheila; Lu, Ruifaug; Kennedy, Simon; George, Sarah J; Wan, Song; van Rooij, Eva; Baker, Andrew H

    AIMS: The long-term failure of autologous saphenous vein bypass grafts due to neointimal thickening is a major clinical burden. Identifying novel strategies to prevent neointimal thickening is important. Thus, this study aimed to identify microRNAs (miRNAs) that are dysregulated during neointimal

  9. Effects of a series of acidic drugs on L-lactic acid transport by the monocarboxylate transporters MCT1 and MCT4.

    Science.gov (United States)

    Leung, Yat Hei; Belanger, Francois; Lu, Jennifer; Turgeon, Jacques; Michaud, Veronique

    2018-03-07

    Drug-induced myopathy is a serious side effect that often requires removal of a medication from a drug regimen. For most drugs, the underlying mechanism of drug-induced myopathy remains unclear. Monocarboxylate transporters (MCTs) mediate L-lactic acid transport, and inhibition of MCTs may potentially lead to perturbation of L-lactic acid accumulation and muscular disorders. Therefore, we hypothesized that L-lactic acid transport may be involved in the development of drug-induced myopathy. The aim of this study was to assess the inhibitory potential of 24 acidic drugs on L-lactic acid transport using breast cancer cell lines Hs578T and MDA-MB-231, which selectively express MCT1 and MCT4, respectively. The influx transport of L-lactic acid was minimally inhibited by all drugs tested. The efflux transport was next examined: loratadine (IC50: 10 and 61 µM) and atorvastatin (IC50: 78 and 41 µM) demonstrated the greatest potency for inhibition of L-lactic acid efflux by MCT1 and MCT4, respectively. Acidic drugs including fluvastatin, cerivastatin, simvastatin acid, lovastatin acid, irbesartan and losartan exhibited weak inhibitory potency on L-lactic acid efflux. Our results suggest that some acidic drugs, such as loratadine and atorvastatin, can inhibit the efflux transport of L-lactic acid. This inhibition may cause an accumulation of intracellular L-lactic acid leading to acidification and muscular disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Intracellular Zn(II) Intoxication Leads to Dysregulation of the PerR Regulon Resulting in Heme Toxicity in Bacillus subtilis

    Science.gov (United States)

    2016-01-01

    Transition metal ions (Zn(II), Cu(II)/(I), Fe(III)/(II), Mn(II)) are essential for life and participate in a wide range of biological functions. Cellular Zn(II) levels must be high enough to ensure that it can perform its essential roles. Yet, since Zn(II) binds to ligands with high avidity, excess Zn(II) can lead to protein mismetallation. The major targets of mismetallation, and the underlying causes of Zn(II) intoxication, are not well understood. Here, we use a forward genetic selection to identify targets of Zn(II) toxicity. In wild-type cells, in which Zn(II) efflux prevents intoxication of the cytoplasm, extracellular Zn(II) inhibits the electron transport chain due to the inactivation of the major aerobic cytochrome oxidase. This toxicity can be ameliorated by depression of an alternate oxidase or by mutations that restrict access of Zn(II) to the cell surface. Conversely, efflux deficient cells are sensitive to low levels of Zn(II) that do not inhibit the respiratory chain. Under these conditions, intracellular Zn(II) accumulates and leads to heme toxicity. Heme accumulation results from dysregulation of the regulon controlled by PerR, a metal-dependent repressor of peroxide stress genes. When metallated with Fe(II) or Mn(II), PerR represses both heme biosynthesis (hemAXCDBL operon) and the abundant heme protein catalase (katA). Metallation of PerR with Zn(II) disrupts this coordination, resulting in depression of heme biosynthesis but continued repression of catalase. Our results support a model in which excess heme partitions to the membrane and undergoes redox cycling catalyzed by reduced menaquinone thereby resulting in oxidative stress. PMID:27935957

  11. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin

    Science.gov (United States)

    Martin-Fardon, Rémi; Zorrilla, Eric P.; Ciccocioppo, Roberto; Weiss, Friedbert

    2010-01-01

    Stress-like symptoms are an integral part of acute and protracted drug withdrawal, and several lines of evidence have shown that dysregulation of brain stress systems, including the extrahypothalamic corticotropin-releasing factor (CRF) system, following long-term drug use is of major importance in maintaining drug and alcohol addiction. Recently, two other neuropeptide systems have attracted interest, the nociceptin/orphanin FQ (N/OFQ) and orexin/hypocretin (Orx/Hcrt) systems. N/OFQ participates in a wide range of physiological responses, and the hypothalamic Orx/Hcrt system helps regulate several physiological processes, including feeding, energy metabolism, and arousal. Moreover, these two systems have been suggested to participate in psychiatric disorders, including anxiety and drug addiction. Dysregulation of these systems by chronic drug exposure has been hypothesized to play a role in the maintenance of addiction and dependence. Recent evidence demonstrated that interactions between CRF-N/OFQ and CRF-Orx/Hcrt systems may be functionally relevant for the control of stress-related addictive behavior. The present review discusses recent findings that support the hypotheses of the participation and dysregulation of these systems in drug addiction and evaluates the current understanding of interactions among these stress-regulatory peptides. PMID:20026088

  12. Emotional dysregulation in borderline personality disorder and its influence on communication behavior and feelings in romantic relationships.

    Science.gov (United States)

    Miano, Annemarie; Grosselli, Luna; Roepke, Stefan; Dziobek, Isabel

    2017-08-01

    Dysfunction in romantic relationships constitutes one of the most burdensome symptoms of borderline personality disorder (BPD). The aim of this study was to ascertain how emotional dysregulation affects behavior and relationship related feelings of women with BPD in threatening conversations with their own romantic partner. Thirty couples in which the women were diagnosed with BPD and 34 healthy control (HC) couples were videotaped while discussing personally threatening (i.e., personal failure) and relationship-threatening (i.e., separation) themes. Third party raters evaluated stress and communication behaviors during the conversations. Relationship related feelings, i.e., closeness and relationship insecurity, were assessed by self-report. Overall, women with BPD were rated as more stressed in threatening situations than HC women and their partners, but not more stressed in relationship-threatening than personally threatening situations. A heightened stress response of women with BPD predicted more negative and less positive communication behaviors and a stronger decline in self-rated closeness to the partner compared to HC. Stress-induced increases in relationship insecurity were specific to women with BPD. Our results highlight the central role of emotional dysregulation in interpersonal dysfunctions of persons with BPD and the need to address individual emotion regulation strategies more explicitly in dyadic contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis

    DEFF Research Database (Denmark)

    Sales, K U; Friis, S; Konkel, J E

    2015-01-01

    The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease s...

  14. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger

    OpenAIRE

    Manzanares-Miralles, Lara; Bayram, Ozgur; Sarikaya-Bayram, Ozlem; Smith, Elizabeth B.; Dolan, Stephen K.; Jones, Gary W.; Doyle, Sean

    2016-01-01

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus,which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p = 0.0018) ...

  15. Dissociative symptoms and neuroendocrine dysregulation in depression.

    Science.gov (United States)

    Bob, Petr; Fedor-Freybergh, Peter; Jasova, Denisa; Bizik, Gustav; Susta, Marek; Pavlat, Josef; Zima, Tomas; Benakova, Hana; Raboch, Jiri

    2008-10-01

    Dissociative symptoms are traditionally attributed to psychological stressors that produce dissociated memories related to stressful life events. Dissociative disorders and dissociative symptoms including psychogenic amnesia, fugue, dissociative identity-disorder, depersonalization, derealization and other symptoms or syndromes have been reported as an epidemic psychiatric condition that may be coexistent with various psychiatric diagnoses such as depression, schizophrenia, borderline personality disorder or anxiety disorders. According to recent findings also the somatic components of dissociation may occur and influence brain, autonomic and neuroendocrine functions. At this time there are only few studies examining neuroendocrine response related to dissociative symptoms that suggest significant dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis. The aim of the present study is to perform examination of HPA axis functioning indexed by basal cortisol and prolactin and test their relationship to psychic and somatoform dissociative symptoms. Basal cortisol and prolactin and psychic and somatoform dissociative symptoms were assessed in 40 consecutive inpatients with diagnosis of unipolar depression mean age 43.37 (SD=12.21). The results show that prolactin and cortisol as indices of HPA axis functioning manifest significant relationship to dissociative symptoms. Main results represent highly significant correlations obtained by simple regression between psychic dissociative symptoms (DES) and serum prolactin (R=0.55, p=0.00027), and between somatoform dissociation (SDQ-20) and serum cortisol (R=-0.38, p=0.015). These results indicate relationship between HPA-axis reactivity and dissociative symptoms in unipolar depressive patients that could reflect passive coping behavior and disengagement.

  16. Nitric oxide dysregulation in the pathogenesis of preeclampsia among Ghanaian women

    Directory of Open Access Journals (Sweden)

    Adu-Bonsaffoh K

    2015-02-01

    Full Text Available Kwame Adu-Bonsaffoh,1,2 Daniel Ansong Antwi,1 Samuel Amenyi Obed,3 Ben Gyan4 1Department of Physiology, University of Ghana Medical School, Accra, Ghana; 2Department of Obstetrics and Gynecology, Korle Bu Teaching Hospital, Accra, Ghana; 3Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana; 4Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana Background: Preeclampsia (PE is still a disease of theories as the exact cause remains uncertain. Widespread vascular endothelial cell dysfunction is thought to mediate the generalized vasospasm and hypertension characteristic of PE. Altered nitric oxide (NO production has been associated with the endothelial dysfunction in the pathogenesis of PE but conflicting results have emerged from previous studies. Objectives: To determine maternal serum levels of NO, a biomarker of endothelial function, in nonpregnant, normal pregnant, and preeclamptic women. Materials and methods: This was a cross-sectional case–control study of 277 women comprising 75 nonpregnant, 102 normal pregnant, and 100 preeclamptic women conducted at the Korle Bu Teaching Hospital between April and June 2011. About 5 mL of venous blood was obtained from the participants for the various investigations after meeting the inclusion criteria and signing to a written consent. Serum levels of NO were determined by Griess reaction. The data obtained were analyzed with SPSS version 20. Results: The study showed significantly elevated serum levels of NO in preeclamptic women (82.45±50.31 µM compared with normal pregnant (33.12±17.81 µM and nonpregnant (16.92±11.41 µM women with P<0.001. The alteration in maternal serum NO levels was significantly more profound in early-onset (severe PE (119.63±45.860 µM compared to that of late-onset (mild disease (62.44±40.44 µM with P<0.001, indicating a more severe vascular endothelial cell dysfunction in the

  17. Special AT rich-binding1 protein (SATB1) in malignant T cells

    DEFF Research Database (Denmark)

    Fredholm, Simon; Willerslev-Olsen, Andreas; Met, Özcan

    2018-01-01

    Deficient expression of Suppressor Special AT-rich Binding-1 (SATB1) hampers thymocyte development and results in inept T cell lineages. Recent data implicate dysregulated SATB1 expression in the pathogenesis of mycosis fungoides (MF), the most frequent variant of cutaneous T cell lymphoma (CTCL......) whereas increased SATB1 expression had the opposite effect indicating that the mir-155 target SATB1 is a repressor of IL-5 and IL-9 in malignant T cells. In accordance, inhibition of STAT5, and its upstream activator Janus Kinase-3 (Jak3), triggered increased SATB1 expression and a concomitant suppression...

  18. Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2017-09-01

    Full Text Available We explored the role of the Krebs cycle enzyme fumarate hydratase (FH in glucose-stimulated insulin secretion (GSIS. Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice appear normal for 6–8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1βKO mice led to dysregulated metabolism in β cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D. The impaired GSIS in islets from diabetic Fh1βKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.

  19. Expression patterns of signaling lymphocytic activation molecule family members in peripheral blood mononuclear cell subsets in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Karampetsou, Maria P; Comte, Denis; Kis-Toth, Katalin; Kyttaris, Vasileios C; Tsokos, George C

    2017-01-01

    Genome-wide linkage analysis studies (GWAS) studies in systemic lupus erythematosus (SLE) identified the 1q23 region on human chromosome 1, containing the Signaling Lymphocytic Activation Molecule Family (SLAMF) cluster of genes, as a lupus susceptibility locus. The SLAMF molecules (SLAMF1-7) are immunoregulatory receptors expressed predominantly on hematopoietic cells. Activation of cells of the adaptive immune system is aberrant in SLE and dysregulated expression of certain SLAMF molecules has been reported. We examined the expression of SLAMF1-7 on peripheral blood T cells, B cells, monocytes, and their respective differentiated subsets, in patients with SLE and healthy controls in a systematic manner. SLAMF1 levels were increased on both T cell and B cells and their differentiated subpopulations in patients with SLE. SLAMF2 was increased on SLE CD4+ and CD8+ T cells. The frequency of SLAMF4+ and SLAMF7+ central memory and effector memory CD8+ T cells was reduced in SLE patients. Naïve CD4+ and CD8+ SLE T cells showed a slight increase in SLAMF3 levels. No differences were seen in the expression of SLAMF5 and SLAMF6 among SLE patients and healthy controls. Overall, the expression of various SLAMF receptors is dysregulated in SLE and may contribute to the immunopathogenesis of the disease.

  20. Dysregulation of Histone Acetyltransferases and Deacetylases in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    2014-01-01

    Full Text Available Cardiovascular disease (CVD remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs and deacetylases (HDACs are regulators of histone lysine acetylation. Recent studies have implicated a fundamental role of reversible protein acetylation in the regulation of CVDs such as hypertension, pulmonary hypertension, diabetic cardiomyopathy, coronary artery disease, arrhythmia, and heart failure. This reversible acetylation is governed by enzymes that HATs add or HDACs remove acetyl groups respectively. New evidence has revealed that histone acetylation regulators blunt cardiovascular and related disease states in certain cellular processes including myocyte hypertrophy, apoptosis, fibrosis, oxidative stress, and inflammation. The accumulating evidence of the detrimental role of histone acetylation in cardiac disease combined with the cardioprotective role of histone acetylation regulators suggests that the use of histone acetylation regulators may serve as a novel approach to treating the millions of patients afflicted by cardiac diseases worldwide.

  1. [Not Available].

    Science.gov (United States)

    Lakhoua, Ghozlane; El Aidli, Sihem; Zaïem, Ahmed; Sahnoun, Rim; Kastalli, Sarrah; Loueslati, Mohamed Hedi; Daghfous, Riadh

    2014-01-01

    We describe two cases of fixed drug eruptions induced by pheniramine (1(st) case) and loratadine (2(nd) case). Copyright © 2014 Société Française de Pharmacologie et de Thérapeutique. Publié par Elsevier Masson SAS.

  2. Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations.

    Science.gov (United States)

    Liao, Chunyan; Ashley, Neil; Diot, Alan; Morten, Karl; Phadwal, Kanchan; Williams, Andrew; Fearnley, Ian; Rosser, Lyndon; Lowndes, Jo; Fratter, Carl; Ferguson, David J P; Vay, Laura; Quaghebeur, Gerardine; Moroni, Isabella; Bianchi, Stefania; Lamperti, Costanza; Downes, Susan M; Sitarz, Kamil S; Flannery, Padraig J; Carver, Janet; Dombi, Eszter; East, Daniel; Laura, Matilde; Reilly, Mary M; Mortiboys, Heather; Prevo, Remko; Campanella, Michelangelo; Daniels, Matthew J; Zeviani, Massimo; Yu-Wai-Man, Patrick; Simon, Anna Katharina; Votruba, Marcela; Poulton, Joanna

    2017-01-10

    To investigate mitophagy in 5 patients with severe dominantly inherited optic atrophy (DOA), caused by depletion of OPA1 (a protein that is essential for mitochondrial fusion), compared with healthy controls. Patients with severe DOA (DOA plus) had peripheral neuropathy, cognitive regression, and epilepsy in addition to loss of vision. We quantified mitophagy in dermal fibroblasts, using 2 high throughput imaging systems, by visualizing colocalization of mitochondrial fragments with engulfing autophagosomes. Fibroblasts from 3 biallelic OPA1(-/-) patients with severe DOA had increased mitochondrial fragmentation and mitochondrial DNA (mtDNA)-depleted cells due to decreased levels of OPA1 protein. Similarly, in siRNA-treated control fibroblasts, profound OPA1 knockdown caused mitochondrial fragmentation, loss of mtDNA, impaired mitochondrial function, and mitochondrial mislocalization. Compared to controls, basal mitophagy (abundance of autophagosomes colocalizing with mitochondria) was increased in (1) biallelic patients, (2) monoallelic patients with DOA plus, and (3) OPA1 siRNA-treated control cultures. Mitophagic flux was also increased. Genetic knockdown of the mitophagy protein ATG7 confirmed this by eliminating differences between patient and control fibroblasts. We demonstrated increased mitophagy and excessive mitochondrial fragmentation in primary human cultures associated with DOA plus due to biallelic OPA1 mutations. We previously found that increased mitophagy (mitochondrial recycling) was associated with visual loss in another mitochondrial optic neuropathy, Leber hereditary optic neuropathy (LHON). Combined with our LHON findings, this implicates excessive mitochondrial fragmentation, dysregulated mitophagy, and impaired response to energetic stress in the pathogenesis of mitochondrial optic neuropathies, potentially linked with mitochondrial mislocalization and mtDNA depletion. Copyright © 2016 The Author(s). Published by Wolters Kluwer Health, Inc

  3. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Science.gov (United States)

    Margoles, Lindsay M; Mittal, Rohit; Klingensmith, Nathan J; Lyons, John D; Liang, Zhe; Serbanescu, Mara A; Wagener, Maylene E; Coopersmith, Craig M; Ford, Mandy L

    2016-01-01

    Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43) and effector molecules (IFN-γ, TNF) as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  4. REGULATORY T-CELLS IN CHRONIC LYMPHOCYTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Giovanni D'arena

    2012-08-01

    Full Text Available Regulatory T-cells (Tregs constitute a small subset of cells that are actively involved in maintaining self-tolerance, in immune homeostasis and in antitumor immunity. They are thought to play a significant role in the progression of cancer and are generally increased in patient with chronic lymphocytic leukemia (CLL. Their number correlates with more aggressive disease status and is predictive of the time to treatment, as well. Moreover, it is now clear that dysregulation in Tregs cell frequency and/or function may result in a plethora of autoimmune diseases, including multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, systemic lupus erythematosis, autoimmune lymphoproliferative disorders, rheumatoid arthritis, and psoriasis. Efforts are made aiming to develop approaches to deplete Tregs or inhibit their function in either cancer and autoimmune disorders.

  5. Commingling effect of gynoid and android fat patterns on cardiometabolic dysregulation in normal weight American adults.

    Science.gov (United States)

    Okosun, I S; Seale, J P; Lyn, R

    2015-05-18

    To determine the independent and commingling effect of android and gynoid percent fat (measured using Dual Energy X-Ray Absorptiometry) on cardiometabolic dysregulation in normal weight American adults. The 2005-2006 data (n=1802) from the United States National Health and Nutritional Examination Surveys (NHANES) were used in this study. Associations of android percent fat, gynoid percent fat and their joint occurrence with risks of cardiometabolic risk factors were estimated using prevalence odds ratios from logistic regression analyses. Android-gynoid percent fat ratio was more highly correlated with cardiometabolic dysregulation than android percent fat, gynoid percent fat or body mass index. Commingling of android and gynoid adiposities was associated with much greater odds of cardiometabolic risk factors than either android or gynoid adiposities. Commingling of android and gynoid adiposities was associated with 1.75 (95% confidence interval (CI)=1.42-2.93), 1.48 (95% CI=1.32-1.91), 1.61 (95% CI=1.50-1.89), 3.56 (95% CI=2.91-4.11) and 1.86 (95% CI=1.49-1.96) increased odds of elevated glucose, elevated blood pressure, elevated low-density lipoprotein-cholesterol, elevated triglyceride and low high-density lipoprotein-cholesterol, respectively. Normal weight subjects who present with both android and gynoid adiposities should be advised of the associated health risks. Both android and gynoid fat accumulations should be considered in developing public health strategies for reducing cardiometabolic disease risk in normal weight subjects.

  6. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  7. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  8. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  9. Normative development of the Child Behavior Checklist Dysregulation Profile from early childhood to adolescence: Associations with personality pathology.

    Science.gov (United States)

    Deutz, Marike H F; Vossen, Helen G M; De Haan, Amaranta D; Deković, Maja; Van Baar, Anneloes L; Prinzie, Peter

    2018-05-01

    The Dysregulation Profile (DP) is a broad indicator of concurrent affective, behavioral, and cognitive dysregulation, often measured with the anxious/depressed, aggressive behavior, and attention problems syndrome scales of the Child Behavior Checklist. Despite an expanding body of research on the DP, knowledge of the normative developmental course of the DP from early childhood to adolescence is lacking. Furthermore, although we know that the DP longitudinally predicts personality pathology, no research yet has examined whether next to the DP in early childhood, the rate of change of the DP across development predicts personality pathology. Therefore, using cohort-sequential latent growth modeling in a population-based sample (N = 668), we examined the normative developmental course of mother-reported DP from ages 4 to 17 years and its associations with a wide range of adolescent-reported personality pathology dimensions 3 years later. The results showed that the DP follows a nonlinear developmental course with a peak in early adolescence. The initial level of the DP at age 4 and, to a lesser extent, the rate of change in the DP predicted a range of personality pathology dimensions in late adolescence. The findings suggest that the DP is a broad developmental precursor of personality pathology in late adolescence.

  10. Genetic Association of Major Depression With Atypical Features and Obesity-Related Immunometabolic Dysregulations

    DEFF Research Database (Denmark)

    Milaneschi, Yuri; Lamers, Femke; Peyrot, Wouter J

    2017-01-01

    Importance: The association between major depressive disorder (MDD) and obesity may stem from shared immunometabolic mechanisms particularly evident in MDD with atypical features, characterized by increased appetite and/or weight (A/W) during an active episode. Objective: To determine whether...... subgroups of patients with MDD stratified according to the A/W criterion had a different degree of genetic overlap with obesity-related traits (body mass index [BMI] and levels of C-reactive protein [CRP] and leptin). Design, Setting, and Patients: This multicenter study assembled genome-wide genotypic...... between atypical depressive symptoms and obesity-related traits may arise from shared pathophysiologic mechanisms in patients with MDD. Development of treatments effectively targeting immunometabolic dysregulations may benefit patients with depression and obesity, both syndromes with important disability....

  11. Heavy alcohol use, rather than alcohol dependence, is associated with dysregulation of the hypothalamic-pituitary-adrenal axis and the autonomic nervous system

    NARCIS (Netherlands)

    Boschloo, Lynn; Vogelzangs, Nicole; Licht, Carmilla M. M.; Vreeburg, Sophie A.; Smit, Johannes H.; van den Brink, Wim; Veltman, Dick J.; de Geus, Eco J. C.; Beekman, Aartjan T. F.; Penninx, Brenda W. J. H.

    2011-01-01

    Heavy alcohol use as well as alcohol dependence (AD) have been associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and the autonomic nervous system (ANS). However, the relative contribution of alcohol use and AD is unclear. Baseline data were derived from 2947 persons of

  12. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner

    OpenAIRE

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Background Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. Th...

  13. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell.

    Science.gov (United States)

    Olivero, Carlotta; Lanfredini, Simone; Borgogna, Cinzia; Gariglio, Marisa; Patel, Girish K

    2018-01-01

    Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.

  14. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.

    Science.gov (United States)

    Blenis, John

    2017-09-21

    Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats

    Directory of Open Access Journals (Sweden)

    Mélanie Campana

    2018-02-01

    Full Text Available Objectives: Hypothalamic lipotoxicity has been shown to induce central insulin resistance and dysregulation of glucose homeostasis; nevertheless, elucidation of the regulatory mechanisms remains incomplete. Here, we aimed to determine the role of de novo ceramide synthesis in hypothalamus on the onset of central insulin resistance and the dysregulation of glucose homeostasis induced by obesity. Methods: Hypothalamic GT1-7 neuronal cells were treated with palmitate. De novo ceramide synthesis was inhibited either by pharmacological (myriocin or molecular (si-Serine Palmitoyl Transferase 2, siSPT2 approaches. Obese Zucker rats (OZR were intracerebroventricularly infused with myriocin to inhibit de novo ceramide synthesis. Insulin resistance was determined by quantification of Akt phosphorylation. Ceramide levels were quantified either by a radioactive kinase assay or by mass spectrometry analysis. Glucose homeostasis were evaluated in myriocin-treated OZR. Basal and glucose-stimulated parasympathetic tonus was recorded in OZR. Insulin secretion from islets and β-cell mass was also determined. Results: We show that palmitate impaired insulin signaling and increased ceramide levels in hypothalamic neuronal GT1-7 cells. In addition, the use of deuterated palmitic acid demonstrated that palmitate activated several enzymes of the de novo ceramide synthesis pathway in hypothalamic cells. Importantly, myriocin and siSPT2 treatment restored insulin signaling in palmitate-treated GT1-7 cells. Protein kinase C (PKC inhibitor or a dominant-negative PKCζ also counteracted palmitate-induced insulin resistance. Interestingly, attenuating the increase in levels of hypothalamic ceramides with intracerebroventricular infusion of myriocin in OZR improved their hypothalamic insulin-sensitivity. Importantly, central myriocin treatment partially restored glucose tolerance in OZR. This latter effect is related to the restoration of glucose-stimulated insulin

  16. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai; Li, Keqiu [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China); Yang, Qiaoyun [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Zhao, Yuxia [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China); Li, Ran [State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871 (China); Ge, Jie [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060 (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060 (China); Qiu, Xinghua, E-mail: xhqiu@pku.edu.cn [State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871 (China); Li, Guang, E-mail: lig@tijmu.edu.cn [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China)

    2015-02-15

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log 2 ratio >1 or <−1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. - Highlights:

  17. Wechsler profiles in referred children with intellectual giftedness: Associations with trait-anxiety, emotional dysregulation, and heterogeneity of Piaget-like reasoning processes.

    Science.gov (United States)

    Guénolé, Fabian; Speranza, Mario; Louis, Jacqueline; Fourneret, Pierre; Revol, Olivier; Baleyte, Jean-Marc

    2015-07-01

    It is common that intellectually gifted children (IQ ≥ 130) are referred to paediatric or child neuropsychiatry clinics for socio-emotional problems and/or school underachievement or maladjustment. Among them, those displaying developmental asynchrony - a heterogeneous developmental pattern reflected in a significant verbal-performance discrepancy (SVPD) on Wechsler's intelligence profile - are thought to be more emotionally and behaviourally impaired than others. Our purpose was to investigate this clinical dichotomy using a cognitive psychopathological approach. Trait-anxiety and emotional dysregulation were investigated in two groups of referred gifted children (n = 107 and 136, respectively), a pilot-study of reasoning processes on extensive Piaget-like tasks was also performed in an additional small group (n = 12). Compared to those with a homogenous Wechsler profile, children with a SVPD exhibited: 1) a decreased prevalence of social preoccupation-anxiety (11.1% versus 27.4%; p emotional dysregulation (58.7% versus 41.3%; p emotional and behavioural problems in gifted children and call for further investigation of this profile. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD): a case with additional features and review of the literature.

    Science.gov (United States)

    Chew, H B; Ngu, L H; Keng, W T

    2011-03-01

    A rare syndrome of rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) has been recently described. We report the first patient with this syndrome in Southeast Asia and review reported cases to date. Our patient was good health with normal development until the age of 2. He then developed hyperphagic obesity, hypersomnolence, seizures, alveolar hypoventilation, central hypothyroidism, sodium and water dysregulation, gastrointestinal dysmotility, strabismus, disordered temperature and irregular heart rate, altered sweating, delayed puberty, mental retardation and recurrent respiratory tract infections. The cardiomyopathy with heart failure and abnormal cerebral spinal fluid (CSF) neurotransmitter analysis present in our patient have not been reported previously. Tumours of the sympathetic nervous system are known to be associated with this syndrome but had not been found in our patient at the time of reporting. We highlight the difficulty of achieving the diagnosis of ROHHAD syndrome and its overlap with other well-established disease entities. The mortality and morbidity resulting from the high incidence of cardiorespiratory arrest may be prevented by early ventilatory support.

  19. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  20. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  1. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    Science.gov (United States)

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  2. Interactions of the gasotransmitters contribute to microvascular tone (dysregulation in the preterm neonate.

    Directory of Open Access Journals (Sweden)

    Rebecca M Dyson

    Full Text Available Hydrogen sulphide (H2S, nitric oxide (NO, and carbon monoxide (CO are involved in transitional microvascular tone dysregulation in the preterm infant; however there is conflicting evidence on the interaction of these gasotransmitters, and their overall contribution to the microcirculation in newborns is not known. The aim of this study was to measure the levels of all 3 gasotransmitters, characterise their interrelationships and elucidate their combined effects on microvascular blood flow.90 preterm neonates were studied at 24h postnatal age. Microvascular studies were performed by laser Doppler. Arterial COHb levels (a measure of CO were determined through co-oximetry. NO was measured as nitrate and nitrite in urine. H2S was measured as thiosulphate by liquid chromatography. Relationships between levels of the gasotransmitters and microvascular blood flow were assessed through partial correlation controlling for the influence of gestational age. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow and derive a theoretical model of their interactions.No relationship was observed between NO and CO (p = 0.18, r = 0.18. A positive relationship between NO and H2S (p = 0.008, r = 0.28 and an inverse relationship between CO and H2S (p = 0.01, r = -0.33 exists. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow. The model with the best fit is presented.The relationships between NO and H2S, and CO and H2S may be of importance in the preterm newborn, particularly as NO levels in males are associated with higher H2S levels and higher microvascular blood flow and CO in females appears to convey protection against vascular dysregulation. Here we present a theoretical model of these interactions and their overall effects on microvascular flow in the preterm newborn, upon which future mechanistic studies may be based.

  3. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

    Directory of Open Access Journals (Sweden)

    Irma Virant-Klun

    2016-01-01

    Full Text Available MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells.

  4. Thermodynamic and Spectrophotometric Studies of Electron Donor ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research April 2013; 12 (2): 233-238. ISSN: 1596-5996 ... the simple, rapid and accurate determination of loratadine. Keywords: ... EXPERIMENTAL. Materials ... each sample was determined at 527 nm against a blank made up .... proposed method gave true values according to the label ...

  5. Rhinovirus infection results in stronger and more persistent genomic dysregulation: Evidence for altered innate immune response in asthmatics at baseline, early in infection, and during convalescence.

    Directory of Open Access Journals (Sweden)

    Peter W Heymann

    Full Text Available Rhinovirus (HRV is associated with the large majority of virus-induced asthma exacerbations in children and young adults, but the mechanisms remain poorly defined.Asthmatics and non-asthmatic controls were inoculated with HRV-A16, and nasal epithelial samples were obtained 7 days before, 36 hours after, and 7 days after viral inoculation. RNA was extracted and subjected to RNA-seq analysis.At baseline, 57 genes were differentially expressed between asthmatics and controls, and the asthmatics had decreased expression of viral replication inhibitors and increased expression of genes involved in inflammation. At 36 hours (before the emergence of peak symptoms, 1329 genes were significantly altered from baseline in the asthmatics compared to 62 genes in the controls. At this time point, asthmatics lacked an increase in IL-10 signaling observed in the controls. At 7 days following HRV inoculation, 222 genes were significantly dysregulated in the asthmatics, whereas only 4 genes were dysregulated among controls. At this time point, the controls but not asthmatics demonstrated upregulation of SPINK5.As judged by the magnitude and persistence of dysregulated genes, asthmatics have a substantially different host response to HRV-A16 infection compared with non-asthmatic controls. Gene expression differences illuminate biologically plausible mechanisms that contribute to a better understanding of the pathogenesis of HRV-induced asthma exacerbations.

  6. Alcohol-related biases in selective attention and action tendency make distinct contributions to dysregulated drinking behaviour.

    Science.gov (United States)

    Sharbanee, Jason M; Stritzke, Werner G K; Wiers, Reinout W; MacLeod, Colin

    2013-10-01

    To assess whether alcohol-related biases in selective-attention and action tendency uniquely or concurrently predict the ability to regulate alcohol consumption. Two groups of undergraduate social drinkers (total n = 55) who differed in their ability to regulate their alcohol consumption completed a novel Selective-Attention/Action-Tendency Task (SA/ATT), which assessed separately alcohol-related biases in selective attention and action tendency. University of Western Australia, Australia. Dysregulated drinking was operationalized as a self-reported high level of alcohol consumption on the Alcohol Consumption Questionnaire, and a high desire to reduce consumption on the Brief Readiness to Change Algorithm. Selective attention and action tendency were assessed using the SA/ATT, working memory was assessed using the operation-span task and participant characteristics were assessed using the Alcohol Use Disorders Identification Test (AUDIT) and Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). Results indicated that (i) there was no significant association between alcohol-related biases in selective attention and action tendency, r = 0.16, P = 0.274, and (ii) biases towards alcohol, in both selective attention, β = 1.01, odds ratio = 2.74, P = 0.022, and action tendency, β = 1.24, odds ratio = 3.45, P = 0.015, predicted independent variance in dysregulated-drinker status. Biases in selective attention and action tendency appear to be distinct mechanisms that contribute independently to difficulty regulating alcohol consumption. Treatment components that could be combined to target both mechanisms could enhance treatment outcomes for alcohol-use disorders. © 2013 Society for the Study of Addiction.

  7. Differential expression of NK receptors CD94 and NKG2A by T cells in rheumatoid arthritis patients in remission compared to active disease.

    LENUS (Irish Health Repository)

    Walsh, Ceara E

    2011-01-01

    TNF inhibitors (TNFi) have revolutionised the treatment of rheumatoid arthritis (RA). Natural killer (NK) cells and Natural Killer Cell Receptor+ T (NKT) cells comprise important effector lymphocytes whose activity is tightly regulated through surface NK receptors (NKRs). Dysregulation of NKRs in patients with autoimmune diseases has been shown, however little is known regarding NKRs expression in patients with TNFi-induced remission and in those who maintain remission vs disease flare following TNFi withdrawal.

  8. The cell cycle in Alzheimer disease: a unique target for neuropharmacology.

    Science.gov (United States)

    Webber, Kate M; Raina, Arun K; Marlatt, Michael W; Zhu, Xiongwei; Prat, María I; Morelli, Laura; Casadesus, Gemma; Perry, George; Smith, Mark A

    2005-10-01

    Several hypotheses have been proposed attempting to explain the pathogenesis of Alzheimer disease including, among others, theories involving amyloid deposition, tau phosphorylation, oxidative stress, metal ion dysregulation and inflammation. While there is strong evidence suggesting that each one of these proposed mechanisms contributes to disease pathogenesis, none of these mechanisms are able to account for all the physiological changes that occur during the course of the disease. For this reason, we and others have begun the search for a causative factor that predates known features found in Alzheimer disease, and that might therefore be a fundamental initiator of the pathophysiological cascade. We propose that the dysregulation of the cell cycle that occurs in neurons susceptible to degeneration in the hippocampus during Alzheimer disease is a potential causative factor that, together with oxidative stress, would initiate all known pathological events. Neuronal changes supporting alterations in cell cycle control in the etiology of Alzheimer disease include the ectopic expression of markers of the cell cycle, organelle kinesis and cytoskeletal alterations including tau phosphorylation. Such mitotic alterations are not only one of the earliest neuronal abnormalities in the disease, but as discussed herein, are also intimately linked to all of the other pathological hallmarks of Alzheimer disease including tau protein, amyloid beta protein precursor and oxidative stress, and even risk factors such as mutations in the presenilin genes. Therefore, therapeutic interventions targeted toward ameliorating mitotic changes would be predicted to have a profound and positive impact on Alzheimer disease progression.

  9. Failure of Chemotherapy in Hepatocellular Carcinoma Due to Impaired and Dysregulated Primary Liver Drug Metabolizing Enzymes and Drug Transport Proteins: What to Do?

    Science.gov (United States)

    Ul Islam, Salman; Ahmed, Muhammad Bilal; Shehzad, Adeeb; Ul-Islam, Mazhar; Lee, Young Sup

    2018-05-28

    Most of the drugs are metabolized in the liver by the action of drug metabolizing enzymes. In hepatocellular carcinoma (HCC), primary drug metabolizing enzymes are severely dysregulated, leading to failure of chemotherapy. Sorafenib is the only standard systemic drug available, but it still presents certain limitations, and much effort is required to understand who is responsive and who is refractory to the drug. Preventive and therapeutic approaches other than systemic chemotherapy include vaccination, chemoprevention, liver transplantation, surgical resection, and locoregional therapies. This review details the dysregulation of primary drug metabolizing enzymes and drug transport proteins of the liver in HCC and their influence on chemotherapeutic drugs. Furthermore, it emphasizes the adoption of safe alternative therapeutic strategies to chemotherapy. The future of HCC treatment should emphasize the understanding of resistance mechanisms and the finding of novel, safe, and efficacious therapeutic strategies, which will surely benefit patients affected by advanced HCC. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Childhood traumatization by primary caretaker and affect dysregulation in patients with borderline personality disorder and somatoform disorder

    Directory of Open Access Journals (Sweden)

    Annemiek van Dijke

    2011-03-01

    Full Text Available Affect regulation is often compromised as a result of early life interpersonal traumatization and disruption in caregiving relationships like in situations where the caretaker is emotionally, sexually or physically abusing the child. Prior studies suggest a clear relationship between early childhood attachment-related psychological trauma and affect dysregulation. We evaluated the relationship of retrospectively recalled childhood traumatization by primary caretaker(s (TPC and affect dysregulation in 472 adult psychiatric patients diagnosed with borderline personality disorder (BPD, somatoform disorder (SoD, both BPD and SoD, or disorders other than BPD or SoD, using the Bermond-Vorst Alexithymia Questionnaire, the self-report version of the Structured Interview for Disorders of Extreme Stress, the Self-rating Inventory for Posttraumatic Stress Disorder (SRIP and the Traumatic Experiences Checklist. Almost two-thirds of participants reported having experienced childhood TPC, ranging from approximately 50% of patients with SoD or other psychiatric disorders to more than 75% of patients with comorbid BPD + SoD. Underregulation of affect was associated with emotional TPC and TPC occurring in developmental epoch 0–6 years. Over-regulation of affect was associated with physical TPC. Childhood trauma by a primary caretaker is prevalent among psychiatric patients, particularly those with BPD, and differentially associated with underand over-regulation of affect depending on the type of traumatic exposure.For the abstract or full text in other languages, please see Supplementary files under Reading Tools online

  11. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    Directory of Open Access Journals (Sweden)

    Lindsay M Margoles

    Full Text Available Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43 and effector molecules (IFN-γ, TNF as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  12. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    Science.gov (United States)

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  13. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD): exome sequencing of trios, monozygotic twins and tumours

    OpenAIRE

    Barclay, Sarah F.; Rand, Casey M.; Borch, Lauren A.; Nguyen, Lisa; Gray, Paul A.; Gibson, William T.; Wilson, Richard J. A.; Gordon, Paul M. K.; Aung, Zaw; Berry-Kravis, Elizabeth M.; Ize-Ludlow, Diego; Weese-Mayer, Debra E.; Bech-Hansen, N. Torben

    2015-01-01

    Background Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is thought to be a genetic disease caused by de novo mutations, though causative mutations have yet to be identified. We searched for de novo coding mutations among a carefully-diagnosed and clinically homogeneous cohort of 35 ROHHAD patients. Methods We sequenced the exomes of seven ROHHAD trios, plus tumours from four of these patients and the unaffected monozygotic (MZ) twin ...

  14. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Di Bari

    2016-11-01

    Full Text Available Multiple sclerosis (MS is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE and butyrylcholinesterase (BuChE. Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD, is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.

  15. MYT1L mutations cause intellectual disability and variable obesity by dysregulating gene expression and development of the neuroendocrine hypothalamus.

    Directory of Open Access Journals (Sweden)

    Patricia Blanchet

    2017-08-01

    Full Text Available Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense. The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.

  16. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium.

    Science.gov (United States)

    Pelch, Katherine E; Tokar, Erik J; Merrick, B Alex; Waalkes, Michael P

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10μM Cd for 11weeks (CTPE) or 5μM iAs for 29weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (>25-fold) and S100P (>40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (>15-fold) and NTM (>1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. Published by Elsevier Inc.

  17. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Bhavapriya Vaitheesvaran

    Full Text Available FAAH (fatty acid amide hydrolase, primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA. Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/- mice.FAAH(-/- mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry. FAAH(-/- mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN. Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/- mice. Dysregulated hepatic FAAH(-/- lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/- acetyl-CoA (85%, p<0.01 corresponded to similar increases in citrate levels (45%. Altered FAAH(-/- mitochondrial malate dehydrogenase (MDH2 acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/- mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/- aldolase B. Fed FAAH(-/- alcohol dehydrogenase (ADH acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/- mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver

  18. Pancreatic Islet Protein Complexes and Their Dysregulation in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Brunak, Søren

    2017-01-01

    Type 2 diabetes (T2D) is a complex disease that involves multiple genes. Numerous risk loci have already been associated with T2D, although many susceptibility genes remain to be identified given heritability estimates. Systems biology approaches hold potential for discovering novel T2D genes by ...... starting point when evaluating an individual's alterations at the genome, transcriptome, or proteome level in relation to T2D in clinical settings.......Type 2 diabetes (T2D) is a complex disease that involves multiple genes. Numerous risk loci have already been associated with T2D, although many susceptibility genes remain to be identified given heritability estimates. Systems biology approaches hold potential for discovering novel T2D genes...... by considering their biological context, such as tissue-specific protein interaction partners. Pancreatic islets are a key T2D tissue and many of the known genetic risk variants lead to impaired islet function, hence a better understanding of the islet-specific dysregulation in the disease-state is essential...

  19. Systematic analysis of gene expression pattern in has-miR-197 over-expressed human uterine leiomyoma cells.

    Science.gov (United States)

    Ling, Jing; Wu, Xiaoli; Fu, Ziyi; Tan, Jie; Xu, Qing

    2015-10-01

    Our previous study showed that the expression of miR-197 in leiomyoma was down-regulated compared with myometrium. Further, miR-197 has been identified to affect uterine leiomyoma cell proliferation, apoptosis, and metastasis ability, though the responsible molecular mechanism has not been well elucidated. In this study, we sought to determine the expression patterns of miR-197 targeted genes and to explore their potential functions, participating Pathways and the networks that are involved in the biological behavior of human uterine leiomyoma. After transfection of human uterine leiomyoma cells with miR-197, we confirmed the expression level of miR-197 using quantitative real-time PCR (qRT-PCR), and we detected the gene expression profiles after miR-197 over-expression through DNA microarray analysis. Further, we performed GO and Pathway analysis. The dominantly dys-regulated genes, which were up- or down-regulated by more than 10-fold, compared with parental cells, were confirmed using qRT-PCR technology. Compared with the control group, miR-197 was up-regulated by 30-fold after miR-197 lentiviral transfection. The microarray data showed that 872 genes were dys-regulated by more than 2-fold in human uterine leiomyoma cells after miR-197 overexpression, including 537 up-regulated and 335 down-regulated genes. The GO analysis indicated that the dys-regulated genes were primarily involved in response to stimuli, multicellular organ processes, and the signaling of biological progression. Further, Pathway analysis data showed that these genes participated in regulating several signaling Pathways, including the JAK/STAT signaling Pathway, the Toll-like receptor signaling Pathway, and cytokine-cytokine receptor interaction. The qRT-PCR results confirmed that 17 of the 66 selected genes, which were up- or down-regulated more than 10-fold by miR-197, were consistent with the microarray results, including tumorigenesis-related genes, such as DRT7, SLC549, SFMBT2, FLJ37956

  20. Clinical features, tumor biology, and prognosis associated with MYC rearrangement and Myc overexpression in diffuse large B-cell lymphoma patients treated with rituximab-CHOP

    DEFF Research Database (Denmark)

    Xu-Monette, Zijun Y; Dabaja, Bouthaina S; Wang, Xiaoxiao

    2015-01-01

    MYC dysregulation, including MYC gene rearrangement and Myc protein overexpression, is of increasing clinical importance in diffuse large B-cell lymphoma (DLBCL). However, the roles of MYC and the relative importance of rearrangement vs overexpression remain to be refined. Gaining knowledge about...

  1. Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.

    Science.gov (United States)

    Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M

    2013-05-10

    A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions.

  2. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    OpenAIRE

    Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor...

  3. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    Science.gov (United States)

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  4. Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene

    Science.gov (United States)

    Hasegawa, Sumitaka; Sato, Tomoyuki; Akazawa, Hiroshi; Okada, Hitoshi; Maeno, Akiteru; Ito, Masaki; Sugitani, Yoshinobu; Shibata, Hiroyuki; Miyazaki, Jun-ichi; Katsuki, Motoya; Yamauchi, Yasutaka; Yamamura, Ken-ichi; Katamine, Shigeru; Noda, Tetsuo

    2002-01-01

    Apc is a gene associated with familial adenomatous polyposis coli (FAP) and its inactivation is a critical step in colorectal tumor formation. The protein product, adenomatous polyposis coli (APC), acts to down-regulate intracellular levels of β-catenin, a key signal transducer in the Wnt signaling. Conditional targeting of Apc in the neural crest of mice caused massive apoptosis of cephalic and cardiac neural crest cells at about 11.5 days post coitum, resulting in craniofacial and cardiac anomalies at birth. Notably, the apoptotic cells localized in the regions where β-catenin had accumulated. In contrast to its role in colorectal epithelial cells, inactivation of APC leads to dysregulation of β-catenin/Wnt signaling with resultant apoptosis in certain tissues including neural crest cells. PMID:11756652

  5. The Mechanism by Which MYCN Amplification Confers an Enhanced Sensitivity to a PCNA-Derived Cell Permeable Peptide in Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Long Gu

    2015-12-01

    Full Text Available Dysregulated expression of MYC family genes is a hallmark of many malignancies. Unfortunately, these proteins are not amenable to blockade by small molecules or protein-based therapeutic agents. Therefore, we must find alternative approaches to target MYC-driven cancers. Amplification of MYCN, a MYC family member, predicts high-risk neuroblastoma (NB disease. We have shown that R9-caPep blocks the interaction of PCNA with its binding partners and selectively kills human NB cells, especially those with MYCN amplification, and we now show the mechanism. We found elevated levels of DNA replication stress in MYCN-amplified NB cells. R9-caPep exacerbated DNA replication stress in MYCN-amplified NB cells and NB cells with an augmented level of MYC by interfering with DNA replication fork extension, leading to Chk1 dependence and susceptibility to Chk1 inhibition. We describe how these effects may be exploited for treating NB.

  6. Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders.

    Science.gov (United States)

    Noda, Yumi

    2014-08-01

    The human body is two-thirds water. The ability of ensuring the proper amount of water inside the body is essential for the survival of mammals. The key event for maintenance of body water balance is water reabsorption in the kidney collecting ducts, which is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and never allows permeation of ions or other small molecules. Under normal conditions, AQP2 is restricted within the cytoplasm of the collecting duct cells. However, when the body is dehydrated and needs to retain water, AQP2 relocates to the apical membrane, allowing water reabsorption from the urinary tubule into the cell. Its impairments result in various water balance disorders including diabetes insipidus, which is a disease characterized by a massive loss of water through the kidney, leading to severe dehydration in the body. Dysregulation of AQP2 is also a common cause of water retention and hyponatremia that exacerbate the prognosis of congestive heart failure and hepatic cirrhosis. Many studies have uncovered the regulation mechanisms of AQP2 at the single-molecule level, the whole-body level, and the clinical level. In clinical practice, urinary AQP2 is a useful marker for body water balance (hydration status). Moreover, AQP2 is now attracting considerable attention as a potential therapeutic target for water balance disorders which commonly occur in many diseases.

  7. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    International Nuclear Information System (INIS)

    Robbins, Eric W; Travanty, Emily A; Yang, Kui; Iczkowski, Kenneth A

    2008-01-01

    Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway. In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested. MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA. The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing

  8. A doctor’s argument by authority: An analytical and empirical study of strategic manoeuvring in medical consultation

    NARCIS (Netherlands)

    Pilgram, R.

    2015-01-01

    In medical consultation, a doctor can appeal to his medical knowledge or expertise as a sign of the acceptability of his diagnosis, prognosis and/or advice ("It’s best to take these loratadine tablets, because I have seen them work really well against hay fever"). This could be quite convincing, as

  9. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status

    OpenAIRE

    Horv?thov?, Mira; Ilavsk?, Silvia; ?tef?kov?, Korn?lia; Szabov?, Michaela; Krivo??kov?, Zora; Jahnov?, Eva; Tulinsk?, Jana; Spustov?, Viera; Gajdo?, Martin

    2017-01-01

    The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The signific...

  10. Malignant T cells exhibit CD45 resistant Stat 3 activation and proliferation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, T; Helvad, Rikke; Ralfkiær, Elisabeth

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator...... of transcription (Stat) activation and cytokine-induced proliferation in lymphocytes. Consequently, CD45 dysregulation could be implicated in aberrant Jak/Stat activation and proliferation in lymphoproliferative diseases. Despite high expression of the CD45 ligand, Galectin-1, in skin lesions from cutaneous T......-cell lymphoma (CTCL), the malignant T cells exhibit constitutive activation of the Jak3/Stat3 signalling pathway and uncontrolled proliferation. We show that CD45 expression is down-regulated on malignant T cells when compared to non-malignant T cells established from CTCL skin lesions. Moreover, CD45 cross...

  11. Functional characterization and phenotypic monitoring of human hematopoietic stem cell expansion and differentiation of monocytes and macrophages by whole-cell mass spectrometry

    Directory of Open Access Journals (Sweden)

    Guido Vogel

    2018-01-01

    Full Text Available The different facets of macrophages allow them to play distinct roles in tissue homeostasis, tissue repair and in response to infections. Individuals displaying dysregulated macrophage functions are proposed to be prone to inflammatory disorders or infections. However, this being a cause or a consequence of the pathology remains often unclear. In this context, we isolated and expanded CD34+ HSCs from healthy blood donors and derived them into CD14+ myeloid progenitors which were further enriched and differentiated into macrophages. Aiming for a comprehensive phenotypic profiling, we generated whole-cell mass spectrometry (WCMS fingerprints of cell samples collected along the different stages of the differentiation process to build a predictive model using a linear discriminant analysis based on principal components. Through the capacity of the model to accurately predict sample's identity of a validation set, we demonstrate that WCMS profiles obtained from bona fide blood monocytes and respectively derived macrophages mirror profiles obtained from equivalent HSC derivatives. Finally, HSC-derived macrophage functionalities were assessed by quantifying cytokine and chemokine responses to a TLR agonist in a 34-plex luminex assay and by measuring their capacity to phagocytise mycobacteria. These functional read-outs could not discriminate blood monocytes-derived from HSC-derived macrophages. To conclude, we propose that this method opens new avenues to distinguish the impact of human genetics on the dysregulated biological properties of macrophages in pathological conditions.

  12. Metabogenic and Nutriceutical Approaches to Address Energy Dysregulation and Skeletal Muscle Wasting in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Emma Rybalka

    2015-11-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a fatal genetic muscle wasting disease with no current cure. A prominent, yet poorly treated feature of dystrophic muscle is the dysregulation of energy homeostasis which may be associated with intrinsic defects in key energy systems and promote muscle wasting. As such, supplementative nutriceuticals that target and augment the bioenergetical expansion of the metabolic pathways involved in cellular energy production have been widely investigated for their therapeutic efficacy in the treatment of DMD. We describe the metabolic nuances of dystrophin-deficient skeletal muscle and review the potential of various metabogenic and nutriceutical compounds to ameliorate the pathological and clinical progression of the disease.

  13. Upregulated GABA inhibitory function in AD/HD children with Child Behavior Checklist–Dysregulation Profile: 123I-iomazenil SPECT study

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2015-06-01

    Full Text Available The Child Behavior Checklist–Dysregulation Profile (CBCL-DP refers to a pattern of elevated scores on the Attention Problems, Aggression, and Anxiety/Depression subscales of the Child Behavior Checklist. The aim of the present study was to investigate the potential role of GABA inhibitory neurons in children with attention deficit/hyperactivity disorder (AD/HD and dysregulation assessed with a dimensional measure. Brain single photon emission computed tomography (SPECT was performed in 35 children with AD/HD using 123I-iomazenil, which binds with high affinity to benzodiazepine receptors. Iomazenil binding activities were assessed with respect to the presence or absence of a threshold CBCL-DP (a score ≥210 for the sum of the three subscales Attention Problems, Aggression, and Anxiety/Depression. We then attempted to identify which CBCL-DP subscale explained the most variance with respect to SPECT data, using age, sex, and history of maltreatment as covariates. Significantly higher iomazenil binding activity was seen in the posterior cingulate cortex (PCC of AD/HD children with a significant CBCL-DP. The Anxiety/Depression subscale on the CBCL had significant effects on higher iomazenil binding activity in the left superior frontal, middle frontal, and temporal regions, as well as in the PCC. The present brain SPECT findings suggest that GABAergic inhibitory neurons may play an important role in the neurobiology of the CBCL-DP, in children with ADHD.

  14. IL-7 and CD4 T Follicular Helper Cells in HIV-1 Infection

    Directory of Open Access Journals (Sweden)

    Francesca Chiodi

    2017-04-01

    Full Text Available IL-7 was previously shown to upregulate the expression of molecules important for interaction of CD4+ T cells with B cells. It is poorly studied whether IL-7 has a role in the biology of T follicular helper (Tfh cells and whether IL-7 dysregulates the expression of B-cell costimulatory molecules on Tfh cells. We review the literature and provide arguments in favor of IL-7 being involved in the biology of human Tfh cells. The CD127 IL-7 receptor is expressed on circulating Tfh and non-Tfh cells, and we show that IL-7, but not IL-6 or IL-21, upregulates the expression of CD70 and PD-1 on these cells. We conclude that IL-7, a cytokine whose level is elevated during HIV-1 infection, may have a role in increased expression of B cell costimulatory molecules on Tfh cells and lead to abnormal B cell differentiation.

  15. Upregulated GABA Inhibitory Function in ADHD Children with Child Behavior Checklist–Dysregulation Profile: 123I-Iomazenil SPECT Study

    Science.gov (United States)

    Nagamitsu, Shinichiro; Yamashita, Yushiro; Tanigawa, Hitoshi; Chiba, Hiromi; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuyuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2015-01-01

    The child behavior checklist–dysregulation profile (CBCL–DP) refers to a pattern of elevated scores on the attention problems, aggression, and anxiety/depression subscales of the child behavior checklist. The aim of the present study was to investigate the potential role of GABA inhibitory neurons in children with attention deficit/hyperactivity disorder (ADHD) and dysregulation assessed with a dimensional measure. Brain single photon emission computed tomography (SPECT) was performed in 35 children with ADHD using 123I-iomazenil, which binds with high affinity to benzodiazepine receptors. Iomazenil binding activities were assessed with respect to the presence or absence of a threshold CBCL–DP (a score ≥210 for the sum of the three subscales: Attention Problems, Aggression, and Anxiety/Depression). We then attempted to identify which CBCL–DP subscale explained the most variance with respect to SPECT data, using “age,” “sex,” and “history of maltreatment” as covariates. Significantly higher iomazenil binding activity was seen in the posterior cingulate cortex (PCC) of ADHD children with a significant CBCL–DP. The Anxiety/Depression subscale on the CBCL had significant effects on higher iomazenil binding activity in the left superior frontal, middle frontal, and temporal regions, as well as in the PCC. The present brain SPECT findings suggest that GABAergic inhibitory neurons may play an important role in the neurobiology of the CBCL–DP, in children with ADHD. PMID:26082729

  16. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis.

    Science.gov (United States)

    Jeung, InCheul; Cheon, Keunyoung; Kim, Mee-Ran

    2016-01-01

    Endometriosis causes significant chronic pelvic pain, dysmenorrhea, and infertility and affects 10% of all women. In endometriosis, ectopic endometrium surviving after retrograde menstruation exhibits an abnormal immune response characterized by increased levels of activated macrophages and inflammatory cytokines. Particularly, dysfunctional natural killer (NK) cells play an important role in the pathogenesis of the disease by either facilitating or inhibiting the survival, implantation, and proliferation of endometrial cells. NK cells in the peritoneum and peritoneal fluid exhibit reduced levels of cytotoxicity in women with endometriosis. Several cytokines and inhibitory factors in the serum and peritoneal fluid also dysregulate NK cell cytotoxicity. Additionally, increased numbers of immature peripheral NK cells and induction of NK cell apoptosis are evident in the peritoneal fluid of women with endometriosis. The high rate of endometriosis recurrence after pharmaceutical or surgical treatment, which is associated with dysfunctional NK cells, indicates that new immunomodulatory management strategies are required. A good understanding of immune dysfunction would enable improvement of current treatments for endometriosis.

  17. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis

    Directory of Open Access Journals (Sweden)

    InCheul Jeung

    2016-01-01

    Full Text Available Endometriosis causes significant chronic pelvic pain, dysmenorrhea, and infertility and affects 10% of all women. In endometriosis, ectopic endometrium surviving after retrograde menstruation exhibits an abnormal immune response characterized by increased levels of activated macrophages and inflammatory cytokines. Particularly, dysfunctional natural killer (NK cells play an important role in the pathogenesis of the disease by either facilitating or inhibiting the survival, implantation, and proliferation of endometrial cells. NK cells in the peritoneum and peritoneal fluid exhibit reduced levels of cytotoxicity in women with endometriosis. Several cytokines and inhibitory factors in the serum and peritoneal fluid also dysregulate NK cell cytotoxicity. Additionally, increased numbers of immature peripheral NK cells and induction of NK cell apoptosis are evident in the peritoneal fluid of women with endometriosis. The high rate of endometriosis recurrence after pharmaceutical or surgical treatment, which is associated with dysfunctional NK cells, indicates that new immunomodulatory management strategies are required. A good understanding of immune dysfunction would enable improvement of current treatments for endometriosis.

  18. Quantitative assessment of metal dysregulation in β-thalassemia patients in comparison with healthy controls by ICP-MS and chemometric analyses.

    Science.gov (United States)

    Farooq, Sabiha; Mazhar, Wardah; Siddiqui, Amna Jabbar; Ansari, Saqib Hussain; Musharraf, Syed Ghulam

    2018-01-31

    β-Thalassemia is one of the most common inherited disorders and is widely distributed throughout the world. Owing to severe deficiencies in red blood cell production, blood transfusion is required to correct anemia for normal growth and development but causes additional complications owing to iron overload. The aim of this study is to quantify the biometal dysregulations in β-thalassemia patients as compared with healthy controls. A total of 17 elements were analyzed in serum samples of β-thalassemia patients and healthy controls using ICP-MS followed by chemometric analyses. Out of these analyzed elements, 14 showed a significant difference between healthy and disease groups at p 3. A PLS-DA model revealed an excellent separation with 89.8% sensitivity and 97.2% specificity and the overall accuracy of the model was 92.2%. This metallomic study revealed that there is major difference in metallomic profiling of β-thalassemia patients specifically in Co, Mn, Ni, V and Ba, whereas the fold changes in Co, Mn, V and Ba were found to be greater than that in Fe, providing evidence that, in addition to Fe, other metals are also altered significantly and therefore chelation therapy for other metals may also needed in β-thalassemia patients. Copyright © 2018 John Wiley & Sons, Ltd.

  19. SHORT-TERM STRESS ENHANCES CELLULAR IMMUNITY AND INCREASES EARLY RESISTANCE TO SQUAMOUS CELL CARCINOMA

    OpenAIRE

    Dhabhar, Firdaus S.; Saul, Alison N.; Daugherty, Christine; Holmes, Tyson H.; Bouley, Donna M.; Oberyszyn, Tatiana M.

    2009-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposu...

  20. Regulatory mechanisms of apoptosis in regularly dividing cells

    Directory of Open Access Journals (Sweden)

    Ribal S Darwish

    2010-08-01

    Full Text Available Ribal S DarwishDepartment of Anesthesiology, Division of Critical Care Medicine, University of Maryland Medical Center, Baltimore, Maryland, USAAbstract: The balance between cell survival and death is essential for normal development and homeostasis of organisms. Apoptosis is a distinct type of cell death with ultrastructural features that are consistent with an active, inherently controlled process. Abnormalities and ­dysregulation of apoptosis contribute to the pathophysiology of multiple disease processes. Apoptosis is strictly regulated by several positive and negative feedback mechanisms that regulate cell death and determine the final outcome after cell exposure to apoptotic stimuli. Mitochondria and caspases are central components of the regulatory mechanisms of ­apoptosis. Recently, noncaspase pathways of apoptosis have been explored through the studies of ­apoptosis-inducing factor and endonuclease G. Multiple difficulties in the apoptosis research relate to apoptosis detection and imaging. This article reviews current understanding of the regulatory mechanisms of apoptosis.Keywords: caspases, apoptosis-inducing factor, apoptosis inhibitory proteins, cytochrome c, mitochondria