WorldWideScience

Sample records for longleaf pine plantations

  1. Financial performance of loblolly and longleaf pine plantations

    Science.gov (United States)

    Steven D. Mills; Charles T. Stiff

    2013-01-01

    The financial performance of selected management regimes for loblolly (Pinus taeda L.) and longleaf pine (P. palustris Mill.) plantations were compared for four cases, each with low- and high-site productivity levels and each evaluated using 5 and 7 percent real discount rates. In all cases, longleaf pine was considered both with...

  2. A whole stand growth and yield system for young longleaf pine plantations in Southwest Georgia

    Science.gov (United States)

    John R. Brooks; Steven B. Jack

    2006-01-01

    A whole stand growth and yield system for planted longleaf pine (Pinus palustris Mill.) was developed from permanent plot data collected annually over an 8 year period. The dataset consists of 12 intensively-managed longleaf pine plantations that are located in Lee, Worth, Mitchell, and Baker counties in southwest Georgia. Stand survival, dominant...

  3. Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species.

    Energy Technology Data Exchange (ETDEWEB)

    T.B. Harrington; C.M. Dagley; M.B. Edwards.

    2003-10-01

    Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of above- and belowground competition and needlefall from overstory pines on understory plant performance. Three 13- to 15-yr-old plantations near Aiken, SC, were thinned to 0, 25, 50, or 100% of nonthinned basal area (19.5 m2 ha-1). Combinations of trenching (to eliminate root competition) and needlefall were applied to areas within each plot, and containerized seedlings of 14 perennial herbaceous species and longleaf pine were planted within each. Overstory crown closure ranged from 0 to 81%, and soil water and available nitrogen varied consistently with pine stocking, trenching, or their combination. Cover of planted species decreased an average of 16.5 and 14.1% as a result of above- and below-ground competition, respectively. Depending on species, needlefall effects were positive, negative, or negligible. Results indicate that understory restoration will be most successful when herbaceous species are established within canopy openings (0.1-0.2 ha) managed to minimize negative effects from above- and belowground competition and needlefall.

  4. Silvicultural treatments for converting loblolly pine to longleaf pine dominance: Effects on resource availability and their relationships with planted longleaf pine seedlings

    Science.gov (United States)

    Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp

    2012-01-01

    Throughout the southeastern United States, land managers are currently interested in converting loblolly pine (Pinus taeda L.) plantations to species rich longleaf pine (Pinus palustris Mill.) ecosystems. In a 3-year study on moderately well- to well-drained soils of the Lower Coastal Plain in North Carolina, we examined the...

  5. Surfing the Koehler Curve: revisiting a method for the identification of longleaf pine stumps and logs

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Karen G. Reed

    2009-01-01

    Measurements of pith and second growth ring diameters were used by Koehler in 1932 to separate longleaf pine (Pinus palustris Mill.) timbers from those of several southern pines (e.g., loblolly, shortleaf). In the current study, measurements were taken from plantation-grown longleaf, loblolly and shortleaf pine trees, as well as old growth longleaf pine, lightwood, and...

  6. Structure and Composition of Vegetation of Longleaf Pine Plantations Compared to Natural Stands Occurring Along an Environmental Gradient at the Savannah River Site

    Science.gov (United States)

    Gregory P. Smith; Victor B. Shelburne; Joan L. Walker

    2002-01-01

    Fifty-four plots in 33-43 year old longleaf pine plantations were compared to 30 remnant plots in longleaf stands on the Savannah River Site in South Carolina. Within these stands, the structure and composition of primarily the herb layer relative to a presumed soil moisture or soil texture gradient was studied using the North Carolina Vegetation Survey methodology....

  7. Fertilizer responses of longleaf pine trees within a loblolly pine plantation: separating direct effects from competition effects

    Science.gov (United States)

    Peter H Anderson; Kurt H. Johnsen

    2009-01-01

    Evidence is mixed on how well longleaf pine (Pinus palustris Mill.) responds to increased soil nitrogen via fertilization. We examined growth and physiological responses of volunteer longleaf pine trees within an intensive loblolly pine (Pinus taeda L.) fertilization experiment. Fertilizer was applied annually following thinning at age 8 years (late 1992) at rates...

  8. Effects of Precommercial Thinning and Midstory Control on Avian and Small Mammal Communities during Longleaf Pine Savanna Restoration.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Vanessa R [Abraham Baldwin Agricultural College; Kilgo, John C [USDA Forest Service, Southern Research Station

    2015-01-01

    Abstract - Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf pine restoration with plantation silviculture on avian and small mammal communities using four treatments in four 8- to 11- year-old plantations within the Savannah River Site in South Carolina. Treatments included prescribed burning every 3 to 5 years, plus: (1) no additional treatment (burn-only control); (2) precommercial thinning; (3) non-pine woody control with herbicides; and (4) combined thinning and woody control. We surveyed birds (1996-2003) using 50-m point counts and small mammals with removal trapping. Thinning and woody control alone had short-lived effects on avian communities, and the combination treatment increased avian parameters over the burn-only control in all years. Small mammal abundance showed similar trends as avian abundance for all three treatments when compared with the burn-only control, but only for 2 years post-treatment. Both avian and small mammal communities were temporarily enhanced by controlling woody vegetation with chemicals in addition to prescribed fire and thinning. Therefore, precommercial thinning in longleaf plantations, particularly when combined with woody control and prescribed fire, may benefit early-successional avian and small mammal communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire.

  9. Fire in longleaf pine stand management: an economic analysis

    Science.gov (United States)

    Rodney L. Busby; Donald G. Hodges

    1999-01-01

    A simulation analysis of the economics of using prescribed fire as a forest management tool in the management of longleaf pine (Pinus palustris Mill.) plantations was conducted. A management regime using frequent prescribed fire was compared to management regimes involving fertilization and chemical release, chemical control, and mechanical control. Determining the...

  10. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    Directory of Open Access Journals (Sweden)

    Holly K. Ober

    2014-04-01

    Full Text Available Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantations of three different species (loblolly, Pinus taeda; longleaf, P. palustris; and slash, P. elliottii. We sampled arthropods quarterly for three years in raked and un-raked pine stands to assess temporal shifts in abundance among dominant orders of arthropods. Effects varied greatly among orders of arthropods, among timber types, and among years. Distinct trends over time were apparent among orders that occupied both high trophic positions (predators and low trophic positions (fungivores, detritivores. Multivariate analyses demonstrated that raking caused stronger shifts in arthropod community composition in longleaf and loblolly than slash pine stands. Results highlight the role of pine litter in shaping terrestrial arthropod communities, and imply that repeated removal of pine straw during consecutive years is likely to have unintended consequences on arthropod communities that exacerbate over time.

  11. Are we over-managing longleaf pine?

    Science.gov (United States)

    John S. Kush; Rebecca J. Barlow; John C. Gilbert

    2012-01-01

    Longleaf pine (Pinus palustris Mill.) is not loblolly (Pinus taeda L.) or slash pine (Pinus elliottii L.). There is the need for a paradigmatic shift in our thinking about longleaf pine. All too often we think of longleaf as an intolerant species, slow-grower, difficult to regenerate, and yet it dominated the pre...

  12. Carbon sequestration and natural longleaf pine ecosystems

    Science.gov (United States)

    Ralph S. Meldahl; John S. Kush

    2006-01-01

    A fire-maintained longleaf pine (Pinus palustris Mill.) ecosystem may offer the best option for carbon (C) sequestration among the southern pines. Longleaf is the longest living of the southern pines, and products from longleaf pine will sequester C longer than most since they are likely to be solid wood products such as structural lumber and poles....

  13. Thickness and roughness measurements for air-dried longleaf pine bark

    Science.gov (United States)

    Thomas L. Eberhardt

    2015-01-01

    Bark thicknesses for longleaf pine (Pinus palustris Mill.) were investigated using disks collected from trees harvested on a 70-year-old plantation. Maximum inner bark thickness was relatively constant along the tree bole whereas maximum outer bark thickness showed a definite decrease from the base of the tree to the top. The minimum whole bark thickness followed the...

  14. Restoring a disappearing ecosystem: the Longleaf Pine Savanna.

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Timothy B. [USFS; Miller, Karl V. [University of Georgia; Park, Noreen

    2013-05-01

    Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worlds most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as logging, farming, and fire exclusion have reduced this once-widespread ecosystem to only 3 percent of its original range. At six longleaf pine plantations in South Carolina, Tim Harrington with the Pacific Northwest Research Station and collaborators with the Southern Research Station used various treatments (including prescribed burns, tree thinning, and herbicide applications) to alter the forest structure and tracked how successful each one was in advancing savanna restoration over a 14-year period. They found that typical planting densities for wood production in plantations create dense understory shade that excludes many native herbaceous species important to savannas and associated wildlife. The scientists found that although tree thinning alone did not result in sustained gains, a combination of controlled burning, thinning, and herbicide treatments to reduce woody plants was an effective strategy for recovering the savanna ecosystem. The scientists also found that these efforts must be repeated periodically for enduring benefits.

  15. Establishing Longleaf Pine Seedlings Under a Loblolly Pine Canopy (User’s Guide)

    Science.gov (United States)

    2017-02-01

    longleaf pine forests (Figure 1) for the diverse values they provide. These forests afford abundant recreational opportunities like hiking , bird...combined herbicide-fertilizer treatments that might benefit planted longleaf pine seedlings after planting. In addition to measuring longleaf pine

  16. Early longleaf pine seedling survivorship on hydric soils

    Science.gov (United States)

    Susan Cohen; Joan Walker

    2006-01-01

    We established a study to evaluate site preparation in restoring longleaf pine on poorly drained sites. Most existing longleaf pine stands occur on drier sites, and traditional approaches to restoring longleaf pine on wetter sites may rely on intensive practices that compromise the integrity of the ground layer vegetation. We applied silvicultural treatments to improve...

  17. Early density management of longleaf pine reduces susceptibility to ice storm damage

    Science.gov (United States)

    Timothy B. Harrington; Thaddeus A. Harrington

    2016-01-01

    The Pax winter storm of February 2014 caused widespread damage to forest stands throughout the southeastern U.S. In a long-term study of savanna plant community restoration at the Savannah River Site, Aiken, SC, precommercial thinning (PCT) of 8- to 11-year-old plantations of longleaf pine (Pinus palustris) in 1994 reduced...

  18. Silvicultural treatments for converting loblolly pine to longleaf pine dominance: Effects on planted longleaf pine seedlings

    Science.gov (United States)

    Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp

    2012-01-01

    A field study was installed to test silvicultural treatments for establishing longleaf pine (Pinus palustris Mill) in loblolly pine (P. taeda L.) stands. Harvesting was used to create seven canopy treatments, four with uniformly distributed canopies at different residual basal areas [Control (16.2 m2/ha),...

  19. Hurricane Katrina winds damaged longleaf pine less than loblolly pine

    Science.gov (United States)

    Kurt H. Johnsen; John R. Butnor; John S. Kush; Ronald C. Schmidtling; C. Dana. Nelson

    2009-01-01

    Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina,...

  20. Modeling survival, yield, volume partitioning and their response to thinning for longleaf pine plantations

    Science.gov (United States)

    Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Daniel J. Leduc; Timothy A. Martin; Wendell P. Cropper Jr; Lisa J Samuelson

    2012-01-01

    Longleaf pine (Pinus palustris Mill.) is an important tree species of the southeast U.S. Currently there is no comprehensive stand-level growth and yield model for the species. The model system described here estimates site index (SI) if dominant height (Hdom) and stand age are known (inversely, the model can project H

  1. Overhead shading and growth of young longleaf pine

    Science.gov (United States)

    John C. Gilbert; John S. Kush; Ralph S. Meldahl; William D. Boyer; Dean H. Gjerstad

    2014-01-01

    A study to determine the effects of environmental conditions on the growth of longleaf pine (Pinus palustris Mill.) was initiated in 1969 on the Escambia Experimental Forest near Brewton, Alabama, USA. This study sample consisted of forty young naturally regenerated, even aged longleaf pine seedlings evenly divided between two soil types. At the beginning of the study...

  2. A biologically-based individual tree model for managing the longleaf pine ecosystem

    Science.gov (United States)

    Rick Smith; Greg Somers

    1998-01-01

    Duration: 1995-present Objective: Develop a longleaf pine dynamics model and simulation system to define desirable ecosystem management practices in existing and future longleaf pine stands. Methods: Naturally-regenerated longleaf pine trees are being destructively sampled to measure their recent growth and dynamics. Soils and climate data will be combined with the...

  3. Vegetation composition and structure of southern coastal plain pine forests: An ecological comparison

    Science.gov (United States)

    Hedman, C.W.; Grace, S.L.; King, S.E.

    2000-01-01

    Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely

  4. Assessing longleaf pine (Pinus palustris) restoration after southern pine beetle kill using a compact experimental design

    Science.gov (United States)

    J.-P. Berrill; C.M. Dagley

    2010-01-01

    A compact experimental design and analysis is presented of longleaf pine (Pinus palustris) survival and growth in a restoration project in the Piedmont region of Georgia, USA. Longleaf pine seedlings were planted after salvage logging and broadcast burning in areas of catastrophic southern pine beetle (Dendroctonus frontalis) attacks on even-aged mixed pine-hardwood...

  5. Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks

    Science.gov (United States)

    C.A. Gonzalez-Benecke; L.J. Samuelson; T.A. Martin; W.P. Cropper Jr; Kurt Johnsen; T.A. Stokes; John Butnor; P.H. Anderson

    2015-01-01

    Assessment of forest carbon storage dynamics requires a variety of techniques including simulation models. We developed a hybrid model to assess the effects of silvicultural management systems on carbon (C) budgets in longleaf pine (Pinus palustris Mill.) plantations in the southeastern U.S. To simulate in situ C pools, the model integrates a growth and yield model...

  6. Impact of fire in two old-growth montane longleaf pine stands

    Science.gov (United States)

    John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow

    2013-01-01

    The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleaf’s range are considered...

  7. Longleaf pine forests and woodlands: old growth under fire!

    Science.gov (United States)

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  8. Longleaf Pine Ecosystem Restoration on Small and Mid-Sized Tracts

    Science.gov (United States)

    Joan L. Walker

    1999-01-01

    Speaking of restoring the longleaf pine ecosystem, conservationists may present images of open stands I trees, prescribed burning, grassy ground layers, and of providing habitat for red-cockaded woodpeckers. Unfortunately, planting a longleaf pine forest, using fire, and recovering an endangered woodpecker all seem require lands larger than a backyard. To many,...

  9. Impacts of logging and prescribed burning in longleaf pine forests managed under uneven-aged silviculture

    Science.gov (United States)

    Ferhat Kara; Edward Francis Loewenstein

    2015-01-01

    The longleaf pine (Pinus palustris Mill.) ecosystem has historically been very important in the southeastern United States due to its extensive area and high biodiversity. Successful regeneration of longleaf pine forests requires an adequate number of well distributed seedlings. Thus, mortality of longleaf pine seedlings during logging operations...

  10. Seed Bank Viability in Disturbed Longleaf Pine Sites

    Science.gov (United States)

    Susan Cohen; Richard Braham; Felipe Sanchez

    2004-01-01

    Some of the most species-rich areas and highest concentrations of threatened and endangered species in the southeastern United States are found in wet savanna and flatwood longleaf pine (Pinus palustris Mill.) communities. Where intensive forestry practices have eliminated much of the natural understory of the longleaf ecosystem, the potential for...

  11. Longleaf pine ecosystem restoration: the role of the USDA Forest Service

    Science.gov (United States)

    Charles K. McMahon; D.J. Tomczak; R.M. Jeffers

    1998-01-01

    The greater longleaf pine ecosystem once occupied over 90 million acres from southeastern Virginia, south to central Florida, and west to eastern Texas. Today less than 3 million acres remain, with much of the remaining understory communities in an unhealthy state. A number of public and private conservation organizations are conducting collaborative longleaf pine...

  12. Analyzing the complexity of cone production in longleaf pine by multiscale entropy

    Science.gov (United States)

    Xiongwen Chen; Qinfeng Guo; Dale G. Brockway

    2016-01-01

    The longleaf pine (Pinus palustris Mill.) forests are important ecosystems in the southeastern USA because of their ecological and economic value. Since European settlement, longleaf pine ecosystems have dramatically declined in extent, to the degree that they are now listed as endangered ecosystems. Its sporadic seed production, which...

  13. Revivification of a method for identifying longleaf pine timber and its application to southern pine relicts in southeastern Virginia

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Arvind A.R. Bhuta

    2011-01-01

    Abstract: Longleaf pine (Pinus palustris Mill.) cannot be distinguished from the other southern pines based on wood anatomy alone. A method that involves measuring pith and second annual ring diameters, reported by Arthur Koehler in 1932 (The Southern Lumberman, 145: 36–37), was revisited as an option for identifying longleaf pine timbers and stumps. Cross-section...

  14. Ecological restoration of an old-growth longleaf pine stand utilizing prescribed fire

    Science.gov (United States)

    J. Morgan Varner; John S. Kush; Ralph S. Meldahl

    2000-01-01

    Ecological restoration using prescribed fire has been underway for 3 years in an uncut, old-growth longleaf pine (Pinus palustris) stand located in south Alabama. The longleaf pine ecosystem requires frequent (once every 1-10 years) surface fire to prevent succesion to later several stages. Before this study began, this stand had not burned in >...

  15. Longleaf Pine: An Updated Bibliography

    Science.gov (United States)

    John S. Kush; Ralph S. Meldahl; William D. Boyer; Charles K. McMahon

    1996-01-01

    The longleaf pine (Pinus palustris Mill.) forest figured prominently in the cultural and economic development of the South. What was once one of the most extensive forest ecosystems in North America has now become critically endangered (6). At the time of European settlement, this ecosystem dominated as much as 92 million acres throughout the...

  16. Longleaf and loblolly pine seedlings respond differently to soil compaction, water content, and fertilization

    Science.gov (United States)

    D. Andrew Scott; James A. Burger

    2014-01-01

    Aims Longleaf pine (Pinus palustris Mill.) is being restored across the U.S. South for a multitude of ecological and economic reasons, but our understanding of longleaf pine’s response to soil physical conditions is poor. On the contrary, our understanding of loblolly pine (Pinus taeda L.) root and...

  17. Prescribed fire effects in a longleaf pine ecosystem--are winter fires working?

    Science.gov (United States)

    Rebecca J. Barlow; John S. Kush; John C. Gilbert; Sharon M. Hermann

    2015-01-01

    Longleaf pine (Pinus palustris Mill.) ecosystems once dominated 60 to 90 million acres and supported one of the most diverse floras in North America. It is well-known that longleaf pine ecosystems must burn frequently to maintain natural structure and function. This vegetation type ranks as one of the most fire-dependent in the country and must...

  18. Repeated fire effects on soil physical properties in two young longleaf pine stands on the west gulf coastal plain

    Science.gov (United States)

    Mary Anne Sword Sayer

    2007-01-01

    Repeated prescribed fire is a valuable tool for the management of longleaf and loblolly pine. When applied every two to ten years, for example, prescribed fire perpetuates existing longleaf pine ecosystems (Outcalt 1997). Furthermore, the acceptance of fire as a management tool, together with recent improvements in longleaf pine...

  19. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Science.gov (United States)

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  20. Entropy dynamics in cone production of longleaf pine forests in the southeastern United States

    Science.gov (United States)

    Xiongwen Chen; Dale G. Brockway; Qinfeng Guo

    2016-01-01

    Sporadic temporal patterns of seed production are a challenge for the regeneration and restoration of longleaf pine, which is a keystone component of an endangered ecosystem in the southeastern United States. In this study, long-term data for longleaf pine cone production, collected at six sites across the southeastern region, was examined from the perspective of...

  1. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine

    Science.gov (United States)

    Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N.  Addington

    2014-01-01

    The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...

  2. From loblolly to longleaf: fifth-year results of a longleaf pine restoration study at two ecologically distinct sites

    Science.gov (United States)

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Huifeng Hu

    2015-01-01

    Historical land-use and management practices in the southeastern United States have resulted in the widespread conversion of many upland sites from dominance of longleaf pine (Pinus palustris Mill.) to loblolly pine (P. taeda L.) in the time following European settlement. Given the ecological, economic, and cultural...

  3. Early growth of planted longleaf pine seedlings in relation to light, soil moisture, and soil temperature

    Science.gov (United States)

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker

    2006-01-01

    Drastic reductions in longleaf pine (Pinus palustris Mill.) acreage have led to an increased focus on regeneration of the longleaf pine ecosystem. Many areas require artificial regeneration for establishment, and site preparation techniques may be implemented to increase regeneration success. The objectives of this study were to determine differences...

  4. Spatial patterns of longleaf pine (Pinus palustris) seedling eastablishment on the croatan national forest, North Carolina

    Science.gov (United States)

    Chadwick R. Avery; Susan Cohen; Kathleen C. Parker; John S. Kush

    2004-01-01

    Ecological research aimed at determining optimal conditions for longleaf pine regeneration has become increasingly important in efforts @ restore the longleaf pine ecosystem. Numerous authors have concluded that a negative relationship exists between the occurrence of seedlings and the occurrence of mature trees; however, observed field conditions in several North...

  5. Common Plants of Longleaf Pine-Bluestem Range

    Science.gov (United States)

    Harold E. Grelen; Vinson L. Duvall

    1966-01-01

    This publication describes many grasses, grasslike plants, forbs, and shrubs that inhabit longleaf pine-bluestem range. The species vary widely in importance; most produce forage palatable to cattle, some are noxious weeds, and others are valuable indicators of trends in range condition. All are abundant enough on certain sites, however, to require identification for...

  6. Comparing Planting Tools for Container Longleaf Pine

    Science.gov (United States)

    Daniel J. Leduc; James D. Haywood; Shi-Jean Susana Sung

    2011-01-01

    We examined if compressing the soil to make a planting hole with a custom-built, solid round dibble versus coring the soil with a commercially available tube dibble influenced container-grown longleaf pine seedling development differently. Seven teen months after planting, the planting tool did not significantly affect root collar diameter, shoot or root mass, root-to-...

  7. Carbon sequestration and natural longleaf pine ecosystem

    Science.gov (United States)

    Ram Thapa; Dean Gjerstad; John Kush; Bruce Zutter

    2010-01-01

    The Southeastern United States was once dominated by a longleaf pine ecosystem which ranged from Virginia to Texas and covered approximately 22 to 36 million ha. The unique fire tolerant species provided the necessary habitat for numerous plant and animal species. Different seasons of prescribed fire have various results on the ecosystem and the carbon which is stored...

  8. Nutrition challenges of longleaf pine in the southeast

    Science.gov (United States)

    M.A. Sword Sayer; L.G. Eckhardt; E.A. Carter

    2009-01-01

    Low vigor of longleaf pine has been reported at Fort Benning in Georgia, and Eglin Air Force Base in Florida. In an effort to determine the cause of this problem, foliar nutrition was assessed. Results indicated that macro- and micronutrients were generally sufficient regardless of vigor status. Foliar Mn, however, was elevated at both locations. Excess Mn has the...

  9. Mechanical Properties of Longleaf Pine Treated with Waterborne Salt Preservatives.

    Science.gov (United States)

    1983-08-01

    were measured on small clear bending specimens of longleaf pine sapwood treated with three wateroorne salt preservative systems. Preservative...wood, but the results of past research in this area (appendix I: Literature) are inconsistent and inconclusive, particularly at high loadings of...pine sapwood either air or kiln dried after treatment to retentions from 0.25 to 2.5 lb/ft3. ACA has no effect on MOR. but CCA-type preservatives

  10. Soil Fungi Respond More Strongly Than Fine Roots to Elevated CO2 in a Model Regenerating Longleaf Pine-Wiregrass Ecosystem

    Science.gov (United States)

    Increasing atmospheric CO2 will have significant effects on belowground processes which will affect forest structure and function. A model regenerating longleaf pine-wiregrass community [consisting of longleaf pine (Pinus palustris), wiregrass (Aristida stricta), sand post oak (Quescus margaretta),...

  11. Longleaf Pine Ground-Layer Vegetation in Francis Marion National Forest: Reintroduction, Restoration, and Vegetation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Glitzenstein, J.; Streng, D.; Wade, D.

    2001-01-01

    Study represents significant progress in understanding of compositional gradients in longleaf pine plant communities of Central South Carolina. Study shows the importance of water table depths as a controlling variable with vegetation patterns in the field and similar effects in a garden experiment. Grass planting study suggests that observed field distributions of dormant pine savannah grasses derive from complex interactive effects of fire history, hydrology and light environments. Use of regional longleaf data set to identify candidate species for introduction also appears to be a pioneering effort.

  12. Longleaf Pine Ground-Layer Vegetation in Francis Marion National Forest: Reintroduction, Restoration, and Vegetation Assembly

    International Nuclear Information System (INIS)

    Glitzenstein, J.; Streng, D.; Wade, D.

    2001-01-01

    Study represents significant progress in understanding of compositional gradients in longleaf pine plant communities of Central South Carolina. Study shows the importance of water table depths as a controlling variable with vegetation patterns in the field and similar effects in a garden experiment. Grass planting study suggests that observed field distributions of dormant pine savannah grasses derive from complex interactive effects of fire history, hydrology and light environments. Use of regional longleaf data set to identify candidate species for introduction also appears to be a pioneering effort

  13. Destroyed virgin longleaf pine stand lives-on digitally

    Science.gov (United States)

    John C. Gilbert; S. Kush; Rebecca J. Barlow

    2015-01-01

    The Flomaton Natural Area (FNA) once stood as one of the few remnant fragments of virgin, old-growth longleaf pine stands (Pinus palustris Mill.) in the Southeast. This 80-acre stand contained trees over 200 years old. A restoration effort began in 1994 to remove off-site trees and to reintroduce fire to the site after over 40 years of fire suppression. A geographic...

  14. Influence of herbicides and felling, fertilization, and prescribed fire on longleaf pine establishment and growth through six growing seasons

    Science.gov (United States)

    James D. Haywood

    2006-01-01

    Recovery of longleaf pine (Pinus palutris. Mill.) is necessary to arrest the decline of many associated plants and animals, and the establishment of longleaf pine on much of its original range requires artificial regeneration and diligence. In central Louisiana, USA, two fertilization levels (No [NF] or Yes [F-36 kg/ha N and 40 kg/ha PI) in...

  15. Protecting and restoring longleaf pine forests on the Kisatchie National Forest in Louisiana

    Science.gov (United States)

    James D. Haywood; Michael Elliot-Smith; Finis Harris; Alton Martin

    2000-01-01

    Longleaf pine (Pinus palustris Mill.) forests once constituted a major ecosystem in the Southern United States stretching from southeastern Virginia south to central Florida and west into East Texas. These forests covered a wide range of site conditions, from wet pine flatwoods to dry mountain slopes. Intensive exploitation reduced the extent of old-...

  16. Root Disease, Longleaf Pine Mortality, and Prescribed Burning

    Energy Technology Data Exchange (ETDEWEB)

    Otrosina, W.J; C.H. Walkinshaw; S.J. Zarnoch; S-J. Sung; B.T. Sullivan

    2001-01-01

    Study to determine factors involved in decline of longleaf pine associated with prescribed burning. Trees having symptoms were recorded by crown rating system based upon symptom severity-corresponded to tree physiological status-increased in hot burn plots. Root pathogenic fungi widespread throughout the study site. Histological studies show high fine root mortality rate in the hot burn treatment. Decline syndrome is complexed by root pathogens, soil factors, root damage and dysfunction.

  17. Comparison of red-cockaded woodpecker (Picoides borealis) nestling diet in old-growth and old-field longleaf pine (Pinus palustris) habitats

    Science.gov (United States)

    James L. Hanula; R. Todd Engstrom

    2000-01-01

    Automatic cameras were used to record adult red-cockaded woodpecker (Picoides borealis) nest visits with food for nestlings. Diet of nestlings on or near an old-growth longleaf pine (Pinus palustris) remnant in southern Georgia was compared to that in longleaf pine stands established on old farm fields in western South Carolina....

  18. Individual tree diameter, height, and volume functions for longleaf pine

    Science.gov (United States)

    Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Timothy A. Martin; Wendell P. Cropper; Lisa J. Samuelson; Daniel J. Leduc

    2014-01-01

    Currently, little information is available to estimate individual tree attributes for longleaf pine (Pinus palustris Mill.), an important tree species of the southeastern United States. The majority of available models are local, relying on stem diameter outside bark at breast height (dbh, cm) and not including stand-level parameters. We developed...

  19. Arthropod density and biomass in longleaf pines: effects of pine age and hardwood midstory

    Science.gov (United States)

    Richard N. Conner; Christopher S. Collins; Daniel Saenz; Toni Trees; Richard R. Schaefer; D. Craig Rudolph

    2004-01-01

    During a 2-year study we examined arthropod communities (density and biomass) on longleaf pines (Pinus palustris) in eastern Texas during spring, summer, and winter on trees in 3 age classes: 40-50, 60-70, and 130-1 50 years, as a potential food source for the red-cockaded woodpecker (Picoides borealis). We also examined arthropod...

  20. What 45 years of RLGS data has to say about longleaf pine mortality - not much

    Science.gov (United States)

    John S. Kush; John C. Gilbert; Rebecca J. Barlow

    2015-01-01

    The original longleaf pine (Pinus palustris Mill.) forest was self-perpetuating where seedlings always had to be present. It reproduced itself in openings in the overstory where dense young stands developed. These openings would range from a few tenths of an acre to large openings of several thousand acres. Regardless of the event size, longleaf...

  1. Neotropical Migratory Bird Communities in a Developing Pine Plantation

    Science.gov (United States)

    James G. Dickson; Richard N. Conner; J. Howard Williamson

    1993-01-01

    Birds were censused annually from 4 250-x80-in transects in a young pine plantation from age to 2 to 17 to assess changes in the bird community.Bird abundance was low and the bird communitry was the least diverse when the pine plantation was sparsely vegetated at age 2. As the plantation developed rapidly into the shrub stage, the bird communitry became more abundant...

  2. Soil physical effects on longleaf pine performance in the West Gulf Coastal Plain

    Science.gov (United States)

    Mary Anne S. Sayer; James D. Haywood; Shi-Jean Susana Sung

    2015-01-01

    We summarize 8 years of soil physical property responses to herbicide manipulation of the understory in two young longleaf pine stands growing on either Ruston fine sandy loam or Beauregard silt loam soils. We also describe relationships between pine sapling vigor and the soil physical environment across a 3-year period on the Ruston soil and a 2-year period on the...

  3. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests

    Science.gov (United States)

    Lisa J. Samuelson; Thomas A. Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Timothy A. Martin; Wendell P. Cropper; Pete H. Anderson; Michael R. Ramirez; John C. Lewis

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5...

  4. Genetic fingerprinting of longleaf pine seed orchard clones following Hurricane Hugo

    Science.gov (United States)

    K. D. Jermstad; P.A. Guge; E.R. Carroll; S.T. Friedman; D.B. Neale

    1993-01-01

    Isozyme and restriction fragment length polymorphism (RFLP) markers were used to determine the genetic identities of 12 longleaf pine (Pinus palustrus Mill.) ramets whose identities came into question after Hurricane Hugo. Isozyme assays were performed for 12 enzyme systems representing 15 loci. Variation at 6 loci revealed unique identities for 6...

  5. Weather effects on the success of longleaf pine cone crops

    Science.gov (United States)

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer

    2016-01-01

    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  6. Structure and composition of historical longleaf pine ccosystems in Mississippi, USA

    Science.gov (United States)

    Brice B. Hanberry; Keith Coursey; John S. Kush

    2018-01-01

    Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River...

  7. Leaf Physiological and Morphological Responses to Shade in Grass-Stage Seedlings and Young Trees of Longleaf Pine

    Directory of Open Access Journals (Sweden)

    Lisa J. Samuelson

    2012-08-01

    Full Text Available Longleaf pine has been classified as very shade intolerant but leaf physiological plasticity to light is not well understood, especially given longleaf pine’s persistent seedling grass stage. We examined leaf morphological and physiological responses to light in one-year-old grass-stage seedlings and young trees ranging in height from 4.6 m to 6.3 m to test the hypothesis that young longleaf pine would demonstrate leaf phenotypic plasticity to light environment. Seedlings were grown in a greenhouse under ambient levels of photosynthetically active radiation (PAR or a 50% reduction in ambient PAR and whole branches of trees were shaded to provide a 50% reduction in ambient PAR. In seedlings, shading reduced leaf mass per unit area (LMA, the light compensation point, and leaf dark respiration (RD, and increased the ratio of light-saturated photosynthesis to RD and chlorophyll b and total chlorophyll expressed per unit leaf dry weight. In trees, shading reduced LMA, increased chlorophyll a, chlorophyll b and total chlorophyll on a leaf dry weight basis, and increased allocation of total foliar nitrogen to chlorophyll nitrogen. Changes in leaf morphological and physiological traits indicate a degree of shade tolerance that may have implications for even and uneven-aged management of longleaf pine.

  8. Air lateral root pruning affects longleaf pine seedling root system morphology

    Science.gov (United States)

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  9. Silvicultural evaluations on maritime pine (Pinus pinaster Aiton plantations in Istanbul

    Directory of Open Access Journals (Sweden)

    Safa Balekoğlu

    2016-07-01

    Full Text Available Industrial plantations have substantially reduced the pressure on natural forests. There are approximately 80.000 hectares of industrial plantations, established with fast growing coniferous species, 77.000 hectares of which are maritime pine plantations in Turkey. Furthermore, approximately 16.000 hectares of maritime pine plantations, which amount to about 20 percent of all maritime pine plantations in Turkey, occur in Istanbul. The aim of this study is to determine the growth pattern of maritime pine plantations located in Anatolian and European Istanbul: Kanlıca, Beykoz, Sultanbeyli and Şile-Sahilköy; and Bahçeköy-Bentler, Arnavutköy and Terkos-Durusu respectively. Specifically, the study examined individual trees within the above-mentioned sites to determine the first thinning age of the plantations. In addition, some specific silvicultural suggestions were offered for the plantations. The minimum and maximum recorded values for the trees’ age, DBH, height and stem volume were found in the range of 22-50 years, 26.6-46.8 cm, 14.0-23.0 m and 0.5150-1.8560 m3 respectively. In order to take advantage of the fast growing attributes of maritime pine which was found to grow fast within first 10 years, the first thinning should commence at the age of 11-12 years; thereafter, the second thinning should commence at the age of 18-20 years; finally, the final cut should be performed when the plantation is approximately 30 years of age. If rotation age is considered 40 years, the third thinning should commence at the age of 30 years.

  10. Longleaf pine site response to repeated fertilization and forest floor removal by raking and prescribed burning

    Science.gov (United States)

    Kim Ludovici; Robert Eaton; Stanley Zarnoch

    2018-01-01

    Removal of forest floor litter by pine needle raking and prescribed burning is a common practice in longleaf pine (Pinus palustris Mill.) stands on Coastal Plain sites in the Southeastern United States. Repeated removal of litter by raking and the loss of surface organic matter from controlled burns can affect the...

  11. Mechanized row-thinning systems in slash pine plantations

    Science.gov (United States)

    Walter C. Anderson; James E. Granskog

    1974-01-01

    Over the next decade or two, most of the 15 to 20 million acres of pine plantations in the South will become ready for a first commercial thinning. The magnitude and nature of the job is illustrated by the situation in slash pine-the most extensively planted of the southern pines.

  12. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests.

    Science.gov (United States)

    Samuelson, Lisa J; Stokes, Thomas A; Butnor, John R; Johnsen, Kurt H; Gonzalez-Benecke, Carlos A; Martin, Timothy A; Cropper, Wendell P; Anderson, Pete H; Ramirez, Michael R; Lewis, John C

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management. © 2016 by the Ecological Society of America.

  13. Effects of basal area on survival and growth of longleaf pine when practicing selection silviculture

    International Nuclear Information System (INIS)

    Kara, F.; Loewenstein, E.F.; Brockway, D.G.

    2017-01-01

    Aim of study: Uneven-aged (UEA) management systems can achieve multiple-use objectives, however, use of UEA techniques to manage longleaf pine (Pinus palustris Mill.) forests are still open to question, because of the species’ intolerance of competition. It was our aim to examine the influence of different levels (9.2, 13.8 and 18.4 m2 ha-1) of residual basal area (RBA) on longleaf pine seedling survival and growth following three growing seasons. Area of study: This study was conducted at the Escambia Experimental Forest, located on the Southern Coastal Plain of Alabama, in the southeastern United States. Material and Methods: Selection silviculture was implemented with the Proportional-Basal Area (Pro-B) method. Prescribed burning was conducted before seed dispersal and in the second year after germination. Photosynthetically active radiation (PAR) was measured under the canopy in the study plots. Survival and growth of longleaf pine seedlings were observed for three growing seasons. Main results: An inverse relationship was found between the number of germinants and RBA, but the mortality of germinants and planted seedlings was not affected by RBA. At age three, an inverse relationship was observed between root-collar diameter (RCD) growth of the germinants and RBA, but RCD growth of planted seedlings was not affected by RBA. Most of the study plots contained more than the projected number of seedlings needed to sustain the target diameter structure. Research highlights: Long-term continuous monitoring of seedling development and recruitment into canopy is required to determine the efficacy of UEA management. However, current data suggest that UEA methods may be a viable alternative to the use of even-aged (EA) methods in longleaf ecosystems.

  14. Effects of basal area on survival and growth of longleaf pine when practicing selection silviculture

    Energy Technology Data Exchange (ETDEWEB)

    Kara, F.; Loewenstein, E.F.; Brockway, D.G.

    2017-11-01

    Aim of study: Uneven-aged (UEA) management systems can achieve multiple-use objectives, however, use of UEA techniques to manage longleaf pine (Pinus palustris Mill.) forests are still open to question, because of the species’ intolerance of competition. It was our aim to examine the influence of different levels (9.2, 13.8 and 18.4 m2 ha-1) of residual basal area (RBA) on longleaf pine seedling survival and growth following three growing seasons. Area of study: This study was conducted at the Escambia Experimental Forest, located on the Southern Coastal Plain of Alabama, in the southeastern United States. Material and Methods: Selection silviculture was implemented with the Proportional-Basal Area (Pro-B) method. Prescribed burning was conducted before seed dispersal and in the second year after germination. Photosynthetically active radiation (PAR) was measured under the canopy in the study plots. Survival and growth of longleaf pine seedlings were observed for three growing seasons. Main results: An inverse relationship was found between the number of germinants and RBA, but the mortality of germinants and planted seedlings was not affected by RBA. At age three, an inverse relationship was observed between root-collar diameter (RCD) growth of the germinants and RBA, but RCD growth of planted seedlings was not affected by RBA. Most of the study plots contained more than the projected number of seedlings needed to sustain the target diameter structure. Research highlights: Long-term continuous monitoring of seedling development and recruitment into canopy is required to determine the efficacy of UEA management. However, current data suggest that UEA methods may be a viable alternative to the use of even-aged (EA) methods in longleaf ecosystems.

  15. Root system architecture: The invisible trait in container longleaf pine seedlings

    Science.gov (United States)

    Shi-Jean Susana Sung; R. Kasten Dumroese

    2013-01-01

    Longleaf pine (Pinus palustris Mill.) seedlings cultured in four cavity volumes (60 to 336 ml [3.7 to 20.5 cubic inches]), two root pruning treatments (with or without copper coating), and 3 nitrogen levels (low to high) were grown for 29 weeks before they were outplanted into an open area in central Louisiana. Twenty-two months after outplanting, 3 seedlings were...

  16. Harvester Productivity for Row Thinning Loblolly Pine Plantations

    Science.gov (United States)

    James E. Granskog; Walter C. Anderson

    1980-01-01

    Tivo tree harvesters currently being used to thin southern pine plantations were evaluated to determine the effects of stand characteristics on machine productivity. Production rates for row thinning loblolly plantations are presented by stand age, site index, and stand density.

  17. Comparison of arthropod prey of red-cockaded woodpeckers on the boles of long-leaf and loblolly pines

    Science.gov (United States)

    Scott Horn; James L. Hanula

    2002-01-01

    Red-cockaded woodpeckers (Picoides borealis) forage on the boles of most southern pines. Woodpeckers may select trees based on arthropod availability, yet no published studies have evaluated differences in arthropod abundance on different species of pines. We used knockdown insecticides to sample arthropods on longleaf (Pinus palustris...

  18. The ecological classification of coastal wet longleaf pine (pinus palustris) of Florida from reference conditions

    Science.gov (United States)

    George L. McCaskill; Jose. Shibu

    2012-01-01

    Tropical storms, fire, and urbanization have produced a heavily fragmented forested landscape along Florida’s Gulf coast. The longleaf pine forest, one of the most threatened ecosystems in the US, makes up a major part of this fragmented landscape. These three disturbance regimes have produced a mosaic of differently-aged pine patches of single or two cohort structures...

  19. [Effect of pine plantations on soil arthropods in a high Andean forest].

    Science.gov (United States)

    León-Gamboa, Alba Lucía; Ramos, Carolina; García, Mary Ruth

    2010-09-01

    One of the most common problems in the Colombian mountains has been the replacement of native vegetation by pine plantations. Soil arthropods are a fundamental component of forest ecosystem, since they participate in the organic matter fragmentation, previous to decomposition. This role is more valuable in high altitude environments, where low temperatures limit the dynamics of biological processes, where the effects of pine plantations on soil arthropods are still not well-known. In a remnant of high-andean forest (Neusa - Colombia) and a pine plantation of about 50 years-old, it was evaluated the composition, richness and abundance of arthropods at surface (S), organic horizon (O) and mineral horizon (A) of soil, to establish the differences associated to the soil use transformation. It was used "Pitfall" sampling to register the movement of the epigeous fauna, and extraction by funnel Berlese for determining the fauna density from O and A horizons. The Shannon and Simpson indexes estimated the diversity at different places and horizons, and the trophic structure of the community was evaluated. Overall, there were collected 38 306 individuals from forest and 17 386 individuals from pine plantation, mainly distributed in Collembola (42.4%), Acari (27%), Diptera (17.6%) and Coleoptera (4.6%). The most important differences were given in the surface, where the mobilization in forest (86 individuals/day) almost triplicates the one in pine plantation (33 individuals/day). The differences in composition were given in Collembola, Araneae, Hemiptera, Homoptera and Hymenoptera. The dynamics of richness and abundance along the year had significant high values in the native forest than in the pine plantation. The general trophic structure was dominated by saprophagous (75%), followed by predators (14%) and phytophagous (9%), but in two layers of the pine plantation soil (S and O) this structural pattern was not given. Based on the results, it was concluded that pine

  20. On the number of genes controlling the grass stage in longleaf pine

    Science.gov (United States)

    C. Dana Nelson; C. Weng; Thomas L. Kubisiak; M. Stine; C.L. Brown

    2003-01-01

    The grass stage is an inherent and distinctive developmental trait of longleaf pine (Pinus palustris), in which height growth in the first few years after germination is suppressed. In operational forestry practice the grass stage extends for nvo to several years and often plays a role in planting failures and decisions to plant alternative species....

  1. Insect Pollinators of Three Rare Plants in a Florida Longleaf Pine Forest

    Science.gov (United States)

    Theresa Pitts-Singer; James L. Hanula; Joan L. Walker

    2002-01-01

    As a result of human activity, longleaf pine (Pinus palustris Miller) forests in the southern United States have been lost or drastically altered. Many of the plant species that historically occupied those forests now persist only as remnants and are classified as threatened or endangered. In order to safeguard such species, a better understanding of...

  2. Reptile assemblage response to restoration of fire-suppressed longleaf pine sandhills.

    Science.gov (United States)

    Steen, David A; Smith, Lora L; Conner, L M; Litt, Andrea R; Provencher, Louis; Hiers, J Kevin; Pokswinski, Scott; Guyer, Craig

    2013-01-01

    Measuring the effects of ecological restoration on wildlife assemblages requires study on broad temporal and spatial scales. Longleaf pine (Pinus palustris) forests are imperiled due to fire suppression and subsequent invasion by hardwood trees. We employed a landscape-scale, randomized-block design to identify how reptile assemblages initially responded to restoration treatments including removal of hardwood trees via mechanical methods (felling and girdling), application of herbicides, or prescribed burning alone. Then, we examined reptile assemblages after all sites experienced more than a decade of prescribed burning at two- to thee-year return intervals. Data were collected concurrently at reference sites chosen to represent target conditions for restoration. Reptile assemblages changed most rapidly in response to prescribed burning, but reptile assemblages at all sites, including reference sites, were generally indistinguishable by the end of the study. Thus, we suggest that prescribed burning in longleaf pine forests over long time periods is an effective strategy for restoring reptile assemblages to the reference condition. Application of herbicides or mechanical removal of hardwood trees provided no apparent benefit to reptiles beyond what was achieved by prescribed fire alone.

  3. Old resinous turpentine stumps as an indicator of the range of longleaf pine in Southeastern Virginia

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Jolie M. Mahfouz; Chi-Leung So

    2006-01-01

    Wood anatomy cannot be used to differentiate between the southern yellow pine species. Wood samples collected from old resinous turpentine stumps in coastal Virginia were subjected to chemical and spectroscopic analyses in an effort to determine if they could be identified as longleaf pine. The age and resinous nature of the samples were manifested in high specific...

  4. Composition and structure of managed pine stands compared to reference longleaf pine sites on Marine Corps Base Camp Lejeune, North Carolina

    Science.gov (United States)

    Joan L. Walker; Andrea M. Silletti; Susan Cohen

    2010-01-01

    We sampled the ground layer of 28 pine plantations to compare with ecological reference sites at Marine Corps Base, Camp Lejeune (MCBCL), NC. Plantations were ≥ 18 years old and had been burned within the previous year. Pines had been hand-planted on beds or fl at-planted, and the plantations were burned every 3 to 4 years after age 7. Data from 39 reference sites were...

  5. Analysis of seasonal, diurnal, and noctural growth patterns of young longleaf pine

    Science.gov (United States)

    John C. Gilbert; Ralph S. Meldahl; John S. Kush; William D. Boyer

    2006-01-01

    Forty longleaf pine (Pinus palustris Mill.) trees initially ranging from 1 to 1.5 m in height were measured on the Escambia Experimental Forest from 1969 through 1980. The trees were evenly divided between two soil types. From 1969 through 1970, height and diameter measurements were recorded one to four times weekly during the growing seasons and...

  6. Spatial analysis of longleaf pine stand dynamics after 60 years of management

    Science.gov (United States)

    John C. Gilbert; John S. Kush; Rebecca J. Barlow

    2012-01-01

    There are still many questions and misconceptions about the stand dynamics of naturally-regenerated longleaf pine (Pinus palustris Mill.). Since 1948, the “Farm Forty,” a forty-acre tract located on the USDA Forest Service Escambia Experimental Forest near Brewton, Alabama, has been managed to create high quality wood products, to successfully...

  7. Site Index Curves for Direct-Seeded Loblolly and Longleaf Pines in Louisiana

    Science.gov (United States)

    Quang V. Cao; V. Clark Baldwin; Richard E. Lohrey

    1995-01-01

    Site index equations were developed for direct-seeded loblollypine (Pinus taeda L.) and longleaf pine (Pinus palustris Mill.) based on data from 148 and 75 permanent plots, respectively. These plots varied from 0.053 to 0.119 ac in size, and were established in broadcast, row, and spot seeded stands throughout Louisiana. The Bailey and Clutter (1974) model was...

  8. The initial phase of a Longleaf Pine-Wiregrass Savanna restoration: species establishment and community responses.

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbach, Todd, A; Foster, Bryan, L.; Imm, Donald, W.

    2010-09-01

    AbstractAbstract The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a “matrix” species) of the longleaf pine savanna understory, and 31 other herbaceous “non-matrix” species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in June 2004, while mean 1–2 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 ×3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non-matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine-wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.

  9. The Effect of Restoration Treatments on the Spatial Variability of Soil Processes under Longleaf Pine Trees

    Directory of Open Access Journals (Sweden)

    John K. Hiers

    2012-08-01

    Full Text Available The objectives of this study were to (1 characterize tree-based spatial patterning of soil properties and understory vegetation in frequently burned (“reference state” and fire-suppressed longleaf pine forests; and (2 determine how restoration treatments affected patterning. To attain these objectives, we used an experimental manipulation of management types implemented 15 years ago in Florida. We randomly located six mature longleaf pine trees in one reference and four restoration treatments (i.e., burn, control, herbicide, and mechanical, for a total of 36 trees. In addition to the original treatments and as part of a monitoring program, all plots were subjected to several prescribed fires during these 15 years. Under each tree, we sampled mineral soil and understory vegetation at 1 m, 2 m, 3 m and 4 m (vegetation only away from the tree. At these sites, soil carbon and nitrogen were higher near the trunk while graminoids, forbs and saw palmetto covers showed an opposite trend. Our results confirmed that longleaf pine trees affect the spatial patterning of soil and understory vegetation, and this patterning was mostly limited to the restoration sites. We suggest frequent burning as a probable cause for a lack of spatial structure in the “reference state”. We attribute the presence of spatial patterning in the restoration sites to accumulation of organic materials near the base of mature trees.

  10. Carbon Sequestration in loblolly pine plantations: Methods, limitations, and research needs for estimating storage pools

    Science.gov (United States)

    Kurt Johnsen; Bob Teskey; Lisa Samuelson; John Butnor; David Sampson; Felipe Sanchez; Chris Maier; Steve McKeand

    2004-01-01

    Globally, the species most widely used for plantation forestry is loblolly pine (Pinus taeda L.). Because loblolly pine plantations are so extensive and grow so rapidly, they provide a great potential for sequestering atmospheric carbon (C). Because loblolly pine plantations are relatively simple ecosystems and because such a great volume of...

  11. The quest for methods to identify longleaf pine stump relicts in Southeastern Virginia

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Chi-Leung So; Arvind A.R. Bhuta; Karen G. Reed

    2015-01-01

    The discovery of lightwood and turpentine stumps in southeastern Virginia raised questions about the true historical range for longleaf pine (Pinus palustris Mill.). Several investigative studies were therefore carried out to develop a method to determine the taxa of these relicts. Chemical approaches included the use of near infrared (NIR) spectroscopy coupled with...

  12. Effects of spring prescribed fire on short-term, leaf-level photosynthesis and water use efficiency in longleaf pine

    Science.gov (United States)

    John K. Jackson; Dylan N. Dillaway; Michael C. Tyree; Mary Anne Sword Sayer

    2015-01-01

    Fire is a natural and important environmental disturbance influencing the structure, function, and composition of longleaf pine (Pinus palustris Mill.) ecosystems. However, recovery of young pines to leaf scorch may involve changes in leaf physiology, which could influence leaf water-use efficiency (WUE). This work is part of a larger seasonal...

  13. Initial mortality rates and extent of damage to loblolly and longleaf pine plantations affected by an ice storm in South Carolina

    Science.gov (United States)

    Don C. Bragg

    2016-01-01

    A major ice storm struck Georgia and the Carolinas in February of 2014, damaging or destroying hundreds of thousands of hectares of timber worth hundreds of millions of dollars. Losses were particularly severe in pine plantations in west-central South Carolina, including many on the Savannah River Site (SRS). An array of paired, mid-rotation loblolly (Pinus...

  14. Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community.

    Science.gov (United States)

    Runion, G B; Davis, M A; Pritchard, S G; Prior, S A; Mitchell, R J; Torbert, H A; Rogers, H H; Dute, R R

    2006-01-01

    Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this

  15. Long-term effects of biennial prescribed fires on the growth of longleaf pine

    Science.gov (United States)

    William D. Boyer

    2000-01-01

    The effects of several hardwood control treatments on understory succession and overstory growth have been followed for 22 years on a Coastal Plain site in southwest Alabama. The study began in 1973, with 12 treatment combinations in 14-year-old naturally established longleaf pine (Pinus palustris) thinned to about 1,236 stems per hectare (500 stems...

  16. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    Science.gov (United States)

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  17. Assessing tolerance of longleaf pine understory herbaceous plants to herbicide applications in a container nursery

    Science.gov (United States)

    D. Paul Jackson; Scott A. Enebak; James West; Drew Hinnant

    2015-01-01

    Renewed efforts in longleaf pine (Pinus palustris Mill.) ecosystem restoration has increased interest in the commercial production of understory herbaceous species. Successful establishment of understory herbaceous species is enhanced when using quality nursery-grown plants that have a better chance of survival after outplanting. Nursery growing practices have not been...

  18. First look at smoke emissions from prescribed burns in long-unburned longleaf pine forests

    Science.gov (United States)

    Sheryl K. Akagi; Robert J. Yokelson; Ian R. Burling; David R. Weise; James Reardon; Shawn Urbanski; Timothy J. Johnson

    2014-01-01

    While fire has long played a role in the longleaf pine ecosystem, there are still some stands in the southeastern United States where fire has not been reintroduced and fuels have accumulated for 50 years or more. As part of a larger study examining fuel loading and smoke emissions on Department of Defense installations in the southeastern U.S., fuels and trace...

  19. The weight of the past: land-use legacies and recolonization of pine plantations by oak trees.

    Science.gov (United States)

    Navarro-González, Irene; Pérez-Luque, Antonio J; Bonet, Francisco J; Zamora, Regino

    2013-09-01

    Most of the world's plantations were established on previously disturbed sites with an intensive land-use history. Our general hypothesis was that native forest regeneration within forest plantations depends largely on in situ biological legacies as a source of propagules. To test this hypothesis, we analyzed native oak regeneration in 168 pine plantation plots in southern Spain in relation to land use in 1956, oak patch proximity, and pine tree density. Historical land-use patterns were determined from aerial photography from 1956, and these were compared with inventory data from 2004-2005 and additional orthophoto images. Our results indicate that oak forest regeneration in pine plantations depends largely on land-use legacies, although nearby, well-conserved areas can provide propagules for colonization from outside the plantation, and pine tree density also affected oak recruit density. More intense land uses in the past meant fewer biological legacies and, therefore, lower likelihood of regenerating native forest. That is, oak recruit density was lower when land use in 1956 was croplands (0.004 +/- 0.002 recruits/m2 [mean +/- SE]) or pasture (0.081 +/- 0.054 recruits/m2) instead of shrubland (0.098 +/- 0.031 recruits/m2) or oak formations (0.314 +/- 0.080 recruits/m2). Our study shows that land use in the past was more important than propagule source distance or pine tree density in explaining levels of native forest regeneration in plantations. Thus, strategies for restoring native oak forests in pine plantations may benefit from considering land-use legacies as well as distance to propagule sources and pine density.

  20. Restoration of the Native Plant Communities in Longleaf Pine Landscapes on the Kisatchie National Forest, Louisiana

    Science.gov (United States)

    James D. Haywood; Alton Martin; Finis L. Harris; Michael L. Elliott-Smith

    1998-01-01

    In January 1993, the Kisatchie National Forest and Southern Research Station began monitoring the effects of various management practices on overstory and midstory trees, shrubs, and understory woody and herbaceous vegetation in several longleaf pine (Pinus palustris Mill.) stands. The monitoring of these stands is part of several Ecosystem...

  1. Herbaceous weed control in loblolly pine plantations using flazasulfuron

    Science.gov (United States)

    Andrew W. Ezell; Jimmie L. Yeiser

    2015-01-01

    A total of 13 treatments were applied at four sites (two in Mississippi and two in Texas) to evaluate the efficacy of flazasulfuron applied alone or in mixtures for providing control of herbaceous weeds. All sites were newly established loblolly pine (Pinus taeda L.) plantations. Plots were evaluated monthly until 180 days after treatment. No phytotoxicity on pine...

  2. Monoterpene persistence in the sapwood and heartwood of longleaf pine stumps: assessment of differences in composition and stability under field conditions

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Jolie M. Mahfouz

    2009-01-01

    Monoterpenes in exudates, phloem and sapwood have received considerable attention relative to the active defenses of pine trees. However, little is known about the composition and function of the heartwood monoterpenes. To address this deficiency, monoterpene contents and relative compositions were determined for sapwood and heartwood samples from longleaf pine (Pinus...

  3. Effects of canopy treatments on early growth of planted longleaf pine seedlings and ground vegetation in North Carolina: a preliminary study

    Science.gov (United States)

    Huifeng Hu; Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker

    2013-01-01

    We installed a field experiment to support the development of protocols to restore longleaf pine (Pinus palustris Mill.) to existing mature loblolly pine (P. taeda L.) stands at Camp Lejeune, NC. Seven canopy treatments included four uniform and three gap treatments. The four uniform treatments were defined by target residual basal...

  4. Frequent Prescribed Burning as a Long-term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition.

    Science.gov (United States)

    Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H

    2017-09-01

    The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Copper Root Pruning and Container Cavity Size Influence Longleaf Pine Growth through Five Growing Seasons

    Science.gov (United States)

    James D. Haywood; Shi-Jean Susana Sung; Mary Anne Sword Sayer

    2012-01-01

    However, type and size of container can influence field performance. In this study, longleaf pine seedlings were grown in Beaver Plastics Styroblocks either without a copper treatment (Superblock) or with a copper oxychloride coating (Copperblock) and with three sizes of cavities that were 60, 108, and 164 ml. Seedlings from the six container types (two types of...

  6. Stand conditions and tree characteristics affect quality of longleaf pine for red-cockaded woodpecker cavity trees

    Science.gov (United States)

    W.G. Ross; D.L. Kulhavy; R.N. Conner

    1997-01-01

    We measured resin flow of longleaf (Pinus palustris Mill.) pines in red-cockaded woodpecker (Picoides borealis Vieillot) clusters in the Angelina National Forest in Texas, and the Apalachicola National Forest in Florida. Sample trees were categorized as active cavity trees, inactive cavity trees and control trees. Sample trees were further...

  7. Prescribed burning and mastication effects on surface fuels in southern pine beetle-killed loblolly pine plantations

    Science.gov (United States)

    Aaron D. Stottlemyer; Thomas A. Waldrop; G. Geoff Wang

    2015-01-01

    Surface fuels were characterized in loblolly pine (Pinus taeda L.) plantations severely impacted by southern pine beetle (Dendroctonus frontalis Ehrh.) (SPB) outbreaks in the upper South Carolina Piedmont. Prescribed burning and mastication were then tested as fuel reduction treatments in these areas. Prescribed burning reduced...

  8. Can early thinning and pruning lessen the impact of pine plantations ...

    African Journals Online (AJOL)

    dwelling insects found in pine tree plantations in Patagonia. We compared the abundance, species richness and composition of the beetle and ant assemblages within 16-year-old pine stands (n = 10) subjected to early pruning and thinning (i.e. ...

  9. The influence of canopy, sky condition, and solar angle on light quality in a longleaf pine woodland

    Science.gov (United States)

    Stephen D. Pecot; Stephen B. Horsley; Michael A. Battaglia; Robert J. Mitchell

    2005-01-01

    Light transmittance estimates under open, heterogeneous woodland canopies such as those of longleaf pine (Pinus palustris Mill.) forests report high spatial and temporal variation in the quantity of the light environment. In addition, light quality, that is, the ratio of red to far-red light (R:FR), regulates important aspects of plant...

  10. Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.

    Science.gov (United States)

    Roe, John H; Wild, Kristoffer H; Hall, Carlisha A

    2017-10-01

    Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fire Frequency Effects on Longleaf Pine (Pinus palustris P. Miller) Vegetation in South Carolina and Northeast Florida, USA

    Science.gov (United States)

    Jeff S. Glitzenstein; Donna R. Streng; Dale D. Wade

    2003-01-01

    Southeastern United States habitats dominated by longleaf pine (Pinus pulutris P. Miller) have declined precipitously in area and extent. Conservation of diverse ground-layer vegetation in these endangered habitats depends on prescribed fire. While the need for prescribed fire is now generally accepted, there is disagreement concerning the most...

  12. Cavity size and copper root pruning affect production and establishment of container-grown longleaf pine seedlings

    Science.gov (United States)

    Marry Anne Sword Sayer; James D. Haywood; Shi-Jean Susana Sung

    2009-01-01

    With six container types, we tested the effects of cavity size (i.e., 60, 93, and 170 ml) and copper root pruning on the root system development of longleaf pine (Pinus palustris Mill.) seedlings grown in a greenhouse. We then evaluated root egress during a root growth potential test and assessed seedling morphology and root system development 1 year after planting in...

  13. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Science.gov (United States)

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  14. Modeling silviculture after natural disturbance to sustain biodiversity in the longleaf pine (Pinus palustris) ecosystem : balancing complexity and implementation

    Science.gov (United States)

    Brian J. Palik; Robert J. Mitchell; J. Kevin Hiers

    2002-01-01

    Modeling silviculture after natural disturbance to maintain biodiversity is a popular concept, yet its application remains elusive. We discuss difficulties inherent to this idea, and suggest approaches to facilitate implementation, using longleaf pine (Pinus palustris) as an example. Natural disturbance regimes are spatially and temporally variable. Variability...

  15. The Development and Validation of an Alternative Assessment to Measure Changes in Understanding of the Longleaf Pine Ecosystem

    Science.gov (United States)

    Dentzau, Michael W.; Martínez, Alejandro José Gallard

    2016-01-01

    A drawing assessment to gauge changes in fourth grade students' understanding of the essential components of the longleaf pine ecosystem was developed to support an out-of-school environmental education program. Pre- and post-attendance drawings were scored with a rubric that was determined to have content validity and reliability among users. In…

  16. Developing and Testing a Robust, Multi-Scale Framework for the Recovery of Longleaf Pine Understory Communities

    Science.gov (United States)

    2015-05-01

    effects on seed germination of native and invasive Eastern deciduous forest understory plants. Forest Ecology and Management 261:1401–1408. Estes, J...Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204...in longleaf pine savannas. Figure 3.3.2. Results of multivariate classification and regression tree analysis. Figure 3.3.3. Comparison of Classes

  17. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    Energy Technology Data Exchange (ETDEWEB)

    Brudvig, Lars A. [Department of Plant Biology, Michigan State University; Orrock, John L. [Department of Zoology, University of Wisconsin; Damschen, Ellen I. [Department of Zoology, University of Wisconsin; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  18. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    Science.gov (United States)

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  19. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    Directory of Open Access Journals (Sweden)

    Lars A Brudvig

    Full Text Available Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities, and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes. Our study demonstrates

  20. Nursery Cultural Practices and Morphological Arrtibutes of Longleaf Pine Bare-Root Stock as Indicators of Early Field Performance

    Science.gov (United States)

    Glyndon E. Hatchell; H. David Muse

    1990-01-01

    Longleaf pine seedlings performed satisfactorily after planting on deep sands in South Carolina in dry years when: (1) They were vertically root-pruned in the nursery. (2) They had 14 or more first-order lateral roots and nonfibrous root systems. (3) They had six or more first-order lateral roots and highly fibrous root systems.

  1. Effects of container cavity size and copper coating on field performance of container-grown longleaf pine seedlings

    Science.gov (United States)

    Shi-Jean Susana Sung; James D. Haywood; Mary A. Sword-Sayer; Kristina F. Connor; D. Andrew Scott

    2010-01-01

    Longleaf pine (Pinus palustris Mill.) seedlings were grown for 27 weeks in 3 container cavity sizes [small (S), medium (M), and large (L)], and half the containers were coated with copper (Cu). In November 2004, we planted 144 seedlings from each of 6 container treatments in each of 4 replications in central LA. All plots were burned in February 2006...

  2. Influence of establishment timing and planting stock on early rotational growth of loblolly pine plantations in Texas

    Science.gov (United States)

    M. A. Blazier; E. L. Taylor; A. G. Holley

    2010-01-01

    Planting container seedlings, which have relatively fully formed root systems encased in a soil-filled plug, may improve loblolly pine plantation productivity by increasing early survival and growth relative to that of conventionally planted bareroot seedlings. Planting seedlings in fall may also confer productivity increases to loblolly pine plantations by giving...

  3. Competitive responses of seedlings and understory plants in longleaf pine woodlands: separating canopy influences above and below ground

    Science.gov (United States)

    Stephen D. Pecot; Robert J. Mitchell; Brian J. Palik; Barry Moser; J. Kevin Hiers

    2007-01-01

    A trenching study was used to investigate above- and below-ground competition in a longleaf pine (Pinus palustris P. Mill.) woodland. Trenched and nontrenched plots were replicated in the woodland matrix, at gap edges, and in gap centers representing a range of overstory stocking. One-half of each plot received a herbicide treatment to remove the...

  4. Fire, herbicide, and chainsaw felling effects on arthropods in fire-suppressed longleaf pine sandhills at Eglin Air Force Base, Florida

    Science.gov (United States)

    Louis Provencher; Krista E. M. Galley; Andrea R. Litt; Doria R. Gordon; Leonard A. Brennan; George W. Tanner; Jeffrey L. Hardesty

    2002-01-01

    Experimentally evaluating the success of hardwood reduction techniques against a "model" reference condition of longleaf pine sandhill communities is not directly possible because reference sites are not randomized or replicated. We addressed this issue by measuring the similarity of arthropods in treatment (fire, herbicide, felling/girdling, and control) and...

  5. Managing succession in conifer plantations: converting young red pine (Pinus resinosa Ait.) plantations to native forest types by thinning and underplantiing

    Science.gov (United States)

    William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen; Steven G. Newmaster

    2001-01-01

    The effects of thinning on growth and survival of white pine (Pinus strobus L.), white ash (Fraxinus americana L.), and red oak (Quercus rubra L.), and understory plant diversity were examined in a young red pine (Pinus resinosa Ait.) plantation. Five years after thinning, seedling diameter,...

  6. Morphology, gas exchange, and chlorophyll content of longleaf pine seedlings in response to rooting volume, copper root pruning, and nitrogen supply in a container nursery

    Science.gov (United States)

    R. Kasten Dumroese; Shi-Jean Susana Sung; Jeremiah R. Pinto; Amy Ross-Davis; D. Andrew Scott

    2013-01-01

    Few pine species develop a seedling grass stage; this growth phase, characterized by strong, carrot-like taproots and a stem-less nature, poses unique challenges during nursery production. Fertilization levels beyond optimum could result in excessive diameter growth that reduces seedling quality as measured by the root bound index (RBI). We grew longleaf pine (Pinus...

  7. Growth models for ponderosa pine: I. Yield of unthinned plantations in northern California.

    Science.gov (United States)

    William W. Oliver; Robert F. Powers

    1978-01-01

    Yields for high-survival, unthinned ponderosa pine (Pinus ponderosa Laws.) plantations in northern California are estimated. Stems of 367 trees in 12 plantations were analyzed to produce a growth model simulating stand yields. Diameter, basal area, and net cubic volume yields by Site Indices50 40 through 120 are tabulated for...

  8. Perspectives on site productivity of loblolly pine plantations in the southern United States

    Science.gov (United States)

    Eric D. Vance; Felipe G. Sanchez

    2006-01-01

    Pine plantations in the U.S. South include some of the most intensively managed and productive forests in the world. Studies have been established in recent decades to answer questions about whether the productivity of these plantations is sustainable. While intensive management practices greatly enhance tree growth, their effects on factors controlling growth...

  9. Long-term effects of fire and fire-return interval on population structure and growth of longleaf pine (Pinus palustris)

    Science.gov (United States)

    Chelcy R. Ford; Emily S. Minor; Gordon A. Fox

    2010-01-01

    We investigated the effect of fire and fire frequency on stand structure and longleaf pine (Pinus palustris P. Mill.) growth and population demography in an experimental research area in a southwest Florida sandhill community. Data were collected from replicated plots that had prescribed fire-return intervals of 1, 2, 5, or 7 years or were left...

  10. Influence of residual basal area on longleaf pine (Pinus palustris Mill.) first year germination and establishment under selection silviculture

    Science.gov (United States)

    Ferhat Kara; Edward F. Loewenstein

    2015-01-01

    Even-aged silvicultural methods have been successfully used to manage longleaf pine (Pinus palustris Mill.) forests for wood production; however, successful use of uneven-aged methods to manage this ecosystem is less well documented. In this study, the effects of varying levels of residual basal area (RBA) (9.2, 13.8, and 18.4 m2...

  11. An analysis of the feasibility for increasing woody biomass production from pine plantations in the southern United States

    International Nuclear Information System (INIS)

    Munsell, John F.; Fox, Thomas R.

    2010-01-01

    In the near future, wood from the 130 000 km 2 of pine plantations in the southern United States could provide much of the feedstock for emerging bioenergy industries. Research and operational experience show that total plantation biomass productivity exceeding 22.4 Mg ha -1 y -1 green weight basis with rotations less than 25 years are biologically possible, financially attractive, and environmentally sustainable. These gains become possible when intensively managed forest plantations are treated as agro-ecosystems where both the crop trees and the soil are managed to optimize productivity and value. Intensive management of southern US pine plantations could significantly increase the amount of biomass available to supply bioenergy firms. Results from growth and yield simulations using models and a financial analysis suggest that if the 130 000 km 2 of cutover pine plantations and an additional 20 000 km 2 of planted idle farmland are intensively managed in the most profitable regimes, up to 77.5 Tg green weight basis of woody biomass could be produced annually. However, questions exist about the extent to which intensive management for biomass production can improve financial returns to owners and whether they would adopt these systems. The financial analysis suggests providing biomass for energy from pine plantations on cutover sites is most profitable when intensive management is used to produce a mixture of traditional forest products and biomass for energy. Returns from dedicated biomass plantations on cutover sites and idle farmland will be lower than integrated product plantations unless prices for biomass increase or subsidies are available. (author)

  12. Litterfall production under pine plantations in the southern Andes region of Ecuador

    Directory of Open Access Journals (Sweden)

    Pablo Quichimbo

    2016-09-01

    Full Text Available Litterfall research is an interesting aspect in environmental studies due to its significance in nutrient cycling specially in regions like the Andes where the interactions between biomass production and its decomposition is poorly understood. This study is focusing in the litterfall biomass production under pine plantations in southern Ecuador. The litterfall production was studied for five months at two-week intervals in three pine forest sites located in the southern Andes region of Ecuador. Monthly litterfall production ranged between 1067-1907 kg ha-1, in comparison with other coniferous stands around the world, this study revealed a higher litterfall production for tropical areas and particularly the highest production under pine plantations in the Andes region. This high litterfall production highlights the upmost importance of this forest component as a potential nutrient reservoir involved in the global nutrient cycling under landscapes dominated by this exotic forest specie in the tropical Andes.

  13. Effects of site preparation treatments on early growth and survival of planted longleaf pine (Pinus palustris Mill.) seedlings in North Carolina

    Science.gov (United States)

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Susan Cohen

    2006-01-01

    We tested the effects of eight site preparation treatments on early growth and survival of container-grown longleaf pine (Pinus palustris Mill.) seedlings. Treatments included an untreated check, six combinations of two initial vegetation control treatments (chopping or herbicide) with three planting site conditions (flat [no additional treatment],...

  14. Pine Plantations and Invasion Alter Fuel Structure and Potential Fire Behavior in a Patagonian Forest-Steppe Ecotone

    Directory of Open Access Journals (Sweden)

    Juan Paritsis

    2018-03-01

    Full Text Available Planted and invading non-native plant species can alter fire regimes through changes in fuel loads and in the structure and continuity of fuels, potentially modifying the flammability of native plant communities. Such changes are not easily predicted and deserve system-specific studies. In several regions of the southern hemisphere, exotic pines have been extensively planted in native treeless areas for forestry purposes and have subsequently invaded the native environments. However, studies evaluating alterations in flammability caused by pines in Patagonia are scarce. In the forest-steppe ecotone of northwestern Patagonia, we evaluated fine fuels structure and simulated fire behavior in the native shrubby steppe, pine plantations, pine invasions, and mechanically removed invasions to establish the relative ecological vulnerability of these forestry and invasion scenarios to fire. We found that pine plantations and their subsequent invasion in the Patagonian shrubby steppe produced sharp changes in fine fuel amount and its vertical and horizontal continuity. These changes in fuel properties have the potential to affect fire behavior, increasing fire intensity by almost 30 times. Pruning of basal branches in plantations may substantially reduce fire hazard by lowering the probability of fire crowning, and mechanical removal of invasion seems effective in restoring original fuel structure in the native community. The current expansion of pine plantations and subsequent invasions acting synergistically with climate warming and increased human ignitions warrant a highly vulnerable landscape in the near future for northwestern Patagonia if no management actions are undertaken.

  15. Temporal distribution of sediment yield from catchments covered by different pine plantation areas

    Directory of Open Access Journals (Sweden)

    Tyas Mutiara Basuki

    2018-04-01

    Full Text Available Soil erosion and sedimentation are environmental problems faced by tropical countries. Many researches on soil erosion-sedimentation have been conducted with various results. Quantifying soil erosion-sedimentation and its temporal distribution are important for watershed management. Therefore, a study with the objective to quantify the amount of suspended sediment from catchments under various pine plantation areas was conducted. The research was undertaken during 2010 to 2017 in seven catchments with various percentage of pine coverage in Kebumen Regency, Central Java Province. The rainfall data were collected from two rainfall stations. A tide gauge was installed at the outlet of each catchment to monitor stream water level. The water samples for every stream water level increment were analyzed to obtain sediment concentration. The results showed that monthly suspended sediment of the catchments was high in January to April and October to December, and low in May to September. The annual suspended sediment fluctuated during the study period. Non-linear correlations were observed between suspended sediment and rainfall as well as suspended sediment and percentage pine areas. The line trend between suspended sediment and percentage of pine areas showed that the increase in pine areas decreased suspended sediment, with the slope of the graph is sharp at the percentage of pine areas from 8% to 40%, then is gentle for pine plantation areas more than 40%.

  16. Nursery Cultural Practices and Morphological Attributes of Longleaf Pine Bare-Root Stock as Indicators of Early Field Performance; FINAL

    International Nuclear Information System (INIS)

    Glyndon E. Hatchell, Research Forester, Retired Institute for Mycorrhizal Research and Development Athens, Georgia and H. David Muse, Professor Department of Mathematics University of North Alabama Florence, Alabama

    1990-01-01

    A large study of morphological attributes of longleaf pine nursery stock at the Savannah River site of the various attributes measured, only number of lateral roots and seedling diameters were related to performance. Lateral root pruning in the nursery also improved performance. Both survival and growth during the first two years were strongly correlated with larger stem diameter and larger root system development

  17. Effects of Atmospheric CO2 Enrichment on Soil CO2 Efflux in a Young Longleaf Pine System

    OpenAIRE

    Runion, G. Brett; Butnor, J. R.; Prior, S. A.; Mitchell, R. J.; Rogers, H. H.

    2012-01-01

    The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf pine savannahs are an ecologically and economically important, yet understudied, component of the southeastern landscape. We investigated the effects of ambient and elevated C...

  18. Artificially regenerating longleaf pine on wet sites: preliminary analysis of effects of site preparation treatments on early survival and growth

    Science.gov (United States)

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker

    2010-01-01

    Our study, conducted over two years on poorly drained, sandy sites in Onslow County, NC, compared the effects of eight common site preparation treatments on early survival and growth of planted longleaf pine seedlings. Through two growing seasons, we found survival to be similar across all treatments (p = 0.8806), but root collar diameter was greatest with combinations...

  19. Long-term hydrology and water quality of a drained pine plantation in North Carolina

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs

    2011-01-01

    Long-term data provide a basis for understanding natural variability, reducing uncertainty in model inputs and parameter estimation, and developing new hypotheses. This article evaluates 21 years (1988-2008) of hydrologic data and 17 years (1988-2005) of water quality data from a drained pine plantation in eastern North Carolina. The plantation age was 14 years at the...

  20. Impact of Hurricane Ivan on the regional longleaf pine growth study: is there a relation to site or stand conditions?

    Science.gov (United States)

    John S. Kush; John C. Gilbert

    2010-01-01

    The US Forest Service Regional Longleaf Pine Growth Study (RLGS) began its eighth re-measurement (40th year) during 2004 autumn. The study has 305 plots of which 171 plots are located on the Escambia Experimental Forest (EEF) in Brewton AL. EEF is operated by the U.S. Forest Service in cooperation with the T.R. Miller Mill Company. The RLGS has plots distributed across...

  1. Ground-dwelling arthropod association with coarse woody debris following long-term dormant season prescribed burning in the longleaf pine flatwoods of north Florida.

    Science.gov (United States)

    J.L. Hanula; D.D. Wade; J. O' Brien; S.C. Loeb

    2009-01-01

    A 5·year study of long· term (40 years) study plots was conducted on the Osceola National·Forest in northern Florida to determine how dormant-season fire frequency (annual, biennial,quadrennial, or unburned) affects ground-dwelling macroarthropod use of coarsewoody debris in longleaf pine (Pinus...

  2. A Mid-IR Multivariate Analysis Study on the Gross Calorific Value in Longleaf Pine: Impact on Correlations with Lignin and Extractive Contents

    Science.gov (United States)

    Chi-Leung So; Thomas L. Eberhardt

    2013-01-01

    Twenty 70-year-old longleaf pine trees from a spacing, thinning, and pruning study were harvested, from which samples were analyzed for gross calorific value (GCV). A strong correlation was found between GCV and extractive contents for the unextracted wood samples. Although lignin content should impact GCV, no correlation was found between the variation in GCV with...

  3. Stand Dynamics and Plant Associates of Loblolly Pine Plantations to Midrotation after Early Intensive Vegetation Management-A Southeastern United States Regional Study

    Science.gov (United States)

    James H. Miller; Bruce R. Zutter; Ray A. Newbold; M. Boyd Edwards; Shepard M. Zedaker

    2003-01-01

    Increasingly, pine plantations worldwide are grown using early control of woodv and/or herbaceous vegetation. Assuredsustainablepractices require long-term data on pine plantation development detailing patterns and processes to understand both crop-competition dynamics and the role of stand participants in providing multiple attributes such as biodiversity conservation...

  4. Damages and causes of death in plantations with containerised seedlings of Scots pine and Norway spruce in the central of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Naumburg, Jan

    2000-07-01

    In 1972, 94 forest areas were planted with containerised seedlings, 83 with Scots pine (Pinus sylvestris L.) and 11 with Norway spruce (Picea abies (L.) Karst.), in the central of Sweden. In the first season after planting, 99% of the Scots pine and 98% of the Norway spruce seedlings survived. Three seasons after plantation, 67% of Scots pine and 62% of Norway spruce were alive. The most common type of known damages causing mortality were mammals and insects. Vegetation was registered as the cause of mortality at some occasions in Scots pine plantations, whereas vegetation never was considered as the cause of death in Norway spruce plantations. The average size of the scarification patches were 0.25 m{sup 2} and 0.4 m{sup 2} in Scots pine and Norway spruce respectively. In Scots pine plantations there were 1600 planted seedlings ha{sup -1} and in Norway spruce there were 1550 ha{sup -1}. After the third growing season, the numbers of main crop plants, including naturally regenerated hardwood and softwood plants, were 1500 ha{sup -1} for Scots pine and 1350 ha{sup -1} for Norway spruce. The studied plantings had been approved if the recommended number of seedlings had been planted. As there always is some mortality among planted seedlings, in the present study 35-40%, this phenomenon has to be taken into consideration when dimensioning the number of seedlings which are to be planted.

  5. Ground-dwelling arthropod association with coarse woody debris following long-term dormant season prescribed burning in the longleaf pine flatwoods of North Carolina

    Science.gov (United States)

    James L Hanula; Dale Wade; Joseph O' Brien; Susan Loeb

    2009-01-01

    A 5-year study of long-term (40 years) study plots was conducted on the Osceola National Forest in northern Florida to determine how dormant-season fire frequency (annual, biennial, quadrennial, or unburned) affects ground-dwelling macroarthropod use of coarse woody debris in longleaf pine (Pinus palustris Mill.) forests. Pitfall traps were used to sample arthropods...

  6. Proceedings of the 12th biennial southern silvicultural research conference

    Science.gov (United States)

    Kristina F. Connor; [Editor

    2004-01-01

    Ninety-two papers and thirty-six poster summaries address a range of issues affecting southern forests. Papers are grouped in 15 sessions that include wildlife ecology; fire ecology; natural pine management; forest health; growth and yield; upland hardwoods - natural regeneration; hardwood intermediate treatments; longleaf pine; pine plantation silviculture; site...

  7. Comparison of four harvesting systems in a loblolly pine plantation

    Science.gov (United States)

    J. Klepac; Dana Mitchell

    2016-01-01

    Felling and skidding operations were monitored while clearcut harvesting a 12-acre area of a 14-year old loblolly pine (Pinus taeda) plantation. The study area contained 465 trees per acre for trees 2.0 inches Diameter at Breast Height (DBH) and larger with a Quadratic Mean Diameter (QMD) of 7.26 inches. Two feller-bunchers (tracked and rubber-tired) and two skidders (...

  8. Structure and biomass production of one- to seven-year-old intensively cultured jack pine plantation in Wisconsin.

    Science.gov (United States)

    J. Zavitkovski; David H. Dawson

    1978-01-01

    Spacing and rotation length effects were studied for 7 years in intensively cultured jack pine stands. Production culminated at age 5 in the densest planting and progressively later in more open spacing. Biomass production was two to several times higher than in jack pine plantations grown under traditional silvicultural systems.

  9. Thematic mapper detection of changes in the leaf area of closed canopy pine plantations in central Massachusetts

    International Nuclear Information System (INIS)

    Herwitz, S.R.; Peterson, D.L.; Eastman, J.R.

    1989-01-01

    Remote sensing studies of conifer forests have previously reported that the Thematic Mapper Band 4/Band 3 ratio is positively correlated with regional differences in leaf area index (LAI). Our study was an attempt to determine whether Landsat Thematic Mapper data can be used to detect differences and changes in the LAI of closed canopy pine plantations on a local scale in central Massachusetts. Field measurements of LAI were obtained using locally-derived allometric relationships between leaf area and trunk diameter (DBH). A thinning treatment, which reduced the LAI of one of the larger plantations by more than 25%, resulted in a significant decrease (P < 0.001) in the 4/3 ratio from the prethinned value. No significant change in the 4/3 ratio was found in a nearby broadleaved hardwood forest which served as a radiometric control. However, a decrease in the 4/3 ratio similar to that observed in the thinned plantation was observed in nearby unthinned pine plantations. This change in the reflectance of the unthinned stands may be attributable to a moderate natural reduction in LAI. Such a reduction in LAI would demonstrate the limitations of allometric equations for evaluating LAI under conditions in which the relationship between leaf area and DBH may be changing from year to year. It also would explain why no significant relationship (P > 0.1) was found between the 4/3 ratio and the LAI of the different unthinned plantations which had LAI values ranging from 3.96 to 7.01. We conclude that the TM sensor may be a better guide to moderate changes and differences in the LAI of closed canopy pine plantations at local scales than field measurements involving allometric equations. (author)

  10. Seasonal Pattern of Decomposition and N, P, and C Dynamics in Leaf litter in a Mongolian Oak Forest and a Korean Pine Plantation

    Directory of Open Access Journals (Sweden)

    Jaeeun Sohng

    2014-10-01

    Full Text Available Distinct seasons and diverse tree species characterize temperate deciduous forests in NE Asia, but large areas of deciduous forests have been converted to conifer plantations. This study was conducted to understand the effects of seasons and tree species on leaf litter decomposition in a temperate forest. Using the litterbag method, the decomposition rate and nitrogen, phosphorous, and carbon dynamics of Mongolian oak (Quercus mongolica, Korean pine (Pinus koraiensis, and their mixed leaf litter were compared for 24 months in a Mongolian oak stand, an adjacent Korean pine plantation, and a Mongolian oak—Korean pine mixed stand. The decomposition rates of all the leaf litter types followed a pattern of distinct seasonal changes: most leaf litter decomposition occurred during the summer. Tree species was less influential on the leaf litter decomposition. The decomposition rates among different leaf litter types within the same stand were not significantly different, indicating no mixed litter effect. The immobilization of leaf litter N and P lasted for 14 months. Mongolian oak leaf litter and Korean pine leaf litter showed different N and P contents and dynamics during the decomposition, and soil P2O5 was highest in the Korean pine plantation, suggesting effects of plantation on soil nutrient budget.

  11. A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Rodney E. Will

    2015-06-01

    Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

  12. Comparison of Red-Cockaded Woodpecker (Piciodes borealis) Nestling Diet in Old-Growth and Old-Field Longleaf Pine (Pinus palustris)

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, J.L.; Engstrom, R.T.

    1999-10-01

    Automatic cameras were used to record adult woodpecker diets in old-growth and old-field longleaf pine in the South. Roaches were the number one prey for the woodpeckers based on either biomass or numbers. The latter ranged from 37% to 57% of the prey numbers and 55%-73% of the biomass. Morisita's index of similarity between old-field and old growth varied from 0.89 to 0.95. The authors conclude that the prey base is similar in both conditions and that old-growth provides similar foraging habitat.

  13. Deer use of riparian zones and adjacent pine plantations in Texas

    Science.gov (United States)

    Micah L. Poteet; Ronald E. Thill; R. Montague Whiting; R. Lee Rayburn

    1996-01-01

    The authors monitored white-tailed deer (Odocoileus virginianus) use of riparian zones (RZ’s) and adjacent pine plantations of 3 age classes (young, 1 to 3 years old; intermediate, 5 to 7 years old; and older, 9 to 13 years old) using radio telemetry for 2 years on a 1,300 ha study area near Alto, TX. Riparian zones comprised 22.0 percent of the area; young,...

  14. Tensile and dimensional properties of wood strands made from plantation southern pine lumber

    Science.gov (United States)

    Qinglin Wu; Zhiyong Cai; Jong N. Lee

    2005-01-01

    Working stresses and performance of strand composite lumber largely depend upon the properties of each individual strand. Southern pine strands from plantation lumber grown in southern Louisiana were investigated in this study in order to understand strand behaviors. The effects of hot-pressing and resin application on tensile modulus, strength, and dimensional...

  15. Soil Co2 Efflux and Soil Carbon Content as Influenced by Thinning in Loblolly Pine Plantations on the Piedmont of Virginia

    OpenAIRE

    Selig, Marcus Franklin

    2003-01-01

    The thinning of loblolly pine plantations has a great potential to influence the fluxes and storage of carbon within managed stands. This study looked at the effects of thinning on aboveground carbon and mineral soil carbon storage, 14-years after the thinning of an 8-year-old loblolly pine plantation on the piedmont of Virginia. The study also examined soil respiration for one year following the second thinning of the same stand at age twenty-two. The study was conducted using three repli...

  16. Selecting a sampling method to aid in vegetation management decisions in loblolly pine plantations

    Science.gov (United States)

    David R. Weise; Glenn R. Glover

    1993-01-01

    Objective methods to evaluate hardwood competition in young loblolly pine (Pinustaeda L.) plantations are not widely used in the southeastern United States. Ability of common sampling rules to accurately estimate hardwood rootstock attributes at low sampling intensities and across varying rootstock spatial distributions is unknown. Fixed area plot...

  17. Seasonal nutrient yield and digestibility of deer forage from a young pine plantation

    Science.gov (United States)

    Robert M. Blair; Henry L. Short; E.A. Epps

    1977-01-01

    Six classes of current herbaceous and woody forage were collected seasonally from a 5-year-old mixed loblolly (Pinus taeda)-shortleaf pine (Pinus echinata) plantation (in Texas) and subjected to nutrient analyses and nylon bag dry-matter digestion trials. Forages were most nutritious and digestible in the spring when tissues were succulent and growing rapidly. Browse...

  18. Aerial survey of red pine plantations for sirococcus shoot blight. Forest research report No. 46

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    A total of 849 red pine plantation diagrams were collected from the forest community and sketched onto 1:50,000 scale topographic maps. An aerial assessment was conducted beginning in the western counties in October 1990 and continuing eastward through to February 1991. Visual assessments were made for occurrence and severity of symptoms according to the average percentage of shoots affected per infected tree. General assessments on the height of plantations were also made, and each plantation was labelled as young (less than or equal to 3 m in height), pole (between 4 m and 6 m in height), or immature-mature (greater than 6 m in height). This research provides the results of the survey.

  19. Impacts of fertilizer additions on water quality of a drained pine plantation in North Carolina. A worst case scenario.

    Science.gov (United States)

    Bray J. Beltran; Devendra M. Amatya; Martin Jones; R. Wayne Skaggs; William Neal Reynolds; Timothy J. Callahan; Jami E. Nettles

    2008-01-01

    Abstract. Intensive plantation forestry will be increasingly important in the next 50 years to meet the high demand for domestic wood in the US. However, forestry management practices can substantially influence downstream water quality and ecology. In this study, the effect of fertilization on drainage water quality of a coastal pine plantation located in Carteret...

  20. Influence of herbicides and felling, fertilization, and prescribed fire on longleaf pine growth and understory vegetation through ten growing seasons and the outcome of an ensuing wildfire

    Science.gov (United States)

    James D. Haywood

    2011-01-01

    Restoring longleaf pine (Pinus palustris Mill.) over much of its original range requires artificial regeneration. In central Louisiana, USA, two fertilization levels - No (NF) or Yes (F-36 kg/ha N and 40 kg/ha P) in combination with three vegetation treatments - Check, four prescribed fires (PF), or multi-year vegetation control by herbicidal and mechanical means (IVM...

  1. Modelling the productivity of Anatolian black pine plantations in Turkey

    Directory of Open Access Journals (Sweden)

    Şükrü Teoman Güner

    2016-01-01

    Full Text Available This study was carried out to determine the relationships between height growth (site index of Anatolian black pine (Pinus nigra Arnold. subsp. pallasina (Lamb. Holmboe and site factors of the plantation areas in Turkey. Data were collected from 118 sample plots by taking into consideration the variations of aspect, altitude, slope position, slope degree and site class. A representative tree for the productivity and soil samples were taken at each sample plot. Some chemical and physical properties of soil samples were determined in the laboratory. The relationships between site index values of the trees and site factors including parent material, soil, climate and topography were examined by using correlation, stepwise regression and regression tree analysis. Significant linear relations were found between site index of black pine and site factors being altitude, slope degree, slope position, annual rainfall, precipitation amount in the most drought month, solum depth and bedrock including granite, mica schist and dacite. Explanation variance percentage on the site index of black pine was found 54.4% by using regression tree analysis whereas explained variance become 34.7% by stepwise regression analysis.

  2. State of pine decline in the southeastern United States

    Science.gov (United States)

    Lori Eckhardt; Mary Anne Sword Sayer; Don Imm

    2010-01-01

    Pine decline is an emerging forest health issue in the southeastern United States. Observations suggest pine decline is caused by environmental stress arising from competition, weather, insects and fungi, anthropogenic disturbances, and previous management. The problem is most severe for loblolly pine on sites that historically supported longleaf pine, are highly...

  3. The health of loblolly pine stands at Fort Benning, GA

    Science.gov (United States)

    Soung-Ryoul Ryu; G. Geoff Wang; Joan L. Walker

    2013-01-01

    Approximately two-thirds of the red-cockaded woodpecker (Picoides borealis) (RCW) groups at Fort Benning, GA, depend on loblolly pine (Pinus taeda) stands for nesting or foraging. However, loblolly pine stands are suspected to decline. Forest managers want to replace loblolly pine with longleaf pine (P. palustris...

  4. Mid-rotation silviculture timing influences nitrogen mineralization of loblolly pine plantations in the mid-south USA

    Science.gov (United States)

    Michael A. Blazier; D. Andrew Scott; Ryan Coleman

    2015-01-01

    Intensively managed loblolly pine (Pinus taeda L.) plantations often develop nutrient deficiencies near mid-rotation. Common silvicultural treatments for improving stand nutrition at this stage include thinning, fertilization, and vegetation control. It is important to better understand the influence of timing fertilization and vegetation control...

  5. Water and Energy Balances of Loblolly Pine Plantation Forests during a Full Stand Rotation

    Science.gov (United States)

    Sun, G.; Mitra, B.; Domec, J. C.; Gavazi, M.; Yang, Y.; Tian, S.; Zietlow, D.; McNulty, S.; King, J.; Noormets, A.

    2017-12-01

    Loblolly pine (Pinus taeda) plantations in the southern U.S. are well recognized for their ecosystem services in supplying clean and stable water and mitigating climate change through carbon sequestration and solar energy partitioning. Since 2004, we have monitored energy, water, and carbon fluxes in a chronosequence of three drained loblolly pine plantations using integrated methods that include eddy covariance, sap flux, watershed hydrometeorology, remote sensing, and process-based simulation modeling. Study sites were located on the eastern North Carolina coastal plain, representing highly productive ecosystems with high groundwater table, and designated in the Ameriflux network as NC1 (0-10 year old), NC2 (12-25 year old) and NC3 (0-3 years old). The 13-year study spanned a wide range of annual precipitation (900-1600 mm/yr) including two exceptionally dry years during 2007-2008. We found that the mature stand (NC2) had higher net radiation (Rn) flux due to its lower albedo (α =0.11-12), compared with the young stands (NC1, NC3) (α=0.15-0.18). Annually about 75%-80% of net radiation was converted to latent heat in the pine plantations. In general, the mature stand had higher latent heat flux (LE) (i.e. evapotranspiration (ET)) rates than the young stands, but ET rates were similar during wet years when the groundwater table was at or near the soil surface. During a historic drought period (i.e., 2007-2008), total stand annual ET exceeded precipitation, but decreased about 30% at NC2 when compared to a normal year (e.g., 2006). Field measurements and remote sensing-based modeling suggested that annual ET rates increased linearly from planting age (about 800 mm) to age 15 (about 1050 mm) and then stabilized as stand leaf area index leveled-off. Over a full stand rotation, approximately 70% (young stand) to 90% (mature stand) of precipitation was returned to the atmosphere through ET. We conclude that both climatic variability and canopy structure controlled the

  6. PM2.5 and Carbon Emissions from Prescribed Fire in a Longleaf Pine Ecosystem

    Science.gov (United States)

    Strenfel, S. J.; Clements, C. B.; Hiers, J. K.; Kiefer, C. M.

    2008-12-01

    Prescribed fires are a frequently utilized land-management tool in the Southeastern US. In order to better characterize emissions and impacts from prescribed fire in longleaf pine ecosystems, in situ data were obtained within the burn perimeter using a 10-m instrumented flux tower. Turbulence and temperature data at 10-m were sampled at 10 Hz using a sonic anemometer and fine-wire thermocouples respectively. Measurements of PM2.5, CO and CO2 emissions were sampled at 10-m within the burn perimeter and PM2.5 and Black Carbon PM2.5 were sampled 0.5 km downwind of the fire front using a 2-m instrumented tripod. Preliminary results indicate PM2.5 and carbon emissions significantly increased during the fire-front passage, and downwind PM concentrations were amplified beyond pre-fire ambient concentrations. In addition, the considerable amount a heat release and flux data gathered from these prescribed fires suggests that near surface atmospheric conditions were directly impacted by increased turbulence generation.

  7. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    Directory of Open Access Journals (Sweden)

    Andrew Whelan

    Full Text Available Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric. This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1, while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1, respectively, but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1 at the mesic, intermediate and xeric sites, respectively. Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months, drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  8. Impacts of the Replacement of Native Woodland with Exotic Pine Plantations on Leaf-Litter Invertebrate Assemblages: A Test of a Novel Framework

    International Nuclear Information System (INIS)

    Murray, B.R.; Baker, A.C.; Robson, T.C.

    2009-01-01

    We present an empirical comparison of invertebrate community structure between areas of undisturbed native eucalypt woodland and areas that have been cleared and replaced with plantations of exotic radiata pine (Pinus radiata). Implementation of a novel conceptual framework revealed that both insect (in autumn) and arachnid (in winter) assemblages demonstrated inhibition in response to the pine plantations. Species richness declines occurred in several taxonomic Orders (e.g., Hymenoptera, Blattodea, Acari) without compensated increases in other Orders in plantations. This was, however, a seasonal response, with shifts between inhibition and equivalency observed in both insects and arachnids across autumn and winter sampling periods. Equivalency responses were characterized by relatively similar levels of species richness in plantation and native habitats for several Orders (e.g., Coleoptera, Collembola, Psocoptera, Araneae). We propose testable hypotheses for the observed seasonal shifts between inhibition and equivalency that focus on diminished resource availability and the damp, moist conditions found in the plantations. Given the compelling evidence for seasonal shifts between categories, we recommend that seasonal patterns should be considered a critical component of further assemblage-level investigations of this novel framework for invasion ecology.

  9. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    Science.gov (United States)

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  10. Effects of first thinning on growth of loblolly pine plantations in the West Coastal Plain

    Science.gov (United States)

    Dean W. Coble; Jason B. Grogan

    2016-01-01

    The purpose of this research is to analyze thinning response in basal area and height growth of residual loblolly pine trees growing in plantations located in the West Gulf Coastal Plain. Thinning is a well-known silvicultural practice that increases the growing space available to desirable trees by removing competing trees.

  11. Red-cockaded woodpecker nestling provisioning and reproduction in two different pine habitats

    Science.gov (United States)

    Richard R. Schaefer; Richard N. Conner; D. Craig Rudolph; Daniel Saenz

    2004-01-01

    We obtained nestling provisioning and rcpntductive data from 24 Red-cockaded Woodpecker (Picoides borealis) groups occupying two different pine habitats-longleaf pine (Pinus palustris) and a mixture of loblolly (P. taeda) and shortleaf pine (P. echinata)--in eastern Texas during 1990 and 1901....

  12. Long-term patterns of fruit production in five forest types of the South Carolina upper coastal plain

    International Nuclear Information System (INIS)

    Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; Mccarty, John P.; Pearson, Scott F.

    2012-01-01

    Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. As a result, land managers could enhance fruit

  13. MEMORANDUM: Application of Best Management Practices to Mechanical Silvicultural Site Preparation Activities for the Establishment of Pine Plantations in the Southeast

    Science.gov (United States)

    Memorandum to the Field, November 28, 1995, clarifying the applicability of forested wetlands best management practices to mechanical silvicultural site preparation activities for the establishment of pine plantations in the Southeast.

  14. Understanding the Fate of Applied Nitrogen in Pine Plantations of the Southeastern United States Using 15N Enriched Fertilizers

    Directory of Open Access Journals (Sweden)

    Jay E. Raymond

    2016-11-01

    Full Text Available This study was conducted to determine the efficacy of using enhanced efficiency fertilizer (EEFs products compared to urea to improve fertilizer nitrogen use efficiency (FNUE in forest plantations. All fertilizer treatments were labeled with 15N (0.5 atom percent and applied to 100 m2 circular plots at 12 loblolly pine stands (Pinus taeda L. across the southeastern United States. Total fertilizer N recovery for fertilizer treatments was determined by sampling all primary ecosystem components and using a mass balance calculation. Significantly more fertilizer N was recovered for all EEFs compared to urea, but there were generally no differences among EEFs. The total fertilizer N ecosystem recovery ranged from 81.9% to 84.2% for EEFs compared to 65.2% for urea. The largest amount of fertilizer N recovered for all treatments was in the loblolly pine trees (EEFs: 38.5%–49.9%, urea: 34.8% and soil (EEFs: 30.6%–38.8%, urea: 28.4%. This research indicates that a greater ecosystem fertilizer N recovery for EEFs compared to urea in southeastern pine plantations can potentially lead to increased FNUE in these systems.

  15. 3-PG simulations of young ponderosa pine plantations under varied management intensity: why do they grow so differently?

    Science.gov (United States)

    Liang Wei; Marshall John; Jianwei Zhang; Hang Zhou; Robert Powers

    2014-01-01

    Models can be powerful tools for estimating forest productivity and guiding forest management, but their credibility and complexity are often an issue for forest managers. We parameterized a process-based forest growth model, 3-PG (Physiological Principles Predicting Growth), to simulate growth of ponderosa pine (Pinus ponderosa) plantations in...

  16. Effects of pruning in Monterey pine plantations affected by Fusarium circinatum

    Energy Technology Data Exchange (ETDEWEB)

    Bezos, D.; Lomba, J. M.; Martinez-Alvarez, P.; Fernandez, M.; Diez, J. J.

    2012-07-01

    Fusarium circinatum Nirenberg and O'Donnell (1998) is the causal agent of Pitch Canker Disease (PCD) in Pinus species, producing damage to the main trunk and lateral branches as well as causing branch dieback. The disease has been detected recently in northern Spain in Pinus spp. seedlings at nurseries and in Pinus radiata D. Don adult trees in plantations. Fusarium circinatum seems to require a wound to enter the tree, not only that as caused by insects but also that resulting from damage by humans, i.e. mechanical wounds. However, the effects of pruning on the infection process have yet to be studied. The aim of the present study was to know how the presence of mechanical damage caused by pruning affects PCD occurrence and severity in P. radiata plantations. Fifty P. radiata plots (pruned and unpruned) distributed throughout 16 sites affected by F. circinatum in the Cantabria region (northern Spain) were studied. Symptoms of PCD presence, such as dieback, oozing cankers and trunk deformation were evaluated in 25 trees per plot and related to pruning effect. A significant relationship between pruning and the number of cankers per tree was observed, concluding that wounds caused by pruning increase the chance of pathogen infection. Other trunk symptoms, such as the presence of resin outside the cankers, were also higher in pruned plots. These results should be taken into account for future management of Monterey Pine plantations. (Author) 36 refs.

  17. Effects of silvicultural treatment on the stability of black pine plantations.

    Directory of Open Access Journals (Sweden)

    Paolo Cantiani

    2010-12-01

    Full Text Available Black pine plantations have been established at the purpose of recovering a forest cover to marginal soils, mostly throughout the Apennines range in Italy, since the end of the eighteenth century and up to the mid 1900. Both the decay of forest cover and soil erosion were the outcome of the long-lasting overuse through the intensive forest exploitation practices, grazing of the forest floor and wildfires, occurring since many centuries ago. The primary function of pine reafforestation was therefore to re-establish a first cover with a pioneer species, preparatory to future mixed forest types based on the natural reintroduction of broadleaves originally living in the same areas, mainly deciduous oaks and beech in the upper part. These goals have been partly met over the wide reafforestation area; the key functions of pine stands are today the protection against soil erosion and the hydrological regulation of catchments. The pine stands have been assuming today also a scenic role because they have been incorporated in the landscape physiognomy. A series of thinning up to the regeneration phase had been planned by foresters since the design of these plantations, but many stands have grown unthinned and fully stocked for a long time, this condition contributing a less mechanical stability of trees. Alternative forms of regeneration in grown-up stands have been and are being tested to improve both the natural and artificial establishment of indigenous species, but thinnings remain, even if a tardy measure, the main practice enforceable to these pine forests. The results of experimental trials undertaken in the black pine forest stand located in Pratomagno casentinese (Arezzo are being reported in the paper. The study started in 1978 and the following theses were tested (A heavy thinning from below; (B moderate thinning from below; (C control. Three thinnings were carried out in 1978, 1999 and 2009 at the ages of 24, 45 and 55. The action over time of

  18. Structure and Composition of Vegetation on Longleaf Plantation Sites Compared to Natural Stands Occurring Along an Environmental Gradient at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.P.

    2000-10-01

    The diversity and abundance of native grasses and herbaceous species characteristic of the longleaf savanna were compared between remnant stands that were not previously under agriculture and recent old-fields.The objective of the study was to establish a baseline for future restoration objectives and to compare the degree of degradation associated with agriculture. In most cases even the natural stands have suffered degradation as a result of fire exclusion and as such are not representative of pristine conditions. Community classification and ordination procedures were implemented to array the communities. Three distinct sub-units were identified and associated with xeric, sub-xeric, and medic types associated with texture and soil moisture. Between plantations and natural stands, the xeric group demonstrated the most similarity. The presence of a B horizon was the most important discriminate variable in both groups.

  19. Value of Tree Measurements Made at Age 5 Years for Predicting the Height and Diameter Growth at Age 25 Years in Loblolly Pine Plantations

    Science.gov (United States)

    Allan E. Tiarks; Calvin E. Meier; V. Clark Baldwin; James D. Haywood

    1998-01-01

    Early growth measurements Of pine plantations are often used to predict the productivity of the stand later in the rotation when assessing the effect Of management on productivity. A loblolly pine (Pinus taeda L.) study established at 35 locations (2 to 3 plots/location) was used to test the relationship between height measurements at age 5 years...

  20. Growth and Yield of 15-Year Plantations of Pine, Spruce and Birch in Agricultural Land

    Directory of Open Access Journals (Sweden)

    Daugaviete Mudrite

    2017-07-01

    Full Text Available The growth data and the potential returns from 15-year-old plantations of pine Pinus sylvestris L. (6 trial sites, spruce Picea abies Karst L. (9 trial sites and silver birch Betula pendula Roth (13 trial sites, established in abandoned agricultural lands in a variety of soil types (sod calcareous, anthrosols, podzolic, podzols, gley, podzolic gley, alluvial, using the planting density 2,500 and 3,300 and also 5,000 trees/ha are analysed.

  1. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    Science.gov (United States)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  2. Disturbance from southern pine beetle, suppression, and wildfire affects vegetation composition in central Louisiana: a case study

    Science.gov (United States)

    T.W. Coleman; Alton Martin; J.R. Meeker

    2010-01-01

    We assessed plant composition and forest succession following tree mortality from infestation of southern pine beetle (Dendroctonus frontalis), associated suppression, and wildfire in two forest types, pine (Pinus spp.) with mixed hardwood and longleaf pine (P. palustris). In this case study, vegetation was...

  3. Contrasting responses to drought of forest floor CO2 efflux in a loblolly pine plantation and a nearby Oak-Hickory forest

    Science.gov (United States)

    S. Palmroth; Chris A. Maier; Heather R. McCarthy; A. C. Oishi; H. S. Kim; Kurt H. Johnsen; Gabrial G. Katul; Ram Oren

    2005-01-01

    Forest floor C02 efflux (Fff) depends on vegetation type, climate, and soil physical properties. We assessed the effects of biological factors on Fff by comparing a maturing pine plantation (PP) and a nearby mature Oak-Hickory-type hardwood forest (HW). Fff was measured...

  4. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Peng Dang

    Full Text Available The effects of Chinese pine (Pinus tabuliformis on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1, 29-year-old (PF2, and 53-year-old (PF3, on a Chinese pine plantation and from a natural secondary forest (NSF stand that was almost 80 years old. Abandoned farmland (BL was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota which were affected by soil carbon and nutrients in the Loess Plateau.

  5. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Science.gov (United States)

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  6. Effects of thinning on aboveground carbon sequestration by a 45-year-old eastern white pine plantation: A case study

    Science.gov (United States)

    W. Henry McNab

    2012-01-01

    Aboveground carbon sequestration by a 45-year-old plantation of eastern white pines was determined in response to thinning to three levels of residual basal area: (1) Control (no thinning), (2) light thinning to 120 feet2/acre and (3) heavy thinning to 80 feet2/acre. After 11 years carbon stocks were lowest on the heavily...

  7. Longleaf pine regeneration following Hurricane Ivan utilizing the RLGS plots

    Science.gov (United States)

    John C. Gilbert; John S. Kush

    2013-01-01

    On September 16, 2004, Hurricane Ivan hit the Alabama coast and severely impacted numerous plots in the U.S. Forest Service’s Regional Longleaf Growth Study (RLGS). The Escambia Experimental Forest (EEF) has 201 of the 325 RLGS plots. Nearly one-third of the EEF was impacted. Nine plots with pole-sized trees were entirely lost. Another 54 plots had some type of damage...

  8. A ponderosa pine-lodgepole pine spacing study in central Oregon: results after 20 years.

    Science.gov (United States)

    K.W. Seidel

    1989-01-01

    The growth response after 20 years from an initial spacing study established in a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex Loud.) plantation was measured in central Oregon. The study was designed to compare the growth rates of pure ponderosa pine, pure lodgepole pine, and a...

  9. Soil CO2 Efflux Trends Following the Thinning of a 22-Year-Old Loblolly Pine Plantation on the Piedmont of Virginia

    Science.gov (United States)

    M.F. Selig; J.R. Seiler

    2004-01-01

    Due to the growing concern over increasing atmospheric CO2 concentrations, it has become increasingly important to understand the influence forest practices have on the global carbon cycle. The thinning of loblolly pine (Pinus taeda) plantations in the Southeastern United States is a common silvicultural practice and has great...

  10. Carbon and nitrogen accumulation in forest floor and surface soil under different geographic origins of Maritime pine (Pinus pinaster Aiton.) plantations

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, E.; Oral, H. V.; Akburak, S.; Makineci, E.; Yilmaz, E.

    2013-09-01

    Aim of study: To determine if plantations consisting of different geographic origins of the Maritime pine (Pinus pinaster Aiton.) could have altered C and N stocks in the forest floor and surface soils. Area of study: Forest floor and mineral soil C and N stocks were measured in four adjacent plantations of different geographic origins of Maritime pine (Gironde, Toulon, Corsica and Spain) and adjacent primary native Sessile oak (Quercus petraea L.) at Burunsuz region in Belgrad Forest where is located in the Istanbul province in the Marmara geographical region between 41° 09’-41° 12’ N latitude and 28° 54’-29° 00’ E longitude in Turkey. Material and methods: Plots were compared as common garden experiments without replications. 15 surface soil (0-10 cm) and 15 forest floor samples were taken from each Maritime pine origins and adjacent native Sessile oak forest. C and N contents were determined on LECO Truspec 2000 CN analyzer. The statistical significance of the results was evaluated by one-way Analysis of Variance (ANOVA). Research highlights: Forest floor carbon mass, nitrogen concentration and nitrogen mass of forest floor showed a significant difference among origins. Soil carbon mass and nitrogen mass did not significantly differ among investigated plots. (Author)

  11. Ecological impacts of long-term application of biosolids to a radiata pine plantation

    International Nuclear Information System (INIS)

    Xue, Jianming; Kimberley, Mark O.; Ross, Craig; Gielen, Gerty; Tremblay, Louis A.; Champeau, Olivier; Horswell, Jacqui; Wang, Hailong

    2015-01-01

    Assessment of the ecological impact of applying biosolids is important for determining both the risks and benefits. This study investigated the impact on soil physical, chemical and biological properties, tree nutrition and growth of long-term biosolids applications to a radiata pine (Pinus radiata D. Don) plantation growing on a Sandy Raw Soil in New Zealand. Biosolids were applied to the trial site every 3 years from tree age 6 to 19 years at three application rates: 0 (Control), 300 (Standard) and 600 (High) kg nitrogen (N) ha −1 , equivalent to 0, 3 and 6 Mg ha −1 of dry biosolids, respectively. Tree nutrition status and growth have been monitored annually. Soil samples were collected 13 years after the first biosolids application to assess the soil properties and functioning. Both the Standard and High biosolids treatments significantly increased soil (0–50 cm depth) total carbon (C), N, and phosphorus (P), Olsen P and cation exchange capacity (CEC), reduced soil pH, but had no significant effects on soil (0–20 cm depth) physical properties including bulk density, total porosity and unsaturated hydraulic conductivity. The High biosolids treatment also increased concentrations of soil total cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) at 25–50 cm depth, but these concentrations were still considered very low for a soil. Ecotoxicological assessment showed no significant adverse effects of biosolids application on either the reproduction of springtails (Folsomia candida) or substrate utilisation ability of the soil microbial community, indicating no negative ecological impact of bisolids-derived heavy metals or triclosan. This study demonstrated that repeated application of biosolids to a plantation forest on a poor sandy soil could significantly improve soil fertility, tree nutrition and pine productivity. However, the long-term fate of biosolids-derived N, P and litter-retained heavy metals needs to be further monitored in the receiving

  12. Formation of post-fire water-repellent layers in Monterrey pine (Pinus radiata D. Don) plantations in south-central Chile

    Science.gov (United States)

    P. Garcia-Chevesich; R. Pizarro; C. L. Stropki; P. Ramirez de Arellano; P. F. Ffolliott; L. F. DeBano; Dan Neary; D. C. Slack

    2010-01-01

    A wildfire burned about 15,000 ha of Monterrey Pine (Pinus radiata D. Don) plantations near Yungay, Chile, in January of 2007. Post-fire water repellency (hydrophobicity) was measured using the water-drop-penetration-time (WDPT) method at depths of 0, 5, and 10 mm from the soil surface. These measurements were collected on burned sites of both young (4-years old) and...

  13. Insects in IBL-4 pine weevil traps

    Science.gov (United States)

    I. Skrzecz

    2003-01-01

    Pipe traps (IBL-4) are used in Polish coniferous plantations to monitor and control the pine weevil (Hylobius abietis L.). This study was conducted in a one-year old pine plantation established on a reforested clear-cut area in order to evaluate the impact of these traps on non-target insects. Evaluation of the catches indicated that species of

  14. Energy and water balance of two contrasting loblolly pine plantations on the lower coastal plain of North Carolina, USA

    Science.gov (United States)

    G. Sun; A. Noormets; M.J. Gavazzi; S.G. McNulty; J. Chen; J.-C. King Domec; D.M. Amatya; R.W. Skaggs

    2010-01-01

    During 2005–2007, we used the eddy covariance and associated hydrometric methods to construct energy and water budgets along a chronosequence of loblolly pine (Pinus taeda) plantations that included a mid-rotation stand (LP) (i.e., 13–15 years old) and a recently established stand on a clearcut site (CC) (i.e., 4–6 years old) in Eastern...

  15. Carbon and nitrogen accumulation in forest floor and surface soil under different geographic origins of Maritime pine (Pinus pinaster Aiton. plantations

    Directory of Open Access Journals (Sweden)

    E. Ozdemir

    2013-07-01

    Full Text Available Aim of study : To determine if plantations consisting of different geographic origins of the Maritime pine (Pinus pinaster Aiton. could have altered C and N stocks in the forest floor and surface soils.Area of study : Forest floor and mineral soil C and N stocks were measured in four adjacent plantations of different geographic origins of Maritime pine (Gironde, Toulon, Corsica and Spain and adjacent primary native Sessile oak (Quercus petraea L. at Burunsuz region in Belgrad Forest where is located in the Istanbul province in the Marmara geographical region between 41°09' -41°12' N latitude and 28°54' - 29°00' E longitude in Turkey.Material and Methods : Plots were compared as common garden experiments without replications. 15 surface soil (0-10 cm and 15 forest floor samples were taken from each Maritime pine origins and adjacent native Sessile oak forest. C and N contents were determined on LECO Truspec 2000 CN analyzer. The statistical significance of the results was evaluated by one-way Analysis of Variance (ANOVA.Research highlights : Forest floor carbon mass, nitrogen concentration and nitrogen mass of forest floor showed a significant difference among origins. Soil carbon mass and nitrogen mass did not significantly differ among investigated plots.Keywords: carbon sequestration; C/N ratio; decomposition; exotic; tree provenance.

  16. Simulating the effects of site index variation within loblolly pine plantations using an individual tree growth and yield model

    Science.gov (United States)

    Ralph L. Amateis; Harold E. Burkhart

    2016-01-01

    Site index is the most common metric of site productivity in loblolly pine plantations. Generally applied as a constant for a particular stand, it provides an overall measure of a site’s ability to grow trees. It is well known, however, that even the most uniform stands can have considerable variation in site index due to soil factors that influence microsite,...

  17. Ecological impacts of long-term application of biosolids to a radiata pine plantation

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Jianming, E-mail: jianming.xue@scionresearch.com [Scion, Private Bag 29237, Christchurch (New Zealand); Kimberley, Mark O., E-mail: mark.kimberley@scionresearch.com [Scion, Private Bag 3020, Rotorua (New Zealand); Ross, Craig, E-mail: rossc@landcareresearch.co.nz [Landcare, Private Bag 11052, Palmerston North (New Zealand); Gielen, Gerty, E-mail: gerty.gielen@scionresearch.com [Scion, Private Bag 3020, Rotorua (New Zealand); Tremblay, Louis A., E-mail: louis.tremblay@cawthron.org.nz [Cawthron Institute, Private Bag 2, Nelson (New Zealand); School of Biological Sciences, University of Auckland, PO Box 92019, Auckland 1142 (New Zealand); Champeau, Olivier, E-mail: olivier.champeau@cawthron.org.nz [Cawthron Institute, Private Bag 2, Nelson (New Zealand); Horswell, Jacqui, E-mail: jacqui.horswell@esr.cri.nz [ESR, P O Box 50-348, Porirua (New Zealand); Wang, Hailong, E-mail: hailong@zafu.edu.cn [Scion, Private Bag 3020, Rotorua (New Zealand); Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agricultural and Forestry University, Lin' an, Hangzhou, Zhejiang Province 311300 (China)

    2015-10-15

    Assessment of the ecological impact of applying biosolids is important for determining both the risks and benefits. This study investigated the impact on soil physical, chemical and biological properties, tree nutrition and growth of long-term biosolids applications to a radiata pine (Pinus radiata D. Don) plantation growing on a Sandy Raw Soil in New Zealand. Biosolids were applied to the trial site every 3 years from tree age 6 to 19 years at three application rates: 0 (Control), 300 (Standard) and 600 (High) kg nitrogen (N) ha{sup −1}, equivalent to 0, 3 and 6 Mg ha{sup −1} of dry biosolids, respectively. Tree nutrition status and growth have been monitored annually. Soil samples were collected 13 years after the first biosolids application to assess the soil properties and functioning. Both the Standard and High biosolids treatments significantly increased soil (0–50 cm depth) total carbon (C), N, and phosphorus (P), Olsen P and cation exchange capacity (CEC), reduced soil pH, but had no significant effects on soil (0–20 cm depth) physical properties including bulk density, total porosity and unsaturated hydraulic conductivity. The High biosolids treatment also increased concentrations of soil total cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) at 25–50 cm depth, but these concentrations were still considered very low for a soil. Ecotoxicological assessment showed no significant adverse effects of biosolids application on either the reproduction of springtails (Folsomia candida) or substrate utilisation ability of the soil microbial community, indicating no negative ecological impact of bisolids-derived heavy metals or triclosan. This study demonstrated that repeated application of biosolids to a plantation forest on a poor sandy soil could significantly improve soil fertility, tree nutrition and pine productivity. However, the long-term fate of biosolids-derived N, P and litter-retained heavy metals needs to be further monitored in the

  18. EFFECTS OF CLIMATE VARIABILITY ON THE CARBON DIOXIDE, WATER, AND SENSIBLE HEAT FLUXES ABOVE A PONDEROSA PINE PLANTATION IN THE SIERRA NEVADA, CA. (R826601)

    Science.gov (United States)

    AbstractFluxes of CO2, water vapor, and sensible heat were measured by the eddy covariance method above a young ponderosa pine plantation in the Sierra Nevada Mountains (CA) over two growing seasons (1 June¯10 September 1997 and 1 May&#...

  19. Cone and Seed Maturation of Southern Pines

    Science.gov (United States)

    James P. Barnett

    1976-01-01

    If slightly reduced yields and viability are acceptable, loblolly and slash cone collections can begin 2 to 3 weeks before maturity if the cones are stored before processing. Longleaf(P. palestris Mill.) pine cones should be collected only when mature, as storage decreased germination of seeds from immature cones. Biochemical analyses to determine reducing sugar...

  20. Whitebark pine planting guidelines

    Science.gov (United States)

    Ward McCaughey; Glenda L. Scott; Kay L. Izlar

    2009-01-01

    This article incorporates new information into previous whitebark pine guidelines for planting prescriptions. Earlier 2006 guidelines were developed based on review of general literature, research studies, field observations, and standard US Forest Service survival surveys of high-elevation whitebark pine plantations. A recent study of biotic and abiotic factors...

  1. Switchgrass (Panicum virgatum Intercropping within Managed Loblolly Pine (Pinus taeda Does Not Affect Wild Bee Communities

    Directory of Open Access Journals (Sweden)

    Joshua W. Campbell

    2016-11-01

    Full Text Available Intensively-managed pine (Pinus spp. have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass (Panicum virgatum, a native perennial, within intensively managed loblolly pine (P. taeda plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3–4 year old pine plantations and 9–10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.

  2. Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities.

    Science.gov (United States)

    Campbell, Joshua W; Miller, Darren A; Martin, James A

    2016-11-04

    Intensively-managed pine ( Pinus spp.) have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass ( Panicum virgatum ), a native perennial, within intensively managed loblolly pine ( P. taeda ) plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3-4 year old pine plantations and 9-10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.

  3. Carbon dioxide exchange above a 30-year-old Scots pine plantation established on organic-soil cropland

    International Nuclear Information System (INIS)

    Lohila, A.; Laurila, T.; Aurela, M.; Tuovinen, J.-P.; Aro, L.; Laine, J.; Kolari, P.; Minkkinen, K.

    2007-01-01

    In the boreal zone, large areas of natural mires have been drained and used for agriculture, resulting in net carbon dioxide (CO 2 ) emissions and increased nitrous oxide emissions but decreased methane emissions. However, due to structural changes in agriculture, a substantial area of cropland on organic soil has been afforested. In order to estimate the carbon balance of afforested organic-soil cropland, we measured CO 2 and water vapour (H 2 O) fluxes during year above a Scots pine plantation (Pinus sylvestris) in the middle-boreal zone, using the micrometeorological eddy covariance method. We observed CO 2 uptake by the Scots pine stand from late April to mid-October with a daily average net uptake from May to the beginning of October. However, there were also periods of daily net efflux. High ecosystem respiration rates continued throughout the winter (mean winter respiration 0.036 mg CO 2 m -2 s-1). As an annual average, the 30-year-old pine stand was a small source of CO 2 (+50 g m -2 a -1 ) to the atmosphere, showing that the CO 2 sequestration into the ecosystem was able to compensate for most of the carbon that was released by heterotrophic respiration from the drained soil. (orig.)

  4. Monitoring endophyte populations in pine plantations and native oak forests in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Alvarez, P.; Martin-Garcia, J.; Rodriguez-Ceinos, S.; Diez, J. J.

    2012-07-01

    The replacement of native forest with plantations of other species may have important impacts on ecosystems. Some of these impacts have been widely studied, but very little is known about the effects on fungal communities and specifically endo phytic fungi. In this study, endophyte assemblages in pine plantations (Pinus sylvestris, P. nigra and P. pinaster) and native oak forests (Quercus pyrenaica) in the north of the province of Palencia (Spain) were analyzed. For this purpose, samples of needles/leaves and twigs were collected from three trees in each of three plots sampled per host species. The samples were later processed in the laboratory to identify all of the endo phytic species present. In addition, an exhaustive survey was carried out of the twelve sites to collect data on the environmental, crown condition, dendrometric and soil variables that may affect the distribution of the fungi. The endophyte assemblages isolated from P. sylvestris and P. nigra were closely related to each other, but were different from those isolated from P. pinaster. The endophytes isolated from Q. pyrenaica were less closely related to those from the other hosts, and therefore preservation of oak stands is important to prevent the loss of fungal diversity. Finally, the distribution of the endophyte communities was related to some of the environmental variables considered. (Author) 42 refs.

  5. Integration of Andrographis paniculata as Potential Medicinal Plant in Chir Pine (Pinus roxburghii Sarg. Plantation of North-Western Himalaya

    Directory of Open Access Journals (Sweden)

    Chandra Shekher Sanwal

    2016-01-01

    Full Text Available The integration of Andrographis paniculata under Pinus roxburghii (Chir pine plantation has been studied to evaluate the growth and yield for its economic viability and conservation. It was grown on three topographical aspects, namely, northern, north-western, and western, at a spacing of 30 cm × 30 cm, followed by three tillage depths, namely, minimum (0 cm, medium (up to 10 cm, and deep (up to 15 cm tillage. The growth parameters, namely, plant height and number of branches per plant, were recorded as significantly higher on western aspect and lowest on northern aspect except for leaf area index which was found nonsignificant. However under all tillage practices all the growth parameters in both understorey and open conditions were found to be nonsignificant except for plant height which was found to be significantly highest under deep tillage and lowest under minimum tillage. The study of net returns for Andrographis paniculata revealed that it had positive average annual returns even in understorey conditions which indicate its possible economic viability under integration of Chir pine plantations. Hence net returns can be enhanced by integrating Andrographis paniculata and this silvimedicinal system can be suggested which will help utilizing an unutilized part of land and increase total productivity from such lands besides conservation of the A. paniculata in situ.

  6. Integration of Andrographis paniculata as Potential Medicinal Plant in Chir Pine (Pinus roxburghii Sarg.) Plantation of North-Western Himalaya

    Science.gov (United States)

    Sanwal, Chandra Shekher; Bhardwaj, S. D.

    2016-01-01

    The integration of Andrographis paniculata under Pinus roxburghii (Chir pine) plantation has been studied to evaluate the growth and yield for its economic viability and conservation. It was grown on three topographical aspects, namely, northern, north-western, and western, at a spacing of 30 cm × 30 cm, followed by three tillage depths, namely, minimum (0 cm), medium (up to 10 cm), and deep (up to 15 cm) tillage. The growth parameters, namely, plant height and number of branches per plant, were recorded as significantly higher on western aspect and lowest on northern aspect except for leaf area index which was found nonsignificant. However under all tillage practices all the growth parameters in both understorey and open conditions were found to be nonsignificant except for plant height which was found to be significantly highest under deep tillage and lowest under minimum tillage. The study of net returns for Andrographis paniculata revealed that it had positive average annual returns even in understorey conditions which indicate its possible economic viability under integration of Chir pine plantations. Hence net returns can be enhanced by integrating Andrographis paniculata and this silvimedicinal system can be suggested which will help utilizing an unutilized part of land and increase total productivity from such lands besides conservation of the A. paniculata in situ. PMID:27563482

  7. Whole-tree and forest floor removal from a loblolly pine plantation have no effect on forest floor CO2 efflux 10 years after harvest

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen; Felipe G. Sanchez

    2006-01-01

    Intensive management of southern pine plantations has yielded multifold increases in productivity over the last half century. The process of harvesting merchantable material and preparing a site for planting can lead to a considerable loss of organic matter. Intensively managed stands may experience more frequent disturbance as rotations decrease in length, exposing...

  8. Restoring southern Ontario forests by managing succession in conifer plantations

    Science.gov (United States)

    William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen

    2008-01-01

    Thinning and underplanting of conifer plantations to promote natural succession in southern Ontario's forests for restoration purposes was examined in a young red pine (Pinus resinosa Ait.) plantation. Eleven years after application of five thinning treatments, seedling diameter, height, and stem volume of planted white ash (Fraxinus...

  9. Biomass Production and Nitrogen Recovery after Fertilization of Young Loblolly Pines

    Science.gov (United States)

    J. B. Baker; G. L. Switzer; L. E. Nelson

    1974-01-01

    Ammonium nitrate applied at rates of 112 and 224 kg of N/ha in successive years to different areas of a young loblolly pine (Pinus taeda L.) plantation increased aboveground biomass by 25% and N accumulation by 30%. Fertilization at plantation age 3 resulted in significantly greater biomass and N accumulations in the pine; fertilization at age 4...

  10. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations

    Science.gov (United States)

    Jean-Christophe Domec; Jérôme Ogée; Asko Noormets; Julien Jouangy; Michael Gavazzi; Emrys Treasure; Ge Sun; Steve G. McNulty; John S. King

    2012-01-01

    Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations with the...

  11. Effects of Patagonian pine forestry on native breeding birds

    Directory of Open Access Journals (Sweden)

    Moises Pescador

    2014-12-01

    Full Text Available Aim of the study: The objective is to assess the influences of the tree stand age and other forestry management practices on species richness, composition, and distribution of the Patagonian pine plantation bird assemblages. Area of Study: The work was carried out in forested plots of Ponderosa pine located at the Lanín National Park (Patagonia, Argentina.Material and Methods: Birds were sampled using 25 m fixed radius point counts, at four plots varying in age, management, and forest structure. Main Results: A total of 2090 individuals belonging to 34 bird species were observed, their numbers vary significantly depending on the different modes of plantation management. The population density of the 14 most abundant bird species was compared among the four plantation plots and ten species don’t show statistically significant differences in their population density among the different forest plots. The California Quail, the White-Crested Elaenia and the Southern House Wren showed higher densities in pine plantations with lower tree densities and fewer cutting treatments. The Diuca Finch had high densities in the younger plantations not subjected to any treatment. Research highlights: Most of these bird species are opportunistic and a few are found more regularly in these non-native woods than in other native forested or afforested areas. Our data suggest that a mixed scenario based on a mosaic of plantation with patches of native deciduous forest may help maximize the bird diversity in the management of northwestern Patagonian plantation landscapes.Keywords: Bird population; diversity; exotic plantations; Patagonia; tree-age.

  12. Determination of fertility rating (FR) in the 3-PG model for loblolly pine (Pinus taeda L.) plantations in the southeastern United States

    OpenAIRE

    Subedi, Santosh

    2015-01-01

    Soil fertility is an important component of forest ecosystem, yet evaluating soil fertility remains one of the least understood aspects of forest science. Phytocentric and geocenctric approaches were used to assess soil fertility in loblolly pine plantations throughout their geographic range in the United States. The model to assess soil fertility using a phytocentric approach was constructed using the relationship between site index and aboveground productivity. Geocentric models used physic...

  13. Understory Vegetative Diversity of Post-Thinned Pine Plantations Treated with Fertilizer, Fire and Herbicide in East Texas

    International Nuclear Information System (INIS)

    Oswald, B.P.; Williams, H.M.; Farrish, K.W.; Ott, B.; Van Kley, J.E.

    2009-01-01

    This study assessed biodiversity in the understory of two pine plantations where different management tools (fertilizer, prescribed burning, and herbicide application) were utilized. During three growing seasons, species, percent cover, and number of individuals, and physical characteristics were recorded. Responses to treatment were examined based on comparison of species richness, evenness, diversity, and importance. Two years after treatment, fertilized plots showed a decline in species richness, evenness, and diversity. Prescribed burning and herbicide treatments increased species richness but decreased species evenness, resulting in no change in diversity index. Herbicide treatment reduced the importance of dominant shrubs and increased the importance of disturbance-adapted species.

  14. Understory Vegetative Diversity of Post-Thinned Pine Plantations Treated with Fertilizer, Fire and Herbicide in East Texas

    Directory of Open Access Journals (Sweden)

    Brian P. Oswald

    2009-01-01

    Full Text Available This study assessed biodiversity in the understory of two pine plantations where different management tools (fertilizer, prescribed burning, and herbicide application were utilized. During three growing seasons, species, percent cover, and number of individuals, and physical characteristics were recorded. Responses to treatment were examined based on comparison of species richness, evenness, diversity, and importance. Two years after treatment, fertilized plots showed a decline in species richness, evenness, and diversity. Prescribed burning and herbicide treatments increased species richness but decreased species evenness, resulting in no change in diversity index. Herbicide treatment reduced the importance of dominant shrubs and increased the importance of disturbance-adapted species.

  15. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  16. Earthworm abundance and species composition in abandoned tropical croplands: comparisons of tree plantations and secondary forests.

    Science.gov (United States)

    G. Gonzalez; X. Zou; S. Borges

    1996-01-01

    We compared patterns of earthworms abundance and species composition in tree plantation and secondary forest of Puerto Rico. Tree plantations included pine (Pinus caribea Morelet) and mahogany (Swietenia macrophylla King) established in the 1930's; 1960's; and 1970's; secondary forests were naturally regenerated in areas adjacent to these plantations. We...

  17. Long-term impact of shoot blight disease on red pine saplings

    Science.gov (United States)

    Linda M. Haugen; Michael E. Ostry

    2013-01-01

    Damage from Sirococcus and Diplodia shoot blights of red pine is widespread and periodically severe in the Lake States. An outbreak of shoot blight occurred in red pine sapling plantations across northern Wisconsin, northern Minnesota, and the Upper Peninsula of Michigan in 1993. We established monitoring plots in red pine sapling...

  18. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal

    Science.gov (United States)

    Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís

    2010-03-01

    Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.

  19. Nitrogen release, tree uptake, and ecosystem retention in a mid-rotation loblolly pine plantation following fertilization with 15N-enriched enhanced efficiency fertilizers.

    OpenAIRE

    Werner, Amy

    2013-01-01

    Nitrogen is the most frequently limiting nutrient in southern pine plantations.  Previous studies found that only 10 to 25% of applied urea fertilizer N is taken up by trees.  Enhanced efficiency fertilizers could increase tree uptake efficiency by controlling the release of N and/or stabilize N.  Three enhanced efficiency fertilizers were selected as a representation of fertilizers that could be used in forestry: 1) NBPT treated urea (NBPT urea), 2) polymer coated urea (PC urea), and 3) mono...

  20. Nursery response of container Pinus palustris seedlings to nitrogen supply and subsequent effects on outplanting performance

    Science.gov (United States)

    D. Paul Jackson; R. Kasten Dumroese; James P. Barnett

    2012-01-01

    Container longleaf pine (Pinus palustris) seedlings often survive and grow better after outplanting than bareroot seedlings. Because of this, most longleaf pine are now produced in containers. Little is known about nursery fertilization effects on the quality of container longleaf pine seedlings and how that influences outplanting performance. We compared various...

  1. Impacts of pine species, stump removal, cultivation, and fertilization on soil properties half a century after planting

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen; Felipe G Sanchez; C. Dana Nelson

    2012-01-01

    To better understand the long-term effects of species selection and forest management practices on soil quality and soil C retention, we analyzed soil samples from an experimental planting of loblolly (Pinus taeda L.), longleaf ((Pinus palustris Mill.), and slash ((Pinus elliottii Engelm.) pines under...

  2. An overview of industrial tree plantation conflicts in the global South: conflicts, trends, and resistance struggles

    NARCIS (Netherlands)

    W. Overbeek (Wilfridus); M. Kröger (Markus); J. Gerber (Julien-François)

    2012-01-01

    markdownabstractOver the past two decades, industrial tree plantations (ITPs), typically large-scale, intensively managed, even-age monoculture plantations, mostly exotic trees like fast-growing eucalyptus, pine and acacia species, but also rubber and oil palm, all destined for industrial processe s

  3. Yaughan and Curriboo Plantations: Studies in Afro-American Archaeology.

    Science.gov (United States)

    1983-04-01

    of which is the site in question. Site 38BK88 can be characterized as being located in swampy uplands and was probably surrounded by dense pine barren ...disturbances from agricultural plowing or disturbances rel ated to plantation pine plantings (Garrow, and Wheaton 1979). A third site was found during...undertaken by James Deetz (1977:138-154) in 1975 at the Parting Ways Site near Plymouth , Massachusetts. Deetz’s primary emphasis paralleled that of Fairbanks

  4. UNDERSTOREY OF PINE-PLANTATIONS ON DEGRADED SITES IN THE REGION OF DECIDUOUS FORESTS OF RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Franz H. Andrae

    2010-08-01

    Full Text Available In the central part of Rio Grande do Sul State understoreys of 12 stands of Pinus sp. and one of Araucaria angustifolia O.Ktze were studied, all growing on soils, degraded by agriculture. One pine stand, 10 years old, originated from a natural renovation, the others had been planted 25 to 30 years ago, Araucaria was seeded directly. A total of 575 plots were sampled, 25 m² each, distributed systematically within the stands. Measurements included pines overstorey, and all understorey woody species, separeted into layers of more than 1,3 m high and 1,3 to 0,3 m; the layer lower than 0,3 m included only natural renovation of pines. Understoreys were composed by 121 species, ocurring common and high value timber species, ornamental trees, native and exotic fruit tree species. A higher number of species was present with a very few individuals only. The presence of non woody species like grasses, herbs, ferns and lians also was quantified. The number of tree species and the presence of non woody species did not correlat with density of overstorey pines. Abundance and frequency of species showed no significant diferences, when samples were grouped according to their location in the center or close to stands edge. Distribution pattern of understorey trees within stands was quantified, using Cox’ index, species diversity was compared by means of Shannon-index. Similarity of stands was compared by Sörensen-Index. It was concluded, that exotic species planted on poor agricultural soil may not only be of farmers interest because of their high potential for wood production. These plantations also may be considered from conservationist point of view, since they show an unexpected high diversity, so contributing in a longer run to landscape improvement, possibly due to the small extension of stands.

  5. ENERGY BALANCE AND CO2 EXCHANGE BEHAVIOUR IN SUB-TROPICAL YOUNG PINE (Pinus roxburghii PLANTATION

    Directory of Open Access Journals (Sweden)

    B. K. Bhattacharya

    2012-08-01

    Full Text Available A study was conducted to understand the seasonal and annual energy balance behaviour of young and growing sub-tropical chir pine (Pinus roxburghii plantation of eight years age in the Doon valley, India and its coupling with CO2 exchange. The seasonal cycle of dekadal daytime latent heat fluxes mostly followed net radiation cycle with two minima and range between 50–200 Wm-2 but differed from the latter during the period when soil wetness and cloudiness were not coupled. Dekadal evaporative fraction closely followed the seasonal dryness-wetness cycle thus minimizing the effect of wind on energy partitioning as compared to diurnal variation. Daytime latent heat fluxes were found to have linear relationship with canopy net assimilation rate (Y = 0.023X + 0.171, R2 = 0.80 though nonlinearity exists between canopy latent heat flux and hourly net CO2 assimilation rate . Night-time plant respiration was found to have linear relationship (Y = 0.088 + 1.736, R2 = 0.72 with night-time average vapour pressure deficit (VPD. Daily average soil respiration was found to be non-linearly correlated to average soil temperatures (Y = -0.034X2 + 1.676X – 5.382, R2 = 0.63 The coupled use of empirical models, seasonal energy fluxes and associated parameters would be useful to annual water and carbon accounting in subtropical pine ecosystem of India in the absence high-response eddy covariance tower.

  6. Control of Growth Efficiency in Young Plantation Loblolly Pine and Sweetgum through Irrigation and Fertigation Enhancement of Leaf Carbon Gain; FINAL

    International Nuclear Information System (INIS)

    L. Samuelson

    1999-01-01

    The overall objective of this study was to determine if growth efficiency of young plantation loblolly pine and sweetgum can be maintained by intensive forest management and whether increased carbon gain is the mechanism controlling growth efficiency response to resource augmentation. Key leaf physiological processes were examined over two growing seasons in response to irrigation, fertigation (irrigation with a fertilizer solution), and fertigation plus pest control (pine only). Although irrigation improved leaf net photosynthesis in pine and decreased stomatal sensitivity to vapor pressure deficit in sweetgum, no consistent physiological responses to fertigation were detected in either species. After 4 years of treatment, a 3-fold increase in woody net primary productivity was observed in both species in response to fertigation. Trees supplemented with fertigation and fertigation plus pest control exhibited the largest increases in growth and biomass. Furthermore, growth efficiency was maintained by fertigation and fertigation plus pest control, despite large increases in crown development and self-shading. Greater growth in response to intensive culture was facilitated by significant gains in leaf mass and whole tree carbon gain rather than detectable increases in leaf level processes. Growth efficiency was not maintained by significant increases in leaf level carbon gain but was possibly influenced by changes in carbon allocation to root versus shoot processes

  7. Hybrid pine for tough sites

    International Nuclear Information System (INIS)

    Davidson, W.H.

    1994-01-01

    A test planting of 30 first- and second-generation pitch x loblolly pine (pinus rigida x P. taeda) hybrids was established on a West Virginia minesoil in 1985. The site was considered orphaned because earlier attempts at revegetation were unsuccessful. The soil was acid (pH 4.6), lacking in nutrients, and compacted. Vegetation present at the time of planting consisted of a sparse cover of tall fescue (Festuca arundinacea) and poverty grass (Danthonia spicata) and a few sourwood (Oxydendrum arboreum) and mountain laurel (Kalmia latifolia) seedlings. In the planting trial, 30 different hybrids were set out in 4 tree linear plots replicated 5 times. The seedlings had been grown in containers for 1 yr before outplanting. Evaluations made after 6 growing seasons showed overall plantation survival was 93%; six hybrids and one open-pollinated cross survived 100%. Individual tree heights ranged from 50 to 425 cm with a plantation average of 235 cm (7.7 ft). Eleven of the hybrids had average heights that exceeded the plantation average. Another test planting of tree and shrub species on this site has very poor survival. Therefore, pitch x loblolly hybrid pine can be recommended for reclaiming this and similar sites

  8. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations

    Science.gov (United States)

    Zhou, Xiaoqi; Guo, Zhiying; Chen, Chengrong; Jia, Zhongjun

    2017-04-01

    Forest plantations have been recognised as a key strategy management tool for stocking carbon (C) in soils, thereby contributing to climate warming mitigation. However, long-term ecological consequences of anthropogenic forest plantations on the community structure and diversity of soil microorganisms and the underlying mechanisms in determining these patterns are poorly understood. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e. slash pine, hoop pine and kauri pine) and a eucalypt species in subtropical Australia. We investigated the patterns of community structure, and the diversity of soil bacteria and eukaryotes by using high-throughput sequencing of 16S rRNA and 18S rRNA genes. We also measured the potential methane oxidation capacity under different tree species. The results showed that slash pine and Eucalyptus significantly increased the dominant taxa of bacterial Acidobacteria and the dominant taxa of eukaryotic Ascomycota, and formed clusters of soil bacterial and eukaryotic communities, which were clearly different from the clusters under hoop pine and kauri pine. Soil pH and nutrient quality indicators such as C : nitrogen (N) and extractable organic C : extractable organic N were key factors in determining the patterns of soil bacterial and eukaryotic communities between the different tree species treatments. Slash pine and Eucalyptus had significantly lower soil bacterial and eukaryotic operational taxonomical unit numbers and lower diversity indices than kauri pine and hoop pine. A key factor limitation hypothesis was introduced, which gives a reasonable explanation for lower diversity indices under slash pine and Eucalyptus. In addition, slash pine and Eucalyptus had a higher soil methane oxidation capacity than the other tree species. These results suggest that significant changes in soil microbial communities may occur in response to chronic disturbance by tree plantations, and highlight

  9. Soil carbon and nitrogen sequestration over an age sequence of Pinus patula plantations in Zimbabwean Eastern Highlands

    NARCIS (Netherlands)

    Mujuru, L.; Gotora, T.; Velthorst, E.J.; Nyamangara, J.; Hoosbeek, M.R.

    2014-01-01

    Forests play a major role in regulating the rate of increase of global atmospheric carbon dioxide (CO2) concentrations creating a need to investigate the ability of exotic plantations to sequester atmospheric CO2. This study examined pine plantations located in the Eastern Highlands of Zimbabwe

  10. Quantum Yields in Mixed-Conifer Forests and Ponderosa Pine Plantations

    Science.gov (United States)

    Wei, L.; Marshall, J. D.; Zhang, J.

    2008-12-01

    Most process-based physiological models require canopy quantum yield of photosynthesis as a starting point to simulate carbon sequestration and subsequently gross primary production (GPP). The quantum yield is a measure of photosynthetic efficiency expressed in moles of CO2 assimilated per mole of photons absorbed; the process is influenced by environmental factors. In the summer 2008, we measured quantum yields on both sun and shade leaves for four conifer species at five sites within Mica Creek Experimental Watershed (MCEW) in northern Idaho and one conifer species at three sites in northern California. The MCEW forest is typical of mixed conifer stands dominated by grand fir (Abies grandis (Douglas ex D. Don) Lindl.). In northern California, the three sites with contrasting site qualities are ponderosa pine (Pinus ponderosa C. Lawson var. ponderosa) plantations that were experimentally treated with vegetation control, fertilization, and a combination of both. We found that quantum yields in MCEW ranged from ~0.045 to ~0.075 mol CO2 per mol incident photon. However, there were no significant differences between canopy positions, or among sites or tree species. In northern California, the mean value of quantum yield of three sites was 0.051 mol CO2/mol incident photon. No significant difference in quantum yield was found between canopy positions, or among treatments or sites. The results suggest that these conifer species maintain relatively consistent quantum yield in both MCEW and northern California. This consistency simplifies the use of a process-based model to accurately predict forest productivity in these areas.

  11. Interacting genes in the pine-fusiform rust forest pathosystem

    Science.gov (United States)

    H.V. Amerson; T.L. Kubisiak; S.A. Garcia; G.C. Kuhlman; C.D. Nelson; S.E. McKeand; T.J. Mullin; B. Li

    2005-01-01

    Fusiform rust (FR) disease of pines, caused by Cronartium quercuum f.sp. fusiforme (Cqf), is the most destructive disease in pine plantations of the southern U. S. The NCSU fusiform rust program, in conjunction with the USDA-Forest Service in Saucier, MS and Athens, GA, has research underway to elucidate some of the genetic interactions in this...

  12. Ice damage in loblolly pine: understanding the factors that influence susceptibility

    Science.gov (United States)

    Doug P. Aubrey; Mark D. Coleman; David R. Coyle

    2007-01-01

    Winter ice storms frequently occur in the southeastern United States and can severely damage softwood plantations. In January 2004, a severe storm deposited approximately 2 cm of ice on an intensively managed 4-year-old loblolly pine (Pinus taeda L.) plantation in South Carolina. Existing irrigation and fertilization treatments presented an...

  13. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  14. Influence of Thinning and Pruning on Southern Pine Veneer Quality

    Science.gov (United States)

    Mark D. Gibson; Terry R. Clason; Gary L. Hill; George A. Grozdits

    2002-01-01

    This paper presents the effects of intensive pine plantation management on veneer yields, veneer grade distribution and veneer MOE as measured by ultrasonic stress wave transmission (Metriguard). Veneer production trials were done at a commercial southern pine plywood plant to elucidate the effects of silvicultural treatments on veneer quality, yield, and modulus of...

  15. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  16. Plantation-Seeding Forest Plantations – the New Method for Regeneration of Coniferous Forests at Large Clearings on Burned Lands

    Directory of Open Access Journals (Sweden)

    V. V. Tarakanov

    2014-02-01

    Full Text Available The new method of restoration of coniferous stands on large felling areas on burnt lands that lack seed trees is discussed. It involves limited planting of big grafted seedlings of quality wood, that have a high level of seed production, with the purpose of the subsequent natural sowing on these territories. Results of two-year-old research on approbation of the method on cuttings on large felling areas on burnt lands in conditions of the mid-Ob' river pine forests are stated. A good viability of «seed cultures» is noted. There is damage of the grafting pines by elk. Therefore there is a problem of protecting plantations against elk. For preservation of a high level of genetic variability of pine stands it is desirable to use in «seed cultures» the best trees from local plantings.

  17. Strong effects of a plantation with Pinus patula on Andean Subparamo vegetation: a case study from Columbia

    NARCIS (Netherlands)

    Wesenbeeck, van B.K.; Mourik, van T.A.; Duivenvoorden, J.F.; Cleef, A.M.

    2003-01-01

    The effect of a pine plantation on a native subparamo system in the Andes of Colombia (3 100 In above sea level) was studied. The vegetation of an 8 year-old plantation with Pinus patula was compared to that of the surrounding native subparamo. 59 plots made in the subparamo vegetation contained 121

  18. Flux agreement above a Scots pine plantation

    Science.gov (United States)

    Gay, L. W.; Vogt, R.; Bernhofer, Ch.; Blanford, J. H.

    1996-03-01

    The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one “low” tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the “high” tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches -1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a “phantom dew” error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent

  19. Semi-Arid Plantation by Anatolian Black Pine and Its Effects on Soil Erosion and Soil Properties

    Directory of Open Access Journals (Sweden)

    Sezgin Hacisalihoglu

    2018-04-01

    Full Text Available In this study, the effects of Anatolian Black pine [(Pinus nigra Arn. subsp. pallasiana (Lamb. Holmboe] plantation on hydro-physical soil properties and soil loss were investigated. This study was carried out on the afforestation field of Anatolian Black Pine in the Gölbaşı district of Ankara province, which is included in the arid and semi-arid regions. Totally 48 soil sample in two soil depth level (0-20cm, 20-50cm were collected from forest (36 soil sample and barren (control area (12 soil sample. Hydro-physically important soil properties were analysed [Sand (%, Silt (%, Clay (%, Organic Matter (%, pH, Field Capacity (%, Wilting Point (%, Saturation (%, Available Water Holding Capacity (cm/cm Saturated Hydraulic Conductivity (cm/hr, Bulk Density (gr/cm3]. And soil loss in a unit area by using ABAG (Allgemeine Boden Abtrags Gleichung model was estimated. Soil properties and soil loss amount relations among the land use group were determined. Topsoil (0-20cm and subsoil (20-50cm properties except subsoil organic matter were significantly affected by land use group. Finally, Significant changes were found for annual soil loss amounts in a unit area. Avarage annual soil loss in planted area was found approximately 5.5 times less than barren area at 0-50 cm soil depth. Vegetation factor (C which is one of the most important components of the soil loss equation, has been significantly affected by afforestation in a short period of 40 years and thus it was a variable to reduce to soil loss.

  20. Effect of climate variability and management practices on carbon, water and energy fluxes of a young Ponderosa pine plantation in the Sierra Nevada (CA)

    Science.gov (United States)

    Misson, L.; Tang, J.; McKay, M.; Goldstein, A. H.

    2003-04-01

    Despite the range and importance of semi-arid Ponderosa pine ecosystem in the United States, stand-scale fluxes of carbon, water and energy of these ecosystems have rarely been studied. Our research at the Blodgett Forest Research Station in the Sierra Nevada of California is advocated to better understand how these fluxes of a mid-elevation, young pine plantation vary interannually in response to climate variability, and how they are impacted by management practices such as shrub removal and thinning. Fluxes of CO2, H2O, and energy have been measured continuously since May 1999 by the eddy covariance method. Environmental parameters such as wind direction and speed, air temperature and humidity, net and photosynthetically active radiation, soil temperature, soil moisture, soil heat flux, rain, and atmospheric pressure are also monitored. Additional continuous measurements at the site have included O3 concentration and flux, and concentration and fluxes of a wide variety of volatile organic compounds. The data set covers periods characterized by various levels of drought stress. Shrub was removed in the spring 1999 and a precommercial thinning of 2/3 of the trees was applied in the spring 2000. Even during the winter, the young Ponderosa pine plantation at Blodgett acted mainly as a sink of carbon during the four years of measurement. The decrease of leaf area index and thus photosynthesis caused by thinning is the main factor that caused lower uptake, but increased respiration also occurred. These effects are limited in time and magnitude due to the rapidly increasing leaf area index after thinning. Beside this, the ability of this young pine plantation to act as a sink of carbon was also influenced by interannual variability of climate. Drought is a regular feature of the climate of California, making water availability the major controller of gas exchange in summer and fall. Freezing temperatures limit CO2 ecosystem uptake during the winter and tree growth in

  1. Thirteen Year Loblolly Pine Growth Following Machine Application of Cut-Stump Treament Herbicides For Hardwood Stump-Sprout Control

    Science.gov (United States)

    Clyde G. Vidrine; John C. Adams

    2002-01-01

    Thirteen year growth results of 1-0 out-planted loblolly pine seedlings on nonintensively prepared up-land mixed pine-hardwood sites receiving machine applied cut-stump treatment (CST) herbicides onto hardwood stumps at the time of harvesting is presented. Plantation pine growth shows significantly higher growth for pine in the CST treated plots compared to non-CST...

  2. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steve [Auburn Univ., AL (United States); McDonald, Timothy [Auburn Univ., AL (United States); Fasina, Oladiran [Auburn Univ., AL (United States); Gallagher, Tom [Auburn Univ., AL (United States); Smidt, Mathew [Auburn Univ., AL (United States); Mitchell, Dana [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Klepac, John [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Thompson, Jason [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Sprinkle, Wes [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Carter, Emily [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Grace, Johnny [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Rummer, Robert [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Corley, Frank [Corley Land Services, Chapman, AL (United States); Somerville, Grant [Tigercat, Brantford, ON (Canada)

    2014-09-01

    /PMH versus 68 gt/PMH for a comparable conventional system. Machine rate costs for felling and skidding were $2.31/gt and $3.72/gt for the high tonnage, and conventional systems, respectively. However, the most significant result of the project is that the high tonnage system was shown to be relatively insensitive to tree size. This ability to maintain felling and skidding productivity and cost as tree size decreases is a breakthrough in harvesting systems for southern pine plantations. The concept of transpirational drying of woody biomass was tested at an industrial scale at multiple locations during this project. Felled trees were allowed to dry in two scenarios: 1) in bunches where they were felled, and 2) in roadside piles. Although the wood piled in large piles at roadside did experience drying, the wood left in bunches experienced a greater moisture reduction. Drying times of 72 days in the late summer resulted in mean wood moisture content of 26% for skidder bunches and 39% for the large pile at roadside as compared to moisture contents of 55% to 58% for freshly cut trees. An existing whole-tree chipper, Precision 2675, was modified to allow production of chips smaller than the traditional pulp size chip (i.e. “microchips”). Feed rates and knife placements were retained in the new design, while additional pockets were incorporated in the chipper disk to allow the attachment of either four knives for pulp chips or eight knives for microchips. This design facilitated switching between the energy and pulp chip product options at relatively low expense (about ½ day downtime). Chipping of whole-trees into pulp chips and microchips with the Precision 2675 disk chipper resulted in average productivities of 79.5 gt/PMH and 70.7 gt/PMH, respectively. Production rates of the chipper were lower when producing microchips by about 10% relative to producing pulp chips, but rates were similar to those achievable when making clean pulp chips. Particle size analysis for clean

  3. Methanotrophic abundance and community fingerprint in pine and ...

    African Journals Online (AJOL)

    methanotrophs) is important to assess the microbial oxidation of the greenhouse gas methane (CH4) in soil under different land uses. Soil samples were collected from two plantation plots of pine and tea in southern China. Methanotrophic abundance ...

  4. Energy budgets in slash pine (Pinus elliottii) plantations at Dehra Dun

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, O.N.; Srivastava, V.K.

    1985-01-01

    Sample trees were felled in 1978 in 10-, 20- and 40-year-old plantations and dry weight determined for wood, slash and roots. Litter was collected every month for one year. Solar radiation was measured in an adjacent open area. Calculations indicated that the plantations fixed 17.5 x 10/sup 8/ Kcal/ha in 10 year, 24.9 x 10/sup 8/ in 20 year and 57.5 x 10/sup 8/ in 40 year representing 3.3, 2.3 and 2.7% of photosynthetically active radiation respectively.

  5. Bioregional Planning in Central Georgia, USA

    National Research Council Canada - National Science Library

    Dale, Virginia; Aldridge, Matthew; Arthur, Taryn; Baskaran, Latha; Berry, Michael; Chang, Michael; Efroymson, Rebecca; Garten, Chuck; Stewart, Catherine; Washington-Allen, Robert

    2005-01-01

    ...% of the native longleaf pine (Pinus palustris) forest remains intact. Besides the loss of species, habitats, and ecosystem services associated with longleaf pine forests, the environmental concerns of the region include air, water, and noise pollution...

  6. Body temperature variations of the Louisiana pine snake (Pituophis ruthveni) in a longleaf pine ecosystem

    Science.gov (United States)

    John G. Himes; Laurence M. Hardy; D. Craig Rudolph; Shirley J. Burgdorf

    2006-01-01

    The thermal ecology of the Louisiana pine snake, Pituophis ruthveni, was studied from 1993-97 in Louisiana and Texas. All snakes were implanted with temperature-sensitive radiotransmitters. Temperatures were recorded from snakes located above ground and underground and were compared between size and sex classes (juveniles, adult males, adult females). Associated air...

  7. Eddy covariance methane measurements at a Ponderosa pine plantation in California

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2009-11-01

    Full Text Available Long term methane flux measurements have been mostly performed with plant or soil enclosure techniques on specific components of an ecosystem. New fast response methane analyzers make it possible to use the eddy covariance (EC technique instead. The EC technique is advantageous because it allows continuous flux measurements integrating over a larger and more representative area including the complete ecosystem, and allows fluxes to be observed as environmental conditions change naturally without disturbance. We deployed the closed-path Fast Methane analyzer (FMA from Los Gatos Research Ltd and demonstrate its performance for EC measurements at a Ponderosa pine plantation at the Blodgett Forest site in central California. The fluctuations of the CH4 concentration measured at 10 Hz appear to be small and their standard deviation is comparable to the magnitude of the signal noise (±5 ppbv. Consequently, the power spectra typically have a white noise signature at the high frequency end (a slope of +1. Nevertheless, in the frequency range important for turbulent exchange, the cospectra of CH4 compare very well with all other scalar cospectra confirming the quality of the FMA measurements are good for the EC technique. We furthermore evaluate the complications of combined open and closed-path measurements when applying the Webb-Pearman-Leuning (WPL corrections (Webb et al., 1980 and the consequences of a phase lag between the water vapor and methane signal inside the closed path system. The results of diurnal variations of CH4 concentrations and fluxes are summarized and compared to the monthly results of process-based model calculations.

  8. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands

    Science.gov (United States)

    Don C. Bragg; James M. Guldin

    2010-01-01

    Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on...

  9. Analisis Keuntungan Pengusahaan Hutan Pinus (Pinus Merkusii Jung Et De Vriese Di KPH Pekalongan Barat (The Pine (Pinus merkusii Jung et de Vriese Forest Plantation Rentability Analysis In KPH West Pekalongan

    Directory of Open Access Journals (Sweden)

    Wahyu Andayani

    2011-01-01

    Full Text Available Economical value of the pine wood and resin in the last ten years has contributed significant revenue to the KPH West Pekalongan. This research is aimed to discover the optimum rotation of the development of forest pine to gain the maximum yield for the producer. The method used in this study is the analysis of the Land Expectation Value (LEV by estimating the physical production function which developes the wood and resin at every plant rotation. The results of the analysis is that in the rotation of 20 years, the pine forest could produce maximum net yield/ net (profitability /rentability from the sales of wood and resin, by using the real interest rate of 9,75% annually as follow : (a In the third bonita is Rp. 1.546.945, 36/hectar/rotation and (b in the fourth bonita is Rp. 2.032.392,56/hectar/rotation. By shortening the rotation from 35 years to 20 years, it results in the increasing yield of the forest pine plantation in KPH West Pakalongan of 6,1 % to 8,6% more than the real yield gained by the producer at present.Key words: Rentability, rotation, bonita, resin, LEV

  10. Methanotrophic abundance and community fingerprint in pine and ...

    African Journals Online (AJOL)

    Zheng Y

    2012-07-10

    Jul 10, 2012 ... in pine and tea plantation soils as revealed by molecular methods. Yong Zheng. 1 .... Soil pH was determined with a soil to water ratio of 2:5 (W/V). Soil organic matter (OM) ..... Stable isotope probing analysis of the diversity ...

  11. Nantucket pine tip moth phenology and timing of insecticide spray applications in seven Southeastern States

    Science.gov (United States)

    Christopher J. Fettig; Mark J. Dalusky; C. Wayne Berisford

    2000-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera: Tortricidae), is a common pest of Christmas tree and pine plantations throughout much of the Eastern United States. The moth completes two to five generations annually, and insecticide spray timing models are currently available for controlling populations where three or...

  12. Impact of Early Pruning and Thinning on Lumber Grade Yield From Loblolly Pine

    Science.gov (United States)

    Alexander Clark; Mike Strub; Larry R. Anderson; H. Gwynne Lloyd; Richard F. Daniels; James H. Scarborough

    2004-01-01

    The Sudden Sawlog Study was established in 1954 near Crossett, AR, in a 9-year-old loblolly pine plantation to test the hypothesis that loblolly plantations can produce sawtimber in 30 years. To stimulate diameter and height growth and clear wood production, study plots were heavily thinned, trees pruned to 33 feet by age 24 years, under-story mowed, and growth of...

  13. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest

    Science.gov (United States)

    Carlos Alberto Silva; Carine Klauberg; Andrew Thomas Hudak; Lee Alexander Vierling; Wan Shafrina Wan Mohd Jaafar; Midhun Mohan; Mariano Garcia; Antonio Ferraz; Adrian Cardil; Sassan Saatchi

    2017-01-01

    Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised...

  14. Soil properties in 35 y old pine and hardwood plantations after conversion from mixed pine-hardwood forest

    Science.gov (United States)

    D. Andrew Scott; Michael G. Messina

    2009-01-01

    Past management practices have changed much of the native mixed pine-hardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately,...

  15. Effects of logging residue management on the growth and nutriend distribution of a pinus taeda plantation in central Louisiana, USA

    Science.gov (United States)

    A. Tiarks; M. Elliot-Smith; R. Stagg

    2004-01-01

    A 37-year-old pine plantation was harvested. An experiment was established at the site with three levels of logging residue retention and two levels of weed control. By age 10 years retaining harvest residue increased pine volumes by 10 m3 ha-land weed control increased production by another 20 m3 ha

  16. Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation

    Science.gov (United States)

    Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus v.

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q 10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest. PMID:25970791

  17. Home-range size and habitat use of European Nightjars Caprimulgus europaeus nesting in a complex plantation-forest landscape

    OpenAIRE

    Sharps, Katrina; Henderson, Ian; Conway, Greg; Armour-Chelu, Neal; Dolman, Paul

    2015-01-01

    In Europe, the consequences of commercial plantation management for birds of conservation concern are poorly understood. The European Nightjar Caprimulgus europaeus is a species of conservation concern across Europe due to population depletion through habitat loss. Pine plantation-forest is now a key Nightjar nesting habitat, particularly in northwestern Europe, and increased understanding of foraging habitat selection is required. We radiotracked 31 Nightjars in an extensive (185-km2) comple...

  18. The vertebrate fauna of Ichauway, Baker County, GA

    Science.gov (United States)

    Smith, L.L.; Steen, D.A.; Stober, J.M.; Freeman, Mary C.; Golladay, S.W.; Conner, L.M.; Cochrane, J.

    2006-01-01

    Less than 4% of the once extensive Pinus palustris (longleaf pine) ecosystem remains today. Although longleaf pine habitats are recognized for their high species diversity, few published accounts document the vertebrate faunas of remaining tracts. Here we report on the vertebrate species richness of lchauway, an 11,300-ha property in Baker County, GA. The property includes ca. 7300 ha of longleaf pine with native ground cover, along with more than 30 seasonal wetlands and ca. 45 km of riparian habitat associated with Ichawaynochaway Creek, Big Cypress Creek, and the Flint River. The fauna includes 61 species of fish, 31 amphibians, 53 reptiles, 191 birds, and 41 mammals. Despite the relative isolation of the property from other natural ecosystems, the vertebrate fauna of lchauway is remarkably diverse and may offer an example of reference conditions to guide restoration of longleaf pine forests, associated seasonal wetlands, and riparian areas elsewhere in the southeastern U S.

  19. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    Science.gov (United States)

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.

  20. Planning for an uncertain future: Restoration to mitigate water scarcity and sustain carbon sequestration

    Science.gov (United States)

    Steven T. Brantley; James M. Vose; David N. Wear; Larry Band

    2018-01-01

    The desired future conditions of longleaf pine (Pinus palustris) can be described by ecosystem structural characteristics as well as by the provision of ecosystem services. Although the desired structural characteristics of restored longleaf pine ecosystems have been described at length, these characteristics deserve a brief review here because...

  1. The social and economic drivers of the southeastern forest landscape

    Science.gov (United States)

    R. Kevin McIntyre; Barrett B. McCall; David N. Wear

    2018-01-01

    The last quarter century has witnessed an unprecedented resurgence of interest in the management of longleaf pine (Pinus palustris) forests, a phenomenon that has been coupled with increased understanding of the ecology, management, and restoration of these ecosystems. As interest in longleaf pine becomes more mainstream among landowners and the...

  2. Ecosystem carbon stocks in Pinus palustris forests

    Science.gov (United States)

    Lisa Samuelson; Tom Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Pete Anderson; Jason Jackson; Lorenzo Ferrari; Tim A. Martin; Wendell P. Cropper

    2014-01-01

    Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for...

  3. An examination of factors influencing the spatial distribution of foraging bats in pine stands in the southeastern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Michael, A., Jr.

    2003-01-01

    Menzel, M.A. 2003. An examination of factors influencing the spatial distribution of foraging bats in pine stands in the Southeastern United States. Ph.D Dissertation. Davis College of Agriculture, Forestry and Consumer Sciences at West Virginia University, Morgantown, West Virginia. 336 pp. The general objective of this dissertation was to determine the effect of changes in forest structure on bat activity patterns in southern pine stands. Four sub studies are included in the dissertation: (1) An examination of the homerange size, habitat use and diet of four reproductively active male Rafinesque's big eared bats (Corynorhimus rafinesquii); (2) An examination of the diet of 5 reproductively active male Rafinesque's big eared bats; (3) A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 vegetational community types: forested riparian areas, clearcuts, young pine plantations, mature plantations, and pine savannahs; (4) A summarization of information concerning the natural history of all bat species common in the SPR.

  4. Adjusting slash pine growth and yield for silvicultural treatments

    Science.gov (United States)

    Stephen R. Logan; Barry D. Shiver

    2006-01-01

    With intensive silvicultural treatments such as fertilization and competition control now commonplace in today's slash pine (Pinus elliottii Engelm.) plantations, a method to adjust current growth and yield models is required to accurately account for yield increases due to these practices. Some commonly used ad-hoc methods, such as raising site...

  5. Bulked fusiform rust inocula and Fr gene interactions in loblolly pine

    Science.gov (United States)

    Fikret Isik; Henry Amerson; Saul Garcia; Ross Whetten; Steve. McKeand

    2012-01-01

    Fusiform rust disease in loblolly (Pinus taeda L.) and slash (Pinus elliottii Engelm. var elliottii) pine plantations in the southern United States causes multi-million dollar annual losses. The disease is endemic to the region. The fusiform rust fungus (Cronartium quercuum sp.

  6. Planting density and silvicultural intensity impacts on loblolly pine stand development in the western gulf coastal plain through age 8

    Science.gov (United States)

    Michael B. Kane; Dehai Zhao; John W. Rheney; Michael G. Messina; Mohd S. Rahman; Nicholas Chappell

    2012-01-01

    Commercial plantation growers need to know how planting density and cultural regime intensity affect loblolly pine plantation productivity, development and value to make sound management decisions. This knowledge is especially important given the diversity of traditional products, such as pulpwood, chip-n-saw, and sawtimber, and potential products, such as bioenergy...

  7. Conversion of natural forest to managed forest plantations decreases tree resistance to prolonged droughts

    Science.gov (United States)

    Jean-Christophe Domec; John S. King; Eric Ward; A. Christopher Oishi; Sari Palmroth; Andrew Radecki; Dave M. Bell; Guofang Miao; Michael Gavazzi; Daniel M. Johnson; Steve G. McNulty; Ge Sun; Asko. Noormets

    2015-01-01

    Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking...

  8. Multiple diseases impact survival of pine species planted in red spine stands harvested in spatially variable retention patterns

    Science.gov (United States)

    M.E. Ostry; M.J. Moore; C.C. Kern; R.C. Venette; B.J. Palik

    2012-01-01

    Increasing the diversity of species and structure of red pine (Pinus resinosa) is often a management goal in stands simplified by practices such as fire suppression and plantation management in many areas of the Great Lakes Region. One approach to diversification is to convert predominantly even-aged, pure red pine stands to multi-cohort, mixed-...

  9. [Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia].

    Science.gov (United States)

    León, Juan Diego; González, María Isabel; Gallardo, Juan Fernando

    2011-12-01

    Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.

  10. City of Freeport, Florida, State Road 20 Water Main Installation, Final Environmental Assessment, Eglin Air Force Base, Florida

    Science.gov (United States)

    2010-07-01

    If contamination, drought or natural disaster, such as a hurricane, impacted one water supply, an interconnection with neighboring municipalities...Scientific Name Sandhills Ecological Association Longleaf Pine Pinus palustris Red-cockaded Woodpecker Picoides borealis Turkey Oak Quercus laevis...canadensis Flatwoods Ecological Association Longleaf Pine Pinus palustris Wood Duck Aix sponsa Runner Oak Quercus pumila Red-winged Blackbird Agelaius

  11. Results 3 decades after the plantation trials with palebark pine in the mountain of the coastal chain in Calabria

    Directory of Open Access Journals (Sweden)

    Silvano Avolio

    2010-12-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Normal 0 14 false false false MicrosoftInternetExplorer4 In Italy the palebark pine (Pinus leucodermis Antoine forms natural populations present in Calabria and Lucania at the borderline between the two regions on calcareous soils and litho-soils. The surface range is about 5700 hectares, distributed in four natural groups of vegetation, two Apennine areas (Alpi, Spina -Zàccana, Pollino and two coastal areas (Palanuda-Pellegrino, Montéa. In the mountain areas the species becomes exclusive and shows resistance to climate harshness at high elevation, ability to colonise ecologically difficult sites, aptitude and specific reliability to artificial spreading. The experimental plan, carried out without any repetition because technically unfeasible in the area, estimated three input variables: plastic bag-grown S2F2 and bare-rooted seedlings S2T2, inter-distance on the terrace (0.5m, 1m, 1.5m, elevation a.s.l. (1400m, 1550m, 1700m. 4 yrs old seedlings, one half plastic bag-grown and one half bare-rooted, were transplanted in autumn in each site on 24 terraces (4x3x2 handmade in summer. Each sampled area was made up of four adjacent terraces for an overall length of 184 m. Transplanting operations were completed in December and an enclosure was set up to protect the plantation from grazing. As a whole, the experimental areas was shaped as a rectangle. Additional terraces, carried out in the lower part, were planted with bare-rooted Austrian pine and Silver fir seedlings at an inter-distance of 1m and provided the direct comparison with the same thesis of palebark pine. Maintenance practices were undertaken in June and in July of the first and second year to eliminate weeds and shrubs along the terraces. The mensurational surveys were carried out in 1982-1983-1987-1994-2007-2009. The quite complete mortality of Austrian pine and Silver fir transplants in 1983-84 made impossible any further

  12. The Nantucket pine tip moth: old problems, new research. Proceedings of an informal conference, the Entomological Society of America, annual meeting. 1999 December 12-16

    Science.gov (United States)

    C. Wayne Berisford; Donald M. Grosman; [Editors

    2002-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) has become a more prevalent pest in the South as pine plantation management has intensified. The Pine Tip Moth Research Consortium was formed in 1995 to increase basic knowledge about the moth and to explore ways to reduce damage. A conference was held in 1999 at the Entomological Society...

  13. Quantifying carbon sequestration in forest plantations by modeling the dynamics of above and below ground carbon pools

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen

    2010-01-01

    Intensive pine plantation management may provide opportunities to increase carbon sequestration in the Southeastern United States. Developing management options that increase fiber production and soil carbon sequestration require an understanding of the biological and edaphic processes that control soil carbon turnover. Belowground carbon resides primarily in three...

  14. Cultural intensity and planting density effects on individual tree stem growth, stand and crown attributes, and stand dynamics in thinned loblolly pine plantations during the age 12- to age 15- year period in the Upper Coastal Plain and Piedmont of the Southeastern United States

    Science.gov (United States)

    Evan Johnson; Michael Kane; Dehai Zhao; Robert Teskey

    2015-01-01

    Three existing loblolly pine (Pinus taeda L.) installations in the Plantation Management Research Cooperative's Upper Coastal Plain/Piedmont Culture Density Study were used to examine the effects of two cultural intensities, four initial planting densities, and their interactions on stem growth at the individual tree level from age 12 to 15 years and at the stand...

  15. Overstory tree status following thinning and burning treatments in mixed pine-hardwood stands on the William B. Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Jo Schweitzer; Yong Wang

    2013-01-01

    Prescribed burning and thinning are intermediate stand treatments whose consequences when applied in mixed pine-hardwood stands are unknown. The William B. Bankhead National Forest in northcentral Alabama has undertaken these two options to move unmanaged, 20- to 50-year-old loblolly pine (Pinus taeda L.) plantations towards upland hardwood-dominated...

  16. Status of fusiform rust incidence in slash and loblolly pine plantations in the southeastern United States

    Science.gov (United States)

    KaDonna C. Randolph

    2016-01-01

    Southern pine tree improvement programs have been in operation in the southeastern United States since the 1950s. Their goal has been to improve volume growth, tree form, disease resistance, and wood quality in southern pines, particularly slash pine (Pinus elliottii) and loblolly pine (P. taeda). The disease of focus has been...

  17. Economic Sustainability of Payments for Water Yield in Slash Pine Plantations in Florida

    Directory of Open Access Journals (Sweden)

    Andres Susaeta

    2016-09-01

    Full Text Available Forests play an important role with respect to water resources, and can be managed to increase surface- and groundwater recharge. With the creation of a forest water yield payment system, privately-owned forests, which comprise the majority of forest area in the Southeastern US, could become an important potential source of additional water supply. The economic tradeoffs between timber revenues and water yield are not well understood. To address this, we use the example case of slash pine production in Florida, and employ a forest stand-level optimal rotation model that incorporates forest management, and assessed a range of feasible water yield prices on forest profitability. Our analysis was limited to a range of water yield prices ($0.03, $0.07, and $0.30 kL−1 that would make water yield from slash pine economically competitive with water supply alternatives (e.g., reservoir construction. Even at relatively low water prices, we found that managing slash pine forests for both timber and water yield was preferred to managing just for timber when assuming an initial tree density less than 2200 trees·ha−1. However, with higher levels of initial tree planting density and low water prices, managing slash pine for timber production alone was more profitable unless stands are heavily-thinned, suggesting that even mid-rotation stands could be included in a forest water yield payments program. Compared to low-tree planting density and lightly thinned slash pine forests, an intensive approach of planting a lot of trees and then heavily thinning them generated 8% to 33% higher profits, and 11% more ($192 ha−1 on average. We conclude that payments for water yield are economically feasible for slash pine stands in Florida, and would benefit forest landowners, particularly with higher prices for water yield.

  18. Visual Basic Growth-and-Yield Models With A Merchandising Optimizer For Planted Slash and Loblolly Pine in the West Gulf Region

    Science.gov (United States)

    R.L. Busby; S.J. Chang; P.R. Pasala; J.C.G. Goelz

    2004-01-01

    We developed two growth-and-yield models for thinned and unthinned plantations of slash pine (Pinus elliottii Engelm. var elliottii) and loblolly pine (P. taeda L.). The models, VB Merch-Slash and VB Merch-Lob, can be used to forecast product volumes and stand values for stands partitioned into 1-inch diameter-at...

  19. Assessment of species diversity of plants and carabid beetles at sample plots in Korean pine-broad-leaved stands of postfire origin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2018-06-01

    Full Text Available For natural pine forests in the southern part of the Primorsky Krai, an assessment of biological diversity has been performed based on the results of descriptions of valuable tree species, living ground cover and carabid beetles Carabus. Field work was carried out on the trial plots laid in the forest plantations of the pine and broad-leaved forest with the domination of Korean pine Pinus koraiensis Siebold & Zucc. Model sites contained a chronological sequence of development of forest plantations of fresh small-grass and different-bush type on the interval of age 50–200 years. In the process of reforestation, a decrease in the total projective coverage of living ground cover was observed, while the number of species characteristic for natural pine forests, as well as their leveling, increased at the same time. By the age of 200 years species richness and leveling of the number of ground beetle species have reached a maximum. Statistically significant difference was found between the total number of caught insects in the plantations of 50 and 200, 80 and 200 years. The most valuable in terms of biological diversity are the old-growth pine forests. A conclusion was made about the value of this group of forests for the protection of valuable communities and habitats of species. Among ground beetle species Carabus schrencki Motschulsky, Carabus maacki Morawitz and Carabus macleayi Dejean can serve as an indicator of forest value. With a minimum total projective coverage (8.3 %, 200-year-old pine forests are favorable for the growth of such characteristic species as the mountain peony Paeonia oreogeton S. Moore, pale-mountain Dryopteris crassirhizoma Nakai, and the Pale Indian Plantain Cacalia auriculata H. Rob. & Brettell. On this site the Shannon index of species of living ground cover was 3.6, the Carabus species is 1.4.

  20. Planting nonlocal seed sources of loblolly pine - managing benefits and risks

    Science.gov (United States)

    Clem Lambeth; Steve Mckeand; Randy Rousseau; Ron Schmidtling

    2005-01-01

    Seed source testing of loblolly pine (Pinus taeda), which began in the 1920s, has allowed large realized genetic gains from using nonlocal seed sources in operational plantations. Seed source testing continues, and deployment guidlines are being refined. some general effects of seed source movement can be described, but there are still gaps in (1)...

  1. The effects of decreased water availability on loblolly pine (Pinus taeda L.) productivity and the interaction between fertilizer and drought

    Science.gov (United States)

    Adam O. Maggard; Rodney E. Will; Duncan S. Wilson; Cassandra R. Meek

    2016-01-01

    As part of the regional PINEMAP (Pine Integrated Network: Education, Mitigation, and Adaptation project) funded by the NIFA - USDA, we established a factorial study in McCurtain County, OK near Broken Bow. This study examined the effects of fertilization and ~30 percent reduction in throughfall on an seven-yearold loblolly pine (Pinus taeda L.) plantation. The...

  2. Oleoresin Capsicum has Potential as a Rodent Repellent in Direct Sedding Longleaf Pine

    Science.gov (United States)

    James P. Barnett

    1998-01-01

    Direct seeding of southern pines has been a versatile and inexpensive alternative to planting on many reforestation sites across the South. Successful direct seeding has required that seeds be coated with thiram to repel birds, and with endrin to repel rodents. Endrin, which is extremely toxic, is no longer produced in the United States. Therefore, a substitute is...

  3. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    Science.gov (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  4. Physical and chemical properties of slash pine tree parts

    Science.gov (United States)

    E. T. Howard

    1973-01-01

    In three 22-year-old slash pines from an unthinned plantation in central Louisiana, stemwood comprised 58.5 percent of total ovendry tree weight. Stumps and main roots made up 16.5 percent, bark 12.5, top of bole 5.0, needles 4.0, and branches 3.5. This material now is largely wasted when a tree is harvested; methods of utilizing it would extend fiber supplies by 70...

  5. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico

    Science.gov (United States)

    LI YIQING; MING XU; ZOU XIAOMING; PEIJUN SHI§; YAOQI ZHANG

    2005-01-01

    We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy-fraction organic carbon (HF-OC) measured by...

  6. Soil Profile Characteristics of a 25-Year-Old Windrowed Loblolly Pine Plantation in Louisiana

    Science.gov (United States)

    William B. Patterson; John C. Adams; Spencer E. Loe; R. Jarod Patterson

    2002-01-01

    Windrowing site preparation, the raking and piling of long rows of logging debris, has been reported to displace surface soil, redistribute nutrients, and reduce volume growth of southern pine forests. Many of these studies have reported short-term results, and there are few long-term studies of the effects of windrowing on soil properties and pine growth. A 16.2...

  7. Reapplication of Silvicultural Treatments Impacts Phenology and Photosynthetic Gas Exchange of Loblolly Pine

    Science.gov (United States)

    Zhenmin Tang; Jim L. Chambers; Mary A. Sword; Shufang Yu; James P. Barnett

    2004-01-01

    A loblolly pine (Pinus taeda L.) plantation, established in 1981, was thinned and fertilized in 1988. Thinning and fertilization treatments were applied again in early 1995. The morphology of current flushes and needles were measured between March and October in 1995 through 1997. Physiological responses were monitored in the upper and lower crowns....

  8. Effect of midrotation fertilization on growth and specific gravity of loblolly pine

    Science.gov (United States)

    Finto Antony; Lewis Jordan; Richard F. Daniels; Laurence R. Schimleck; Alexander Clark III; Daniel B. Hall

    2009-01-01

    Wood properties and growth were measured on breast-height cores and on disks collected at different heights from a thinned and fertilized midrotation loblolly pine (Pinus taeda L.) plantation in the lower Coastal Plain of North Carolina. The study was laid out in a randomized complete-block design receiving four levels of nitrogen (N) fertilizer: unfertilized...

  9. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2015-10-01

    Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

  10. Liming and fertilisation in Pinus taeda plantations with severe nutrient deficiency in savanna soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    2014-11-01

    Full Text Available Soils with high acidity and low exchangeable bases may be responsible for low yields of Pinus taeda in a forest plantation at Jaguariaíva, Paraná State, Brazil. The aim of this study was to evaluate the effect of liming and fertilisation, applied over litter, on two selected areas with Pinus taeda plantations. Soil, litter and pine needles were evaluated for K, Ca and Mg concentrations and soil acidity parameters. Seven treatments were applied: (i complete (N, P, K, Zn, Cu, B, Mo, and lime; (ii without N, P, and K; (iii without Zn, Cu, B, and Mo; (iv without K; (v without Zn; (vi without lime; and (vii control (without nutrients and lime. Soil samples were collected at five soil depths (0-5, 5-10, 10-20, 20-40 and 40-60 cm simultaneously with litter samples. Needles were also collected from the first and second pine flushes. Liming induced soil pH, Ca2+, and Mg2+ increases, and the opposite was observed for Al3+ and Al saturation. Fertilisation increased soil exchangeable K+ concentrations and needle and litter K concentrations. The low Ca and Mg concentrations found in the plant needles might be attributable to their low mobility.

  11. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.

    Science.gov (United States)

    Sever, Hakan; Makineci, Ender

    2009-08-01

    Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.

  12. Assessing the likely impacts of climate change on pests, diseases and weeds of Australia's temperate plantation forests

    International Nuclear Information System (INIS)

    Kriticos, Darren; Leriche, Agathe; Pinkard, Elizabeth A.; Wharton, Trudi N.; Potter, Karina J.B.; Watt, Mike S.; Battaglia, Michael; Richardson, Brian

    2007-01-01

    Full text: Full text: Australia's plantation forests presently cover some 163 milllion hectares, accounting for 105 billion tonnes of carbon. Plantation forests also account for approximately two thirds of the A$18 billion value of turnover in Australia's forest product industries (Bureau of Resource Sciences 2006). Plantation forests also play a small but significant role in mitigating the effects of climate change through sequestration of carbon into durable timber products. However, climate change is likely to pose several direct and indirect challenges to this important industry. One of the indirect challenges is likely to come through changes in the distribution, relative abundance and population dynamics of both native and exotic insects, diseases and weeds (collectively pests) (Sutherst etal. 2007). A series of case studies involving key pests of Eucalypt and Pine plantations are used to explore the likely impacts of climate change on plantation productivity. Global climate model (GCM) scenarios from Ozclim are used with CLIMEX to project changes in the potential distribution and relative abundance of these pests. The GCM results are also used to generate synthetic weather sequences for future climate scenarios. These weather sequences are used in DYMEX models of pest population dynamics to explore non-linear responses of the pest populations. In turn, the DYMEX results are fed into a process-based plant growth model (CABALA), for the three major plantation species in order to assess the likely effects of changing pest populations associated with climate, change on plantation productivity

  13. Productivity and cost of harvesting a stemwood biomass product from integrated cut-to-length harvest operations in Australian Pinus radiata plantations

    International Nuclear Information System (INIS)

    Walsh, D.; Strandgard, M.

    2014-01-01

    Significant quantities of woody biomass from the tops of trees and larger woody ‘waste’ pieces that fall outside existing sawlog and pulpwood specifications are left on site post final harvest in Australian radiata Pinus radiata (D. Don) (radiata pine) plantations. Woody biomass is a potential product for pulp making or energy generation. Commercial use of woody biomass from radiata pine plantations would add extra value to the Australian plantation estate through improved resource utilisation, and potentially reduced post-harvesting silvicultural costs. This study investigated the productivity and cost impact of the harvest and extraction to roadside of woody biomass in an integrated harvest operation in a typical Australian two machine (harvester/processor and forwarder), cut-to-length, clearfall operation in a mature, thinned radiata pine plantation. The harvest operation yielded 23 GMt/ha (5% of the total yield) of woody biomass (known as ‘fibreplus’), 443 GMt/ha of sawlogs and 28 GMt/ha of pulpwood. The mean quantity of biomass left on site was 128 GMt/ha, mainly consisting of branches and needles, sufficient to minimise nutrient loss and protect the soil from erosion. Woodchips derived from the fibreplus product were suitable for kraft pulp making, (when blended in small amounts with clean de-barked roundwood woodchips), and for energy generation. The method trialed with the fibreplus product being produced did not impact harvesting and processing productivity and costs, but extraction was 14% less productive. Through analysis of the productivities of each phase and development of a cost model the harvest and extraction of the fibreplus product was estimated to increase total unit costs by ∼4.9%. - Highlights: • Study of the productivity and cost impact of producing a woody biomass product. • We compared two scenarios – harvesting with and without the biomass product. • An additional 23 GMt/ha (5% of the total yield) of woody biomass

  14. Eleventh-year results of fertilization, herbaceous, and woody plant control in a loblolly pine plantation

    Science.gov (United States)

    James D. Haywood; Allan E. Tiarks

    1990-01-01

    Through 11 years, fertilization at planting significantly increased the stemwood volume (outside bark) per loblolly pine (Pinus taeda L.) on an intensively prepared moderately well-drained fine sandy loam site in northern Louisiana. Four years of herbaceous plant control significantly increased pine survival, and because herbaceous plant control...

  15. Response of planted ponderosa pine seedlings to weed control by herbicide in western Montana

    Science.gov (United States)

    Fabian C.C. Uzoh

    1999-01-01

    The effects of competing herbaceous vegetation on the growth of ponderosa pine seedlings with and without herbicide Pronone were characterized in this 1987-1990 study. Study areas were established in 36 plantations across western Montana on Champion International Corporation's timberland (currently owned by Plum Creek Timber Company). The study sites were divided...

  16. Long-term Root Growth Response to Thinning, Fertilization, and Water Deficit in Plantation Loblolly Pine

    Science.gov (United States)

    M.A. Sword-Sayer; Z. Tang

    2004-01-01

    High water deficits limit the new root growth of loblolly pine (Pinus taeda L.), potentially reducing soil resource availability and stand growth. We evaluated new root growth and stand production in response to thinning and fertilization in loblolly pine over a 6-year period that consisted of 3 years of low water deficit followed by 3 years of high...

  17. Measuring crown dynamics of longleaf pine in the sandhills of Eglin Air Force Base

    Science.gov (United States)

    Matt Anderson; Greg L. Somers; W. Rick Smith; Mickey Freeland; Donna Ruth

    1998-01-01

    The USDA Forest Service SRS, in cooperation with Auburn University, is developing an individual tree, spatially explicit, and btoiogicaily based growth model for natural iongieaf pine sands at Eglin Air Force Base in Florida. The goal of the growth model is to provide a tool for the land managers to compare silvicultural practices effects on the light and water...

  18. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  19. Crown characteristics of juvenile loblolly pine 6 years after application of thinning and fertilization

    Science.gov (United States)

    Shufang Yu; Jim L. Chambers; Zhenmin Tang; James P. Barnett

    2003-01-01

    Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments. In the unthinned treatment, upper crown needles were heavier and had more leaf area...

  20. Cogongrass ( Imperata cylindrica ) affects above- and belowground processes in commercial loblolly pine ( Pinus taeda ) stands

    Science.gov (United States)

    Adam N. Trautwig; Lori G. Eckhardt; Nancy J. Loewenstein; Jason D. Hoeksema; Emily A. Carter; Ryan L. Nadel

    2017-01-01

    Cogongrass (Imperata cylindrica), an invasive grass species native to Asia, has been shown to reduce tree vigor in loblolly pine (Pinus taeda) plantations, which comprise more than 50% of growing stock in commercial forests of the United States. I. cylindrica produces exudates with possible allelopathic effects that may influence abundance of P. taeda symbionts, such...

  1. Silvicultural interpretation of natural vegetation dynamics in ageing Scots pine stands for their conversion into mixed broadleaved stands

    NARCIS (Netherlands)

    Kint, V.; Geudens, G.; Mohren, G.M.J.; Lust, N.

    2006-01-01

    In many West-European regions there is principal consensus on the conversion of homogeneous even-aged Scots pine plantations into mixed broadleaved stands. In recent years, interest is growing for conversion management in which managers try to maximise the use of natural processes by steering or

  2. 75 FR 10457 - Andrew Pickens Ranger District; South Carolina; AP Loblolly Pine Removal and Restoration Project

    Science.gov (United States)

    2010-03-08

    ... relatively low tree densities of 25-60% forest cover with understories that are dominated by native grasses... trees exist in the overstory of most of these stands and hardwood sprouts and saplings abound in the... in pine plantations. Other stands are sparse due to poor planting success or to past logging that did...

  3. Soil water regime under homogeneous eucalyptus and pine forests

    International Nuclear Information System (INIS)

    Lima, W.P.; Reichardt, K.

    1977-01-01

    Measurement of precipitation and monthly soil water content during two consecutive years, in 6-year old plantations of eucalypt and pine, and also in an open plot containing natural herbaceous vegetation, were used to compare the soil water regime of these vegetation covers. Precipitation was measured in the open plot with a recording and a non-recording rain gage. Soil water was assessed by the neutron scattering technique to a depth of 1,80 meters. Results indicate that there was, in general, water available in the soil over the entire period of study in all three vegetation conditions. The annual range of soil water in eucalypt, pine, and in natural herbaceous vegetation was essentially similar. The analysis of the average soil water regime showed that the soil under herbaceous vegetation was, generally, more umid than the soil under eucalypt and pine during the period of soil water recharge (September through February); during the period of soil water depletion, the opposite was true. Collectively, the results permit the conclusion that there were no adverse effects on the soil water regime which could be ascribed to reflorestation with eucalypt or pine, as compared with that observed for the natural herbaceous vegetation [pt

  4. Garlic mustard and its effects on soil microbial communities in a sandy pine forest in central Illinois

    Science.gov (United States)

    Alexander B. Faulkner; Brittany E. Pham; Truc-Quynh D. Nguyen; Kenneth E. Kitchell; Daniel S. O' Keefe; Kelly D. McConnaughay; Sherri J. Morris

    2014-01-01

    This study evaluated the impacts of garlic mustard (Alliaria petiolata), an invasive species, on soil microbial community dynamics in a pine plantation on sandy soils in central Illinois. In situ soil carbon dioxide efflux was significantly greater in invaded sites. Similarly, in vitro carbon mineralization was significantly greater for soils...

  5. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation

    Science.gov (United States)

    Kurpius, M.R.; Panek, J.A.; Nikolov, N.T.; McKay, M.; Goldstein, Allen H.

    2003-01-01

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus ponderosa) in this region. To investigate how year-round water fluxes were partitioned in a young ponderosa pine ecosystem in the Sierra Nevada Mountains, water fluxes were continually measured from June 2000 to May 2001 using a combination of sap flow and eddy covariance techniques (above- and below-canopy). Water fluxes were modeled at our study site using a biophysical model, FORFLUX. During summer and fall water fluxes were equally partitioned between transpiration and soil evaporation while transpiration dominated the water fluxes in winter and spring. The trees had high rates of canopy conductance and transpiration in the early morning and mid-late afternoon and a mid-day depression during the dry season. We used a diurnal centroid analysis to show that the timing of high canopy conductance and transpiration relative to high vapor pressure deficit (D) shifted with soil moisture: during periods of low soil moisture canopy conductance and transpiration peaked early in the day when D was low. Conversely, during periods of high soil moisture canopy conductance and transpiration peaked at the same time or later in the day than D. Our observations suggest a general strategy by the pine trees in which they maximize stomatal conductance, and therefore carbon fixation, throughout the day on warm sunny days with high soil moisture (i.e. warm periods in winter and late spring) and maximize stomatal conductance and carbon fixation in the morning through the dry periods. FORFLUX model estimates of evaporation and transpiration were close to measured/calculated values during the dry period, including the drought, but underestimated transpiration and overestimated evaporation during the wet period. ?? 2003

  6. Testing the effectiveness of pine needlecast in reducing post-fire soil erosion using complementary experimental approaches

    Science.gov (United States)

    Bento, C. P. M.; Shakesby, R. A.; Walsh, R. P. D.; Ferreira, C. S. S.; Ferreira, A. J. D.; Urbanek, E.

    2012-04-01

    Mediterranean wildfire activity has increased markedly in recent decades, leading to enhanced runoff and erosion. Limiting post-fire on-site soil degradation and off-site flooding and sedimentation, however, often has a low priority because of the high costs of materials and labour needed to implement many recognised techniques (e.g. seeding, hydromulching, installing logs along the contour). However, in pine plantations, the crowns may only be scorched so that after fire the needlecast can form a comparatively dense ground cover. Its post-fire erosion-limiting effectiveness is virtually unknown in the Mediterranean context, despite potentially protecting soil with minimal effort (requiring only a delay to existing salvage logging procedures at most). As part of the DESIRE research programme, this paper presents results from two complementary approaches testing the erosion-limiting effectiveness of needlecast. (1) Near Moinhos, central Portugal, two 8m2 erosion plots were established immediately post-fire in September 2009 on a steep (30°) slope representative of an adjacent burnt Pinus pinaster plantation. Soil erosion was monitored during a 3-month pre-treatment phase. Needles were then applied to one plot at a density (37.7% cover) measured on a post-fire pine plantation. Soil losses from treated and untreated plots were then monitored until April 2011. By taking the percentage increase or decrease in erosion between the two monitoring phases for the untreated control plot as the 'expected' pattern, the erosion-limiting effectiveness of needles applied to the treated plot could then be determined. (2) Six adjacent rectangular 1.23m2 lysimeters were filled with gravel and sand, and capped by 10 cm of topsoil taken from a long unburnt Pinus pinaster plantation. They were set at 15° and left open to natural rainfall. This angle was considered the steepest possible from logistical and soil stability points of view. All lysimeters underwent a phase under bare soil

  7. Proceedings of the 15th biennial southern silvicultural research conference

    Science.gov (United States)

    James M. Guldin

    2013-01-01

    Sixty-eight papers and seventeen posters address a range of issues affecting southern forests. Papers are grouped in 12 sessions that include pine silviculture session I, hardwood silviculture - intermediate treatment and stand development, longleaf pine; quantitative silviculture and economics, pine silviculture session II, hardwood regeneration, carbon and bioenergy...

  8. Response of loblolly pine to complete woody and herbaceous control: projected yields and economic outcomes - the COMProject

    Science.gov (United States)

    James H. Miller; R.L. Busby; B.R. Zutter; S.M. Zedaker; M.B. Edwards; R.A. Newbold

    1995-01-01

    Abstract.Age-8 and -9 data from the 13 study plantations of the Competition Omission Monitoring Project (COMP) were used to project yields and derive economic outcomes for loblolly pine (Pinus taeda L.). COMP treatments were chop-burn, complete woody plant control, complete herbaceous plant control for 4 years, and complete woody...

  9. Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.L.; Enebak, S.A.; Chappelka, A.H. [Auburn Univ., Auburn, AL (United States). School of Forestry and Wildlife Sciences

    2004-07-01

    The conifer tree species with the greatest economic importance in south eastern United States plantations is Loblolly pine. Plantations require intensive fertilization, pesticide application, and irrigation. In these cases growth-promoting rhizobacteria are useful in pest control. While it was once thought that ozone in the troposphere was limited to urban areas, it is now known that it is transported far from its place of origin. Ozone is known to impact plant growth negatively. There have been no previous studies on whether growth-promoting rhizobacteria can decrease the negative effects of ozone. In this study seedlings of Loblolly pine were inoculated with either Bacillus subtilis (Ehrenberg) Cohn or Paenibacillus macerans (Schardinger) Ash. These were exposed to controlled amounts of ozone for 8-12 weeks. All plants showed decreased biomass and increased foliar damage compared to plants that were not exposed to ozone. B. subtilis inoculated plants showed less foliar damage than un-inoculated ones and root dimensions were increased. The use of growth-promoting rhizobacteria is not ready for large-scale commercial application in forestry, but this demonstration of the possible beneficial effects on ozone exposure warrants further investigation. 44 refs., 3 tabs., 2 figs.

  10. Chopper GEN2 + Glyphosate efficacy for height classes of hardwood sprouts recolonizing six clearcut pine sites

    Science.gov (United States)

    Jimmie Yeiser; Andrew Ezell

    2015-01-01

    The purpose of this study was to assess sprout size as a determinant of subsequent control by a standard, single rate of imazapyr +glyphosate applied during site preparation. All study sites were in the hilly upper coastal plain of Mississippi (Winston or Oktibbeha Counties) or Louisiana (Sabine or Winn Parishes) and supported loblolly pine (Pinus taeda L.) plantations...

  11. Long term carbon fluxes in south eastern U.S. pine ecosystems.

    Science.gov (United States)

    Bracho, R. G.; Martin, T.; Gonzalez-Benecke, C. A.; Sharp, J.

    2015-12-01

    Forests in the southeastern U.S. are a critical component of the national carbon balance storing a third of the total forest carbon (C) in conterminous USA. South eastern forests occupy 60% of the land area, with a large fraction dominated by the genus Pinus distributed in almost equal proportions of naturally-regenerated and planted stands. These stands often differ in structure (e.g., stem density, leaf area index (LAI)) and in the intensity with which they are managed (e.g. naturally-regenerated, older pine stands are often managed less intensively, with prescribed fire). We measured C fluxes using the eddy covariance approach (net ecosystem production, -NEP) in planted (Pinus elliottii var. elliottii) and naturally-regenerated mixed stand of long leaf (Pinus palustris Mill) and slash pine (Pinus elliottii var. elliottii) accompanied by biometric estimations of C balance. Measurements spanned more than a decade and included interannual climatic variability ranging from severe droughts (e.g. Palmer Drought severity index (PDSI) averaged -2.7 from January 2000 to May 2002, and -3.3 from June 2006 to April 2008), to years with tropical storms. Annual NEP for the older, naturally-regenerated stand fluctuated from -1.60 to -5.38 Mg C ha-1 yr-1 with an average of -2.73 ± 1.17 Mg C ha-1 yr-1 while in plantations after canopy closure NEP fluctuated from -4.0 to -8.2 Mg C ha-1 yr-1 with an average of -6.17 ± 1.34 Mg C ha-1 yr-1. Annual NEP in naturally-regenerated pine was mainly driven by a combination of water availability and understory burning while in plantations it was driven by water availability after canopy closure. Woody and above ground net primary productivity (NPP) followed gross ecosystem carbon exchange (GEE) in both ecosystems. Naturally-regenerated and planted pine are a strong carbon sink under the current management and environmental fluctuations accumulating 28 and 130 Mg C ha-1 in a decade, respectively, and are among the most productive forests in

  12. The effect of pile size on moisture content of loblolly pine while field drying

    Science.gov (United States)

    John Klepac; Dana Mitchell; Jason. and Thompson

    2014-01-01

    A 14-year old loblolly pine (Pinus taeda) plantation approximately 5 acres in size was cut during August 2013 with a tracked feller-buncher. A grapple skidder transported trees from one-half of the tract to a landing where they were piled whole-tree. Remaining trees were left whole-tree in skidder bundles (small piles) in the stand. All trees were left on-site and...

  13. Warm summer nights and the growth decline of shore pine in Southeast Alaska

    Science.gov (United States)

    Sullivan, Patrick F.; Mulvey, Robin L.; Brownlee, Annalis H.; Barrett, Tara M.; Pattison, Robert R.

    2015-12-01

    Shore pine, which is a subspecies of lodgepole pine, was a widespread and dominant tree species in Southeast Alaska during the early Holocene. At present, the distribution of shore pine in Alaska is restricted to coastal bogs and fens, likely by competition with Sitka spruce and Western hemlock. Monitoring of permanent plots as part of the United States Forest Service Forest Inventory and Analysis program identified a recent loss of shore pine biomass in Southeast Alaska. The apparent loss of shore pine is concerning, because its presence adds a vertical dimension to coastal wetlands, which are the richest plant communities of the coastal temperate rainforest in Alaska. In this study, we examined the shore pine tree-ring record from a newly established plot network throughout Southeast Alaska and explored climate-growth relationships. We found a steep decline in shore pine growth from the early 1960s to the present. Random Forest regression revealed a strong correlation between the decline in shore pine growth and the rise in growing season diurnal minimum air temperature. Warm summer nights, cool daytime temperatures and a reduced diurnal temperature range are associated with greater cloud cover in Southeast Alaska. This suite of conditions could lead to unfavorable tree carbon budgets (reduced daytime photosynthesis and greater nighttime respiration) and/or favor infection by foliar pathogens, such as Dothistroma needle blight, which has recently caused widespread tree mortality on lodgepole pine plantations in British Columbia. Further field study that includes experimental manipulation (e.g., fungicide application) will be necessary to identify the proximal cause(s) of the growth decline. In the meantime, we anticipate continuation of the shore pine growth decline in Southeast Alaska.

  14. Leaf-cutting ant attack in initial pine plantations and growth of defoliated plants

    Directory of Open Access Journals (Sweden)

    Mariane Aparecida Nickele

    2012-07-01

    Full Text Available The objective of this work was to evaluate the natural attack by Acromyrmex crassispinus in initial Pinus taeda plantations without control measures against ants, as well as the effect of defoliation in seedlings of P. taeda. Evaluations of the attack of leaf-cutting ants on P. taeda plantations were done monthly in the first six months, then 9 and 12 months after planting. The percentages of plants that were naturally attacked by ants were registered. The effect of defoliation was evaluated by artificial defoliation, simulating the natural patterns of attack by A. crassispinus on P. taeda seedlings. The natural attack of A. crassispinus was greater during the first months after planting, being more intense in the first 30 days. Artificial defoliation indicated that there were no significant losses in diameter and height in plants with less than 75% defoliation. However, there were significant losses in diameter and height in plants with 100% defoliation, independently of the cut of the apical meristem, and also plant death. The control of leaf-cutting ants in P. taeda plantings, in which A. crassispinus is the most frequent leaf-cutting ant, should be intense only at the beginning of planting, since the most severe attacks occur during this time.

  15. Determination of loblolly pine response to cultural treatments based on soil class, base productivity, and competition level

    Science.gov (United States)

    David Garrett; Michael Kane; Daniel Markewitz; Dehai Zhao

    2015-01-01

    The objective of this research is to better understand what factors drive loblolly pine (Pinus taeda L.) growth response to intensive culture in the University of Georgia Plantation Management Research Cooperative’s Culture x Density study in the Piedmont and Upper Coastal Plain. Twenty study sites were established ranging from southern Alabama to South Carolina in...

  16. WATER-USE ALONG A HYDROLOGICAL GRADIENT IN CENTRAL FLORIDA: A TALE OF TWO PINUS SPECIES

    Science.gov (United States)

    Although central Florida is relatively flat, the distribution of species on the landscape is controlled by subtle changes in elevation. Along a four-meter elevation gradient, xeric sandhill vegetation dominated by Pinus palustris (Longleaf pine) gives way to mesic pine flatwoods...

  17. PARTITIONING OF WATER FLUX IN A SIERRA NEVADA PONDEROSA PINE PLANTATION. (R826601)

    Science.gov (United States)

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus pond...

  18. The HartX-synthesis: An experimental approach to water and carbon exchange of a Scots pine plantation

    Science.gov (United States)

    Bernhofer, Ch.; Gay, L. W.; Granier, A.; Joss, U.; Kessler, A.; Köstner, B.; Siegwolf, R.; Tenhunen, J. D.; Vogt, R.

    1996-03-01

    In May 1992 during the interdisciplinary measurement campaign HartX (Hartheim eXperiment), several independent estimates of stand water vapor flux were compared at a 12-m high Scots pine ( Pinus silvestris) plantation on a flat fluvial terrace of the Rhine close to Freiburg, Germany. Weather during the HartX period was characterized by ten consecutive clear days with exceptionally high input of available energy for this time of year and with a slowly shifting diurnal pattern in atmospheric variables like vapor pressure deficit. Methods utilized to quantify components of stand water flux included porometry measurements on understory graminoid leaves and on pine needles and three different techniques for determining individual tree xylem sap flow. Micrometeorological methods included eddy covariance and eddy covariance energy balance techniques with six independent systems on two towers separated by 40 m. Additionally, Bowen ratio energy balance estimates of water flux were conducted and measurements of the gradients in water vapor, CO2, and trace gases within and above the stand were carried out with an additional, portable 30 m high telescoping mast. Biologically-based estimates of overstory transpiration were obtained by up-scaling tree sap flow rates to stand level via cumulative sapwood area. Tree transpiration contributed between 2.2 and 2.6 mm/day to ET for a tree leaf area index (LAI) of 2.8. The pine stand had an understory dominated by sedge and grass species with overall average LAI of 1.5. Mechanistic canopy gas exchange models that quantify both water vapor and CO2 exchange were applied to both understory and tree needle ecosystem compartments. Thus, the transpiration by graminoid species was estimated at approximately 20% of total stand ET. The modelled estimates for understory contribution to stand water flux compared well with micrometeorologically-based determinations. Maximum carbon gain was estimated from the canopy models at approximately 425 mmol

  19. Prescribed burning for understory restoration

    Science.gov (United States)

    Kenneth W. Outcalt

    2006-01-01

    Because the longleaf ecosystem evolved with and is adapted to frequent fire, every 2 to 8 years, prescribed burning is often useful for restoring understory communities to a diverse ground layer of grasses, herbs, and small shrubs. This restoration provides habitat for a number of plant and animal species that are restricted to or found mostly in longleaf pine...

  20. Soil incorporation of logging residue affects fine-root and mycorrhizal root-tip dynamics of young loblolly pine clones

    Science.gov (United States)

    Seth G. Pritchard; Chris A. Maier; Kurt H. Johnsen; Andrea J. Grabman; Anne P. Chalmers

    2010-01-01

    Loblolly pine (Pinus taeda L.) plantations cover a large geographic area of the southeastern USA and supply a large proportion of the nation’s wood products. Research on management strategies designed to maximize wood production while also optimizing nutrient use efficiency and soil C sequestration is needed. We used minirhizotrons to quantify the effects of...

  1. Seasonal variations in monoterpene profiles and ecophysiological traits in Mediterranean pine species of group halepensis

    Directory of Open Access Journals (Sweden)

    Michelozzi M

    2004-01-01

    Full Text Available Foliar and cortical terpene profile, and needle gas exchange and water potential of P. halepensis, P. brutia and P. eldarica were compared over three consecutive seasons (1996-1998 in an experimental plantation nearby Firenze (Italy. Terpene percentages in mature tissue (cortex and needle did not change in response to water stress during summer period and remained stable through seasons and years. Terpene profiles were not affected by seasonal drought, and are thus valuable to characterize Mediterranean pine species of the group “halepensis”. There was a threshold-type response of maximum daily gas exchange to decreasing predawn water potential in all pines. Net photosynthesis and needle conductance were linearly related, regardless of the species.

  2. Shady Plantations

    DEFF Research Database (Denmark)

    Hastrup, Frida

    2011-01-01

    This article explores practices of protection played out in a coastal plantation in a village in Tamil Nadu. I argue that these practices are articulations of different but coexisting theorizations of shelter, and that the plantation can be seen as that which emerges at the intersections between...

  3. Small mammal distributions relative to corridor edges within intensively managed southern pine plantations.

    Science.gov (United States)

    Nicole L. Constantine; Tyler A. Campbell; William M. Baughman; Timothy B. Harrington; Brian R. Chapman; Karl V. Miller

    2005-01-01

    We characterized small mammal communities in three loblolly pine (Pinus taeda) stands in the Lower Coastal Plain of South Carolina during June 1998-Aug. 2000 to investigate influence of corridor edges on small mammal distribution. We live-trapped small mammals in three regenerating stands following clearcutting. Harvested stands were bisected by...

  4. Contribution of Plantation Forest on Wild Bees (Hymenoptera: Apoidea Pollinators Conservation in Mount Slamet, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Imam Widhiono

    2017-12-01

    Full Text Available Wild bee pollinators (Hymenoptera : Apiade diversity and abundance were studied in three types of plantation forest on Mt. Slamet (Central Java Province, Indonesia. The aims of the research was to know the diversity and abundance of wild bee pollinators and to determine the possibility of plantation forest contribution on wild bees conservation. Sampling has been done at three stands: a pine forest (PF, with Pinus merkusii, an Agathis forest (AF, with Agathis damara and a community forest (CF, with Albizia falctaria. Each habitat was divided into 5 line transect (100 x 5 m and sweep nets were used to collect the wild bee samples. Sampling was done eah month from April to August 2015. The diversity of wild bees was high (12 species in 9 genera; members of the Apidae (7 species were dominant. The most abundant species across the forests were Apis cerana (343 individuals; 25.5% of total, Trigona laeviceps (195 individuals; 14.5%, and Megachille relativa (165 individuals; 12.3%. Measurements of species diversity (H’, species evenness (E, habitat similarity (Ss and species richness indicated that the wild bee species diversity in the region was relatively high (H’ = 1.275 to (H’ = 1.730;(E= 0.870 to (E = 0.93. The result showed that the diversity of wild bees in three different plantation forest habitats on Mt. Slamet were similar and can be concluded that plantation forest types were important for pollinator conservation, and an appropriate future preservation strategy should include of the areas of all plantation forest types.

  5. Whole-tree bark and wood properties of loblolly pine from intensively managed plantations

    Science.gov (United States)

    Finto Antony; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark; Bruce E. Borders; Michael B. Kane; Harold E. Burkhart

    2015-01-01

    A study was conducted to identify geographical variation in loblolly pine bark and wood properties at the whole-tree level and to quantify the responses in whole-tree bark and wood properties following contrasting silvicultural practices that included planting density, weed control, and fertilization. Trees were destructively sampled from both conventionally managed...

  6. Modeling the longitudinal variation in wood specific gravity of planted loblolly pine (Pinus taeda) in the United States

    Science.gov (United States)

    F. Antony; L. R. Schimleck; R. F. Daniels; Alexander Clark; D. B. Hall

    2010-01-01

    Loblolly pine (Pinus taeda L.) is a major plantation species grown in the southern United States, producing wood having a multitude of uses including pulp and lumber production. Specific gravity (SG) is an important property used to measure the quality of wood produced, and it varies regionally and within the tree with height and radius. SG at different height levels...

  7. VB merch-slash: A growth-and-yield prediction system with a merchandising optimizer for planted slash pine in the west Gulf region

    Science.gov (United States)

    S.J. Chang; Rodney L. Busby; P.R. Pasala; Jeffrey C. Goelz

    2005-01-01

    A Visual Basic computer model that can be used to estimate the harvestvalue of slash pine plantations in the west gulf region is presented. Themodel uses a dynamic programming algorithm to convert stand tablespredicted by COMPUTE_P-SLASH into a listing of seven products thatmaximizes the harvested value of the stand.

  8. VB merch-lob: A growth-and-yield prediction system with a merchandising optimizer for planted loblolly pine in the west Gulf region

    Science.gov (United States)

    S.J. Chang; Rodney L. Busby; P.R. Pasala; Daniel J. Leduc

    2005-01-01

    A Visual Basic computer model that can be used to estimate the harvestvalue of loblolly pine plantations in the west gulf region is presented. Themodel uses a dynamic programming algorithm to convert stand tablespredicted by COMPUTE_P-LOB into a listing of seven products thatmaximizes the harvested value of the stand.

  9. Plantation Houses of North Florida

    Directory of Open Access Journals (Sweden)

    Eduardo Robles

    2017-06-01

    Full Text Available The concept of Plantation conjures an image that identifies the North Florida / South Georgia region of the U. S. Leon County attracted many cotton planters from Georgia, Virginia, Maryland, North and South Carolina in the 1820’s to the 1850’s. Up to the beginning of the Civil War, Leon County was the 5th largest producer of cotton counting all counties from Florida and Georgia. The Civil War brought the plantation culture to a standstill. The plantations transformed the environment based on their need for open fields in which to cultivate different crops, or raise a variety of animals with the help of slaves. From the 1900’s many plantations abandoned their land to nature producing a deep change in the local landscape. Today plantations are not used as much for planting crops but more for hunting or as tree farms. The hunting plantations do not grow crops but provide good conditions for the hunting of animals and birds. Other plantations were torn apart, sold and now are part of the Tallahassee urban fabric. In other words, they disappeared. The transformation of the plantations has been slow and steady, and has become the image of the area, even the region. The paper shows five plantations that represent five different evolutions of these traditional landscapes. The landscapes have evolved to accommodate the very local but fluid definition of place. It is this transformation, this evolving identity which helped preserve some of the traditional landscapes and the traditional architecture on them. The most prominent feature of the plantation is the “Big House” or plantation house. The house embodies all aspects of the plantation life style. The construction materials and methods reflected the times, the technologies and the available resources. The research has been done mainly in the archives of the Tallahassee Trust for Historic Preservation. The results, still pending, explain the land typology as it evolved from the golden decades

  10. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    Science.gov (United States)

    Zhou, Xiaoqi; Wang, Shen S. J.; Chen, Chengrong

    2017-12-01

    Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species-enzyme-C/N model to investigate how temperature and tree species influence soil C/N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01-2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99-2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22-1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and

  11. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    Directory of Open Access Journals (Sweden)

    X. Zhou

    2017-12-01

    Full Text Available Forest plantations have been widely used as an effective measure for increasing soil carbon (C, and nitrogen (N stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species–enzyme–C∕N model to investigate how temperature and tree species influence soil C∕N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG, N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP and phosphorus acquisition enzymes (acid phosphatases. The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01–2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99–2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii and hoop pine (Araucaria cunninghamii Ait., increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22–1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native

  12. Proceedings of the 14th biennial southern silvicultural research conference

    Science.gov (United States)

    John A. Stanturf

    2010-01-01

    A range of issues affecting southern forests are addressed in 113 papers. Papers are grouped into 12 sessions that include carbon; pine silviculture; invasive species; site preparation; hardwood artificial regeneration; longleaf pine; forest health and fire; growth and yield; hardwood intermediate treatments; hardwood natural regeneration; wildlife; and posters.

  13. Ecological, political and social challenges of prescribed fire restoration in east Texas pineywoods ecosystems: a case study

    Science.gov (United States)

    Sandra Rideout; Brian P. Oswald; Michael H. Legg

    2003-01-01

    The effectiveness of prescribed fire restoration of forested sites in three state parks in east Texas, USA was studied. Two sites consisted of mixed shortleaf (Pinus echinata Mill.) or loblolly pine (Pinus taeda L.) and broadleaf overstoreys. The third site was a longleaf pine (Pinus palustris Mill.)/little...

  14. Effects of spacing on early growth rate and carbon sequestration in Pinus brut ia Ten. plantations

    Energy Technology Data Exchange (ETDEWEB)

    Erkan, N.; Aydin, A.C.

    2016-07-01

    Aim of the study: The aim of this study was to analyze the effects of initial spacing on early growth and carbon sequestration rates in Turkish red pine plantations up to 12 years old, established with improved seeds and deep soil cultivation. Area of study: The study was conducted on experimental sites established in two locations within the Turkish red pine natural distribution areas, namely Du acı and Nebiler close to Antalya city. Material and methods: Data were collected from the experimental sites established as a Nelder design (fan-shaped), with 72 rays and 18 arcs (circles), and trees were planted (almost square) at distances ranging from 1.15 to 4.77 m. Soil type of both sites is loamy, with soil clay content varying between 70-87% in Duacı and 51-70% in Nebiler. Soils are deep being more than one m in both sites, but rockier in Nebiler, providing better soil drainage in this site. Main results: The results showed that mean total height was greater at closer spacing than those of wider spacing until age eight. Growth retardation at wider spacing in early years may be related to water loss due to evaporation in hot summer days and weed suppression. Following the age eight, competition among trees appears to be the major factor reducing the growth and carbon fixation. Diameter at breast height and individual tree volume increased, while stand volume, mean annual volume increment and annual carbon storage per hectare considerably decreased for wider spacing. Our results suggest that in order to obtain higher yield and more carbon fixation, short rotation plantations should initially be established in closer spacing, followed by thinning in subsequent years as required by silvicultural concerns. In this context, spacing 3.0 × 1.0 m or 3.0 × 1.5 m (3.0 and 4.5 m2 growing area per tree, respectively) seems to be more plausible, providing farm machinery for maintenance and harvesting. We also found that mean annual volume increment per unit area can be

  15. Spatial relationships between nitrogen status and pitch canker disease in slash pine planted adjacent to a poultry operation

    International Nuclear Information System (INIS)

    Lopez-Zamora, Isabel; Bliss, Christine; Jokela, Eric J.; Comerford, N.B.; Grunwald, Sabine; Barnard, E.; Vasquez, G.M.

    2007-01-01

    Pitch canker disease (Fusarium circinatum Nirenberg and O'Donnell) causes serious shoot dieback, reduced growth and mortality in pines found in the southern and western USA, and has been linked to nutrient imbalances. Poultry houses with forced-air ventilation systems produce nitrogen (N) emissions. This study analyzed spatial correlations between pitch canker disease and foliar, forest floor, soil, and throughfall N in a slash pine (Pinus elliottii var. elliottii Engelm.) plantation adjacent to a poultry operation in north Florida, USA. Tissue and throughfall N concentrations were highest near the poultry houses and remained elevated for 400 m. Disease incidence ranged from 57-71% near the poultry houses and was spatially correlated with N levels. Similarly, stem mortality ranged from 41-53% in the most heavily impacted area, and declined to 0-9% at distances greater than 400 m. These results suggest that nutritional processes exacerbate changes in disease susceptibility and expression in slash pine. - Local emissions from poultry production appear to significantly contribute to the spatial distribution of N and pitch canker disease in managed slash pine ecosystems

  16. Vertical distribution of soil extractable organic C and N contents and total C and N stocks in 78-year-old tree plantations in subtropical Australia.

    Science.gov (United States)

    Zhou, Xiaoqi; Dong, Haibo; Lan, Zhongming; Bacon, Gary; Hao, Yanbin; Chen, Chengrong

    2017-10-01

    Few studies have focused on the effects of long-term forest plantations on the soil profile of carbon (C) and nitrogen (N) stocks. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e., slash pine, hoop pine and kauri pine) and a Eucalyptus species in subtropical Australia. We measured soil extractable organic C (EOC) and N (EON) contents and total C and N stocks under different tree species on the forest floor and along a soil profile to 100 cm depth. The results showed that Eucalyptus had significantly higher soil EOC contents (3.3 Mg ha -1 ) than the other tree species (EOC of 1.9-2.3 Mg ha -1 ) and had significantly higher EON (156 kg ha -1 ) contents than slash pine (107 kg ha -1 ). Eucalyptus had significantly higher soil C (58.9 Mg ha -1 ) and N (2.03 Mg ha -1 ) stocks than the other tree species (22.3-27.6 Mg C ha -1 and 0.71-1.23 Mg N ha -1 ) at 0-100 cm depth. There were no differences in soil C stocks at the 0-100 cm depth among the coniferous tree species. Forest floor C stocks had stronger effects on mineral soil total N stocks than fine root biomass, whereas fine root biomass exerted stronger effects on soil total C stocks at the 0-100 cm depth than forest floor C and N stocks. Our results addressed large differences in soil C and N stocks under different tree species, which can provide useful information for local forest management practices in this region.

  17. The role of plantation sinks

    International Nuclear Information System (INIS)

    Read, Peter

    2001-01-01

    In this paper it is argued that in the long term biofuel should play a significant role in global climate policy. Recent technological developments, as well as sustainable development criteria, would favour growing biofuel in community- scale plantations in developing countries. It is also pointed out that the lead times involved in growing biofuels are so great that the inclusion of biofuel plantation sinks in the CDM for the first commitment period would be desirable. It is suggested that to meet opposition to the inclusion of plantation sinks in the first commitment period plantation, sinks should be linked to biofuels technology development and production, and a biofuels obligation for plantation sink projects in the CDM should be established. (Author)

  18. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  19. Determining the impacts of experimental forest plantation on groundwater recharge in the Nebraska Sand Hills (USA) using chloride and sulfate

    Science.gov (United States)

    Adane, Z. A.; Gates, J. B.

    2015-02-01

    Although impacts of land-use changes on groundwater recharge have been widely demonstrated across diverse environmental settings, most previous research has focused on the role of agriculture. This study investigates recharge impacts of tree plantations in a century-old experimental forest surrounded by mixed-grass prairie in the Northern High Plains (Nebraska National Forest), USA. Recharge was estimated using solute mass balance methods from unsaturated zone cores beneath 10 experimental plots with different vegetation and planting densities. Pine and cedar plantation plots had uniformly lower moisture contents and higher solute concentrations than grasslands. Cumulative solute concentrations were greatest beneath the plots with the highest planting densities (chloride concentrations 225-240 % and sulfate concentrations 175-230 % of the grassland plot). Estimated recharge rates beneath the dense plantations (4-10 mm yr-1) represent reductions of 86-94 % relative to the surrounding native grassland. Relationships between sulfate, chloride, and moisture content in the area's relatively homogenous sandy soils confirm that the unsaturated zone solute signals reflect partitioning between drainage and evapotranspiration in this setting. This study is among the first to explore afforestation impacts on recharge beneath sandy soils and sulfate as a tracer of deep drainage.

  20. Fort Bragg Old Post Historic District Landscape Report

    Science.gov (United States)

    2011-01-01

    proved to be of substantial economic value (Lefler and Powell 1973). Lon- gleaf pines ( Pinus palustris) produce higher quality pine resin/crude gum than...plants that have the same characteristics as the historic varieties; na- tive plants require relatively little upkeep, are drought tolerant, and can... Pinus palustris Longleaf Pine 1933/IDG 2009 Native Quercus alba White Oak Large Evergreen Trees 1933/IDG 2009 Native Magnolia grandiflora Southern

  1. Short communication. Tomography as a method to study umbrella pine (Pinus pinea) cones and nuts

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, A.; Pereira, H.; Tomé, M.; Silva, J.; Fontes, L.

    2016-07-01

    Aim of the study: Umbrella or stone pine (Pinus pinea) nuts are one of the most valuable and expensive non-wood forest products in Portugal. The increasing market and landowner's interest resulted on a high expansion of plantation areas. This study tests the feasibility of using tomography to characterize pine cones and nuts. Area of study: The research was carried out in pine stand, with nine years, grafted in 2011, on Herdade of Machoqueira do Grou, near Coruche, in Portugal’s central area. Material and Methods: Starting in June 2015, ten pine cones in their final stage of development, were randomly monthly collected, and evaluated with tomography equipment commonly used in clinical medicine, according to Protocol Abdomen Mean. A sequence of images corresponding to 1mm-spaced cross-sections were obtained and reconstructed to produce a 3D model. The segmented images were worked using free image processing software, like RadiAnt Dicom Viewer, Data Viewer and Ctvox. Main results: The cone’s structures were clearly visible on the images, and it was possible to easily identify empty pine nuts. Although expensive, tomography is an easy and quick application technique that allows to assess the internal structures, through the contrast of materials densities, allowing to estimate pine nut’s size and empty nut’s proportion. By analysis of ninety images, it was obtained, an estimated mean value of 25.5 % empty nuts. Research highlights: Results showed the potential of tomography as a screening tool to be used in industry and research areas, for analysis and diagnostic of stone pine cone’s structures. (Author)

  2. Ocorrência de Migdolus fryanus (Coleoptera: Cerambycidae em plantios de Pinus caribaea var. hondurensis Occurrence of Migdolus fryanus (Coleoptera: Cerambycidae in Pinus caribaea hondurensis plantations

    Directory of Open Access Journals (Sweden)

    Carlos Frederico Wilcken

    2005-02-01

    Full Text Available Larvas de Migdolus fryanus Westwood (Coleoptera: Cerambycidae foram encontradas danificando raízes de mudas de P. caribaea var. hondurensis (Sénéel Barr. & Golf. no Estado de São Paulo. Isso aumenta a importância dessa espécie, cujos danos, em espécies florestais, têm aumentado, principalmente, em plantios de eucalipto. Esse é o primeiro registro de M. fryanus em plantios de Pinus, e o referido inseto pode ser considerado uma nova praga dessa espécie florestal. Detalhes das características morfológicas e biológicas, danos e possíveis métodos de controle de M. fryanus são discutidos.Larvae of Migdolus fryanus Westwood (Coleoptera: Cerambycidae were found damaging roots of young plants of P. caribaea hondurensis (Sénéel Barr. & Golf. in the State of São Paulo, Brazil. This fact increases the importance of this species because the damages have been increasing in forest species specially in eucalyptus plantations. This is the first record of M. fryanus in pine plantations and this insect can be considered a pest of pine plants. Details on the morphology and biological characteristics, damage and possible control methods to M. fryanus are discussed.

  3. Determination of Fertility Rating (FR in the 3-PG Model for Loblolly Pine Plantations in the Southeastern United States Based on Site Index

    Directory of Open Access Journals (Sweden)

    Santosh Subedi

    2015-08-01

    Full Text Available Soil fertility is an important component of forest ecosystems, yet evaluating soil fertility remains one of the least understood aspects of forest science. We hypothesized that the fertility rating (FR used in the model 3-PG could be predicted from site index (SI for loblolly pine in the southeastern US and then developed a method to predict FR from SI to test this hypothesis. Our results indicate that FR values derived from SI when used in 3-PG explain 89% of the variation in loblolly pine yield. The USDA SSURGO dataset contains SI values for loblolly pine for the major soil series in most of the counties in the southeastern US. The potential of using SI from SSURGO data to predict regional productivity of loblolly pine was assessed by comparing SI values from SSURGO with field inventory data in the study sites. When the 3-PG model was used with FR values derived using SI values from SSURGO database to predict loblolly pine productivity across the broader regions, the model provided realistic outputs of loblolly pine productivity. The results of this study show that FR values can be estimated from SI and used in 3-PG to predict loblolly pine productivity in the southeastern US.

  4. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Directory of Open Access Journals (Sweden)

    Shuaifeng Li

    Full Text Available The objectives of this study were to estimate changes of tree carbon (C and soil organic carbon (SOC stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m. The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1 with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.

  5. Detection of severe storm signatures in loblolly pine using seven-year periodic standardized averages and standard deviations

    Science.gov (United States)

    Stevenson Douglas; Thomas Hennessey; Thomas Lynch; Giulia Caterina; Rodolfo Mota; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson

    2016-01-01

    A loblolly pine plantation near Eagletown, Oklahoma was used to test standardized tree ring widths in detecting snow and ice storms. Widths of two rings immediately following suspected storms were standardized against widths of seven rings following the storm (Stan1 and Stan2). Values of Stan1 less than -0.900 predict a severe (usually ice) storm when Stan 2 is less...

  6. Forested habitat preferences by Chilean citizens: Implications for biodiversity conservation in Pinus radiata plantations Preferencia por hábitats forestales por ciudadanos chilenos: Implicancias para la conservación de biodiversidad en plantaciones de Pinus radiata

    Directory of Open Access Journals (Sweden)

    NICOLE PÜSCHEL-HOENEISEN

    2012-06-01

    Full Text Available The need for conservation outside protected areas has prompted the modification of productive practices to allow the maintenance of wild biota in productive landscapes such as those associated to timber production. Forest plantations could cooperate in conserving biodiversity outside protected areas if they have a developed understory. However, the success of the production changes depends on the social support they receive. Therefore, we evaluate Chilean citizens' preference for five habitats of different types of forest management. In addition, we assessed perceptions regarding the relationship between pine plantations and native wildlife through surveys administered in Chillán, Santiago and six rural localities in the VII and VIII region. Despite there is not a unanimous opinion regarding pine plantations as a threat to biodiversity, people prefer pine plantations that serve as habitat for endangered fauna. In fact, they agree on paying more for forest products to contribute to conservation in forest plantations, and actually prefer plantations with a developed understory better than those without it. This would suggest that measures aimed at conservation in forest plantations could be supported by the Chilean society.La necesidad de la conservación fuera de áreas protegidas ha llevado a la modificación de las prácticas productivas para permitir el mantenimiento de la biota silvestre en paisajes productivos tales como los asociados a la producción de madera. Las plantaciones forestales podrían cooperar en la conservación de la biodiversidad fuera de áreas protegidas si tienen un sotobosque desarrollado. Sin embargo, el éxito de los cambios en la producción depende del apoyo social que estos reciben. Así, evaluamos la preferencia por cinco paisajes con diferentes tipos de manejo forestal. Además, se evaluó la percepción acerca de la relación entre las plantaciones de pino y la fauna nativa a través de encuestas realizadas en

  7. Sixth-Year Results Following Partial Cutting For Timber and Wildlife Habitat in a Mixed Oak-Sweetgum-Pine Stand on a Minor Creek Terrace in Southeast Louisiana

    Science.gov (United States)

    Brian Roy Lockhart; Norwin E. Linnartz

    2002-01-01

    Hardwood management has primarily focused on highly productive river bottom and upland sites. Less is known about hardwood growth and development on terrace sites. Such sites are usually converted to other uses, especially pine plantations. The objectives of this study, implemented in a minor creek terrace in southeast Louisiana, were to describe changes in stand...

  8. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jennifer, M.; Menzel, Michael A.; Kilgo, John C.; Ford, W. Mark; Edwards, John W.; McCracken, Gary F.

    2005-07-01

    A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations and pine savannas, using time expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at three heights in each habitat type.

  9. Long-Term Trends In Loblolly Pine Productivity And Stand Characteristics In Response To Stand Density And Fertilization In The Western Gulf Region

    Science.gov (United States)

    M.A. Sword; J. L. Chambers; Z. Tang; T. J. Dean; J. C. Goelz

    2002-01-01

    Two levels each of fertilization and stand density were established to create four environments in a 7-year-old loblolly pine plantation on a N and P deficient western Gulf Coastal Plain site in Louisiana. Levels of fertilization were no fertilization and application of 120 lb N and 134 lb P/ac. Levels of stand density were the original stocking (1,210 trees/ac), and...

  10. Management of Herbaceous Seeps and Wet Savannas for Threatened and Endangered Species

    National Research Council Canada - National Science Library

    Harper, Mary

    1998-01-01

    Wetland communities such as herbaceous seeps and wet savannas occur on military installations throughout the southeastern United States, usually as pockets of wet habitat within a matrix of drier longleaf pine woodlands...

  11. Low effect of young afforestations on bird communities inhabiting heterogeneous Mediterranean cropland

    Directory of Open Access Journals (Sweden)

    Juan S. Sánchez-Oliver

    2015-12-01

    Full Text Available Afforestation programs such as the one promoted by the EU Common Agricultural Policy have spread tree plantations on former cropland. These afforestations attract generalist forest and ubiquitous species but may cause severe damage to open habitat species, especially birds of high conservation value. We investigated the effects of young (<20 yr tree plantations dominated by pine P. halepensis on bird communities inhabiting the adjacent open farmland habitat in central Spain. We hypothesize that pine plantations located at shorter distances from open fields and with larger surface would affect species richness and conservation value of bird communities. Regression models controlling for the influence of land use types around plantations revealed positive effects of higher distance to pine plantation edge on community species richness in winter, and negative effects on an index of conservation concern (SPEC during the breeding season. However, plantation area did not have any effect on species richness or community conservation value. Our results indicate that the effects of pine afforestation on bird communities inhabiting Mediterranean cropland are diluted by heterogeneous agricultural landscapes.

  12. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity.

    Science.gov (United States)

    Pauchard, Aníbal; Escudero, Adrián; García, Rafael A; de la Cruz, Marcelino; Langdon, Bárbara; Cavieres, Lohengrin A; Esquivel, Jocelyn

    2016-01-01

    Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.

  13. Tree-Roost Characteristics of Subadult and Female Adult Bats (Nyctieius humeralis) in the Upper Coastal Plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, M.A.; Carter, T.C.; Ford, W.M.; Chapman, B.R.

    2000-02-07

    Tree-roost of evening bats were identified by radio tracking of 14 individuals at the SRS. Bats roosted in longleaf pine cavities under exfoliating bark in snags near beaver ponds. The roosting occurred in open park like stands. No evening bats roosted in the more dense bottomland hardwood stands or mixed pine hardwood stands. None were observed in loblolly stands.

  14. The water quality and quantity effects of biofuel operations in pine plantations of the southeastern USA

    Science.gov (United States)

    J. Nettles; M. Youssef; J. Cacho; J. Grace; Z. Leggett; E. Sucre

    2011-01-01

    Working alongside operational trials, a comprehensive research programme was developed to evaluate sustainability, life-cycle analysis, soil productivity, wildlife, and water resource impacts. The hydrology field studies consist of three sets of forested watersheds, each with mid-rotation pine reference, switchgrass (Panicum virgatum) interplanted, typical...

  15. Effect of culture and density on aboveground biomass allocation of 12 years old loblolly pine trees in the upper coastal plain and piedmont of Georgia and Alabama

    Science.gov (United States)

    Santosh Subedi; Dr. Michael Kane; Dr. Dehai Zhao; Dr. Bruce Borders; Dr. Dale Greene

    2012-01-01

    We destructively sampled a total of 192 12-year-old loblolly pine trees from four installations established by the Plantation Management Research Cooperative (PMRC) to analyze the effects of planting density and cultural intensity on tree level biomass allocation in the Piedmont and Upper Coastal Plain of Georgia and Alabama. Each installation had 12 plots, each plot...

  16. Rain nutrients contents, through fall, and runoff in coffee plantation with different shading

    International Nuclear Information System (INIS)

    Jaramillo Robledo, Alvaro

    2003-01-01

    Are presented the amount of nutrients found in the rain water, through fall and run-off for full sunlight coffee plantations and coffee plantations shaded with Guamo (Inga sp), Nogal (cordia alliodora), pine (pinus oocarpa) and eucalyptus (eucaliptus grandis) trees. In the rain water for the different ecosystems were measured on average 9.9 kg.ha 1 .y 1 of potassium, 27.9 kg.ha 1 .y 1 of calcium and 8.6 kg.ha 1 .y 1 of magnesium, which are within the values found in humid forests of other tropical conditions. The average amounts of nutrients that enter the round in the through fall are 85.4 kg.ha-1.y-1 for potassium, 41.1 kg.ha 1 .y 1 for calcium, 12.0 kg.ha 1 .y 1 for magnesium and 21.9 for nitrates kg.ha 1 .y 1 . These concentrations are higher than those observed in the rain water. It is observed a great variability in the amount of the chemical elements for the different shade trees, which is related to the species used for shading. In relation to pH, the foliage washing water (through fall) shows an average value of 6.7 for the ecosystems in study; the lowest values in ph appear for the association of the coffee with the eucalyptus and the pine, pH of 6.3 and - 6.4 respectively. The amounts of nutrients that are mobilized in the run-off water, present average values of 11.0 kg.ha 1 .y 1 for potassium, 6.2 kg.ha 1 .y 1 for calcium, 2.5 kg.ha 1 .y 1 for magnesium and 3.3 kg.ha 1 .y 1 for nitrates. The results of the experiment demonstrate that the potassium is the element of greater mobility in the foliage washing water and in the run-off water. The higher concentrations of potassium, calcium and magnesium are observed in those samples of rain taken after a prolonged dry period, as it was the case during El Nino 1997-1998 event

  17. Proportion of knotty wood in stems of 28-year old lodgepole and Scots pine in experimental plantation in Zvirgzde, Latvia

    Directory of Open Access Journals (Sweden)

    Jansons Aris

    2017-09-01

    Full Text Available In forestry, alien tree species are planted to maximize yield from a stand by increasing productivity and decreasing environmental risks. In Eastern Europe, lodgepole pine (Pinus contorta var. latifolia might be used as a source of biomass and industrial wood; however, before any recommendations are given, possible gains of the novel species should be scrupulously evaluated. In this study, we compared volume and proportion of knotty stemwood (VKN of native Scots pine (Pinus sylvestris from first generation seed orchards and provenances of alien lodgepole pine [Fort Nelson (58°38’ N, 122°41’ W and Summit Lake (54°24› N, 122°37› W] at the age of 27 years growing in central Latvia. We also assessed the relationships between VKN and several morphometric parameters.

  18. Home Range and Habitat Use of the New Zealand Falcon (Falco novaeseelandiae within a Plantation Forest: A Satellite Tracking Study

    Directory of Open Access Journals (Sweden)

    Bindi Thomas

    2010-01-01

    Full Text Available We tracked two adult and three juvenile New Zealand falcons (Falco novaeseelandiae in Kaingaroa Forest pine plantation from 2002 to 2008 using Argos satellite technology. The home ranges for both adults and juveniles varied, ranging between 44 and 587 km2. The falcons occasionally utilised areas outside the forest and used stands of all ages within the forest, generally in proportion to their availability. For the most part, the juveniles remained within ca. 8 km of their nests and dispersed at 58, 69, and 68 days after fledging. Falcon movement information was obtained from an average of four location points per tracking day per falcon at a putative accuracy of 350 m. The transmitters, including their solar charge capability, performed well in the forest environment. The use of all stand ages highlights the importance of forestry practises that maintain a mosaic of different aged pine stands.

  19. Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species

    Directory of Open Access Journals (Sweden)

    Guillermo eGuada

    2016-04-01

    Full Text Available Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width and intra-annual (xylogenesis scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized three years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die.

  20. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    Science.gov (United States)

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation

  1. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  2. Fire Science Strategy: Resource Conservation and Climate Change

    Science.gov (United States)

    2014-09-01

    are southern yellow pine ( Pinus spp.; this currently includes over 0.6 million acres of managed longleaf pine [P. palustris], Robert Larimore, pers...Prosopis spp.), pinyon ( Pinus spp.)-juniper (Juniperus spp.), and chaparral-type ecosystems, and 0.7 million acres of annual and perennial grasslands...that meet current and future military land-use and stewardship objectives. Under current conditions, the presence of insects, disease, and drought

  3. Rotation-length effects of diverse levels of competition control and pre-commercial thinning on stand development and financial performance of loblolly pine in central Louisiana

    Science.gov (United States)

    Michael A. Blazier; A. Gordon Holley; Shaun M. Tanger; Terry R. Clason; Eric L. Taylor

    2016-01-01

    Long-term productivity of loblolly pine (Pinus taeda L.) plantations can be increased by early suppression of herbaceous and woody competing vegetation (Zutter and others 1986, Haywood 1994, Miller and others 2003a). The USDA Forest Service’s Competition Omission Monitoring Project (COMP) was designed to isolate influences of two major competition...

  4. Phenology, natural enemies, and efficacy of horticultural oil for control of Chionaspis heterophyllae (Homoptera: Diaspididae) on Christmas tree plantations.

    Science.gov (United States)

    Fondren, Kirsten M; McCullough, Deborah G

    2005-10-01

    Pine needle scale, Chionaspis pinifoliae (Fitch), and Chionaspis heterophyllae Cooley are important pests of Scots pine, Pinus sylvestris L., and other conifers in much of North America. On Christmas tree plantations, these insects are typically controlled by spraying broad-spectrum insecticides when the vulnerable immature stages are present. However, effective control of bivoltine populations can be difficult to achieve due to asynchronous hatch and development of the second generation. Our objectives were to 1) determine the phenology of the second generation of C. heterophyllae in Michigan; 2) characterize the natural enemy complex; and 3) assess the effectiveness of horticultural oil for control of C. heterophyllae on P. sylvestris Christmas tree plantations. We monitored scale populations in three counties in lower Michigan for 3 yr. Scale phenology was consistently associated with cumulative degree-days base 10 degrees C (DD(10 degrees C)). Second-generation egg hatch began at approximately 1230-1300 DD(10 degrees C), and continued for approximately 3 wk. The peak of the second instar coincided with 1500-1600 DD(10 degrees C). Common predators included the coccinellids Chilocorus stigma (Say) and Microweisia misella (LeConte). On average, 70% of the C. heterophyllae population in unsprayed fields was killed by predators in 1999. Two endoparasitic wasps, Encarsia bella Gahan and Marietta mexicana Howard (Hymenoptera: Aphelinidae), also were recovered. In 2000 and 2001, we applied a highly refined horticultural spray oil with a backpack mist blower at 1500-1600 DD(10 degrees). Scale mortality on trees treated with oil ranged from 66 to 80% and was similar to control achieved using conventional insecticides in both years.

  5. Response of Mid-Rotation Loblolly Pine (Pinus taeda L. Physiology and Productivity to Sustained, Moderate Drought on the Western Edge of the Range

    Directory of Open Access Journals (Sweden)

    Adam Maggard

    2016-09-01

    Full Text Available The productivity of the approximately 11 million ha of loblolly pine plantations in the southeastern USA could be threatened by decreased water availability in a future climate. To determine the effects of sustained drought on leaf gas exchange, whole-tree water use, and individual tree growth, we examined the response of loblolly pine trees to 100% throughfall exclusion cumulatively spanning the sixth and seventh growing seasons of a plantation in southeastern Oklahoma. Throughfall exclusion reduced volumetric soil water content for 0–12 cm soil depth from 10.8% to 4.8% and for 12–45 cm soil depth from 24.2% to 15.6%. Compared to ambient throughfall trees, leaf water potential of the throughfall exclusion trees became more negative, −0.9 MPa vs. −1.3 MPa for predawn measurements and −1.5 MPa vs. −1.9 MPa for midday measurements. Throughfall exclusion did not significantly reduce leaf gas exchange or tree water use. However, throughfall exclusion significantly reduced leaf biomass by 21% and stem volume growth by 23%. These results indicate that sustained drought may cause downward shifts in leaf quantity to conserve water rather than reducing leaf-level water use.

  6. Differential Response of Floating and Submerged Leaves of Longleaf Pondweed to Silver Ions

    Directory of Open Access Journals (Sweden)

    Nisha Shabnam

    2017-06-01

    Full Text Available In this study, we have investigated variations in the potential of floating and submerged leaves of longleaf pondweed (Potamogeton nodosus to withstand silver ion (Ag+-toxicity. Both floating and submerged leaves changed clear colorless AgNO3 solutions to colloidal brown in the presence of light. Transmission electron microscopy revealed the presence of distinct crystalline Ag-nanoparticles (Ag-NPs in these brown solutions. Powder X-ray diffraction pattern showed that Ag-NPs were composed of Ag0 and Ag2O. Photosystem (PS II efficiency of leaves declined upon exposure to Ag+ with a significantly higher decline in the submerged leaves than in the floating leaves. Similarly, Ag+ treatment caused a significant reduction in the carboxylase activity of the ribulose bisphosphate carboxylase/oxygenase in leaves. The reduction in this carboxylase activity was significantly higher in the submerged than in the floating leaves. Ag+ treatment also resulted in a significant decline in the levels of non-enzymatic and enzymatic antioxidants; the decline was significantly lower in the floating than in submerged leaves. X-ray photoelectron spectroscopy revealed the presence of Ag2O in these leaves. Inductively coupled plasma mass spectrometry analysis revealed a three-fold higher Ag content in the submerged than in floating leaves. Our study demonstrates that floating leaves of longleaf pondweed have a superior potential to counter Ag+-toxicity compared with submerged leaves, which could be due to superior potential of floating leaves to reduce Ag+ to less/non-toxic Ag0/Ag2O-nanoparticles/nanocomplexes. We suggest that modulating the genotype of longleaf pondweed to bear higher proportion of floating leaves would help in cleaning fresh water bodies contaminated with ionic forms of heavy metals.

  7. Search for major genes with progeny test data to accelerate the development of genetically superior loblolly pine

    Energy Technology Data Exchange (ETDEWEB)

    NCSU

    2003-12-30

    This research project is to develop a novel approach that fully utilized the current breeding materials and genetic test information available from the NCSU-Industry Cooperative Tree Improvement Program to identify major genes that are segregating for growth and disease resistance in loblolly pine. If major genes can be identified in the existing breeding population, they can be utilized directly in the conventional loblolly pine breeding program. With the putative genotypes of parents identified, tree breeders can make effective decisions on management of breeding populations and operational deployment of genetically superior trees. Forest productivity will be significantly enhanced if genetically superior genotypes with major genes for economically important traits could be deployed in an operational plantation program. The overall objective of the project is to develop genetic model and analytical methods for major gene detection with progeny test data and accelerate the development of genetically superior loblolly pine. Specifically, there are three main tasks: (1) Develop genetic models for major gene detection and implement statistical methods and develop computer software for screening progeny test data; (2) Confirm major gene segregation with molecular markers; and (3) Develop strategies for using major genes for tree breeding.

  8. Features of Scots pine radial growth in conditions of provenance trial.

    Science.gov (United States)

    Kuzmin, Sergey; Kuzmina, Nina

    2013-04-01

    Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 down to 2 degree Celsius. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed. Eniseysk and Vikhorevka (from Krasnoyarsk krai and Irkutsk oblast)provenances of pine have the biggest radial increments, the least sensitivity to Cenangium dieback and smallest increments decline. These climatypes are in the group of perspective provenances and in present time they are recommended for wide trial in the region for future use in plantation forest growing. Kandalaksha (Murmansk oblast

  9. Deadwood Decay in a Burnt Mediterranean Pine Reforestation

    Directory of Open Access Journals (Sweden)

    Carlos R. Molinas-González

    2017-05-01

    Full Text Available Dead wood remaining after wildfires represents a biological legacy for forest regeneration, and its decay is both cause and consequence of a large set of ecological processes. However, the rate of wood decomposition after fires is still poorly understood, particularly for Mediterranean-type ecosystems. In this study, we analyzed deadwood decomposition following a wildfire in a Mediterranean pine plantation in the Sierra Nevada Natural and National Park (southeast Spain. Three plots were established over an elevational/species gradient spanning from 1477 to 2053 m above sea level, in which burnt logs of three species of pines were experimentally laid out and wood densities were estimated five times over ten years. The logs lost an overall 23% of their density, although this value ranged from an average 11% at the highest-elevation plot (dominated by Pinus sylvestris to 32% at an intermediate elevation (with P. nigra. Contrary to studies in other climates, large-diameter logs decomposed faster than small-diameter logs. Our results provide one of the longest time series for wood decomposition in Mediterranean ecosystems and suggest that this process provides spatial variability in the post-fire ecosystem at the scale of stands due to variable speeds of decay. Common management practices such as salvage logging diminish burnt wood and influence the rich ecological processes related to its decay.

  10. Pine weevil (Hylobius abietis) antifeedants from lodgepole pine (Pinus contorta).

    Science.gov (United States)

    Bratt, K; Sunnerheim, K; Nordenhem, H; Nordlander, G; Langström, B

    2001-11-01

    Pine weevils (Hylobius abietis) fed less on bark of lodgepole pine (Pinus contorta) than on bark of Scots pine (P. sylvestris). Two pine weevil antifeedants, ethyl trans-cinnamate and ethyl 2,3-dibromo-3-phenyl-propanoate, were isolated from bark of lodgepole pine. These two compounds significantly reduced pine weevil feeding in a laboratory bioassay. In field assays, the second compound significantly decreased pine weevil damage on planted seedlings. Ethyl 2,3-dibromo-3-phenylpropanoate has not previously been reported as a natural product.

  11. Final Environmental Assessment for the High Explosive Research and Development Complex’s Proposed Long Term Upgrade and Expansion

    Science.gov (United States)

    2012-06-01

    AFB (but were not observed on the subject site) include: Chinese tallow tree (Sapium sebiferum), cogon grass (Imperata cylindrica), and chinaberry...natural processes, such as the fire regime, and abatement of specific threats, such as invasive species (e.g. sand pine and cogon grass ). The...canopy of longleaf pine, a sparse midstory of oaks and other hardwoods, and a diverse groundcover comprised mainly of grasses , forbs and low

  12. Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels

    OpenAIRE

    Fernández, M.E.; Gyenge, J.E.; de Urquiza, M.M.; Varela, S.

    2012-01-01

    More stressful conditions are expected due to climatic change in several regions, including Patagonia, South-America. In this region, there are no studies about the impact of severe drought events on growth and wood characteristics of the most planted forestry species, Pinus ponderosa (Doug. ex-Laws). The objective of this study was to quantify the effect of a severe drought event on annual stem growth and functional wood anatomy of pines growing at different plantation densities aiming to un...

  13. Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies

    Science.gov (United States)

    Daniel J. Leduc; Thomas G. Matney; Keith L. Belli; V. Clark Baldwin

    2001-01-01

    Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software...

  14. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna

    Science.gov (United States)

    Ficken, Cari D.; Wright, Justin P.

    2017-01-01

    Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the southeastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. Our findings refute both proposed mechanisms: we found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5-25 times background levels. Consequently, we propose a third mechanism to explain post-fire patterns of soil N availability, namely that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability, and encourage future studies to explicitly test this mechanism.

  15. Predicting Stem Total and Assortment Volumes in an Industrial Pinus taeda L. Forest Plantation Using Airborne Laser Scanning Data and Random Forest

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Silva

    2017-07-01

    Full Text Available Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised machine learning algorithm, to estimate stem total and assortment (commercial and pulpwood volumes in an industrial Pinus taeda L. forest plantation in southern Brazil. Random Forest was populated using field and lidar-derived forest metrics from 50 sample plots with trees ranging from three to nine years old. We found that a model defined as a function of only two metrics (height of the top of the canopy and the skewness of the vertical distribution of lidar points has a very strong and unbiased predictive power. We found that predictions of total, commercial, and pulp volume, respectively, showed an adjusted R2 equal to 0.98, 0.98 and 0.96, with unbiased predictions of −0.17%, −0.12% and −0.23%, and Root Mean Square Error (RMSE values of 7.83%, 7.71% and 8.63%. Our methodology makes use of commercially available airborne lidar and widely used mathematical tools to provide solutions for increasing the industry efficiency in monitoring and managing wood volume.

  16. Carbon and Water Fluxes in a Drained Coastal Clearcut and a Pine Plantation in Eastern North Carolina

    Science.gov (United States)

    J. L. Deforest; Ge Sun; A. Noormets; J. Chen; Steve McNulty; M. Gavazzi; Devendra M. Amatya; R. W. Skaggs

    2006-01-01

    The effects of clear-cutting and cultivating for timber on ecosystem carbon and water fluxes were evaluated by comparative measurements of two drained coastal wetland systems in the North Carolina coastal plain. Measurements were conducted from January through September, 2005 in a recent clearcut (CC) of native hardwoods and a loblolly pine (Pinus tacda...

  17. Automated Plantation Mapping in Indonesia Using Remote Sensing Data

    Science.gov (United States)

    Karpatne, A.; Jia, X.; Khandelwal, A.; Kumar, V.

    2017-12-01

    Plantation mapping is critical for understanding and addressing deforestation, a key driver of climate change and ecosystem degradation. Unfortunately, most plantation maps are limited to small areas for specific years because they rely on visual inspection of imagery. In this work, we propose a data-driven approach which automatically generates yearly plantation maps for large regions using MODIS multi-spectral data. While traditional machine learning algorithms face manifold challenges in this task, e.g. imperfect training labels, spatio-temporal data heterogeneity, noisy and high-dimensional data, lack of evaluation data, etc., we introduce a novel deep learning-based framework that combines existing imperfect plantation products as training labels and models the spatio-temporal relationships of land covers. We also explores the post-processing steps based on Hidden Markov Model that further improve the detection accuracy. Then we conduct extensive evaluation of the generated plantation maps. Specifically, by randomly sampling and comparing with high-resolution Digital Globe imagery, we demonstrate that the generated plantation maps achieve both high precision and high recall. When compared with existing plantation mapping products, our detection can avoid both false positives and false negatives. Finally, we utilize the generated plantation maps in analyzing the relationship between forest fires and growth of plantations, which assists in better understanding the cause of deforestation in Indonesia.

  18. Some ecological guidelines for large-scale biomass plantations

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, W.; Cook, J.H.; Beyea, J. [National Audubon Society, Tavernier, FL (United States)

    1993-12-31

    The National Audubon Society sees biomass as an appropriate and necessary source of energy to help replace fossil fuels in the near future, but is concerned that large-scale biomass plantations could displace significant natural vegetation and wildlife habitat, and reduce national and global biodiversity. We support the development of an industry large enough to provide significant portions of our energy budget, but we see a critical need to ensure that plantations are designed and sited in ways that minimize ecological disruption, or even provide environmental benefits. We have been studying the habitat value of intensively managed short-rotation tree plantations. Our results show that these plantations support large populations of some birds, but not all of the species using the surrounding landscape, and indicate that their value as habitat can be increased greatly by including small areas of mature trees within them. We believe short-rotation plantations can benefit regional biodiversity if they can be deployed as buffers for natural forests, or as corridors connecting forest tracts. To realize these benefits, and to avoid habitat degradation, regional biomass plantation complexes (e.g., the plantations supplying all the fuel for a powerplant) need to be planned, sited, and developed as large-scale units in the context of the regional landscape mosaic.

  19. Persistence of ectomycorrhizas by Thelephora terrestris on outplanted Scots pine seedlings

    Directory of Open Access Journals (Sweden)

    Dorota Hilszczańska

    2013-12-01

    Full Text Available Thelephora terrestris (Erhr. Fr. is a very common ectomycorrhizal symbiont (ECM in conifer trees, however the role of this ubiquitous fungus in nurseries and Scots pine plantations is still unknown. It is described as tolerant of high nitrogen availability and therefore was taken into consideration as an important ECM partner of seedlings, particularly after replanting on post agricultural land. In laboratory the seedlings of Scots pine (Pinus sylvestris L. were inoculated with T. terrestris (Tt/IBL/2 or not inoculated (control and grown in containers in two different regimes of nitrogen fertilization (4g N x kg-1 and 6 g N x kg-1. Next year these seedlings were outplanted in post agricultural land and 6 months later, the number and identity of some mycorrhizas were studied. It was found, that mycorrhizal abundance was higher in the inoculated treatments than in non-inoculated ones. PCR RFLP analysis confirmed share of two different isolates of Thelephora engaged in mycorrhizal symbiosis. Part of mycorrhizas had the same pattern of RFLP as the isolate used to inoculation. Similar results were obtained in second year of experimental study in the field what confirmed the persistence of artificially introduced T. terrestris in post agricultural soil as an important component of the ECM community.

  20. 75 FR 60808 - Carolina Sandhills National Wildlife Refuge, Chesterfield County, SC

    Science.gov (United States)

    2010-10-01

    ...-acre refuge is managed to restore the longleaf pine/wiregrass ecosystem for the benefit of the red... wildlife observation, hiking, and fishing also are popular. We announce our decision and the availability... mobility-impaired persons, outdoor recreation (e.g., bicycling, hiking, jogging, walking, mountain biking...

  1. General Plan Environmental Assessment, Hurlburt Field, Florida

    Science.gov (United States)

    2005-10-01

    sebiferum) and cogon grass (Imperata Resource/Issue Areas Hurlburt Field General Plan Environmental Assessment 4-9 cylindrica) are most...habitat on the western portion of the installation. The restoration of a native long-leaf pine/wire grass community on Hurlburt is associated with a

  2. Regional Mapping of Plantation Extent Using Multisensor Imagery

    Science.gov (United States)

    Torbick, N.; Ledoux, L.; Hagen, S.; Salas, W.

    2016-12-01

    Industrial forest plantations are expanding rapidly across the tropics and monitoring extent is critical for understanding environmental and socioeconomic impacts. In this study, new, multisensor imagery were evaluated and integrated to extract the strengths of each sensor for mapping plantation extent at regional scales. Three distinctly different landscapes with multiple plantation types were chosen to consider scalability and transferability. These were Tanintharyi, Myanmar, West Kalimantan, Indonesia, and southern Ghana. Landsat-8 Operational Land Imager (OLI), Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2), and Sentinel-1A images were fused within a Classification and Regression Tree (CART) framework using random forest and high-resolution surveys. Multi-criteria evaluations showed both L-and C-band gamma nought γ° backscatter decibel (dB), Landsat reflectance ρλ, and texture indices were useful for distinguishing oil palm and rubber plantations from other land types. The classification approach identified 750,822 ha or 23% of the Taninathryi, Myanmar, and 216,086 ha or 25% of western West Kalimantan as plantation with very high cross validation accuracy. The mapping approach was scalable and transferred well across the different geographies and plantation types. As archives for Sentinel-1, Landsat-8, and PALSAR-2 continue to grow, mapping plantation extent and dynamics at moderate resolution over large regions should be feasible.

  3. Assessing the impact of plantation forestry on plant biodiversity

    Directory of Open Access Journals (Sweden)

    Andreas Ch. Braun

    2017-04-01

    Full Text Available Effects of plantation forestry on biodiversity are controversially discussed in literature. While some authors stress positive effects, others tend to attribute a largely negative influence to plantations. One important factor steering the influence on biodiversity are management practices. A second important factor is the environmental matrix. Chile offers the option to analyse both factors jointly. The coastal range of central Chile has experienced rapid and widespread replacement of native Nothofagus spp. forests in favour of Pinus radiata plantations. Here, native forests remain limited to small patches surrounded by an environmental matrix of plantations. Management is rather intensive and not designed to maintain biodiversity. While in the coastal range of central Chile the transformation from native forests to non-native tree plantations has almost come to an end, spatial extension of P. contorta and P. ponderosa plantations has just recently begun in Chilean Patagonia. While the management is similar to central Chile, plantations rather exist as small patches surrounded by an environmental matrix of native plant formations (e.g. Nothofagus spp. forests and Nothofagus spp. scrublands. In the framework of this work, effects of the two diametric land usages on biodiversity are assessed and compared. Biodiversity is assessed at the α-, β- and γ-scale. At the α-scale, biodiversity impacts are inferred statistically, using one-way ANOVA and Tukey’s PostHoc test. Biodiversity of plants at both sites is significantly reduced in plantations when compared to native forests or scrublands. Plantation forestry lowers α-biodiversity and does not provide additional habitats for specialists. At the β-scale, weak edge effects due to the presence of native forests are observed. In total, plantation forestry tends to promote plant invasions and impairs the survival of endemics. At the γ-scale, plant species communities where predominantly native

  4. Multi-functional energy plantation; Multifunktionella bioenergiodlingar

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lund Univ. (Sweden). Environmental and Energy Systems Studies; Berndes, Goeran; Fredriksson, Fredrik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physical Resource Theory; Kaaberger, Tomas [Ecotraffic, Goeteborg (Sweden)

    2002-02-01

    There exists a significant potential for utilising perennial energy plantations in protecting and restoring polluted water and land resources in Sweden. By optimising the design, location and management, several additional environmental services could be obtained which will increase the value of the energy plantations, thereby improving future market conditions for biomass. Multi-functional energy plantations (mainly Salix but also energy grass) can be divided into two categories, those designed for dedicated environmental services (e.g. vegetation filters for wastewater and sewage sludge treatment and shelter belts against soil erosion), and those generating more general benefits (e.g. soil carbon accumulation, increased soil fertility, cadmium removal and increased hunting potential). The practical potential of those two categories is estimated to be equivalent to up to 3% and more than 20% of the total Swedish arable land, respectively. The regional conditions of utilising multi-functional plantations vary, however, with the best possibilities in densely populated areas dominated by farmland. The economic value of multi-functional plantations is normally highest for those designed for dedicated environmental services. Purification of wastewater has the highest value, which could exceed the production cost in conventional Salix plantations, followed by treatment of polluted drainage water in vegetation filters and buffer zones (equivalent to more than half of the production cost), recirculation of sewage sludge (around half of the production cost), erosion control (around one fourth) and increased hunting potential (up to 15% of the production cost). The value of increased hunting potential varies due to nearness to larger cities and in which part of Sweden the plantation is located. The economic value of cadmium removal and increased soil fertility is equivalent to a few percent of the production cost, but the value of cadmium removal might increase in the

  5. The Health Risks of Belgian Illicit Indoor Cannabis Plantations.

    Science.gov (United States)

    Vanhove, Wouter; Cuypers, Eva; Bonneure, Arne-Jan; Gotink, Joachim; Stassen, Mirna; Tytgat, Jan; Van Damme, Patrick

    2018-04-10

    We assessed the prevalence of potential health hazards to intervention staff and cannabis growers in Belgian indoor cannabis plantations. Surface mold swab samples were taken at 16 Belgian indoor plantations contained mostly Penicillium sp. and Aspergillus sp. However, their precise health impact on intervention staff and illicit growers is unclear as no molds spore concentrations were measured. Atmospheric gas monitoring in the studied cannabis plantations did not reveal dangerous toxic substances. Health symptoms were reported by 60% of 221 surveyed police, but could not be linked to specific plantation characteristics. We conclude that Belgian indoor cannabis plantations pose a potential health threat to growers and intervention staff. AS there are currently no clear safety guidelines for seizure and dismantling of Belgian indoor cannabis plantations, we recommend first responders to follow strict safety rules when entering the growth rooms, which include wearing appropriate personal protective equipment. © 2018 American Academy of Forensic Sciences.

  6. Combinations of fungicide and cultural practices influence the incidence and impact of fusiform rust in slash pine plantations

    Science.gov (United States)

    James D. Haywood; Allan E. Tiarks

    1994-01-01

    Slash pine was grown in central Louisiana under four levels of culture with or without repeated sprayings of the systematic fungicide triadimefon for protection against fusiform rust. The eight treatment combinations were: (1)no fungicide, weed control, or fertilizer; (2)weeded; (3)weeded, applied inorganic fertilizer, and bedded before planting; (4)weeded, bedded,...

  7. Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere

    Science.gov (United States)

    Harley, Peter; Fridd-Stroud, Verity; Greenberg, James; Guenther, Alex; Vasconcellos, PéRola

    1998-10-01

    High rates of emission of 2-methyl-3-buten-2-ol (MBO) were measured from needles of several pine species. Emissions of MBO in the light were 1 to 2 orders of magnitude higher than emissions of monoterpenes and, in contrast to monoterpene emissions from pines, were absent in the dark. MBO emissions were strongly dependent on incident light, behaving similarly to net photosynthesis. Emission rates of MBO increased exponentially with temperature up to approximately 35°C. Above approximately 42°C, emission rates declined rapidly. Emissions could be modeled using existing algorithms for isoprene emission. We propose that emissions of MBO from lodgepole and ponderosa pine are the primary source of high concentrations of this compound, averaging 1-3 ppbv, found in ambient air samples collected in Colorado at an isolated mountain site approximately 3050 m above sea level. Subsequent field studies in a ponderosa pine plantation in California confirmed high MBO emissions, which averaged 25 μg C g-1 h-1 for 1-year-old needles, corrected to 30°C and photon flux of 1000 μmol m-2 s-1. A total of 34 pine species growing at Eddy Arboretum in Placerville, California, were investigated, of which 11 exhibited high emissions of MBO (>5 μg C g-1 h-1), and 6 emitted small but detectable amounts. All the emitting species are of North American origin, and most are restricted to western North America. These results indicate that MBO emissions from pines may constitute a significant source of reactive carbon and a significant source of acetone, to the atmosphere, particularly in the western United States.

  8. Scientific designs of pine seeds and pine cones for species conservation

    Science.gov (United States)

    Song, Kahye; Yeom, Eunseop; Kim, Hyejeong; Lee, Sang Joon

    2015-11-01

    Reproduction and propagation of species are the most important missions of every living organism. For effective species propagation, pine cones fold their scales under wet condition to prevent seeds from short-distance dispersal. They open and release their embedded seeds on dry and windy days. In this study, the micro-/macro-scale structural characteristics of pine cones and pine seeds are studied using various imaging modalities. Since the scales of pine cones consist of dead cells, the folding motion is deeply related to structural changes. The scales of pine cones consist of three layers. Among them, bract scales are only involved in collecting water. This makes pine cones reduce the amount of water and minimize the time spent on structural changes. These systems also involve in drying and recovery of pine cones. In addition, pine cones and pine seeds have advantageous structures for long-distance dispersal and response to natural disaster. Owing to these structural features, pine seeds can be released safely and efficiently, and these types of structural advantages could be mimicked for practical applications. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  9. Soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations on the virginia Piedmond and South Carolina coastal plain over a rotation-length chronosequence

    Science.gov (United States)

    Christopher M. Gough; John R. Seiler; P. Eric Wiseman; Christopher A. Maier

    2005-01-01

    We measured soil surface CO2 efflux (Fx) in loblolly pine stands (Pinus taeda L.) located on the Virginia Piedmont (VA) and South Carolina Coastal Plain (SC) in efforts to assess the impact climate, productivity, and cultural practices have on Fs in the managed loblolly pine...

  10. Provenance variations of scots pine (Pinus sylvestris L.) in the Southern PART of Turkey

    International Nuclear Information System (INIS)

    Gulcu, S.; Bilir, N.

    2015-01-01

    Tree height, basal diameter, stem form, number, angle and diameter of branches were assessed in eight-year-old provenance test established by 30 seed sources of Scots pine (Pinus sylvestris L.) at Aydogmus and Kemer experimental sites of Southern part of Turkey. Growth of the provenances was also compared to two native species (Taurus cedar- Cedrus libani A. Rich and Black pine-Pinus nigra Arnold.) of the region. Variations within provenance and among provenances, and relations among the traits were estimated. There were large differences (p <= 0.05) within provenance and among provenances for the traits, while sites showed similar (0.05 <= p) performance for tree height and stem form. For instance, average of tree height was 181 cm and varied between 138.3 cm and 229.8 cm in provenances of Aydogmus site, it was 184 cm and ranged from 130 cm to 246.1 cm in that of Kemer site. Averages of tree height of a provenance were 144.4 cm in Aydogmus and 194.5 cm in Kemer. Individual tree height of the provenance varied between 69 cm and 267 cm, and ranged from 51 cm to 280 cm in sites. Averages of tree height were 143.2 cm in Black pine 145.6 cm in Taurus cedar which were natural species of the region. There were mostly positive and significant (p <= 0.05) correlations among the traits. Results of the study were discussed for new plantations and breeding of the species. (author)

  11. Missing Rings, Synchronous Growth, and Ecological Disturbance in a 36-Year Pitch Pine (Pinus rigida Provenance Study.

    Directory of Open Access Journals (Sweden)

    Caroline Leland

    Full Text Available Provenance studies are an increasingly important analog for understanding how trees adapted to particular climatic conditions might respond to climate change. Dendrochronological analysis can illuminate differences among trees from different seed sources in terms of absolute annual growth and sensitivity to external growth factors. We analyzed annual radial growth of 567 36-year-old pitch pine (Pinus rigida Mill. trees from 27 seed sources to evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unexpectedly, missing rings were prevalent in most trees, and some years-1992, 1999, and 2006-had a particularly high frequency of missing rings across the plantation. Trees from local seed sources (<55 km away from the plantation had a significantly smaller percentage of missing rings from 1980-2009 (mean: 5.0%, relative to northernmost and southernmost sources (mean: 9.3% and 7.9%, respectively. Some years with a high frequency of missing rings coincide with outbreaks of defoliating insects or dry growing season conditions. The propensity for missing rings synchronized annual variations in growth across all trees and might have complicated the detection of potential differences in interannual variability among seed sources. Average ring width was significantly larger in seed sources from both the southernmost and warmest origins compared to the northernmost and coldest seed sources in most years. Local seed sources had the highest average radial growth. Adaptation to local environmental conditions and disturbances might have influenced the higher growth rate found in local seed sources. These findings underscore the need to understand the integrative impact of multiple environmental drivers, such as disturbance agents and climate change, on tree growth, forest dynamics, and the carbon cycle.

  12. Understory vegetation in fast-growing tree plantations on savanna soils in Congo

    OpenAIRE

    Loumeto, J.J.; Huttel, Charles

    1997-01-01

    The hypothesis that tree plantations may catalyze the regeneration of natural forest biodiversity was tested through studies of floristic diversity and structure in fast-growing tree plantations in the Congo. Study sites included experimental and industrial plantations on poor sandy coastal soils near Pointe-Noire, and experimental plantations on clay soils near Loudima. The effects of plantations species, plantation age (in 6- to 20-year-old eucalypt stands), disturbance due to herbicide use...

  13. Opportunities and challenges in industrial plantation mapping in big data era

    Science.gov (United States)

    Dong, J.; Xiao, X.; Qin, Y.; Chen, B.; Wang, J.; Kou, W.; Zhai, D.

    2017-12-01

    With the increasing demand in timer, rubber, palm oil in the world market, industrial plantations have dramatically expanded, especially in Southeast Asia; which have been affecting ecosystem services and human wellbeing. However, existing efforts on plantation mapping are still limited and blocked our understanding about the magnitude of plantation expansion and their potential environmental effects. Here we would present a literature review about the existing efforts on plantation mapping based on one or multiple remote sensing sources, including rubber, oil palm, and eucalyptus plantations. The biophysical features and spectral characteristics of plantations will be introduced first, a comparison on existing algorithms in terms of different plantation types. Based on that, we proposed potential improvements in large scale plantation mapping based on the virtual constellation of multiple sensors, citizen science tools, and cloud computing technology. Based on the literature review, we discussed a series of issues for future scale operational paddy rice mapping.

  14. The State and the Development of Industrial Plantation Forest

    Directory of Open Access Journals (Sweden)

    Sudarmalik Sudarmalik

    2015-02-01

    Full Text Available Development of industrial plantation forest is a form of principal-agent relationship, in which the Ministry of Forestry as a principal gives utilization permit to the entrepreneur as an agent, known as the Forest Timber Product Exploitation Permit on Planted Forest. This utilization permit obtained by the agents is operationally conducted by other parties through a cooperative agreement. The purpose of this study is to obtain an information regarding to the state position in the development of industrial plantation forest. The study was conducted in Riau Province, using the constructivist paradigm with phenomenological method. Data were obtained through in-depth interviews to selected informants. Data were also obtained from the review of documents to complement the interview. Data analysis was conducted using property rights and principal agent theories. The phenomenon of multi-chain transfer of the management rights of plantation forest that occoured in the observed companies showed that the state was unable to effectively control to the forest plantation. The study recommends that state should issue regulation to decrease or stops further transfer of the management rights of plantation forest. However, further study needs to overcome the existing over accumulation of plantation forest in a few hands.Keywords: industrial plantation forest, property right, principal agent, the state position, authority

  15. Nitrogen supply and demand in short-rotation sweetgum plantations

    Science.gov (United States)

    D. Andrew Scott; James A. Burger; Donald J. Kaczmarek; Michael B. Kane

    2004-01-01

    Intensive management is crucial for optimizing hardwood plantation success, and nitrogen (N) nutrition management is one of the most important practices in intensive management. Because management of short-rotation woody crop plantations is a mixture of row-crop agriculture and plantation forestry, we tested the usefulness of an agronomic budget modified for deciduous...

  16. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Should ponderosa pine be planted on lodgepole pine sites?

    Science.gov (United States)

    P.H. Cochran

    1984-01-01

    Repeated radiation frosts caused no apparent harm to the majority of lodgepole pine (Pinus contorta Dougl.) seedlings planted on a pumice flat in south-central Oregon. For most but not all of the ponderosa pine (Pinus ponderosa Dougl.) seedlings planted with the lodgepole pine, however, damage from radiation frost resulted in...

  18. Effects of dormant and growing season burning on surface fuels and potential fire behavior in northern Florida longleaf pine (Pinus palustris) flatwoods

    Science.gov (United States)

    James B. Cronan; Clinton S. Wright; Maria Petrova

    2015-01-01

    Prescribed fire is widely used to manage fuels in high-frequency, low-severity fire regimes including pine flatwoods of the southeastern USA where prescribed burning during the growing season (the frost-free period during the calendar year) has become more common in recent decades. Growing season prescribed fires address ecological management objectives that focus on...

  19. Plantation forests, climate change and biodiversity

    Science.gov (United States)

    S.M. Pawson; A. Brin; E.G. Brockerhoff; D. Lamb; T.W. Payn; A. Paquette; J.A. Parrotta

    2013-01-01

    Nearly 4 % of the world’s forests are plantations, established to provide a variety of ecosystem services, principally timber and other wood products. In addition to such services, plantation forests provide direct and indirect benefits to biodiversity via the provision of forest habitat for a wide range of species, and by reducing negative impacts on natural forests...

  20. Nantucket Pine Tip Moth Control and Loblolly Pine Growth in Intensive Pine Culture: Two-Year Results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2004-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L. on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana (Comstock), and effects on pine growth over 2 years. Treatments were combinations of Velpar, Oust, and Arsenal...

  1. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Science.gov (United States)

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  2. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle

    Science.gov (United States)

    Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan. Wikaira

    2007-01-01

    A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...

  3. Performance and value of CAD-deficient pine- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bailian Li; Houmin Chang; Hasan Jameel

    2007-02-28

    The southern US produces 58% of the nation's timber, much of it grown in intensively managed plantations of genetically improved loblolly pine. One of the fastest-growing loblolly pine selections made by the NCSU-Industry Cooperative Tree Improvement Program, whose progeny are widely planted, is also the only known natural carrier of a rare gene, cadn1. This allele codes for deficiency in an enzyme, cinnamyl alcohol dehydrogenase, which catalyzes the last step in the biosynthesis of lignin precursors. This study is to characterize this candidate gene for marker-assisted selection and deployment in the breeding program. This research will enhance the sustainability of forest production in the South, where land-use pressures will limit the total area available in the future for intensively managed plantations. Furthermore, this research will provide information to establish higher-value plantation forests with more desirable wood/fiber quality traits. A rare mutant allele (cad-n1) of the cad gene in loblolly pine (Pinus taeda L.) causes a deficiency in the production of cinnamyl alcohol dehydrogenase (CAD). The effects of this allele were examined by comparing wood density and growth traits of cad-n1 heterozygous trees with those of wild-type trees in a 10-year-old open-pollinated family trial growing under two levels of fertilization in Scotland County, North Carolina. In all, 200 trees were sampled with 100 trees for each treatment. Wood density measurements were collected from wood cores at breast height using x-ray densitometry. We found that the substitution of cad-n1 for a wild-type allele (Cad) was associated with a significant effect on wood density. The cad-n1 heterozygotes had a significantly higher wood density (+2.6%) compared to wild-type trees. The higher density was apparently due to the higher percentage of latewood in the heterozygotes. The fertilization effect was highly significant for both growth and wood density traits. While no cad genotype

  4. Hemipteran diversity in Endau-Rompin plantation

    Science.gov (United States)

    Bakri, Asraf; Rahim, Faszly

    2015-09-01

    Study on hemipteran at Endau Rompin Plantation (LER), Pahang was conducted at oil palm plantation planted at different type of soils. The aim of the study was to determine hemipteran diversity in oil palm ecosystem. Sampling was done from April 2012 to September 2012 by using Malaise and impact traps. Cicadellidae was the most abundance and dominance family with 105 individuals and 6 species (=morphospecies) recorded. The rarefaction curve becomes flatter to the right indicating a reasonable number of individual samples have been taken. Peat area show high Shannon index and Margalef index values compared to clay area.There were significant differences in hemipteran community between three type of soils (χ2=98.751,df=58,p<0.05). As such, hemipteran abundance in oil palm plantation is affected by the type of soil.

  5. Flower and fruit production and insect pollination of the endangered Chilean tree, Gomortega keule in native forest, exotic pine plantation and agricultural environments Producción de flores y frutas y polinización por insectos de Gomortega keule en bosque nativo y en terrenos agrícolas, un árbol chileno en peligro de extinción

    Directory of Open Access Journals (Sweden)

    TONYA A LANDER

    2009-01-01

    Full Text Available This study was undertaken to discover whether patterns of flower and fruit production for Gomortega keule, an endangered Chilean tree, differ between exotic pine plantation, agricultural and native forest environments. A pilot study was also undertaken to identify the primary pollinators of G. keule. Although similar proportions of G. keule trees flowered in the agricultural and native forest áreas, more trees in the agricultural sites produced fruit compared to trees in the native forest sites. Flowering and fruiting of G. keule was extremely rare in the exotic pine plantations. Our data show that G. keule flowers are predominantly visited by syrphid flies in March-April, and that syrphids carry a greater proportion of G. keule pollen than the other insects collected. Native forest and low intensity agricultural systems appear to provide habitat in which syrphids forage and G. keule is able to produce fruit successfully, but exotic pine plantation does not; suggesting that a landscape made up of a mosaic of different landuse types is not necessarily inimical to the continued reproduction of G. keule, but that the combination and types of landuses and intensity of management must be carefully considered.El presente estudio fue realizado con el objetivo de establecer si los patrones de producción de flores y frutos de Gomortega keule (Gomortegaceae, un árbol chileno en peligro de extinción, son diferentes entre áreas de plantaciones de pinos exóticos, terrenos agrícolas y áreas de bosque nativo. También fue llevado a cabo un estudio piloto para identificar los principales polinizadores de G. keule. A pesar de que en tierras agrícolas y en áreas de bosque nativo floreció una proporción similar de árboles de G. keule, en zonas agrícolas fructificó una mayor proporción en comparación con los árboles de áreas de bosque nativo. La floración y fructificación de G. keule fue extremadamente rara en las áreas de plantaciones de

  6. 75 FR 31387 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Mississippi...

    Science.gov (United States)

    2010-06-03

    ...-- historically forest dominated by longleaf pine (Pinus palustris) --and isolated temporary wetland breeding... frequency and duration of severe storms and droughts (McLauglin et al. 2002, p. 6074; Golladay et al. 2004, p. 504; Seager et al. 2009, p. 5043). During a period of drought from 2004 to 2007, rainfall during...

  7. Using existing growth models to predict RCW habitat development following site preparation: pitfalls of the process and potential growth response

    Science.gov (United States)

    Benjamin O. Knapp; Joan L. Walker

    2013-01-01

    Land managers throughout the Southeast are interested in restoring the longleaf pine (Pinus palustris Mill.) ecosystem, due in part to its value as habitat for the endangered red-cockaded woodpecker (Picoides borealis). In 2003, we established a study at Camp Lejeune, NC, to determine the effects of common site preparation...

  8. Influence of repeated canopy scorching on soil CO2 efflux

    Science.gov (United States)

    DP Aubrey; B Martazavi; Joseph O' Brien; JD McGee; JJ Hendricks; KA Kuehn; RJ Mitchell

    2012-01-01

    Forest ecosystems experience various disturbances that can affect belowground carbon cycling to different degrees. Here, we investigate if successive annual foliar scorching events will result in a large and rapid decline in soil CO2 efflux, similar to that observed in girdling studies. Using the fire-adapted longleaf pine (Pinus...

  9. Soil methane and CO2 fluxes in rainforest and rubber plantations

    Science.gov (United States)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu

    2017-04-01

    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  10. Plantation forests and biodiversity: oxymoron or opportunity?

    Science.gov (United States)

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Christopher Quine; Jeffrey Sayer

    2008-01-01

    Losses of natural and semi-natural forests, mostly to agriculture, are a significant concern for biodiversity. Against this trend, the area of intensively managed plantation forests increases, and there is much debate about the implications for biodiversity. We provide a comprehensive review of the function of plantation forests as habitat compared with other land...

  11. Expansion of Industrial Plantations Continues to Threaten Malayan Tiger Habitat

    Directory of Open Access Journals (Sweden)

    Varada S. Shevade

    2017-07-01

    Full Text Available Southeast Asia has some of the highest deforestation rates globally, with Malaysia being identified as a deforestation hotspot. The Malayan tiger, a critically endangered subspecies of the tiger endemic to Peninsular Malaysia, is threatened by habitat loss and fragmentation. In this study, we estimate the natural forest loss and conversion to plantations in Peninsular Malaysia and specifically in its tiger habitat between 1988 and 2012 using the Landsat data archive. We estimate a total loss of 1.35 Mha of natural forest area within Peninsular Malaysia over the entire study period, with 0.83 Mha lost within the tiger habitat. Nearly half (48% of the natural forest loss area represents conversion to tree plantations. The annual area of new plantation establishment from natural forest conversion increased from 20 thousand ha year−1 during 1988–2000 to 34 thousand ha year−1 during 2001–2012. Large-scale industrial plantations, primarily those of oil palm, as well as recently cleared land, constitute 80% of forest converted to plantations since 1988. We conclude that industrial plantation expansion has been a persistent threat to natural forests within the Malayan tiger habitat. Expanding oil palm plantations dominate forest conversions while those for rubber are an emerging threat.

  12. The State and the Development of Industrial Plantation Forest

    Directory of Open Access Journals (Sweden)

    Sudarmalik

    2014-12-01

    Full Text Available Development of industrial plantation forest is a form of principal-agent relationship, in which the Ministry of Forestry as a principal gives utilization permit to the entrepreneur as an agent, known as the Forest Timber Product Exploitation Permit on Planted Forest. This utilization permit obtained by the agents is operationally conducted by other parties through a cooperative agreement. The purpose of this study is to obtain an information regarding to the state position in the development of industrial plantation forest. The study was conducted in Riau Province, using the constructivist paradigm with phenomenological method. Data were obtained through in-depth interviews to selected informants. Data were also obtained from the review of documents to complement the interview. Data analysis was conducted using property rights and principal agent theories. The phenomenon of multi-chain transfer of the management rights of plantation forest that occoured in the observed companies showed that the state was unable to effectively control to the forest plantation. The study recommends that state should issue regulation to decrease or stops further transfer of the management rights of plantation forest. However, further study needs to overcome the existing over accumulation of plantation forest in a few hands.

  13. Naturally Occurring Compound Can Protect Pines from the Southern Pine Beetle

    Science.gov (United States)

    B.L. Strom; R.A. Goyer; J.L. Hayes

    1995-01-01

    The southern pine beetle (SPB), Dendroctonus frontalis, is the most destructive insect pest of southern pine forests. This tiny insect, smaller than a grain of rice, is responsible for killing pine timber worth millions of dollars on a periodic basis in Louisiana.

  14. A decision tree approach using silvics to guide planning for forest restoration

    Science.gov (United States)

    Sharon M. Hermann; John S. Kush; John C. Gilbert

    2013-01-01

    We created a decision tree based on silvics of longleaf pine (Pinus palustris) and historical descriptions to develop approaches for restoration management at Horseshoe Bend National Military Park located in central Alabama. A National Park Service goal is to promote structure and composition of a forest that likely surrounded the 1814 battlefield....

  15. Understory fuel variation at the Carolina Sandhills National Wildlife Refuge: a description of chemical and physical properties

    Science.gov (United States)

    Evelyn S. Wenk; G. Geoff Wang; Joan L. Walker

    2013-01-01

    Upland forest in the Carolina Sandhills National Wildlife Refuge is characterized by a longleaf pine (Pinus palustris) canopy with a variable understory and ground-layer species composition. The system was historically maintained by fire and has been managed with prescribed fire in recent decades. A management goal is to reduce turkey oak (...

  16. Introducing close-range photogrammetry for characterizing forest understory plant diversity and surface fuel structure at fine scales

    Science.gov (United States)

    Benjamin C. Bright; E. Louise Loudermilk; Scott M. Pokswinski; Andrew T. Hudak; Joseph J. O' Brien

    2016-01-01

    Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustris Mill.) forests of the southeastern United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant...

  17. Picloram Movement in Soil Solution and Streamflow from a Coastal Plain Forest

    Science.gov (United States)

    Jerry L. Michael; D.G. Neary; M.J.M. Wells

    1989-01-01

    Picloram (4-amino-3,5,6-trichloropicolinic acid) was aerially applied to P longleaf pine (Pinus palustris L.) site in the upper constnl plain of Alabama to control kudzu [Purraria lobota (Willd.) Ohwi]. Pellets (10% a.i.) were spread at the rate of 56 kg ha-1 on loamy sand Typic Knnhspludult soils....

  18. Evaluating physical property changes for small-diameter, plantation-grown southern pine after in situ polymerization of an acrylic monomer

    Science.gov (United States)

    Richard Bergman; Rebecca E. Ibach; Constantine LaPasha; Joseph Denig

    2009-01-01

    Because of the large percentage of juvenile wood in small-diameter southern pine, this material has lower strength properties compared with the historic published values in the ASTM Standard D2555. Finding new, simple, and inexpensive ways of increasing these strength properties would increase the use of this material for residential construction. For this study, we...

  19. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    Science.gov (United States)

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  20. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana).

    Science.gov (United States)

    Hall, Dawn E; Yuen, Macaire M S; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet K; Li, Maria; Henderson, Hannah; Arango-Velez, Adriana; Liao, Nancy Y; Docking, Roderick T; Chan, Simon K; Cooke, Janice Ek; Breuil, Colette; Jones, Steven Jm; Keeling, Christopher I; Bohlmann, Jörg

    2013-05-16

    The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.

  1. Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest.

    Science.gov (United States)

    Colombo, Roberto; Celesti, Marco; Bianchi, Remo; Campbell, Petya K E; Cogliati, Sergio; Cook, Bruce D; Corp, Lawrence A; Damm, Alexander; Domec, Jean-Christophe; Guanter, Luis; Julitta, Tommaso; Middleton, Elizabeth M; Noormets, Asko; Panigada, Cinzia; Pinto, Francisco; Rascher, Uwe; Rossini, Micol; Schickling, Anke

    2018-02-20

    Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic

  2. Long-term simulations of forest management impacts on carbon storage from loblolly pine plantations in the Southern U.S.

    Science.gov (United States)

    Huei-Jin Wang; Philip J. Radtke; Stephen P. Prisley

    2012-01-01

    Accounting for forest components in carbon accounting systems may be insufficient when substantial amounts of sequestered carbon are harvested and converted to wood products in use and in landfill. The potential of forest offset – in-woods aboveground carbon storage, carbon stored in harvested wood, and energy offset by burning harvested wood – from loblolly pine...

  3. Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and #Acacia mangium# plantation on a sandy tropical soil

    OpenAIRE

    Tchichelle, Sogni Viviane; Epron, Daniel; Mialoundama, Fidèle; Koutika, Lydie-Stella; Harmand, Jean-Michel; Bouillet, Jean-Pierre; Mareschal, Louis

    2017-01-01

    Sustainable wood production requires appropriate management of commercial forest plantations. Establishment of industrial eucalypt plantations on poor sandy soils leads to a high loss of nutrients including nitrogen (N) after wood harvesting. An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the eucalypt monoculture to sustain soil fertility through enhancement of the N biological cycle. ...

  4. Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles

    Science.gov (United States)

    J.C. Nod; F.L. Hastings; A.S. Jones

    1990-01-01

    An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...

  5. Transmission of Leishmania in coffee plantations of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Bruce Alexander

    2002-07-01

    Full Text Available Transmission of Leishmania was studied in 27 coffee plantations in the Brazilian State of Minas Gerais. Eighteen females and six males (11.6% of the people tested, aged between 7-65 gave a positive response to the Montenegro skin test. Awareness of sand flies based on the ability of respondents to identify the insects using up to seven predetermined characteristics was significantly greater among inhabitants of houses occupied by at least one Mn+ve individual. Five species of phlebotomine sand fly, including three suspected Leishmania vectors, were collected within plantations under three different cultivation systems. Four of these species i.e., Lu. fischeri (Pinto 1926, Lu. migonei (França 1920, Lu. misionensis (Castro 1959 and Lutzomyia whitmani (Antunes & Coutinho 1939 were collected in an organic plantation and the last of these was also present in the other two plantation types. The remaining species, Lu. intermedia (Lutz & Neiva 1912, was collected in plantations under both the "adensado" and "convencional" systems. The results of this study indicate that transmission of Leishmania to man in coffee-growing areas of Minas Gerais may involve phlebotomine sand flies that inhabit plantations.

  6. Eucalypt pests and diseases: growing threats to plantation productivity

    African Journals Online (AJOL)

    Eucalypt pests and diseases: growing threats to plantation productivity. ... Southern Forests: a Journal of Forest Science ... plantations, it is clear that separation of the trees from their natural enemies has resulted in exceptional performance.

  7. Plantation Forestry in Sub Saharan Africa: Silvicultural, Ecological ...

    African Journals Online (AJOL)

    This paper discusses the potentials of meeting the wood demand and achieving SFM in Sub-Saharan Africa (SSA) through the establishment of forest plantations. The paper reviews forest plantation ownership and distribution patterns in SSA and the factors –silvicultural, ecological, and economic that affect supply and ...

  8. Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire

    Science.gov (United States)

    G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien

    2015-01-01

    Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...

  9. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations

    Science.gov (United States)

    Shukla, C.; Tiwari, K. N.

    2017-12-01

    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable

  10. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2016-01-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...

  11. Ponderosa pine ecosystems

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    Ponderosa pine is a wide-ranging conifer occurring throughout the United States, southern Canada, and northern Mexico. Since the 1800s, ponderosa pine forests have fueled the economies of the West. In western North America, ponderosa pine grows predominantly in the moist and dry forests. In the Black Hills of South Dakota and the southern portion of its range, the...

  12. Response of Bird Community to Various Plantation Forests in Gunung Walat, West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Aronika Kaban

    2017-04-01

    Full Text Available Different plantation forests possibly harbor different bird communities. This study was aimed to reveal responses of bird community to the different plantation (Schima wallichii, Agathis loranthifolia, Pinus merkusii, and mixed plantation, identify species shared in all plantation, and species confined to a particular plantation. The study site was plantation forests, using the point count method for 64 effective hours. There were 40 bird species (maximum prediction 52 in all forest plantations and each type had 26–31 species. Number of individuals, species density, and diversity index in Schima plantation were higher, followed by Agathis, Pinus, and mixed plantations. Mixed plantation could have harbored more species based on the prediction by Chao. Although there were some differences in tree species, tree sizes, and tree heights, the response of bird composition in all plantations was not differed (93–81% similarity probably because of the short distances among the forests, the abundance of food insects, and the same late-successional stages. There were 15 (37.5% widely distributed species in all forest types. Eight species were confined only to a specific forest type. Four species were considered true confined species, namely Javan sunbird (Schima forest, Grey-cheeked bulbul (in Pinus, Crescent-chested babbler (Agathis, and Mountain white-eye (Agathis.

  13. Socio-economic implications of structural changes in plantations in Asian countries.

    OpenAIRE

    Sircar KN; Navamukundan, A; Sajhau JP; Sukarja R

    1985-01-01

    ILO pub. Working paper on the economic implications and social implications of restructuring in plantations in India, Indonesia, Malaysia and Sri Lanka - covers agricultural production, employment, working conditions of plantation workers, wages, management, and public ownership or private ownership of tea, coffee, rubber, etc. Plantations; comments on labour legislation. Bibliography, statistical tables.

  14. Effect of Removal of Woody Biomass after Clearcutting and Intercropping Switchgrass (Panicum virgatum with Loblolly Pine (Pinus taeda on Rodent Diversity and Populations

    Directory of Open Access Journals (Sweden)

    Matthew M. Marshall

    2012-01-01

    Full Text Available Plant-based feedstocks have long been considered viable, potential sources for biofuels. However, concerns regarding production effects may outweigh gains like carbon savings. Additional information is needed to understand environmental effects of growing feedstocks, including effects on wildlife communities and populations. We used a randomized and replicated experimental design to examine initial effects of biofuel feedstock treatment options, including removal of woody biomass after clearcutting and intercropping switchgrass (Panicum virgatum, on rodents to 2 years post-treatment in regenerating pine plantations in North Carolina, USA. Rodent community composition did not change with switchgrass production or residual biomass removal treatments. Further, residual biomass removal had no influence on rodent population abundances. However, Peromyscus leucopus was found in the greatest abundance and had the greatest survival in treatments without switchgrass. In contrast, abundance of invasive Mus musculus was greatest in switchgrass treatments. Other native species, such as Sigmodon hispidus, were not influenced by the presence of switchgrass. Our results suggest that planting of switchgrass, but not biomass removal, had species-specific effects on rodents at least 2 years post-planting in an intensively managed southern pine system. Determining ecological mechanisms underlying our observed species associations with switchgrass will be integral for understanding long-term sustainability of biofuels production in southern pine forest.

  15. Interaction of initial litter quality and thinning intensity on litter decomposition rate, nitrogen accumulation and release in a pine plantation

    Science.gov (United States)

    Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong. Liu

    2014-01-01

    Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...

  16. A HYPERSPECTRAL BASED METHOD TO DETECT CANNABIS PLANTATION IN INACCESSIBLE AREAS

    Directory of Open Access Journals (Sweden)

    M. Houmi

    2018-04-01

    Full Text Available The increase in drug use worldwide has led to sophisticated illegal planting methods. Most countries depend on helicopters, and local knowledge to identify such illegal plantations. However, remote sensing techniques can provide special advantages for monitoring the extent of illegal drug production. This paper sought to assess the ability of the Satellite remote sensing to detect Cannabis plantations. This was achieved in two stages: 1- Preprocessing of Hyperspectral data EO-1, and testing the capability to collect the spectral signature of Cannabis in different sites of the study area (Morocco from well-known Cannabis plantation fields. 2- Applying the method of Spectral Angle Mapper (SAM based on a specific angle threshold on Hyperion data EO-1 in well-known Cannabis plantation sites, and other sites with negative Cannabis plantation in another study area (Algeria, to avoid any false Cannabis detection using these spectra. This study emphasizes the benefits of using hyperspectral remote sensing data as an effective detection tool for illegal Cannabis plantation in inaccessible areas based on SAM classification method with a maximum angle (radians less than 0.03.

  17. a Hyperspectral Based Method to Detect Cannabis Plantation in Inaccessible Areas

    Science.gov (United States)

    Houmi, M.; Mohamadi, B.; Balz, T.

    2018-04-01

    The increase in drug use worldwide has led to sophisticated illegal planting methods. Most countries depend on helicopters, and local knowledge to identify such illegal plantations. However, remote sensing techniques can provide special advantages for monitoring the extent of illegal drug production. This paper sought to assess the ability of the Satellite remote sensing to detect Cannabis plantations. This was achieved in two stages: 1- Preprocessing of Hyperspectral data EO-1, and testing the capability to collect the spectral signature of Cannabis in different sites of the study area (Morocco) from well-known Cannabis plantation fields. 2- Applying the method of Spectral Angle Mapper (SAM) based on a specific angle threshold on Hyperion data EO-1 in well-known Cannabis plantation sites, and other sites with negative Cannabis plantation in another study area (Algeria), to avoid any false Cannabis detection using these spectra. This study emphasizes the benefits of using hyperspectral remote sensing data as an effective detection tool for illegal Cannabis plantation in inaccessible areas based on SAM classification method with a maximum angle (radians) less than 0.03.

  18. Application of lidar and optical data for oil palm plantation management in Malaysia

    Science.gov (United States)

    Shafri, Helmi Z. M.; Ismail, Mohd Hasmadi; Razi, Mohd Khairil M.; Anuar, Mohd Izzuddin; Ahmad, Abdul Rahman

    2012-11-01

    Proper oil palm plantation management is crucial for Malaysia as the country depends heavily on palm oil as a major source of national income. Precision agriculture is considered as one of the approaches that can be adopted to improve plantation practices for plantation managers such as the government-owned FELDA. However, currently the implementation of precision agriculture based on remote sensing and GIS is still lacking. This study explores the potential of the use of LiDAR and optical remote sensing data for plantation road and terrain planning for planting purposes. Traditional approaches use land surveying techniques that are time consuming and costly for vast plantation areas. The first ever airborne LiDAR and multispectral survey for oil palm plantation was carried out in early 2012 to test its feasibility. Preliminary results show the efficiency of such technology in demanding engineering and agricultural requirements of oil palm plantation. The most significant advantage of the approach is that it allows plantation managers to accurately plan the plantation road and determine the planting positions of new oil palm seedlings. Furthermore, this creates for the first time, digital database of oil palm estate and the airborne imagery can also be used for related activities such as oil palm tree inventory and detection of palm diseases. This work serves as the pioneer towards a more frequent application of LiDAR and multispectral data for oil palm plantation in Malaysia.

  19. The disciplining of illegal palm oil plantations in Sumatra

    NARCIS (Netherlands)

    Pramudya, Eusebius Pantja; Hospes, Otto; Termeer, C.J.A.M.

    2018-01-01

    The Indonesian state has issued many regulations to control palm oil expansion, but they have been weakly enforced, resulting in widespread illegal plantations. During the last decade, Indonesian authorities have used force to reduce illegal plantations. This article analyses the drivers behind

  20. Volume Tables and Point-Sampling Factors for Shortleaf Pines in Plantation on Abandoned Fields in Tennessee, Alabama, and Georgia Highlands

    Science.gov (United States)

    Glendon W. Smalley; David R. Bower

    1968-01-01

    The tables and equations published here provide ways to estimate total and merchantable cubic-foot volumes, both inside and outside bark, of shortleaf pines (Pinus echinata Mill.) planted on abandoned fields in the Ridge and Valley, Cumberland Plateau, Eastern Highland Rim, and Western Highland Rim regions of Tennessee, Alabama, and Georgia (fig. 1). There already are...

  1. Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan

    OpenAIRE

    Cheng, Chih-Hsin; Hung, Chih-Yu; Chen, Chiou-Peng; Pei, Chuang-Wun

    2013-01-01

    Background Japanese cedar (Chrytomeria japonica D. Don) is an important plantation species in Taiwan and represents 10% of total plantation area. It was first introduced in 1910 and widely planted in the northern and central mountainous areas of Taiwan. However, a change in forest management from exotic species to native species in 1980 had resulted in few new Japanese cedar plantations being established. Most Japanese cedar plantations are now between 30 and 50 years old and reaching their r...

  2. Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M. E.; Gyenge, J. E.; Urquiza, M. M.; Varela, S.

    2012-11-01

    More stressful conditions are expected due to climatic change in several regions, including Patagonia, South-America. In this region, there are no studies about the impact of severe drought events on growth and wood characteristics of the most planted forestry species, Pinus ponderosa (Doug. ex-Laws). The objective of this study was to quantify the effect of a severe drought event on annual stem growth and functional wood anatomy of pines growing at different plantation densities aiming to understand how management practices can help to increase their adaptability to climate change. Growth magnitude and period, specific hydraulic conductivity, and anatomical traits (early- and late wood proportion, lumen diameter, cell-wall thickness, tracheid length and bordered pit dimensions) were measured in the ring 2008-2009, which was formed during drought conditions. This drought event decreased annual stem growth by 30-38% and 58-65% respect to previous mean growth, in open vs. closed stand trees, respectively, indicating a higher sensitivity of the latter, which is opposite to reports from the same species growing in managed native forests in USA. Some wood anatomical variables did differ in more water stressed trees (lower cell wall thickness of early wood cells and higher proportion of small-lumen cells in late wood), which in turn did not affect wood function (hydraulic conductivity and resistance to implosion). Other anatomical variables (tracheid length, pit dimensions, early- and late wood proportion, lumen diameter of early wood cells) did not differ between tree sizes and plantation density. The results suggest that severe drought affects differentially the amount but not the function and quality of formed wood in ponderosa pine growing at different competition levels. (Author) 41 refs.

  3. Pheromone-based disruption of Eucosma sonomana and Rhyacionia zozana (Lepidoptera: Tortricidae) using aerially applied microencapsulated pheromone

    Science.gov (United States)

    Nancy E. Gillette; John D. Stein; Donald R. Owen; Jeffrey N. Webster; Sylvia R. Mori

    2006-01-01

    Two aerial applications of microencapsulated pheromone were conducted on five 20.2 ha plots to disrupt western pine shoot borer (Eucosma sonomana Kearfott) and ponderosa pine tip moth (Rhyacionia zowna (Kearfott): Lepidoptera: Tortricidae) orientation to pheromones and oviposition in ponderosa pine plantations in 2002 and 2004...

  4. Sugar pine and its hybrids

    Science.gov (United States)

    W. B. Critchfield; B. B. Kinloch

    1986-01-01

    Unlike most white pines, sugar pine (Pinus lambertiana) is severely restricted in its ability to hybridize with other species. It has not been successfully crossed with any other North American white pine, nor with those Eurasian white pines it most closely resembles. Crosses with the dissimilar P. koraiensis and P....

  5. Simulating Harvest Schedule for Timber Management and Multipurpose Management in Teak Plantations

    Directory of Open Access Journals (Sweden)

    Tatang Tiryana

    2016-04-01

    Full Text Available Sustainable management of teak plantations in Java requires an improvement of the existing yield regulation method to optimize multiple benefits of the plantations at risk of stand destruction. This study was therefore aimed to formulate an alternative harvest scheduling model that integrates risk of stand destruction for supporting multipurpose management of teak plantations. The proposed model used a state-space planning model to simulate the dynamic of plantations due to timber harvesting and stand destruction, and then sought optimal solutions for 2 management scenarios, i.e. timber management that optimized total harvest volume and multipurpose management that optimized net present value (NPV while increasing carbon stocks. Using a case study on a typical teak plantation, this study confirmed that increasing destruction rates reduced harvest volumes, NPV, carbon stocks, and resulted in imbalanced ending age-class structures. Reducing cutting-age limit increased harvest volumes and NPV, but it also reduced carbon stocks of the plantations. Although the multipurpose management generated lower financial benefit, it maintained carbon stocks and produced better ending age-class structures compared to timber management. The proposed harvest scheduling model provides a useful planning tool for managing teak plantations.

  6. Willow bioenergy plantation research in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F. [SUNY College of Environmental Science and Forestry, Syracuse, NY (United States); Nowak, C.A. [USDA Forest Service, Warren, PA (United States)

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are now being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.

  7. Plantation forestry in Brazil: the potential impacts of climatic change

    International Nuclear Information System (INIS)

    Fearnside, P.M.

    1999-01-01

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO 2 enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  8. [Population structure of soil arthropod in different age Pinus massoniana plantations].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Zhang, Jian; Xu, Zhen-feng; Liu, Yang; Gou, Xiao-lin

    2013-04-01

    An investigation was conducted on the population structure of soil arthropod community in the 3-, 8-, 14-, 31-, and 40-years old Pinus massoniana plantations in the upper reaches of the Yangtze River in spring (May) and autumn (October), 2011, aimed to search for the scientific management of the plantation. A total of 4045 soil arthropods were collected, belonging to 57 families. Both the individual density and the taxonomic group number of the soil arthropod community decreased obviously with increasing soil depth, and this trend increased with increasing stand age. The dominant groups and ordinary groups of the soil arthropod community varied greatly with the stand age of P. massoniana plantation, and a significant difference (Parthropod community, and the similarity index of the soil arthropod community was lower. The individual density, taxonomic group number, and diversity of soil arthropod community were the highest in 8-years old P. massoniana plantation, and then, decreased obviously with increasing stand age. It was suggested that the land fertility of the P. massoniana plantations could be degraded with increasing stand age, and it would be appropriate to make artificial regulation and restoration in 8-years old P. massoniana plantation.

  9. Green gold : on variations of truth in plantation forestry

    NARCIS (Netherlands)

    Romeijn, P.

    1999-01-01

    The "variations of truth in plantation forestry" is a study on the Teakwood investment program. Teakwood offered the general public in The Netherlands the opportunity to directly invest in a teak plantation in Costa Rica. The program was pioneered in 1989 and truly gained momentum when it

  10. A Regional Study of Loblolly Pine (Pinus taeda) Plantation Development During the First 15 Years After Early Complete Woody and/or Herbaceous Plant Control

    Science.gov (United States)

    James H. Miller; Bruce R. Zutter; Shepard M. Zedaker; M. Boyd Edwards; Ray A. Newbold

    2002-01-01

    Conifer plantations in North America and elsewhere in the world are increasingly cultured using early control of herbaceous and woody plants. Development of sustainable cultural practices are hindered by the absence of long-term data on productivity gains relative to competition levels, crop- competition dynamics, and ecological changes. There are lmany reports of...

  11. Results of the 2000 Creek Plantation Swamp Survey

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    2000-01-01

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible

  12. Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR and Landsat Images

    Directory of Open Access Journals (Sweden)

    Weili Kou

    2015-01-01

    Full Text Available Accurate and updated finer resolution maps of rubber plantations and stand ages are needed to understand and assess the impacts of rubber plantations on regional ecosystem processes. This study presented a simple method for mapping rubber plantation areas and their stand ages by integration of PALSAR 50-m mosaic images and multi-temporal Landsat TM/ETM+ images. The L-band PALSAR 50-m mosaic images were used to map forests (including both natural forests and rubber trees and non-forests. For those PALSAR-based forest pixels, we analyzed the multi-temporal Landsat TM/ETM+ images from 2000 to 2009. We first studied phenological signatures of deciduous rubber plantations (defoliation and foliation and natural forests through analysis of surface reflectance, Normal Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI, and Land Surface Water Index (LSWI and generated a map of rubber plantations in 2009. We then analyzed phenological signatures of rubber plantations with different stand ages and generated a map, in 2009, of rubber plantation stand ages (≤5, 6–10, >10 years-old based on multi-temporal Landsat images. The resultant maps clearly illustrated how rubber plantations have expanded into the mountains in the study area over the years. The results in this study demonstrate the potential of integrating microwave (e.g., PALSAR and optical remote sensing in the characterization of rubber plantations and their expansion over time.

  13. Strategies for managing whitebark pine in the presence of white pine blister rust [Chapter 17

    Science.gov (United States)

    Raymond J. Hoff; Dennis E. Ferguson; Geral I. McDonald; Robert E. Keane

    2001-01-01

    Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine blister rust (Cronartium ribicola). Blister rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The rust is slowly...

  14. Long rotation swidden systems maintain higher carbon stocks than rubber plantations

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Berry, Nicholas; De Neergaard, Andreas

    2018-01-01

    in fallows were 1.5 ± 0.12 Mg C ha−1 yr−1 and 1.9 ± 0.14 Mg C ha−1 yr−1 in rubber plantations. When comparing time-averaged carbon stocks of swidden systems to rubber plantations with 30 year rotation periods, the stocks of swidden systems with rotation times of 5 and 10 years were 19% and 13% lower......Conversion of shifting cultivation to rubber (Hevea brasiliensis) plantations is one of the dominant land use changes in montane mainland areas of Southeast Asia, with the area of rubber expected to quadruple by 2050. However, the impacts of this transition on total ecosystem carbon stocks...... are poorly quantified. We undertook a chronosequence study to quantify changes in ecosystem carbon stocks following conversion from swidden agriculture to rubber plantations in Northern Laos. We measured above-ground biomass stocks and collected volume specific soil samples across rubber plantations...

  15. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  16. The Carbon Sequestration Potential of Tree Crop Plantations

    DEFF Research Database (Denmark)

    Kongsager, Rico; Napier, Jonas; Mertz, Ole

    2013-01-01

    -wood products to meet domestic and international market requirements at the same time. Financial compensation for such plantations could potentially be covered by the Clean Development Mechanism under the United Nations Framework Convention on Climate Change (FCCC) Kyoto Protocol, but its suitability has also...... been suggested for integration into REDD+(reducing emissions from deforestation, forest degradation and enhancement of forest C stocks) currently being negotiated under the United Nations FCCC. We assess the aboveground C sequestration potential of four major plantation crops – cocoa (Theobroma cacao......), oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and orange (Citrus sinesis) – cultivated in the tropics. Measurements were conducted in Ghana and allometric equations were applied to estimate biomass. The largest C potential was found in the rubber plantations (214 tC/ha). Cocoa (65 t...

  17. Short-time phosphorus losses by overland flow in burnt pine and eucalypt plantations in north-central Portugal: A study at micro-plot scale.

    Science.gov (United States)

    Ferreira, R V; Serpa, D; Cerqueira, M A; Keizer, J J

    2016-05-01

    Over the past decades, wildfires have affected vast areas of Mediterranean ecosystems leading to a variety of negative on- and off-site environmental impacts. Research on fire-affected areas has given more attention to sediment losses by fire-enhanced overland flow than to nutrient exports, especially in the Mediterranean region. To address this knowledge gap for post-fire losses of phosphorus (P) by overland flow, a recently burnt forest area in north-central Portugal was selected and instrumented immediately after a wildfire. Three slopes were selected for their contrasting forest types (eucalypt vs. pine) and parent materials (granite vs. schist). The selected study sites were a eucalypt site on granite (BEG), a eucalypt site on schist (BES) and a maritime pine site on schist (BPS). Micro-plots were monitored over a period of six months, i.e. till the construction of terraces for reforestation obliged to the removal of the plots. During this 6-month period, overland flow samples were collected at 1- to 2-weekly intervals, depending on rainfall. Total P and PO4-P losses differed markedly between the two types of forests on schist, being lower at the pine site than at the eucalypt site, probably due to the presence of a protective layer of pine needle cast. Parent material did not play an important role in PO4-P losses by overland flow but it did in TP losses, with significantly lower values at the eucalypt site on granite than that on schist. These differences in TP losses can be attributed to the coarser texture of granite soils, typically promoting infiltration and decreasing runoff. The present findings provided further insights into the spatial and temporal patterns of post-fire soil nutrient losses in fire-prone forest types during the initial stages of the window-of-disturbance, which can be useful for defining post-fire emergency measures to reduce the risk of soil fertility losses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Application of 125I seed permanent plantation in osseous metastases

    International Nuclear Information System (INIS)

    Zhang Fujun; Wu Peihong; Lu Mingjian; Li Kui; Zhang Liang; Huang Jinhua; Fan Weijun; Zhao Ming; Gu Yangkui; Liu Jian; Wang Junjie

    2007-01-01

    Objective: To evaluate the value of 125 I permanent plantation in treating osseous metastases. Methods: Twenty-two patients with osseous metastases were accepted radioactive seeds 125 I permanent plantation. The curative effect was appraised according to the degree of ostalgia relieving and the changing of the radiology imaging in patients. Results: Accepted radioactive seeds 125 I permanent plantation, relief of pain was obtained and the effective rate is 91% (20/22). However none of the patients showed severe side-effect. Among 32 lesions in 22 cases followed-up by CT in 2 months, 4 obtained CR, 18 obtained PR, 10 NC and 0 PD. The responsive rate was 68.7%. Conclusion: 125 I permanent plantation procedure can be a safe and effective method in treating osseous metastases and obtaining good clinical effects with minimal damage and few complications. (authors)

  19. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems

    Science.gov (United States)

    J. Kevin Hiers; Joseph J. O' Brien; Rodney E. Will; Robert J. Mitchell

    2007-01-01

    Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1–10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by .95%, and inadequate fire...

  20. Environmental Assessment. Construction and Maintenance of Wastewater Pipelines and Lift Stations and Installation of Fiber Optic Conduit at Eglin Air Force Base, Florida

    Science.gov (United States)

    2012-06-01

    The wetland on the unnamed tributary of Garnier Creek, upstream of the point of crossing, contains a single individual of the genus Platanthera...Woods And  Maintained ROW  X  X  X  Diospyros  virginiana  Persimmon  Mixed Pine‐Hardwood Forest,  Usually With Longleaf Pine  X  X  X  Eleocharis obtusa

  1. A three-year demographic study of Harper's beauty (Harperocallis flava McDaniel), an endangered Florida endemic

    Science.gov (United States)

    Joan L. Walker; Andrea M. Silletti

    2005-01-01

    The longleaf pine ecosystem has high plant species richness, especially at small scales (Walker and Peet 1983, Peet and Allard 1993), and is characterized by a large number of narrowly endemic (Estill and Cruzan 2001, Le Blonde 2001, Sorrie and Weakley 2001) and rare species (Hardin and White 1989, Peet and Allard 1993, Walker 1993). Because of habitat loss and changes...

  2. Ground measurements of fuel and fuel consumption from experimental and operational prescribed fires at Eglin Air Force Base, Florida

    Science.gov (United States)

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Andrew T. Hudak

    2014-01-01

    Ground-level measurements of fuel loading, fuel consumption, and fuel moisture content were collected on nine research burns conducted at Eglin Air Force Base, Florida in November, 2012. A grass or grass-shrub fuelbed dominated eight of the research blocks; the ninth was a managed longleaf pine (Pinus palustrus) forest. Fuel loading ranged from 1.7 Mg ha-1 on a...

  3. The push for plantations

    DEFF Research Database (Denmark)

    Thulstrup, Andreas Waaben; Casse, Thorkil; Nielsen, Thomas Theis

    2013-01-01

    We observe signs of social differentiation, where poor households end up serving as causal labour for the richer families on their acacia plantations. In addition, the poor can be rendered more vulnerable after becoming labourers, because they may not longer have an alternative source of income, ...

  4. Lodgepole Pine Dwarf Mistletoe

    Science.gov (United States)

    Frank G. Hawksworth; Oscar J. Dooling

    1984-01-01

    Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...

  5. Energy valorization of the species used in short-rotation plantations

    International Nuclear Information System (INIS)

    Moya Roque, Roger; Tenorio Monge, Carolina; Salazar Zeledon, Estephania

    2016-01-01

    The energy potential of some non-traditional plantations for production of energy is exposed. Forest and forage species are utilized in Costa Rica for energy plantations. The characteristics of these species have been short rotation (1-3 years) and a production between 20 and 25 tonnes of dry matter per hectare. Agro-energy plantations are described. Gmelina arborea y Pennisetum purpureum species have been viable options for biomass production. However, the high cost of seedlings and land to cultivate have been one of the problems of this energy source [es

  6. Contributions of a global network of tree diversity experiments to sustainable forest plantations.

    Science.gov (United States)

    Verheyen, Kris; Vanhellemont, Margot; Auge, Harald; Baeten, Lander; Baraloto, Christopher; Barsoum, Nadia; Bilodeau-Gauthier, Simon; Bruelheide, Helge; Castagneyrol, Bastien; Godbold, Douglas; Haase, Josephine; Hector, Andy; Jactel, Hervé; Koricheva, Julia; Loreau, Michel; Mereu, Simone; Messier, Christian; Muys, Bart; Nolet, Philippe; Paquette, Alain; Parker, John; Perring, Mike; Ponette, Quentin; Potvin, Catherine; Reich, Peter; Smith, Andy; Weih, Martin; Scherer-Lorenzen, Michael

    2016-02-01

    The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.

  7. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  8. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Science.gov (United States)

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  9. Land use changes and plantation crop development in selected provinces in Sumatra and Kalimantan

    Science.gov (United States)

    Tarigan, S. D.

    2018-05-01

    Most institutions stated that biofuel will not qualify the standard of GHG emission reduction if it was produced in the plantation associated with the forest conversion. Therefore, knowing previous land use before the development of plantation is very important. In Indonesia, plantation development occurs mainly in Sumatra and Kalimantan. A number of studies had been published showing historical LUCC before plantation development. Objective of this study was to review various studies on LUCC carried out in four selected provinces, namely West Kalimantan, Central Kalimantan, East Kalimantan, and Riau. The analysis and comparison was based on the different source of historical data including online spatial data sources and various studies published in various journals. Each data source of LUCC shows significant variation on the amount of plantation developed directly from forest and other land use types. But, our review showed that the plantation areas associated with the forest cover changes far less than those claimed by several international journals. But, the debate concerning which plantation developments indirectly contributed to LUCC and which are directly will probably continue until the information on the land ownership and history of plantation development is available publicly.

  10. Does forest certification enhance community engagement in Australian plantation management?

    NARCIS (Netherlands)

    Dare, Melanie (Lain); Vanclay, Frank; Schirmer, Jacki

    The rapid expansion of timber plantations across Australia has been contentious, with ongoing debate in rural communities about the social, economic and environmental impacts of plantations. The need for effective and ongoing community engagement (CE) has been highlighted by this ongoing contention

  11. From research plots to prototype biomass plantations

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, W.A.; Vanstone, B.J.; Gambles, R.L.; Zsuffa, L. [Univ. of Toronto, Ontario (Canada)

    1993-12-31

    The development of biomass energy plantations is now expanding from the research plot phase into the next level of development at larger scale plantings. This is necessary to provide: more accurate information on biomass yields, realistic production cost figures, venues to test harvesting equipment, demonstration sites for potential producers, and a supply of feedstock for prototype conversion facilities. The paper will discuss some of these objectives and some of the challenges encountered in the scale-up process associated with a willow prototype plantation project currently under development in Eastern Canada.

  12. Comparison of insect biodiversity between organic and conventional plantations in Kodagu, Karnataka, India

    Directory of Open Access Journals (Sweden)

    S. Mone

    2014-08-01

    Full Text Available We undertook a comparative analysis of ground insects and fruit eating butterflies on 29 different plantations in Kodagu District of Karnataka which is one of the rich biodiversity zones of the Western Ghats. These included organic and conventional coffee and cardamom plantations using different levels of chemical fertilizers and pesticides. A total number of 457 ground insect species were collected using pit-fall traps which included 92 species of ants and 123 species of beetles, among other insect taxa that we measured. Similarly, 25 species of butterflies belonging to the family Nymphalidae were collected using bait traps. We found a clear negative effect on the ground insect species diversity (Shannon index and evenness (Shannon evenness index in pesticide treated plantations as compared to the organic plantations. A similar negative effect was observed for butterfly diversity in plantations using pesticides. Our results corroborate the value of organic plantations in supporting higher levels of biodiversity.

  13. Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China.

    Directory of Open Access Journals (Sweden)

    Wenfei Liu

    Full Text Available Eucalyptus species are widely planted for reforestation in subtropical China. However, the effects of Eucalyptus plantations on the regional water use remain poorly understood. In an age sequence of 2-, 4- and 6-year-old Eucalyptus plantations, the tree water use and soil evaporation were examined by linking model estimations and field observations. Results showed that annual evapotranspiration of each age sequence Eucalyptus plantations was 876.7, 944.1 and 1000.7 mm, respectively, accounting for 49.81%, 53.64% and 56.86% of the annual rainfall. In addition, annual soil evaporations of 2-, 4- and 6-year-old were 318.6, 336.1, and 248.7 mm of the respective Eucalyptus plantations. Our results demonstrated that Eucalyptus plantations would potentially reduce water availability due to high evapotranspiration in subtropical regions. Sustainable management strategies should be implemented to reduce water consumption in Eucalyptus plantations in the context of future climate change scenarios such as drought and warming.

  14. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  15. Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine

    Science.gov (United States)

    Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook. Kim

    2006-01-01

    From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...

  16. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    Science.gov (United States)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  17. Tip moth control and loblolly pine growth in intensive pine culture: four year results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2006-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L., on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana Comstock, and effects on pine growth over 2 years. Treatments were combinations of Velpar®,...

  18. Nitrogen-Fixing Bacteria in Eucalyptus globulus Plantations

    Science.gov (United States)

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover. PMID:25340502

  19. Nitrogen-fixing bacteria in Eucalyptus globulus plantations.

    Science.gov (United States)

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.

  20. Nitrogen-fixing bacteria in Eucalyptus globulus plantations.

    Directory of Open Access Journals (Sweden)

    Marliane de Cássia Soares da Silva

    Full Text Available Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB that are responsible for biological nitrogen fixation (BNF, so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira. We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.

  1. Variation of Soil Bacterial Communities in a Chronosequence of Rubber Tree (Hevea brasiliensis Plantations

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zhou

    2017-05-01

    Full Text Available Regarding rubber tree plantations, researchers lack a basic understanding of soil microbial communities; specifically, little is known about whether or not soil microbial variation is correlated with succession in these plantations. In this paper, we used high-throughput sequencing of the 16S rRNA gene to investigate the diversity and composition of the soil bacterial communities in a chronosequence of rubber tree plantations that were 5, 10, 13, 18, 25, and 30 years old. We determined that: (1 Soil bacterial diversity and composition show changes over the succession stages of rubber tree plantations. The diversity of soil bacteria were highest in 10, 13, and 18 year-old rubber tree plantations, followed by 30 year-old rubber tree plantations, whereas 5 and 25 year-old rubber tree plantations had the lowest values for diversity. A total of 438,870 16S rDNA sequences were detected in 18 soil samples from six rubber tree plantations, found in 28 phyla, 66 classes, 139 orders, 245 families, 355 genera, and 645 species, with 1.01% sequences from unclassified bacteria. The dominant phyla were Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria, and Verrucomicrobia (relative abundance large than 3%. There were differences in soil bacterial communities among different succession stages of rubber tree plantation. (2 Soil bacteria diversity and composition in the different stages was closely related to pH, vegetation, soil nutrient, and altitude, of which pH, and vegetation were the main drivers.

  2. Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan.

    Science.gov (United States)

    Cheng, Chih-Hsin; Hung, Chih-Yu; Chen, Chiou-Peng; Pei, Chuang-Wun

    2013-12-01

    Japanese cedar (Chrytomeria japonica D. Don) is an important plantation species in Taiwan and represents 10% of total plantation area. It was first introduced in 1910 and widely planted in the northern and central mountainous areas of Taiwan. However, a change in forest management from exotic species to native species in 1980 had resulted in few new Japanese cedar plantations being established. Most Japanese cedar plantations are now between 30 and 50 years old and reaching their rotation period. It is of interest to know whether these plantations could be viable for future carbon sequestration through the accumulations of stand carbon stocks. Twelve even-aged Japanese cedar stands along a stand age gradient from 37 to 93 years were selected in Xitou of central Taiwan. The study aims were to investigate the basic stand characteristics and biomass carbon stock in current Japanese cedar stands, and determine the relationships among stand characteristics, tree biomass carbon, and stand age. Our results indicate that existing Japanese cedar plantations are still developing and their live tree biomass carbon continues to accumulate. At stands with a stand age of 90 years, tree density, canopy height, mean diameter at breast height, basal area, and live tree biomass carbon stocks reach to nearly 430 tree ha -1 , 27 m, 48 cm, 82 m 2 ha -1 and 300 Mg C ha -1 , respectively. Therefore, with no harvesting, current Japanese cedar plantations provide a carbon sink by storing carbon in tree biomass.

  3. The Austrian x red pine hybrid

    Science.gov (United States)

    W. B. Critchfield

    1963-01-01

    The genetic improvement of red pine (Pinus resinosa Ait.) presents tree breeders with one of their most difficult problems. Not only is this valuable species remarkably uniform, but until 1955 it resisted all attempts to cross it with other pines. In that year red pine and Austrian pine (P. nigra var. austriaca [...

  4. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Directory of Open Access Journals (Sweden)

    Andrew P Lerch

    Full Text Available Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae, but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug. and 599 ponderosa (Pinus ponderosa Doug. ex Law pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  5. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Science.gov (United States)

    Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F

    2016-01-01

    Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  6. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth.

    Science.gov (United States)

    Moreaux, Virginie; Lamaud, Eric; Bosc, Alexandre; Bonnefond, Jean-Marc; Medlyn, Belinda E; Loustau, Denis

    2011-09-01

    The effects of management practices on energy, water and carbon exchanges were investigated in a young pine plantation in south-west France. In 2009-10, carbon dioxide (CO(2)), H(2)O and heat fluxes were monitored using the eddy covariance and sap flow techniques in a control plot (C) with a developed gorse layer, and an adjacent plot that was mechanically weeded and thinned (W). Despite large differences in the total leaf area index and canopy structure, the annual net radiation absorbed was only 4% lower in plot W. We showed that higher albedo in this plot was offset by lower emitted long-wave radiation. Annual evapotranspiration (ET) from plot W was 15% lower, due to lower rainfall interception and transpiration by the tree canopy, partly counterbalanced by the larger evaporation from both soil and regrowing weedy vegetation. The drainage belowground from plot W was larger by 113 mm annually. The seasonal variability of ET was driven by the dynamics of the soil and weed layers, which was more severely affected by drought in plot C. Conversely, the temporal changes in pine transpiration and stem diameter growth were synchronous between sites despite higher soil water content in the weeded plot. At the annual scale, both plots were carbon sinks, but thinning and weeding reduced the carbon uptake by 73%: annual carbon uptake was 243 and 65 g C m(-2) on plots C and W, respectively. Summer drought dramatically impacted the net ecosystem exchange: plot C became a carbon source as the gross primary production (GPP) severely decreased. However, plot W remained a carbon sink during drought, as a result of decreases in both GPP and ecosystem respiration (R(E)). In winter, both plots were carbon sources, plots C and W emitting 67.5 and 32.4 g C m(-2), respectively. Overall, this study highlighted the significant contribution of the gorse layer to mass and energy exchange in young pine plantations.

  7. Health and nutrition of plantation eucalypts in Asia | Dell | Southern ...

    African Journals Online (AJOL)

    Health and nutrition of plantation eucalypts in Asia. ... Southern Forests: a Journal of Forest Science ... Due to the high humidity and temperatures throughout the year, fungal leaf diseases such as Cylindrocladium quinqueseptatum have had a huge impact on the eucalypt plantation industry in South-east Asia. Often poor ...

  8. Cannabis cultivation in Spain: A profile of plantations, growers and production systems.

    Science.gov (United States)

    Alvarez, Arturo; Gamella, Juan F; Parra, Iván

    2016-11-01

    The European market for cannabis derivatives is being transformed. The cultivation of cannabis within the EU and the shift of demand from hashish to domestic marihuana are key aspects of this transformation. Spain, formerly central to the trade of Moroccan hashish, is becoming a marihuana-producing country. The emergence of "import-substitution" has been researched in other EU countries, but thus far the Spanish case remains undocumented. This paper is based on analysis of data of 748 cannabis plantations seized by Spanish police in 2013. The sample comprises reports of seizures identified through a survey of online news and police reports. "Event-analysis" methods were applied to these sources. The analysis offers a typology of plantations, a profile of participants and the different production systems, and a model of regional distribution. Half of the plantations were small (less than 42 plants) and half contained between 100 and 1000 plants, with an average size of 261 plants. About three-quarters of plants were cultivated indoors using stolen electricity. 86% of all plants seized were from large-scale plantations (more than 220 plants). Most plantations were located along the Mediterranean coast, where population and tourism are concentrated. Over three-quarters of those indicted by police were Spanish (85%). Among the foreign owners of big plantations, Dutch nationals predominated. The number of seized plants by province was directly associated with the number of grow shops (β=0.962, pcannabis plantations in the Spanish Mediterranean coast is increasingly replacing import of Moroccan hashish. Indoor cultivation supported by grow shops, that provide the technology and know-how, seem to be the dominant form of organization in this emerging industry. Large-scale plantations may have met most of the demand for marihuana in 2013. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. [Relative abundance and microhabitat use by the frog Geobatrachus walkeri (Anura: Strabomantidae) in two habitats of Sierra Nevada de Santa Marta, Colombia].

    Science.gov (United States)

    Martínez Baños, Vera; Pacheco Florez, Vanesa; Ramírez-Pinilla, Martha P

    2011-06-01

    Geobatrachus walkeri belongs to a monotypic frog genus endemic to the San Lorenzo area, Sierra Nevada de Santa Marta, Colombia. This species has been categorized as endangered because of its small distribution area and the decline in the extent and quality of its habitat. It inhabits two forest types with different composition and structure, the native secondary forest and a pine plantation (dominated by Pinus patula). To compare the relative abundance and microhabitat use of this species in these habitat types, 30 quadrants/environment were distributed randomly. The individual number, microhabitat use and other aspects of its natural history were registered using visual encounter surveys in both sites, including non-sampled areas in the quadrants. The relative abundance of frogs was significantly different between habitats and among seasons. The highest abundance of G. walkeri relative to the total area was found in the pine plantation, being 2.3 times higher than in the natural forest. More frogs were significantly found during the rainy season; nevertheless, active individuals were also found during the dry season. Significant differences were found in the microhabitat use with respect to the forest type and season. The most frequently microhabitat used in the two forest types was the pine leaf-litter; besides, in the native forest, the microhabitat occupied more frequently presented medium and large size stones. Geobatrachus walkeri is a successful species in pine plantations, associated permanently to its leaf-litter environment where it seems to develop its entire life cycle. The clear modifications in the soils and water, derived from the introduction of the pine plantation in this area, seem not to have negatively affected the conservation and successful maintenance of this species.

  10. Plantation livelihoods in central Vietnam

    DEFF Research Database (Denmark)

    Thulstrup, Andreas Waaben

    2014-01-01

    disturbances. The Vietnamese Government has formulated policies aimed at achieving dual objectives of socio-economic development and environmental protection through the expansion of plantation forests. Negative social impacts and worrying environmental trends have been noted by a number of scholars. However...

  11. Southern Pine Beetle Information System (SPBIS)

    Science.gov (United States)

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  12. Wood production potential in poplar plantations in Sweden

    International Nuclear Information System (INIS)

    Christersson, Lars

    2010-01-01

    Shortage of oil, large variations in exports from Russia of wood to Europe, plenty of abandoned agriculture land, new ideas about a more intensive silviculture; these circumstances are driving forces in Sweden for planting fast-growing poplar and hybrid aspen clones on suitable land. The advantage of such trees is that the wood can be used for both energy (heat, biofuels, electricity), paper and for construction. Poplar clones bred in the USA and Belgium, and older hybrid aspen clones from Sweden, together with new poplar clones collected and selected for Swedish conditions from British Columbia, Canada, were planted during the 1990s in south and central Sweden. The stem diameters and heights of the trees have been measured during the last 10 years and the woody biomass production above ground has been calculated. MAI for all the plantations is 10-31 m 3 or 3-10 ton DM per hectare with the highest annual woody production of 45 m 3 or 15 ton DM per hectare in some years in a very dense plantation in the most southern part of Sweden. All the plantations have been fenced for at least the first ten years. The damage has been caused by stem canker, insects, leaf rust and by moose after removal of the fences. The possibilities for the use of poplar plantations as energy forest and vegetation filters are discussed. (author)

  13. Developing Dynamic Reference Models and a Decision Support Framework for Southeastern Ecosystems: An Integrated Approach

    Science.gov (United States)

    2015-06-01

    and 2010 reference conditions (Figure 23). Based on the PerMANOVA analysis of the ground cover vegetation matrix, dispersion of sample units in...Keeney, editors. Methods of soil analysis Part 2 – Chemical and microbiological properties. CRC Press, Madison, Wisconsin, USA. Kennedy, C. M., P...CRAN.R-project.org/package=labdsv. Rodgers, H. L. and L. Provencher. 1999. Analysis of longleaf pine sandhill vegetation in northwest Florida

  14. Culture and Density Effects on Tree Quality in Midrotation Non-Thinned Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    P. Corey Green

    2018-02-01

    Full Text Available Six non-thinned loblolly pine (Pinus taeda L. culture × density study sites in the Piedmont and Upper Coastal Plain of the Southeast U.S. were used to examine the effects of two cultural intensities and three planting densities on solid wood potential as well as the proportion and position of product-defining defects (forks, crooks, broken tops. A tree quality index (TQI was used to grade stems for solid wood potential. The results show that an operational management regime exhibited a higher proportion of trees with solid wood product potential than did a very intensive management regime. Trees subject to operational management exhibited product-defining defects higher on the stem; however, the proportion of stems with defects was not significantly different from the intensive management. Planting densities of 741, 1482, and 2223 trees per hectare (TPH exhibited a relatively narrow range of the proportion of trees with solid wood product potential that were not significantly different. Density did not have a significant effect on the heights of the product-defining defects. These results show that management intensity and less so planting density, affect the solid wood product potential indicators evaluated and should be considered when making management decisions.

  15. Feasibility Analysis of Leaf-Based Moringa oleifera Plantation in the ...

    African Journals Online (AJOL)

    This study examined the profitability and economic feasibility of a leaf-based Moringa production and processing under a plantation system in the Nigerian guinea savannah using the University of Ilorin Moringa Plantation as a case study. To achieve this objective, data on production and processing cost and revenue for the ...

  16. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    Full Text Available To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0% compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  17. Components of Soil Respiration and its Monthly Dynamics in Rubber Plantation Ecosystems

    OpenAIRE

    Zhixiang Wu; Limin Guan; Bangqian Chen; Chuan Yang; Guoyu Lan; Guishui Xie; Zhaode Zhou

    2014-01-01

    Aim: Our objective was to quantify four components and study effect factors of soil respiration in rubber plantation ecosystems. Providing the basic data support for the establishment of the trade of rubber plantation ecosystem carbon source/sink. Methods: We used Li-6400 (IRGA, Li-COR) to quantitate four components of soil respiration in rubber plantation ecosystems at different ages. Soil respiration can be separated as four components: heterotrophic respiration (Rh), Respiration of roots (...

  18. Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)

    Science.gov (United States)

    Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...

  19. Heavy metals in soils of cocoa plantation (Theobroma cacao L.)

    Science.gov (United States)

    Cocoa has experienced significant growth in recent years in Peru and the presence of heavy metals in the soils of these plantations is a potential problem for the export of this product. Contents of heavy metals (Cd, Ni, Pb, Fe, Cu, Zn, Mn) in soils from 19 plantations that have been in production f...

  20. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    Science.gov (United States)

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.