WorldWideScience

Sample records for long-term streptozotocin-diabetic rat

  1. Renal function in streptozotocin-diabetic rats

    DEFF Research Database (Denmark)

    Jensen, P K; Christiansen, J S; Steven, K

    1981-01-01

    to the rise in kidney glomerular filtration rate (diabetic rats: 37.0 nl/min; control rats: 27.9 nl/min). Likewise renal plasma flow was significantly higher in the diabetic rats (4.1 ml/min) than in the control group (3.0 ml/min). Glomerular capillary pressure was identical in both groups (56.0 and 56.0 mm......-1mmHg-1). Kidney weight was significantly higher in the diabetic rats (1.15 g; control rats: 0.96 g) while body weight was similar in both groups (diabetic rats: 232 g; control rats: 238 g). Calculations indicate that the increases in transglomerular hydraulic pressure, renal plasma flow......Renal function was examined with micropuncture methods in the insulin-treated streptozotocin-diabetic rat. Kidney glomerular filtration rate was significantly higher in the diabetic rats (1.21 ml/min) than in the control group (0.84 ml/min) Nephron glomerular filtration rate increased in proportion...

  2. Modulatory effect of Scoparia dulcis in oxidative stress-induced lipid peroxidation in streptozotocin diabetic rats.

    Science.gov (United States)

    Latha, M; Pari, L

    2003-01-01

    In light of evidence that diabetes mellitus is associated with oxidative stress and altered antioxidant status, we investigated the effect of Scoparia dulcis plant extracts (SPEt) (aqueous, ethanolic, and chloroform) in streptozotocin diabetic rats. Significant increases in the activities of insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, reduced glutathione, vitamin C, and vitamin E were observed in liver, kidney, and brain on treatment with SPEt. In addition, the treated groups also showed significant decreases in blood glucose, thiobarbituric acid-reactive substances, and hydroperoxide formation in tissues, suggesting its role in protection against lipid peroxidation-induced membrane damage. Thus, the results of the present study indicate that extracts of S. dulcis, especially the aqueous extract, showed a modulatory effect by attenuating the above lipid peroxidation in streptozotocin diabetes.

  3. Constitutive nitric oxide synthase (cNOS activity in Langerhans islets from streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Fonovich de Schroeder T.M.

    1998-01-01

    Full Text Available Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the presence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancreas homogenate and in isolated Langerhans islets when compared to control animals. Nitric oxide synthase activity measured in control and diabetic rats 15 days after the last streptozotocin injection in the second group of animals corresponded only to a constitutive enzyme since it was not inhibited by aminoguanidine in any of the mentioned groups. Hyperglycemia in diabetic rats may be the consequence of impaired insulin release caused at least in part by reduced positive modulation mediated by constitutive nitric oxide synthase activity, which was dramatically reduced in islets severely damaged after streptozotocin treatment.

  4. Lupine Alleviate Hyperglycemia in Streptozotocin Diabetic gamma- Irradiated Rats

    International Nuclear Information System (INIS)

    El-Sayed, S.M.

    2010-01-01

    This study was to examine the regulatory effect of lupine on the diabetic profile developed in Streptozotocin (STZ) induced diabetic albino rats. The effectiveness of lupine against diabetes in gamma irradiated rats was purposed in the present study. Rats were received lupine seeds powder suspension (1 g/kg body weight for 14 consecutive days) before whole body exposure to 8 Gy of gamma radiation and /or STZ (55 mg/kg body weight, single dose) injection. The results pointed out that radiation exposure sustained the diabetic profile in rats received STZ comparing with STZ diabetic not irradiated rats. The prolonged administration of lupine suspension before STZ induction of diabetic and/or irradiated rats reduced the changes in the level of blood glucose, insulin concentration, liver glycogen, and the activity of glucose-6-phosphatase associated with significant amelioration in blood antioxidant status (superoxide dismutase, SOD; catalase, CAT; glucose-6-phosphate dehydrogenase, G-6-PD activities and reduced glutathione concentration GSH). Also, the level of blood lipid peroxides (TBARS) were reduced greatly when compared with its matched value in diabetic and /or gamma irradiated rats. It could be postulated that lupine powder suspension might be attenuate the diabetic profile development throughout reducing oxidative damages and modulating the antioxidant status. In addition, lupine could be considered as one of a remarkable radio protective agent owing to its antioxidants property

  5. Metallothionein metabolism in the streptozotocin-diabetic rat

    International Nuclear Information System (INIS)

    Chen, M.L.; Failla, M.L.

    1986-01-01

    Earlier reports from their laboratory showed the induction of the insulin-deficient diabetic state in adult rats was associated with an accumulation of zinc, copper, and a metallothionein-like zinc and copper binding protein in the soluble fraction of liver and kidney. Based upon chromatographic and electrophoretic properties, -SH to metal ratio and amino acid composition, they now report that elevated concentrations of metallothioneins (MT)-I and -II are indeed present in diabetic rat liver and kidney cytosol. The relative rates of MT synthesis in tissues from diabetic and control rats were measured by comparing incorporation of 35 S-cysteine into MT vs. total cytoplasmic proteins at 5 h after injection of the precursor. The relative rates of MT synthesis in livers from rats diabetic for 10 d and fed either chow or purified diet containing 13 or 35 ppm copper were 1.4, 2.3 and 2.8 times greater, respectively, than control rats fed the same diets. Higher relative rates of MT synthesis were also observed in kidneys from diabetic rats fed purified diets compared to controls. Maximal relative rates of MT synthesis in diabetic liver and kidney were observed at 4 and 10 d, respectively, after onset of diabetes. The half-lives of cytoplasmic MT in liver and kidney from diabetic (10 d) rats were 1.3 and 2.6 days, respectively; half-lives of MT in control liver and kidney were 5.0 and 2.1 days, respectively

  6. Na+-H+ exchange and Na+-dependent transport systems in streptozotocin diabetic rat kidneys

    International Nuclear Information System (INIS)

    El-Seifi, S.; Freiberg, J.M.; Kinsella, F.J.; Cheng, L.; Sacktor, B.

    1987-01-01

    The streptozotocin-induced diabetic rat was used to test the hypothesis that Na + -H + exchange activity in the proximal tubule luminal membrane would be increased in association with renal hypertrophy, altered glomerular hemodynamics, enhanced filtered load and tubular reabsorption of 22 Na + , and stimulated 22 Na= pump activity in the basolateral membrane, previously reported characteristics of this experimental animal model. Amiloride-sensitive H + gradient-dependent Na + uptake and Na + gradient-dependent H + flux were increased in brush-border membrane vesicles from the streptozotocin-treated animals. Na + gradient-dependent uptakes of phosphate, D-glucose, L-proline, and myoinositol were decreased in the drug-induced diabetic animals. These membrane transport alterations were not found when the streptozotocin-diabetic animals were treated with insulin

  7. Antioxidative and hypolipidemic efficacy of alcoholic seed extract of Swietenia macrophylla in streptozotocin diabetic rats.

    Science.gov (United States)

    Kalpana, Kalaivanan; Pugalendi, Kodukkur Viswanathan

    2011-06-17

    The present study was designed to examine the antioxidative potential and antihyperlipidemic activity of Swietenia macrophylla in streptozotocin diabetic rats. The experimental groups were rendered diabetic by intraperitoneal injection of a single dose of streptozotocin (STZ; 40 mg/kg body weight, BW). Rats with glucose levels >200 mg/dL were considered diabetic and were divided into five groups. Three groups of diabetic animals were orally administered daily with seed extract (SME) at a dosage of 50, 100 and 200 mg/kg BW. One group of STZ rats was treated as diabetic control and another group orally administered 600 μg/kg BW glibenclamide daily. Repeated daily oral administration of S. macrophylla significantly reduced blood glucose levels after 45 days of treatment. The lipid peroxidation products such as thiobarbituric acid reactive substances and lipid hydroperoxides of SME treated rats decreased in the plasma, liver and kidney. Glutathione peroxidase, superoxide dismutase and catalase activity were significantly increased in SME treated rats. Antioxidants such as reduced glutathione level in the plasma, liver and kidney and vitamins C and E levels in the plasma increased in SME treated rats. Total cholesterol, triglycerides, phospholipids and free fatty acids and lipoproteins levels increased. Altered lipid profile of treated rats lead to normality with treatment of S. macrophylla. Thus, our results indicate that the administration of 100 mg/kg BW SME restores near normal blood glucose, redox status and lipid profile in STZ-diabetic rats.

  8. Treatment with acarbose, an alpha-glucosidase inhibitor, reduces increased albumin excretion in streptozotocin-diabetic rats.

    Science.gov (United States)

    Cohen, M P; Vasselli, J R; Neuman, R G; Witt, J

    1995-10-01

    1. We examined the effect of the alpha-glucosidase inhibitor acarbose on urinary albumin excretion (UAE) in streptozotocin diabetic rats. 2. Treatment with acarbose for 8 weeks after induction of diabetes prevented the significant increase in UAE observed in untreated diabetic rats relative to nondiabetic controls. 3. Acarbose significantly reduced integrated glycemia, which correlated with albumin excretion rates, and exerts a salutary effect on diabetic renal dysfunction.

  9. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    International Nuclear Information System (INIS)

    Craven, P.A.; DeRubertis, F.R.

    1989-01-01

    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded

  10. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    International Nuclear Information System (INIS)

    Memon, R.A.; Bessman, S.P.; Mohan, C.

    1990-01-01

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3- 14 C and 1,4- 14 C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4- 14 C suc carbons. Amphibolic channeling of 2,3- 14 C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3- 14 C suc carbons as compared to 1,4- 14 C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates

  11. Antihyperlipidemic effect of Scoparia dulcis (sweet broomweed) in streptozotocin diabetic rats.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan

    2006-01-01

    We have investigated Scoparia dulcis, an indigenous plant used in Ayurvedic medicine in India, for its possible antihyperlipidemic effect in rats with streptozotocin-induced experimental diabetes. Oral administration of an aqueous extract of S. dulcis plant (200 mg/kg of body weight) to streptozotocin diabetic rats for 6 weeks resulted in a significant reduction in blood glucose, serum and tissue cholesterol, triglycerides, free fatty acids, phospholipids, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and very low-density lipoprotein and low-density lipoprotein cholesterol levels. The decreased serum high-density lipoprotein cholesterol, anti-atherogenic index, and HMG-CoA reductase activity in diabetic rats were also reversed towards normalization after the treatment. Similarly, the administration of S. dulcis plant extract (SPEt) to normal animals resulted in a hypolipidemic effect. The effect was compared with glibenclamide (600 microg/kg of body weight). The results showed that SPEt had antihyperlipidemic action in normal and experimental diabetic rats in addition to its antidiabetic effect.

  12. The metabolism of L-phenylalanine and L-tyrosine by liver cells isolated from adrenalectomized rats and from streptozotocin-diabetic rats.

    OpenAIRE

    Stanley, J C; Fisher, M J; Pogson, C I

    1985-01-01

    Flux through, and maximal activities of, key enzymes of phenylalanine and tyrosine degradation were measured in liver cells prepared from adrenalectomized rats and from streptozotocin-diabetic rats. Adrenalectomy decreased the phenylalanine hydroxylase flux/activity ratio; this was restored by steroid treatment in vivo. Changes in the phosphorylation state of the hydroxylase may mediate these effects; there was no significant change in the maximal activity of the hydroxylase. Tyrosine metabol...

  13. Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment.

    Science.gov (United States)

    Lotfipour, Shahrdad; Smith, Maree T

    2018-01-01

    Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine hyposensitivity. In our previous work using the streptozotocin (STZ)-diabetic rat model of PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3 months post-STZ and maintained for 6 months post-STZ. As this time course mimicked that for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we hypothesized that progressive depletion of endogenous NO bioactivity may underpin the temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes was confirmed on day 7 if blood glucose concentrations were ≥15 mmol/L. Mechanical allodynia was fully developed in the bilateral hindpaws by 3 weeks of STZ-diabetes in rats and this was maintained for the study duration. Morphine hyposensitivity developed in a temporal manner with efficacy abolished by 3 months post-STZ. Administration of dietary l-arginine (NO precursor) at 1 g/d to STZ-diabetic rats according to a 15-week prevention protocol initiated at 9 weeks post-STZ prevented abolition of morphine efficacy. When given as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary l-arginine at 1 g/d progressively rescued morphine efficacy and potency. Our findings implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats. © 2017 John Wiley & Sons Australia, Ltd.

  14. Intestinal absorption and excretion of zinc in streptozotocin-diabetic rats as affected by dietary zinc and protein

    International Nuclear Information System (INIS)

    Johnson, W.T.; Canfield, W.K.

    1985-01-01

    65 Zn was used to examine the effects of dietary zinc and protein on true zinc absorption and intestinal excretion of endogenous zinc by an isotope dilution technique in streptozotocin-diabetic and control rats. Four groups each of diabetic and control rats were fed diets containing 20 ppm Zn, 20% egg white protein (HMHP); 20 ppm Zn, 10% egg white protein (HMLP); 10 ppm Zn, 20% egg white protein (LMHP); and 10 ppm Zn, 10% egg white protein (LMLP). Measurement of zinc balance was begun 9 d after an i.m. injection of 65 Zn. True zinc absorption and the contribution of endogenous zinc to fecal zinc excretion were calculated from the isotopically labeled and unlabeled zinc in the feces, duodenum and kidney. Results from the isotope dilution study indicated that diabetic rats, but not control rats, absorbed more zinc from 20 ppm zinc diets than from 10ppm zinc diets and that all rats absorbed more zinc from 20% protein diets than from 10% protein diets. Furthermore, all rats excreted more endogenous zinc from their intestines when dietary zinc and protein levels resulted in greater zinc absorption. In diabetic and control rats, consuming equivalent amounts of zinc, the amount of zinc absorbed was not significantly different, but the amount of zinc excreted by the intestine was less in the diabetic rats. Decreased intestinal excretion of endogenous zinc may be a homeostatic response to the increased urinary excretion of endogenous zinc in the diabetic rats and may also lead to the elevated zinc concentrations observed in some organs of the diabetic rats

  15. The short-circuit current of the ileum, but not the colon, is altered in the streptozotocin diabetic rat.

    Science.gov (United States)

    Forrest, Abigail; Makwana, Rajesh; Parsons, Mike

    2006-02-01

    Ion transport in control and streptozotocin-diabetic rat colon and ileum was studied using the Ussing chamber technique. No differences were observed between control and diabetic colonic mucosal short-circuit current under either basal or carbachol (100 nmol/L-1 micromol/L)-stimulated or prostaglandin E2 (100 nmol/L-1 micromol/L)-stimulated conditions. Similarly to colonic tissues, no differences in the short circuit current in either carbachol-stimulated or prostaglandin E2-stimulated tissues were observed between control and diabetic ileal mucosa. The basal diabetic ileal short circuit current (99.58 +/- 22.67 microA) was significantly greater than that of control ileal tissues (29.67 +/- 4.45 microA). This difference was abolished by the sodium-glucose-cotransporter inhibitor, phloridzin (50 micromol/L) (118.00 +/- 28.09 microA vs. 25.60 +/- 4.59 microA) and was also prevented by the replacement of glucose with mannitol in the buffer bathing the apical side of the tissue (control: 17.05 +/- 5.85 microA vs. 17.90 +/- 3.10 microA). Acetazolamide (450 micromol/L; a carbonic anhydrase inhibitor), amiloride, and bumetanide (100 micromol/L each; Na+-channel blockers), piroxicam (50 micromol/L; a COX1 cyclooxygenase inhibitor), and ouabain (1 mmol/L; a K+ transport inhibitor) had no effect on the basal short circuit current of either control or diabetic ileal tissues. This indicated that the alteration in the basal short circuit current of diabetic ileal tissues was due to a change in cellular glucose transport, whereas the evoked changes in short circuit current were unaffected by the diabetic state.

  16. Hypoglycemic effect of Mucuna pruriens seed extract on normal and streptozotocin-diabetic rats.

    Science.gov (United States)

    Bhaskar, Anusha; Vidhya, V G; Ramya, M

    2008-12-01

    The hypoglycemic effect of the aqueous extract of the seeds of Mucuna pruriens was investigated in normal, glucose load conditions and streptozotocin (STZ)-induced diabetic rats. In normal rats, the aqueous extract of the seeds of Mucuna pririens (100 and 200 mg/kg body weight) significantly (Ppruriens has an anti-hyperglycemic action and it could be a source of hypoglycemic compounds.

  17. Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats.

    Science.gov (United States)

    Singh, Santosh Kumar; Kesari, Achyut Narayan; Gupta, Rajesh Kumar; Jaiswal, Dolly; Watal, Geeta

    2007-11-01

    This study was undertaken to investigate the hypoglycemic and antidiabetic effect of single and repeated oral administration of the aqueous extract of Cynodon dactylon (Family: Poaceae) in normal and streptozotocin induced diabetic rats, respectively. The effect of repeated oral administration of aqueous extract on serum lipid profile in diabetic rats was also examined. A range of doses, viz. 250, 500 and 1000mg/kg bw of aqueous extract of Cynodon dactylon were evaluated and the dose of 500mg/kg was identified as the most effective dose. It lowers blood glucose level around 31% after 4h of administration in normal rats. The same dose of 500mg/kg produced a fall of 23% in blood glucose level within 1h during glucose tolerance test (GTT) of mild diabetic rats. This dose has almost similar effect as that of standard drug tolbutamide (250mg/kg bw). Severely diabetic rats were also treated daily with 500mg/kg bw for 14 days and a significant reduction of 59% was observed in fasting blood glucose level. A reduction in the urine sugar level and increase in body weight of severe diabetic rats were additional corroborating factors for its antidiabetic potential. Total cholesterol (TC), low density lipoprotein (LDL) and triglyceride (TG) levels were decreased by 35, 77 and 29%, respectively, in severely diabetic rats whereas, cardioprotective, high density lipoprotein (HDL) was increased by 18%. These results clearly indicate that aqueous extract of Cynodon dactylon has high antidiabetic potential along with significant hypoglycemic and hypolipidemic effects.

  18. Chronic Rumex Patientia Seed Feeding Improves Passive Avoidance Learning and Memory in Streptozotocin-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Tourandokht Baluchnejadmojarad

    2010-08-01

    Full Text Available A B S T R A C T Introduction: Diabetes mellitus is accompanied with disturbances in learning, memory, and cognitive skills in the human society and experimental animals. Due to anti-diabetic and antioxidant activity of Rumex patientia (RP, this research study was conducted to evaluate the efficacy of chronic Rumex patientia feeding on alleviation of learning and memory disturbance in streptozotocindiabetic rats. Methods: Male Wistar rats were divided into control, diabetic, RP-treatedcontrol and -diabetic groups. For induction of diabetes, streptozotcin (STZ was administered at a dose of 60 mg/Kg. Meanwhile, RP-treated groups received RP seed powder mixed with standard pelleted food at a weight ratio of 6% for 4 weeks. For evaluation of learning and memory, initial latency (IL and step-through latency (STL were determined at the end of study using passive avoidance test. Results: It was found out that regarding initial latency, there was no significant difference among the groups. In addition, diabetic rats developed a significant impairment in retention and recall in passive avoidance test (p<0.01, as it is evident by a lower STL. Furthermore, RP treatment of diabetic rats did produce a significant improvement in retention and recall (p<0.05. Discussion: Taken together, chronic RP feeding could improve retention and recall capability in passive avoidance test in STZ-diabetic rats

  19. Up-regulation of Hsp72 and keratin16 mediates wound healing in streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Rasha R. Ahmed

    2015-01-01

    Full Text Available BACKGROUND: Impaired wound healing is a complication of diabetes and a serious problem in clinical practice. We previously found that whey protein (WP was able to regulate wound healing normally in streptozotocin (STZ-dia-betic models. This subsequent study was designed to assess the effect of WP on heat shock protein-72 (Hsp72 and keratin16 (Krt16 expression during wound healing in diabetic rats. METHODS: WP at a dosage of 100 mg/kg of body weight was orally administered daily to wounded normal and STZ-diabetic rats for 8 days. RESULTS: At day 4, the WP-treated diabetic wound was significantly reduced compared to that in the corresponding control. Diabetic wounded rats developed severe inflammatory infiltration and moderate capillary dilatation and regeneration. Treated rats had mild necrotic formation, moderate infiltration, moderate to severe capillary dilatation and regeneration, in addition to moderate epidermal formation. Hsp72 and Krt16 densities showed low and dense activity in diabetic wounded and diabetic wounded treated groups, respectively. At day 8, WP-treatment of diabetic wounded animals revealed great amelioration with complete recovery and closure of the wound. Reactivity of Hsp72 and Krt16 was reversed, showing dense and low, or medium and low, activity in the diabetic wounded and diabetic wounded treated groups, respectively. Hsp72 expression in the pancreas was found to show dense reactivity with WP-treated diabetic wound rats. CONCLUSION: This data provides evidence for the potential impact of WP in the up-regulation of Hsp72 and Krt16 in T1D, resulting in an improved wound healing process in diabetic models.

  20. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats.

    Science.gov (United States)

    Bassi, Daniela; Bueno, Patricia de Godoy; Nonaka, Keico Okino; Selistre-Araujo, Heloisa Sobreiro; Leal, Angela Merice de Oliveira

    2015-04-01

    The aim of this study was to analyze the effect of exercise on the pattern of muscle myostatin (MSTN) protein expression in two important metabolic disorders, i.e., obesity and diabetes mellitus. MSTN, is a negative regulator of skeletal muscle mass. We evaluated the effect of exercise on MSTN protein expression in diabetes mellitus and high fat diet-induced obesity. MSTN protein expression in gastrocnemius muscle was analyzed by Western Blot. P sedentary or exercised obese animals. Diabetes reduced gastrocnemius muscle weight in sedentary animals. However, gastrocnemius muscle weight increased in diabetic exercised animals. Both the precursor and processed forms of muscle MSTN protein were significantly higher in sedentary diabetic rats than in control rats. The precursor form was significantly lower in diabetic exercised animals than in diabetic sedentary animals. However, the processed form did not change. These results demonstrate that exercise can modulate the muscle expression of MSTN protein in diabetic rats and suggest that MSTN may be involved in energy homeostasis.

  1. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Bazani Cabral de Melo

    2012-12-01

    Full Text Available Levan is an exopolysaccharide of fructose primarily linked by β-(2→6 glycosidic bonds with some β-(2→1 branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes.

  2. Acute and chronic hypoglycemic activity of Sida tiagii fruits in N5-streptozotocin diabetic rats.

    Science.gov (United States)

    Datusalia, Ashok Kumar; Dora, Chander Parkash; Sharma, Sunil

    2012-01-01

    Herbal prescriptions have been recognized as potentially valid by the scientific medical establishment, and their use has been increasing. Sida tiagii Bhandari (Sida pakistanica; family-Malvaceae), a native species of the Indian and Pakistan desert area, popularly known as "Kharenti" in India; is used as a folk medicine. In the present study, various fruit extracts of Sida tiagii were investigated for it's hypoglycemic and antioxidant potential in neonatal streptozotocin-induced (type 2) diabetic rats. Grinded fruits were extracted with 90% ethanol and partitioned with n-hexane (n-hexane extract; HS) and ethyl acetate (Ethyl Acetate Extract; EAS) successively. The residual ethanol fraction (residual ethanol extract; RES) was dried on water bath separately. All three extracts were administered orally at a dose of 200 mg/kg and 500 mg/kg. Blood glucose level, cholesterol, GSH (glutathione), elevated thiobarbituric acid-reactive substances (TBARS), glycated hemoglobin and liver glycogen contents were measured after 19 days treatment. The residual ethanol extract of Sida tiagii fruits significantly improve glycemic parameter and showed antioxidant activity in diabetic rats. The results of the present study indicated that the active fraction of Sida tiagii (i.e., RES) is suitable for development of a promising phytomedicine for the treatment of diabetes mellitus.

  3. Streptozotocin diabetes attenuates the effects of nondepolarizing neuromuscular relaxants on rat muscles.

    Science.gov (United States)

    Huang, Lina; Chen, Dan; Li, Shitong

    2014-12-01

    The hypothesis of this study was that diabetes-induced desensitization of rat soleus (SOL) and extensor digitorum longus (EDL) to non-depolarizing muscle relaxants (NDMRs) depends on the stage of diabetes and on the kind of NDMRs. We tested the different magnitude of resistance to vecuronium, cisatracurium, and rocuronium at different stages of streptozotocin (STZ)-induced diabetes by the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations from rats after 4 and 16 weeks of STZ treatment. The concentration-twitch tension curves were significantly shifted from those of the control group to the right in the diabetic groups. Concentration giving 50% of maximal inhibition (IC50) was larger in the diabetic groups for all the NDMRs. For rocuronium and cisatracurium in both SOL and EDL, IC50 was significantly larger in diabetic 16 weeks group than those in the diabetic 4 weeks group. For SOL/EDL, the IC50 ratios were significantly largest in the diabetic 16 weeks group, second largest in the diabetic 4 weeks group, and smallest for the control group. Diabetes-induced desensitization to NDMRs depended on the stage of diabetes and on the different kind of muscles observed while was independent on different kind of NDMRs. The resistance to NDMRs was stronger in the later stage of diabetes (16 versus 4 weeks after STZ treatment). Additionally, when monitoring in SOL, diabetes attenuated the actions of neuromuscular blockade more intensely than that in EDL. Nonetheless, the hyposensitivity to NDMRs in diabetes was not relevant for the kind of NDMRs.

  4. Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats.

    Science.gov (United States)

    Suresh Babu, P; Srinivasan, K

    1998-04-01

    Curcumin, the coloring principle of the commonly used spice turmeric (Curcuma longa) was fed at 0.5% in the diet to streptozotocin-induced diabetic Wistar rats for 8 weeks. Renal damage was assessed by the amount of proteins excreted in the urine and the extent of leaching of renal tubular enzymes: NAG, LDH, AsAT, AlAT, alkaline and acid phosphatases. The integrity of kidney was assessed by measuring the activities of several key enzymes of the renal tissue: glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, and LDH (Carbohydrate metabolism), aldose reductase and sorbitol dehydrogenase (polyol pathway), transaminases, ATPases and membrane PUFA/SFA ratio (membrane integrity). Data on enzymuria, albuminuria, activity of kidney ATPases and fatty acid composition of renal membranes in diabetic condition suggested that dietary curcumin brought about significant beneficial modulation of the progression of renal lesions in diabetes. These findings were also corroborated by histological examination of kidney sections. It is inferred that this beneficial ameliorating influence of dietary curcumin on diabetic nephropathy is possibly mediated through its ability to lower blood cholesterol levels.

  5. Effects of insulin on perfused liver from streptozotocin-diabetic and untreated rats: 13C NMR assay of pyruvate kinase flux

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    The effects of insulin in vitro on perfused liver from streptozotocin-diabetic rats and their untreated littermates during gluconeogenesis from either [3- 13 C]alanine + ethanol or [2- 13 C]pyruvate + NH 4 Cl + ethanol were studied by 13 C NMR. A 13 C NMR determination of the rate of pyruvate kinase flux under steady-state conditions of active gluconeogenesis was developed; this assay includes a check on the reuse of recycled pyruvate. The preparations studied provided gradations of pyruvate kinase flux within the confines of the assay's requirement of active gluconeogenesis. By this determination, the rate of pyruvate kinase flux was 0.74 +/- 0.04 of the gluconeogenic rate in liver from 24-h-fasted controls; in liver from 12-h fasted controls, relative pyruvate kinase flux increased to 1.0 +/- 0.2. In diabetic liver, this flux was undetectable by the authors NMR method. Insulin's hepatic influence in vitro was greatest in the streptozotocin model of type 1 diabetes: upon treatment of diabetic liver with 7 nM insulin in vitro, a partial reversal of many of the differences noted between diabetic and control liver was demonstrated by 13 C NMR. A major effect of insulin in vitro upon diabetic liver was the induction of a large increase in the rate of pyruvate kinase flux, bringing relative and absolute fluxes up to the levels measured in 24-h-fasted controls. By way of comparison, the effects of ischemia on diabetic liver were studied by 13 C NMR to test whether changes in allosteric effectors under these conditions could also increase pyruvate kinase flux. A large increase in this activity was demonstrated in ischemic diabetic liver

  6. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    Science.gov (United States)

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  7. Reticuloendothelial hyperphagocytosis occurs in streptozotocin-diabetic rats. Studies with colloidal carbon, albumin microaggregates, and soluble fibrin monomers

    International Nuclear Information System (INIS)

    Cornell, R.P.

    1982-01-01

    In contrast to previous studies of diabetic humans and animals, which reported unchanged or depressed function, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon, 125 I-albumin microaggregates, and 125 I-fibrin monomers were observed in rats as early as 14 days after the induction of diabetes with streptozotocin (STZ). The fact that enhanced phagocytosis by RE macrophages was prevented by chronic insulin replacement therapy indicates that the diabetic internal environment of hyperglycemia and hypoinsulinemia was perhaps responsible for the observed changes. Experiments involving organ localization of intravenously administered particles, perfusion of isolated livers, and microscopic examination of the liver all suggested that increased Kupffer cell activity was the primary event in RES hyperphagocytosis by STZ-diabetic rats. Both hypertrophy and hyperplasia of Kupffer cells were apparent in livers of STZ-diabetic animals as evidenced by photomicrographs and hepatic cell quantification. Plasma fibronectin, which binds fibrin monomers to RE macrophages before phagocytosis, was significantly decreased in the circulation of STZ-diabetic rats, but the level of cell-associated fibronectin was not measured. Renal localization of urea-soluble 125 I-fibrin monomers exceeded splenic and pulmonary uptake in normal control rats and was enhanced in animals with STZ-diabetes. Changes in fibronectin levels, fibrin monomer localization, and Kupffer cell size and numbers in experimental diabetes in rats may have implications for the pathogenesis of vascular disease involving phagocytic mesangial and foam cells in diabetic humans

  8. Reticuloendothelial hyperphagocytosis occurs in streptozotocin-diabetic rats. Studies with colloidal carbon, albumin microaggregates, and soluble fibrin monomers.

    Science.gov (United States)

    Cornell, R P

    1982-02-01

    In contrast to previous studies of diabetic humans and animals, which reported unchanged or depressed function, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon, 125I-albumin microaggregates, and 125I-fibrin monomers were observed in rats as early as 14 days after the induction of diabetes with streptozotocin (STZ). The fact that enhanced phagocytosis by RE macrophages was prevented by chronic insulin replacement therapy indicates that the diabetic internal environment of hyperglycemia and hypoinsulinemia was perhaps responsible for the observed changes. Experiments involving organ localization of intravenously administered particles, perfusion of isolated livers, and microscopic examination of the liver all suggested that increased Kupffer cell activity was the primary event in RES hyperphagocytosis by STZ-diabetic rats. Both hypertrophy and hyperplasia of Kupffer cells were apparent in livers of STZ-diabetic animals as evidenced by photomicrographs and hepatic cell quantification. Plasma fibronectin, which binds fibrin monomers to RE macrophages before phagocytosis, was significantly decreased in the circulation of STZ-diabetic rats, but the level of cell-associated fibronectin was not measured. Renal localization of urea-soluble 125I-fibrin monomers exceeded splenic and pulmonary uptake in normal control rats and was enhanced in animals with STZ-diabetes. Changes in fibronectin levels, fibrin monomer localization, and Kupffer cell size and numbers in experimental diabetes in rats may have implications for the pathogenesis of vascular disease involving phagocytic mesangial and foam cells in diabetic humans.

  9. Effect of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) extracts on blood glucose level of normal and streptozotocin diabetic rats.

    Science.gov (United States)

    El-Fiky, F K; Abou-Karam, M A; Afify, E A

    1996-01-01

    The present study investigates the effect of oral administration of the ethanolic extracts of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) on blood glucose levels both in normal and streptozotocin (STZ) diabetic rats. Treatment with both extracts significantly reduced the blood glucose level in STZ diabetic rats during the first three hours of treatment. L. aegyptiaca extract decreased blood glucose level with a potency similar to that of the biguanide, metformin. The total glycaemic areas were 589.61 +/- 45.62 mg/dl/3 h and 660.38 +/- 64.44 mg/dl/3 h for L. aegyptiaca and metformin, respectively, vs. 816.73 +/- 43.21 mg/dl/3 h for the control (P < 0.05). On the other hand, in normal rats, both treatments produced insignificant changes in blood glucose levels compared to glibenclamide treatment.

  10. Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes.

    Science.gov (United States)

    Rajasekaran, Subbiah; Ravi, Kasiappan; Sivagnanam, Karuran; Subramanian, Sorimuthu

    2006-03-01

    The effect of diabetes mellitus on lipid metabolism is well established. The association of hyperglycaemia with an alteration of lipid parameters presents a major risk for cardiovascular complications in diabetes. Many secondary plant metabolites have been reported to possess lipid-lowering properties. The present study was designed to examine the potential anti-hyperlipidaemic efficacy of the ethanolic extract from Aloe vera leaf gel in streptozotocin (STZ)-induced diabetic rats. 2. Oral administration of Aloe vera gel extract at a dose of 300 mg/kg bodyweight per day to STZ-induced diabetic rats for a period of 21 days resulted in a significant reduction in fasting blood glucose, hepatic transaminases (aspartate aminotransferase and alanine aminotransferase), plasma and tissue (liver and kidney) cholesterol, triglycerides, free fatty acids and phospholipids and a significant improvement in plasma insulin. 3. In addition, the decreased plasma levels of high-density lipoprotein-cholesterol and increased plasma levels of low-density lipoprotein-and very low-density lipoprotein-cholesterol in diabetic rats were restored to near normal levels following treatment with the extract. 4. The fatty acid composition of the liver and kidney was analysed by gas chromatography. The altered fatty acid composition in the liver and kidney of diabetic rats was restored following treatment with the extract. 5. Thus, the results of the present study provide a scientific rationale for the use of Aloe vera as an antidiabetic agent.

  11. Effect of Urtica dioica on morphometric indices of kidney in streptozotocin diabetic rats--a stereological study.

    Science.gov (United States)

    Golalipour, Mohammad Jafar; Gharravi, Anneh Mohammad; Ghafari, Sorya; Afshar, Mohammad

    2007-11-01

    The aim of the present study was to investigate the effect of Urtica dioica on Morphometric indices of kidney in diabetic rats. Thirty male adult albino wistar rats of 125-175 g divided into control, diabetic and Urtica dioica treatment groups. In treatment Group, diabetic rats received 100 mg kg(-1) daily hydroalcoholic extract of U. dioica intraperitoneally for 4 weeks. After the animals had been sacrified, the kidneys were removed and fixed by formaldehyde, cut horizontally into 1 mm slices and processed, Stained with H and E. Stereological study performed using light microscope and the image projected on a table of olysa software. Cavalieri principle was used to estimate the volume of cortex, medulla and whole kidney. All the grouped data statistically evaluated using Student's t-test, expressed as the Mean +/- SE. Ration of kidney weight/body weight in diabetes (0.51) and diabetes-extract group (0.67) were higher then control group (0.42). Ratio of kidney volume/body weight in diabetes (350) and diabetes-extract group (348) were higher then control group (323). Volume Ratio of cortex/medulla in diabetes-extract group (1.65) was higher then control (1.34) and diabetes group (1.33). Glomerular area and diameter and proximal tubule diameter in diabetes-Extract group was higher than control and diabetes groups. This study revealed that Urtica dioica has no effect on renal morphometric indices in induced diabetic rats.

  12. Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats

    Directory of Open Access Journals (Sweden)

    Irigoyen Maria-Cláudia

    2007-12-01

    Full Text Available Abstract Background The aim of the present study was to investigate the relationship between speed during maximum exercise test (ET and oxygen consumption (VO2 in control and STZ-diabetic rats, in order to provide a useful method to determine exercise capacity and prescription in researches involving STZ-diabetic rats. Methods Male Wistar rats were divided into two groups: control (CG, n = 10 and diabetic (DG, n = 8. The animals were submitted to ET on treadmill with simultaneous gas analysis through open respirometry system. ET and VO2 were assessed 60 days after diabetes induction (STZ, 50 mg/Kg. Results VO2 maximum was reduced in STZ-diabetic rats (72.5 ± 1 mL/Kg/min-1 compared to CG rats (81.1 ± 1 mL/Kg/min-1. There were positive correlations between ET speed and VO2 (r = 0.87 for CG and r = 0.8 for DG, as well as between ET speed and VO2 reserve (r = 0.77 for CG and r = 0.7 for DG. Positive correlations were also obtained between measured VO2 and VO2 predicted values (r = 0.81 for CG and r = 0.75 for DG by linear regression equations to CG (VO2 = 1.54 * ET speed + 52.34 and DG (VO2 = 1.16 * ET speed + 51.99. Moreover, we observed that 60% of ET speed corresponded to 72 and 75% of VO2 reserve for CG and DG, respectively. The maximum ET speed was also correlated with VO2 maximum for both groups (CG: r = 0.7 and DG: r = 0.7. Conclusion These results suggest that: a VO2 and VO2 reserve can be estimated using linear regression equations obtained from correlations with ET speed for each studied group; b exercise training can be prescribed based on ET in control and diabetic-STZ rats; c physical capacity can be determined by ET. Therefore, ET, which involves a relatively simple methodology and low cost, can be used as an indicator of cardio-respiratory capacity in future studies that investigate the physiological effect of acute or chronic exercise in control and STZ-diabetic male rats.

  13. Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats

    Science.gov (United States)

    Rodrigues, Bruno; Figueroa, Diego M; Mostarda, Cristiano T; Heeren, Marcelo V; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2007-01-01

    Background The aim of the present study was to investigate the relationship between speed during maximum exercise test (ET) and oxygen consumption (VO2) in control and STZ-diabetic rats, in order to provide a useful method to determine exercise capacity and prescription in researches involving STZ-diabetic rats. Methods Male Wistar rats were divided into two groups: control (CG, n = 10) and diabetic (DG, n = 8). The animals were submitted to ET on treadmill with simultaneous gas analysis through open respirometry system. ET and VO2 were assessed 60 days after diabetes induction (STZ, 50 mg/Kg). Results VO2 maximum was reduced in STZ-diabetic rats (72.5 ± 1 mL/Kg/min-1) compared to CG rats (81.1 ± 1 mL/Kg/min-1). There were positive correlations between ET speed and VO2 (r = 0.87 for CG and r = 0.8 for DG), as well as between ET speed and VO2 reserve (r = 0.77 for CG and r = 0.7 for DG). Positive correlations were also obtained between measured VO2 and VO2 predicted values (r = 0.81 for CG and r = 0.75 for DG) by linear regression equations to CG (VO2 = 1.54 * ET speed + 52.34) and DG (VO2 = 1.16 * ET speed + 51.99). Moreover, we observed that 60% of ET speed corresponded to 72 and 75% of VO2 reserve for CG and DG, respectively. The maximum ET speed was also correlated with VO2 maximum for both groups (CG: r = 0.7 and DG: r = 0.7). Conclusion These results suggest that: a) VO2 and VO2 reserve can be estimated using linear regression equations obtained from correlations with ET speed for each studied group; b) exercise training can be prescribed based on ET in control and diabetic-STZ rats; c) physical capacity can be determined by ET. Therefore, ET, which involves a relatively simple methodology and low cost, can be used as an indicator of cardio-respiratory capacity in future studies that investigate the physiological effect of acute or chronic exercise in control and STZ-diabetic male rats. PMID:18078520

  14. The Aqueous Extract of Portulaca Oleracea Ameliorates Neurobehavioral Dysfunction and Hyperglycemia Related to Streptozotocin-Diabetes Induced in Ovariectomized Rats

    Science.gov (United States)

    Fatemi Tabatabaei, Seyed Reza; Rashno, Masome; Ghaderi, Shahab; Askaripour, Majid

    2016-01-01

    Diabetes mellitus is one of the most common causes of neuropathy. Although antioxidant and antidiabetic effects of the aqueous extract of purslane (Portulaca oleracea) (AEOP) have been demonstrated before by other researchers, we did not find any study that assessed the psychobiological effects of AEOP in diabetes induced animals. Thirty ovariectomized (OVX) female Wistar rats were randomly divided into 3 groups of control, Dia and Dia+AEOP. The latter group was orally treated by 300 mg/kg of AEOP for 35 days. Dia and Dia+AEOP groups were made diabetic by IP injection of 60 mg/kg of streptozotocin (STZ). The psychobiological effects of AEOP were assessed by Morris water maze (MWM), elevated plus maze (EPM), forced swimming test (FST) and tail pinch stressor (TPS). AEOP significantly decreased hyperglycemia (p0.05). Diabetes significantly increased their non-functional masticatory activity in TPS (p≤0.001) while it was improved in Dia+AEOP group. We showed that AEOP has significant anxiolytic effects and it can improve spatial cognitive performance, locomotor deficit and stress in diabetic OVX rats. PMID:27642327

  15. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  16. Comparison of Two Intensities of Aerobic Training (low intensity and High Intensity on Expression of Perlipin 2 Skeletal Muscle, Serum Glucose and Insulin levels in Streptozotocin-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    M Ghafari

    2017-06-01

    Full Text Available Abstract   Background & aim: Lipid metabolism disorder plays an important role in insulin resistance in skeletal muscle and lipid drop proteins such as perlipine 2 (PLIN2 are effective in regulating intracellular fat metabolism. One of the suggested pathways for the effects of endurance activity in metabolic diseases is the effect of physical activity on intramuscular. Therefore, the purpose of this study was compare the intensity of aerobic exercise intensity (low intensity and high intensity on expression of PLIN2 skeletal muscle, serum glucose and insulin levels in streptozotocin-diabetic rats.   Methods: In this experimental study, 24 male Wistar rats were randomly divided into three groups of 8, including two intervention groups (low intensity endurance training group and high intensity continuous exercise group and one control group. After induction of diabetic rats by injection streptozotocin (55 mg / kg body weight, Intraperitoneally, endurance training was applied for eight weeks, three sessions per week in diabetic rats. Exercise intensity in the low-intensity group was equal to 5-8 m / min (equivalent to 50-60% Vo2max, the intensity of training in a high intensity training group was equivalent to a speed of 22-25 m / min (equivalent to 80% Vo2max and the control group did not receive intervene in this time. Relative protein expression of PLIN2 was performed using western blot technique. Data were analyzed by one-way ANOVA and Tukey's post hoc test.   Results: The results of the intergroup comparison revealed a significant difference among three groups in the PLIN2 variables (p = 0.037. The results of post hoc test showed a significant increase in PLIN2 in high intensity training diabetic group compared to the control group (p = 0.033 However, there was no significant difference in PLIN2 level in the low exercise group compared to the control group (p = 0.18. Also, there was no significant difference between the low intensity and

  17. Long-term organ culture of adult rat colon

    DEFF Research Database (Denmark)

    Shamsuddin, A.K.M.; Barrett, L.A.; Autrup, Herman

    1978-01-01

    . The effect of in vivo carcinogen pretreatment was also studied. The explant culture from control untreated animals showed good epithelial differentiation with crypts until 6 weeks. In contrast, the explants from animals pretreated with 4 weekly doses of azoxymethane consistently showed epithelial......Colon explants from adult rats were maintained in culture for over 3 months in our laboratories with good epithelial preservation and cellular differentiation. The light and transmission electron microscopic features of rat colon mucosa during the culture period are described. In all the explants...

  18. Chronic cyanidin-3-glucoside administration improves short-term spatial recognition memory but not passive avoidance learning and memory in streptozotocin-diabetic rats.

    Science.gov (United States)

    Nasri, Sima; Roghani, Mehrdad; Baluchnejadmojarad, Tourandokht; Balvardi, Mahboubeh; Rabani, Tahereh

    2012-08-01

    This research study was conducted to evaluate the efficacy of chronic cyanidin-3-glucoside (C3G) on alleviation of learning and memory deficits in diabetic rats as a result of the observed antidiabetic and antioxidant activity of C3G. Male Wistar rats were divided into control, diabetic, C3G-treated-control and -diabetic groups. The C3G was administered i.p. at a dose of 10 mg/kg on alternate days for eight weeks. For evaluation of learning and memory, initial latency (IL) and step-through latency (STL) were determined at the end of study using passive avoidance test. Meanwhile, spatial recognition memory was assessed as alternation in the Y-maze task. Oxidative stress markers in brain tissue were also measured. It was found that the alternation score of the diabetic rats was lower than that of control (p chronic C3G could improve short-term spatial recognition memory disturbance in the Y-maze test but not retention and recall capability in passive avoidance test in STZ-diabetic rats. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Serizawa Ken-ichi

    2011-11-01

    Full Text Available Abstract Background Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes. Methods Male Sprague-Dawley rats (6 weeks old were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days to induce diabetes. Nicorandil (15 mg/kg/day and tempol (20 mg/kg/day, superoxide dismutase mimetic were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs were treated with high glucose (35.6 mM, 24 h and reactive oxygen species (ROS production with or without L-NAME (300 μM, apocynin (100 μM or nicorandil (100 μM was measured using fluorescent probes. Results Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7. There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6. Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil

  20. The ovarian cycle in rats: a long term EEG study

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Budziszewska, B.; Jaworska-Feil, L.; Ellis, J.L.; Coenen, A.M.L.; Lason, W.; Kuznetsova, G.D.; Coenen, A.M.L.; Chepurnov, S.A.; Luijtelaar, E.L.J.M. van

    2000-01-01

    Rats of the WAG/Rij strain are considered as a genetic model for generalised absence epilepsy. The relationship between the phase of the estrous cycle and the number of spontaneously occurring spike-wave discharges (SWDs) was investigated during the 4 days of the cycle. Vaginal smears were daily

  1. Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent [Nα-Bodipy]-des-Arg9-bradykinin

    Directory of Open Access Journals (Sweden)

    Gaudreau Pierrette

    2009-03-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines, bacterial endotoxins and hyperglycaemia-induced oxidative stress. In animal models of diabetes, it contributes to pain polyneuropathy. This study aims at defining the cellular localization of B1R in thoracic spinal cord of type 1 diabetic rats by confocal microscopy with the use of a fluorescent agonist, [Nα-Bodipy]-des-Arg9-BK (BdABK and selective antibodies. Methods Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.. Four days post-STZ treatment, B1R expression was confirmed by quantitative real-time PCR and autoradiography. The B1R selectivity of BdABK was determined by assessing its ability to displace B1R [125I]-HPP-desArg10-Hoe140 and B2R [125I]-HPP-Hoe 140 radioligands. The in vivo activity of BdABK was also evaluated on thermal hyperalgesia. Results B1R was increased by 18-fold (mRNA and 2.7-fold (binding sites in the thoracic spinal cord of STZ-treated rats when compared to control. BdABK failed to displace the B2R radioligand but displaced the B1R radioligand (IC50 = 5.3 nM. In comparison, IC50 values of B1R selective antagonist R-715 and B1R agonist des-Arg9-BK were 4.3 nM and 19 nM, respectively. Intraperitoneal BdABK and des-Arg9-BK elicited dose-dependent thermal hyperalgesia in STZ-treated rats but not in control rats. The B1R fluorescent agonist was co-localized with immunomarkers of microglia, astrocytes and sensory C fibers in the spinal cord of STZ-treated rats. Conclusion The induction and up-regulation of B1R in glial and sensory cells of the spinal cord in STZ-diabetic rats reinforce the idea that kinin B1R is an important target for drug development in pain processes.

  2. Long-term toxicological effects of paracetamol in rats

    Directory of Open Access Journals (Sweden)

    S.K. Majeed,

    2013-06-01

    Full Text Available The analgesic and antipyretic properties of paracetamol were first described in 1893, then it has been widely available as a non-prescription drug, with a therapeutic profile that reflects widespread safety and efficacy as well as paracetamol became the most widely used analgesic and antipyretic in children. It is the most frequently used over-the counter medicine in young children and is nearly universally used in infants. The drug is used by millions of children every day. The study was designed to study the toxicological effect of therapeutic dose of paracetamol after oral administration for three months in laboratory rats (Rattus norvegicous on the heart, kidney and liver. Results showed oral administration of the paracetamol for three months in laboratory rats showed that this drug has a severe damaging effect on most of the vital organs in the body like kidney, liver and heart.

  3. Antioxidant activity of Artocarpus heterophyllus Lam. (Jack Fruit) leaf extracts: remarkable attenuations of hyperglycemia and hyperlipidemia in streptozotocin-diabetic rats.

    Science.gov (United States)

    Omar, Haidy S; El-Beshbishy, Hesham A; Moussa, Ziad; Taha, Kamilia F; Singab, Abdel Nasser B

    2011-04-05

    The present study examines the antioxidative, hypoglycemic, and hypolipidemic activities of Artocarpus heterophyllus (jack fruit) leaf extracts (JFEs). The 70% ethanol (JFEE), n-butanol (JFBE), water (JFWE), chloroform (JFCE), and ethyl acetate (JFEAE) extracts were obtained. Both JFEE and JFBE markedly scavenge diphenylpicrylhydrazyl radical and chelate Fe+2 in vitro. A compound was isolated from JFBE and identified using 1D and 2D 1H- and 13C-NMR. The administration of JFEE or JFBE to streptozotocin (STZ)-diabetic rats significantly reduced fasting blood glucose (FBG) from 200 to 56 and 79 mg%, respectively; elevated insulin from 10.8 to 19.5 and 15.1 µU/ml, respectively; decreased lipid peroxides from 7.3 to 5.4 and 5.9 nmol/ml, respectively; decreased %glycosylated hemoglobin A1C (%HbA1C) from 6.8 to 4.5 and 5.0%, respectively; and increased total protein content from 2.5 to 6.3 and 5.7 mg%, respectively. Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), VLDL-C, and LDL/HDL ratio significantly declined by -37, -19, -23, -37, and -39%, respectively, in the case of JFEE; and by -31, -14, -17, -31, and -25%, respectively, in the case of JFBE; as compared to diabetic rats. HDL-C increased by +37% (JFEE) and by +11% (JFBE). Both JFEE and JFBE have shown appreciable results in decreasing FBG, lipid peroxides, %HbA1C, TC, LDL-C, and TG levels, and increasing insulin, HDL-C, and protein content. The spectrometric analysis confirmed that the flavonoid isolated from JFBE was isoquercitrin. We can conclude from this study that JFEE and JFBE exert hypoglycemic and hypolipidemic effects in STZ-diabetic rats through an antioxidative pathway that might be referred to their flavonoid contents.

  4. Antioxidant Activity of Artocarpus heterophyllus Lam. (Jack Fruit Leaf Extracts: Remarkable Attenuations of Hyperglycemia and Hyperlipidemia in Streptozotocin-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Haidy S. Omar

    2011-01-01

    Full Text Available The present study examines the antioxidative, hypoglycemic, and hypolipidemic activities of Artocarpus heterophyllus (jack fruit leaf extracts (JFEs. The 70% ethanol (JFEE, n-butanol (JFBE, water (JFWE, chloroform (JFCE, and ethyl acetate (JFEAE extracts were obtained. Both JFEE and JFBE markedly scavenge diphenylpicrylhydrazyl radical and chelate Fe+2in vitro. A compound was isolated from JFBE and identified using 1D and 2D 1H- and 13C-NMR. The administration of JFEE or JFBE to streptozotocin (STZ-diabetic rats significantly reduced fasting blood glucose (FBG from 200 to 56 and 79 mg%, respectively; elevated insulin from 10.8 to 19.5 and 15.1 μU/ml, respectively; decreased lipid peroxides from 7.3 to 5.4 and 5.91 nmol/ml, respectively; decreased %glycosylated hemoglobin A1C (%HbA1C from 6.8 to 4.5 and 5.0%, respectively; and increased total protein content from 2.5 to 6.3 and 5.7 mg%, respectively. Triglycerides (TG, total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C, VLDL-C, and LDL/HDL ratio significantly declined by -37, -19, -23, -37, and -39%, respectively, in the case of JFEE; and by -31, -14, -17, -31, and -25%, respectively, in the case of JFBE; as compared to diabetic rats. HDL-C increased by +37% (JFEE and by +11% (JFBE. Both JFEE and JFBE have shown appreciable results in decreasing FBG, lipid peroxides, %HbA1C, TC, LDL-C, and TG levels, and increasing insulin, HDL-C, and protein content. The spectrometric analysis confirmed that the flavonoid isolated from JFBE was isoquercitrin. We can conclude from this study that JFEE and JFBE exert hypoglycemic and hypolipidemic effects in STZ-diabetic rats through an antioxidative pathway that might be referred to their flavonoid contents.

  5. Tiagabine improves hippocampal long-term depression in rat pups subjected to prenatal inflammation.

    Directory of Open Access Journals (Sweden)

    Aline Rideau Batista Novais

    Full Text Available Maternal inflammation during pregnancy is associated with the later development of cognitive and behavioral impairment in the offspring, reminiscent of the traits of schizophrenia or autism spectrum disorders. Hippocampal long-term potentiation and long-term depression of glutamatergic synapses are respectively involved in memory formation and consolidation. In male rats, maternal inflammation with lipopolysaccharide (LPS led to a premature loss of long-term depression, occurring between 12 and 25 postnatal days instead of after the first postnatal month, and aberrant occurrence of long-term potentiation. We hypothesized this would be related to GABAergic system impairment. Sprague Dawley rats received either LPS or isotonic saline ip on gestational day 19. Male offspring's hippocampus was studied between 12 and 25 postnatal days. Morphological and functional analyses demonstrated that prenatal LPS triggered a deficit of hippocampal GABAergic interneurons, associated with presynaptic GABAergic transmission deficiency in male offspring. Increasing ambient GABA by impairing GABA reuptake with tiagabine did not interact with the low frequency-induced long-term depression in control animals but fully prevented its impairment in male offspring of LPS-challenged dams. Tiagabine furthermore prevented the aberrant occurrence of paired-pulse triggered long-term potentiation in these rats. Deficiency in GABA seems to be central to the dysregulation of synaptic plasticity observed in juvenile in utero LPS-challenged rats. Modulating GABAergic tone may be a possible therapeutic strategy at this developmental stage.

  6. 13C and 31P NMR study of gluconeogenesis: utilization of 13C-labeled substrates by perfused liver from streptozotocin-diabetic and untreated rats

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    The metabolism of 13 C-labeled substrates was followed by 13 C and 31 P NMR in perfused liver from the streptozotocin-treated rat model of insulin-dependent diabetes. Comparison was made with perfused liver from untreated littermates, fasted either 24 or 12 h. The major routes of pyruvate metabolism were followed by a 13 C NMR approach that provided for the determination of the metabolic fate of several substances simultaneously. The rate of gluconeogenesis was 2-4-fold greater and β-hydroxybutyrate production was 50% greater in liver from the chronically diabetic rats as compared with the control groups. Large differences in the distribution of 13 C label in hepatic alanine were measured between diabetic and control groups. The biosyntheses of 13 C-labeled glutathione and N-carbamoylaspartate were monitored in time-resolved 13 C NMR spectra of perfused liver. Assignments for the resonances of glutathione and N-carbamoylaspartate were made with the aid of 13 C NMR studies of perchloric acid extracts of the freeze-clamped livers. 13 C NMR spectroscopy of the perfusates provided a convenient, rapid assay of the rate of oxidation of [2- 13 C]ethanol, the hepatic output of [2- 13 ]acetaldehyde, and the accumulation of [2- 13 C]acetate in the perfusate. By 31 P NMR spectroscopy, carbamoyl phosphate was measured in all diabetic livers and an unusual P,P'-diesterified pyrophosphate was observed in one-fourth of the diabetic livers examined. Neither of these phosphorylated metabolites was detected in control liver. Both 13 C and 31 P NMR were useful in defining changes in hepatic metabolism in experimental diabetes

  7. Long-term effects of 239Pu injection in adult, weanling, newborn and fetal rats

    International Nuclear Information System (INIS)

    Sikov, M.R.; Mahlum, D.D.; Hess, J.O.; Carr, D.B.

    1979-01-01

    We have completed biological evaluations comparing long-term effects in rats exposed to 239 Pu citrate as adults, weanlings, newborns, or late fetuses, and statistical analyses have been initiated. In rats exposed postnatally, statistically significant alterations in terminal body weight and in weights of several organs were found at higher doses. Survivorship decreased with increasing dose in the postnatal groups, but not in rats exposed prenatally

  8. Frequency of chromosomal aberrations in rat myelocaryocytes during long-term repeated irradiation

    International Nuclear Information System (INIS)

    Uryadnitskaya, T.I.; Sukhodoev, V.V.; Muksinova, K.N.

    1977-01-01

    In the course of a long-term daily irradiation of rats (50R/day), the frequency of chromosome aberrations in the bone marrow cells increased disproportionally to a total radiation dose which was due to the reduced frequency of chromosome damage at the intervals between daily exposures. The rate of this reduction was mainly determined by myelocaryocyte proliferation

  9. Loss of FMRP Impaired Hippocampal Long-Term Plasticity and Spatial Learning in Rats

    Directory of Open Access Journals (Sweden)

    Yonglu Tian

    2017-08-01

    Full Text Available Fragile X syndrome (FXS is a neurodevelopmental disorder caused by mutations in the FMR1 gene that inactivate expression of the gene product, the fragile X mental retardation 1 protein (FMRP. In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9 technology to generate Fmr1 knockout (KO rats by disruption of the fourth exon of the Fmr1 gene. Western blotting analysis confirmed that the FMRP was absent from the brains of the Fmr1 KO rats (Fmr1exon4-KO. Electrophysiological analysis revealed that the theta-burst stimulation (TBS–induced long-term potentiation (LTP and the low-frequency stimulus (LFS–induced long-term depression (LTD were decreased in the hippocampal Schaffer collateral pathway of the Fmr1exon4-KO rats. Short-term plasticity, measured as the paired-pulse ratio, remained normal in the KO rats. The synaptic strength mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR was also impaired. Consistent with previous reports, the Fmr1exon4-KO rats demonstrated an enhanced 3,5-dihydroxyphenylglycine (DHPG–induced LTD in the present study, and this enhancement is insensitive to protein translation. In addition, the Fmr1exon4-KO rats showed deficits in the probe trial in the Morris water maze test. These results demonstrate that deletion of the Fmr1 gene in rats specifically impairs long-term synaptic plasticity and hippocampus-dependent learning in a manner resembling the key symptoms of FXS. Furthermore, the Fmr1exon4-KO rats displayed impaired social interaction and macroorchidism, the results consistent with those observed in patients with FXS. Thus, Fmr1exon4-KO rats constitute a novel rat model of FXS that complements existing mouse models.

  10. Nucleic acid metabolism in hemopoietic tissues of polycythemic rats during long-term fractionated irradiation

    International Nuclear Information System (INIS)

    Mushkacheva, G.S.; Murzina, L.D.

    1980-01-01

    A study was made of the effect of long-term fractionated exposure with a daily dose of 50 R on the nucleic acid metabolism in hemopoietic tissues (bone marrow and spleen) of rats with erythropoiesis selectively inhibited by posttransfusion polycythemia. The comparison of present and previously obtained results enables us to conclude that the pathways of changes in the nucleic acid metabolism, which is responsible for hemopoiesis compensation during long-term exposure, are, in the main, similar for both white and red compartments of hemopoiesis

  11. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Dutia, Mayank; Frondaroli, Adele; Dieni, Cristina; Grassi, Silvarosa

    2003-01-01

    We previously demonstrated in rat brainstem slices that high-frequency stimulation (HFS) of the vestibular afferents induces long-term potentiation (LTP) in the ventral part (Vp) of the medial vestibular nucleus (MVN) and long-term depression (LTD) in the dorsal part (Dp). Both LTP and LTD depend on N-methyl-D-aspartate receptor activation, which increases synaptic efficacy; however, in the Dp, LTP reverses to LTD because of the activation of gamma-aminobutyric acid-ergic neurons. Here we show that the probability of inducing long-term effects in the MVN of rat brainstem slices is altered after unilateral labyrinthectomy (UL). In fact, LTP occurs less frequently in the ventral contra-lesional side compared with sham-operated rats. In the dorsal ipsi-lesional side, LTD is reduced and LTP enhanced, while the opposite occurs in the dorsal contra-lesional side. These changes in synaptic plasticity may be useful for re-balancing the tonic discharge of the MVN of the two sides during vestibular compensation, and for enhancing the dynamic responses of the deafferented MVN neurons in the long term.

  12. Long term lung clearance and cellular retention of cadmium in rats and monkeys

    International Nuclear Information System (INIS)

    Oberdorster, G.; Cox, C.; Baggs, R.

    1987-01-01

    The paper describes experiments to determine the long term lung clearance and cellular retention of cadmium in rats and monkeys. The rats and monkeys were exposed to 109 Cd Cl 2 aerosols, and one monkey was exposed to 115 CdO particles. The thoracic activity of the respective Cd isotopes was measured with time after exposure, for both species. Accumulation of 109 Cd in the kidneys of the monkeys exposed to 109 Cd Cl 2 was also examined, and autoradiographs of lung sections of these monkeys were also prepared. The results showed that the cadmium accumulated differently in the lungs of the rats and primates. (U.K.)

  13. Few long-term consequences after prolonged maternal separation in female Wistar rats.

    Directory of Open Access Journals (Sweden)

    Stina Lundberg

    Full Text Available Environmental factors during the early-life period are known to have long-term consequences for the adult phenotype. An intimate interplay between genes and environment shape the individual and may affect vulnerability for psychopathology in a sex-dependent manner. A rodent maternal separation model was here used to study the long-term effects of different early-life rearing conditions on adult behavior, HPA axis activity and long-term voluntary alcohol intake in female rats. Litters were subjected to 15 min (MS15 or 360 min (MS360 of daily maternal separation during postnatal day 1-21. In adulthood, the behavioral profiles were investigated using the multivariate concentric square field™ (MCSF test or examined for HPA axis reactivity by cat-odor exposure with subsequent characterization of voluntary alcohol intake and associated changes in HPA axis activity. Adult female MS360 offspring showed mostly no, or only minor, effects on behavior, HPA axis reactivity and long-term alcohol intake relative to MS15. Instead, more pronounced effects were found dependent on changes in the natural hormonal cycle or by the choice of animal supplier. However, changes were revealed in corticosterone load after long-term alcohol access, as females subjected to MS360 had higher concentrations of fecal corticosterone. The present findings are in line with and expand on previous studies on the long-term effects of maternal separation in female rats with regard to behavior, HPA axis activity and voluntary alcohol intake. It can also be a window into further studies detailing how early-life experiences interact with other risk and protective factors to impact the adult phenotype and how possible sex differences play a role.

  14. Effects of Long-Term Ayahuasca Administration on Memory and Anxiety in Rats.

    Science.gov (United States)

    Favaro, Vanessa Manchim; Yonamine, Maurício; Soares, Juliana Carlota Kramer; Oliveira, Maria Gabriela Menezes

    2015-01-01

    Ayahuasca is a hallucinogenic beverage that combines the action of the 5-HT2A/2C agonist N,N-dimethyltryptamine (DMT) from Psychotria viridis with the monoamine oxidase inhibitors (MAOIs) induced by beta-carbonyls from Banisteriopsis caapi. Previous investigations have highlighted the involvement of ayahuasca with the activation of brain regions known to be involved with episodic memory, contextual associations and emotional processing after ayahuasca ingestion. Moreover long term users show better performance in neuropsychological tests when tested in off-drug condition. This study evaluated the effects of long-term administration of ayahuasca on Morris water maze (MWM), fear conditioning and elevated plus maze (EPM) performance in rats. Behavior tests started 48h after the end of treatment. Freeze-dried ayahuasca doses of 120, 240 and 480 mg/kg were used, with water as the control. Long-term administration consisted of a daily oral dose for 30 days by gavage. The behavioral data indicated that long-term ayahuasca administration did not affect the performance of animals in MWM and EPM tasks. However the dose of 120 mg/kg increased the contextual conditioned fear response for both background and foreground fear conditioning. The tone conditioned response was not affected after long-term administration. In addition, the increase in the contextual fear response was maintained during the repeated sessions several weeks after training. Taken together, these data showed that long-term ayahuasca administration in rats can interfere with the contextual association of emotional events, which is in agreement with the fact that the beverage activates brain areas related to these processes.

  15. Effects of Long-Term Ayahuasca Administration on Memory and Anxiety in Rats.

    Directory of Open Access Journals (Sweden)

    Vanessa Manchim Favaro

    Full Text Available Ayahuasca is a hallucinogenic beverage that combines the action of the 5-HT2A/2C agonist N,N-dimethyltryptamine (DMT from Psychotria viridis with the monoamine oxidase inhibitors (MAOIs induced by beta-carbonyls from Banisteriopsis caapi. Previous investigations have highlighted the involvement of ayahuasca with the activation of brain regions known to be involved with episodic memory, contextual associations and emotional processing after ayahuasca ingestion. Moreover long term users show better performance in neuropsychological tests when tested in off-drug condition. This study evaluated the effects of long-term administration of ayahuasca on Morris water maze (MWM, fear conditioning and elevated plus maze (EPM performance in rats. Behavior tests started 48h after the end of treatment. Freeze-dried ayahuasca doses of 120, 240 and 480 mg/kg were used, with water as the control. Long-term administration consisted of a daily oral dose for 30 days by gavage. The behavioral data indicated that long-term ayahuasca administration did not affect the performance of animals in MWM and EPM tasks. However the dose of 120 mg/kg increased the contextual conditioned fear response for both background and foreground fear conditioning. The tone conditioned response was not affected after long-term administration. In addition, the increase in the contextual fear response was maintained during the repeated sessions several weeks after training. Taken together, these data showed that long-term ayahuasca administration in rats can interfere with the contextual association of emotional events, which is in agreement with the fact that the beverage activates brain areas related to these processes.

  16. Caffeine and diphenyl diselenide improve long-term memory impaired in middle-aged rats.

    Science.gov (United States)

    Leite, Marlon R; Marcondes Sari, Marcel Henrique; de Freitas, Mayara L; Oliveira, Lia P; Dalmolin, Laíza; Brandão, Ricardo; Zeni, Gilson

    2014-05-01

    The aim of the present study was to evaluate the effects of diphenyl diselenide (PhSe)2 supplemented diet (10ppm) associated to the administration of caffeine (15mg/kg; i.g.) for 30days on the novel object recognition memory in middle-aged rats. The present findings showed that (PhSe)2-supplemented diet enhanced short-term memory, but not long-term memory, of middle-aged rats in the novel object recognition task. The (PhSe)2 supplemented diet associated with caffeine administration improved long-term memory, but did not alter short-term memory, impaired in middle-aged rats. Daily caffeine administration to middle-aged rats had no effect on the memory tasks. Diet supplemented with (PhSe)2 plus caffeine administration increased the number of crossings and rearings reduced in middle-aged rats. Caffeine administration plus (PhSe)2 diets were effective in increasing the number of rearings and crossings, respectively, in middle-aged rats, [(3)H] glutamate uptake was reduced in hippocampal slices of rats from (PhSe)2 and caffeine plus (PhSe)2 groups. In addition, animals supplemented with (PhSe)2 showed an increase in the pCREB/CREB ratio whereas pAkt/Akt ratio was not modified. These results suggest that the effects of (PhSe)2 on the short-term memory may be related to its ability to decrease the uptake of glutamate, influencing the increase of CREB phosphorylation. (PhSe)2-supplemented diet associated to the administration of caffeine improved long-term memory impaired in middle-aged rats, an effect independent of CREB and Akt phosphorylation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Short- and long-term antidepressant effects of ketamine in a rat chronic unpredictable stress model.

    Science.gov (United States)

    Jiang, Yinghong; Wang, Yiqiang; Sun, Xiaoran; Lian, Bo; Sun, Hongwei; Wang, Gang; Du, Zhongde; Li, Qi; Sun, Lin

    2017-08-01

    This research was aimed to evaluate the behaviors of short- or long-term antidepressant effects of ketamine in rats exposed to chronic unpredictable stress (CUS). Ketamine, a glutamate noncompetitive NMDA receptor antagonist, regulates excitatory amino acid functions, such as anxiety disorders and major depression, and plays an important role in synaptic plasticity and learning and memory. After 42 days of CUS model, male rats received either a single injection of ketamine (10 mg/kg; day 43) or 15 daily injections (days 43-75). The influence of ketamine on behavioral reactivity was assessed 24 hr (short-term) or 7 weeks after ketamine treatment (long-term). Behavioral tests used to assess the effects of these treatments included the sucrose preference (SP), open field (OF), elevated plus maze (EPM), forced swimming (FS), and water maze (WM) to detect anxiety-like behavior (OF and EPM), forced swimming (FS), and water maze (WM). Results: Short-term ketamine administration resulted in increases of body weight gain, higher sensitivity to sucrose, augmented locomotor activity in the OF, more entries into the open arms of the EPM, along increased activity in the FS test; all responses indicative of reductions in depression/despair in anxiety-eliciting situations. No significant differences in these behaviors were obtained under conditions of long-term ketamine administration ( p  > .05). The CUS + Ketamine group showed significantly increased activity as compared with the CUS + Vehicle group for analysis of the long-term effects of ketamine (* p   .05). Taken together these findings demonstrate that a short-term administration of ketamine induced rapid antidepressant-like effects in adult male rats exposed to CUS conditions, effects that were not observed in response to the long-term treatment regime.

  18. LONG TERM EFFECT OF CHROMIUM ON LIPID PROFILE AND SOME HORMONES IN OBESE RATS

    International Nuclear Information System (INIS)

    GABR, S.A.; ABDEL-KHALEK, L.G.; GHAREIB, S.A.

    2008-01-01

    In the present study, the long term effect of chromium picolinate (intake 30 and 60 days) on lipid profile, testosterone, thyroid hormones, corticosterone and insulin was studied in obese male rats. A total of 48 male albino rats were arranged into four equal groups. The rats were distributed into four equal main groups: 1- Normal rats left without any treatment and served as a control group. 2- Normal rats treated with chromium picolinate at a dose of 40 μg/kg/day. 3-Obese rats (after the induction of obesity) using fed high fat diet. 4- Obese rats treated with chromium picolinate. The results obtained showed that normal rats treated with chromium picolinate for 30 or 60 days had no changes in total cholesterol, triglycerides, total lipids, LDL-cholesterol, HDL-cholesterol, triiodothyronine (T 3 ) and thyroxine (T 4 ) when compared with the control group. The testosterone and corticosterone levels were significantly decreased in rats treated with chromium picolinate for 60 days. Insulin level was significantly increased in treated rats for 60 days when compared with the control ones. In obese rats, the lipid profile and corticosterone were significantly increased at 30 and 60 days, while the insulin levels were increased in obese rats fed on high fat diet for 30 days as compared with the control rats. The administration of chromium picolinate to obese rats succeeded to decrease the lipid profile, corticosterone (at 60 days) and insuline (at 30 days) when compared with the obese rats. It could be concluded from this study that chromium picolinate possess beneficial effects in decreasing lipid profile in obese rats. Therefore, additional of chromium picolinate may be useful in obese rats to burn excess body fat and in treatment of hypercholesterolemia. Since it cause decrease in testosterone level, its use was advised to restrict to relatively old age

  19. Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats.

    Science.gov (United States)

    Soto-Moyano, Rubén; Burgos, Héctor; Flores, Francisco; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Pérez, Hernán; Hernández, Paula; Hernández, Alejandro

    2006-10-01

    Melatonin has been shown to inhibit long-term potentiation (LTP) in hippocampal slices of rats. Since LTP may be one of the main mechanisms by which memory traces are encoded and stored in the central nervous system, it is possible that melatonin could modulate cognitive performance by interfering with the cellular and/or molecular mechanisms involved in LTP. We investigated in rats the effects of intraperitoneally-administered melatonin (0.1, 1 and 10 mg/kg), its saline-ethanol solvent, or saline alone, on the acquisition of visuo-spatial memory as well as on the ability of the cerebral cortex to develop LTP in vivo. Visuo-spatial performance was assessed daily in rats, for 10 days, in an 8-arm radial maze, 30 min after they received a single daily dose of melatonin. Visual cortex LTP was determined in sodium pentobarbital anesthetized rats (65 mg/kg i.p.), by potentiating transcallosal evoked responses with a tetanizing train (312 Hz, 500 ms duration) 30 min after administration of a single dose of melatonin. Results showed that melatonin impaired visuo-spatial performance in rats, as revealed by the greater number of errors committed and time spent to solve the task in the radial maze. Melatonin also prevented the induction of neocortical LTP. It is concluded that melatonin, at the doses utilized in this study, could alter some forms of neocortical plasticity involved in short- and long-term visuo-spatial memories in rats.

  20. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  1. Long-term effects of x-ray irradiation on reproductive function in male rats

    International Nuclear Information System (INIS)

    Varga, S.V.; Demchenko, V.N.; Chajkovskaya, L.V.; Reznikov, A.G.

    1994-01-01

    Reproductive function in male rats was studied in 1, 3 and 6 months after x-ray irradiation at doses of 2 and 3 Gy. It was been established that long-term effects of irradiation at a dose of 3 Gy are manifested through decrease in spermatozoa content in the epididymis and reduction of nucleie acid and protein content in the testes. Fertility of male rats under study significantly lowered shortly after irradiation and full recovery of fecundating ability was observed 6 months later. The effect of irradiation with a dose of 2 Gy was less pronounced

  2. Long-term sequelae of perinatal asphyxia in the aging rat

    DEFF Research Database (Denmark)

    Weitzdoerfer, R; Gerstl, N; Hoeger, H

    2002-01-01

    Information on the consequences of perinatal asphyxia (PA) on brain morphology and function in the aging rat is missing although several groups have hypothesized that PA may be responsible for neurological and psychiatric deficits in the adult. We therefore decided to study the effects of PA...... the platform of the MWM was moved to a new location, were observed in asphyxiated rats. We showed that deteriorated cognitive functions accompanied by aberrant expression of hippocampal SERT and impaired relearning are long-term sequelae of perinatal asphyxia, a finding that may form the basis...

  3. The ameliorating effects of long-term electroacupuncture on cardiovascular remodeling in spontaneously hypertensive rats.

    Science.gov (United States)

    Huo, Ze-Jun; Li, Quan; Tian, Gui-Hua; Zhou, Chang-Man; Wei, Xiao-Hong; Pan, Chun-Shui; Yang, Lei; Bai, Yan; Zhang, You-Yi; He, Ke; Wang, Chuan-She; Li, Zhi-Gang; Han, Jing-Yan

    2014-04-01

    The purpose of this study was to investigate the inhibitory effects of long-term electroacupuncture at BaiHui (DU20) and ZuSanLi (ST36) on cardiovascular remodeling in spontaneously hypertensive rats (SHR) and underlying mechanisms. 6-weeks-old SHR or Wistar male rats were randomly, divided into 6 groups: the control group (SHR/Wistar), the non-acupoint electroacupuncture stimulation group (SHR-NAP/Wistar-NAP) and the electroacupuncture stimulation at DU20 and ST36 group (SHR-AP/Wistar-AP), 24 rats in each group. Rats were treated with or without electroacupuncture at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP) was measured once every 2 weeks. By the end of the 8th week, the left ventricular structure and function were assessed by echocardiography. The content of angiotensin II (Ang II), endothelin-1 (ET-1) and nitric oxide (NO) in the plasma was determined using enzyme-linked immunosorbent assay. Histological studies on the heart and the ascending aorta were performed. The expression of angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor (ETAR), eNOS and iNOS in rat myocardium and ascending aorta was investigated by Western blotting. The MAP in SHR increased linearly over the observation period and significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference in MAP was observed in Wistar rats between electroacupuncture and sham control. The aortic wall thickness, cardiac hypertrophy and increased collagen level in SHR were attenuated by long term electroacupuncture. The content of Ang II, ET-1 in the plasma decreased, but the content of NO increased after electroacupuncture stimulation in SHR. Long term electroacupuncture significantly inhibited the expression of AT1R, ETAR and iNOS, whereas increased eNOS expression, in myocardium and ascending aorta of SHR. The long term electroacupuncture stimulation at DU20 and ST36 relieves the increased MAP

  4. Long-term effects of interference on short-term memory performance in the rat.

    Science.gov (United States)

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored

  5. Long-term effects of interference on short-term memory performance in the rat.

    Directory of Open Access Journals (Sweden)

    Mégane Missaire

    Full Text Available A distinction has always been made between long-term and short-term memory (also now called working memory, WM. The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI (HIWM task, or a task using a different pair in each trial expected to induce a low level of PI (LIWM task. Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be

  6. Long term highly saturated fat diet does not induce NASH in Wistar rats

    Directory of Open Access Journals (Sweden)

    Filippi Céline

    2007-02-01

    Full Text Available Abstract Background Understanding of nonalcoholic steatohepatitis (NASH is hampered by the lack of a suitable model. Our aim was to investigate whether long term high saturated-fat feeding would induce NASH in rats. Methods 21 day-old rats fed high fat diets for 14 weeks, with either coconut oil or butter, and were compared with rats feeding a standard diet or a methionine choline-deficient (MCD diet, a non physiological model of NASH. Results MCDD fed rats rapidly lost weight and showed NASH features. Rats fed coconut (86% of saturated fatty acid or butter (51% of saturated fatty acid had an increased caloric intake (+143% and +30%. At the end of the study period, total lipid ingestion in term of percentage of energy intake was higher in both coconut (45% and butter (42% groups than in the standard (7% diet group. No change in body mass was observed as compared with standard rats at the end of the experiment. However, high fat fed rats were fattier with enlarged white and brown adipose tissue (BAT depots, but they showed no liver steatosis and no difference in triglyceride content in hepatocytes, as compared with standard rats. Absence of hepatic lipid accumulation with high fat diets was not related to a higher lipid oxidation by isolated hepatocytes (unchanged ketogenesis and oxygen consumption or hepatic mitochondrial respiration but was rather associated with a rise in BAT uncoupling protein UCP1 (+25–28% vs standard. Conclusion Long term high saturated fat feeding led to increased "peripheral" fat storage and BAT thermogenesis but did not induce hepatic steatosis and NASH.

  7. Long term treadmill exercise performed to chronic social isolated rats regulate anxiety behavior without improving learning.

    Science.gov (United States)

    Cevik, Ozge Selin; Sahin, Leyla; Tamer, Lulufer

    2018-05-01

    The type and duration of exposure to stress is an important influence on emotional and cognitive functions. Learning is the adaptive response of the central nervous system that occurs in hippocampus which affects from environmental factors like exercise. In this study, we investigated effects of long term treadmill exercise on learning and behavior on chronic social isolated rat. Male Wistar rats (n = 32) randomly assigned into four groups: control, exercised, social isolation, social isolation + exercise during postnatal days (PNDs) 21-34. Social isolation protocol was applied during 14 days by placing rat in a cage one by one. Rats were exercised during 5 days, days were chosen randomly for overall 4 weeks (20, 30, 50, 60 min respectively). Finally, learning performance was evaluated by Morris water maze (MWM). Anxiety behavior was evaluated by Open field and elevated plus maze test. At the end of learning and behavior tests, the rats were decapitated to collect blood samples via intracardiac puncture and corticosterone analysis was performed with ELISA method. Animal weights and water consumption did not change significantly but food intake differed among groups. Corticosterone level did not change between groups. The frequency of entering to the target quadrant increased in exercised rat significantly. However, there was no difference in learning and memory in rats. Treadmill exercise reduced anxiety behavior significantly. Taken together these findings may point out that, long term treadmill exercise did not change learning and memory but reduced anxiety level of rat without changing corticosterone level. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Influence of visual experience on developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Dieni, Cristina; Frondaroli, Adele; Pettorossi, Vito Enrico

    2004-11-01

    The influence of visual experience deprivation on changes in synaptic plasticity during postnatal development was studied in the ventral part of the rat medial vestibular nuclei (vMVN). We analysed the differences in the occurrence, expressed as a percentage, of long-term depression (LTD) and long-term potentiation (LTP) induced by high frequency stimulation (HFS) of the primary vestibular afferents in rats reared in the light (LR) and those in the dark (DR). In LR rats, HFS only induced LTD in the early stages of development, but the occurrence of LTD progressively decreased to zero before their eyes opened, while that of LTP enhanced from zero to about 50%. Once the rats' eyes had opened, LTD was no longer inducible while LTP occurrence gradually reached the normal adult value (70%). In DR rats, a similar shift from LTD to LTP was observed before their eyes opened, showing only a slightly slower LTD decay and LTP growth, and the LTD annulment was delayed by 1 day. By contrast, the time courses of LTD and LTP development in DR and LR rats showed remarkable differences following eye opening. In fact, LTD occurrence increased to about 50% in a short period of time and remained high until the adult stage. In addition, the occurrence of LTP slowly decreased to less than 20%. The effect of light-deprivation was reversible, since the exposure of DR rats to light, 5 days after eye opening, caused a sudden disappearance of LTD and a partial recover of LTP occurrence. In addition, we observed that a week of light deprivation in LR adult rats did not affect the normal adult LTP occurrence. These results provide evidence that in a critical period of development visual input plays a crucial role in shaping synaptic plasticity of the vMVN, and suggest that the visual guided shift from LTD to LTP during development may be necessary to refine and consolidate vestibular circuitry.

  9. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    Science.gov (United States)

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus.

    Science.gov (United States)

    Hunter, B E; de Fiebre, C M; Papke, R L; Kem, W R; Meyer, E M

    1994-02-28

    Long-term potentiation (LTP) can be modulated by a number of neurotransmitter receptors including muscarinic and GABAergic receptor types. We have found that a novel nicotinic agonist, 2,4-dimethoxybenzylidene anabaseine (DMXB), facilitated the induction of LTP in the hippocampus in a dose-dependent and mecamylamine-sensitive manner. DMXB displaced high affinity nicotinic [125I]alpha-bungarotoxin and [3H]acetylcholine binding in rat brain. Xenopus oocyte studies demonstrated that DMXB has agonist activity at alpha 7 but not alpha 4/beta 2 nicotinic receptor subtypes. These results indicated that DMXB is a novel nicotinic agonist with apparent specificity for the alpha 7/alpha-bungarotoxin nicotinic receptor subtype and indicate that nicotinic receptor activation is capable of modulating the induction of long-term potentiation.

  11. Biocompatibility of peritoneal dialysis fluids: long-term exposure of nonuremic rats.

    Science.gov (United States)

    Musi, Barbara; Braide, Magnus; Carlsson, Ola; Wieslander, Anders; Albrektsson, Ann; Ketteler, Markus; Westenfeld, Ralf; Floege, Jürgen; Rippe, Bengt

    2004-01-01

    Long-term peritoneal dialysis (PD) leads to structural and functional changes in the peritoneum. The aim of the present study was to investigate the long-term effects of PD fluid components, glucose and glucose degradation products (GDP), and lactate-buffered solution on morphology and transport characteristics in a nonuremic rat model. Rats were subjected to two daily intraperitoneal injections (20 mL/day) during 12 weeks of one of the following: commercial PD fluid (Gambrosol, 4%; Gambro AB, Lund, Sweden), commercial PD fluid with low GDP levels (Gambrosol trio, 4%; Gambro AB), sterile-filtered PD fluid (4%) without GDP, or a glucose-free lactate-buffered PD fluid. Punctured and untreated controls were used. Following exposure, the rats underwent a single 4-hour PD dwell (30 mL, 4% glucose) to determine peritoneal function. Additionally, submesothelial tissue thickness, percentage of high mesothelial cells (perpendicular diameter > 2 microm), vascular density, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF) beta1 mRNA expression were determined. Submesothelial collagen concentration was estimated by van Gieson staining. Submesothelial tissue thickness and vascular density, mediated by VEGF and TGFbeta production, in the diaphragmatic peritoneum increased significantly in rats exposed to any PD fluid. Gambrosol induced a marked increased fibrosis of the hepatic peritoneum. A significant increase in high mesothelial cells was observed in the Gambrosol group only. Net ultrafiltration was reduced in the Gambrosol and in the glucose-free groups compared to untreated controls. Small solute transport was unchanged, but all groups exposed to fluids showed significantly increased lymph flow. Our results show that long-term exposure to different components of PD fluids leads to mesothelial cell damage, submesothelial fibrosis, and neoangiogenesis. Mesothelial cell damage could be connected to the presence of GDP; the other changes were

  12. Aging aggravates long-term renal ischemia-reperfusion injury in a rat model.

    Science.gov (United States)

    Xu, Xianlin; Fan, Min; He, Xiaozhou; Liu, Jipu; Qin, Jiandi; Ye, Jianan

    2014-03-01

    Ischemia-reperfusion injury (IRI) has been considered as the major cause of acute kidney injury and can result in poor long-term graft function. Functional recovery after IRI is impaired in the elderly. In the present study, we aimed to compare kidney morphology, function, oxidative stress, inflammation, and development of renal fibrosis in young and aged rats after renal IRI. Rat models of warm renal IRI were established by clamping left pedicles for 45 min after right nephrectomy, then the clamp was removed, and kidneys were reperfused for up to 12 wk. Biochemical and histologic renal damage were assessed at 12 wk after reperfusion. The immunohistochemical staining of monocyte macrophage antigen-1 (ED-1) and transforming growth factor beta 1 (TGF-β1) and messenger RNA level of TGF-β1 in the kidney were analyzed. Renal IRI caused significant increases of malondialdehyde and 8-hydroxydeoxyguanosine levels and a decrease of superoxide dismutase activity in young and aged IRI rats; however, these changes were more obvious in the aged rats. IRI resulted in severe inflammation and tubulointerstitial fibrosis with decreased creatinine (Cr) clearance and increased histologic damage in aged rats compared with young rats. Moreover, we measured the ratio of Cr clearance between young and aged IRI rats. It demonstrated that aged IRI rats did have poor Cr clearance compared with the young IRI rats. ED-1 and TGF-β1 expression levels in the kidney were significantly higher in aged rats than in young rats after IRI. Aged rats are more susceptible to IRI-induced renal failure, which may associate with the increased oxidative stress, increased histologic damage, and increased inflammation and tubulointerstitial fibrosis. Targeting oxidative stress and inflammatory response should improve the kidney recovery after IRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Cholestasis progression effects on long-term memory in bile duct ligation rats

    Directory of Open Access Journals (Sweden)

    Nasrin Hosseini

    2014-01-01

    Full Text Available Background : There is evidence that cognitive functions are affected by some liver diseases such as cholestasis. Bile duct ligation induces cholestasis as a result of impaired liver function and cognition. This research investigates the effect of cholestasis progression on memory function in bile duct ligation rats. Materials and Methods: Male Wistar rats were randomly divided into five groups, which include: control group for BDL-7, control group for BDL-21, sham group (underwent laparotomy without bile duct ligation, BDL-7 group (7 days after bile duct ligation, and BDL-21 group (21 days after bile duct ligation. Step-through passive avoidance test was employed to examine memory function. In all groups, short-term (7 days after foot shock and long-term memories (21 days after foot shock were assessed. Results: Our results showed that liver function significantly decreased with cholestasis progression (P < 0.01. Also our findings indicated BDL-21 significantly impaired acquisition time (P < 0.05. Memory retrieval impaired 7 (P < 0.05 and 21 days (P < 0.001 after foot shock in BDL-7 and BDL-21 groups, respectively. Conclusion: Based on these findings, liver function altered in cholestasis and memory (short-term and long-term memory impaired with cholestasis progression in bile duct ligation rats. Further studies are needed to better insight the nature of progression of brain damage in cholestatic disease.

  14. [Effect of Dendrobium officinale granule on long-term-alcohol-induced hypertension rats].

    Science.gov (United States)

    Lv, Gui-Yuan; Xia, Chao-Qun; Chen, Su-Hong; Su, Jie; Liu, Xiao-Pang; Li, Bo; Gao, Jian-Li

    2013-10-01

    To observe the effect of Dendrobium officinale granule (DOG) on symptoms, blood pressure and serum biochemical indexes of long-term-alcohol-induced hypertension rats. The alcohol-induced hypertension rat model was established by feeding alcohol drink to normal rats (the alcohol volume fraction increases from 5% to 22%). Since the 4th week, DOG was administered for 32 weeks, once everyday. During the experiment, body weight, kinematic parameters (locomotor activities, grip strength, duration of vertigo) and blood pressures (systolic blood pressure, diastolic blood pressure and mean blood pressure) were detected regularly. On the 28th and 32nd weeks, blood samples were collected to determine serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), uric acid (UA), creatinine (Cr), cholesterol (CH) and triglycerides (TG). (1) Sign: The DOG-administered group showed reduction in the duration of vertigo and increase in appetite, body weight, locomotor activities and grip strength. (2) Blood pressure: The DOG-administered group showed significant decrease in blood pressure since the 8th week. (3) Biochemical indexes: The DOG-administered group showed notable decrease in serum ALT, AST, ALP, Cr, UA, TG level, but without significant change in TC level. The long-term administration of DOG can relieve alcohol-induced hypertension, while alleviating general signs, liver and kidney injuries and abnormal blood fat biochemical indexes.

  15. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    Science.gov (United States)

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  16. The effects of long-term dopaminergic treatment on locomotor behavior in rats.

    Science.gov (United States)

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-12-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole-PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  17. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Science.gov (United States)

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-01-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole—PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions. PMID:26483930

  18. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Directory of Open Access Journals (Sweden)

    Welinton Alessandro Oliveira de Almeida

    2014-12-01

    Full Text Available Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL and drug (Pramipexole—PPX groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  19. Alpha2-adrenoceptor modulation of long-term potentiation elicited in vivo in rat occipital cortex.

    Science.gov (United States)

    Mondaca, Mauricio; Hernández, Alejandro; Pérez, Hernán; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Soto-Moyano, Rubén

    2004-09-24

    Pretreatment with the alpha(2)-adrenoceptor agonist clonidine (31.25, 62.5, or 125 microg/kg, i.p.) dose-dependently reduced long-term potentiation (LTP) elicited in vivo in the occipital cortex of anesthetized rats, whereas pretreatment with the alpha(2)-adrenoceptor antagonist yohimbine (0.133, 0.4, or 1.2 mg/kg, i.p.) increased neocortical LTP in a dose-dependent fashion. These effects could be related to the reported disruptive and facilitatory actions induced on memory formation by pretreatment with alpha(2)-adrenoceptor agonists and antagonists, respectively.

  20. Studies of long-term noopept and afobazol treatment in rats with learned helplessness neurosis.

    Science.gov (United States)

    Uyanaev, A A; Fisenko, V P

    2006-08-01

    Long-lasting effects of new Russian psychotropic drugs Noopept and Afobazol on active avoidance conditioning and formation of learned helplessness neurosis were studied on an original experimental model in rats. Noopept eliminated the manifestations of learned helplessness after long-term (21-day) treatment by increasing the percent of trained animals. Afobazol was low effective in preventing manifestations of learned helplessness, but if used for a long time, it reduced the incidence of learned helplessness development by increasing the percent of untrained animals.

  1. Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats.

    Science.gov (United States)

    Lalanza, Jaume F; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M

    2015-11-05

    Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders.

  2. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a

  3. Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome.

    Directory of Open Access Journals (Sweden)

    Tanja Karen

    Full Text Available BACKGROUND: Propofol is commonly used as sedative in newborns and children. Recent experimental studies led to contradictory results, revealing neurodegenerative or neuroprotective properties of propofol on the developing brain. We investigated neurodevelopmental short- and long-term effects of neonatal propofol treatment. METHODS: 6-day-old Wistar rats (P6, randomised in two groups, received repeated intraperitoneal injections (0, 90, 180 min of 30 mg/kg propofol or normal saline and sacrificed 6, 12 and 24 hrs following the first injection. Cortical and thalamic areas were analysed by Western blot and quantitative real-time PCR (qRT-PCR for expression of apoptotic and neurotrophin-dependent signalling pathways. Long-term effects were assessed by Open-field and Novel-Object-Recognition at P30 and P120. RESULTS: Western blot analyses revealed a transient increase of activated caspase-3 in cortical, and a reduction of active mitogen-activated protein kinases (ERK1/2, AKT in cortical and thalamic areas. qRT-PCR analyses showed a down-regulation of neurotrophic factors (BDNF, NGF, NT-3 in cortical and thalamic regions. Minor impairment in locomotive activity was observed in propofol treated adolescent animals at P30. Memory or anxiety were not impaired at any time point. CONCLUSION: Exposing the neonatal rat brain to propofol induces acute neurotrophic imbalance and neuroapoptosis in a region- and time-specific manner and minor behavioural changes in adolescent animals.

  4. Protective effects of melatonin on long-term administration of fluoxetine in rats.

    Science.gov (United States)

    Khaksar, Majid; Oryan, Ahmad; Sayyari, Mansour; Rezabakhsh, Aysa; Rahbarghazi, Reza

    2017-10-02

    The degree and consequence of tissue injury are highly regarded during long-term exposure to selective antidepressant fluoxetine. Melatonin has been shown to palliate different lesions by scavenging free radicals, but its role in the reduction of the fluoxetine-induced injuries has been little known. Thirty-six mature male Wistar rats were randomly assigned into control and experimental groups. The experimental rats were included as following; 24mg/kg/bw fluoxetine for 4 weeks; 1mg/kg/bw melatonin for 4 weeks; fluoxetine+1-week melatonin, fluoxetine+2-week melatonin and fluoxetine+4-week melatonin. In the current experiment, we investigated weight gain, hematological and biochemical parameters, pathological injuries and oxidative status. We noted the positive effect of melatonin in weight loss of fluoxetine-treated rats (pfluoxetine were reversed by melatonin (pfluoxetine (pfluoxetine in inducing leukopenia, thrombocytopenia and hypochromic and macrocytic anemia which was blunted by melatonin. Both RBCs and platelets indices were also corrected. Rats received melatonin in combination with fluoxetine showed a reduction in the severity of degeneration and inflammatory changes in different tissues, brain, heart, liver, lungs, testes and kidneys as compared to the fluoxetine group. Therefore, melatonin fundamentally reversed the side effects of fluoxetine in the rat model which is comparable to human medicine. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Water Associated Zero Maze: A novel rat test for long term traumatic re-experiencing

    Directory of Open Access Journals (Sweden)

    Gilad eRitov

    2014-01-01

    Full Text Available Often, freezing and startle behaviors in the context of a previously experienced stress are taken as an indication of posttraumatic stress disorder (PTSD-like symptoms in rats. However, PTSD is characterized by large individual variations of symptoms. In order to take into consideration the complex and long term distinctive variations in effects of trauma exposure additional behavioral measures are required.The current study used a novel behavioral test, the Water Associated Zero Maze (WAZM. This test was planned to enable a formation of an association between the context of the maze and an underwater trauma or swim stress in order to examine the impact of exposure to the context which immediately precedes a stressful or a traumatic experience on rat's complex behavior. Rats were exposed to the WAZM and immediately after to an underwater trauma or short swim. One month later rats were re-exposed to the context of the WAZM while their behavior was video recorded. Furthermore, c-Fos expression in the amygdala was measured 90 min after this exposure.The results of the current study indicate that the WAZM can be used to discern behavioral changes measured a long time after the actual traumatic or stressful events. Furthermore, the behavioral changes detected were accompanied by changes of c-Fos expression in the amygdala of exposed rats. We suggest that the WAZM can be used to model traumatic memories re-experiencing in rodent models of human stress-related pathologies such as PTSD.

  6. Effect of modafinil on learning performance and neocortical long-term potentiation in rats.

    Science.gov (United States)

    Burgos, Héctor; Castillo, Amparo; Flores, Osvaldo; Puentes, Gustavo; Morgan, Carlos; Gatica, Arnaldo; Cofré, Christian; Hernández, Alejandro; Laurido, Claudio; Constandil, Luis

    2010-10-30

    Modafinil is a novel wake-promoting agent whose effects on cognitive performance have begun to be addressed at both preclinical and clinical level. The present study was designed to investigate in rats the effects of chronic modafinil administration on cognitive performance by evaluating: (i) working and reference memories in an Olton 4×4 maze, and (ii) learning of a complex operant conditioning task in a Skinner box. In addition, the effect of modafinil on the ability of the rat frontal cortex to develop long-term potentiation (LTP) was also studied. Chronic modafinil did not significantly modify working memory errors but decreased long-term memory errors on the Olton 4×4 maze, meaning that the drug may have a favourable profile on performance of visuo-spatial tasks (typically, a hippocampus-dependent task) when chronically administered. On the other hand, chronic modafinil resulted in a marked decrease of successful responses in a complex operant conditioning learning, which means that repeated administration of the drug influences negatively problem-solving abilities when confronting the rat to a sequencing task (typically, a prefrontal cortex-dependent task). In addition, in vivo electrophysiology showed that modafinil resulted in impaired capacity of the rat prefrontal cortex to develop LTP following tetanization. It is concluded that modafinil can improve the performance of spatial tasks that depend almost exclusively on hippocampal functioning, but not the performance in tasks including a temporal factor where the prefrontal cortex plays an important role. The fact that modafinil together with preventing operant conditioning learning was also able to block LTP induction in the prefrontal cortex, suggests that the drug could interfere some critical component required for LTP can be developed, thereby altering neuroplastic capabilities of the prefrontal cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Influence of long-term drinking alcohol on the cytokines in the rats with endogenous and exogenous lung injury.

    Science.gov (United States)

    Liu, Y D; Liu, W; Liu, Z

    2013-02-01

    Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are syndromes of acute respiratory failure. Exploration of the impacts of long-term drinking alcohol on the cytokines of rats with endogenous and exogenous lung injuries. Through giving the model rats long-term drinking alcohol or water, we acquired the changes of the cytokines in the serum and bronchoalveolar lavage fluid (BALF) of these rats with lung injuries due to different incentives. The partial pressure of oxygen in rats with lung damage after long-term drinking alcohol were significantly lower than those drinking water group (p exogenous lung injury were higher than those of rats with endogenous lung injury (p endogenous lung injury were higher than those with exogenous lung injury (p exogenous lung injury. The expression of TNF-α, IL-6 and IL-10 are different according to the different ways that lead to the acute lung injury.

  8. Long-term contextual memory in infant rats as evidenced by an ethanol conditioned tolerance procedure.

    Science.gov (United States)

    Castelló, Stefanía; Molina, Juan Carlos; Arias, Carlos

    2017-08-14

    Conditioned tolerance can be conceptualized as a particular case of Pavlovian conditioning in which contextual cues play the role of the conditioned stimulus. Although the evidence is contradictory, it is frequently assumed that long-term contextual conditioning in pre-weanling rats is weak or even absent. This hypothesis comes from and is sustained mainly by behavioral studies that explored different contextual effects in 16-18day-old rats using a fear-conditioning paradigm, but their conclusions are stated in terms of an immature (hippocampal-dependent) declarative memory system. The main goal of the present manuscript was based on a recent antecedent from our laboratory, to analyze whether context-dependent tolerance induced by ethanol during the pre-weanling period persists over time. Results showed that the context was able to modulate ethanol-induced tolerance in 2- and 3-week-old rats. Interestingly, contextual conditioned tolerance was stronger (in terms of persistence) during the third than during the second postnatal week. When subjects were tested 8days after training, when the context presumably lost its influence over tolerance, the opposite effect emerged (sensitization). These results are important for the ethanol literature, adding new evidence of long-term retention of ethanol effects acquired during infancy, whilst also showing striking ontogenetic differences in the sensitivity to ethanol between the 2nd and 3rd postnatal weeks. Importantly, contextual information modulates the expression of these ethanol effects even eight days after training, a result that is particularly relevant to the discussion of the ontogeny of contextual memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.

    Science.gov (United States)

    Wang, Xiao-Qin; Wang, Gong-Wu

    2016-03-15

    Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats.

    Directory of Open Access Journals (Sweden)

    Hila Abush

    Full Text Available The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg for two weeks during the late adolescence period (post-natal days 45-60 and tested for behavioral and electrophysiological measures of cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP in the ventral subiculum (vSub-nucleus accumbens (NAc pathway were temporary as they lasted only 24 h or 10 d after withdrawal. However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids. Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments and for cannabinoids to be more favorably considered for clinical use.

  11. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  12. Successful long-term preservation of rat sperm by freeze-drying.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available BACKGROUND: Freeze-drying sperm has been developed as a new preservation method where liquid nitrogen is no longer necessary. An advantage of freeze-drying sperm is that it can be stored at 4 °C and transported at room temperature. Although the successful freeze-drying of sperm has been reported in a number of animals, the possibility of long-term preservation using this method has not yet been studied. METHODOLOGY/PRINCIPAL FINDINGS: Offspring were obtained from oocytes fertilized with rat epididymal sperm freeze-dried using a solution containing 10 mM Tris and 1 mM EDTA adjusted to pH 8.0. Tolerance of testicular sperm to freeze-drying was increased by pre-treatment with diamide. Offspring with normal fertility were obtained from oocytes fertilized with freeze-dried epididymal sperm stored at 4 °C for 5 years. CONCLUSIONS AND SIGNIFICANCE: Sperm with -SS- cross-linking in the thiol-disulfide of their protamine were highly tolerant to freeze-drying, and the fertility of freeze-dried sperm was maintained for 5 years without deterioration. This is the first report to demonstrate the successful freeze-drying of sperm using a new and simple method for long-term preservation.

  13. Streptozotocin diabetes and insulin resistance impairment of ...

    African Journals Online (AJOL)

    ... insulin resistance impairment of spermatogenesis in adult rat testis: Central Vs local ... Summary: Mammalian reproduction is dynamically regulated by the pituitary ... Group 3 > Streptozotocin-insulin treated group; received a single dose IP ...

  14. Exogenous glutamate induces short and long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Pessia, M; Pettorossi, V E

    2001-08-08

    In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.

  15. Long-term reproducibility of in vivo measures of specific binding of radioligands in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, Michael R. E-mail: mkilbour@umich.edu

    2004-07-01

    The long-term reproducibility of measures of in vivo specific binding of radiolabeled forms of (+)-{alpha}-dihydrotetrabenazine (DTBZ) and d-threo-methylphenidate (MPH) in rat brain was examined. All studies were done using a consistent bolus plus infusion protocol and calculation of equilibrium distribution volume ratios (DVR). Over a period of eight years striatal DVR values for DTBZ binding to the vesicular monoamine transporter 2 (VMAT2) in young adult (8-10 wks old) rats showed very good reproducibility (3.62{+-}0.33, N=35). Equivalent values were obtained using either tritiated or carbon-11 labeled DTBZ, and were irrespective of sex of animals. Older animals (78 wks old) showed losses (-45%) of specific binding. Striatal binding of MPH to the dopamine transporter (DAT) showed a similar reproducibility over a five year period (DVR=2.17{+-}0.39, N=52), again irrespective of radionuclide or sex. These studies demonstrate that use of a consistent in vivo technique can provide reliable measures of specific binding of radioligands to high affinity sites in the rat brain.

  16. Effects of long-term administration of pantoprazole on bone mineral density in young male rats.

    Science.gov (United States)

    Matuszewska, Agnieszka; Nowak, Beata; Rzeszutko, Marta; Zduniak, Krzysztof; Szandruk, Marta; Jędrzejuk, Diana; Landwójtowicz, Marcin; Bolanowski, Marek; Pieśniewska, Małgorzata; Kwiatkowska, Joanna; Szeląg, Adam

    2016-10-01

    Epidemiological studies suggest that long-term administration of proton pump inhibitors (PPIs) may decrease bone mineral density (BMD) and increase the risk of osteoporotic fractures. The aim of the study was to assess the influence of pantoprazole on bone metabolism in growing rats. The experiment was carried out on twenty-four young male Wistar rats divided into two groups receiving either pantoprazole at the dose of 3mg/kg or vehicle for 12 weeks. Femoral bone mineral density (BMD) and bone histomorphometry were assessed. Serum total calcium, inorganic phosphate and markers of bone turnover were measured. In pantoprazole-treated rats a decreased BMD was detected (0.2618±0.0133g/cm(2)vs. 0.2715±0.0073g/cm(2), p<0.05). Bone histomorphometry revealed a decrease in growth plate thickness (G.Pl.RTh.) (161.0±27.8μm vs. 195.0±20.8, p<0.05) in pantoprazole-treated animals. Serum total calcium level and osteocalcin concentrations were decreased in the pantoprazole-treated group (9.62±0.55mg/dl vs. 10.15±0.38mg/dl, p<0.05 and 242.7±44.4pg/ml vs. 342.5±123.3pg/ml, p<0.05, respectively). We observed that PPIs might have a negative impact on bone formation in growing rats mainly due to their inhibitory effects on the gastric proton pump, with probable deterioration of calcium absorption and decrease in growth plate thickness. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  17. Lipidomic changes in rat liver after long-term exposure to ethanol

    International Nuclear Information System (INIS)

    Fernando, Harshica; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Kaphalia, Bhupendra S.; Shakeel Ansari, G.A.

    2011-01-01

    Alcoholic liver disease (ALD) is a serious health problem with significant morbidity and mortality. In this study we examined the progression of ALD along with lipidomic changes in rats fed ethanol for 2 and 3 months to understand the mechanism, and identify possible biomarkers. Male Fischer 344 rats were fed 5% ethanol or caloric equivalent of maltose-dextrin in a Lieber-DeCarli diet. Animals were killed at the end of 2 and 3 months and plasma and livers were collected. Portions of the liver were fixed for histological and immunohistological studies. Plasma and the liver lipids were extracted and analyzed by nuclear magnetic resonance (NMR) spectroscopy. A time dependent fatty infiltration was observed in the livers of ethanol-fed rats. Mild inflammation and oxidative stress were observed in some ethanol-fed rats at 3 months. The multivariate and principal component analysis of proton and phosphorus NMR spectroscopy data of extracted lipids from the plasma and livers showed segregation of ethanol-fed groups from the pair-fed controls. Significant hepatic lipids that were increased by ethanol exposure included fatty acids and triglycerides, whereas phosphatidylcholine (PC) decreased. However, both free fatty acids and PC decreased in the plasma. In liver lipids unsaturation of fatty acyl chains increased, contrary to plasma, where it decreased. Our studies confirm that over-accumulation of lipids in ethanol-induced liver steatosis accompanied by mild inflammation on long duration of ethanol exposure. Identified metabolic profile using NMR lipidomics could be further explored to establish biomarker signatures representing the etiopathogenesis, progression and/or severity of ALD. - Highlights: → Long term exposure to ethanol was studied. → A nuclear magnetic resonance (NMR) spectroscopy based lipidomic approach was used. → We examined the clustering pattern of the NMR data with principal component analysis. → NMR data were compared with histology and

  18. Sauroxine reduces memory retention in rats and impairs hippocampal long-term potentiation generation.

    Science.gov (United States)

    Vallejo, Mariana; Carlini, Valeria; Gabach, Laura; Ortega, M G; L Cabrera, José; de Barioglio, Susana Rubiales; Pérez, Mariela; Agnese, Alicia M

    2017-07-01

    In the present paper it was investigated the role of sauroxine, an alkaloid of Phlegmariurus saururus, as a modulator of some types of learning and memory, considering the potential nootropic properties previously reported for the alkaloid extract and the main alkaloid sauroine. Sauroxine was isolated by means of an alkaline extraction, purified by several chromatographic techniques, and assayed in electrophysiological experiments on rat hippocampus slices, tending towards the elicitation of the long-term potentiation (LTP) phenomena. It was also studied the effects of intrahippocampal administration of sauroxine on memory retention in vivo using a Step-down test. Being the bio distribution of a drug an important parameter to be considered, the concentration of sauroxine in rat brain was determined by GLC-MS. Sauroxine blocked LTP generation at both doses used, 3.65 and 3.610 -2 μM. In the behavioral test, the animals injected with this alkaloid (3.6510 -3 nmol) exhibited a significant decrease on memory retention compared with control animals. It was also showed that sauroxine reached the brain (3.435μg/g tissue), after an intraperitoneal injection, displaying its ability to cross the blood-brain barrier. Thus, sauroxine demonstrated to exert an inhibition on these mnemonic phenomena. The effect here established for 1 is defeated by other constituents according to the excellent results obtained for P. saururus alkaloid extract as well as for the isolated alkaloid sauroine. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Long-term effects of ionizing radiation on the rat spinal cord: intramedullary connective tissue formation

    International Nuclear Information System (INIS)

    Gilmore, S.A.

    1973-01-01

    Light microscopy was used to evaluate the effects of ionizing radiation on spinal cords of rats irradiated when three days of age and killed at intervals up to 28 months after irradiation. The amounts of x-rays administered (2,000 R; 1,000 R; 500 R) were those which had been demonstrated by short-term studies to cause either no histopathologic changes or only transient, reparable alterations. The most significant and previously unreported finding was the development, usually restricted to the gray matter, of elongated, spindle-shaped cells that produce prodigious amounts of fibers clearly demonstrated by the Wilder's reticular stain. In cases where extensive cellular development had occurred, these cells were oriented around the perikarya of the large ventral motor neurons and formed a well-developed capsule of reticular fibers. This phenomenon occurred more frequently in rats receiving the greater amounts of radiation and killed 12 months or more after exposure. The other observation of interest was the development of lesser amounts of connective tissue-producing cells in the dorsal gray matter, where these cells were seen initially in the substantia gelatinosa. The significance of these changes is discussed in relation to previously reported long-term effects of ionizing radiation on the central nervous system

  20. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex.

    Science.gov (United States)

    Alonso, Mariana; Bekinschtein, Pedro; Cammarota, Martín; Vianna, Monica R M; Izquierdo, Iván; Medina, Jorge H

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory consolidation in the neocortex. Brain-derived neurotrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in hippocampal and cortical neurons. We have recently demonstrated that endogenous BDNF in the hippocampus is involved in memory formation. Here we examined the role of BDNF in the parietal cortex (PCx) in short-term (STM) and long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the PCx impaired both STM and LTM retention scores and decreased the phosphorylation state of cAMP response element-binding protein (CREB). In contrast, intracortical administration of recombinant human BDNF facilitated LTM and increased CREB activation. Moreover, inhibitory avoidance training is associated with a rapid and transient increase in phospho-CREB/total CREB ratio in the PCx. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of inhibitory avoidance learning, possibly involving CREB activation-dependent mechanisms. The present data support the idea that early sensory areas constitute important components of the networks subserving memory formation and that information processing in neocortex plays an important role in memory formation.

  1. Long-Term Low Intensity Physical Exercise Attenuates Heart Failure Development in Aging Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Luana U. Pagan

    2015-04-01

    Full Text Available Background: Physical exercise is a strategy to control hypertension and attenuate pressure overload-induced cardiac remodeling. The influence of exercise on cardiac remodeling during uncontrolled hypertension is not established. We evaluated the effects of a long-term low intensity aerobic exercise protocol on heart failure (HF development and cardiac remodeling in aging spontaneously hypertensive rats (SHR. Methods: Sixteen month old SHR (n=50 and normotensive Wistar-Kyoto (WKY, n=35 rats were divided into sedentary (SED and exercised (EX groups. Rats exercised in treadmill at 12 m/min, 30 min/day, 5 days/week, for four months. The frequency of HF features was evaluated at euthanasia. Statistical analyses: ANOVA and Tukey or Mann-Whitney, and Goodman test. Results: Despite slightly higher systolic blood pressure, SHR-EX had better functional capacity and lower HF frequency than SHR-SED. Echocardiography and tissue Doppler imaging showed no differences between SHR groups. In SHR-EX, however, left ventricular (LV systolic diameter, larger in SHR-SED than WKY-SED, and endocardial fractional shortening, lower in SHR-SED than WKY-SED, had values between those in WKY-EX and SHR-SED not differing from either group. Myocardial function, assessed in LV papillary muscles, showed improvement in SHR-EX over SHR-SED and WKY-EX. LV myocardial collagen fraction and type I and III collagen gene expression were increased in SHR groups. Myocardial hydroxyproline concentration was lower in SHR-EX than SHR-SED. Lysyl oxidase gene expression was higher in SHR-SED than WKY-SED. Conclusion: Exercise improves functional capacity and reduces decompensated HF in aging SHR independent of elevated arterial pressure. Improvement in functional status is combined with attenuation of LV and myocardial dysfunction and fibrosis.

  2. Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats

    Science.gov (United States)

    Satriotomo, Irawan; Grebe, Ashley M.

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model (SOD1G93A), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: Gq-protein-coupled 5-HT2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: Gs-protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male SOD1G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1G93A rats (∼30% survival; p phrenic motor neurons (p phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. PMID:28500219

  3. Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Allen, Latoya L; Grebe, Ashley M; Mitchell, Gordon S

    2017-06-14

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model ( SOD1 G93A ), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1 G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: G q -protein-coupled 5-HT 2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: G s -protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male S OD1 G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1 G93A rats (∼30% survival; p phrenic motor neurons ( p phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. Copyright © 2017 the authors 0270-6474/17/375834-12$15.00/0.

  4. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats.

    Science.gov (United States)

    Zhang, Lifeng; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Wu, Shengwen; Liu, Qiufang; Chen, Rong; Bai, Chunyu; Zhang, Di; Zheng, Linlin; Du, Yanqiu; Cai, Yuan

    2014-09-02

    Epidemiological investigations have indicated that aluminium (Al) is an important environmental neurotoxicant that may be involved in the aetiology of the cognitive dysfunction associated with neurodegenerative diseases. Additionally, exposure to Al is known to cause neurobehavioural abnormalities in animals. Previous studies demonstrated that Al impaired early-phase long-term potentiation (E-LTP) in vivo and in vitro. Our previous research revealed that Al could impair long-term memory via the impairment of late-phase long-term potentiation (L-LTP) in vivo. However, the exact mechanism by which Al impairs long-term memory has been poorly studied thus far. This study was designed not only to observe the effects of subchronic Al treatment on long-term memory and hippocampal ultrastructure but also to explore a possible underlying mechanism (involving the cAMP-PKA-CREB signalling pathway) in the hippocampus of rats.. Pregnant Wistar rats were assigned to four groups. Neonatal rats were exposed to Al by parental lactation for 3 weeks and then fed with distilled water containing 0, 0.2%, 0.4% or 0.6% Al chloride (AlCl3) for 3 postnatal months. The levels of Al in the blood and hippocampus were quantified by atomic absorption spectrophotometry. The shuttle-box test was performed to detect long-term memory. The hippocampus was collected for ultrastructure observation, and the level of cAMP-PKA-CREB signalling was examined. The results showed that the Al concentrations in the blood and hippocampus of Al-treated rats were higher than those of the control rats. Al may impair the long-term memory of rats. Hippocampal cAMP, cPKA, pCREB, BDNF and c-jun expression decreased significantly, and the neuronal and synaptic ultrastructure exhibited pathological changes after Al treatment. These results indicated that Al may induce long-term memory damage in rats by inhibiting cAMP-PKA-CREB signalling and altering the synaptic and neuronal ultrastructure in the hippocampus. Copyright

  5. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats

    International Nuclear Information System (INIS)

    Zhang, Lifeng; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Wu, Shengwen; Liu, Qiufang; Chen, Rong; Bai, Chunyu; Zhang, Di; Zheng, Linlin; Du, Yanqiu; Cai, Yuan

    2014-01-01

    Epidemiological investigations have indicated that aluminium (Al) is an important environmental neurotoxicant that may be involved in the aetiology of the cognitive dysfunction associated with neurodegenerative diseases. Additionally, exposure to Al is known to cause neurobehavioural abnormalities in animals. Previous studies demonstrated that Al impaired early-phase long-term potentiation (E-LTP) in vivo and in vitro. Our previous research revealed that Al could impair long-term memory via the impairment of late-phase long-term potentiation (L-LTP) in vivo. However, the exact mechanism by which Al impairs long-term memory has been poorly studied thus far. This study was designed not only to observe the effects of subchronic Al treatment on long-term memory and hippocampal ultrastructure but also to explore a possible underlying mechanism (involving the cAMP-PKA-CREB signalling pathway) in the hippocampus of rats.. Pregnant Wistar rats were assigned to four groups. Neonatal rats were exposed to Al by parental lactation for 3 weeks and then fed with distilled water containing 0, 0.2%, 0.4% or 0.6% Al chloride (AlCl 3 ) for 3 postnatal months. The levels of Al in the blood and hippocampus were quantified by atomic absorption spectrophotometry. The shuttle–box test was performed to detect long-term memory. The hippocampus was collected for ultrastructure observation, and the level of cAMP-PKA-CREB signalling was examined. The results showed that the Al concentrations in the blood and hippocampus of Al-treated rats were higher than those of the control rats. Al may impair the long-term memory of rats. Hippocampal cAMP, cPKA, pCREB, BDNF and c-jun expression decreased significantly, and the neuronal and synaptic ultrastructure exhibited pathological changes after Al treatment. These results indicated that Al may induce long-term memory damage in rats by inhibiting cAMP-PKA-CREB signalling and altering the synaptic and neuronal ultrastructure in the hippocampus

  6. Study of Spermatogenesis in Wistar Adult Rats Administrated to Long Term of Ruta Graveolens

    Directory of Open Access Journals (Sweden)

    Bazrafkan

    2014-07-01

    Full Text Available Background In Iranian folk medicine Ruta graveolens has been used for female and male contraceptive. There are few studies about the effect of this plant on spermatogenesis. Objectives In this study the effect of long term administration of aqueous extract of RG on spermatogenesis has been investigated. Materials and Methods Animals were allocated into 1 control: which did not receive anything, 2 vehicle which received only normal saline and 3 experiment: which received Ruta extract (300 mg/kg administered by gavage once a day for 100 days. A day after last gavage all the individuals were killed by euthanasia. The right testes and epididymis were extruded. The sperm motility was assessed and classified as progressive, no progressive. Results There was a significant decrease in the number of spermatogonia (P 0.05.The fertilization capacity of sperm of rats in experimental group was significantly lower than other groups (P > 0.05. Conclusions It is concluded that the aqueous extract of Ruta graveolens diminishes the reproductive system activity and might be a useful substance for birth control process.

  7. Long-term toxicity of [177Lu-DOTA0,Tyr3]octreotate in rats

    International Nuclear Information System (INIS)

    Rolleman, Edgar J.; Krenning, Eric P.; Bernard, Bert F.; Visser, Monique de; Bijster, Magda; Jong, Marion de; Visser, Theo J.; Vermeij, Marcel; Lindemans, Jan

    2007-01-01

    Studies on peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues have shown promising results with regard to tumour control. The efficacy of PRRT is limited by uptake and retention in the proximal tubules of the kidney, which might lead to radiation nephropathy. We investigated the long-term renal toxicity after different doses of [ 177 Lu-DOTA 0 ,Tyr 3 ]octreotate and the effects of dose fractionation and lysine co-injection in two tumour-bearing rat models. Significant renal toxicity was detected beyond 100 days after start of treatment as shown by elevated serum creatinine and proteinuria. Microscopically, tubules were strongly dilated with flat epithelium, containing protein cylinders. Creatinine levels rose significantly after 555 MBq [ 177 Lu-DOTA 0 ,Tyr 3 ]octreotate, but were significantly lower after 278 MBq (single injection) or two weekly doses of 278 MBq. Renal damage scores were maximal after 555 MBq and significantly lower in the 278 and 2 x 278 MBq groups. Three doses of 185 MBq [ 177 Lu-DOTA 0 ,Tyr 3 ]octreotate with intervals of a day, a week or a month significantly influenced serum creatinine (469±18, 134±70 and 65±15 μmol/l, respectively; p 177 Lu-DOTA 0 ,Tyr 3 ]octreotate resulted in severe renal damage in rats as indicated by proteinuria, elevated serum creatinine and histological damage. This damage was dose dependent and became overt between 100 and 200 days after treatment. Dose fractionation had significant beneficial effects on kidney function. Also, lysine co-injection successfully prevented functional damage. (orig.)

  8. Long-term impairment of social memory in the rat after social defeat is not restored by desglycinamide-vasopressin

    NARCIS (Netherlands)

    Reijmers, L.G.J.E.; Hoekstra, K.; Burbach, J.P.H.; Ree, van J.M.; Spruijt, B.M.

    2001-01-01

    Repeated social defeat followed by individual housing caused a long-term impairment of social memory in male rats. Social memory, as assessed in the social discrimination test using an intertrial interval of 3 min, was impaired for at least 8 weeks after the social defeat experience. Since social

  9. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats.

    Science.gov (United States)

    Schuette, Sven R M; Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger; Hobson, Scott

    2016-04-13

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal

  10. Long-Term Type 1 Diabetes Enhances In-Stent Restenosis after Aortic Stenting in Diabetes-Prone BB Rats

    Directory of Open Access Journals (Sweden)

    Geanina Onuta

    2011-01-01

    Full Text Available Type 1 diabetic patients have increased risk of developing in-stent restenosis following endovascular stenting. Underlying pathogenetic mechanisms are not fully understood partly due to the lack of a relevant animal model to study the effect(s of long-term autoimmune diabetes on development of in-stent restenosis. We here describe the development of in-stent restenosis in long-term (~7 months spontaneously diabetic and age-matched, thymectomized, nondiabetic Diabetes Prone BioBreeding (BBDP rats (n=6-7 in each group. Diabetes was suboptimally treated with insulin and was characterized by significant hyperglycaemia, polyuria, proteinuria, and increased HbA1c levels. Stented abdominal aortas were harvested 28 days after stenting. Computerized morphometric analysis revealed significantly increased neointima formation in long-term diabetic rats compared with nondiabetic controls. In conclusion, long-term autoimmune diabetes in BBDP rats enhances in-stent restenosis. This model can be used to study the underlying pathogenetic mechanisms of diabetes-enhanced in-stent restenosis as well as to test new therapeutic modalities.

  11. Effects of postnatal malnutrition and senescence on learning, long-term memory, and extinction in the rat.

    Science.gov (United States)

    Martínez, Yvonne; Díaz-Cintra, Sofía; León-Jacinto, Uriel; Aguilar-Vázquez, Azucena; Medina, Andrea C; Quirarte, Gina L; Prado-Alcalá, Roberto A

    2009-10-12

    There is a wealth of information indicating that the hippocampal formation is important for learning and memory consolidation. The hippocampus is very sensitive to ageing and developmentally stressful factors such as prenatal malnutrition, which produces anatomical alterations of hippocampal pyramidal cells as well as impaired spatial learning. On the other hand, there are no reports about differential effects of postnatal malnutrition, installed at birth and maintained all through life in young and aged rats, on learning and memory of active avoidance, a task with an important procedural component. We now report that learning and long-term retention of this task were impaired in young malnourished animals, but not in young control, senile control, and senile malnourished Sprague-Dawley rats; young and senile rats were 90 and 660 days of age, respectively. Extinction tests showed, however, that long-term memory of the malnourished groups and senile control animals is impaired as compared with the young control animals. These data strongly suggest that the learning and long-term retention impairments seen in the young animals were due to postnatal malnutrition; in the senile groups, this cognitive alteration did not occur, probably because ageing itself is an important factor that enables the brain to engage in compensatory mechanisms that reduce the effects of malnutrition. Nonetheless, ageing and malnutrition, conditions known to produce anatomic and functional hippocampal alterations, impede the maintenance of long-term memory, as seen during the extinction test.

  12. Early-life exposure to fibroblast growth factor-2 facilitates context-dependent long-term memory in developing rats.

    Science.gov (United States)

    Graham, Bronwyn M; Richardson, Rick

    2010-06-01

    Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.

  13. Effect of zinc supplementation of pregnant rats on short-term and long-term memory of their offspring

    International Nuclear Information System (INIS)

    Ali, M.A.; Ghotbeddin, Z.; Parham, G.H.

    2007-01-01

    To see the dose dependent effects of zinc chloride on the short-term and long-term memory in a shuttle box (rats). Six pair adult wistar rats were taken for this experiment. One group of pregnant rats received a daily oral dose of 20 mg/kg Zn as zinc chloride and the remaining groups received a daily oral dose of (30, 50, 70,100 mg/kg) zinc chloride for two weeks by gavage. One month after birth, a shuttle box was used to test short-term and long-term memory. Two criteria were considered to behavioral test, including latency in entering dark chamber and time spent in the dark chamber. This experiment showed that oral administration of ZnCl/sub 2/ with (20, 30, 50 mg/kg/day) doses after 2 weeks at the stage of pregnancy, can improve the working memory of their offspring (p<0.05). Where as ZnCl/sub 2/ with 30 mg/kg/day dose has been more effective than other doses (p<0.001). But rat which received ZnCl/sub 2/ with 100 mg/kg/day at the stage of pregnancy, has shown significant impairment in working (short-term) memory of their offspring (p<0.05) and there was no significant difference in reference (long-term) memory 3 for any of groups. This study has demonstrated that zinc chloride consumption with 30 mg/kg/day dose for two weeks at the stage of pregnancy in rats, has positive effect on short-term memory on their offspring. But consumption of enhanced zinc 100 mg/kg/day in pregnant rats can cause short-term memory impairment. On the other hand, zinc supplementation such as zinc chloride has no effect on long-term memory. (author)

  14. Influence of long-term treatment of the rat with clebopride on the morphology of the mammary gland.

    Science.gov (United States)

    de Lima, T C; Morato, G S; Loch, S; Tames, D R

    1990-01-01

    The substituted benzamides or orthopramides are used to treat gastrointestinal and psychotic disorders. The orthopramide clebopride, a potent dopaminergic antagonist, blocks emesis in dogs and stereotyped behavior in rodents. Since the release of prolactin is inhibited by dopamine, antidopaminergic drugs may be useful to increase lactation in nursing mothers. The present work examines the morphological and histological alterations produced by long-term treatment of puerperal and virgin female rats with clebopride. Clebopride induced significant hyperplasia of parenchymal secretory units and stimulated milk secretion in both groups of rats. However, only in virgin rats was mammary weight significantly increased.

  15. Involvement of melatonin metabolites in the long-term inhibitory effect of the hormone on rat spinal nociceptive transmission.

    Science.gov (United States)

    Mondaca, Mauricio; Hernández, Alejandro; Valladares, Luis; Sierralta, Walter; Noseda, Rodrigo; Soto-Moyano, Rubén

    2004-02-01

    There is evidence that melatonin and its metabolites could bind to nuclear sites in neurones, suggesting that this hormone is able to exert long-term functional effects in the central nervous system via genomic mechanisms. This study was designed to investigate (i) whether systemically administered melatonin can exert long-term effects on spinal cord windup activity, and (ii) whether blockade of melatonin degradation with eserine could prevent this effect. Rats receiving melatonin (10 mg/kg ip), the same dose of melatonin plus eserine (0.5 mg/kg ip), or saline were studied. Seven days after administration of the drugs or saline, spinal windup of rats was assessed in a C-fiber reflex response paradigm. Results show that rats receiving melatonin exhibited a reduction in spinal windup activity. This was not observed in the animals receiving melatonin plus eserine or saline, suggesting a role for melatonin metabolites in long-term changes of nociceptive transmission in the rat spinal cord.

  16. Long-term effect of ropivacaine nanoparticles for sciatic nerve block on postoperative pain in rats

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    change was found in the major organs after Rop-PELA administration at 7 days.Conclusion: Rop-PELA provides an effective analgesia for nerve block over 3 days after single administration, and the analgesic mechanism might be mediated by the regulation of spinal c-FOS expression. However, its potential long-term tissue toxicity needs to be further investigated. Keywords: polyethylene glycol-co-polylactic acid, nanoparticle, ropivacaine, sciatic nerve block, postoperative pain

  17. Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia.

    Science.gov (United States)

    Youssef, F F; Addae, J I; McRae, A; Stone, T W

    2001-07-13

    We have previously shown that long-term potentiation (LTP) decreases the sensitivity of glutamate receptors in the rat hippocampal CA1 region to exogenously applied glutamate agonists. Since the pathophysiology of hypoxia/ischemia involves increased concentration of endogenous glutamate, we tested the hypothesis that LTP could reduce the effects of hypoxia in the hippocampal slice. The effects of LTP on hypoxia were measured by the changes in population spike potentials (PS) or field excitatory post-synaptic potentials (fepsps). Hypoxia was induced by perfusing the slice with (i) artificial CSF which had been pre-gassed with 95%N2/5% CO2; (ii) artificial CSF which had not been pre-gassed with 95% O2/5% CO2; or (iii) an oxygen-glucose deprived (OGD) medium which was similar to (ii) and in which the glucose had been replaced with sucrose. Exposure of a slice to a hypoxic medium for 1.5-3.0 min led to a decrease in the PS or fepsps; the potentials recovered to control levels within 3-5 min. Repeat exposure, 45 min later, of the same slice to the same hypoxic medium for the same duration as the first exposure caused a reduction in the potentials again; there were no significant differences between the degree of reduction caused by the first or second exposure for all three types of hypoxic media (P>0.05; paired t-test). In some of the slices, two episodes of LTP were induced 25 and 35 min after the first hypoxic exposure; this caused inhibition of reduction in potentials caused by the second hypoxic insult which was given at 45 min after the first; the differences in reduction in potentials were highly significant for all the hypoxic media used (Peffects of LTP were not prevented by cyclothiazide or inhibitors of NO synthetase compounds that have been shown to be effective in blocking the effects of LTP on the actions of exogenously applied AMPA and NMDA, respectively. The neuroprotective effects of LTP were similar to those of propentofylline, a known neuroprotective

  18. Cardiovascular Autonomic Responses in the VCD Rat Model of Menopause: Effects of Short- and Long-Term Ovarian Failure.

    Science.gov (United States)

    Huber, Domitila A; Bazilio, Darlan; Lorenzon, Flaviano; Sehnem, Sibele; Pacheco, Lucas; Anselmo-Franci, Janete A; Lima, Fernanda B

    2017-01-01

    After menopause, hypertension elevates the risk of cardiac diseases, one of the major causes of women's morbidity. The gradual depletion of ovarian follicles in rats, induced by 4-vinylcyclohexene diepoxide (VCD), is a model for studying the physiology of menopause. 4-Vinylcyclohexene diepoxide treatment leads to early ovarian failure (OF) and a hormonal profile comparable to menopause in humans. We have hypothesized that OF can compromise the balance between sympathetic and parasympathetic tones of the cardiovascular system, shifting toward dominance of the former. We aimed to study the autonomic modulation of heart and blood vessels and the cardiovascular reflexes in rats presenting short-term (80 days) or long-term (180 days) OF induced by VCD. Twenty-eight-day-old Wistar rats were submitted to VCD treatment (160 mg/kg, intraperitoneally) or vehicle (control) for 15 consecutive days and experiments were conducted at 80 or 180 days after the onset of treatment. Long-term OF led to an increase in the sympathetic activity to blood vessels and an impairment in the baroreflex control of the heart, evoked by physiological changes in arterial pressure. Despite that, long-term OF did not cause hypertension during the 180 days of exposure. Short-term OF did not cause any deleterious effect on the cardiovascular parameters analyzed. These data indicate that long-term OF does not disrupt the maintenance of arterial pressure homeostasis in rats but worsens the autonomic cardiovascular control. In turn, this can lead to cardiovascular complications, especially when associated with the aging process seen during human menopause.

  19. Long-term consequences of chronic fluoxetine exposure on the expression of myelination-related genes in the rat hippocampus

    Science.gov (United States)

    Kroeze, Y; Peeters, D; Boulle, F; van den Hove, D L A; van Bokhoven, H; Zhou, H; Homberg, J R

    2015-01-01

    The selective serotonin reuptake inhibitor (SSRI) fluoxetine is widely prescribed for the treatment of symptoms related to a variety of psychiatric disorders. After chronic SSRI treatment, some symptoms remediate on the long term, but the underlying mechanisms are not yet well understood. Here we studied the long-term consequences (40 days after treatment) of chronic fluoxetine exposure on genome-wide gene expression. During the treatment period, we measured body weight; and 1 week after treatment, cessation behavior in an SSRI-sensitive anxiety test was assessed. Gene expression was assessed in hippocampal tissue of adult rats using transcriptome analysis and several differentially expressed genes were validated in independent samples. Gene ontology analysis showed that upregulated genes induced by chronic fluoxetine exposure were significantly enriched for genes involved in myelination. We also investigated the expression of myelination-related genes in adult rats exposed to fluoxetine at early life and found two myelination-related genes (Transferrin (Tf) and Ciliary neurotrophic factor (Cntf)) that were downregulated by chronic fluoxetine exposure. Cntf, a neurotrophic factor involved in myelination, showed regulation in opposite direction in the adult versus neonatally fluoxetine-exposed groups. Expression of myelination-related genes correlated negatively with anxiety-like behavior in both adult and neonatally fluoxetine-exposed rats. In conclusion, our data reveal that chronic fluoxetine exposure causes on the long-term changes in expression of genes involved in myelination, a process that shapes brain connectivity and contributes to symptoms of psychiatric disorders. PMID:26393488

  20. Endogenous BDNF Is Required for Long-Term Memory Formation in the Rat Parietal Cortex

    Science.gov (United States)

    Alonso, Mariana; Bekinschtein, Pedro, Cammarota, Martin; Vianna, Monica R. M.; Izquierdo, Ivan; Medina, Jorge H.

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory…

  1. Few long-term consequences after prolonged maternal separation in female Wistar rats

    DEFF Research Database (Denmark)

    Lundberg, Stina; Abelson, Klas S P; Nylander, Ingrid

    2017-01-01

    showed mostly no, or only minor, effects on behavior, HPA axis reactivity and long-term alcohol intake relative to MS15. Instead, more pronounced effects were found dependent on changes in the natural hormonal cycle or by the choice of animal supplier. However, changes were revealed in corticosterone...

  2. An empirical analysis of the German long-term interest rat

    NARCIS (Netherlands)

    den Butter, F.A.G.; Jansen, P.W.

    2004-01-01

    The short run and long run influences of the main determinants of the German long-term interest rate are estimated using quarterly data for the period 1982-2001. A major reason for the focus on the German interest rate is that this rate, and hence its determinants, will be dominant in explaining the

  3. Long-term effect of medium-chain triglyceride on hepatic enzymes catalyzing lipogenesis and cholesterogenesis in rats

    International Nuclear Information System (INIS)

    Takase, Sachiko; Morimoto, Ayami; Nakanishi, Mayumi; Muto, Yasutoshi.

    1977-01-01

    This study was conducted to investigate the long-term effect of dietary medium-chain triglyceride (MCT) as compared with that of corn oil feeding on lipid metabolism in rats. Both serum cholesterol and triglyceride levels in MCT-fed rats showed significant decrease during the experimental period of eight weeks, although liver cholesterol and triglyceride contents were not distinguishable between the two groups. Significant elevation of the activity of lipogenic enzymes, such as fatty acid synthetase (FAS) and malic enzyme (ME) of the liver, was observed in MCT-fed rats without any fat accumulation of the liver (fatty liver). The increase of lipogenic enzyme activity was accompanied by a significant reduction of essential fatty acids (EFA) such as 18:2 (ωsigma) and 20:4 (ωsigma) in total liver lipid. In contrast, hepatic β-hydroxy-β-methylglutaryl CoA(HMG-CoA) reductase activity was significantly decreased in MCT-fed rats, that would play an important role in achieving hypocholesterolemia. From these results obtained in a long-term experiment, it is concluded that exogenous MCT depresses the key enzyme catalyzing cholesterol synthesis with a concomitant elevation of lipogenic enzyme activity in the rat liver. (auth.)

  4. Acute and delayed deferoxamine treatment attenuates long-term sequelae after germinal matrix hemorrhage in neonatal rats.

    Science.gov (United States)

    Klebe, Damon; Krafft, Paul R; Hoffmann, Clotilde; Lekic, Tim; Flores, Jerry J; Rolland, William; Zhang, John H

    2014-08-01

    This study investigated if acute and delayed deferoxamine treatment attenuates long-term sequelae after germinal matrix hemorrhage (GMH). Bacterial collagenase (0.3 U) was infused intraparenchymally into the right hemispheric ganglionic eminence in P7 rat pups to induce GMH. GMH animals received either deferoxamine or vehicle twice a day for 7 consecutive days. Deferoxamine administration was initiated at either 1 hour or 72 hours post-GMH. Long-term neurocognitive deficits and motor coordination were assessed using Morris water maze, rotarod, and foot fault tests between day 21 to 28 post-GMH. At 28 days post-GMH, brain morphology was assessed and extracellular matrix protein (fibronectin and vitronectin) expression was determined. Acute and delayed deferoxamine treatment improved long-term motor and cognitive function at 21 to 28 days post-GMH. Attenuated neurofunction was paralleled with improved overall brain morphology at 28 days post-GMH, reducing white matter loss, basal ganglia loss, posthemorrhagic ventricular dilation, and cortical loss. GMH resulted in significantly increased expression of fibronectin and vitronectin, which was reversed by acute and delayed deferoxamine treatment. Acute and delayed deferoxamine administration ameliorated long-term sequelae after GMH. © 2014 American Heart Association, Inc.

  5. Phrenicotomy alters phrenic long-term facilitation following intermittent hypoxia in anesthetized rats

    OpenAIRE

    Sandhu, M. S.; Lee, K. Z.; Fregosi, R. F.; Fuller, D. D.

    2010-01-01

    Intermittent hypoxia (IH) can induce a persistent increase in neural drive to the respiratory muscles known as long-term facilitation (LTF). LTF of phrenic inspiratory activity is often studied in anesthetized animals after phrenicotomy (PhrX), with subsequent recordings being made from the proximal stump of the phrenic nerve. However, severing afferent and efferent axons in the phrenic nerve has the potential to alter the excitability of phrenic motoneurons, which has been hypothesized to be...

  6. Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats.

    Science.gov (United States)

    Valic, Maja; Pecotic, Renata; Pavlinac Dodig, Ivana; Valic, Zoran; Stipica, Ivona; Dogas, Zoran

    2016-02-01

    What is the central question of this study? Intermittent hypercapnia is a concomitant feature of breathing disorders. Hypercapnic stimuli evoke a form of respiratory plasticity known as phrenic long-term depression in experimental animals. This study was performed to investigate the putative role of serotonin receptors in the initiation of phrenic long-term depression in anaesthetized rats. What is the main finding and its importance? Phrenic nerve long-term depression was revealed in animals pretreated with the serotonin broad-spectrum antagonist, methysergide. This study highlights that serotonin receptors modulate respiratory plasticity evoked by acute intermittent hypercapnia in anaesthetized rats. This study was performed to test the hypothesis that intermittent hypercapnia can evoke a form of respiratory plasticity known as long-term depression of the phrenic nerve (pLTD) and that 5-HT receptors play a role in the initiation of pLTD. Adult male urethane-anaesthetized, vagotomized, paralysed, mechanically ventilated Sprague-Dawley rats were exposed to an acute intermittent hypercapnia protocol. One group received i.v. injection of the non-selective 5-HT receptor antagonist methysergide and another group received i.v. injection of the selective 5-HT1A receptor antagonist WAY-100635 20 min before exposure to intermittent hypercapnia. A control group received i.v. injection of saline. Peak phrenic nerve activity and respiratory rhythm parameters were analysed at baseline (T0), during each of five hypercapnic episodes, and 15, 30 and 60 min (T60) after the last hypercapnia. Intravenous injection of methysergide before exposure to acute intermittent hypercapnia induced development of amplitude pLTD at T60 (decreased by 46.1 ± 6.9%, P = 0.003). Conversely, in control and WAY-100635-pretreated animals, exposure to acute intermittent hypercapnia did not evoke amplitude pLTD. However, a long-term decrease in phrenic nerve frequency was evoked both in control (42 ± 4

  7. Garcinia kola aqueous suspension prevents cerebellar neurodegeneration in long-term diabetic rat - a type 1 diabetes mellitus model.

    Science.gov (United States)

    Farahna, Mohammed; Seke Etet, Paul F; Osman, Sayed Y; Yurt, Kıymet K; Amir, Naheed; Vecchio, Lorella; Aydin, Isınsu; Aldebasi, Yousef H; Sheikh, Azimullah; Chijuka, John C; Kaplan, Süleyman; Adem, Abdu

    2017-01-04

    The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Effect of long-term caloric restriction on brain monoamines in aging male and female Fischer 344 rats.

    Science.gov (United States)

    Kolta, M G; Holson, R; Duffy, P; Hart, R W

    1989-05-01

    The present study examines the changes in central monoamines and their metabolites in aged male and female rats after long-term caloric restriction. Fischer 344 rats of both sexes (n = 5-10/group) were maintained on one of two dietary regimens: ad libitum NIH 31 diet or 60% by weight of the ad lib. intake (restricted), supplemented with vitamins and minerals. Animals received these diets from the age of 14 weeks until killed at 22.25 months of age. Caudate nucleus (CN), hypothalamus (HYPO), olfactory bulb (OB) and nucleus accumbens (NA) were assayed for content of norepinephrine (NE), dopamine (DA) and its metabolites (dihydroxyphenylacetic acid, DOPAC, and homovanillic acid, HVA) and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) using HPLC/EC. Relative to the ad lib. group, restricted rats of both sex showed significant decreases in NE content in CN, HYPO and OB. DA and 5-HT content were decreased significantly in the CN and HYPO. No significant changes were found in the levels of DA metabolites in all brain regions studied. While the 5-HIAA level was significantly reduced in the HYPO and NA of the female restricted rats, it was increased several-fold in the OB of the male restricted animals. These preliminary results suggest that long-term caloric restriction alters brain monoamine concentrations, an effect which may in turn modify the normal rate of aging.

  9. Alteration in plasma corticosterone levels following long term oral administration of lead produces depression like symptoms in rats.

    Science.gov (United States)

    Haider, Saida; Saleem, Sadia; Tabassum, Saiqa; Khaliq, Saima; Shamim, Saima; Batool, Zehra; Parveen, Tahira; Inam, Qurat-ul-ain; Haleem, Darakhshan J

    2013-03-01

    Lead toxicity is known to induce a broad range of physiological, biochemical and behavioral dysfunctions that may result in adverse effects on several organs, including the central nervous system. Long-term exposure to low levels of lead (Pb(2+)) has been shown to produce behavioral deficits in rodents and humans by affecting hypothalamic-pituitary-adrenal (HPA) axis. These deficits are thought to be associated with altered brain monoamine neurotransmission and due to changes in glucocorticoids levels. This study was designed to investigate the effects of Pb(2+)exposure on growth rate, locomotor activity, anxiety, depression, plasma corticosterone and brain serotonin (5-HT) levels in rats. Rats were exposed to lead in drinking water (500 ppm; lead acetate) for 5 weeks. The assessment of depression was done using the forced swimming test (FST). Estimation of brain 5-HT was determined by high-performance liquid chromatography with electrochemical detection. Plasma corticosterone was determined by spectrofluorimetric method. The present study showed that long term exposure to Pb(2+) significantly decreased the food intake followed by the decrease in growth rate in Pb(2+)exposed rats as compared to control group. No significant changes in open field activity were observed following Pb(2+)exposure while significant increase in anxiogenic effect was observed. Increased plasma corticosterone and decreased 5-HT levels were exhibited by Pb(2+)exposed rats as compared to controls. A significant increase in depressive like symptoms was exhibited by Pb(2+)exposed rats as compared to control rats. The results are discussed in the context of Pb(2+) inducing a stress-like response in rats leading to changes in plasma corticosterone and brain 5-HT levels via altering tryptophan pyrrolase activity.

  10. Short-term and long-term ethanol administration inhibits the placental uptake and transport of valine in rats

    International Nuclear Information System (INIS)

    Patwardhan, R.V.; Schenker, S.; Henderson, G.I.; Abou-Mourad, N.N.; Hoyumpa, A.M. Jr.

    1981-01-01

    Ethanol ingestion during pregnancy causes a pattern of fetal/neonatal dysfunction called the FAS. The effects of short- and long-term ethanol ingestion on the placental uptake and maternal-fetal transfer of valine were studied in rats. The in vivo placental uptake and fetal uptake were estimated after injection of 0.04 micromol of /sub 14/C-valine intravenously on day 20 of gestation in Sprague-Dawley rats. Short-term ethanol ingestion (4 gm/kg) caused a significant reduction in the placental uptake of /sub 14/C-valine by 33%, 60%, and 30%, and 31% at 2.5, 5, 10, and 15 min after valine administration, respectively (p less than 0.01), and a similar significant reduction occurred in the fetal uptake of /sub 14/C-valine (p less than 0.01). Long-term ethanol ingestion prior to and throughout gestation resulted in a 47% reduction in placental valine uptake (p less than 0.01) and a 46% reduction in fetal valine uptake (p less than 0.01). Long-term ethanol feeding from day 4 to day 20 of gestation caused a 32% reduction in placental valine uptake (p less than 0.01) and a 26% reduction in fetal valine uptake (p less than 0.01). We conclude that both short- and long-term ingestion of ethanol inhibit the placental uptake and maternal-fetal transfer of an essential amino acid--valine. An alteration of placental function may contribute to the pathogenesis of the FAS

  11. Implantable repository adrenaline tablets for long-term studies in rats

    International Nuclear Information System (INIS)

    Korsatko, W.; Porta, S.; Sadjak, A.; Supanz, S.

    1982-01-01

    Implantable coated Eudragit matrix tablets containing adrenaline in various concentrations should overcome the problem of additional handling stress during long-term infusions. The efficiency of those tablets was tested in vitro, as well as in vivo using 14 C-adrenaline. Both in vitro and in vivo testing yielded satisfactorily output rates up to 20 h whereby the liver and serum content of 14 C-fragments served as an additional prove for the postulated mode of action. Good correlation has been found between the mentioned out-put rates and adrenaline serum levels (measured according to Da Prada). (author)

  12. Postnatal early overnutrition causes long-term renal decline in aging male rats.

    Science.gov (United States)

    Yim, Hyung Eun; Yoo, Kee Hwan; Bae, In Sun; Hong, Young Sook; Lee, Joo Won

    2014-02-01

    We evaluated the influence of postnatal early overnutrition on renal pathophysiological changes in aging rats. Three or 10 male pups per mother were assigned to either the small litter (SL) or normal litter (control) groups, respectively, during the first 21 d of life. The effects of early postnatal overnutrition were determined at 12 mo. SL rats weighed more than controls between 4 d and 6 mo of age (P renal cortex were higher in SL rats (P aging SL rats (P aging kidney and can lead to systolic hypertension with reduced intrarenal renin activity.

  13. Elamipretide (SS-31 Ameliorates Isoflurane-Induced Long-Term Impairments of Mitochondrial Morphogenesis and Cognition in Developing Rats

    Directory of Open Access Journals (Sweden)

    Jian-Jun Yang

    2017-04-01

    Full Text Available Mitochondria are supposed to be involved in the early pathogenesis of general anesthesia (GA-induced neurotoxicity and long-term cognitive deficits in developing brains. However, effective pharmacologic agents targeted on mitochondria during GA exposure are lacking. This study explores the protective effects of mitochondrion-targeted antioxidant elamipretide (SS-31 on mitochondrial morphogenesis and cognition in developing rats exposed to isoflurane. Rat pups at postnatal day (PND 7 were exposed to 1.5% isoflurane for 6 h following intraperitoneal administration of elamipretide or vehicle with 30 min interval. The hippocampus was immediately removed for biochemical assays. Histopathological studies were conducted at PND 21, and behavioral tests were performed at PND 40 or 60. We found that early exposure to isoflurane caused remarkable reactive oxygen species (ROS accumulation, mitochondrial deformation and neuronal apoptosis in hippocampus. The injury occurrence ultimately gave rise to long-term cognitive deficits in developing rats. Interestingly, pretreatment with elamipretide not only provided protective effect against oxidative stress and mitochondrial damages, but also attenuated isoflurane-induced cognitive deficits. Our data support the notion that mitochondrial damage is an early and long lasting event of GA-induced injury and suggest that elamipretide might have clinically therapeutic benefits for pediatric patients undertaking GA.

  14. Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats.

    Science.gov (United States)

    Dieni, Cristina V; Ferraresi, Aldo; Sullivan, Jacqueline A; Grassi, Sivarosa; Pettorossi, Vito E; Panichi, Roberto

    2018-03-01

    The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.

  15. Induction of chronic kidney failure in a long-term peritoneal exposure model in the rat: effects on functional and structural peritoneal alterations

    NARCIS (Netherlands)

    Vrtovsnik, François; Coester, Annemieke M.; Lopes-Barreto, Deirisa; de Waart, Dirk R.; van der Wal, Allard C.; Struijk, Dirk G.; Krediet, Raymond T.; Zweers, Machteld M.

    2010-01-01

    A long-term peritoneal exposure model has been developed in Wistar rats. Chronic daily exposure to 3.86% glucose based, lactate buffered, conventional dialysis solutions is possible for up to 20 weeks and induces morphological abnormalities similar to those in long-term peritoneal dialysis (PD)

  16. Long Term Depression in Rat Hippocampus and the Effect of Ethanol during Fetal Life

    Directory of Open Access Journals (Sweden)

    Olivier Pierrefiche

    2017-11-01

    Full Text Available Alcohol (ethanol disturbs cognitive functions including learning and memory in humans, non-human primates, and laboratory animals such as rodents. As studied in animals, cellular mechanisms for learning and memory include bidirectional synaptic plasticity, long-term potentiation (LTP, and long-term depression (LTD, primarily in the hippocampus. Most of the research in the field of alcohol has analyzed the effects of ethanol on LTP; however, with recent advances in the understanding of the physiological role of LTD in learning and memory, some authors have examined the effects of ethanol exposure on this particular signal. In the present review, I will focus on hippocampal LTD recorded in rodents and the effects of fetal alcohol exposure on this signal. A synthesis of the findings indicates that prenatal ethanol exposure disturbs LTD concurrently with LTP in offspring and that both glutamatergic and γ-aminobutyric acid (GABA neurotransmissions are altered and contribute to LTD disturbances. Although the ultimate mode of action of ethanol on these two transmitter systems is not yet clear, novel suggestions have recently appeared in the literature.

  17. Selenium homeostasis and induction of thioredoxin reductase during long term selenite supplementation in the rat

    DEFF Research Database (Denmark)

    Erkhembayar, Suvd; Mollbrink, Annelie; Eriksson, Malin

    2011-01-01

    -dependent increase in blood and liver selenium levels, with plateaus at 6 and 8weeks, respectively. These plateaus were reached at the same level of selenium regardless of dose, and no further accumulation was observed. A selenium-dependent increase in the activity of TrxR1 in parallel with the increase in liver...... selenium levels was also seen, and the induction of TrxR1 mRNA was seen only during the first three days of treatment, when the levels of selenium in the liver were increasing. Sodium selenite at 1 and 5μg/mL did not affect body weight or relative liver mass. We concluded that long-term treatment...... with selenite did not cause accumulation of selenium and that the activity of TrxR1 in the liver rose with the selenium levels. We therefore suggest that sodium selenite at doses up to 5μg/mL could be used for long-term tumour prevention....

  18. Long-term effects of a single exposure to stress in adult rats on behavior and hypothalamic-pituitary-adrenal responsiveness: comparison of two outbred rat strains.

    Science.gov (United States)

    Belda, Xavier; Márquez, Cristina; Armario, Antonio

    2004-10-05

    We have previously observed that a single exposure to immobilization (IMO), a severe stressor, caused long-term (days to weeks) desensitization of the response of the hypothalamic-pituitary-adrenal (HPA) axis to the homotypic stressor, with no changes in behavioral reactivity to novel environments. In contrast, other laboratories have reported that a single exposure to footshock induced a long-term sensitization of both HPA and behavioral responses to novel environments. To test whether these apparent discrepancies can be explained by the use of different stressors or different strains of rats, we studied in the present work the long-term effects of a single exposure to two different stressors (footshock or IMO) in two different strains of rats (Sprague-Dawley from Iffa-Credo and Wistar rats from Harlan). We found that both strains showed desensitization of the HPA response to the same (homotypic) stressor after a previous exposure to either shock or IMO. The long-term effects were higher after IMO than shock. No major changes in behavior in two novel environments (circular corridor, CC and elevated plus-maze, EPM) were observed after a single exposure to shock or IMO in neither strain, despite the fact that shocked rats showed a conditioned freezing response to the shock boxes. The present results demonstrate that long-term stress-induced desensitization of the HPA axis is a reliable phenomenon that can be observed with different stressors and strains. However, only behavioral changes related to shock-induced conditioned fear were found, which suggests that so far poorly characterized factors are determining the long-term behavioral consequences of a single exposure to stress.

  19. Protein-energy malnutrition at mid-adulthood does not imprint long-term metabolic consequences in male rats.

    Science.gov (United States)

    Malta, Ananda; de Moura, Egberto Gaspar; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Abdennebi-Najar, Latifa; Vieau, Didier; Barella, Luiz Felipe; de Freitas Mathias, Paulo Cezar; Lisboa, Patrícia Cristina; de Oliveira, Júlio Cezar

    2016-06-01

    The long-term effects of the development of chronic metabolic diseases such as type 2 diabetes and obesity have been associated with nutritional insults in critical life stages. In this study, we evaluated the effect of a low-protein diet on metabolism in mid-adulthood male rats. At 90 days of age, Wistar male rats were fed a low-protein diet (4.0 %, LP group) for 30 days, whereas control rats were fed a normal-protein diet (20.5 %, NP group) throughout their lifetimes. To allow for dietary rehabilitation, from 120 to 180 days of age, the LP rats were fed a normal-protein diet. Then, we measured body composition, fat stores, glucose-insulin homeostasis and pancreatic islet function. At 120 days of age, just after low-protein diet treatment, the LP rats displayed a strong lean phenotype, hypoinsulinemia, as assessed under fasting and glucose tolerance test conditions, as well as weak pancreatic islet insulinotropic response to glucose and acetylcholine (p protein diet rehabilitation, the LP rats displayed a slight lean phenotype (p  0.05). Taken together, the present data suggest that the effects of dietary restriction as a stressor in adulthood are reversible with dietary rehabilitation, indicating that adulthood is not a sensitive or critical time window for metabolic programming.

  20. Effect of General Anesthesia in Infancy on Long-Term Recognition Memory in Humans and Rats

    Science.gov (United States)

    Stratmann, Greg; Lee, Joshua; Sall, Jeffrey W; Lee, Bradley H; Alvi, Rehan S; Shih, Jennifer; Rowe, Allison M; Ramage, Tatiana M; Chang, Flora L; Alexander, Terri G; Lempert, David K; Lin, Nan; Siu, Kasey H; Elphick, Sophie A; Wong, Alice; Schnair, Caitlin I; Vu, Alexander F; Chan, John T; Zai, Huizhen; Wong, Michelle K; Anthony, Amanda M; Barbour, Kyle C; Ben-Tzur, Dana; Kazarian, Natalie E; Lee, Joyce YY; Shen, Jay R; Liu, Eric; Behniwal, Gurbir S; Lammers, Cathy R; Quinones, Zoel; Aggarwal, Anuj; Cedars, Elizabeth; Yonelinas, Andrew P; Ghetti, Simona

    2014-01-01

    Anesthesia in infancy impairs performance in recognition memory tasks in mammalian animals, but it is unknown if this occurs in humans. Successful recognition can be based on stimulus familiarity or recollection of event details. Several brain structures involved in recollection are affected by anesthesia-induced neurodegeneration in animals. Therefore, we hypothesized that anesthesia in infancy impairs recollection later in life in humans and rats. Twenty eight children ages 6–11 who had undergone a procedure requiring general anesthesia before age 1 were compared with 28 age- and gender-matched children who had not undergone anesthesia. Recollection and familiarity were assessed in an object recognition memory test using receiver operator characteristic analysis. In addition, IQ and Child Behavior Checklist scores were assessed. In parallel, thirty three 7-day-old rats were randomized to receive anesthesia or sham anesthesia. Over 10 months, recollection and familiarity were assessed using an odor recognition test. We found that anesthetized children had significantly lower recollection scores and were impaired at recollecting associative information compared with controls. Familiarity, IQ, and Child Behavior Checklist scores were not different between groups. In rats, anesthetized subjects had significantly lower recollection scores than controls while familiarity was unaffected. Rats that had undergone tissue injury during anesthesia had similar recollection indices as rats that had been anesthetized without tissue injury. These findings suggest that general anesthesia in infancy impairs recollection later in life in humans and rats. In rats, this effect is independent of underlying disease or tissue injury. PMID:24910347

  1. Long-Term Oral Feeding of Lutein-Fortified Milk Increases Voluntary Running Distance in Rats

    OpenAIRE

    Matsumoto, Megumi; Hagio, Masahito; Inoue, Ryo; Mitani, Tomohiro; Yajima, Masako; Hara, Hiroshi; Yajima, Takaji

    2014-01-01

    To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg) daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered) compared wit...

  2. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    , namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization......, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents....

  3. Long-term oral feeding of lutein-fortified milk increases voluntary running distance in rats.

    Directory of Open Access Journals (Sweden)

    Megumi Matsumoto

    Full Text Available To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered compared with control rats (vehicle administered. This increase was not apparent in rats administered lutein alone. In the lutein-fortified-milk exercise group compared with the sedentary control group, carnitine palitroyltransferase 1 (CPT-1, total AMP-activated protein kinase (tAMPK, and phosphorylated AMP-activated protein kinase (pAMPK contents were significantly increased in the gastrocnemius muscle, with a concomitant decrease in triglyceride and total cholesterol levels in the blood and liver. Furthermore, the lutein level in blood of lutein-administered rats significantly decreased with exercise. These results suggest that lutein-fortified milk may enhance the effect of exercise by effective utilization of lipids when combined with voluntary running.

  4. Long-term oral feeding of lutein-fortified milk increases voluntary running distance in rats.

    Science.gov (United States)

    Matsumoto, Megumi; Hagio, Masahito; Inoue, Ryo; Mitani, Tomohiro; Yajima, Masako; Hara, Hiroshi; Yajima, Takaji

    2014-01-01

    To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg) daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered) compared with control rats (vehicle administered). This increase was not apparent in rats administered lutein alone. In the lutein-fortified-milk exercise group compared with the sedentary control group, carnitine palitroyltransferase 1 (CPT-1), total AMP-activated protein kinase (tAMPK), and phosphorylated AMP-activated protein kinase (pAMPK) contents were significantly increased in the gastrocnemius muscle, with a concomitant decrease in triglyceride and total cholesterol levels in the blood and liver. Furthermore, the lutein level in blood of lutein-administered rats significantly decreased with exercise. These results suggest that lutein-fortified milk may enhance the effect of exercise by effective utilization of lipids when combined with voluntary running.

  5. Long-term sequential changes of radiation proctitis and angiopathy in rats

    International Nuclear Information System (INIS)

    Doi, Hiroshi; Kamikonya, Norihiko; Takada, Yasuhiro

    2012-01-01

    The purpose of the present study was to establish an experimental rat model for late radiation proctitis, and to examine the assessment strategy for late radiation proctitis. A total of 57 Wistar rats were used. Forty-five of the rats were exposed to selective rectal irradiation with a single fraction of 25 Gy. These rats were sacrificed at the 4th, 12th, 24th, and 37th week following irradiation. The remaining 12 rats comprised the control group without irradiation. The rectal mucosa of each rat was evaluated macroscopically and pathologically. The number of vessels in the rectal mucosa was counted microscopically. In addition, the vascular stenosis was evaluated. In the results, the degree of clinical and macroscopic findings decreased following acute proctitis and developed later. In the pathological examination, mucosal changes and microangiopathy were followed up, as well. The absolute number of vessels in the rectum was the greatest at the 12th week following irradiation and was the lowest in the control group. The severity of the microangiopathy was also well evaluated. To conclude, we established an animal experimental model of late radiation proctitis, and also established an assessment strategy to evaluate objectively the severity of late radiation proctitis with focusing on microangiopathy using an animal experimental model. This model can be used as an animal experimental model of radiation-induced microangiopathy. (author)

  6. Antihypertensive Properties of a Pea Protein Hydrolysate during Short- and Long-Term Oral Administration to Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Girgih, Abraham T; Nwachukwu, Ifeanyi D; Onuh, John O; Malomo, Sunday A; Aluko, Rotimi E

    2016-05-01

    This study investigated short-term (24 h) and long-term (5 wk) systolic blood pressure (SBP)-lowering effects in spontaneously hypertensive rats (SHR) of a 5 kDa membrane pea protein hydrolysate permeate (PPH-5) produced through thermoase hydrolysis of pea protein isolate (PPI). Amino acid analysis showed that the PPH-5 had lower contents of sulfur-containing amino acids than the PPI. Size-exclusion chromatography indicated mainly low molecular weight (pea products decreased in the 4th and 5th wk, though SBP values of the treated rats were still lower than the untreated control. We conclude that the antihypertensive potency of PPH-5 may have been due to the presence of easily absorbed hydrophilic peptides. © 2016 Institute of Food Technologists®

  7. Non-Competitive NMDA Receptor Antagonist Hemantane Reduces Ethanol Consumption in Long-Term Alcohol Experienced Rats.

    Science.gov (United States)

    Kolik, L G; Nadorova, A V; Seredenin, S B

    2017-12-01

    Activity of hemantane, an amino adamantane derivative, exhibiting the properties of lowaffinity non-competitive NMDA receptor antagonist, was evaluated in experimental in vivo models of alcoholism. Hemantane had no effects on the formation and manifestation of behavioral sensitization to ethanol in DBA/2 mice. Under conditions of free choice between 10% ethanol and water, hemantane (20 mg/kg/day for 14 days, intraperitoneally) significantly reduced the daily ethanol intake in random-bred male rats with formed alcohol motivation (>4 g/kg of ethanol). During modelling of withdrawal syndrome, hemantane administered intraperitoneally in doses of 5-20 mg/kg dose-dependently attenuated alcohol-deprivation effect after acute withdrawal with no effects on protracted abstinence. It was found that hemantane suppressed alcohol drinking behavior in long-term ethanol experienced rats and attenuated alcohol-seeking behavior after acute withdrawal.

  8. Long-Term Effects of Maternal Deprivation on Redox Regulation in Rat Brain: Involvement of NADPH Oxidase

    Directory of Open Access Journals (Sweden)

    Branka Marković

    2017-01-01

    Full Text Available Maternal deprivation (MD causes perinatal stress, with subsequent behavioral changes which resemble the symptoms of schizophrenia. The NADPH oxidase is one of the major generators of reactive oxygen species, known to play a role in stress response in different tissues. The aim of this study was to elucidate the long-term effects of MD on the expression of NADPH oxidase subunits (gp91phox, p22phox, p67phox, p47phox, and p40phox. Activities of cytochrome C oxidase and respiratory chain Complex I, as well as the oxidative stress parameters using appropriate spectrophotometric techniques were analyzed. Nine-day-old Wistar rats were exposed to a 24 h maternal deprivation and sacrificed at young adult age. The structures affected by perinatal stress, cortex, hippocampus, thalamus, and caudate nuclei were investigated. The most prominent findings were increased expressions of gp91phox in the cortex and hippocampus, increased expression of p22phox and p40phox, and decreased expression of gp91phox, p22phox, and p47phox in the caudate nuclei. Complex I activity was increased in all structures except cortex. Content of reduced glutathione was decreased in all sections while region-specific changes of other oxidative stress parameters were found. Our results indicate the presence of long-term redox alterations in MD rats.

  9. Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane.

    Science.gov (United States)

    Zoladz, Phillip R; Campbell, Adam M; Park, Collin R; Schaefer, Daniela; Danysz, Wojciech; Diamond, David M

    2006-10-01

    Memantine and neramexane are noncompetitive NMDA receptor antagonists which have been investigated for their promising effects in aiding memory in people with dementia. Memantine is approved for the treatment of Alzheimer's disease, and neramexane is currently under development for this indication. Therefore, the present study provided a comparative assessment of the effects of equimolar doses of memantine and neramexane on spatial (hippocampus-dependent) memory. Adult male rats were given only 3 training trials to learn the location of a hidden platform in a water maze. In control (vehicle-injected) rats, this minimal amount of training produced intact short-term (15 min), but poor long-term (24 h), memory. Pre-training administration of memantine or neramexane produced a dose-dependent enhancement of long-term memory. Pharmacokinetic experiments with equimolar doses of both agents indicated that lower plasma levels of neramexane were more effective than memantine at enhancing memory. The effective doses of both agents in the current study produced plasma levels (and extrapolated brain CSF levels) within a range of activity at NMDA receptors and plasma levels seen in patients with Alzheimer's disease. These findings provide support for the use of neramexane as a pharmacological intervention in the treatment of dementia.

  10. Neonatal overfeeding disrupts pituitary ghrelin signalling in female rats long-term; Implications for the stress response.

    Science.gov (United States)

    Sominsky, Luba; Ziko, Ilvana; Spencer, Sarah J

    2017-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis responses to psychological stress are exacerbated in adult female but not male rats made obese due to overfeeding in early life. Ghrelin, traditionally known for its role in energy homeostasis, has been recently recognised for its role in coordinating the HPA responses to stress, particularly by acting directly at the anterior pituitary where the growth hormone secretagogue receptor (GHSR), the receptor for acyl ghrelin, is abundantly expressed. We therefore hypothesised that neonatal overfeeding in female rats would compromise pituitary responsiveness to ghrelin, contributing to a hyperactive central stress responsiveness. Unlike in males where hypothalamic ghrelin signalling is compromised by neonatal overfeeding, there was no effect of early life diet on circulating ghrelin or hypothalamic ghrelin signalling in females, indicating hypothalamic feeding and metabolic ghrelin circuitry remains intact. However, neonatal overfeeding did lead to long-term alterations in the pituitary ghrelin system. The neonatally overfed females had increased neonatal and reduced adult expression of GHSR and ghrelin-O-acyl transferase (GOAT) in the pituitary as well as reduced pituitary responsiveness to exogenous acyl ghrelin-induced adrenocorticotropic hormone (ACTH) release in vitro. These data suggest that neonatal overfeeding dysregulates pituitary ghrelin signalling long-term in females, potentially accounting for the hyper-responsive HPA axis in these animals. These findings have implications for how females may respond to stress throughout life, suggesting the way ghrelin modifies the stress response at the level of the pituitary may be less efficient in the neonatally overfed.

  11. Curcuma comosa improves learning and memory function on ovariectomized rats in a long-term Morris water maze test

    Science.gov (United States)

    Su, Jian; Sripanidkulchai, Kittisak; Wyss, J. Michael; Sripanidkulchai, Bungorn

    2010-01-01

    Aim of the study Curcuma comosa extract and some purified compounds from this plant have been reported to have estrogenic-like effects, and estrogen improves learning in some animals and potentially in postmenopausal women; therefore, this study tested the hypothesis that Curcuma comosa and estrogen have similar beneficial effects on spatial learning and memory. Materials and methods Curcuma comosa hexane extract, containing 0.165 mg of (4E,6E)-1,7-diphenylhepta-4,6-dien-3-one per mg of the crude extract, was orally administered to ovariectomized Wistar rats at the doses of 250 or 500 mg/kg body weight. 17β-estradiol (10 μg/kg body weight, subcutaneously) was used as a positive control. Thirty days after the initiation of treatment, animals were tested in a Morris water maze for spatial learning and memory. They were re-tested every 30 days and a final probe trial was run on day 119. Results Compared to control rats, OVX rats displayed significant memory impairment for locating the platform in the water maze from day 67 after the surgery, onward. In contrast, OVX rats treated with either Curcuma comosa or estrogen were significantly protected from this decline in cognitive function. Further, the protection of cognitive effects by Curcuma comosa was larger at higher dose. Conclusions These results suggest that long-term treatment with Curcuma comosa has beneficial effects on learning and memory function in rats. PMID:20420894

  12. Single whole-body exposure to sarin vapor in rats: Long-term neuronal and behavioral deficits

    International Nuclear Information System (INIS)

    Grauer, Ettie; Chapman, Shira; Rabinovitz, Ishai; Raveh, Lily; Weissman, Ben-Avi; Kadar, Tamar; Allon, Nahum

    2008-01-01

    Freely moving rats were exposed to sarin vapor (34.2 ± 0.8 μg/l) for 10 min. Mortality at 24 h was 35% and toxic sings in the surviving rats ranged from sever (prolonged convulsions) through moderate to almost no overt signs. Some of the surviving rats developed delayed, intermittent convulsions. All rats were evaluated for long-term functional deficits in comparison to air-exposed control rats. Histological analysis revealed typical cell loss at 1 week post inhalation exposure. Neuronal inflammation was demonstrated by a 20-fold increase in prostaglandin (PGE 2 ) levels 24 h following exposure that markedly decreased 6 days later. An additional, delayed increase in PGE 2 was detected at 1 month and continued to increase for up to 6 months post exposure. Glial activation following neural damage was demonstrated by an elevated level of peripheral benzodiazepine receptors (PBR) seen in the brain 4 and 6 months after exposure. At the same time muscarinic receptors were unaffected. Six weeks, four and six months post exposure behavioral evaluations were performed. In the open field, sarin-exposed rats showed a significant increase in overall activity with no habituation over days. In a working memory paradigm in the water maze, these same rats showed impaired working and reference memory processes with no recovery. Our data suggest long lasting impairment of brain functions in surviving rats following a single sarin exposure. Animals that seem to fully recover from the exposure, and even animals that initially show no toxicity signs, developed some adverse neural changes with time

  13. Nootropic and hypophagic effects following long term intake of almonds (Prunus amygdalus) in rats.

    Science.gov (United States)

    Haider, S; Batool, Z; Haleem, D J

    2012-01-01

    Over a period of time researchers have become more interested in finding out the potential of various foods to maintain the general health and to treat diseases. Almonds are a very good source of many nutrients which may help to sharpen the memory and to reduce cardiovascular risk factors. The present study was conducted to evaluate the nootropic effects of almonds. Effect of oral intake of almond was also monitored on food intake and plasma cholesterol levels. Rats were given almond paste orally with the help of feeding tube for 28 days. Memory function in rats was assessed by Elevated Plus Maze (EPM) and Radial Arm Maze (RAM). Brain tryptophan, 5-HT and 5-HIAA were estimated at the end of the treatment by HPLC-EC method. A significant improvement in learning and memory of almond treated rats compared to controls was observed. Almond treated rats also exhibited a significant decrease in food intake and plasma cholesterol levels while the change in growth rate (in terms of percentage) remained comparable between the two groups. Analysis of brain tryptophan (TRP) monoamines exhibited enhanced TRP levels and serotonergic turnover in rat brain following oral intake of almonds. The findings show that almonds possess significant hypophagic and nootropic effects. Results are discussed in context of enhanced 5-HT metabolism following almond administration.

  14. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.

    2003-01-01

    OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment, colocystopl......OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment...... mass ex vivo.RESULTS: Most (90%) of the rats survived the study period (8 months); six rats died from bowel obstruction at the level of the entero-anastomosis and four had to be killed because of persistent severe diarrhoea. Vital intestinal mucosa was found in all augmented bladders. There were...... no differences in bone length and volume. Loss of bone mass was almost exclusively in rats with ileocystoplasty and resection of the ileocaecal segment (-37.5%, pQCT, P

  15. Cerebral energy metabolism in streptozotocin-diabetic rats

    NARCIS (Netherlands)

    Biessels, G.J.; Braun, K.P.J.; Graaf, de R.A.; Eijsden, van P.; Gispen, W.H.; Nicolaij, K.

    2001-01-01

    Aims/hypothesis. It is increasingly evident that the brain is another site of diabetic end-organ damage. The pathogenesis has not been fully explained, but seems to involve an interplay between aberrant glucose metabolism and vascular changes. Vascular changes, such as deficits in cerebral blood

  16. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.

    2003-01-01

    OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment, colocystopl......OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment......, colocystoplasty, and controls. All animals received antibiotics for 1 week after surgery; half of each group remained on oral antibiotics. Bone-related biochemistry was measured in serum and urine. Dual-energy X-ray absorptiometry and peripheral quantitative computed tomography (pQCT) were used to determine bone...... no differences in bone length and volume. Loss of bone mass was almost exclusively in rats with ileocystoplasty and resection of the ileocaecal segment (-37.5%, pQCT, P

  17. The Long Term Effects of Chronic Spinal Cord Injury on Sperm Parameters in Rats

    Directory of Open Access Journals (Sweden)

    MA Khalili

    2004-07-01

    Full Text Available Introduction: Spinal cord injury (SCI is a serious public health problem which seriously affects the victim, family, and even the society. Research studies have shown that 80% of SCI victims are men. In recent years, there have been extensive research works on the effect of SCI (acute and/or chronic on fertility potential of sperm and spermatogenesis in laboratory animals. SCI may disturb the spermatogenic cell lines in laboratory animals. The objective of this experimental study was to investigate the effect of chronic spinal cord injury (CSCI on sperm parameters in adult rats. Materials & Methods: Adult Wistar rats weighing between 225-275g were divided into 3groups of control (n=5, sham (n=10, and experimental CSCI (n=10. No surgery was done on control animals. Only laminectomy was done in the sham animals at T10. CSCI was developed in experimental rats using 10g weight dropped 5cm above the exposed T10 level. All animals were sacrificed 50 days post experiment to extract epididymal samples. Sperm parameters of count, motility, morphology, as well as number of round cells were evaluated with the aid of Makler chamber and Geimsa staining. Results: Progressive motility was significantly reduced in CSCI group (P<0.05. The percentage of normal morphology of spermatozoa was 99.0±1.0 in control rats which was significantly reduced to 74.90±37.64 in CSCI animals In addition, sperm counts in control and CSCI rats were 69.20±12.43 and 25.0±13.68, respectively (P<0.01. Round cell concentration was increased in CSCI group as compared to controls. Conclusion: The results suggest that reduction in parameters of progressive motility, morphology, as well as sperm count following CSCI in rats may disturb the fertility potential of spermatozoa.

  18. Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats

    Science.gov (United States)

    Buonfiglio, Daniella; Parthimos, Rafaela; Dantas, Rosana; Cerqueira Silva, Raysa; Gomes, Guilherme; Andrade-Silva, Jéssica; Ramos-Lobo, Angela; Amaral, Fernanda Gaspar; Matos, Raphael; Sinésio, José; Motta-Teixeira, Lívia Clemente; Donato, José; Reiter, Russel J.; Cipolla-Neto, José

    2018-01-01

    Melatonin (Mel), a molecule that conveys photoperiodic information to the organisms, is also involved in the regulation of energy homeostasis. Mechanisms of action of Mel in the energy balance remain unclear; herein we investigated how Mel regulates energy intake and expenditure to promote a proper energy balance. Male Wistar rats were assigned to control, control + Mel, pinealectomized (PINX) and PINX + Mel groups. To restore a 24-h rhythm, Mel (1 mg/kg) was added to the drinking water exclusively during the dark phase for 13 weeks. After this treatment period, rats were subjected to a 24-h fasting test, an acute leptin responsiveness test and cold challenge. Mel treatment reduced food intake, body weight, and adiposity. When challenged to 24-h fasting, Mel-treated rats also showed reduced hyperphagia when the food was replaced. Remarkably, PINX rats exhibited leptin resistance; this was likely related to the capacity of leptin to affect body weight, food intake, and hypothalamic signal-transducer and activator of transcription 3 phosphorylation, all of which were reduced. Mel treatment restored leptin sensitivity in PINX rats. An increased hypothalamic expression of agouti-related peptide (Agrp), neuropeptide Y, and Orexin was observed in the PINX group while Mel treatment reduced the expression of Agrp and Orexin. In addition, PINX rats presented lower UCP1 protein levels in the brown adipose tissue and required higher tail vasoconstriction to get a proper thermogenic response to cold challenge. Our findings reveal a previously unrecognized interaction of Mel and leptin in the hypothalamus to regulate the energy balance. These findings may help to explain the high incidence of metabolic diseases in individuals exposed to light at night. PMID:29636725

  19. Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors.

    Science.gov (United States)

    Puyal, Julien; Grassi, Silvarosa; Dieni, Cristina; Frondaroli, Adele; Demêmes, Danielle; Raymond, Jaqueline; Pettorossi, Vito Enrico

    2003-12-01

    The effects of high frequency stimulation (HFS) of the primary vestibular afferents on synaptic transmission in the ventral part of the medial vestibular nuclei (vMVN) were studied during postnatal development and compared with the changes in the expression of the group I metabotropic glutamate receptor (mGluR) subtypes, mGluR1 and mGluR5. During the first stages of development, HFS always induced a mGluR5- and GABAA-dependent long-term depression (LTD) which did not require NMDA receptor and mGluR1 activation. The probability of inducing LTD decreased progressively throughout the development and it was zero at about the end of the second postnatal week. Conversely, long-term potentiation (LTP) appeared at the beginning of the second week and its occurrence increased to reach the adult value at the end of the third week. Of interest, the sudden change in the LTP frequency occurred at the time of eye opening, about the end of the second postnatal week. LTP depended on NMDA receptor and mGluR1 activation. In parallel with the modifications in synaptic plasticity, we observed that the expression patterns and localizations of mGluR5 and mGluR1 in the medial vestibular nuclei (MVN) changed during postnatal development. At the earlier stages the mGluR1 expression was minimal, then increased progressively. In contrast, mGluR5 expression was initially high, then decreased. While mGluR1 was exclusively localized in neuronal compartments and concentrated at the postsynaptic sites at all stages observed, mGluR5 was found mainly in neuronal compartments at immature stages, then preferentially in glial compartments at mature stages. These results provide the first evidence for a progressive change from LTD to LTP accompanied by a distinct maturation expression of mGluR1 and mGluR5 during the development of the MVN.

  20. In vitro long-term development of cultured inner ear stem cells of newborn rat.

    Science.gov (United States)

    Carricondo, Francisco; Iglesias, Mari Cruz; Rodríguez, Fernando; Poch-Broto, Joaquin; Gil-Loyzaga, Pablo

    2010-10-01

    The adult mammalian auditory receptor lacks any ability to repair and/or regenerate after injury. However, the late developing cochlea still contains some stem-cell-like elements that might be used to regenerate damaged neurons and/or cells of the organ of Corti. Before their use in any application, stem cell numbers need to be amplified because they are usually rare in late developing and adult tissues. The numerous re-explant cultures required for the progressive amplification process can result in a spontaneous differentiation process. This aspect has been implicated in the tumorigenicity of stem cells when transplanted into a tissue. The aim of this study has been to determine whether cochlear stem cells can proliferate and differentiate spontaneously in long-term cultures without the addition of any factor that might influence these processes. Cochlear stem cells, which express nestin protein, were cultured in monolayers and fed with DMEM containing 5% FBS. They quickly organized themselves into typical spheres exhibiting a high proliferation rate, self-renewal property, and differentiation ability. Secondary cultures of these stem cell spheres spontaneously differentiated into neuroectodermal-like cells. The expression of nestin, glial-fibrillary-acidic protein, vimentin, and neurofilaments was evaluated to identify early differentiation. Nestin expression appeared in primary and secondary cultures. Other markers were also identified in differentiating cells. Further research might demonstrate the spontaneous differentiation of cochlear stem cells and their teratogenic probability when they are used for transplantation.

  1. Long-term effects of intratracheally instilled 253EsCl3 in rats

    International Nuclear Information System (INIS)

    Ballou, J.E.; Dagle, G.E.; Morrow, W.

    1975-01-01

    ts administered 253 EsCl 3 by intratracheal instillation developed more bone tumors and fewer lung tumors than similar rats administered 239 Pu(NO 3 ) 4 . In explanation, it is suggested that 253 Es may irradiatete bone surface cells more effectively while 239 Pu may irradiate a greater total number of cells in the lung. (U.S.)

  2. Systemic and local effects of long-term exposure to alkaline drinking water in rats.

    Science.gov (United States)

    Merne, M E; Syrjänen, K J; Syrjänen, S M

    2001-08-01

    Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined.

  3. Anabolic effects of clenbuterol after long-term treatment and withdrawal in t the rat.

    Science.gov (United States)

    Cartañà, J; Segués, T; Yebras, M; Rothwell, N J; Stock, M J

    1994-09-01

    Injection of rats with the beta 2-adrenoceptor agonist clenbuterol (1 mg/kg/d for 15 days) stimulated an increase in body weight (9%) and protein (8%) and water (7%) content, but reduced food intake (4%) and epididymal fat pad mass (39%). Nine days after termination of treatment, ex-clenbuterol rats were heavier (5%) and had a greater protein (7%) and water (6%) content and lower fat pad mass (32%) than controls. Clenbuterol-fed rats (2 mg/kg diet for 10 days, providing an average of 0.04 mg clenbuterol/kg/d) increased body weight (7%), muscle mass (15% to 21%), and muscle protein content (9% to 26%), whereas epididymal fat pad weight and muscle glycogen content were reduced. During the withdrawal period, the greater body weight of ex-clenbuterol rats was sustained overall (ANOVA, P < .00005), but by day 10 this difference was no longer significant. At this point, gastrocnemius muscle mass was still higher (11%) when compared with that of control animals, but soleus muscle mass, muscle glycogen concentration, and epididymal fat pad weight had reverted to control values. These results were corroborated in a subsequent experiment using older rats. It was concluded that, unlike other beta-adrenoceptor-mediated effects, muscle protein accumulated during clenbuterol treatment can be maintained in certain muscles after removal of the drug for a period of time that is at least equivalent to the duration of treatment. This could have implications for the potential therapeutic use of this class of compound, and differences in the response observed between muscle types may help to elucidate the mechanisms responsible for the muscle protein deposition induced by clenbuterol.

  4. Long-term trihexyphenidyl exposure alters neuroimmune response and inflammation in aging rat: relevance to age and Alzheimer's disease.

    Science.gov (United States)

    Huang, Yuqi; Zhao, Zhe; Wei, Xiaoli; Zheng, Yong; Yu, Jianqiang; Zheng, Jianquan; Wang, Liyun

    2016-07-01

    Clinical studies have shown an association between long-term anticholinergic (AC) drug exposure and Alzheimer's disease (AD) pathogenesis, which has been primarily investigated in Parkinson's disease (PD). However, long-term AC exposure as a risk factor for developing neurodegenerative disorders and the exact mechanisms and potential for disease progression remain unclear. Here, we have addressed the issue using trihexyphenidyl (THP), a commonly used AC drug in PD patients, to determine if THP can accelerate AD-like neurodegenerative progression and study potential mechanisms involved. Male Sprague-Dawley rats (SD) were intraperitoneally injected with THP (0.3 and 1.0 mg/kg) or normal saline (NS) for 7 months. Alterations in cognitive and behavioral performance were assessed using the Morris water maze (MWM) and open field tests. After behavior tests, whole genome oligo microarrays, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence-confocal were used to investigate the global mechanisms underlying THP-induced neuropathology with aging. Compared with NS controls, the MWM test results showed that THP-treated rats exhibited significantly extended mean latencies during the initial 3 months of testing; however, this behavioral deficit was restored between the fourth and sixth month of MWM testing. The same tendencies were confirmed by MWM probe and open field tests. Gene microarray analysis identified 68 (47 %) upregulated and 176 (53 %) downregulated genes in the "THP-aging" vs. "NS-aging" group. The most significant populations of genes downregulated by THP were the immune response-, antigen processing and presentation-, and major histocompatibility complex (MHC)-related genes, as validated by qRT-PCR. The decreased expression of MHC class I in THP-treated aging brains was confirmed by confocal analysis. Notably, long-term THP treatment primed hippocampal and cortical microglia to

  5. Results of long-term carcinogenicity bioassays on Coca-Cola administered to Sprague-Dawley rats.

    Science.gov (United States)

    Belpoggi, Fiorella; Soffritti, Morando; Tibaldi, Eva; Falcioni, Laura; Bua, Luciano; Trabucco, Francesca

    2006-09-01

    Coca-Cola was invented in May 1886 in Atlanta, Georgia by a pharmacist who, by accident or design, mixed carbonated water with the syrup of sugar, phosphoric acid, caffeine, and other natural flavors to create what is known as "the world's favorite soft drink." Coca-Cola is currently sold in more than 200 countries and in early 2000, the company sold its 10 billionth unit case of Coca-Cola branded products. Given the worldwide consumption of Coca-Cola, a project of experimental bioassays to study its long-term effects when administered as substitute for drinking water on male and female Sprague-Dawley rats was planned and executed. The objective of the project was to study whether and how long-term consumption of Coca-Cola affects the basic tumorigram of test animals. The bioassays were performed on rats beginning at different ages, namely: (a) on males and females exposed since embryonic life or from 7 weeks of age; and (b) on males and females exposed from 30, 39, or 55 weeks of age. Overall, the project included 1999 rats. During the biophase, data were collected on fluid and feed consumption, body weight, and survival. Animals were kept under observation until spontaneous death and underwent complete necropsy. The results indicate: (a) an increase in body weight in all treated animals; (b) a statistically significant increase of the incidence in females, both breeders and offspring, bearing malignant mammary tumors; (c) a statistically significant increase in the incidence of exocrine ademonas of the pancreas in both male and female breeders and offspring; and (d) an increased incidence, albeit not statistically significant, of pancreatic islet cell carcinomas in females, a malignant tumor which occurs very rarely in our historical controls. On the basis of the results of this study, excessive consumption of regular soft-drinks should be generally discouraged, in particular for children and adolescents.

  6. Effects of long-term, low dose rate fission neutron irradiation on the peripheral hematological cells in rats

    International Nuclear Information System (INIS)

    Jiang Dingwen; Lei Chengxiang; Shen Xianrong; Ma Li; Yang Xufang; Peng Wulin; Dai Shourong

    2008-01-01

    Objective: To evaluate the effects of long-term, low dose rate fission neutron irradiation on the peripheral hematological cells in rats. Methods: 96 rats were randomly divided into the control group and the irradiation group with low dose rate fission neutron ( 252 Cf, 0.35 mGy/h) irradiation 20.5 h every day. 8 rats of each group were killed at 14 d, 28 d, 42d, 56d, 70d after irradiation and 35d after the irradiation, and their peripheral hematological cells were tested respectively. Results: Compared with the control group, peripheral blood WBC was reduced significantly at the dose of 0.3Gy and 0.4Gy (P < 0.05), and was reduced remarkably at dose of 0.5Gy (P<0.01) and 35d after stopping irradiation(P<0.01). At dose of 0.2Gy, Peripheral blood RBC was abnormally higher comparing with the control group (P<0.01), accompanying with higher HCT and HGB, which suggests condensed blood. At the other point, RBC tend to become lower, but only at dose 0.5Gy, and the difference is significant comparing with control group(P <0.05). At dose of 0.3Gy, 0.4Gy and 0.5Gy, HCT were significantly lower comparing with control group. Comparing with control group, MCV was higher at 35d after stopping irradiation, and PLT was significantly lower in dose of 0.2Gy. Conclusion: Long-term irradiation with low dose rate fission neutron could significantly reduce peripheral blood WBC, with less effects on RBC and PLT. The reduced WBC could not recover at 35d after stopping irradiation. (authors)

  7. Effects of long-term microgravitation exposure on cell respiration of the rat musculus soleus fibers.

    Science.gov (United States)

    Veselova, O M; Ogneva, I V; Larina, I M

    2011-07-01

    Cell respiration of the m. soleus fibers was studied in Wistar rats treated with succinic acid and exposed to microgravitation for 35 days. The results indicated that respiration rates during utilization of endogenous and exogenous substrates and the maximum respiration rate decreased in animals subjected to microgravitation without succinate treatment. The respiration rate during utilization of exogenous substrate did not increase in comparison with that on endogenous substrates. Succinic acid prevented the decrease in respiration rate on endogenous substrates and the maximum respiration rate. On the other hand, the respiration rate on exogenous substrates was reduced in vivarium control rats receiving succinate in comparison with intact control group. That could indicate changed efficiency of complex I of the respiratory chain due to reciprocal regulation of the tricarbonic acid cycle.

  8. Enriched but not depleted uranium affects central nervous system in long-term exposed rat.

    Science.gov (United States)

    Houpert, Pascale; Lestaevel, Philippe; Bussy, Cyrill; Paquet, François; Gourmelon, Patrick

    2005-12-01

    Uranium is well known to induce chemical toxicity in kidneys, but several other target organs, such as central nervous system, could be also affected. Thus in the present study, the effects on sleep-wake cycle and behavior were studied after chronic oral exposure to enriched or depleted uranium. Rats exposed to 4% enriched uranium for 1.5 months through drinking water, accumulated twice as much uranium in some key areas such as the hippocampus, hypothalamus and adrenals than did control rats. This accumulation was correlated with an increase of about 38% of the amount of paradoxical sleep, a reduction of their spatial working memory capacities and an increase in their anxiety. Exposure to depleted uranium for 1.5 months did not induce these effects, suggesting that the radiological activity induces the primary events of these effects of uranium.

  9. Effect of long-term chronic irradiation on gluconeogenesis in rats

    International Nuclear Information System (INIS)

    Paulikova, E.; Ahlers, I.; Praslicka, M.

    1982-01-01

    The incorporation of 14 C-acetate in glucose in the blood and in glycogen in the liver of rats chronically irradiated with gamma radiation was observed in vivo. During the period of observation the concentration of glycogen in the liver was increased. Increased acetate incorporation in glycogen was, however, observed only on day 30 of exposure. No changes in glucose concentration and acetate incorporation in glucose in the blood were observed. (M.D.)

  10. Ketamine analgesia for inflammatory pain in neonatal rats: a factorial randomized trial examining long-term effects

    Directory of Open Access Journals (Sweden)

    Bhutta Adnan T

    2008-08-01

    Full Text Available Abstract Background Neonatal rats exposed to repetitive inflammatory pain have altered behaviors in young adulthood, partly ameliorated by Ketamine analgesia. We examined the relationships between protein expression, neuronal survival and plasticity in the neonatal rat brain, and correlated these changes with adult cognitive behavior. Methods Using Western immunoblot techniques, homogenates of cortical tissue were analyzed from neonatal rats 18–20 hours following repeated exposure to 4% formalin injections (F, N = 9, Ketamine (K, 2.5 mg/kg × 2, N = 9, Ketamine prior to formalin (KF, N = 9, or undisturbed controls (C, N = 9. Brain tissues from another cohort of rat pups (F = 11, K = 12, KF = 10, C = 15 were used for cellular staining with Fos immunohistochemistry or FluoroJade-B (FJB, followed by cell counting in eleven cortical and three hippocampal areas. Long-term cognitive testing using a delayed non-match to sample (DNMS paradigm in the 8-arm radial maze was performed in adult rats receiving the same treatments (F = 20, K = 24, KF = 21, C = 27 in the neonatal period. Results Greater cell death occurred in F vs. C, K, KF in parietal and retrosplenial areas, vs. K, KF in piriform, temporal, and occipital areas, vs. C, K in frontal and hindlimb areas. In retrosplenial cortex, less Fos expression occurred in F vs. C, KF. Cell death correlated inversely with Fos expression in piriform, retrosplenial, and occipital areas, but only in F. Cortical expression of glial fibrillary acidic protein (GFAP was elevated in F, K and KF vs. C. No significant differences occurred in Caspase-3, Bax, and Bcl-2 expression between groups, but cellular changes in cortical areas were significantly correlated with protein expression patterns. Cluster analysis of the frequencies and durations of behaviors grouped them as exploratory, learning, preparatory, consumptive, and foraging behaviors. Neonatal inflammatory pain exposure reduced exploratory behaviors in adult

  11. Renal dysfunction induced by long-term exposure to depleted uranium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guoying; Xiang, Xiqiao; Chen, Xiao; Wang, Lihua; Hu, Heping; Weng, Shifang [Fudan University, Institute of Radiation Medicine, Shanghai (China)

    2009-01-15

    Depleted uranium (DU) is a kind of radioactive heavy metal which can enter into the body via inhalation (aerosols), ingestion (drinking and eating) and wounds (embedded), and causes chemical and/or radiation-induced toxicities. In this study, male Sprague Dawley rats were surgically implanted in gastrocnemius muscle with DU fragments at three dose levels (low-dose, medium-dose and high-dose), with biologically inert tantalum (Ta) fragments served as controls. At 1 day, 7 days, and 3, 6, and 12 months after implantation, the rats were euthanized and tissue samples were collected, and uranium levels were measured in a variety of tissues by inductively coupled plasma-mass spectrometry (ICP-MS) to analyze the dynamic changes and distribution of uranium in rats. Thereafter, at 3, 6 and 12 months after implantation, the rats were euthanized after the collection of 24 h urine, blood and kidney samples were collected for analysis of DU-induced renal histopathologic changes and renal dysfunction. It was observed that DU concentrations in all the DU implanted groups were higher than that in Ta control group, and DU concentrations in the kidney increased with the implanted times, peaked at the 90 days after implantation, with a high correlation to the implanted DU doses, and then began to decrease gradually and slowly, and the DU concentrations in kidney still maintained at a relatively high level even at the 360 days after implantation. Otherwise, chronic DU contamination could induce the pathological changes of renal glomeruli, tubules and mesenchyme, such as interstitial fibrosis, enlarged interstice of renal tubular epithelial cells, tumefactions and necrosis of epithelial cells, shrinkage and disappearance of cavity of Bowman's capsule. By TEM, it was shown that the basement membrane of glomerulus was incrassated, mitochondrial of kidney proximal tubule had visible tumefaction and became bigger, and the mitochondrial cristae became shorter and disorderly in

  12. Renal dysfunction induced by long-term exposure to depleted uranium in rats

    International Nuclear Information System (INIS)

    Zhu, Guoying; Xiang, Xiqiao; Chen, Xiao; Wang, Lihua; Hu, Heping; Weng, Shifang

    2009-01-01

    Depleted uranium (DU) is a kind of radioactive heavy metal which can enter into the body via inhalation (aerosols), ingestion (drinking and eating) and wounds (embedded), and causes chemical and/or radiation-induced toxicities. In this study, male Sprague Dawley rats were surgically implanted in gastrocnemius muscle with DU fragments at three dose levels (low-dose, medium-dose and high-dose), with biologically inert tantalum (Ta) fragments served as controls. At 1 day, 7 days, and 3, 6, and 12 months after implantation, the rats were euthanized and tissue samples were collected, and uranium levels were measured in a variety of tissues by inductively coupled plasma-mass spectrometry (ICP-MS) to analyze the dynamic changes and distribution of uranium in rats. Thereafter, at 3, 6 and 12 months after implantation, the rats were euthanized after the collection of 24 h urine, blood and kidney samples were collected for analysis of DU-induced renal histopathologic changes and renal dysfunction. It was observed that DU concentrations in all the DU implanted groups were higher than that in Ta control group, and DU concentrations in the kidney increased with the implanted times, peaked at the 90 days after implantation, with a high correlation to the implanted DU doses, and then began to decrease gradually and slowly, and the DU concentrations in kidney still maintained at a relatively high level even at the 360 days after implantation. Otherwise, chronic DU contamination could induce the pathological changes of renal glomeruli, tubules and mesenchyme, such as interstitial fibrosis, enlarged interstice of renal tubular epithelial cells, tumefactions and necrosis of epithelial cells, shrinkage and disappearance of cavity of Bowman's capsule. By TEM, it was shown that the basement membrane of glomerulus was incrassated, mitochondrial of kidney proximal tubule had visible tumefaction and became bigger, and the mitochondrial cristae became shorter and disorderly in alignment

  13. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    Science.gov (United States)

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  14. Caffeine reduces apnea frequency and enhances ventilatory long-term facilitation in rat pups raised in chronic intermittent hypoxia.

    Science.gov (United States)

    Julien, Cécile A; Joseph, Vincent; Bairam, Aida

    2010-08-01

    The mechanisms underlying the therapeutic function of caffeine on apneas in preterm neonates are not well determined. To better understand these effects, we exposed rat pups from postnatal d 3-12 to chronic intermittent hypoxia (5% O2/100 s every 10 min; 6 cycles/h followed by 1 h at 21% O2, 24 h/d), a model mimicking hypoxemic exposure in apneic neonates. Then, using whole-body plethysmography, we evaluated minute ventilation, apnea frequency, and duration after i.p injection of caffeine citrate (20 mg/kg) or saline under normoxia and in response to either sustained (FiO2 12%, 20 min) or brief (FiO2 5%, 60 s, total 10 episodes of 8 min each) hypoxia. These tests were used to assess peripheral and central components of hypoxic response. The latter also assessed the ventilatory long-term facilitation during recovery (2 h). Caffeine injection increased minute ventilation under baseline and during recovery. This effect was correlated with a decrease in apnea frequency (not duration). On the contrary, caffeine did not change the ventilatory response to sustained or brief hypoxic exposure. These results suggest that the effects of caffeine on apnea depend on increased central normoxic respiratory drive and enhancement of ventilatory long-term facilitation rather than on higher hypoxic ventilatory response.

  15. The role of GABA in NMDA-dependent long term depression (LTD) of rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Della Torre, G; Capocchi, G; Zampolini, M; Pettorossi, V E

    1995-11-20

    The role of GABA in NMDA-dependent long term depression (LTD) in the medial vestibular nuclei (MVN) was studied on rat brainstem slices. High frequency stimulation (HFS) of the primary vestibular afferents induces a long lasting reduction of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the MVN. The induction but not the maintenance of this depression was abolished by AP5, a specific blocking agent for glutamate NMDA receptors. The involvement of GABA in mediating the depression was checked by applying the GABAA and GABAB receptor antagonists, bicuculline and saclofen, before and after HFS. Under bicuculline and saclofen perfusion, HFS provoked a slight potentiation of the N2 wave, while the N2 depression clearly emerged after drug wash-out. This indicates that GABA is not involved in inducing the long term effect, but it is necessary for its expression. Similarly, the LTD reversed and a slight potentiation appeared when both drugs were administered after its induction. Most of these effects were due to the bicuculline, suggesting that GABAA receptors contribute to LTD more than GABAB do. According to our results, it is unlikely that the long lasting vestibular depression is the result of a homosynaptic LTD. On the contrary, our findings suggest that the depression is due to an enhancement of the GABA inhibitory effect, caused by an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  16. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    Science.gov (United States)

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-02

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence.

  17. Autofluorescence dynamics during reperfusion following long-term renal ischemia in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Raman, R N; Pivetti, C D; Matthews, D L; Troppmann, C; Demos, S G

    2008-02-08

    Optical properties of near-surface kidney tissue were monitored in order to assess response during reperfusion to long (20 minutes) versus prolonged (150 minutes) ischemia in an in vivo rat model. Specifically, autofluorescence images of the exposed surfaces of both the normal and the ischemic kidneys were acquired during both injury and reperfusion alternately under 355 nm and 266 nm excitations. The temporal profile of the emission of the injured kidney during the reperfusion phase under 355 nm excitation was normalized to that under 266 nm as a means to account for changes in tissue optical properties independent of ischemia as well as changes in the illumination/collection geometrical parameters in future clinical implementation of this technique using a hand-held probe. The scattered excitation light signal was also evaluated as a reference signal and found to be inadequate. Characteristic time constants were extracted using fit to a relaxation model and found to have larger mean values following 150 minutes of injury. The mean values were then compared with the outcome of a chronic survival study where the control kidney had been removed. Rat kidneys exhibiting longer time constants were much more likely to fail. This may lead to a method to assess kidney viability and predict its ability to recover in the initial period following transplantation or resuscitation.

  18. Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Tryndyak, Volodymyr P.; Boyko, Alex; Rodriguez-Juarez, Rocio; Beland, Frederick A.; Kovalchuk, Olga

    2007-01-01

    Micro RNAs (miRNAs) are small non-coding RNA molecules that function as negative regulators of gene expression. They play a crucial role in the regulation of genes involved in the control of development, cell proliferation, apoptosis, and stress response. Although miRNA levels are substantially altered in tumors, their role in carcinogenesis, specifically at the early pre-cancerous stages, has not been established. Here we report that exposure of Fisher 344 rats to tamoxifen, a potent hepatocarcinogen in rats, for 24 weeks leads to substantial changes in the expression of miRNA genes in the liver. We noted a significant up-regulation of known oncogenic miRNAs, such as the 17-92 cluster, miR-106a, and miR-34. Furthermore, we confirmed the corresponding changes in the expression of proteins targeted by these miRNAs, which include important cell cycle regulators, chromatin modifiers, and expression regulators implicated in carcinogenesis. All these miRNA changes correspond to previously reported alterations in full-fledged tumors, including hepatocellular carcinomas. Thus, our findings indicate that miRNA changes occur prior to tumor formation and are not merely a consequence of a transformed state

  19. Experimental occlusal interference induces long-term masticatory muscle hyperalgesia in rats.

    Science.gov (United States)

    Cao, Ye; Xie, Qiu-Fei; Li, Kai; Light, Alan R; Fu, Kai-Yuan

    2009-08-01

    Temporomandibular joint or related masticatory muscle pain represents the most common chronic orofacial pain condition. Patients frequently report this kind of pain after dental alterations in occlusion. However, lack of understanding of the mechanisms of occlusion-related temporomandibular joint and muscle pain prevents treating this problem successfully. To explore the relationship between improper occlusion (occlusal interference) and masticatory muscle pain, we created an occlusal interference animal model by directly bonding a crown to a maxillary molar to raise the masticating surface of the tooth in rats. We raised the occlusal surface to three different heights (0.2, 0.4, and 0.6mm), and for one month we quantitatively measured mechanical nociceptive thresholds of the temporal and masseter muscles on both sides. Results showed a stimulus-response relationship between the height of occlusal interference and muscle hyperalgesia. Removal of the crown 6 days after occlusal interference showed that the removal at this time could not terminate the 1 month duration of mechanical hyperalgesia in the masticatory muscles. Lastly, we systemically administered NMDA antagonist MK801 (0.2, 0.1, and 0.05 mg/kg) to the treated rats and found that MK801 dose dependently attenuated the occlusal interference-induced hyperalgesia. These findings suggest that occlusal interference is directly related to masticatory muscle pain, and that central sensitization mechanisms are involved in the maintenance of the occlusal interference-induced mechanical hyperalgesia.

  20. Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Sato, Masao [Department of Biomolecular Sciences, Institute of Biomedical Sciences, Fukushima Medical College, Fukushima (Japan); Konno, Nobuhiro [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Fukushima, Masaaki [Department of Public Health, Fukushima Medical College, Fukushima (Japan)

    1996-11-01

    Cadmium (Cd), a highly toxic heavy metal, is distributed widely in the general environment of today. The characteristic clinical manifestations of chronic Cd intoxication include renal proximal tubular dysfunction, general osteomalacia with severe pains, and anemia. We have recently reported that the serum level of erythropoietin (EPO) remained low despite the severe anemia in patients with Itai-itai disease, the most severe form of chronic Cd intoxication. In order to prove that the anemia observed in chronic Cd intoxication arises from low production of EPO in the kidneys following the renal injury, we administered Cd to rats for a long period and performed the analysis of EPO mRNA inducibility in the kidneys. The rats administered Cd for 6 and 9 months showed anemia with low levels of plasma EPO as well as biochemical and histological renal tubular damage, and also hypoinduction of EPO mRNA in the kidneys. The results indicate that chronic Cd intoxication causes anemia by disturbing the EPO-production capacity of renal cells. (orig.). With 4 figs., 4 tabs.

  1. Renal content and output of epidermal growth factor in long-term adrenergic agonist-treated rats

    DEFF Research Database (Denmark)

    Thulesen, J; Nexø, Ebba; Poulsen, Steen Seier

    2000-01-01

    This study investigates the renal and urinary levels of epidermal growth factor (EGF) in rats under long-term treatment with alpha- or beta-adrenergic agonists. Urine samples were obtained on days 7, 14 and 21, and renal tissue samples on day 21. EGF was quantified by ELISA and tissue sections were...... material in the distal tubules. Concomitantly, reduced levels of EGF and EGF mRNA were observed, and also the urinary levels of EGF were reduced. Together, these observations indicate alpha-adrenergic treatment to affect the distal tubules. Treatment with the beta-adrenergic agonist did not change...... fractional kidney weight, but initially the urinary excretion of EGF was reduced. The data add further evidence to the suggestion that activity of the sympathetic nervous system influences renal homeostasis of EGF, either directly or indirectly through renal histopathological changes....

  2. Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Isenberg, Jacob D; Harmel, Allison T

    2017-01-01

    Activation of the angiotensin II type 2 receptor (AT2R) by administration of Compound 21 (C21), a selective AT2R agonist, induces neuroprotection in models of ischemic stroke in young adult animals. The mechanisms of this neuroprotective action are varied, and may include direct and indirect....... These findings demonstrate that the neuroprotection previously characterized only during earlier time points using stroke models in young animals is sustained long-term in aged rats, implying even greater clinical relevance for the study of AT2R agonists for the acute treatment of ischemic stroke in human....... Intraperitoneal injections of C21 (0.03mg/kg) after ischemic stroke induced by transient monofilament middle cerebral artery occlusion resulted in protective effects that were sustained for up to at least 3-weeks post-stroke. These included improved neurological function across multiple assessments...

  3. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Harrigan, Daniel J; Mitchell, Gordon S

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated super-oxide dismutase-1 (SOD1(G93A)), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1(G93A) (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600 μM; 12 μL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms

  4. Long-term treatment with nebivolol improves arterial reactivity and reduces ventricular hypertrophy in spontaneously hypertensive rats.

    Science.gov (United States)

    Guerrero, Estela; Voces, Felipe; Ardanaz, Noelia; Montero, María José; Arévalo, Miguel; Sevilla, María Angeles

    2003-09-01

    The aim of this study was to assess the effects of long-term nebivolol therapy on high blood pressure, impaired endothelial function in aorta, and damage observed in heart and conductance arteries in spontaneously hypertensive rats (SHR). For this purpose, SHR were treated for 9 weeks with nebivolol (8 mg/kg per day). Untreated SHR and Wistar Kyoto rats were used as hypertensive and normotensive controls, respectively. The left ventricle/body weight ratio was used as an index of cardiac hypertrophy, and to evaluate vascular function, responses induced by potassium chloride, noradrenaline, acetylcholine, and sodium nitroprusside were tested on aortic rings. Aortic morphometry and fibrosis were determined in parallel by a quantitative technique. Systolic blood pressure, measured by the tail-cuff method, was lower in treated SHR than in the untreated group (194 +/- 3 versus 150 +/- 4 mm Hg). The cardiac hypertrophy index was significantly reduced by the treatment. In aortic rings, treatment with nebivolol significantly reduced the maximal response to both KCl and NA in SHR. In vessels precontracted with phenylephrine relaxant, activity due to acetylcholine was higher in normotensive rats than in SHR and the treatment significantly improved this response. The effect of sodium nitroprusside on aortic rings was similar in all groups. Medial thickness and collagen content were significantly reduced in comparison with SHR. In conclusion, the chronic antihypertensive effect of nebivolol in SHR was accompanied by an improvement in vascular structure and function and in the cardiac hypertrophy index.

  5. Methylprednisolone as a memory enhancer in rats: Effects on aversive memory, long-term potentiation and calcium influx.

    Science.gov (United States)

    de Vargas, Liane da Silva; Gonçalves, Rithiele; Lara, Marcus Vinícius S; Costa-Ferro, Zaquer S M; Salamoni, Simone Denise; Domingues, Michelle Flores; Piovesan, Angela Regina; de Assis, Dênis Reis; Vinade, Lucia; Corrado, Alexandre P; Alves-Do-Prado, Wilson; Correia-de-Sá, Paulo; da Costa, Jaderson Costa; Izquierdo, Ivan; Dal Belo, Cháriston A; Mello-Carpes, Pâmela B

    2017-09-01

    It is well recognized that stress or glucocorticoids hormones treatment can modulate memory performance in both directions, either impairing or enhancing it. Despite the high number of studies aiming at explaining the effects of glucocorticoids on memory, this has not yet been completely elucidated. Here, we demonstrate that a low daily dose of methylprednisolone (MP, 5mg/kg, i.p.) administered for 10-days favors aversive memory persistence in adult rats, without any effect on the exploring behavior, locomotor activity, anxiety levels and pain perception. Enhanced performance on the inhibitory avoidance task was correlated with long-term potentiation (LTP), a phenomenon that was strengthen in hippocampal slices of rats injected with MP (5mg/kg) during 10days. Additionally, in vitro incubation with MP (30-300µM) concentration-dependently increased intracellular [Ca 2+ ] i in cultured hippocampal neurons depolarized by KCl (35mM). In conclusion, a low daily dose of MP for 10days may promote aversive memory persistence in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of short- and long-term feeding of L-carnitine and congeners on the production of eicosanoids from rat peritoneal leucocytes

    NARCIS (Netherlands)

    I.M. Garrelds (Ingrid); G.R. Elliott (G.); F.J. Zijlstra (Freek); I.L. Bonta

    1994-01-01

    textabstractThe effect of short- and long-term feeding with L-carnitine, L-acetyl carnitine and L-propionyl carnitine on the production of eicosanoids front in vitro stimulated carrageenan-induced rat peritoneal macrophages was investigated. Both young (4 weeks) and old (18 months) rats were used. A

  7. Effect of short- and long-term feeding of L-carnitine and its congeners on the production of eicosanoids from rat peritoneal leukocytes

    NARCIS (Netherlands)

    Garrelds, I.M.; Elliott, G.R.; Zijlstra, F.; Bonta, I.

    1994-01-01

    The effect of short- and long-term feeding with L-carnitine, L-acetyl carnitine and L-propionyl carnitine on the production of eicosanoids from in vitro stimulated carrageenan-induced rat peritoneal macrophages was investigated. Both young (4 weeks) and old (18 months) rats were used. A lower number

  8. Long-Term Effects of Intermittent Adolescent Alcohol Exposure in Male and Female Rats

    Directory of Open Access Journals (Sweden)

    Eva M. Marco

    2017-11-01

    Full Text Available Alcohol is a serious public health concern that has a differential impact on individuals depending upon age and sex. Patterns of alcohol consumption have recently changed: heavy episodic drinking—known as binge-drinking—has become most popular among the youth. Herein, we aimed to investigate the consequences of intermittent adolescent alcohol consumption in male and female animals. Thus, Wistar rats were given free access to ethanol (20% in drinking water or tap water for 2-h sessions during 3 days, and for an additional 4-h session on the 4th day; every week during adolescence, from postnatal day (pnd 28–52. During this period, animals consumed a moderate amount of alcohol despite blood ethanol concentration (BEC did not achieve binge-drinking levels. No withdrawal signs were observed: no changes were observed regarding anxiety-like responses in the elevated plus-maze or plasma corticosterone levels (pnd 53–54. In the novel object recognition (NOR test (pnd 63, a significant deficit in recognition memory was observed in both male and female rats. Western Blot analyses resulted in an increase in the expression of synaptophysin in the frontal cortex (FC of male and female animals, together with a decrease in the expression of the CB2R in the same brain region. In addition, adolescent alcohol induced, exclusively among females, a decrease in several markers of dopaminergic and serotonergic neurotransmission, in which epigenetic mechanisms, i.e., histone acetylation, might be involved. Taken together, further research is still needed to specifically correlate sex-specific brain and behavioral consequences of adolescent alcohol exposure.

  9. Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats.

    Science.gov (United States)

    Szemerszky, Renáta; Zelena, Dóra; Barna, István; Bárdos, György

    2010-01-15

    It is believed that different electromagnetic fields do have beneficial and harmful biological effects. The aim of the present work was to study the long-term consequences of 50 Hz electromagnetic field (ELF-EMF) exposure with special focus on the development of chronic stress and stress-induced psychopathology. Adult male Sprague-Dawley rats were exposed to ELF-EMF (50 Hz, 0.5 mT) for 5 days, 8h daily (short) or for 4-6 weeks, 24h daily (long). Anxiety was studied in elevated plus maze test, whereas depression-like behavior of the long-treated group was examined in the forced swim test. Some days after behavioral examination, the animals were decapitated among resting conditions and organ weights, blood hormone levels as well as proopiomelanocortin mRNA level from the anterior lobe of the pituitary gland were measured. Both treatments were ineffective on somatic parameters, namely none of the changes characteristic to chronic stress (body weight reduction, thymus involution and adrenal gland hypertrophy) were present. An enhanced blood glucose level was found after prolonged ELF-EMF exposure (p=0.013). The hormonal stress reaction was similar in control and short-term exposed rats, but significant proopiomelanocortin elevation (pfloating time; p=0.006) were found following long-term ELF-EMF exposure. Taken together, long and continuous exposure to relatively high intensity electromagnetic field may count as a mild stress situation and could be a factor in the development of depressive state or metabolic disturbances. Although we should stress that the average intensity of the human exposure is normally much smaller than in the present experiment.

  10. Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats.

    Directory of Open Access Journals (Sweden)

    Douglas M Bennion

    Full Text Available Activation of the angiotensin II type 2 receptor (AT2R by administration of Compound 21 (C21, a selective AT2R agonist, induces neuroprotection in models of ischemic stroke in young adult animals. The mechanisms of this neuroprotective action are varied, and may include direct and indirect effects of AT2R activation. Our objectives were to assess the long-term protective effects of post-stroke C21 treatments in a clinically-relevant model of stroke in aged rats and to characterize the cellular localization of AT2Rs in the mouse brain of transgenic reporter mice following stroke. Intraperitoneal injections of C21 (0.03mg/kg after ischemic stroke induced by transient monofilament middle cerebral artery occlusion resulted in protective effects that were sustained for up to at least 3-weeks post-stroke. These included improved neurological function across multiple assessments and a significant reduction in infarct volume as assessed by magnetic resonance imaging. We also found AT2R expression to be on neurons, not astrocytes or microglia, in normal female and male mouse brains. Stroke did not induce altered cellular localization of AT2R when assessed at 7 and 14 days post-stroke. These findings demonstrate that the neuroprotection previously characterized only during earlier time points using stroke models in young animals is sustained long-term in aged rats, implying even greater clinical relevance for the study of AT2R agonists for the acute treatment of ischemic stroke in human disease. Further, it appears that this sustained neuroprotection is likely due to a mix of both direct and indirect effects stemming from selective activation of AT2Rs on neurons or other cells besides astrocytes and microglia.

  11. Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats.

    Science.gov (United States)

    Bennion, Douglas M; Isenberg, Jacob D; Harmel, Allison T; DeMars, Kelly; Dang, Alex N; Jones, Chad H; Pignataro, Megan E; Graham, Justin T; Steckelings, U Muscha; Alexander, Jon C; Febo, Marcelo; Krause, Eric G; de Kloet, Annette D; Candelario-Jalil, Eduardo; Sumners, Colin

    2017-01-01

    Activation of the angiotensin II type 2 receptor (AT2R) by administration of Compound 21 (C21), a selective AT2R agonist, induces neuroprotection in models of ischemic stroke in young adult animals. The mechanisms of this neuroprotective action are varied, and may include direct and indirect effects of AT2R activation. Our objectives were to assess the long-term protective effects of post-stroke C21 treatments in a clinically-relevant model of stroke in aged rats and to characterize the cellular localization of AT2Rs in the mouse brain of transgenic reporter mice following stroke. Intraperitoneal injections of C21 (0.03mg/kg) after ischemic stroke induced by transient monofilament middle cerebral artery occlusion resulted in protective effects that were sustained for up to at least 3-weeks post-stroke. These included improved neurological function across multiple assessments and a significant reduction in infarct volume as assessed by magnetic resonance imaging. We also found AT2R expression to be on neurons, not astrocytes or microglia, in normal female and male mouse brains. Stroke did not induce altered cellular localization of AT2R when assessed at 7 and 14 days post-stroke. These findings demonstrate that the neuroprotection previously characterized only during earlier time points using stroke models in young animals is sustained long-term in aged rats, implying even greater clinical relevance for the study of AT2R agonists for the acute treatment of ischemic stroke in human disease. Further, it appears that this sustained neuroprotection is likely due to a mix of both direct and indirect effects stemming from selective activation of AT2Rs on neurons or other cells besides astrocytes and microglia.

  12. The Effect of Synchronized Forced Running with Chronic Stress on Short, Mid and Long- term Memory in Rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad-Reza; Hosseini, Nasrin

    2013-03-01

    Impairment of learning and memory processes has been demonstrated by many studies using different stressors. Other reports suggested that exercise has a powerful behavioral intervention to improve cognitive function and brain health. In this research, we investigated protective effects of treadmill running on chronic stress-induced memory deficit in rats. Fifty male Wistar rats were randomly divided into five groups (n=10) as follows: Control (Co), Sham (Sh), Stress (St), Exercise (Ex) and Stress and Exercise (St & Ex) groups. Chronic restraint stress was applied by 6h/day/21days and also treadmill running at a speed 20-21m/min for 1h/day/21days. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. OUR RESULTS SHOWED THAT: 1) Although exercise alone showed beneficial effects especially on short and mid-term memory (Pshort, mid and long-term memory deficit in stressed rats. 2) Short and mid-term memory deficit was significantly (PMemory deficit in synchronized exercise with stress group was nearly similar to stressed rats. 4) Helpful effects of exercise were less than harmful effects of stress when they were associated together. The data correspond to the possibility that although treadmill running alone has helpful effects on learning and memory consolidation, but when it is synchronized with stress there is no significant benefit and protective effects in improvement of memory deficit induced by chronic stress. However, it is has a better effect than no training on memory deficit in stressed rats.

  13. Effect of long-term administration of dietary fiber on the exocrine pancreas in the rat.

    Science.gov (United States)

    Sommer, H; Kasper, H

    1984-08-01

    Male Sprague-Dawley rats (50--70g) were fed a standard laboratory diet containing 6% dietary fiber substances (diet I), the same diet supplemented with 5% guar (diet II), 10% wheat bran (diet III), or 5% pectin of high (76%) methylic esterification (diet IV), or a fiber-free diet (diet V). After a 6-week feeding period, the body weight of the animals had increased to 300--350g. The common bile duct was then canulated and the exocrine pancreatic function tested under urethane anesthesia (1.5 g/kg body weight). The tested fiber substances had no effect on the basal pancreatic secretion of volume, bicarbonate, lipase, amylase or protein, or on the wet weight and histological appearance of the organ. However, the fiber substances influenced the pancreatic response to maximal exogenous stimulation with secretin (3.0 CU/100 g X hour) and cholecystokinin (0.6 IDU/100 g X hour) and the enzyme content of the gland significantly. Compared with diet V, diet I increased the DNA content of the pancreas and its secretion of bicarbonate and protein, and decreased the protein concentration in the gland. Diet II reduced the pancreatic content of trypsinogen and protein. Diet III decreased the protein content, but increased the bicarbonate secretion, which was also increased by diet IV. -- We conclude that fiber substances influence stimulated secretion and the enzyme content of the pancrease to a varying degree.

  14. Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats.

    Directory of Open Access Journals (Sweden)

    Barbara Strojny

    Full Text Available Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects.

  15. Long-term radiobiological effects in rats after exposure of 131I in utero

    Directory of Open Access Journals (Sweden)

    V. V. Talko

    2017-12-01

    Full Text Available Remote radiobiological effects in male rats prenatally exposed by 131I in different periods of gestation were studied. It was established that the negative effects of irradiation of 131I in utero in the distant period are manifested by disorders of the functioning of the pituitary-thyroid link of endocrine regulation, pro-antioxidant equilibrium, changes in the lipid-lipoprotein spectrum of blood serum. As a result of irradiation of 131I in utero throughout the period of gestation, discoordination in the functioning of the pituitary-thyroid link of endocrine regulation, a violation of the pro-antioxidant balance by increasing the intensity of lipoperoxidation processes and the activity reducing of enzymes of antioxidant defense, the atherogenic orientation of changes in the lipid-lipoprotein spectrum was established. As a result of irradiation by 131I in utero during the third trimester of gestation, the development of hypothyroidism, changes in pro-antioxidant balance due to the activation of antioxidant defense, and the reduction of the concentration of the main classes of lipids have been established.

  16. Changes in rat plasma fibrinolytic factors during long term follow up after whole body irradiation

    International Nuclear Information System (INIS)

    Dudek-Wojciechowska, G.; Dancewicz, A.M.

    1989-01-01

    Rats were whole body irradiated with a dose of 7.0 Gy and then bled at different times after exposure, from 1 day to 12 months; in their plasma the activity of plasmin, the level of plasminogen, the activity of plasminogen activator as well as α 2 -antiplasmin and α 2 -macroglobulin were determined. In comparison to control values obtained in parallel determinations it was found that during the acute phase of radiation disease (up to 30 days after irradiation) the activity of plasmin and the level of plasminogen underwent fluctuation: at the beginning there was an increase, followed by a decrease at later time intervals. There was also a distinct decrease (over 50%) in the activity of plasminogen activator. During the 2 to 4 weeks after exposure the activity of inhibitors was somewhat decreased, especially that of α 2 -macroglobulin. At later periods the level of plasminogen and the activity of plasminogen activator returned to normal but that of plasmin underwent fluctuation again, reaching a significant decrease in activity 6 and 12 months after exposure. At these time points also some decrease in activity of inhibitors was observed, especially in that of α 2 -macroglobulin. 11 refs., 1 fig., 2 tabs. (author)

  17. Short- and long-term effects of irradiation on laryngeal mucosa of the rat

    International Nuclear Information System (INIS)

    Lidegran, M.; Forsgren, S.; Dahlqvist, Aa.; Franzen, L.; Domeij, S.

    1999-01-01

    Although radiotherapy is often used to treat laryngeal carcinoma, there is little information on the effects of this treatment on laryngeal structures. Rats were irradiated to the head and neck region and the larynges were studied by light- and electron-microscopy and immunohistochemistry. Ten days after irradiation, a change in the ultrastructural appearance of the granules of the subglottic glands was observed. Substance P-, bombesin- and enkephalin-like immunoreactivity was increased in local ganglionic cells and glandular nerve fibres. The mast cells were reduced in number. At examination 4-6 months after irradiation, there were no obvious differences compared with controls concerning mast-cell numbers and neuropeptide expression. The ultrastructural changes seen in the subglottic glands remained to some extent. The results show that structural changes in the subglottic glands occur concomitantly with an increased expression of certain neuropeptides in the innervation of these glands, which implies a relationship between these two parameters. The mast cells respond drastically to irradiation, but in the long run, regeneration of these cells occurs. (orig.)

  18. Long term evolution of the immune response in the rat irradiated at mean and high doses

    International Nuclear Information System (INIS)

    Malarbet, J.L.; Veyrat, M.; Le Go, R.; Prudhomme, J.; Genest, L.; Castelnau, L.

    1977-01-01

    In irradiated animals, the lymphocytes, immunity vectors, are quickly and quantitatively depressed. Their ability to respond to an antigenic stimulus was tested in rats during post-irradiation lymphopenia and after restoration of normal lymphocytosis. The antigenic stimulus, sheep erythrocytes, was applied first 2 and 3 weeks, then 1, 2 and 3 months after exposures to 60 Co gamma rays (doses 300 and 600 rads). This study covered the 3rd through the 10th day after immunisation. Blood lymphocytes were separated by the Ficoll-Contrix gradient method and spleen lymphocytes were obtained by crushing. A lymphocyte sub-population separation was obtained from centrifugation on 4 discontinuous Ficoll-Contrix gradients. Size distribution spectra show that the lighter sub-population is made up of large-sized cells and that the heavier the cells, the smaller they are. The determination of surface immunoglobulins with fluorescent antigens shows that cells bearing immunoglobulins are predominant in the low-density sub-population. The measurement of electrophoretic mobility shows a low-mobility, low-density population and a higher density, faster mobility population which could reflect a higher proportion of B-cells in the low density population and of T-cells in the higher density population. The immune response was tested on the sub-populations. The rosette-forming ability was depressed during 1 month after irradiation then became progressively normal. The cellular plaque-forming ability was markedly suppressed 15 days after irradiation, but was soon active again. These results show the qualitative aspect of the post-irradiation immune defect [fr

  19. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    Science.gov (United States)

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Uptake in the pancreatic islets of nicotimamide, nicotinic acid and tryptophan and their ability to prevent streptozotocin diabetes in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tjaelve, H; Wilander, E [Uppsala Univ. (Sweden)

    1976-01-01

    The uptake of the nicotinamide adenine dinucleotide (NAD)-precursors nicotinamide, nicotinic acid and tryptophan in the pancreatic islets of mice was studied by use of autoradio-graphical methods. The ability of these substances to prevent streptozotocin diabetes was studied in the same species. It was found that only nicotinamide was strongly accumulated in the pancreatic islets and nicotinamide was also the only NAD-precursor which protected against the streptozotocin diabetes. Apparently there is a relationship between the ability of the NAD-precursors to be taken up in the pancreatic islets and their ability to prevent streptozotocin diabetes.

  1. The long term effects of {sup 137}Cs {gamma}-rays and tritiated water on induction on teratogenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Shuneki [Hiroshima Univ., Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2003-07-01

    The purpose of the present study is to evaluate the teratogenesis caused by {sup 137}Cs {gamma}-rays radiation and tritiated water (tritium {beta}-rays, HTO) in rats under long-term exposures. Many congenital anomalies are caused by environmental factors, and it is likely that this assessment of teratogenesis will be very important in the future. Pregnant Donryu strain rats were irradiated with {sup 137}Cs {gamma}-rays on days 9-18 of gestation. The animals were sacrificed on day 18 of gestation and the contents of each uterine horn were examined. The numbers of surviving, dead and resorbed fetuses were recorded. The surviving fetuses were examined for external and visceral malformations. Also given here is a measure of the relative biological effectiveness (RBE) of tritiated water (HTO) compared to that for {sup 137}Cs {gamma}-rays regarding the induction of developmental anomalies such as neurocristopathy in pregnant Donryu rats. Radiation exposures were approximately 0, 1, 2, 3, 4, 5 and 6 Gy for both tritiated water and {sup 137}Cs {gamma}-rays. Teratogenesis was dose dependent for both radiation groups. Our studies show that {sup 137}Cs {gamma}-rays and HTO irradiation induce similar malformations of the cardiovascular, respiratory and skeletal systems in rat fetuses. However, a number of fetuses exhibiting growth retardation, general edema, persistent atrioventricular canal, eye defects, microcephaly and craniofacial defects following maternal exposure to HTO. These include hypoplasia of the pulmonary trunk (tetralogy of Fallot), DORV, ventricular septal defect, right aortic arch, coarctation of the aorta, aberrant right subclavian artery, hypoplasia of the thymus, craniofacial anomalies, hypoplasia or incomplete lungs and trachea, as well as limb and tail malformations in HTO syndrome. These results are similar to those found in human DiGeorge syndrome, which are considered pharyngeal arch syndromes related to a cephalic neutrocristopathy. A best estimation

  2. Effects of stress on catecholamine stores in central and peripheral tissues of long-term socially isolated rats.

    Science.gov (United States)

    Dronjak, S; Gavrilovic, L

    2006-06-01

    Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4 degrees C, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(3H-methyl)-methionine was used. The O-methylated derivatives were oxidized to 3H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.

  3. Effects of stress on catecholamine stores in central and peripheral tissues of long-term socially isolated rats

    Directory of Open Access Journals (Sweden)

    Dronjak S.

    2006-01-01

    Full Text Available Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4ºC, 2 h, were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(³H-methyl-methionine was used. The O-methylated derivatives were oxidized to ³H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18% and hippocampal dopamine (about 20% stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39% in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20% as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.

  4. Long-term Levodopa Treatment Accelerates the Circadian Rhythm Dysfunction in a 6-hydroxydopamine Rat Model of Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Si-Yue Li; Ya-Li Wang; Wen-Wen Liu; Dong-Jun Lyu; Fen Wang; Cheng-Jie Mao; Ya-Ping Yang; Li-Fang Hu; Chun-Feng Liu

    2017-01-01

    Background:Parkinson's disease (PD) patients with long-term levodopa (L-DOPA) treatment are suffering from severe circadian dysfunction.However,it is hard to distinguish that the circadian disturbance in patients is due to the disease progression itself,or is affected by L-DOPA replacement therapy.This study was to investigate the role of L-DOPA on the circadian dysfunction in a rat model of PD.Methods:The rat model of PD was constructed by a bilateral striatal injection with 6-hydroxydopamine (6-OHDA),followed by administration of saline or 25 mg/kg L-DOPA for 21 consecutive days.Rotarod test,footprint test,and open-field test were carried out to evaluate the motor function.Striatum,suprachiasmatic nucleus (SCN),liver,and plasma were collected at 6:00,12:00,18:00,and 24:00.Quantitative real-time polymerase chain reaction was used to examine the expression of clock genes.Enzyme-linked immunosorbent assay was used to determine the secretion level of cortisol and melatonin.High-performance liquid chromatography was used to measure the neurotransmitters.Analysis of variance was used for data analysis.Results:L-DOPA alleviated the motor deficits induced by 6-OHDA lesions in the footprint and open-field test (P < 0.01,P < 0.001,respectively).After L-DOPA treatment,Bmal1 decreased in the SCN compared with 6-OHDA group at 12:00 (P < 0.01) and 24:00 (P < 0.001).In the striatum,the expression ofBmal1,Rorα was lower than that in the 6-OHDA group at 18:00 (P < 0.05) and L-DOPA seemed to delay the peak of Per2 to 24:00.In liver,L-DOPA did not affect the rhythmicity and expression of these clock genes (P > 0.05).In addition,the cortisol secretion was increased (P > 0.05),but melatonin was further inhibited after L-DOPA treatment at 6:00 (P < 0.01).Conclusions:In the circadian system of advanced PD rat models,circadian dysfunction is not only contributed by the degeneration of the disease itself but also long-term L-DOPA therapy may further aggravate it.

  5. Influence of minerals on lead-induced alterations in liver function in rats exposed to long-term lead exposure

    International Nuclear Information System (INIS)

    Herman, D'souza Sunil; Geraldine, Menezes; T, Venkatesh

    2009-01-01

    The objective of this study was to evaluate the role of minerals on lead-induced effect on the liver. Differentiation of minerals and heavy metals pose an inherent problem due to certain common properties shared by them. With this approach to the problem of heavy metal toxicity, in the present study two groups of male Wistar albino rats, one group (well-nourished) fed on mineral rich diet and other group (undernourished) fed on diet without mineral supplements were used. Both the groups of rats were subjected to long-term lead exposure. The diet of well-nourished group was supplemented with calcium (Ca); 1.2%, phosphorous (P); 0.6%, iron (Fe); 90 mg/kg, zinc (Zn); 50 mg/kg, magnesium (Mg); 0.08%, manganese (Mn); 70 mg/kg, selenium (Se); 0.2 mg/kg, copper (Cu); 5 mg/kg, molybdenum (Mo); 0.8 mg/kg, iodine (I); 0.6 mg/kg, cobalt (Co); 3.0 mg/kg. Their blood lead and parameters of liver function were monitored periodically. Results of the study showed a very high statistically significant increase (p < 0.001) in the blood lead (PbB) levels and liver function test parameters in the undernourished subjects compared to the well-nourished subjects. Nutritional management of lead poisoning is of importance since essential elements and toxic heavy metals may interact to minimize the absorption of lead.

  6. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    Science.gov (United States)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  7. Influence of minerals on lead-induced alterations in liver function in rats exposed to long-term lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D' souza Sunil, E-mail: hermansdsouza@rediffmail.com [Department of Biotechnology, Manipal Life Sciences Centre, KMC, Manipal University, Manipal (India); Geraldine, Menezes, E-mail: gere1@rediffmail.com [Department of Biochemistry and Biophysics, St. John' s Medical College, Koramangala, Bangalore 560034, Karnataka (India); T, Venkatesh, E-mail: venky_tv@hotmail.com [Department of Biochemistry and Biophysics, St. John' s Medical College, Koramangala, Bangalore 560034, Karnataka (India)

    2009-07-30

    The objective of this study was to evaluate the role of minerals on lead-induced effect on the liver. Differentiation of minerals and heavy metals pose an inherent problem due to certain common properties shared by them. With this approach to the problem of heavy metal toxicity, in the present study two groups of male Wistar albino rats, one group (well-nourished) fed on mineral rich diet and other group (undernourished) fed on diet without mineral supplements were used. Both the groups of rats were subjected to long-term lead exposure. The diet of well-nourished group was supplemented with calcium (Ca); 1.2%, phosphorous (P); 0.6%, iron (Fe); 90 mg/kg, zinc (Zn); 50 mg/kg, magnesium (Mg); 0.08%, manganese (Mn); 70 mg/kg, selenium (Se); 0.2 mg/kg, copper (Cu); 5 mg/kg, molybdenum (Mo); 0.8 mg/kg, iodine (I); 0.6 mg/kg, cobalt (Co); 3.0 mg/kg. Their blood lead and parameters of liver function were monitored periodically. Results of the study showed a very high statistically significant increase (p < 0.001) in the blood lead (PbB) levels and liver function test parameters in the undernourished subjects compared to the well-nourished subjects. Nutritional management of lead poisoning is of importance since essential elements and toxic heavy metals may interact to minimize the absorption of lead.

  8. Role of platelet-activating factor in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1998-06-01

    In rat brain stem slices, we investigated the role of platelet activating factor (PAF) in long-term potentiation (LTP) induced in the ventral part of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferent. The synaptosomal PAF receptor antagonist, BN-52021 was administered before and after HFS. BN-52021 did not modify the vestibular potentials under basal conditions, but it reduced the magnitude of potentiation induced by HFS, which completely developed after the drug wash-out. The same effect was obtained by using CV-62091, a more potent PAF antagonist at microsomal binding sites, but with concentrations higher than those of BN-52021. By contrast both BN-52021 and CV-6209 had no effect on the potentiation once induced. This demonstrates that PAF is involved in the induction but not in the maintenance of vestibular long-term effect through activation of synaptosomal PAF receptors. In addition, we analyzed the effect of the PAF analogue, 1-O-hexadecyl-2-O- (methylcarbamyl)-sn-glycero-3-phosphocoline (MC-PAF) and the inactive PAF metabolite, 1-O-hexadecyl-sn-glycero-3-phosphocoline (Lyso-PAF) on vestibular responses. Our results show that MC-PAF, but not Lyso-PAF induced potentiation. This potentiation was prevented by D,L-2-amino 5-phosphonopentanoic acid, suggesting an involvement of N-methyl-D-aspartate receptors. Furthermore, under BN-52021 and CV-6209, the MC-PAF potentiation was reduced or abolished. The dose-effect curve of MC-PAF showed a shift to the right greater under BN-52021 than under CV-6209, confirming the main dependence of MC-PAF potentiation on the activation of synaptosomal PAF receptors. Our results suggest that PAF can be released in the MVN after the activation of postsynaptic mechanisms triggering LTP, and it may act as a retrograde messenger which activates the presynaptic mechanisms facilitating synaptic plasticity.

  9. Experimental Inoculation in Rats and Mice by the Giant Marseillevirus Leads to Long-Term Detection of Virus

    Directory of Open Access Journals (Sweden)

    Sarah Aherfi

    2018-03-01

    hypothesis of an infective potential of the virus in certain conditions. Its constant and long-term detection in nasal associated lymphoid tissue in mice after an aerosol exposure suggests the involvement of naso-pharyngeal associated lymphoid tissues in protecting the host against environmental Marseillevirus.

  10. Labeling of hepatic glycogen after short- and long-term stimulation of glycogen synthesis in rats injected with 3H-galactose

    International Nuclear Information System (INIS)

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1990-01-01

    The effects of short- and long-term stimulation of glycogen synthesis elicited by dexamethasone were studied by light (LM) and electron (EM) microscopic radioautography (RAG) and biochemical analysis. Adrenalectomized rats were fasted overnight and pretreated for short- (3 hr) or long-term (14 hr) periods with dexamethasone prior to intravenous injection of tracer doses of 3H-galactose. Analysis of LM-RAGs from short-term rats revealed that about equal percentages (44%) of hepatocytes became heavily or lightly labeled 1 hr after labeling. The percentage of heavily labeled cells increased slightly 6 hr after labeling, and unlabeled glycogen became apparent in some hepatocytes. The percentage of heavily labeled cells had decreased somewhat 12 hr after labeling, and more unlabeled glycogen was evident. In the long-term rats 1 hr after labeling, a higher percentage of heavily labeled cells (76%) was observed compared to short-term rats, and most glycogen was labeled. In spite of the high amount of labeling seen initially, the percentage of heavily labeled hepatocytes had decreased considerably to 55% by 12 hr after injection; and sparsely labeled and unlabeled glycogen was prevalent. The EM-RAGs of both short- and long-term rats were similar. Silver grains were associated with glycogen patches 1 hr after labeling; 12 hr after labeling, the glycogen patches had enlarged; and label, where present, was dispersed over the enlarged glycogen clumps. Analysis of DPM/mg tissue corroborated the observed decrease in label 12 hr after administration in the long-term animals. The loss of label observed 12 hr after injection in the long-term pretreated rats suggests that turnover of glycogen occurred during this interval despite the net accumulation of glycogen that was visible morphologically and evident from biochemical measurement

  11. The ethanol metabolite acetaldehyde inhibits the induction of long-term potentiation in the rat dentate gyrus in vivo

    Science.gov (United States)

    Abe, Kazuho; Yamaguchi, Shinichi; Sugiura, Minoru; Saito, Hiroshi

    1999-01-01

    Ethanol has been reported to inhibit the induction of long-term potentiation (LTP) in the hippocampus. However, the correlation between the effects of ethanol in vivo and in vitro remained unclear. In addition, previous works have little considered the possibility that the effect of ethanol is mediated by its metabolites. To solve these problems, we investigated the effects of ethanol and acetaldehyde, the first metabolite in the metabolism of ethanol, on the induction of LTP at medial perforant path-granule cell synapses in the dentate gyrus of anaesthetized rats in vivo.Oral administration of 1 g kg−1 ethanol significantly inhibited the induction of LTP, confirming the effectiveness of ethanol in vivo.A lower dose of ethanol (0.5 g kg−1) failed to inhibit the induction of LTP in intact rats, but significantly inhibited LTP in rats treated with disulfiram, an inhibitor of aldehyde dehydrogenase, demonstrating that LTP is inhibited by acetaldehyde accumulation following ethanol administration.Intravenous injection of acetaldehyde (0.06 g kg−1) significantly inhibited the induction of LTP.The inhibitory effect of acetaldehyde on LTP induction was also observed when it was injected into the cerebroventricules, suggesting that acetaldehyde has a direct effect on the brain. The intracerebroventricular dose of acetaldehyde effective in inhibiting LTP induction (0.1–0.15 mg brain−1) was approximately 10 fold lower than that of ethanol (1.0–1.5 mg brain−1).It is possible that acetaldehyde is partly responsible for memory impairments induced by ethanol intoxication. PMID:10482910

  12. Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Neuropeptide Y (NPY produced by arcuate nucleus (ARC neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change. The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase and down-regulation (0.5-fold decrease of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased, suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.

  13. Kinetics of cardiac and vascular remodeling by spontaneously hypertensive rats after discontinuation of long-term captopril treatment

    Directory of Open Access Journals (Sweden)

    W.A. Rocha

    2010-04-01

    Full Text Available Angiotensin-converting enzyme inhibitors reduce blood pressure and attenuate cardiac and vascular remodeling in hypertension. However, the kinetics of remodeling after discontinuation of the long-term use of these drugs are unknown. Our objective was to investigate the temporal changes occurring in blood pressure and vascular structure of spontaneously hypertensive rats (SHR. Captopril treatment was started in the pre-hypertensive state. Rats (4 weeks were assigned to three groups: SHR-Cap (N = 51 treated with captopril (1 g/L in drinking water from the 4th to the 14th week; SHR-C (N = 48 untreated SHR; Wistar (N = 47 control rats. Subgroups of animals were studied at 2, 4, and 8 weeks after discontinuation of captopril. Direct blood pressure was recorded in freely moving animals after femoral artery catheterism. The animals were then killed to determine left ventricular hypertrophy (LVH and the aorta fixed at the same pressure measured in vivo. Captopril prevented hypertension (105 ± 3 vs 136 ± 5 mmHg, LVH (2.17 ± 0.05 vs 2.97 ± 0.14 mg/g body weight and the increase in cross-sectional area to luminal area ratio of the aorta (0.21 ± 0.01 vs 0.26 ± 0.02 μm² (SHR-Cap vs SHR-C. However, these parameters increased progressively after discontinuation of captopril (22nd week: 141 ± 2 mmHg, 2.50 ± 0.06 mg/g, 0.27 ± 0.02 μm². Prevention of the development of hypertension in SHR by using captopril during the prehypertensive period prevents the development of cardiac and vascular remodeling. Recovery of these processes follows the kinetic of hypertension development after discontinuation of captopril.

  14. Antioxidant supplementation decreases the cell death rate in the prostatic stromal tissue of long-term castrated rats

    Directory of Open Access Journals (Sweden)

    Guilherme Fartes

    2012-06-01

    Full Text Available OBJECTIVE: The purpose of this study was to compare the effects of castration on cell death rate of the adult rat prostates and to evaluate the benefic action of alpha tocopherol supplementation to avoid apoptosis post-orchiectomy. MATERIAL AND METHODS: Thirty male Wistar rats weighing 250-300g were divided into three groups: group I - they were subjected to bilateral orchiectomy and sacrificed eight weeks after the procedure; group II - subjected to bilateral orchiectomy and alpha-tocopherol supplementation for four weeks preceding the procedure; and group III - subjected to bilateral orchiectomy and alpha-tocopherol supplementation for four weeks preceding the procedure and for eight weeks afterwards. At the end of the experiment, the prostatectomy was performed in all rats. The presence of oxidative stress was determined by assaying the blood level of 8-isoprostane and the occurrence of apoptosis was evaluated by identification of active caspase-3 through immunohistochemical analysis. RESULTS: The statistic analysis of active caspase-3 showed that in the long-term castrated group the detection was higher than in groups were the alpha-tocopherol was supplemented (p=0.007. Analysis of 8-isoprostane levels showed higher concentrations of reactive oxygen species in group I compared to other groups (p<0.05. Groups II and III presented active caspase-3 lower than in group I (p<0.05. CONCLUSION: Our exploratory analyses demonstrate a method to study the aging process and its influence on oxidative stress of prostatic tissue and cells death rate. Based on our results we can suggest that alpha tocopherol supplementation can decrease the apoptotic process as well as the oxidative stress levels induced by androgen deprivation of the prostate gland.

  15. Long-Term Impact of Immunosuppressants at Therapeutic Doses on Male Reproductive System in Unilateral Nephrectomized Rats: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yehui Chen

    2013-01-01

    Full Text Available Cyclosporine, tacrolimus, and sirolimus are commonly used in renal transplant recipients to prevent rejection. However, information for comparative effects of these agents on the male productive system is extremely limited and controversial. In a physiologically and clinically relevant rat model of unilateral nephrectomy, we demonstrated that long-term oral administration of both cyclosporine and sirolimus at doses equivalent to the therapeutic levels used for postrenal transplant patients significantly affects testicular development and the hypothalamic-pituitary-gonadal axis accompanied by profound histological changes of testicular structures on both light and electron microscopic examinations. Spermatogenesis was also severely impaired as indicated by low total sperm counts along with reduction of sperm motility and increase in sperm abnormality after treatment with these agents, which may lead to male infertility. On the other hand, treatment with therapeutic dose of tacrolimus only induced mild reduction of sperm count without histological evidence of testicular injury. The current study clearly demonstrates that commonly used immunosuppressants have various impacts on male reproductive system even at therapeutic levels. Our data provide useful information for the assessment of male infertility in renal transplant recipients who wish to father children. Clinical trials to address these issues should be urged.

  16. Region-selective effects of long-term lithium and carbamazepine administration on cyclic AMP levels in rat brain

    International Nuclear Information System (INIS)

    Wiborg, Ove; Krueger, Tanja; Jakosen, Soeren N.

    1999-01-01

    The effect of lithium and carbamazepine in the treatment of bipolar affective disorder is well established. Althougt a number of biochemical effects have been found, the exact molecular mechanisms underlying their therapeutic actions have not been elucidated nor are the target regions in the brain identified. Taken into account the important role of the cyclic AMP second messenger system in the regulation of neuronal exitability and the indications of its involvement in the pathophysiology of bipolar affective disorder, we have focused on the drug effects on cyclic AMP levels. The objectives of this investigation were to measure the effects on basal cyclic AMP levels, and to locate target regions within the rat brain after long-term administration of lithium and carbamazepine. Drug treatments were carried out for a period of 28 days. After either drug treatment the cyclic AMP level was increased 3-4 times in frontal cortex but unchanged in hippocampus, hypothalamus, thalamus, amygdala and in cerebellum. In neostratum the cyclic AMP level was decreased to about 30% after treatment with lithium. We suggest the common region-selective effect, observed for both drugs in frontal cortex, to be essential for the therapeutic actions of lithium and carbamazepine. (au)

  17. Region-selective effects of long-term lithium and carbamazepine administration on cyclic AMP levels in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wiborg, Ove; Krueger, Tanja; Jakosen, Soeren N. [Psychiatric Hospital, Dept. of Biological Psychiatry, Risskov (Denmark)

    1999-02-01

    The effect of lithium and carbamazepine in the treatment of bipolar affective disorder is well established. Althougt a number of biochemical effects have been found, the exact molecular mechanisms underlying their therapeutic actions have not been elucidated nor are the target regions in the brain identified. Taken into account the important role of the cyclic AMP second messenger system in the regulation of neuronal exitability and the indications of its involvement in the pathophysiology of bipolar affective disorder, we have focused on the drug effects on cyclic AMP levels. The objectives of this investigation were to measure the effects on basal cyclic AMP levels, and to locate target regions within the rat brain after long-term administration of lithium and carbamazepine. Drug treatments were carried out for a period of 28 days. After either drug treatment the cyclic AMP level was increased 3-4 times in frontal cortex but unchanged in hippocampus, hypothalamus, thalamus, amygdala and in cerebellum. In neostratum the cyclic AMP level was decreased to about 30% after treatment with lithium. We suggest the common region-selective effect, observed for both drugs in frontal cortex, to be essential for the therapeutic actions of lithium and carbamazepine. (au) 46 refs.

  18. End-to-side neurorraphy: a long-term study of neural regeneration in a rat model.

    Science.gov (United States)

    Tarasidis, G; Watanabe, O; Mackinnon, S E; Strasberg, S R; Haughey, B H; Hunter, D A

    1998-10-01

    This study evaluated long-term reinnervation of an end-to-side neurorraphy and the resultant functional recovery in a rat model. The divided distal posterior tibial nerve was repaired to the side of an intact peroneal nerve. Control groups included a cut-and-repair of the posterior tibial nerve and an end-to-end repair of the peroneal nerve to the posterior tibial nerve. Evaluations included walking-track analysis, nerve conduction studies, muscle mass measurements, retrograde nerve tracing, and histologic evaluation. Walking tracks indicated poor recovery of posterior tibial nerve function in the experimental group. No significant difference in nerve conduction velocities was seen between the experimental and control groups. Gastrocnemius muscle mass measurements revealed no functional recovery in the experimental group. Similarly, retrograde nerve tracing revealed minimal motor neuron staining in the experimental group. However, some sensory staining was seen within the dorsal root ganglia of the end-to-side group. Histologic study revealed minimal myelinated axonal regeneration in the experimental group as compared with findings in the other groups. These results suggest that predominantly sensory regeneration occurs in an end-to-side neurorraphy at an end point of 6 months.

  19. Long-term potentiation in the rat medial vestibular nuclei depends on locally synthesized 17beta-estradiol.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Dieni, Cristina; Scarduzio, Mariangela; Pettorossi, Vito E

    2009-08-26

    In male rat brainstem slices, we investigated the involvement of locally synthesized 17beta-estradiol (E(2)) in the induction in the medial vestibular nucleus (MVN) of long-term potentiation (LTP) by high-frequency stimulation (HFS) of the primary vestibular afferents. We demonstrated that the blockade of aromatase by letrozole or of E(2) receptors (ERalpha and ERbeta) by ICI 182,780 prevented the HFS-induced LTP of the N1 wave of the evoked field potential (FP) without affecting baseline responses. Only prolonged afferent activation could induce low LTP. In contrast, HFS applied under a combined blockade of GABA(A) receptors and aromatase or ERs was still able to induce LTP, but it was significantly lower and slower. These findings demonstrate that E(2) does not have a tonic influence on the activity of the MVN neurons and provide the first evidence of the crucial role played by local synthesis of E(2) in inducing LTP. We suggest that the synthesis of E(2) occurs after aromatase activation during HFS and facilitates the development of vestibular synaptic plasticity by influencing glutamate and GABA transmission.

  20. Long-term High Fat Ketogenic Diet Promotes Renal Tumor Growth in a Rat Model of Tuberous Sclerosis.

    Science.gov (United States)

    Liśkiewicz, Arkadiusz D; Kasprowska, Daniela; Wojakowska, Anna; Polański, Krzysztof; Lewin-Kowalik, Joanna; Kotulska, Katarzyna; Jędrzejowska-Szypułka, Halina

    2016-02-19

    Nutritional imbalance underlies many disease processes but can be very beneficial in certain cases; for instance, the antiepileptic action of a high fat and low carbohydrate ketogenic diet. Besides this therapeutic feature it is not clear how this abundant fat supply may affect homeostasis, leading to side effects. A ketogenic diet is used as anti-seizure therapy i.a. in tuberous sclerosis patients, but its impact on concomitant tumor growth is not known. To examine this we have evaluated the growth of renal lesions in Eker rats (Tsc2+/-) subjected to a ketogenic diet for 4, 6 and 8 months. In spite of existing opinions about the anticancer actions of a ketogenic diet, we have shown that this anti-seizure therapy, especially in its long term usage, leads to excessive tumor growth. Prolonged feeding of a ketogenic diet promotes the growth of renal tumors by recruiting ERK1/2 and mTOR which are associated with the accumulation of oleic acid and the overproduction of growth hormone. Simultaneously, we observed that Nrf2, p53 and 8-oxoguanine glycosylase α dependent antitumor mechanisms were launched by the ketogenic diet. However, the pro-cancerous mechanisms finally took the ascendency by boosting tumor growth.

  1. Beneficial Effects of Long-Term Administration of an Oral Formulation of Angiotensin-(1–7 in Infarcted Rats

    Directory of Open Access Journals (Sweden)

    Fúlvia D. Marques

    2012-01-01

    Full Text Available In this study was evaluated the chronic cardiac effects of a formulation developed by including angiotensin(Ang-(1–7 in hydroxypropyl β-cyclodextrin (HPβCD, in infarcted rats. Myocardial infarction (MI was induced by left coronary artery occlusion. HPβCD/Ang-(1–7 was administered for 60 days (76 μg/Kg/once a day/gavage starting immediately before infarction. Echocardiography was utilized to evaluate usual cardiac parameters, and radial strain method was used to analyze the velocity and displacement of myocardial fibers at initial time and 15, 30, and 50 days after surgery. Real-time PCR was utilized to evaluate the fibrotic signaling involved in the remodeling process. Once-a-day oral HPβCD/Ang-(1–7 administration improved the cardiac function and reduced the deleterious effects induced by MI on TGF-β and collagen type I expression, as well as on the velocity and displacement of myocardial fibers. These findings confirm cardioprotective effects of Ang-(1–7 and indicate HPβCD/Ang-(1–7 as a feasible formulation for long-term oral administration of this heptapeptide.

  2. Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain

    Directory of Open Access Journals (Sweden)

    Iyaswamy Ashok

    2014-01-01

    Full Text Available Aspartame, an artificial sweetener, is very widely used in many foods and beverages. But there are controversies about its metabolite which is marked for its toxicity. Hence it is believed to be unsafe for human use. Previous studies have reported on methanol exposure with involvements of free radicals on excitotoxicity of neuronal apoptosis. Hence, this present study is proposed to investigate whether or not chronic aspartame (FDA approved Daily Acceptable Intake (ADI,40 mg/kg bwt administration could release methanol, and whether or not it can induce changes in brain oxidative stress status and gene and protein expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax and caspase-3 in the rat brain region. To mimic the human methanol metabolism, Methotrexate (MTX-treated Wistar strain male albino rats were used and after the oral administration of aspartame, the effects were studied along with controls and MTX-treated controls. Aspartame exposure resulted with a significant increase in the enzymatic activity in protein carbonyl, lipid peroxidation levels, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase and catalase activity in (aspartame MTX-treated animals and with a significant decrease in reduced glutathione, glutathione reductase and protein thiol, pointing out the generation of free radicals. The gene and protein expression of pro apoptotic marker Bax showed a marked increase whereas the anti-apoptotic marker Bcl-2 decreased markedly indicating the aspartame is harmful at cellular level. It is clear that long term aspartame exposure could alter the brain antioxidant status, and can induce apoptotic changes in brain.

  3. Long-Term Therapeutic Effects of Mesenchymal Stem Cells Compared to Dexamethasone on Recurrent Experimental Autoimmune Uveitis of Rats

    Science.gov (United States)

    Zhang, Lingjun; Zheng, Hui; Shao, Hui; Nian, Hong; Zhang, Yan; Bai, Lingling; Su, Chang; Liu, Xun; Dong, Lijie; Li, Xiaorong; Zhang, Xiaomin

    2014-01-01

    Purpose. We tested the long-term effects of different regimens of mesenchymal stem cell (MSC) administration in a recurrent experimental autoimmune uveitis (rEAU) model in rats, and compared the efficacy of MSC to that of dexamethasone (DEX). Methods. One or two courses of MSC treatments were applied to R16-specific T cell–induced rEAU rats before or after disease onsets. The DEX injections were given for 7 or 50 days continuously after disease onsets. Clinical appearances were observed until the 50th day after transfer. On the 10th day, T cells from control and MSC groups were analyzed by flow cytometry. Supernatants from the proliferation assay and aqueous humor were collected for cytokine detection. Functions of T cells and APCs in spleens also were studied by lymphocyte proliferation assays. Results. One course of MSC therapy, administered after disease onset, led to a lasting therapeutic effect, with a decreased incidence, reduced mean clinical score, and reduced retinal impairment after 50 days of observation, while multiple courses of treatment did not improve the therapeutic benefit. Although DEX and MSCs equally reduced the severity of the first episode of rEAU, the effect of DEX was shorter lasting, and DEX therapy failed to control the disease even with long periods of treatment. The MSCs significantly decreased T helper 1 (Th1) and Th17 responses, suppressed the function of antigen-presenting cells, and upregulated T regulatory cells. Conclusions. These results suggested that MSCs might be new corticosteroid spring agents, while providing fewer side effects and longer lasting suppressive effects for recurrent uveitis. PMID:25125599

  4. Long-term toxicity of [{sup 177}Lu-DOTA{sup 0},Tyr{sup 3}]octreotate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Rolleman, Edgar J.; Krenning, Eric P.; Bernard, Bert F.; Visser, Monique de; Bijster, Magda; Jong, Marion de [Erasmus MC Rotterdam, Department of Nuclear Medicine, Rotterdam (Netherlands); Visser, Theo J. [Erasmus MC Rotterdam, Department of Internal Medicine, Rotterdam (Netherlands); Vermeij, Marcel [Erasmus MC Rotterdam, Department of Pathology, Rotterdam (Netherlands); Lindemans, Jan [Erasmus MC Rotterdam, Department of Clinical Chemistry, Rotterdam (Netherlands)

    2007-02-15

    Studies on peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues have shown promising results with regard to tumour control. The efficacy of PRRT is limited by uptake and retention in the proximal tubules of the kidney, which might lead to radiation nephropathy. We investigated the long-term renal toxicity after different doses of [{sup 177}Lu-DOTA{sup 0},Tyr{sup 3}]octreotate and the effects of dose fractionation and lysine co-injection in two tumour-bearing rat models. Significant renal toxicity was detected beyond 100 days after start of treatment as shown by elevated serum creatinine and proteinuria. Microscopically, tubules were strongly dilated with flat epithelium, containing protein cylinders. Creatinine levels rose significantly after 555 MBq [{sup 177}Lu-DOTA{sup 0},Tyr{sup 3}]octreotate, but were significantly lower after 278 MBq (single injection) or two weekly doses of 278 MBq. Renal damage scores were maximal after 555 MBq and significantly lower in the 278 and 2 x 278 MBq groups. Three doses of 185 MBq [{sup 177}Lu-DOTA{sup 0},Tyr{sup 3}]octreotate with intervals of a day, a week or a month significantly influenced serum creatinine (469{+-}18, 134{+-}70 and 65{+-}15 {mu}mol/l, respectively; p<0.001). Renal histological damage scores were not significantly influenced by dose fractionation. Lysine co-administration with three weekly treatments of 185 MBq significantly lowered serum creatinine and proteinuria. Injection of high doses of [{sup 177}Lu-DOTA{sup 0},Tyr{sup 3}]octreotate resulted in severe renal damage in rats as indicated by proteinuria, elevated serum creatinine and histological damage. This damage was dose dependent and became overt between 100 and 200 days after treatment. Dose fractionation had significant beneficial effects on kidney function. Also, lysine co-injection successfully prevented functional damage. (orig.)

  5. Early-life sugar consumption has long-term negative effects on memory function in male rats.

    Science.gov (United States)

    Noble, Emily E; Hsu, Ted M; Liang, Joanna; Kanoski, Scott E

    2017-09-25

    Added dietary sugars contribute substantially to the diet of children and adolescents in the USA, and recent evidence suggests that consuming sugar-sweetened beverages (SSBs) during early life has deleterious effects on hippocampal-dependent memory function. Here, we test whether the effects of early-life sugar consumption on hippocampal function persist into adulthood when access to sugar is restricted to the juvenile/adolescent phase of development. Male rats were given ad libitum access to an 11% weight-by-volume sugar solution (made with high fructose corn syrup-55) throughout the adolescent phase of development (post-natal day (PN) 26-56). The control group received a second bottle of water instead, and both groups received ad libitum standard laboratory chow and water access throughout the study. At PN 56 sugar solutions were removed and at PN 175 rats were subjected to behavioral testing for hippocampal-dependent episodic contextual memory in the novel object in context (NOIC) task, for anxiety-like behavior in the Zero maze, and were given an intraperitoneal glucose tolerance test. Early-life exposure to SSBs conferred long-lasting impairments in hippocampal-dependent memory function later in life- yet had no effect on body weight, anxiety-like behavior, or glucose tolerance. A second experiment demonstrated that NOIC performance was impaired at PN 175 even when SSB access was limited to 2 hours daily from PN 26-56. Our data suggest that even modest SSB consumption throughout early life may have long-term negative consequences on memory function during adulthood.

  6. Long-term Developmental Effects of Lactational Exposure to Lead Acetate on Ovary in Offspring Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mehran Dorostghoal

    2011-01-01

    Full Text Available Background: During the last decades, environmental contamination by lead generated from humanactivities has become an evident concern. The present study assessed the long-term effects ofneonatal exposure to different doses of lead acetate on the ovaries of offspring rats.Materials and Methods: Pregnant female Wistar rats were randomly divided into a control andthree experimental groups. The experimental groups received 20, 100 and 300 mg/L/day leadacetate via drinking water during lactation. Ovaries of the offspring were removed at 30, 60, 90 and120 days of age, their weights recorded and fixed in Bouin’s solution. Following tissue processing,5 μm serial sections were stained with hematoxylin-eosin, and then, the numbers and diameters ofovarian follicles and corpora lutea were estimated.Results: Ovary weights decreased significantly (p<0.05 in the 300 mg/L/day dose groups at 30,60 and 90 days postnatal development. Significant dose-related decreases were seen in the numbersof primary, secondary and antral follicles in 100 (p<0.05 and 300 mg/L/day doses groups at 30and 60 days of age (p<0.01. There was significant decrease in mean number of corpora lutea inthe 100 (p<0.05 and 300 (p<0.01 mg/L/day dose groups at 60 days of age. It seems that neonatallead treatment has transient effects on follicular development in the ovary of offspring and ovarianparameters gradually improve until 90 days of age.Conclusion: The present study showed that maternal lead acetate exposure affects prepubertalovarian follicle development in a dose dependent manner, but ovarian parameters gradually improveduring the postpubertal period.

  7. Comparison of the long-term behavioral effects of neonatal exposure to retigabine or phenobarbital in rats.

    Science.gov (United States)

    Frankel, Sari; Medvedeva, Natalia; Gutherz, Samuel; Kulick, Catherine; Kondratyev, Alexei; Forcelli, Patrick A

    2016-04-01

    Anticonvulsant drugs, when given during vulnerable periods of brain development, can have long-lasting consequences on nervous system function. In rats, the second postnatal week approximately corresponds to the late third trimester of gestation/early infancy in humans. Exposure to phenobarbital during this period has been associated with deficits in learning and memory, anxiety-like behavior, and social behavior, among other domains. Phenobarbital is the most common anticonvulsant drug used in neonatology. Several other drugs, such as lamotrigine, phenytoin, and clonazepam, have also been reported to trigger behavioral changes. A new generation anticonvulsant drug, retigabine, has not previously been evaluated for long-term effects on behavior. Retigabine acts as an activator of KCNQ channels, a mechanism that is unique among anticonvulsants. Here, we examined the effects retigabine exposure from postnatal day (P)7 to P14 on behavior in adult rats. We compared these effects with those produced by phenobarbital (as a positive control) and saline (as a negative control). Motor behavior was assessed by using the open field and rotarod, anxiety-like behavior by the open field, elevated plus maze, and light-dark transition task, and learning/memory by the passive avoidance task; social interactions were assessed in same-treatment pairs, and nociceptive sensitivity was assessed via the tail-flick assay. Motor behavior was unaltered by exposure to either drug. We found that retigabine exposure and phenobarbital exposure both induced increased anxiety-like behavior in adult animals. Phenobarbital, but not retigabine, exposure impaired learning and memory. These drugs also differed in their effects on social behavior, with retigabine-exposed animals displaying greater social interaction than phenobarbital-exposed animals. These results indicate that neonatal retigabine induces a subset of behavioral alterations previously described for other anticonvulsant drugs and extend

  8. Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain.

    Science.gov (United States)

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy

    2014-01-01

    Aspartame, an artificial sweetener, is very widely used in many foods and beverages. But there are controversies about its metabolite which is marked for its toxicity. Hence it is believed to be unsafe for human use. Previous studies have reported on methanol exposure with involvements of free radicals on excitotoxicity of neuronal apoptosis. Hence, this present study is proposed to investigate whether or not chronic aspartame (FDA approved Daily Acceptable Intake (ADI),40 mg/kg bwt) administration could release methanol, and whether or not it can induce changes in brain oxidative stress status and gene and protein expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax and caspase-3 in the rat brain region. To mimic the human methanol metabolism, Methotrexate (MTX)-treated Wistar strain male albino rats were used and after the oral administration of aspartame, the effects were studied along with controls and MTX-treated controls. Aspartame exposure resulted with a significant increase in the enzymatic activity in protein carbonyl, lipid peroxidation levels, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase and catalase activity in (aspartame MTX)-treated animals and with a significant decrease in reduced glutathione, glutathione reductase and protein thiol, pointing out the generation of free radicals. The gene and protein expression of pro apoptotic marker Bax showed a marked increase whereas the anti-apoptotic marker Bcl-2 decreased markedly indicating the aspartame is harmful at cellular level. It is clear that long term aspartame exposure could alter the brain antioxidant status, and can induce apoptotic changes in brain.

  9. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats.

    Science.gov (United States)

    Zhong, Yu; Chen, Jing; Li, Li; Qin, Yi; Wei, Yi; Pan, Shining; Jiang, Yage; Chen, Jialin; Xie, Yubo

    2018-04-20

    Studies have found that propofol can induce widespread neuroapoptosis in developing brains, which leads to cause long-term learning and memory abnormalities. However, the specific cellular and molecular mechanisms underlying propofol-induced neuroapoptosis remain elusive. The aim of the present study was to explore the role of PKA-CREB-BDNF signaling pathway in propofol-induced long-term learning and memory impairment during brain development. Seven-day-old rats were randomly assigned to control, intralipid and three treatment groups (n = 5). Rats in control group received no treatment. Intralipid (10%, 10 mL/kg) for vehicle control and different dosage of propofol for three treatment groups (50, 100 and 200 mg/kg) were administered intraperitoneally. FJB staining, immunohistochemistry analysis for neuronal nuclei antigen and transmission electron microscopy were used to detect neuronal apoptosis and structure changes. MWM test examines the long-term spatial learning and memory impairment. The expression of PKA, pCREB and BDNF was quantified using western blots. Propofol induced significant increase of FJB-positive cells and decrease of PKA, pCREB and BDNF protein levels in the immature brain of P7 rats. Using the MWM test, propofol-treated rats demonstrated long-term spatial learning and memory impairment. Moreover, hippocampal NeuN-positive cell loss, long-lasting ultrastructural abnormalities of the neurons and synapses, and long-term down-regulation of PKA, pCREB and BDNF protein expression in adult hippocampus were also found. Our results indicated that neonatal propofol exposure can significantly result in long-term learning and memory impairment in adulthood. The possible mechanism involved in the propofol-induced neuroapoptosis was related to down-regulation of PKA-CREB-BDNF signaling pathway. Copyright © 2018. Published by Elsevier B.V.

  10. Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain. A possible new animal model of autism

    DEFF Research Database (Denmark)

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen

    2014-01-01

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20mg/kg or 100mg/kg) continuously during the last 9-12 day...

  11. Long-term changes in open field behaviour following a single social defeat in rats can be reversed by sleep deprivation

    NARCIS (Netherlands)

    Meerlo, P; Overkamp, GJF; Benning, MA; Koolhaas, JM; vandenHoofdakker, RH

    1996-01-01

    The long-term consequences of a single social defeat on open field behaviour in rats were studied, with special emphasis on the time course of stress-induced changes. Animals were subjected to social defeat by placing them into the territory of an aggressive male conspecific for 1 h. After the

  12. Priming stimulation of basal but not lateral amygdala affects long-term potentiation in the rat dentate gyrus in vivo.

    Science.gov (United States)

    Li, Z; Richter-Levin, G

    2013-08-29

    The amygdaloid complex, or amygdala, has been implicated in assigning emotional significance to sensory information and producing appropriate behavioral responses to external stimuli. The lateral and basal nuclei (lateral and basal amygdala), which are termed together as basolateral amygdala, play a critical role in emotional and motivational learning and memory. It has been established that the basolateral amygdala activation by behavioral manipulations or direct electrical stimulation can modulate hippocampal long-term potentiation (LTP), a putative cellular mechanism of memory. However, the specific functional role of each subnucleus in the modulation of hippocampal LTP has not been studied yet, even though studies have shown cytoarchitectural differences between the basal and lateral amygdala and differences in the connections of each one of them to other brain areas. In this study we have tested the effects of lateral or basal amygdala pre-stimulation on hippocampal dentate gyrus LTP, induced by theta burst stimulation of the perforant path, in anesthetized rats. We found that while priming stimulation of the lateral amygdala did not affect LTP of the dentate gyrus, priming stimulation of the basal amygdala enhanced the LTP response when the priming stimulation was relatively weak, but impaired it when it was relatively strong. These results show that the basal and lateral nuclei of the amygdala, which have been already shown to differ in their anatomy and connectivity, may also have different functional roles. These findings raise the possibility that the lateral and basal amygdala differentially modulate memory processes in the hippocampus under emotional and motivational situations. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Long-term pathological and immunohistochemical features in the liver after intraoperative whole-liver irradiation in rats

    International Nuclear Information System (INIS)

    Imaeda, Masumi; Yoshida, Yukari; Ohkubo, Yu; Musha, Atsushi; Komachi, Mayumi; Nakano, Takashi; Ishikawa, Hitoshi; Takahashi, Takeo; Nakazato, Yoichi

    2014-01-01

    Radiation therapy (RT) has become particularly important recently for treatment of liver tumors, but there are few experimental investigations pertaining to radiation-induced liver injuries over long-term follow-up periods. Thus, the present study examined pathological liver features over a 10-month period using an intraoperative whole-liver irradiation model. Liver function tests were performed in blood samples, whereas cell death, cell proliferation, and fibrotic changes were evaluated pathologically in liver tissues, which were collected from irradiated rats 24 h, 1, 2, 4 and 40 weeks following administration of single irradiation doses of 0 (control), 15 or 30 Gy. The impaired liver function, increased hepatocyte number, and decreased apoptotic cell proportion observed in the 15 Gy group, but not the 30 Gy group, returned to control group levels after 40 weeks; however, the Ki-67 indexes in the 15 Gy group were still higher than those in the control group after 40 weeks. Azan staining showed a fibrotic pattern in the irradiated liver in the 30 Gy group only, but the expression levels of alpha smooth muscle actin (α-SMA) and transforming growth factor-beta 1 (TGF-β1) in both the 15 and 30 Gy groups were significantly higher than those in the control group (P < 0.05). There were differences in the pathological features of the irradiated livers between the 15 Gy and 30 Gy groups, but TGF-β1 and α-SMA expression patterns supported the gradual progression of radiation-induced liver fibrosis in both groups. These findings will be useful in the future development of protective drugs for radiation-induced liver injury. (author)

  14. Long-term potentiation of synaptic response and intrinsic excitability in neurons of the rat medial vestibular nuclei.

    Science.gov (United States)

    Pettorossi, V E; Dieni, C V; Scarduzio, M; Grassi, S

    2011-07-28

    Using intracellular recordings, we investigated the effects of high frequency stimulation (HFS) of the primary vestibular afferents on the evoked excitatory postsynaptic potential (EPSP) and intrinsic excitability (IE) of type-A and type-B neurons of the medial vestibular nucleus (MVN), in male rat brainstem slices. HFS induces long-term potentiation (LTP) of both EPSP and IE, which may occur in combination or separately. Synaptic LTP is characterized by an increase in the amplitude, slope and decay time constant of EPSP and IE-LTP through enhancements of spontaneous and evoked neuron firing and of input resistance (Rin). Moreover, IE-LTP is associated with a decrease in action potential afterhyperpolarization (AHP) amplitude and an increase in interspike slope steepness (ISS). The more frequent effects of HFS are EPSP-LTP in type-B neurons and IE-LTP in type-A neurons. In addition, the development of EPSP-LTP is fast in type-B neurons but slow in type-A, whereas IE-LTP develops slowly in both types. We have demonstrated that activation of N-methyl-d aspartate receptors (NMDARs) is only required for EPSP-LTP induction, whereas metabotropic glutamate receptors type-1 (mGluR1) are necessary for IE-LTP induction as well as the full development and maintenance of EPSP-LTP. Taken together, these findings demonstrate that brief and intense activation of vestibular afferent input to the MVN neurons may provoke synaptic LTP and/or IE-LTP that, induced in combination or separately, may assure the different selectivity of the MVN neuron response enhancement to the afferent signals. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat

    Directory of Open Access Journals (Sweden)

    L.G.A. Chuffa

    2011-03-01

    Full Text Available Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g, were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight-1·day-1 both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05. Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2% and estrous cycle remained extensive (26.7%, arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9% and total antioxidant substances were enhanced within the ovaries (23.9%. Additionally, melatonin increased superoxide dismutase (21.3%, catalase (23.6% and glutathione-reductase (14.8% activities and the reducing power (10.2% GSH/GSSG ratio. We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.

  16. The effects of lindane and long-term potentiation (LTP) on pyramidal cell excitability in the rat hippocampal slice.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1997-01-01

    An in vitro orthodromic stimulation technique was used to examine the effects of lindane and long-term potentiation (LTP) inducing stimuli, alone or in combination, on the excitatory afferent terminal of CA1 pyramidal cells and on recurrent collateral evoked inhibition using the rat hippocampal slice model. Hippocampal slices of 400 microns thickness were perfused with oxygenated artificial cerebrospinal fluid. Stimulation of Schaffer collateral/commissural fibers produced extracellular excitatory postsynaptic potential (EPSP) and/or populations spike (PS) responses recorded from electrodes in the CA1 region. A paired-pulse technique was used to measure gamma-aminobutyric acid (GABAA)-mediated recurrent inhibition before and after treatments. After both lindane and LTP, larger PS amplitudes for a given stimulus intensity were seen. The resulting leftward shift in the curve of the PS amplitude versus stimulus intensity was larger after LTP than after 25 microM lindane. Both lindane and LTP treatments reduced PS thresholds and reduced or eliminated recurrent inhibition as measured by paired-pulse stimulation at the 15 msec interval. The reduction of recurrent inhibition after both treatments was more pronounced at lower stimulus intensities. When LTP stimuli were applied after lindane exposure a further large shift to the left was seen in the PS amplitude versus stimulus intensity curve. A smaller shift to the left was seen in the PS amplitude versus stimulus intensity curve only at the higher stimuli when lindane exposure occurred after LTP. Only at low stimulus intensities were further argumentations seen in PS amplitudes when the LTP stimuli was followed by a second LTP stimuli. Previous exposure to 25 microM lindane stimuli does not block the development of a further robust LTP in this in vitro model.

  17. The Effect of Zinc Supplementation of Lactating Rats on Short-Term and Long-Term Memory of Their Male Offspring

    Directory of Open Access Journals (Sweden)

    Mohammad Karami

    2013-12-01

    Full Text Available Background: In this study the effect of zinc chloride (ZnCl2 administration on the short-term and long-term memory of rats were assessed. Methods: We enrolled six groups of adult female and control group of eight Wistar rats in each group. One group was control group with free access to food and water, and five groups drunk zinc chloride in different doses (20, 30, 50, 70 and 100 mg/kg/day in drinking water for two weeks during lactation .One month after birth, a shuttle box used to short- term and long-term memory and the latency in entering the dark chamber as well. Results: This experiment showed that maternal 70 mg/kg dietary zinc during lactation influenced the working memory of rats’ offspring in all groups. Rats received 100 mg/kg/day zinc during lactation so they had significant impairment in working memory (short-term of their offspring (P<0.05. There was no significant difference in reference (long-term memory of all groups. Conclusion: Drug consumption below70 mg/kg/day zinc chloride during lactation had no effect. While enhanced 100 mg/ kg/ day zinc in lactating rats could cause short-term memory impairment.

  18. Two organizational effects of pubertal testosterone in male rats: transient social memory and a shift away from long-term potentiation following a tetanus in hippocampal CA1.

    Science.gov (United States)

    Hebbard, Pamela C; King, Rebecca R; Malsbury, Charles W; Harley, Carolyn W

    2003-08-01

    The organizational role of pubertal androgen receptor (AR) activation in synaptic plasticity in hippocampal CA1 and in social memory was assessed. Earlier data suggest pubertal testosterone reduces adult hippocampal synaptic plasticity. Four groups were created following gonadectomy at the onset of puberty: rats given testosterone; rats given testosterone but with the AR antagonist flutamide, present during puberty; rats given testosterone at the end of puberty; and rats given cholesterol at the end of puberty. A tetanus normally inducing long-term potentiation (LTP) was used to stimulate CA1 in the urethane-anesthetized adults during the dark phase of their cycle. Social memory was assessed prior to electrophysiology. Social memory for a juvenile rat at 120 min was seen only in rats not exposed to AR activation during puberty. Pubertal AR activation may induce the reduced social memory of male rats. Early CA1 LTP occurred following tetanus in rats with no pubertal testosterone. Short-term potentiation occurred in rats exposed to pubertal testosterone. Unexpectedly, rats with pubertal AR activation developed long-term depression (LTD). The same pattern was seen in normal male rats. Lack of LTP during the dark phase is consistent with other data on circadian modulation of CA1 LTP. No correlations were seen among social memory scores and CA1 plasticity measures. These data argue for two organizational effects of pubertal testosterone: (1) CA1 synaptic plasticity shifts away from potentiation toward depression; (2) social memory is reduced. Enduring effects of pubertal androgen on limbic circuits may contribute to reorganized behaviors in the postpubertal period.

  19. Effects of Chronic Vitamin D3 Hormone Administration on Anxiety-Like Behavior in Adult Female Rats after Long-Term Ovariectomy

    Directory of Open Access Journals (Sweden)

    Julia Fedotova

    2017-01-01

    Full Text Available The present preclinical study was created to determine the therapeutic effects of vitamin D hormone treatment as an adjunctive therapy alone or in a combination with low dose of 17β-estradiol (17β-E2 on anxiety-like behavior in female rats with long-term absence of estrogen. Accordingly, the aim of the current study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0 mg/kg subcutaneously, SC, once daily, for 14 days on the anxiety-like state after long-term ovariectomy in female rats. Twelve weeks postovariectomy, cholecalciferol was administered to ovariectomized (OVX rats and OVX rats treated with 17β-E2 (0.5 µg/rat SC, once daily, for 14 days. Anxiety-like behavior was assessed in the elevated plus maze (EPM and the light/dark test (LDT, and locomotor and grooming activities were tested in the open field test (OFT. Cholecalciferol at two doses of 1.0 and 2.5 mg/kg alone or in combination with 17β-E2 produced anxiolytic-like effects in OVX rats as evidenced in the EPM and the LDT, as well as increased grooming activity in the OFT. Our results indicate that cholecalciferol, at two doses of 1.0 and 2.5 mg/kg, has a profound anxiolytic-like effects in the experimental rat model of long-term estrogen deficiency.

  20. Stable, Long-Term, Spatial Memory in Young and Aged Rats Achieved with a One Day Morris Water Maze Training Protocol

    Science.gov (United States)

    Barrientos, Ruth M.; Kitt, Meagan M.; D'Angelo, Heather M.; Watkins, Linda R.; Rudy, Jerry W.; Maier, Steven F.

    2016-01-01

    Here, we present data demonstrating that a 1 d Morris water maze training protocol is effective at producing stable, long-term spatial memory in both young (3 mo old) and aged (24 mo old) F344xBN rats. Four trials in each of four sessions separated by a 2.5 h ISI produced robust selective search for the platform 1 and 4 d after training, in both…

  1. Short and Long Term Effects of High-Intensity Interval Training on Hormones, Metabolites, Antioxidant System, Glycogen Concentration, and Aerobic Performance Adaptations in Rats

    OpenAIRE

    de Araujo, Gustavo G.; Papoti, Marcelo; dos Reis, Ivan Gustavo Masselli; de Mello, Maria A. R.; Gobatto, Claudio A.

    2016-01-01

    The purpose of the study was to investigate the effects of short and long term High-Intensity Interval Training (HIIT) on anaerobic and aerobic performance, creatinine, uric acid, urea, creatine kinase, lactate dehydrogenase, catalase, superoxide dismutase, testosterone, corticosterone, and glycogen concentration (liver, soleus, and gastrocnemius). The Wistar rats were separated in two groups: HIIT and sedentary/control (CT). The lactate minimum (LM) was used to evaluate the aerobic and anaer...

  2. U0126 attenuates cerebral vasoconstriction and improves long-term neurologic outcome after stroke in female rats

    DEFF Research Database (Denmark)

    Ahnstedt, Hilda; Mostajeran, Maryam; Blixt, Frank W

    2015-01-01

    , responses to this treatment in females and long-term effects on outcome are not known. Initial experiments used in vitro organ culture of cerebral arteries, confirming ERK1/2 activation and increased ETB receptor-mediated vasoconstriction in female cerebral arteries. Transient middle cerebral artery......-mediated contraction was studied with myograph and protein expression with immunohistochemistry. In vitro organ culture and tMCAO resulted in vascular ETB receptor upregulation and activation of ERK1/2 that was prevented by U0126. Although no effect on infarct size, U0126 improved the long-term neurologic function...

  3. A urinary metabonomics analysis of long-term effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Li, Longxue; Wang, Maoqing; Chen, Shuhong; Zhao, Wei; Zhao, Yue; Wang, Xu; Zhang, Yang

    2016-03-01

    The study was to assess the long-term toxic effects of acetochlor on rats. Two different doses (42.96 and 107.4 mg/kg body weight/day) of acetochlor were administered to Wistar rats through their food for over 24 weeks. Rat urine samples were collected at two time-points for the measurements of the metabonomics profiles with ultra-performance liquid chromatography-mass spectrometry (UPLC-MSMS). The results of clinical chemistry and histopathology suggested that long-term use of acetochlor in rats caused liver and kidney damage, and dysfunction of antioxidant system. The urinary metabonomics analysis indicated that the high and low-dose exposure of acetochlor could cause alterations of these metabonomics in urine in the rat. Significant changes of the levels of hippuric acid (0.403-fold decrease), citric acid (0.430-fold decrease), pantothenic acid (0.486-fold decrease), uracil (0.419-fold decrease), β-Alanine (0.325-fold decrease), nonanedioic acid (0.445-fold decrease), L-tyrosine (0.410-fold decrease), D-glucuronic acid (8.389-fold increase) and 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide in urine were observed. In addition, it may interfere with the fatty acid synthesis, the pyrimidine degradation and pantothenate biosynthesis. The level of 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide is detected in all treated groups which is not found in the control groups, indicating which can be used as an early, sensitive marker of acetochlor exposure in rat. This study illustrates the important utility of metabonomics approaches to understand the toxicity of long-term exposure of acetochlor. Copyright © 2015. Published by Elsevier Inc.

  4. Effect of long-term intake of lanthanum chloride on the concentrations of some macro- and trace elements in rat brains using NAA

    International Nuclear Information System (INIS)

    Yu Tong; Li Yaming; Ren Yan; Wang Enbo; Xu Hongying; Wang Wenzhong

    2005-01-01

    Effects of long-term intake of lanthanum in drinking water on the concentrations of twelve kinds of macro- and trace elements in rat brains were primarily studied by neutron activation analysis. The results show that, along with the elevation of the dose of lanthanum, more and more elements were affected in the rat brain tissues. Compared with control group, the concentrations of five elements were changed in the 1000 mg/L group. These elements have close relations with brain function. Accordingly, intake of lanthanum may have negative effects on brain function. (authors)

  5. Long-Term Type 1 Diabetes Enhances In-Stent Restenosis after Aortic Stenting in Diabetes-Prone BB Rats

    NARCIS (Netherlands)

    Onuta, Geanina; Groenewegen, Hendrik C.; Klatter, Flip A.; Boer, Mark Walther; Goris, Maaike; van Goor, Harry; Roks, Anton J. M.; Rozing, Jan; de Smet, Bart J. G. L.; Hillebrands, Jan-Luuk

    2011-01-01

    Type 1 diabetic patients have increased risk of developing in-stent restenosis following endovascular stenting. Underlying pathogenetic mechanisms are not fully understood partly due to the lack of a relevant animal model to study the effect(s) of long-term autoimmune diabetes on development of

  6. Long-term type 1 diabetes enhances in-stent restenosis after aortic stenting in diabetes-prone BB rats

    NARCIS (Netherlands)

    J.-L. Hillebrands (Jan-Luuk); G. Onuta (Geanina); H.C. Groenewegen (Hendrik); F.A. Klatter (Flip); M. Walther Boer (Mark); M. Goris (Maaike); H. van Goor (Harry); A.J.M. Roks (Anton); J. Rozing (Jan); B.J.G.L. de Smet (Bart)

    2011-01-01

    textabstractType 1 diabetic patients have increased risk of developing in-stent restenosis following endovascular stenting. Underlying pathogenetic mechanisms are not fully understood partly due to the lack of a relevant animal model to study the effect(s) of long-term autoimmune diabetes on

  7. The effect of zinc supplementation of lactating rats on short-term and long-term memory of their male offspring.

    Science.gov (United States)

    Karami, Mohammad; Ehsanivostacolaee, Simin; Moazedi, Ali Ahmad; Nosrati, Anahita

    2013-01-01

    In this study the effect of zinc chloride (ZnCl2) administration on the short-term and long-term memory of rats were assessed. We enrolled six groups of adult female and control group of eight Wistar rats in each group. One group was control group with free access to food and water, and five groups drunk zinc chloride in different doses (20, 30, 50, 70 and 100 mg/kg/day) in drinking water for two weeks during lactation .One month after birth, a shuttle box used to short- term and long-term memory and the latency in entering the dark chamber as well. This experiment showed that maternal 70 mg/kg dietary zinc during lactation influenced the working memory of rats' offspring in all groups. Rats received 100 mg/kg/day zinc during lactation so they had significant impairment in working memory (short-term) of their offspring (Plong-term) memory of all groups. Drug consumption below70 mg/kg/day zinc chloride during lactation had no effect. While enhanced 100 mg/ kg/ day zinc in lactating rats could cause short-term memory impairment.

  8. Expression of Gast, Cckbr, Reg1α genes in rat duodenal epithelial cells upon long-term gastric hypoacidity and after a multiprobiotic administration

    Directory of Open Access Journals (Sweden)

    Dranitsina A. S.

    2014-11-01

    Full Text Available Aim. Determination of the Cckbr, Gast and Reg1α genes expression in rat duodenal epithelial cells upon long- term hypoacidity and with the administration of the multiprobiotic Symbiter. Methods. The experiments were carried out on white non-strain male rats. The hypoacidic state was induced through intraperitoneal injection of omeprazole for 28 days. The level of genes expression was determined by semi-quantitative analysis with RT-PCR Results. The elevation of mRNA levels of the Cckbr and Gast genes in rat duodenal villus and crypt epitheliocytes, the increased expression of the Reg1A gene in crypt epithelial cells were shown as well as the appearance of the Reg1a gene expression in villus epitheliocytes upon hypoacidic conditions were shown. The content of mRNAs of the above mentioned genes decreased or remained at the control level upon the treatment of hypoacidic rats with the multiprobiotic Symbiter. Conclusions. Long-term gastric hypoacidity is accompanied by the changes in expression of the Cckbr, Gast and Reg1a genes in rat duodenum, whereas upon administration of the multiprobiotic Symbiter the pattern of studied gene expression did not changed in the most cases.

  9. Stress responses of adolescent male and female rats exposed repeatedly to cat odor stimuli, and long-term enhancement of adult defensive behaviors.

    Science.gov (United States)

    Wright, Lisa D; Muir, Katherine E; Perrot, Tara S

    2013-07-01

    In order to characterize the short- and long-term effects of repeated stressor exposure during adolescence, and to compare the effects of using two sources of cat odor as stressor stimuli, male and female adolescent rats (postnatal day (PND) ∼ 38-46) were exposed on five occasions to either a control stimulus, a cloth stimulus containing cat hair/dander, or a section of cat collar previously worn by a cat. Relative to control stimulus exposure, activity was suppressed and defensive behavior enhanced during exposure to either cat odor stimulus (most pervasively in rats exposed to the collar). Only cloth-exposed rats showed elevated levels of corticosterone (CORT), and only after repeated stressor exposure, but interestingly, rats exposed to the collar stimulus during adolescence continued to show increased behavioral indices of anxiety in adulthood. In this group, the time an individual spent in physical contact with a cagemate during the final adolescent exposure was negatively related to stress-induced CORT output in adulthood, which suggests that greater use of social support during adolescent stress may facilitate adult behavioral coping, without necessitating increased CORT release. These findings demonstrate that adolescent male and female rats respond defensively to cat odor stimuli across repeated exposures and that exposure to such stressors during adolescence can augment adult anxiety-like behavior in similar stressful conditions. These findings also suggest a potential role for social behavior during adolescent stressor exposure in mediating long-term outcomes. Copyright © 2012 Wiley Periodicals, Inc.

  10. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  11. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Science.gov (United States)

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  12. Long-term treadmill exercise-induced neuroplasticity and associated memory recovery of streptozotocin-induced diabetic rats: an experimenter blind, randomized controlled study.

    Science.gov (United States)

    You, Joshua Sung H; Kim, Chung-Ju; Kim, Mee Young; Byun, Yong Gwon; Ha, So Young; Han, Bong Suk; Yoon, Bum Chul

    2009-01-01

    We investigated a long-term exercise-induced neuroplasticity and spatial memory recovery in 15 rats in a treadmill as follows: normal control rats (NC), streptozotocin (STZ)-induced diabetic control rats (DC), and STZ-induced diabetic rats exercising in a treadmill (DE). As per the DE group, the running exercise in a treadmill was administered for 30 minutes a day for 6 weeks. Neuronal immediate-early gene (IEG) expression (c-Fos) in the hippocampus and radial arm maze (RAM) tests were measured and revealed that the c-Fos levels in DE were significantly higher than those in NC and DC (p memory performance scores, obtained from the RAM test, were significantly different among the three groups (p memory scores of NC and DE were higher than those of DC (p memory. This is the first experimental evidence in literature that supports the efficacy of exercise-induced neuroplasticity and spatial motor memory in diabetes care.

  13. Improvement in Memory and Brain Long-term Potentiation Deficits Due to Permanent Hypoperfusion/Ischemia by Grape Seed Extract in Rats

    Directory of Open Access Journals (Sweden)

    Alireza Sarkaki

    2013-09-01

    Full Text Available   Objective(s: Cerebral hypoperfusion/ischemia (CHI is a neurological disease where impaired hippocampus electrical activity and cognition caused by a serial pathophysiological events. This study aimed to evaluate the effects of chronic oral administration of grape seed extract (GSE on passive avoidance memory and long-term potentiation (LTP after permanent bilateral common carotid arteries occlusion (2CCAO in male adult rats.   Materials and Methods: Thirty-two adult male Wistar rats were randomly divided into: 1 Sham+Veh, 2 Isch+Veh, 3 Sham+GSE, 4 Isch+GSE. In order to make 2CCAO as an animal model of CHI, carotid arteries were ligatured and then cut bilaterally. To evaluation of passive avoidance memory, step-down latency (STL was measured and LTP was recorded from hippocampal dentate gyrus (DG after high frequency stimulation (HFS in all rats. Results: We found that memory was significantly impaired in rats after CHI (P

  14. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory.

    Science.gov (United States)

    Lana, D; Di Russo, J; Mello, T; Wenk, G L; Giovannini, M G

    2017-01-01

    The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object-place learning and recall. Furthermore, our results are in accordance with previous reports that selective

  15. The effects of prolonged administration of norepinephrine reuptake inhibitors on long-term potentiation in dentate gyrus, and on tests of spatial and object recognition memory in rats.

    Science.gov (United States)

    Walling, Susan G; Milway, J Stephen; Ingram, Matthew; Lau, Catherine; Morrison, Gillian; Martin, Gerard M

    2016-02-01

    Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this

  16. Differential functions of NR2A and NR2B in short-term and long-term memory in rats.

    Science.gov (United States)

    Jung, Ye-Ha; Suh, Yoo-Hun

    2010-08-23

    N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.

  17. The nucleic acid metabolism in rat liver after single and long-term administration of tritium oxide

    International Nuclear Information System (INIS)

    Shorokhova, V.B.

    1984-01-01

    It was shown that after a single administration of tritiUm oxide in a dose of 22.2 MBq/g body mass the liver mass increased, the concentration of nucleic acids decreased and the biosynthesjs rate increased dUring a one-month observation. By the end of the observation period (the first year) the parameters under study were normalized. The long-term administration of tritium oxide in daily doses of 0.37, 0.925 and 1.85 MBq/g body mass caused changes in the nucleac acid metabolism which were less manifest (at early times), than in the case of a single injection. At the same time, the long-term administration of tritium oxide in the dose of 0.925 MBq/g caused a substantial disturbance of the nucleic acid metabolism at later times (after 2-9 months)

  18. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum.

    Science.gov (United States)

    Rancillac, Armelle; Crépel, Francis

    2004-02-01

    Various forms of synaptic plasticity underlying motor learning have already been well characterized at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This LTP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced LTP at PF-SC synapses. But in this case, LTP was cAMP dependent, as was also observed at PF-PC synapses for presynaptic LTP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF-SCs synapses as well as by PF-PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.

  19. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes

    Science.gov (United States)

    Oh, Da Hee; Kim, Jung Yeon; Lee, Bong Gn; You, Jeong Soon; Chang, Kyung Ja; Chung, Hyunju; Yoo, Myung Chul; Yang, Hyung-In; Kang, Ja-Heon; Hwang, Yoo Chul; Ahn, Kue Jeong; Chung, Ho-Yeon

    2012-01-01

    This study aimed to determine whether taurine supplementation improves metabolic disturbances and diabetic complications in an animal model for type 2 diabetes. We investigated whether taurine has therapeutic effects on glucose metabolism, lipid metabolism, and diabetic complications in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term duration of diabetes. Fourteen 50-week-old OLETF rats with chronic diabetes were fed a diet supplemented with taurine (2%) or a non-supplemented control diet for 12 weeks. Taurine reduced blood glucose levels over 12 weeks, and improved OGTT outcomes at 6 weeks after taurine supplementation, in OLETF rats. Taurine significantly reduced insulin resistance but did not improve β-cell function or islet mass. After 12 weeks, taurine significantly decreased serum levels of lipids such as triglyceride, cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol. Taurine significantly reduced serum leptin, but not adiponectin levels. However, taurine had no therapeutic effect on damaged tissues. Taurine ameliorated hyperglycemia and dyslipidemia, at least in part, by improving insulin sensitivity and leptin modulation in OLETF rats with long-term diabetes. Additional study is needed to investigate whether taurine has the same beneficial effects in human diabetic patients. PMID:23114424

  20. Mechanisms of isoform-specific Na/K pump regulation by short- and long-term adrenergic activation in rat ventricular myocytes.

    Science.gov (United States)

    Yin, Jian; Guo, Hui-Cai; Yu, Ding; Wang, Hui-Ci; Li, Jun-Xia; Wang, Yong-Li

    2014-01-01

    Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH) and low-affinity current (IPL), α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane. © 2014 S. Karger AG, Basel.

  1. Mechanisms of Isoform-Specific Na/K Pump Regulation by Short- and Long-Term Adrenergic Activation in Rat Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2014-05-01

    Full Text Available Background: Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. Methods: After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH and low-affinity current (IPL, α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. Results: After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. Conclusions: These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane.

  2. Acute and long-term Purkinje cell loss following a single ethanol binge during the early third trimester equivalent in the rat.

    Science.gov (United States)

    Idrus, Nirelia M; Napper, Ruth M A

    2012-08-01

    In the rat, binge-like ethanol (EtOH) exposure during the early neonatal period (a developmental period equivalent to the human third trimester) can result in a permanent deficit of cerebellar Purkinje cells (Pcells). However, the consequences of a moderate binge alcohol exposure on a single day during this postnatal period have not been established. This is an issue of importance as many pregnant women binge drink periodically at social drinking levels. This study aimed to identify both the acute and long-term effects of exposure to a single alcohol binge that achieved a mean peak blood EtOH concentration of approximately 250 mg/dl during early postnatal life using a rat model of fetal alcohol spectrum disorders. Acute apoptotic Pcell death 10 hours after a moderate dose binge EtOH exposure from postnatal days (PDs) 0 to 10 was assessed using active caspase-3 immunolabeling. Acute Pcell apoptosis was quantified in cerebellar vermal lobules I-X using the physical disector method. Long-term effects were assessed at PD 60 using stereological methods to determine total Pcell numbers in the vermis, lobule III, and lobule IX, following a moderate dose binge EtOH exposure at PDs 0, 2, or 4. Acute apoptosis was induced by EtOH on PDs 1 to 8 in a time and lobular-dependent manner. For EtOH exposure on PD 2, significant long-term Pcell loss occurred in lobule III. EtOH exposure on PD 4 resulted in significant long-term Pcell loss throughout the entire vermis. These results indicate that a single, early EtOH episode of moderate dose can create significant and permanent Pcell loss in the developing cerebellum. Copyright © 2012 by the Research Society on Alcoholism.

  3. Long-term high-fat diet induces pancreatic injuries via pancreatic microcirculatory disturbances and oxidative stress in rats with hyperlipidemia

    International Nuclear Information System (INIS)

    Yan Mingxian; Li Yanqing; Meng Min; Ren Hongbo; Kou Yi

    2006-01-01

    Relations between hyperlipidemia and chronic pancreatitis remain unclear. Microcirculatory disturbances and oxidative stress are involved in pathogeneses of a high numbers of diseases. The objective of this study was to induce hyperlipidemia in rats by long-term high-fat diet intake, then investigate the biochemical, microcirculatory, and histological alterations in blood and pancreatic tissues of these animals, and discuss their potential significances. Pancreatic blood flow was detected by intravital microscope; malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured in pancreatic tissues for assessment of oxidative stress and α-smooth muscle actin (α-SMA) expression was determined by immunohistochemical staining and RT-PCR. The results showed that the velocity of pancreatic microvascular blood flow of rats with hyperlipidemia decreased significantly as compared to control value (p = 0.008). Pancreatic MDA content increased whereas SOD activity decreased in these rats (p = 0.022; p = 0.039, respectively). Histologically, microvesicles in acinar and islet cells, dilated rough endoplasmic reticulum, swollen mitochondrion and modified vascular endothelial cells were observed under light microscope and transmission electron microscope. In addition, α-SMA expression was up-regulated significantly (p < 0.05). These results suggest that long-term high-fat diet can induce chronic pancreatic injuries which could be considered as 'nonalcoholic fatty pancreatic disease', and pancreatic microcirculatory disturbances and oxidative stress may play an important part in the underlying pathogenesis

  4. Persistent changes in ability to express long-term potentiation/depression in the rat hippocampus after juvenile/adult stress.

    Science.gov (United States)

    Maggio, Nicola; Segal, Menahem

    2011-04-15

    The ventral hippocampus (VH) was recently shown to express lower magnitude long-term potentiation (LTP) compared with the dorsal hippocampus (DH). Exposure to acute stress reversed this difference, and VH slices from stressed rats expressed larger LTP than that produced in the DH, which was reduced by stress. Stressful experience in adolescence has been shown to produce long-lasting effects on animal behavior and on ability to express LTP/long-term depression (LTD) of reactivity to afferent stimulation in the adult. We are interested in possible interactions between juvenile and adult stress in their effects of adult plasticity. We studied the effects of a composite juvenile (28-30 days) stress, followed by a reminder stressful experience in the young adult (60 days) rat, on the ability to produce LTP and LTD in CA1 region of slices of the VH and DH. Juvenile or adult stress produced a transient decrease in ability to express LTP in DH and a parallel increase in LTP in VH. Stress in the young adult after juvenile stress produced a striking prolongation of the DH/VH disparity with respect to the ability to express both LTP and LTD into the adulthood of the rat. These results have important implications for the impact of juvenile stress on adult neuronal plasticity and on the understanding the functions of the different sectors of the hippocampus. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA-salt hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Theodora Szasz

    Full Text Available Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water or febuxostat (orally, 5 mg/kg/day in salt water in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt. We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate and decrease in uric acid (XO product levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  6. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA)-salt hypertensive rats.

    Science.gov (United States)

    Szasz, Theodora; Davis, Robert Patrick; Garver, Hannah S; Burnett, Robert J; Fink, Gregory D; Watts, Stephanie W

    2013-01-01

    Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA)-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water) or febuxostat (orally, 5 mg/kg/day in salt water) in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning) and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt). We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate) and decrease in uric acid (XO product) levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  7. Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue.

    Science.gov (United States)

    Bozkaya, F; Atli, M O; Guzeloglu, A; Kayis, S A; Yildirim, M E; Kurar, E; Yilmaz, R; Aydilek, N

    2017-08-01

    The aim was to investigate the effects of long-term heat stress and dietary restriction on the expression of certain genes involving in steroidogenic pathway and small heat-shock proteins (sHSPs) in rat testis. Sprague Dawley rats (n = 24) were equally divided into four groups. Group I and II were kept at an ambient temperature of 22°C, while Groups III and IV were reared at 38°C for 9 weeks. Feed was freely available for Group I and Group III, while Group II and Group IV were fed 60% of the diet consumed by their ad libitum counterparts. At the end of 9 weeks, testicles were collected under euthanasia. Total RNA was isolated from testis tissue samples. Expression profiles of the genes encoding androgen-binding protein, follicle-stimulating hormone receptor, androgen receptor, luteinising hormone receptor, steroidogenic acute regulatory protein (StAR), cyclooxygenase-2 and sHSP genes were assessed at mRNA levels using qPCR. Long-term heat stress decreased the expression of StAR and HspB10 genes while dietary restriction upregulated StAR gene expression. The results suggested that long-term heat stress negatively affected the expression of StAR and HspB10 genes and the dietary restriction was able to reverse negative effect of heat stress on the expression of StAR gene in rat testis. © 2016 Blackwell Verlag GmbH.

  8. A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats.

    Science.gov (United States)

    de Deus, J L; Cunha, A O S; Terzian, A L; Resstel, L B; Elias, L L K; Antunes-Rodrigues, J; Almeida, S S; Leão, R M

    2017-10-26

    Exposure to loud sounds has become increasingly common. The most common consequences of loud sound exposure are deafness and tinnitus, but emotional and cognitive problems are also associated with loud sound exposure. Loud sounds can activate the hipothalamic-pituitary-adrenal axis resulting in the secretion of corticosterone, which affects hippocampal synaptic plasticity. Previously we have shown that long-term exposure to short episodes of high intensity sound inhibited hippocampal long-term potentiation (LTP) without affecting spatial learning and memory. Here we aimed to study the impact of short term loud sound exposure on hippocampal synaptic plasticity and function. We found that a single minute of 110 dB sound inhibits hippocampal Schaffer-CA1 LTP for 24 hours. This effect did not occur with an 80-dB sound exposure, was not correlated with corticosterone secretion and was also observed in the perforant-dentate gyrus synapse. We found that despite the deficit in the LTP these animals presented normal spatial learning and memory and fear conditioning. We conclude that a single episode of high-intensity sound impairs hippocampal LTP, without impairing memory and learning. Our results show that the hippocampus is very responsive to loud sounds which can have a potential, but not yet identified, impact on its function.

  9. Long-term effects of duodenojejunal bypass on diabetes in Otsuka Long–Evans Tokushima Fatty rats

    Directory of Open Access Journals (Sweden)

    Sang Kuon Lee

    2017-07-01

    Conclusions: We have shown that DJB alone does not improve glucose tolerance in obese, diabetic OLETF rats. Therefore, it may be that DJB alone is insufficient for diabetic control in obese diabetic rats. The addition of a restrictive component such as sleeve gastrectomy, or a new drug may be necessary for achieving diabetes reversal.

  10. Coenzyme Q10 does not prevent oral dyskinesias induced by long-term haloperidol treatment of rats

    DEFF Research Database (Denmark)

    OA, Andreassen; Weber, Christine; HA, Jorgensen

    1999-01-01

    dyskinesias in rats, a putative analogue to human TD, could be prevented by the antioxidant coenzyme Q10 (CoQ10). Rats received 16 weeks of treatment with haloperidol decanoate (HAL) IM alone or together with orally administered CoQ10, and the behavior was recorded during and after treatment. HAL...

  11. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    Science.gov (United States)

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (Pmemory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  12. Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics

    DEFF Research Database (Denmark)

    Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens

    2018-01-01

    In the apolipoprotein E-deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoe tm1sage (Apoe -/-) rats fed either a Western diet or a low-fat control...

  13. Immediate and Long-Term Outcome of Acute H2S Intoxication Induced Coma in Unanesthetized Rats: Effects of Methylene Blue.

    Directory of Open Access Journals (Sweden)

    Takashi Sonobe

    Full Text Available Acute hydrogen sulfide (H2S poisoning produces a coma, the outcome of which ranges from full recovery to severe neurological deficits. The aim of our study was to 1--describe the immediate and long-term neurological effects following H2S-induced coma in un-anesthetized rats, and 2--determine the potential benefit of methylene blue (MB, a compound we previously found to counteract acute sulfide cardiac toxicity.NaHS was administered IP in un-sedated rats to produce a coma (n = 34. One minute into coma, the rats received MB (4 mg/kg i.v. or saline. The surviving rats were followed clinically and assigned to Morris water maze (MWM and open field testing then sacrificed at day 7.Sixty percent of the non-treated comatose rats died by pulseless electrical activity. Nine percent recovered with neurological deficits requiring euthanasia, their brain examination revealed major neuronal necrosis of the superficial and middle layers of the cerebral cortex and the posterior thalamus, with variable necrosis of the caudate putamen, but no lesions of the hippocampus or the cerebellum, in contrast to the typical distribution of post-ischemic lesions. The remaining animals displayed, on average, a significantly less effective search strategy than the control rats (n = 21 during MWM testing. Meanwhile, 75% of rats that received MB survived and could perform the MWM test (P<0.05 vs non-treated animals. The treated animals displayed a significantly higher occurrence of spatial search than the non-treated animals. However, a similar proportion of cortical necrosis was observed in both groups, with a milder clinical presentation following MB.In conclusion, in rats surviving H2S induced coma, spatial search patterns were used less frequently than in control animals. A small percentage of rats presented necrotic neuronal lesions, which distribution differed from post-ischemic lesions. MB dramatically improved the immediate survival and spatial search strategy in the

  14. Repetitive long-term hyperbaric oxygen treatment (HBOT administered after experimental traumatic brain injury in rats induces significant remyelination and a recovery of sensorimotor function.

    Directory of Open Access Journals (Sweden)

    Klaus Kraitsy

    Full Text Available Cells in the central nervous system rely almost exclusively on aerobic metabolism. Oxygen deprivation, such as injury-associated ischemia, results in detrimental apoptotic and necrotic cell loss. There is evidence that repetitive hyperbaric oxygen therapy (HBOT improves outcomes in traumatic brain-injured patients. However, there are no experimental studies investigating the mechanism of repetitive long-term HBOT treatment-associated protective effects. We have therefore analysed the effect of long-term repetitive HBOT treatment on brain trauma-associated cerebral modulations using the lateral fluid percussion model for rats. Trauma-associated neurological impairment regressed significantly in the group of HBO-treated animals within three weeks post trauma. Evaluation of somatosensory-evoked potentials indicated a possible remyelination of neurons in the injured hemisphere following HBOT. This presumption was confirmed by a pronounced increase in myelin basic protein isoforms, PLP expression as well as an increase in myelin following three weeks of repetitive HBO treatment. Our results indicate that protective long-term HBOT effects following brain injury is mediated by a pronounced remyelination in the ipsilateral injured cortex as substantiated by the associated recovery of sensorimotor function.

  15. No long-term feeding toxicities on the health status in rats fed with cloned Korean native beef cattle (Hanwoo) meat.

    Science.gov (United States)

    Lee, Nam-Jin; Yang, Byoung-Chul; Im, Gi-Sun; Lee, Sung-Soo; Seong, Hwan-Hoo; Park, Jin-Ki; Chang, Won-Kyong; Kang, Jong-Koo; Hwang, Seongsoo

    2013-08-01

    This study was designed to undertake a risk assessment to identify the health status of rats fed with somatic cell nuclear transfer (SCNT)-cloned Korean native beef cattle (Hanwoo) meat for 26 weeks. The rats were randomly divided into 5 groups, each consisting of 12 male (142.6 ± 5.23 g) and 12 female (113.7 ± 6.31 g) rats each. The animals were fed commercial pellets (control), pellets containing 5% (N-5) and 10% (N-10) of normal cattle meat, and diets containing 5% (C-5) and 10% (C-10) of cloned cattle meat. The mortality; clinical signs; body weight; food consumption; urinary, hematology, blood biochemistry, and histopathological analyses; and absolute and relative organ weights were analyzed and compared. During the 26-week test period, health status-related factors of the rats fed on cloned Hanwoo meat were found to have no test substance-related toxicities. The only difference was the increased uterus weight in female C-10 rats as compared to their counterparts counterparts (p food consumption risks might arise from the long-term feeding of cloned cattle meat in rats.

  16. Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats.

    Directory of Open Access Journals (Sweden)

    Tiffany N Eady

    Full Text Available Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats.Rats underwent 2 h of middle cerebral artery occlusion (MCAo. DHA, neuroprotectin D1 (NPD1 or vehicle (saline was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle.We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.

  17. Long-term effect of prazosin administration on blood pressure, heart and structure of coronary artery of young spontaneously hypertensive rats.

    Science.gov (United States)

    Kristek, F; Koprdova, R

    2011-06-01

    The sympathetic nervous system belongs to the essential systems participating in blood pressure (BP) regulation. Inhibitory intervention into the key point of its operation (alfa 1 adrenoceptors) in the prehypertensive period of spontaneously hypertensive rats (SHR) might affect the development of the hypertension in later ontogenic periods. We studied the long-term effect of prazosin administration on the cardiovascular system of young Wistar rats and SHR. Four-week-old animals were used: Wistar rats, SHR, and Wistar rats and SHR receiving prazosin (10 mg/kg/day in tap water) by gavage. Blood pressure (BP) was measured weekly by the plethysmographic method. After six weeks under anaesthesia, the carotid artery was cannulated for BP registration, and the jugular vein was cannulated for administration of drugs. Afterwards, the animals were perfused with a glutaraldehyde fixative at a pressure of 120 mmHg. The septal branch of the left descending coronary artery was processed using electron microscopy. The prazosin administration evoked the following results in both groups: a decrease of BP and heart/body weight ratio, enhancement of hypotensive responses to acetylcholine (0.1 μg, 1 μg, and 10 μg), and an increase in the inner diameter of the coronary artery without changes in wall thickness, cross sectional area (CSA) (tunica intima+media), CSA of smooth muscle cells, and extracellular matrix. In the SHR group, a reduction was observed in BP increase after noradrenaline (1 μg) application. CSA of endothelial cells which was decreased in the SHR (compared to the control Wistar rats) was increased after prazosin treatment (up to control value). Long-term prazosin administration from early ontogeny partially prevented some pathological alterations in the cardiovascular system of SHR.

  18. Avocado oil induces long-term alleviation of oxidative damage in kidney mitochondria from type 2 diabetic rats by improving glutathione status.

    Science.gov (United States)

    Ortiz-Avila, Omar; Figueroa-García, María Del Consuelo; García-Berumen, Claudia Isabel; Calderón-Cortés, Elizabeth; Mejía-Barajas, Jorge A; Rodriguez-Orozco, Alain R; Mejía-Zepeda, Ricardo; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian

    2017-04-01

    Hyperglycemia and mitochondrial ROS overproduction have been identified as key factors involved in the development of diabetic nephropathy. This has encouraged the search for strategies decreasing glucose levels and long-term improvement of redox status of glutathione, the main antioxidant counteracting mitochondrial damage. Previously, we have shown that avocado oil improves redox status of glutathione in liver and brain mitochondria from streptozotocin-induced diabetic rats; however, the long-term effects of avocado oil and its hypoglycemic effect cannot be evaluated because this model displays low survival and insulin depletion. Therefore, we tested during 1 year the effects of avocado oil on glycemia, ROS levels, lipid peroxidation and glutathione status in kidney mitochondria from type 2 diabetic Goto-Kakizaki rats. Diabetic rats exhibited glycemia of 120-186 mg/dL the first 9 months with a further increase to 250-300 mg/dL. Avocado oil decreased hyperglycemia at intermediate levels between diabetic and control rats. Diabetic rats displayed augmented lipid peroxidation and depletion of reduced glutathione throughout the study, while increased ROS generation was observed at the 3rd and 12th months along with diminished content of total glutathione at the 6th and 12th months. Avocado oil ameliorated all these defects and augmented the mitochondrial content of oleic acid. The beneficial effects of avocado oil are discussed in terms of the hypoglycemic effect of oleic acid and the probable dependence of glutathione transport on lipid peroxidation and thiol oxidation of mitochondrial carriers.

  19. Aging and a long-term diabetes mellitus increase expression of 1 α-hydroxylase and vitamin D receptors in the rat liver.

    Science.gov (United States)

    Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija

    2015-12-01

    Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Synaptic long-term potentiation and depression in the rat medial vestibular nuclei depend on neural activation of estrogenic and androgenic signals.

    Science.gov (United States)

    Scarduzio, Mariangela; Panichi, Roberto; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2013-01-01

    Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN). Long-term depression (LTD) and long-term potentiation (LTP) caused by different patterns of high frequency stimulation (HFS) of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase) and E2 (P450-aromatase) from testosterone (T). We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids.

  1. Immediate and Long-Term Outcome of Acute H2S Intoxication Induced Coma in Unanesthetized Rats: Effects of Methylene Blue.

    Science.gov (United States)

    Sonobe, Takashi; Chenuel, Bruno; Cooper, Timothy K; Haouzi, Philippe

    2015-01-01

    Acute hydrogen sulfide (H2S) poisoning produces a coma, the outcome of which ranges from full recovery to severe neurological deficits. The aim of our study was to 1--describe the immediate and long-term neurological effects following H2S-induced coma in un-anesthetized rats, and 2--determine the potential benefit of methylene blue (MB), a compound we previously found to counteract acute sulfide cardiac toxicity. NaHS was administered IP in un-sedated rats to produce a coma (n = 34). One minute into coma, the rats received MB (4 mg/kg i.v.) or saline. The surviving rats were followed clinically and assigned to Morris water maze (MWM) and open field testing then sacrificed at day 7. Sixty percent of the non-treated comatose rats died by pulseless electrical activity. Nine percent recovered with neurological deficits requiring euthanasia, their brain examination revealed major neuronal necrosis of the superficial and middle layers of the cerebral cortex and the posterior thalamus, with variable necrosis of the caudate putamen, but no lesions of the hippocampus or the cerebellum, in contrast to the typical distribution of post-ischemic lesions. The remaining animals displayed, on average, a significantly less effective search strategy than the control rats (n = 21) during MWM testing. Meanwhile, 75% of rats that received MB survived and could perform the MWM test (Pcoma, spatial search patterns were used less frequently than in control animals. A small percentage of rats presented necrotic neuronal lesions, which distribution differed from post-ischemic lesions. MB dramatically improved the immediate survival and spatial search strategy in the surviving rats.

  2. Inhibition of PKC-dependent extracellular Ca2+ entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    International Nuclear Information System (INIS)

    Padilla, J.; López, R.M.; López, P.; Castillo, M.C.; Querejeta, E.; Ruiz, A.; Castillo, E.F.

    2014-01-01

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT 2 R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT 2 R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca 2+ -free medium or the subsequent tonic constrictions induced by the addition of Ca 2+ in the absence of agonists. Thus, the contractions induced by Ca 2+ release from intracellular stores and Ca 2+ influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca 2+ channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca 2+ . Neither levels of angiotensins nor of AT 2 R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca 2+ entry

  3. Examinations of a new long-term degradable electrospun polycaprolactone scaffold in three rat abdominal wall models

    DEFF Research Database (Denmark)

    Jangö, Hanna; Gräs, Søren; Christensen, Lise

    2017-01-01

    Alternative approaches to reinforce native tissue in reconstructive surgery for pelvic organ prolapse are warranted. Tissue engineering combines the use of a scaffold with the regenerative potential of stem cells and is a promising new concept in urogynecology. Our objective was to evaluate whether....... Properties of the new neo-tissue construct must be evaluated at the time of full degradation of the scaffold before its possible clinical value in pelvic organ prolapse surgery can be evaluated....... together, the long-term degradable polycaprolactone scaffold provided biomechanical reinforcement by inducing a marked foreign-body response and attracting numerous inflammatory cells to form a strong neo-tissue construct. However, cells from the muscle fiber fragments did not survive in this milieu...

  4. [Long-term effect of iodine deficiency on growth and food utilization rate in second filial generation rats].

    Science.gov (United States)

    Muyeseer, Ainiwaer; Zhang, G X; Wang, J; Liu, Y; Meng, X H; Liu, Q

    2017-02-06

    Objective: To study the effect of iodine deficiency on body weight, food consumption, and food utilization rate of second filial generation Wistar rats. Methods: According to the food pattern of a high-iodine deficient population, two types of low-iodine food have been produced using the main crops grown in this area (iodine levels of 50 and 20 μg/kg, respectively). Wistar rats were randomly divided into three groups, normal iodine group (NI group), low-iodine group one (LI group) and low-iodine group two (LII group), using the random number table method and fed diets containing 300, 50, and 20 μg/kg of iodine, respectively. Parental generation rats were fed until they reached reproductive age; first filial generation rats were allocated to the same diet as their mothers. After 3 months of feeding, first filial generation rats gave birth to second filial generation rats; second filial generation rats were allocated to the same diet as their mothers. After feeding for 90, 180, and 270 days, rats were sacrificed. One-way analysis of variance was used to analyze body weight, food intake, and food utilization rate data collected during the time of feeding and blood iodine hormone level, which was determined after sacrifice. Results: The LI and LII groups generally demonstrated decreased activity, slow reaction, and growth retardation compared with the NI group. After 270 days, the urine iodine levels of the LI and LII groups were 1.7 and 0.2 μg/L, respectively, which were significantly lower than the NI group (255.2 μg/L) ( Pfood intake of female and male rats after 270 days were (465.0±27.7), (658.4±28.6) and (423.0±13.2), (548.0±18.8) g, respectively, which were significantly lower than that of the NI group ((499.5±21.8), (760.8±33.0) g) ( Pfood utilization rate of female rats in the LI and LII groups was (8.7±0.4)% and (6.0±0.58)%, which was lower than that of the NI group ((11.7±3.5)%) ( Pfood intake, and food utilization rate among second filial

  5. Pregnancy swimming causes short- and long-term neuroprotection against hypoxia-ischemia in very immature rats.

    Science.gov (United States)

    Sanches, Eduardo Farias; Durán-Carabali, Luz Elena; Tosta, Andrea; Nicola, Fabrício; Schmitz, Felipe; Rodrigues, André; Siebert, Cassiana; Wyse, Angela; Netto, Carlos

    2017-09-01

    BackgroundHypoxia-ischemia (HI) is a major cause of neurological damage in preterm newborn. Swimming during pregnancy alters the offspring's brain development. We tested the effects of swimming during pregnancy in the very immature rat brain.MethodsFemale Wistar rats (n=12) were assigned to the sedentary (SE, n=6) or the swimming (SW, n=6) group. From gestational day 0 (GD0) to GD21 the rats in the SW group were made to swim for 20 min/day. HI on postnatal day (PND) 3 rats caused sensorimotor and cognitive impairments. Animals were distributed into SE sham (SESH), sedentary HIP3 (SEHI), swimming sham (SWSH), and swimming HIP3 (SWHI) groups. At PND4 and PND5, Na + /K + -ATPase activity and brain-derived neurotrophic factor (BDNF) levels were assessed. During lactation and adulthood, neurological reflexes, sensorimotor, anxiety-related, and cognitive evaluations were made, followed by histological assessment at PND60.ResultsAt early stages, swimming caused an increase in hippocampal BDNF levels and in the maintenance of Na + /K + -ATPase function in the SWHI group. The SWHI group showed smaller lesions and the preservation of white matter tracts. SEHI animals showed a delay in reflex maturation, which was reverted in the SWHI group. HIP3 induced spatial memory deficits and hypomyelination in SEHI rats, which was reverted in the SWHI group.ConclusionSwimming during pregnancy neuroprotected the brains against HI in very immature neonatal rats.

  6. Retinol and retinyl esters in parenchymal and nonparenchymal rat liver cell fractions after long-term administration of ethanol

    International Nuclear Information System (INIS)

    Rasmussen, M.; Blomhoff, R.; Helgerud, P.; Solberg, L.A.; Berg, T.; Norum, K.R.

    1985-01-01

    Chronic ethanol consumption reduces the liver retinoid store in man and rat. We have studied the effect of ethanol on some aspects of retinoid metabolism in parenchymal and nonparenchymal liver cells. Rats fed 36% of total energy intake as ethanol for 5-6 weeks had the liver retinoid concentration reduced to about one-third, as compared to pair-fed controls. The reduction in liver retinoid affected both the parenchymal and the nonparenchymal cell fractions. Plasma retinol level was normal. Liver uptake of injected chylomicron [3H]retinyl ester was similar in the experimental and control group. The transport of retinoid from the parenchymal to the nonparenchymal cells was not found to be significantly retarded in the ethanol-fed rats. Despite the reduction in total retinoid level in liver, the concentrations of unesterified retinol and retinyl oleate were increased in the ethanol fed rats. Hepatic retinol esterification was not significantly affected in the ethanol-fed rats. Since our study has demonstrated that liver uptake of chylomicron retinyl ester is not impaired in the ethanol-fed rat, we suggest that liver retinoid metabolism may be increased

  7. Long-term toxicity and carcinogenicity studies of cake made from chlorinated flour. 1. Studies in rats.

    Science.gov (United States)

    Fisher, N; Hutchinson, J B; Berry, R; Hardy, J; Ginocchio, A V

    1983-08-01

    Wistar rats were fed for 104 wk on cake-based diets in which the cake, prepared from unchlorinated flour, or flour treated with 1250 or 2500 ppm chlorine, formed 79% of the diet on a 12.6% moisture basis. A fourth group was fed stock diet 41B. No differences in appearance, health, behaviour or mortalities attributable to the flour treatment were observed. Female but not male mortalities were significantly higher for cake-fed rats than for those fed diet 41B. Dose-related haematological effects were seen at various stages in cake-fed rats. Dose-related increases in plasma alanine and aspartate aminotransferases were noted at 12 months in males but not in females, for whom all the values were elevated. A dose-related diminution in blood sugar at 12 months was seen only in females. A dose-related increase in urinary aspartate aminotransferase was seen only in males. Urinary N-acetylglucosaminidase activity per mg creatinine did not differ significantly between groups. At post mortem a dose-related reduction in spleen weight was found in the females only. The lesions found were those expected in ageing rats, but were observed earlier in rats fed cake. Glomerulonephrosis affected rats fed cake more than those fed diet 41B. Cake diets promoted nephrocalcinosis, unrelated to flour treatment. Increased splenic haematopoiesis occurred in about half of the females in the cake diet groups but less frequently in males or in rats fed diet 41B. Tumours were mainly chromophobe adenomas of the pituitary, common in rats. Insulomas were seen in two males in each of the groups fed on cake made from chlorinated flour, but an earlier form of this tumour was found in all cake groups and its incidence is thus regarded as unrelated to the flour treatment. The incidence of tumours of the reticuloendothelial system was not related to flour treatment. Covalent chlorine concentrations in the perirenal fat of the cake-fed rats were correlated with treatment levels, with values of 50-912 ppm in

  8. Characterization of chemically induced ovarian carcinomas in an ethanol-preferring rat model: influence of long-term melatonin treatment.

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo A Chuffa

    Full Text Available Ovarian cancer is the fourth most common cause of cancer deaths among women, and chronic alcoholism may exert co-carcinogenic effects. Because melatonin (mel has oncostatic properties, we aimed to investigate and characterize the chemical induction of ovarian tumors in a model of ethanol-preferring rats and to verify the influence of mel treatment on the overall features of these tumors. After rats were selected to receive ethanol (EtOH, they were surgically injected with 100 µg of 7,12-dimethyl-benz[a]anthracene (DMBA plus sesame oil directly under the left ovarian bursa. At 260 days old, half of the animals received i.p. injections of 200 µg mel/100 g b.w. for 60 days. Four experimental groups were established: Group C, rats bearing ovarian carcinomas (OC; Group C+EtOH, rats voluntarily consuming 10% (v/v EtOH and bearing OC; Group C+M, rats bearing OC and receiving mel; and Group C+EtOH+M, rats with OC consuming EtOH and receiving mel. Estrous cycle and nutritional parameters were evaluated, and anatomopathological analyses of the ovarian tumors were conducted. The incidence of ovarian tumors was higher in EtOH drinking animals 120 days post-DMBA administration, and mel efficiently reduced the prevalence of some aggressive tumors. Although mel promoted high EtOH consumption, it was effective in synchronizing the estrous cycle and reducing ovarian tumor mass by 20%. While rats in the C group displayed cysts containing serous fluid, C+EtOH rats showed solid tumor masses. After mel treatment, the ovaries of these rats presented as soft and mobile tissues. EtOH consumption increased the incidence of serous papillary carcinomas and sarcomas but not clear cell carcinomas. In contrast, mel reduced the incidence of sarcomas, endometrioid carcinomas and cystic teratomas. Combination of DMBA with EtOH intake potentiated the incidence of OC with malignant histologic subtypes. We concluded that mel reduces ovarian masses and the incidence of

  9. Long-Term Chronic Intermittent Hypobaric Hypoxia Induces Glucose Transporter (GLUT4 Translocation Through AMP-Activated Protein Kinase (AMPK in the Soleus Muscle in Lean Rats

    Directory of Open Access Journals (Sweden)

    Patricia Siques

    2018-06-01

    Full Text Available Background: In chronic hypoxia (CH and short-term chronic intermittent hypoxia (CIH exposure, glycemia and insulin levels decrease and insulin sensitivity increases, which can be explained by changes in glucose transport at skeletal muscles involving GLUT1, GLUT4, Akt, and AMPK, as well as GLUT4 translocation to cell membranes. However, during long-term CIH, there is no information regarding whether these changes occur similarly or differently than in other types of hypoxia exposure. This study evaluated the levels of AMPK and Akt and the location of GLUT4 in the soleus muscles of lean rats exposed to long-term CIH, CH, and normoxia (NX and compared the findings.Methods: Thirty male adult rats were randomly assigned to three groups: a NX (760 Torr group (n = 10, a CIH group (2 days hypoxia/2 days NX; n = 10 and a CH group (n = 10. Rats were exposed to hypoxia for 30 days in a hypobaric chamber set at 428 Torr (4,600 m. Feeding (10 g daily and fasting times were accurately controlled. Measurements included food intake (every 4 days, weight, hematocrit, hemoglobin, glycemia, serum insulin (by ELISA, and insulin sensitivity at days 0 and 30. GLUT1, GLUT4, AMPK levels and Akt activation in rat soleus muscles were determined by western blot. GLUT4 translocation was measured with confocal microscopy at day 30.Results: (1 Weight loss and increases in hematocrit and hemoglobin were found in both hypoxic groups (p < 0.05. (2 A moderate decrease in glycemia and plasma insulin was found. (3 Insulin sensitivity was greater in the CIH group (p < 0.05. (4 There were no changes in GLUT1, GLUT4 levels or in Akt activation. (5 The level of activated AMPK was increased only in the CIH group (p < 0.05. (6 Increased GLUT4 translocation to the plasma membrane of soleus muscle cells was observed in the CIH group (p < 0.05.Conclusion: In lean rats experiencing long-term CIH, glycemia and insulin levels decrease and insulin sensitivity increases. Interestingly, there

  10. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    Science.gov (United States)

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (ploss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short

  11. Serial Diffusion Tensor Imaging In Vivo Predicts Long-Term Functional Recovery and Histopathology in Rats following Different Severities of Spinal Cord Injury

    Science.gov (United States)

    Patel, Samir P.; Smith, Taylor D.; VanRooyen, Jenna L.; Powell, David; Cox, David H.; Sullivan, Patrick G.

    2016-01-01

    Abstract The current study demonstrates the feasibility of using serial magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) in vivo to quantify temporally spinal cord injury (SCI) pathology in adult female Sprague-Dawley rats that were scanned prior to a moderate or severe upper lumbar contusion SCI. Injured rats were behaviorally tested for hind limb locomotion (Basso, Beattie, Bresnahan [BBB] scores) weekly for 4 weeks and scanned immediately after each session, ending with terminal gait analyses prior to euthanasia. As a measure of tissue integrity, fractional anisotropy (FA) values were significantly lower throughout the spinal cord in both injury cohorts at all time-points examined versus pre-injury. Moreover, FA values were significantly lower following severe versus moderate SCI at all time-points, and FA values at the injury epicenters at all time-points were significantly correlated with both spared white and gray matter volumes, as well as lesion volumes. Critically, quantified FA values at subacute (24 h) and all subsequent time-points were highly predictive of terminal behavior, reflected in significant correlations with both weekly BBB scores and terminal gait parameters. Critically, the finding that clinically relevant subacute (24 h) FA values accurately predict long-term functional recovery may obviate long-term studies to assess the efficacy of therapeutics tested experimentally or clinically. In summary, this study demonstrates a reproducible serial MRI procedure to predict the long-term impact of contusion SCI on both behavior and histopathology using subacute DTI metrics obtained in vivo to accurately predict multiple terminal outcome measures, which can be particularly valuable when comparing experimental interventions. PMID:26650623

  12. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats

    Directory of Open Access Journals (Sweden)

    Malihe Sadeghi

    2017-12-01

    Full Text Available Objective(s: Cholecystokinin (CCK has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S was injected (1.6 µg/kg, IP before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long term potentiation (LTP in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization in order to investigate synaptic plasticity. Results: Stress impaired spatial memory significantly (P

  13. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome

    DEFF Research Database (Denmark)

    Buhl, Esben Selmer; Jessen, Niels; Pold, Rasmus

    2002-01-01

    , upregulate mitochondrial enzymes in skeletal muscles, and decrease the content of intra-abdominal fat. Furthermore, acute AICAR exposure has been found to reduce sterol and fatty acid synthesis in rat hepatocytes incubated in vitro as well as suppress endogenous glucose production in rats under euglycemic......-treated animals exhibited a tendency toward decreased intra-abdominal fat content. Furthermore, AICAR administration normalized the oral glucose tolerance test and decreased fasting concentrations of glucose and insulin close to the level of the lean animals. Finally, in line with previous findings, AICAR...... treatment was also found to enhance GLUT4 protein expression and to increase maximally insulin-stimulated glucose transport in primarily white fast-twitch muscles. Our data provide strong evidence that long-term administration of AICAR improves glucose tolerance, improves the lipid profile, and reduces...

  14. Long-term exposure to xenoestrogens alters some brain monoamines and both serum thyroid hormones and cortisol levels in adult male rats

    Directory of Open Access Journals (Sweden)

    Nashwa M. Saied

    2014-10-01

    Full Text Available The present study was designed to examine the effect of long-term treatment with the phytoestrogen soy isoflavone [(SIF; 43 mg/kg body weight/day] and/or the plastics component bisphenol-A [(BPA; 3 mg/kg body weight/day] on some monoamines in the forebrain and both serum thyroid hormones and cortisol levels of adult rats. Significant increases in serotonin (5-HT and norepinephrine (NE level, and significant decreases in 5-hydroxyindoleacetic acid (5-HIAA level and 5-HIAA/5-HT ratio, were observed after treatment with SIF or BPA. Level of dopamine (DA was increased in SIF-treated group and decreased in BPA-treated group. Activity of monoamine oxidase (MAO was decreased in all treated groups. The level of serum thyroid hormones (fT3 and fT4 was increased after treatment with SIF and decreased after exposure to BPA, while cortisol level was increased in all treated groups. It may be concluded that long-term exposure to SIF or BPA disrupts monoamine levels in the forebrain of adult rats through alteration in the metabolic pathways of amines and disorders of thyroid hormones and cortisol levels.

  15. Leptin attenuates the detrimental effects of β-amyloid on spatial memory and hippocampal later-phase long term potentiation in rats.

    Science.gov (United States)

    Tong, Jia-Qing; Zhang, Jun; Hao, Ming; Yang, Ju; Han, Yu-Fei; Liu, Xiao-Jie; Shi, Hui; Wu, Mei-Na; Liu, Qing-Song; Qi, Jin-Shun

    2015-07-01

    β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1μg) effectively alleviated Aβ1-42 (20μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1-42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Long-Term Fate and Toxicity of PEG-Modified Single-Walled Carbon Nanotube Isoliquiritigenin Delivery Vehicles in Rats

    Directory of Open Access Journals (Sweden)

    Bo Han

    2014-01-01

    Full Text Available Oxidized single-walled carbon nanotubes (o-SWNTs was modified by covalently and noncovalently linking PEG to the o-SWNTs. The influence of oxidation time, PEG molecular weight, and type of PEG linkage on the blood clearance time of PEG-modified single-walled carbon nanotubes (SWNTs was investigated. The toxicity profile of SWNTs covalently linked to PEG (c-PEG-o-SWNTs in rats has also been determined. The pharmacokinetics of c-PEG-o-SWNTs in rats and their distribution in vital organs were monitored by Raman spectroscopy, and the blood clearance of homogenate isoliquiritigenin (ISL was determined by HPLC. Photos of tissue and tissue sections were taken to evaluate the toxicity of c-PEG-o-SWNTs. We found that SWNTs which were covalently modified with PEG and have a molecular weight of 3500 had the longest blood clearance half-lives. However, SWNTs were toxic to the kidneys and the hearts. The high renal clearance of long-term fate SWNTs may occur because of impaired kidney filtration function. Therefore, we assume that while researchers study the long-term fate of SWNTs, the toxicity of SWNTs also needs to be taken into account.

  17. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    Science.gov (United States)

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Application of {sup 1}H-NMR-based metabolomics for detecting injury induced by long-term microwave exposure in Wistar rats' urine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-Feng; Peng, Rui-Yun; Wang, Shui-Ming; Gao, Ya-Bing; Dong, Ji; Zhao, Li; Li, Xiang; Zuo, Hong-Yan; Wang, Chang-Zhen [Beijing Institute of Radiation Medicine, Laboratory of Pathology, Beijing (China); Hu, Xiang-Jun [Beijing Institute of Radiation Medicine, Beijing (China); Gao, Rong-Lian [Beijing Institute of Radiation Medicine, Laser Medicine, Beijing (China); Su, Zhen-Tao [Beijing Institute of Radiation Medicine, Radiation Protection, Beijing (China); Feng, Xin-Xing [Chinese Academy of Medical Sciences, Endocrine and Cardiovascular Center, Fuwai Hospital and Cardiovascular Institute, Beijing (China)

    2012-07-15

    There has been growing public concern regarding exposure to microwave fields as a potential human health hazard. This study aimed to identify sensitive biochemical indexes for the detection of injury induced by microwave exposure. Male Wistar rats were exposed to microwaves for 6 min per day, 5 days per week over a period of 1 month at an average power density of 5 mW/cm{sup 2} (specific absorption rate of 2.1 W/kg). Urine specimens were collected over 24 h in metabolic cages at 7 days, 21 days, 2 months, and 6 months after exposure. {sup 1}H NMR spectroscopy data were analyzed using multivariate statistical techniques. Urine metabolic profiles of rats after long-term microwave exposure were significantly differentiated from those of sham-treated controls using principal component analysis or partial least squares discriminant analysis. Significant differences in low molecular weight metabolites (acetate, succinate, citrate, ketoglutarate, glucose, taurine, phenylalanine, tyrosine, and hippurate) were identified in the 5 mW/cm{sup 2} microwave exposure group compared with the sham-treated controls at 7 days, 21 days, and 2 months. Metabolites returned to normal levels by 6 months after exposure. These data indicated that these metabolites were related to the perturbations of energy metabolism particularly in the tricarboxylic acid cycle, and the metabolism of amino acids, monoamines, and choline in urine represent potential indexes for the detection of injury induced by long-term microwave exposure. (orig.)

  19. Effect of a Short-Term and Long-Term Melatonin Administration on Mammary Carcinogenesis in Female Sprague-Dawley Rats Influenced by Repeated Psychoemotional Stress

    Directory of Open Access Journals (Sweden)

    M. Kassayová

    2007-01-01

    Full Text Available The aim of this study was to evaluate the effect of melatonin (MEL on N-methyl-N-nitrosourea (NMU-induced mammary carcinogenesis in female Sprague-Dawley rats exposed to repeated psychoemotional stress - immobilization in boxes. NMU was applied intraperitoneally in two doses each of 50 mg/kg b.w. between 40 - 50 postnatal days. Melatonin was administered in drinking water at a concentration of 4 μg/ml daily from 15:00 h to 8:00 h. The application was initiated 5 days prior to the fi rst NMU dose and lasted 15 days, i.e. during the promotion phase of tumour development, or long-term until the end of the experiment (week 20. Immobilization (2 h per day began on the third day after the second carcinogen application and lasted for 7 consecutive days. Short-term MEL administration to immobilized animals increased incidence by 22%, decreased tumour frequency per animal by 26% and reduced tumour volume gain (by 21% when compared to the immobilized group without MEL application. Decreased frequency per animal by 28% and more than a 40% decrease in tumour volume gain and cumulative volume were the most pronounced changes in the animals drinking MEL until the end of the experiment. Long-term MEL administration reduced the number and size of mammary tumours more markedly than its short-term administration. Melatonin decreased certain attributes of mammary carcinogenesis in female rats influenced by psychoemotional stress.

  20. The protective effect of N-acetylcysteine on oxidative stress in the brain caused by the long-term intake of aspartame by rats.

    Science.gov (United States)

    Finamor, Isabela A; Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Bressan, Caroline A; Scheid, Taína; Baldisserotto, Bernardo; Llesuy, Susana F; Partata, Wânia A; Pavanato, Maria A

    2014-09-01

    Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg(-1), i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg(-1)). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.

  1. Long-Term Stimulation with Electroacupuncture at DU20 and ST36 Rescues Hippocampal Neuron through Attenuating Cerebral Blood Flow in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Gui-Hua Tian

    2013-01-01

    Full Text Available This study was designed to investigate the effect of long-term electroacupuncture at Baihui (DU20 and Zusanli (ST36 on cerebral microvessels and neurons in CA1 region of hippocampus in spontaneously hypertensive rats (SHR. A total of 45 male Wistar rats and 45 SHR were randomly grouped, with or without electroacupuncture (EA at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP was measured once every 2 weeks. Cerebral blood flow (CBF and the number of open microvessels in hippocampal CA1 region were detected by Laser Doppler and immunohistochemistry, respectively. Nissl staining and Western blotting were performed, respectively, to determine hippocampus morphology and proteins that were implicated in the concerning signaling pathways. The results showed that the MAP in SHR increased linearly over the observation period and was significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference was observed in Wistar rats between EA and sham control. The CBF, learning and memory capacity, and capillary rarefaction of SHR were improved by EA. The upregulation of angiotensin II type I receptor (AT1R, endothelin receptor (ETAR, and endothelin-1 (ET-1 in SHR rats was attenuated by electroacupuncture, suggesting an implication of AT1R, ETAR, and ET-1 pathway in the effect of EA.

  2. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage.

    Science.gov (United States)

    Wei, Lixia; Ren, Qing; Zhang, Yongjun; Wang, Jiwen

    2017-04-01

    To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (pmemory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.

  3. Long-term pretreatment with desethylamiodarone (DEA) or amiodarone (AMIO) protects against coronary artery occlusion induced ventricular arrhythmias in conscious rats.

    Science.gov (United States)

    Morvay, Nikolett; Baczkó, István; Sztojkov-Ivanov, Anita; Falkay, György; Papp, Julius Gy; Varró, András; Leprán, István

    2015-09-01

    The aim of this investigation was to compare the effectiveness of long-term pretreatment with amiodarone (AMIO) and its active metabolite desethylamiodarone (DEA) on arrhythmias induced by acute myocardial infarction in rats. Acute myocardial infarction was induced in conscious, male, Sprague-Dawley rats by pulling a previously inserted loose silk loop around the left main coronary artery. Long-term oral pretreatment with AMIO (30 or 100 mg·(kg body mass)(-1)·day(-1), loading dose 100 or 300 mg·kg(-1) for 3 days) or DEA (15 or 50 mg·kg(-1)·day(-1), loading dose 100 or 300 mg·kg(-1) for 3 days), was applied for 1 month before the coronary artery occlusion. Chronic oral treatment with DEA (50 mg·kg(-1)·day(-1)) resulted in a similar myocardial DEA concentration as chronic AMIO treatment (100 mg·kg(-1)·day(-1)) in rats (7.4 ± 0.7 μg·g(-1) and 8.9 ± 2.2 μg·g(-1)). Both pretreatments in the larger doses significantly improved the survival rate during the acute phase of experimental myocardial infarction (82% and 64% by AMIO and DEA, respectively, vs. 31% in controls). Our results demonstrate that chronic oral treatment with DEA resulted in similar cardiac tissue levels to that of chronic AMIO treatment, and offered an equivalent degree of antiarrhythmic effect against acute coronary artery ligation induced ventricular arrhythmias in conscious rats.

  4. Oxidative and antioxidative responses in submandibular and parotid glands of rats exposed to long-term extremely low frequency magnetic field

    Directory of Open Access Journals (Sweden)

    Mehmet Akdağ

    2014-06-01

    Full Text Available Background: Some epidemiologic and laboratory studies have suggested a possible associations between exposure to extremely low frequency magnetic field (ELF-MF and cancer. However, it is not known underlying mechanisms of this interaction. The aim of the study was to investigate the possible oxidative damage induced by long-term ELF-MF exposure on submandibular and parotis glands of rats. Methods: Rats in the experimental group were exposed to 100 and 500 µT ELF-MF (2 h/day, 7 days/week, for 10 months corresponding to exposure levels that are considered safe for humans. The same experimental procedures were applied to the sham group, but the ELF generator was turned off. The levels of catalase (CAT, malondialdehyde (MDA, myeloperoxidase (MPO, total antioxidative capacity (TAC, total oxidant status (TOS, and oxidative stress index (OSI were measured in rat submandibular and parotis gland. Results: Although some oxidative and antioxidative parameters of submandibular gland were altered by ELF-100 and ELF-500 exposure groups, these changes were not statistically significant ( p >0.05. However, a decrease observed in CAT levels of parotid gland in both the ELF-100 and ELF-500 exposure groups (p0.05. Conclusions: Our results showed that long-term ELF-MF exposure did not alter oxidative, antioxidative processes and lipid peroxidation in submandibular gland of rats. However, 100 µT and 500 µT ELF-MF exposure decreased CAT activity in parotid gland. J Clin Exp Invest 2014; 5 (2: 219-225

  5. The Effects of Long-Term Feeding of Rodent Food Bars on Lipid Peroxidation And Antioxidant Enzyme Levels In Fisher Rats

    Science.gov (United States)

    Ramirez, Joel; Zirkle-Yoshida, M.; Piert, S.; Barrett, J.; Yul, D.; Dalton, B.; Girten, B.

    2001-01-01

    A specialized rodent food bar diet has been developed and utilized successfully for short-duration shuttle missions. Recent tests conducted in preparation for experiments aboard the International Space Station (ISS) indicated that long-term food bar feeding for three months induced hyperlipidemia in rats. This study examined oxidative stress status in livers of these same animals. Spectrophotometric analysis of 79 Fischer rat livers (40 female and 39 male) for lipid peroxidation (LPO) and superoxide dismutase (SOD) was conducted using Bioxytech LPO-587(TM) assay kit and SOD-525(Tm) assay kit, respectively. The treatment groups consisted of 20 male CHOW and 19 male FOOD BAR rats and 20 female CHOW and 20 female FOOD BAR rats. Statistical analysis to compare differences between groups was performed by standard analysis of variance procedures. The male FOOD BAR group LPO mean (3.6 +/- 0.2 mmol/g) was significantly (p less than or equal to 0.05) greater than that of the male CHOW group (2.1 +/-0.1 mmol/g). Moreover the female FOOD BAR group LPO mean (2.9 +/-0.1 mmol/g) was also significantly greater than the female CHOW group mean (2.2 +/-0.1 mmol/g). The mean values for SOD in both male and female groups showed no significant differences between CHOW and FOOD BAR groups. These results show that LPO levels were significantly higher in both the male and female FOOD BAR groups compared to CHOW groups and that there was no concomitant increase in SOD levels across the group. In addition, males showed a greater difference than females in terms of LPO levels. These findings suggest a need for further investigation into the use of the current food bar formulation for long-term experiments such as those planned for the ISS.

  6. [The effects of renin-angiotensin system blockade on the liver steatosis in rats on long-term high-fat diet].

    Science.gov (United States)

    Chen, Ying-Hua; Yuan, Li; Chen, Yuan-Yuan; Qi, Cui-Juan

    2008-03-01

    To observe the relationship between liver steatosis in rats with long-term high-caloric and high-fat diet and the expression of angiotensinogen (AGT), uncoupling protein 2 (UCP-2) and transforming growth factor beta1 (TGFbeta1). Then angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II receptor blocker (ARB) drugs were given to investigate whether rennin-angiotensin system (RAS) blockade can mitigate the liver steatosis and to probe its mechanisms. Forty male Wistar rats were divided into normal control group (NC group, n = 10), high-calorie and high-fat fed group (HF group, n = 10), ARB treated group (AR group, n = 10) and ACEI treated group (AE group, n = 10). Rats were fed with high-calorie and high-fat diet and given RAS inhibitor drugs (valsartan 40 mg/kg to the AR group and perindopril 4 mg/kg to the AE group) for eight weeks. Serum TG, free fatty acids (FFAs) lever and the fat content in liver were then measured with biochemical tests; insulin resistance was evaluated with euglycemic hyperinsulinemia clamp technique, the expression of UCP-2 and TGFbeta1 in liver tissue were examined with immunohistochemical staining and AGT mRNA, UCP-2 mRNA and TGFbeta1 mRNA were tested with RT-PCR. With the administration of RAS inhibitor drugs, following changes were observed. The levels of TG and FFAs and the fat content in liver decreased (P liver steatosis, inflammation and fibrosis were mitigated. The levels of UCP-2 decreased by 36.5% (P liver injury of long term high-fat fed rats and have a protective effect on liver. The mechanism may be associated with the effects of improved insulin resistance, the interaction within RAS and the down-regulation of UCP-2 and TGFbeta1 in liver tissue.

  7. Long-Term Effects of Chronic Oral Ritalin Administration on Cognitive and Neural Development in Adolescent Wistar Kyoto Rats

    Directory of Open Access Journals (Sweden)

    Jennifer L. Cornish

    2012-09-01

    Full Text Available The diagnosis of Attention Deficit Hyperactivity Disorder (ADHD often results in chronic treatment with psychostimulants such as methylphenidate (MPH, Ritalin®. With increases in misdiagnosis of ADHD, children may be inappropriately exposed to chronic psychostimulant treatment during development. The aim of this study was to assess the effect of chronic Ritalin treatment on cognitive and neural development in misdiagnosed “normal” (Wistar Kyoto, WKY rats and in Spontaneously Hypertensive Rats (SHR, a model of ADHD. Adolescent male animals were treated for four weeks with oral Ritalin® (2 × 2 mg/kg/day or distilled water (dH2O. The effect of chronic treatment on delayed reinforcement tasks (DRT and tyrosine hydroxylase immunoreactivity (TH-ir in the prefrontal cortex was assessed. Two weeks following chronic treatment, WKY rats previously exposed to MPH chose the delayed reinforcer significantly less than the dH2O treated controls in both the DRT and extinction task. MPH treatment did not significantly alter cognitive performance in the SHR. TH-ir in the infralimbic cortex was significantly altered by age and behavioural experience in WKY and SHR, however this effect was not evident in WKY rats treated with MPH. These results suggest that chronic treatment with MPH throughout adolescence in “normal” WKY rats increased impulsive choice and altered catecholamine development when compared to vehicle controls.

  8. [Plasticity of memory in the brain of white rats after long-term exposure to titanium in drinking water].

    Science.gov (United States)

    Szuliński, S; Strusiński, A

    2001-01-01

    The experiment was conducted on male white rats from breeding base of the National Institute of Hygiene: WIS own breeding. During sixteen months the drinking water with TiCl3 in concentrations 5 and 25 mg/l, what is equivalent respectively 0.45 and 2.25 mg per 1 kg of daily weight of rats, was given the animals. After 3 and 15 months of exposure the rats were taught to differentiate and remember sight effects. The investigation of each cluster of rats, living previously in the same cage, was going non-stop by 24 hours for 5 days. The training was carried on in the special adopted cages making possible to record all correct and incorrect attempts in day long cycle. Percentage indicator, the ratio of mistakes to all number of the attempts, was used for assessment the training effectiveness in each group and the result in intoxicated group were compared with control group. During the whole time of exposition the supplying drinking water with TiCl3 in concentrations 5 and 25 mg/l has not caused changes in rats confirming possibility to evoke disorders of brain memory plasticity.

  9. Prenatal alcohol exposure results in long-term serotonin neuron deficits in female rats: modulatory role of ovarian steroids.

    Science.gov (United States)

    Sliwowska, Joanna H; Song, Hyun Jung; Bodnar, Tamara; Weinberg, Joanne

    2014-01-01

    Previous studies on male rodents found that prenatal alcohol exposure (PAE) decreases the number of serotonin immunoreactive (5-HT-ir) neurons in the brainstem. However, data on the effects of PAE in females are lacking. In light of known sex differences in responsiveness of the 5-HT system and known effects of estrogen (E2 ) and progesterone (P4 ) in the brain, we hypothesized that sex steroids will modulate the adverse effects of PAE on 5-HT neurons in adult females. Adult females from 3 prenatal groups (Prenatal alcohol-exposed [PAE], Pair-fed [PF], and ad libitum-fed Controls [C]) were ovariectomized (OVX), with or without hormone replacement, or underwent Sham OVX. 5-HT-ir cells were examined in key brainstem areas. Our data support the hypothesis that PAE has long-term effects on the 5-HT system of females and that ovarian steroids have a modulatory role in these effects. Intact (Sham OVX) PAE females had marginally lower numbers of 5-HT-ir neurons in the dorsal raphe nucleus of the brainstem compared with PF and C females. This marginal difference became significant following removal of hormones by OVX. Replacement with E2 restored the number of 5-HT-ir neurons in PAE females to control levels, while P4 reversed the effects of E2 . Importantly, despite these differential responses of the 5-HT system to ovarian steroids, there were no differences in E2 and P4 levels among prenatal treatment groups. These data demonstrate long-term, adverse effects of PAE on the 5-HT system of females, as well as differential sensitivity of PAE compared with control females to the modulatory effects of ovarian steroids on 5-HT neurons. Our findings have important implications for understanding sex differences in 5-HT dysfunction in depression/anxiety disorders and the higher rates of these mental health problems in individuals with fetal alcohol spectrum disorder. Copyright © 2013 by the Research Society on Alcoholism.

  10. Long-term retention of 133Ba in the rat trachea following local administration as barium sulfate particles

    International Nuclear Information System (INIS)

    Takahashi, S.; Patrick, G.

    1987-01-01

    Long-term retention of 133 Ba in the trachea from intratracheally administered BaSO 4 particles was determined by both serial sacrifice and external scanning methods up to 6 months after injection. The amount of 133 Ba retained 1 week after injection in the caudal region of the trachea, where the tip of the cannula had been at injection, was 0.41% of the initial dose. Thereafter the 133 Ba was cleared exponentially with a mean half-time of 88 days, as determined from the autopsy samples. The cranial region of the trachea, including the site of the tracheostomy, contained 133 Ba at 10 times the level in the caudal region 1 week after injection and was cleared with a half-time of 66 days. These clearance rates were confirmed by repeated external scanning over the trachea. The 133Ba was drained to the lymph nodes not only in the thoracic cavity but also in the cervical region, suggesting the possibility of lymphatic drainage from the trachea to the cervical lymph nodes

  11. NMDA receptor-mediated long term modulation of electrically evoked field potentials in the rat medial vestibular nuclei.

    Science.gov (United States)

    Capocchi, G; Della Torre, G; Grassi, S; Pettorossi, V E; Zampolini, M

    1992-01-01

    The effect of high frequency stimulation (HFS) of the primary vestibular afferents on field potentials recorded in the ipsilateral Medial Vestibular Nuclei (MVN) was studied. Our results show that potentiation and depression can be induced in different portions of MVN, which are distinguishable by their anatomical organization. HFS induces potentiation of the monosynaptic component in the ventral portion of the MVN, whereas it provokes depression of the polysynaptic component in the dorsal portion of the same nucleus. The induction of both potentiation and depression was blocked under AP5 perfusion, thus demonstrating that NMDA receptor activation mediates both phenomena. Furthermore, the finding that the field potentials were not modified during perfusion with DL-AP5, as previously reported, supports the hypothesis that NMDA receptors are not involved in the normal synaptic transmission from the primary vestibular afferent fibres, but are only activated following hyperstimulation of this afferent system. Our results suggest that the mechanisms of long term modification of synaptic efficacy observed in MVN may underlie the plasticity phenomena occurring in vestibular nuclei.

  12. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat

    NARCIS (Netherlands)

    Hendriks, William T J; Eggers, R.; Ruitenberg, Marc J; Blits, Bas; Hamers, Frank P T; Verhaagen, J.; Boer, Gerard J

    The purpose of this study was to compare spontaneous functional recovery after different spinal motor tract lesions in the rat spinal cord using three methods of analysis, the BBB, the rope test, and the CatWalk. We transected the dorsal corticospinal tract (CSTx) or the rubrospinal tract (RSTx) or

  13. Housing familiar male wildtype rats together reduces the long-term adverse behavioural and physiological effects of social defeat

    NARCIS (Netherlands)

    Ruis, M.A.W.; Brake, te J.H.A.; Buwalda, B.; Boer, de S.F.; Meerlo, P.; Korte, S.M.; Blokhuis, H.J.; Koolhaas, J.H.

    1999-01-01

    Social stress in rats is known to induce long-lasting, adverse changes in behaviour and physiology, which seem to resemble certain human psychopathologies, such as depression and anxiety. The present experiment was designed to assess the influence of individual or group housing on the vulnerability

  14. The effects of Vitamin C on sperm quality parameters in laboratory rats following long-term exposure to cyclophosphamide.

    Science.gov (United States)

    Shabanian, Sheida; Farahbod, Farnoosh; Rafieian, Mahmoud; Ganji, Forouzan; Adib, Afshin

    2017-01-01

    Cyclophosphamide is a widely used medication and can cause oxidative stress. This study was conducted to investigate the effects of Vitamin C on reproductive organs' weight and the quality of sperm parameters in laboratory rats. In this experimental study, 40 rats were randomly assigned into five groups of eight each. Distilled water (DW) group received only food and water, Group 2 was administered with drug solvent (DW) by gavage, Group 3 intraperitoneally administered with 1.6 mg/kg cyclophosphamide, Group 4 gavaged Vitamin C at 0.88 mg/kg, and Group 5 administered with effective doses of Vitamin C and cyclophosphamide by gavage with 1-h intervals. Sperm parameters of the samples were taken from distal epididymis and tissues were studied, and the data were analyzed by SPSS version 22. The lowest weight of testicles and epididymis was seen in cyclophosphamide-exposed rats and the highest weight of testicles and epididymis in Vitamin C-exposed rats ( P < 0.05). The highest motility, progression, viability, and count of sperm were seen in the Vitamin C-treated group and the lowest in the cyclophosphamide-exposed group. The highest proportion of sperm anomalies was seen in the cyclophosphamide-exposed group. Vitamin C, as an antioxidant, can be effective on some of the sperm parameters and can reduce cyclophosphamide-induced complications in animal model.

  15. The Effects of Early Postnatal Diuretics Treatment on Kidney Development and Long-Term Kidney Function in Wistar Rats

    NARCIS (Netherlands)

    Bueters, Ruud R. G.; Jeronimus-Klaasen, Annelies; Maicas, Nuria; Florquin, Sandrine; van den Heuvel, Lambertus P.; Schreuder, Michiel F.

    2016-01-01

    Diuretics are administered to neonates to control fluid balance. We studied whether clinical doses affected kidney development and function and whether extrauterine growth retardation (EUGR) could be a modulator. Wistar rats were cross-fostered in normal food or food restricted litters at postnatal

  16. Long-term voluntary exercise prevents post-weaning social isolation-induced cognitive impairment in rats.

    Science.gov (United States)

    Okudan, Nilsel; Belviranlı, Muaz

    2017-09-30

    This study aimed to determine the effect of exercise on locomotion, anxiety-related behavior, learning, and memory in socially isolated post-weaning rats, as well as the correlation between exercise and the concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus. Rats were randomly assigned to three groups: the control group; the social isolation group; the social isolation plus exercise (SIE) group. Social isolation conditions, with or without exercise were maintained for 90d, and then multiple behavioral tests, including the open-field test, elevated plus maze test, and Morris water maze (MWM) test were administered. Following behavioral assessment, hippocampal tissue samples were obtained for measurement of BDNF and NGF. There wasn't a significant difference in locomotor activity between the groups (P>0.05). Anxiety scores were higher in the socially isolated group (Psocially isolated rats (Psocial isolation-induced reduction in hippocampal BDNF and NGF content (Psocially isolated post-weaning rats. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. CARDIAC AND BEHAVIORAL-RESPONSES OF LONG-TERM OBESE AND LEAN ZUCKER RATS TO EMOTIONAL-STRESS

    NARCIS (Netherlands)

    NYAKAS, C; BALKAN, B; STEFFENS, AB; BOHUS, B

    1995-01-01

    Obesity is known as a risk factor in stress-related cardiovascular pathology in man. The length of obesity can be an important interacting variable. Therefore, cardiac and behavioral responses to emotional stress were studied in 1-year-old, genetically obese (fa/fa) and lean (Fa/-) male Zucker rats,

  18. The effects of Vitamin C on sperm quality parameters in laboratory rats following long-term exposure to cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Sheida Shabanian

    2017-01-01

    Full Text Available Cyclophosphamide is a widely used medication and can cause oxidative stress. This study was conducted to investigate the effects of Vitamin C on reproductive organs' weight and the quality of sperm parameters in laboratory rats. In this experimental study, 40 rats were randomly assigned into five groups of eight each. Distilled water (DW group received only food and water, Group 2 was administered with drug solvent (DW by gavage, Group 3 intraperitoneally administered with 1.6 mg/kg cyclophosphamide, Group 4 gavaged Vitamin C at 0.88 mg/kg, and Group 5 administered with effective doses of Vitamin C and cyclophosphamide by gavage with 1-h intervals. Sperm parameters of the samples were taken from distal epididymis and tissues were studied, and the data were analyzed by SPSS version 22. The lowest weight of testicles and epididymis was seen in cyclophosphamide-exposed rats and the highest weight of testicles and epididymis in Vitamin C-exposed rats (P < 0.05. The highest motility, progression, viability, and count of sperm were seen in the Vitamin C-treated group and the lowest in the cyclophosphamide-exposed group. The highest proportion of sperm anomalies was seen in the cyclophosphamide-exposed group. Vitamin C, as an antioxidant, can be effective on some of the sperm parameters and can reduce cyclophosphamide-induced complications in animal model.

  19. Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney.

    NARCIS (Netherlands)

    Seigneux, S. de; Nielsen, J.; Olesen, E.T.; Dimke, H.; Kwon, T.H.; Frokiaer, J.; Nielsen, S.

    2007-01-01

    The purpose of the present studies was to determine the effects of high-dose aldosterone and dDAVP treatment on renal aquaporin-2 (AQP2) regulation and urinary concentration. Rats were treated for 6 days with either vehicle (CON; n = 8), dDAVP (0.5 ng/h, dDAVP, n = 10), aldosterone (Aldo, 150

  20. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Miklos Szokol

    2017-10-01

    Full Text Available The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH, in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT. Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF, fractional shortening (FS, isovolumetric relaxation time (IVRT, mitral annular plane systolic excursion (MAPSE, and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.

  1. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Compaan, J.C.; Nyakas, C.; Horvath, E.; Luiten, P.G.M.

    1989-01-01

    The effect of cholinergic basal forebrain lesions on immunoreactivity to somatostatin (SOM-i) and neuropeptide-Y (NPY-i) was investigated in the rat parietal cortex, 16-18 months after multiple bilateral ibotenic acid injections in the nucleus basalis complex. As a result of the lesion, the

  2. Significant long-term, but not short-term, hippocampal-dependent memory impairment in adult rats exposed to alcohol in early postnatal life.

    Science.gov (United States)

    Goodfellow, Molly J; Lindquist, Derick H

    2014-09-01

    In rodents, ethanol exposure in early postnatal life is known to induce structural and functional impairments throughout the brain, including the hippocampus. Herein, rat pups were administered one of three ethanol doses over postnatal days (PD) 4-9, a period of brain development comparable to the third trimester of human pregnancy. As adults, control and ethanol rats were trained and tested in a variant of hippocampal-dependent one-trial context fear conditioning. In Experiment 1, subjects were placed into a novel context and presented with an immediate footshock (i.e., within ∼8 sec). When re-exposed to the same context 24 hr later low levels of conditioned freezing were observed. Context pre-exposure 24 hr prior to the immediate shock reversed the deficit in sham-intubated and unintubated control rats, enhancing freezing behavior during the context retention test. Even with context pre-exposure, however, significant dose-dependent reductions in contextual freezing were seen in ethanol rats. In Experiment 2, the interval between context pre-exposure and the immediate shock was shortened to 2 hr, in addition to the standard 24 hr. Ethanol rats trained with the 2 hr, but not 24 hr, interval displayed retention test freezing levels roughly equal to controls. Results suggest the ethanol rats can encode a short-term context memory and associate it with the aversive footshock 2 hr later. In the 24 hr ethanol rats the short-term context memory is poorly transferred or consolidated into long-term memory, we propose, impeding the memory's subsequent retrieval and association with shock. © 2014 Wiley Periodicals, Inc.

  3. Effects of long-term administration of aspartame on biochemical indices, lipid profile and redox status of cellular system of male rats.

    Science.gov (United States)

    Adaramoye, Oluwatosin A; Akanni, Olubukola O

    2016-01-01

    Aspartame (N-L-α-aspartyl-L-phenylalanine-1-methyl ester) (ASP) is a synthetic sweetener used in foods and its safety remains controversial. The study was designed to investigate the effects of long-term administration of aspartame on redox status, lipid profile and biochemical indices in tissues of male Wistar rats. Rats were assigned into four groups and given distilled water (control), aspartame at doses of 15 mg/kg (ASP 1), 35 mg/kg (ASP 2) and 70 mg/kg (ASP 3) daily by oral gavage for consecutive 9 weeks. Administration of ASP 2 and ASP 3 significantly increased the weight of liver and brain, and relative weight of liver of rats. Lipid peroxidation products significantly increased in the kidney, liver and brain of rats at all doses of ASP with concomitant depletion of antioxidant parameters, viz. glutathione-s-transferase, glutathione peroxidase, superoxide dismutase, catalase and reduced glutathione. Furthermore, ASP 2 and ASP 3 significantly increased the levels of gamma glutamyl transferase by 70% and 85%; alanine aminotransferase by 66% and 117%; aspartate aminotransferase by 21% and 48%; urea by 72% and 58% and conjugated bilirubin by 63% and 64%, respectively. Also, ASP 2 and ASP 3 significantly increased the levels of total cholesterol, triglycerides and low-density lipoprotein cholesterol in the rats. Histological findings showed that ASP 2 and ASP 3 caused cyto-architectural changes such as degeneration, monocytes infiltration and necrotic lesions in brain, kidney and liver of rats. Aspartame may induce redox and lipid imbalance in rats via mechanism that involves oxidative stress and depletion of glutathione-dependent system.

  4. Chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in adult spontaneously hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Pires, Vanessa A; Pamplona, Fabrício A; Pandolfo, Pablo; Prediger, Rui D S; Takahashi, Reinaldo N

    2010-12-20

    The spontaneously hypertensive rat (SHR) is frequently used as an experimental model for the study of attention deficit hyperactivity disorder (ADHD) since it displays behavioural and neurochemical features of ADHD. Increasing evidence suggests that caffeine might represent an important therapeutic tool for the treatment of ADHD and we recently demonstrated that the acute administration of caffeine improves several learning and memory impairments in adult SHR rats. Here we further evaluated the potential of caffeine in ADHD therapy. Female Wistar (WIS) and SHR rats were treated with caffeine (3mg/kg, i.p.) or methylphenidate (MPD, 2mg/kg, i.p.) for 14 consecutive days during the prepubertal period (post-natal days 25-38) and they were tested later in adulthood in the object-recognition task. WIS rats discriminated all the objects used, whereas SHR were not able to discriminate pairs of objects with subtle structural differences. Chronic treatment with caffeine or MPD improved the object-recognition deficits in SHR rats. Surprisingly, these treatments impaired the short-term object-recognition ability in adult WIS rats. The present drug effects are independent of changes in locomotor activity, arterial blood pressure and body weight in both rat strains. These findings suggest that chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in discriminative learning impairments of SHR, suggesting caffeine as an alternative therapeutic strategy for the early management of ADHD symptoms. Nevertheless, our results also emphasize the importance of a correct diagnosis and the caution in the use of stimulant drugs such as caffeine and MPD during neurodevelopment since they can disrupt discriminative learning in non-ADHD phenotypes. Copyright 2010 Elsevier B.V. All rights reserved.

  5. The effect of long term administration of ascorbic acid on the learning and memory deficits induced by diabetes in rat

    Directory of Open Access Journals (Sweden)

    Parisa Hasanein

    2010-04-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Ascorbic acid improves cognitive impairments in several experimental models. Diabetes causes learning and memory deficits. In this study we hypothesized that chronic treatment with ascorbic acid (100mg/kg, p.o would affect on the passive avoidance learning (PAL and memory in control and streptozocin-induced diabetic rats."n"nMethods: Diabetes was induced by a single i.p. injection of STZ (60mg/kg. The rats were considered diabetic if plasma glucose levels exceeded 250mg/dl on three days after STZ injection. Treatment was begun at the onset of hyperglycemia. PAL was assessed 30 days later. Retention test was done 24 h after training. At the end, animals were weighted and blood samples were drawn for plasma glucose measurement."n"nResults: Diabetes caused impairment in acquisition and retrieval processes of PAL and memory in rats. Ascorbic acid treatment improved learning and memory in control rats and reversed learning and memory deficits in diabetic rats. Ascorbic acid administration also improved the body weight loss and hyperglycemia of diabetics. Hypoglycemic and antioxidant properties of the vitamin may be involved in the memory improving effects of such treatment."n"nConclusion: These results show that

  6. Long-term programing of psychopathology-like behaviors in male rats by peripubertal stress depends on individual's glucocorticoid responsiveness to stress.

    Science.gov (United States)

    Walker, Sophie E; Sandi, Carmen

    2018-02-07

    Experience of adversity early in life and dysregulation of hypothalamus-pituitary-adrenocortical (HPA) axis activity are risk factors often independently associated with the development of psychopathological disorders, including depression, PTSD and pathological aggression. Additional evidence suggests that in combination these factors may interact to shape the development and expression of psychopathology differentially, though little is known about underlying mechanisms. Here, we studied the long-term consequences of early life stress exposure on individuals with differential constitutive glucocorticoid responsiveness to repeated stressor exposure, assessing both socio-affective behaviors and brain activity in regions sensitive to pathological alterations following stress. Two rat lines, genetically selected for either low or high glucocorticoid responsiveness to repeated stress were exposed to a series of unpredictable, fear-inducing stressors on intermittent days during the peripuberty period. Results obtained at adulthood indicated that having high glucocorticoid responses to repeated stress and having experience of peripuberty stress independently enhanced levels of psychopathology-like behaviors, as well as increasing basal activity in several prefrontal and limbic brain regions in a manner associated with enhanced behavioral inhibition. Interestingly, peripuberty stress had a differential impact on aggression in the two rat lines, enhancing aggression in the low-responsive line but not in the already high-aggressive, high-responsive rats. Taken together, these findings indicate that aberrant HPA axis activity around puberty, a key period in the development of social repertoire in both rats and humans, may alter behavior such that it becomes anti-social in nature.

  7. Long term exposure to combination paradigm of environmental enrichment, physical exercise and diet reverses the spatial memory deficits and restores hippocampal neurogenesis in ventral subicular lesioned rats.

    Science.gov (United States)

    Kapgal, Vijayakumar; Prem, Neethi; Hegde, Preethi; Laxmi, T R; Kutty, Bindu M

    2016-04-01

    Subiculum is an important structure of the hippocampal formation and plays an imperative role in spatial learning and memory functions. We have demonstrated earlier the cognitive impairment following bilateral ventral subicular lesion (VSL) in rats. We found that short term exposure to enriched environment (EE) did not help to reverse the spatial memory deficits in water maze task suggesting the need for an appropriate enriched paradigm towards the recovery of spatial memory. In the present study, the efficacy of long term exposure of VSL rats to combination paradigm of environmental enrichment (EE), physical exercise and 18 C.W. diet (Combination Therapy - CT) in reversing the spatial memory deficits in Morris water maze task has been studied. Ibotenate lesioning of ventral subiculum produced significant impairment of performance in the Morris water maze and reduced the hippocampal neurogenesis in rats. Post lesion exposure to C.T. restored the hippocampal neurogenesis and improved the spatial memory functions in VSL rats. Our study supports the hypothesis that the combination paradigm is critical towards the development of an enhanced behavioral and cognitive experience especially in conditions of CNS insults and the associated cognitive dysfunctions. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A diet containing grape powder ameliorates the cognitive decline in aged rats with a long-term high-fructose-high-fat dietary pattern.

    Science.gov (United States)

    Chou, Liang-Mao; Lin, Ching-I; Chen, Yue-Hwa; Liao, Hsiang; Lin, Shyh-Hsiang

    2016-08-01

    Research has suggested that the consumption of foods rich in polyphenols is beneficial to the cognitive functions of the elderly. We investigated the effects of grape consumption on spatial learning, memory performance and neurodegeneration-related protein expression in aged rats fed a high-fructose-high-fat (HFHF) diet. Six-week-old Wistar rats were fed an HFHF diet to 66 weeks of age to establish a model of an HFHF dietary pattern, before receiving intervention diets containing different amounts of grape powder for another 12 weeks in the second part of the experiment. Spatial learning, memory performance and cortical and hippocampal protein expression levels were assessed. After consuming the HFHF diet for a year, results showed that the rats fed a high grape powder-containing diet had significantly better spatial learning and memory performance, lower expression of β-amyloid and β-secretase and higher expression of α-secretase than the rats fed a low grape powder-containing diet. Therefore, long-term consumption of an HFHF diet caused a decline in cognitive functions and increased the risk factors for neurodegeneration, which could subsequently be ameliorated by the consumption of a polyphenol-rich diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Long Term Physiologic and Behavioural Effects of Housing Density and Environmental Resource Provision for Adult Male and Female Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Christopher J. Pinelli

    2017-06-01

    Full Text Available There is considerable interest in refining laboratory rodent environments to promote animal well-being, as well as research reproducibility. Few studies have evaluated the long term impact of enhancing rodent environments with resources and additional cagemates. To that end, male and female Sprague Dawley (SD rats were housed singly (n = 8/sex, in pairs (n = 16/sex, or in groups of four (n = 16/sex for five months. Single and paired rats were housed in standard cages with a nylon chew toy, while group-housed rats were kept in double-wide cages with two PVC shelters and a nylon chew toy and were provided with food enrichment three times weekly. Animal behaviour, tests of anxiety (open field, elevated plus maze, and thermal nociception, and aspects of animal physiology (fecal corticoid levels, body weight, weekly food consumption, organ weights, and cerebral stress signaling peptide and receptor mRNA levels were measured. Significant differences were noted, primarily in behavioural data, with sustained positive social interactions and engagement with environmental resources noted throughout the study. These results suggest that modest enhancements in the environment of both male and female SD rats may be beneficial to their well-being, while introducing minimal variation in other aspects of behavioural or physiologic responses.

  10. Validation of the long-term assessment of hypothalamic-pituitary-adrenal activity in rats using hair corticosterone as a biomarker.

    Science.gov (United States)

    Scorrano, Fabrizio; Carrasco, Javier; Pastor-Ciurana, Jordi; Belda, Xavier; Rami-Bastante, Alicia; Bacci, Maria Laura; Armario, Antonio

    2015-03-01

    The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. However, current methods have important limitations. The potential use of hair glucocorticoids as a noninvasive retrospective biomarker of long-term HPA activity is gaining acceptance in humans and wild animals. However, there is no study examining hair corticosterone (HC) in laboratory animals. The present study validates a method for measuring HC in rats and demonstrates that it properly reflects chronic HPA activity. The HC concentration was similar in male and female rats, despite higher total plasma corticosterone levels in females, tentatively suggesting that it reflects free rather than total plasma corticosterone. Exposure of male rats to 2 different chronic stress protocols (chronic immobilization and chronic unpredictable stress) resulted in similarly higher HC levels compared to controls (1.8-fold). HC also increased after a mild chronic stressor (30 min daily restraint). Chronic administration of 2 different doses of a long-acting ACTH preparation dramatically increased HC (3.1- and 21.5-fold, respectively), demonstrating that a ceiling effect in HC accumulation is unlikely under other more natural conditions. Finally, adrenalectomy significantly reduced HC. In conclusion, HC measurement in rats appears appropriate to evaluate integrated chronic changes in circulating corticosterone. © FASEB.

  11. Cystathionine-β-synthase-derived hydrogen sulfide is required for amygdalar long-term potentiation and cued fear memory in rats.

    Science.gov (United States)

    Chen, Hai-Bo; Wu, Wen-Ning; Wang, Wei; Gu, Xun-Hu; Yu, Bin; Wei, Bo; Yang, Yuan-Jian

    2017-04-01

    Hydrogen sulfide (H 2 S) is an endogenous gaseous molecule that functions as a neuromodulator in the brain. We previously reported that H 2 S regulated amygdalar synaptic plasticity and cued fear memory in rats. However, whether endogenous H 2 S is required for amygdalar long-term potentiation (LTP) induction and cued fear memory formation remains unclear. Here, we show that cystathionine-β-synthase (CBS), the predominant H 2 S-producing enzyme in the brain, was highly expressed in the amygdala of rats. Suppressing CBS activity by inhibitor prevented activity-triggered generation of H 2 S in the lateral amygdala (LA) region. Incubating brain slices with CBS inhibitor significantly prevented the induction of NMDA receptors (NMDARs)-dependent LTP in the thalamo-LA pathway, and intra-LA infusion of CBS inhibitor impaired cued fear memory in rats. Notably, treatment with H 2 S donor, but not CBS activator, significantly reversed the impairments of LTP and fear memory caused by CBS inhibition. Mechanismly, inhibition of CBS activity led to a reduction in NMDAR-mediated synaptic response in the thalamo-LA pathway, and treatment with H 2 S donor restored the function of NMDARs. Collectively, these results indicate that CBS-derived H 2 S is required for amygdalar synaptic plasticity and cued fear memory in rats, and the effects of endogenous H 2 S might involve the regulation of NMDAR function. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats.

    Directory of Open Access Journals (Sweden)

    Tomoko Inagaki

    Full Text Available Transient global forebrain ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons, and the ovarian hormone 17β-estradiol (E2 reduces neuronal loss in young and middle-aged females. The neuroprotective efficacy of E2 after a prolonged period of hormone deprivation is controversial, and few studies examine this issue in aged animals given E2 treatment after induction of ischemia.The present study investigated the neuroprotective effects of E2 administered immediately after global ischemia in aged female rats (15-18 months after 6 months of hormone deprivation. We also used electrophysiological methods to assess whether CA1 synapses in the aging hippocampus remain responsive to E2 after prolonged hormone withdrawal. Animals were ovariohysterectomized and underwent 10 min global ischemia 6 months later. A single dose of E2 (2.25 µg infused intraventricularly after reperfusion significantly increased cell survival, with 45% of CA1 neurons surviving vs 15% in controls. Ischemia also induced moderate loss of CA3/CA4 pyramidal cells. Bath application of 1 nM E2 onto brain slices derived from non-ischemic aged females after 6 months of hormone withdrawal significantly enhanced excitatory transmission at CA1 synapses evoked by Schaffer collateral stimulation, and normal long-term potentiation (LTP was induced. The magnitude of LTP and of E2 enhancement of field excitatory postsynaptic potentials was indistinguishable from that recorded in slices from young rats.The data demonstrate that 1 acute post-ischemic infusion of E2 into the brain ventricles is neuroprotective in aged rats after 6 months of hormone deprivation; and 2 E2 enhances synaptic transmission in CA1 pyramidal neurons of aged long-term hormone deprived females. These findings provide evidence that the aging hippocampus remains responsive to E2 administered either in vivo or in vitro even after prolonged periods of hormone withdrawal.

  13. Early long-term exposure with caffeine induces cross-sensitization to methylphenidate with involvement of DARPP-32 in adulthood of rats.

    Science.gov (United States)

    Boeck, Carina R; Marques, Virgínia B; Valvassori, Samira S; Constantino, Leandra C; Rosa, Daniela V F; Lima, Fabrício F; Romano-Silva, Marco A; Quevedo, João

    2009-09-01

    Chronic ingestion of caffeine causes dependence and sleep disturbance in children and adolescents. In rodents, the administration of caffeine may produce behavioral cross-sensitization to some psychostimulants, such as dopaminergic psychoactive drugs. Methylphenidate (MPH; Ritalin) is a psychostimulant used in pediatric- and adult human populations to manage the symptoms associated with attention-deficit hyperactivity disorder (ADHD). Previous studies have suggested that dopamine- and cAMP-regulated phosphoproteins of 32 kDa (DARPP-32) participate in the manifestation of behavioral activity following ingestion of caffeine or MPH. The aim of the present study was to evaluate whether long-term administration of low doses of caffeine in rodents during their adolescence induces cross-sensitization to MPH challenge in their adulthood and investigate the involvement of DARPP-32 in this model. Young rats (P25) consumed water or caffeine (0.3 g/L; mean consumption was 7.5 mg/day/kg) for 28 days. The caffeine consumption was then suspended for 14 days (washout period) when the animals received saline solution or MPH (1, 2, or 10 mg/kg) (P67) intraperitoneally. The locomotor activity of these rats was assessed using the open-field test, following which the immunocontent of DARPP-32 was evaluated in samples of their prefrontal cortex, striatum, or hippocampus. Rats chronically exposed to caffeine in their adolescent period and to inactive doses of MPH (1mg/kg) in adulthood showed augmented locomotor activity. The behavioral effect observed was accompanied by increased levels of DARPP-32 in the striatum and prefrontal cortex compared to control groups (saline or caffeine). However, no alteration caused by these treatments was noted in the hippocampus. In conclusion, chronic caffeine exposure induces likely long-term cross-sensitization to MPH in a DARPP-32-dependent pathway.

  14. Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats.

    Science.gov (United States)

    O'Hagan, Caroline; Li, Jia V; Marchesi, Julian R; Plummer, Sue; Garaiova, Iveta; Good, Mark A

    2017-10-01

    Ageing is associated with changes in the gut microbiome that may contribute to age-related changes in cognition. Previous work has shown that dietary supplements with multi-species live microorganisms can influence brain function, including induction of hippocampal synaptic plasticity and production of brain derived neurotrophic factor, in both young and aged rodents. However, the effect of such dietary supplements on memory processes has been less well documented, particularly in the context of aging. The main aim of the present study was to examine the impact of a long-term dietary supplement with a multi-species live Lactobacillus and Bifidobacteria mixture (Lactobacillus acidophilus CUL60, L. acidophilus CUL21, Bifidobacterium bifidum CUL20 and B. lactis CUL34) on tests of memory and behavioural flexibility in 15-17-month-old male rats. Following behavioural testing, the hippocampus and prefrontal cortex was extracted and analysed ex vivo using 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy to examine brain metabolites. The results showed a small beneficial effect of the dietary supplement on watermaze spatial navigation and robust improvements in long-term object recognition memory and short-term memory for object-in-place associations. Short-term object novelty and object temporal order memory was not influenced by the dietary supplement in aging rats. 1 H NMR analysis revealed diet-related regional-specific changes in brain metabolites; which indicated changes in several pathways contributing to modulation of neural signaling. These data suggest that chronic dietary supplement with multi-species live microorganisms can alter brain metabolites in aging rats and have beneficial effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Chronic graft-versus-host disease in the rat radiation chimera: I. clinical features, hematology, histology, and immunopathology in long-term chimeras

    International Nuclear Information System (INIS)

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1982-01-01

    The clinical features, pathology, and immunopathology of chronic graft-versus-host disease (GVHD) developing in the long-term rat radiation chimera are described. At 6 to 12 months post-transplant, the previously stable ACI/LEW chimeras developed patchy to diffuse severe hair loss and thickened skin folds, and had microscopic features resembling scleroderma, Sjogren's syndrome, and chronic hepatitis. Skin histology showed dermal inflammation and acanthosis with atrophy of the appendages, with progression to dermal sclerosis. The liver revealed chronic hepatitis with bile duct injury and proliferation and periportal piecemeal necrosis. The tongue had considerable submucosal inflammation, muscular necrosis, and atrophy and arteritis. The serous salivary glands, lacrimal glands, and bronchi had lymphocytic inflammation and injury to duct, acinar, and mucosal columnar epithelium. The thymus had lymphocyte depletion of the medulla with prominent epithelium. The spleen and lymph nodes had poorly developed germinal centers but increased numbers of plasma cells. IgM was observed along the basement membrane and around the basal cells of the skin and tongue and along the basement membrane of the bile ducts. IgM was present also in the arteries of the tongue. Immunoglobulins eluted from the skin, cross-reacted with the bile duct epithelium and usually with both ACI and Lewis skin. Increased titers of speckled antinuclear antibodies were present in the serum of rats with chronic (GVHD). Chronic GVHD in the long-term rat radiation chimera is very similar to human chronic GVHD and is a potentially excellent model for autoimmune disorders including scleroderma, Sjorgren's syndrome, and chronic hepatitis

  16. Chronic graft-versus-host disease in the rat radiation chimera: I. clinical features, hematology, histology, and immunopathology in long-term chimeras

    Energy Technology Data Exchange (ETDEWEB)

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1982-04-01

    The clinical features, pathology, and immunopathology of chronic graft-versus-host disease (GVHD) developing in the long-term rat radiation chimera are described. At 6 to 12 months post-transplant, the previously stable ACI/LEW chimeras developed patchy to diffuse severe hair loss and thickened skin folds, and had microscopic features resembling scleroderma, Sjogren's syndrome, and chronic hepatitis. Skin histology showed dermal inflammation and acanthosis with atrophy of the appendages, with progression to dermal sclerosis. The liver revealed chronic hepatitis with bile duct injury and proliferation and periportal piecemeal necrosis. The tongue had considerable submucosal inflammation, muscular necrosis, and atrophy and arteritis. The serous salivary glands, lacrimal glands, and bronchi had lymphocytic inflammation and injury to duct, acinar, and mucosal columnar epithelium. The thymus had lymphocyte depletion of the medulla with prominent epithelium. The spleen and lymph nodes had poorly developed germinal centers but increased numbers of plasma cells. IgM was observed along the basement membrane and around the basal cells of the skin and tongue and along the basement membrane of the bile ducts. IgM was present also in the arteries of the tongue. Immunoglobulins eluted from the skin, cross-reacted with the bile duct epithelium and usually with both ACI and Lewis skin. Increased titers of speckled antinuclear antibodies were present in the serum of rats with chronic (GVHD). Chronic GVHD in the long-term rat radiation chimera is very similar to human chronic GVHD and is a potentially excellent model for autoimmune disorders including scleroderma, Sjorgren's syndrome, and chronic hepatitis.

  17. Long-term treatment with haloperidol affects neuropeptide S and NPSR mRNA levels in the rat brain.

    Science.gov (United States)

    Palasz, Artur; Rojczyk, Ewa; Golyszny, Milosz; Filipczyk, Lukasz; Worthington, John J; Wiaderkiewicz, Ryszard

    2016-04-01

    The brainstem-derived neuropeptide S (NPS) has a multidirectional regulatory activity, especially as a potent anxiolytic factor. Accumulating data suggests that neuroleptics affect peptidergic signalling in various brain structures. However, there is no information regarding the influence of haloperidol on NPS and NPS receptor (NPSR) expression. We assessed NPS and NPSR mRNA levels in brains of rats treated with haloperidol using quantitative real-time polymerase chain reaction. Chronic haloperidol treatment (4 weeks) led to a striking upregulation of NPS and NPSR expression in the rat brainstem. Conversely, the NPSR mRNA expression was decreased in the hippocampus and striatum. This stark increase of NPS in response to haloperidol treatment supports the hypothesis that this neuropeptide is involved in the dopamine-dependent anxiolytic actions of neuroleptics and possibly also in the pathophysiology of mental disorders. Furthermore, our findings underline the complex nature of potential interactions between dopamine receptors and brain peptidergic pathways, which has potential clinical applications.

  18. Free radical scavenger, N-tert-butyl-alfa-phenylnitrone, affects long-term outcome of status epilepticus in immature rats

    Czech Academy of Sciences Publication Activity Database

    Kubová, Hana; Rejchrtová, Jana; Folbergrová, Jaroslava; Mareš, Pavel

    2005-01-01

    Roč. 46, č. S8 (2005), s. 111-112 [Joint Annual Meeting of the American Epilepsy Society and American Clinical Neurophysiology Society. 02.12.2005-06.12.2005, Washington, DC] R&D Projects: GA ČR(CZ) GA304/05/2582 Institutional research plan: CEZ:AV0Z50110509 Keywords : status epilepticus * PBN * rat Subject RIV: ED - Physiology

  19. The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts.

    Science.gov (United States)

    Flepisi, T B; Lochner, Amanda; Huisamen, Barbara

    2013-10-01

    Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this. Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca(2+)ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined. DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats. GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.

  20. [Interaction between fluorine and zinc after long-term oral administration into the digestive system of rats].

    Science.gov (United States)

    Mazurek-Mochol, Małgorzata

    2002-01-01

    Drug interactions are the side effect of administration of two or more drugs or a drug-food combination. Although some drug interactions are intentional and beneficial to the patient, the majority are unintentional and associated with a potentially harmful effect. The aim of this study was to search for interactions in rats between fluoride and zinc administered orally for 12 weeks and to elucidate any potential toxicological and therapeutic consequences. 60 male Wistar rats were divided into six groups of ten rats each and exposed to: 1. controls (distilled water); 2. sodium fluoride (NaF); 3. low-dose zinc (Zn); 4. high-dose zinc; 5. NaF + low-dose Zn; 6. NaF + high-dose Zn. At the end of the experiment the content of F- and Zn+ in serum, urine, incisors, femur and mandible was measured and densitometry of femoral bones was performed. Serum alkaline phosphatase, alanine and aspartate aminotransferase activities, as well as bilirubin and creatinine concentrations were determined to confirm non-toxicity of fluoride dose. Animals receiving NaF only demonstrated higher content of fluorine in serum, urine bones and teeth. Zinc concentrations in serum, urine, bones and teeth were elevated in rats receiving zinc with or without NaF. Fluorine accumulation in bones and teeth was reduced by Zn, but in general the effect lacked statistical significance. Zinc slightly reduced the concentrations of fluorine in serum and urine. Sodium fluoride slightly reduced the concentration of zinc in serum and urine. Bone mineral content (BMC) was significantly increased by NaF and was not further increased by co-administration of zinc. No changes in serum alkaline phosphatase, alanine and aspartate aminotransferase activities, bilirubin and creatinine concentrations were detected. In conclusion, simultaneous administration of fluorine and zinc may be beneficial for prevention and treatment of pathologic conditions in bones and teeth and is not accompanied by an increase in fluorine

  1. Effect of long-term intraperitoneal zinc administration on liver glycogen levels in diabetic rats subjected to acute forced swimming.

    Science.gov (United States)

    Bicer, Mursel; Gunay, Mehmet; Akil, Mustafa; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    This study aims to examine the effect of zinc administration on liver glycogen levels of rats in which diabetes was induced with streptozotocin and which were subjected to acute swimming exercise. The study was conducted on 80 adult Sprague-Dawley male rats, which were equally allocated to eight groups: group 1, general control; group 2, zinc-administrated control; group 3, zinc-administrated diabetic control; group 4, swimming control; group 5, zinc-administrated swimming; group 6, zinc-administrated diabetic swimming; group 7, diabetic swimming; group 8, diabetic control group. In order to induce diabetes, animals were injected with 40 mg/kg intraperitoneal (ip) streptozotocin. The injections were repeated in the same dose after 24 h. Animals which had blood glucose at or above 300 mg/dl 6 days after the last injections were accepted as diabetic. Zinc was administrated ip for 4 weeks as 6 mg/kg/day per rat. Hepatic tissue samples taken from the animals at the end of the study were fixed in 95% ethyl alcohol. Cross sections of 5 µm thickness, taken by the help of a microtome from the tissue samples buried in paraffin, were placed on a microscope slide and stained with periodic acid-Schiff and evaluated by light microscope. All microscopic images were transferred to a PC and assessed with the help of Clemex PE3.5 image analysis software. The lowest liver glycogen levels in the study were obtained in groups 3, 4, 6, 7, and 8. Liver glycogen levels in group 5 were higher than groups 3, 4, 6, 7, and 8, but lower than groups 1 and 2 (p swimming exercise were restored by zinc administration and that diabetes induced in rats prevented the protective effect of zinc.

  2. Increase of long-term 'diabesity' risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished 'small-for-gestational-age' (SGA rats.

    Directory of Open Access Journals (Sweden)

    Karen Schellong

    Full Text Available BACKGROUND: Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and 'diabesity' risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. METHODS AND FINDINGS: By rearing in normal (NL vs. small litters (SL, small-for-gestational-age (SGA rats were neonatally exposed to either normal (SGA-in-NL or over-feeding (SGA-in-SL, and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL. SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60, as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05, and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern 'westernized' lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05. Lasercapture microdissection (LMD-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc in SGA-in-SL rats (p<0.05. Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy, agouti-related-peptide (Agrp and galanin (Gal was not significantly altered. In essence, the 'orexigenic index', proposed here as a neuroendocrine 'net-indicator', was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01, correlated to food intake (p<0.05. CONCLUSION: Adult SGA rats developed increased 'diabesity' risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding

  3. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary

  4. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat.

    Science.gov (United States)

    Di Mauro, Michela; Tozzi, Alessandro; Calabresi, Paolo; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2015-01-01

    Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.

  5. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat

    Directory of Open Access Journals (Sweden)

    Michela eDi Mauro

    2015-10-01

    Full Text Available Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17b-estradiol (E2 and 5a-dihydrotestosterone (DHT neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD and depotentiation (DP by low frequency stimulation (LFS, 15 min-1 Hz and of long-term potentiation (LTP by high (HFS, 1 s-100 Hz, medium (MFS, 1 s-50 Hz, or weak (WFS, 1 s-25 Hz frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T into DHT (5a-reductase and T into E2 (P450-aromatase. We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.

  6. Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation.

    Science.gov (United States)

    Cruz, Catarina; Meireles, Manuela; Silva, Susana M

    2017-05-01

    Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Calcitonin gene-related peptide erases the fear memory and facilitates long-term potentiation in the central nucleus of the amygdala in rats.

    Science.gov (United States)

    Wu, Xin; Zhang, Jie-Ting; Liu, Jue; Yang, Si; Chen, Tao; Chen, Jian-Guo; Wang, Fang

    2015-11-01

    Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide, which plays a critical role in the central nervous system. CGRP binds to G protein-coupled receptors, including CGRP1, which couples positively to adenylyl cyclase (AC) and protein kinase A (PKA) activation. CGRP and CGRP1 receptors are enriched in central nucleus of the amygdala (CeA), the main part of the amygdala, which regulates conditioned fear memories. Here, we reported the importance of CGRP and CGRP1 receptor for synaptic plasticity in the CeA and the extinction of fear memory in rats. Our electrophysiological and behavioral in vitro and in vivo results showed exogenous application of CGRP induced an immediate and lasting long-term potentiation in the basolateral nucleus of amygdala-CeA pathway, but not in the lateral nucleus of amygdala-CeA pathway, while bilateral intra-CeA infusion CGRP (0, 5, 13 and 21 μM/side) dose dependently enhanced fear memory extinction. The effects were blocked by CGRP1 receptor antagonist (CGRP8-37 ), N-methyl-d-aspartate receptors antagonist MK801 and PKA inhibitor H89. These results demonstrate that CGRP can lead to long-term potentiation of basolateral nucleus of amygdala-CeA pathway through a PKA-dependent postsynaptic mechanism that involved N-methyl-d-aspartate receptors and enhance the extinction of fear memory in rats. Together, the results strongly support a pivotal role of CGRP in the synaptic plasticity of CeA and extinction of fear memory. Calcitonin gene-related peptide (CGRP) plays an essential role in synaptic plasticity in the amygdala and fear memory. We found that CGRP-induced chemical long-term potentiation (LTP) in a dose-dependent way in the BLA-CeA (basolateral and central nucleus of amygdala, respectively) pathway and enhanced fear memory extinction in rats through a protein kinase A (PKA)-dependent postsynaptic mechanism that involved NMDA receptors. These results support a pivotal role of CGRP in amygdala. © 2015 International

  8. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    Science.gov (United States)

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017

  9. Short- and long-term reproductive effects of prenatal and lactational growth restriction caused by maternal diabetes in male rats

    Directory of Open Access Journals (Sweden)

    Amorim Elaine MP

    2011-12-01

    Full Text Available Abstract Background A suboptimal intrauterine environment may have a detrimental effect on gonadal development and thereby increases the risk for reproductive disorders and infertility in adult life. Here, we used uncontrolled maternal diabetes as a model to provoke pre- and perinatal growth restriction and evaluate the sexual development of rat male offspring. Methods Maternal diabetes was induced in the dams through administration of a single i.v. dose of 40 mg/kg streptozotocin, 7 days before mating. Female rats presenting glycemic levels above 200 mg/dL after the induction were selected for the experiment. The male offspring was analyzed at different phases of sexual development, i.e., peripuberty, postpuberty and adulthood. Results Body weight and blood glucose levels of pups, on the third postnatal day, were lower in the offspring of diabetic dams compared to controls. Maternal diabetes also provoked delayed testicular descent and preputial separation. In the offspring of diabetic dams the weight of reproductive organs at 40, 60 and 90 days-old was lower, as well as sperm reserves and sperm transit time through the epididymis. However the plasma testosterone levels were not different among experimental groups. Conclusions It is difficult to isolate the effects directly from diabetes and those from IUGR. Although the exposure to hyperglycemic environment during prenatal life and lactation delayed the onset of puberty in male rats, the IUGR, in the studied model, did not influenced the structural organization of the male gonads of the offspring at any point during sexual development. However the decrease in sperm reserves in epididymal cauda and the acceleration in sperm transit time in this portion of epididymis may lead to an impairment of sperm quality and fertility potential in these animals. Additional studies are needed in attempt to investigate the fertility of animals with intrauterine growth restriction by maternal diabetes and

  10. A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats.

    Science.gov (United States)

    Roof, R L; Schielke, G P; Ren, X; Hall, E D

    2001-11-01

    Proven behavioral assessment strategies for testing potential therapeutic agents in rat stroke models are needed. Few studies include tasks that demand higher levels of sensorimotor and cognitive function. Because behavioral outcome and rate of recovery vary among ischemia models, there is a need to characterize and compare performance on specific tasks across models. To this end, sensorimotor and cognitive deficits were assessed during a 5-week period after either permanent proximal middle cerebral artery occlusion (pMCAO) or permanent distal middle cerebral artery occlusion combined with a 90-minute occlusion of both common carotid arteries (dMCAO/tCCAO) in Sprague-Dawley rats. The EBST, hindlimb and forelimb placing, and cylinder tests were given at regular intervals postinjury to assess sensorimotor function. Cognitive function was assessed with a multitrial water navigation task. pMCAO, which caused both striatal and cortical damage, produced persistent sensorimotor and cognitive deficits. Limb placing responses and postural reflexes were impaired throughout the month of testing. A persistent bias for using the ipsilateral forelimb for wall movements in the cylinder test was observed as well as a bias for landing on the opposite forelimb. pMCAO rats were also impaired in the water navigation task. dMCAO/tCCAO, which caused only cortical damage, produced similar sensorimotor deficits, but these were greatly diminished by 2 weeks after injury. No impairment was found for water tank navigation. Correlations between forelimb placing (both models), water navigation performance (pMCAO model), and sensorimotor asymmetry (dMCAOtCCAO model) and infarct volume were observed. Based on the range of functions affected and stability of observed deficits, the pMCAO model appears to be preferable to the dMCAO/tCCAO model for use in assessing therapeutic agents for stroke.

  11. Opposite long-term synaptic effects of 17β-estradiol and 5α-dihydrotestosterone and localization of their receptors in the medial vestibular nucleus of rats.

    Science.gov (United States)

    Grassi, Silvarosa; Scarduzio, Mariangela; Panichi, Roberto; Dall'Aglio, Cecilia; Boiti, Cristiano; Pettorossi, Vito E

    2013-08-01

    In brainstem slices of male rats, we examined in single neurons of the medial vestibular nucleus (MVN) the effect of exogenous administration of estrogenic (17β-estradiol, E2) and androgenic (5α-dihydrotestosterone, DHT) steroids on the synaptic response to vestibular afferent stimulation. By whole cell patch clamp recordings we showed that E2 induced synaptic long-term potentiation (LTP) that was cancelled by the subsequent administration of DHT. Conversely, DHT induced synaptic long-term depression (LTD) that was partially reversed by E2. The electrophysiological findings were supported by immunohistochemical analysis showing the presence of estrogen (ER: α and β) and androgen receptors (AR) in the MVN neurons. We found that a large number of neurons were immunoreactive for ERα, ERβ, and AR and most of them co-localized ERβ and AR. We also showed the presence of P450-aromatase (ARO) in the MVN neurons, clearly proving that E2 can be locally synthesized in the MVN. On the whole, these results demonstrate a role of estrogenic and androgenic signals in modulating vestibular synaptic plasticity and suggest that the enhancement or depression of vestibular synaptic response may depend on the local conversion of T into E2 or DHT. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Effects of Long-term Use of Polyphenols on the Absorption and Tissue Distribution of Orally Administered Metformin and Atenolol in Rats

    Directory of Open Access Journals (Sweden)

    Saad Abdulrahman Hussain

    2013-06-01

    Full Text Available Aim: To evaluate the effect of long-term use of silibinin, epigallocatechin (ECGC, quercetin and rutin on the absorption and tissue distribution of metformin and atenolol. Materials and Methods: Thirty male rats were used, allocated into 5 groups and treated as follow: 1st group treated with olive oil and served as control; the other 4 groups were treated with either silibinin, EPGC, quercetin or rutin, administered orally as oily solutions for 30 days. At day 30, a 300mg/kg metformin and 50mg/kg atenolol were administered orally; 3.0 hrs later, the animals were sacrificed and blood samples, tissues of brain, kidney and liver were obtained for evaluation of the drugs level. Results: The polyphenols increased both serum and tissue levels of metformin compared with controls. This effect was relatively varied according to the structural differences among flavonoids. Conclusion: Long-term use of supraphysiological doses of flavonoids increase absorption of Zn, Cu and Fe and their tissue availability in brain, kidney and liver; this effect seems to be different with variations in structural features. [J Intercult Ethnopharmacol 2013; 2(3.000: 147-154

  13. Comparative effects of short- and long-term feeding of safflower oil and perilla oil on lipid metabolism in rats.

    Science.gov (United States)

    Ihara, M; Umekawa, H; Takahashi, T; Furuichi, Y

    1998-10-01

    Diets high in linoleic acid (20% safflower oil contained 77.3% linoleic acid, SO-diet) and alpha-linolenic acid (20% perilla oil contained 58.4% alpha-linolenic acid, PO-diet) were fed to rats for 3, 7, 20, and 50 days, and effects of the diets on lipid metabolism were compared. Levels of serum total cholesterol and phospholipids in the rats fed the PO-diet were markedly lower than those fed the SO-diet after the seventh day. In serum and hepatic phosphatidylcholine and phosphatidylethanolamine, the proportion of n-3 fatty acids showed a greater increase in the PO group than in the SO group in the respective feeding-term. At the third and seventh days after the commencement of feeding the experimental diets, expressions of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA were significantly higher in the SO group than those in the PO group, although the difference was not observed in the longer term. There were no significant differences in the LDL receptor mRNA levels between the two groups through the experimental term, except 3-days feeding. These results indicate that alpha-linolenic acid has a more potent serum cholesterol-lowering ability than linoleic acid both in short and long feeding-terms.

  14. Long-Term PEDF Release in Rat Iris and Retinal Epithelial Cells after Sleeping Beauty Transposon-Mediated Gene Delivery

    Directory of Open Access Journals (Sweden)

    Laura Garcia-Garcia

    2017-12-01

    Full Text Available Pigment epithelium derived factor (PEDF is a potent antiangiogenic, neurotrophic, and neuroprotective molecule that is the endogenous inhibitor of vascular endothelial growth factor (VEGF in the retina. An ex vivo gene therapy approach based on transgenic overexpression of PEDF in the eye is assumed to rebalance the angiogenic-antiangiogenic milieu of the retina, resulting in growth regression of choroidal blood vessels, the hallmark of neovascular age-related macular degeneration. Here, we show that rat pigment epithelial cells can be efficiently transfected with the PEDF-expressing non-viral hyperactive Sleeping Beauty transposon system delivered in a form free of antibiotic resistance marker miniplasmids. The engineered retinal and iris pigment epithelium cells secrete high (141 ± 13 and 222 ± 14 ng PEDF levels in 72 hr in vitro. In vivo studies showed cell survival and insert expression during at least 4 months. Transplantation of the engineered cells to the subretinal space of a rat model of choroidal neovascularization reduces almost 50% of the development of new vessels.

  15. Long-term effects of controllability or the lack of it on coping abilities and stress resilience in the rat.

    Science.gov (United States)

    Lucas, Morgan; Ilin, Yana; Anunu, Rachel; Kehat, Orli; Xu, Lin; Desmedt, Aline; Richter-Levin, Gal

    2014-09-01

    Findings suggest that stress-induced impaired learning and coping abilities may be attributed more to the psychological nature of the stressor, rather than its physical properties. It has been proposed that establishing controllability over stressors can ameliorate some of its effects on cognition and behavior. Gaining controllability was suggested to be associated with the development of stress resilience. Based on repeated exposure to the two-way shuttle avoidance task, we previously developed and validated a behavioral task that leads to a strict dissociation between gaining controllability (to the level that the associated fear is significantly reduced) and a fearful state of uncontrollability. Employing this protocol, we investigated here the impact of gaining or failing to gain emotional controllability on indices of anxiety and depression and on subsequent abilities to cope with positively or negatively reinforcing learning experiences. In agreement with previous studies, rats exposed to the uncontrollable protocol demonstrated high concentration of sera corticosterone, increased immobility, reduced duration of struggling in the forced swim test and impaired ability to acquire subsequent learning tasks. Achieving emotional controllability resulted in resilience to stress as was indicated by longer duration of struggling in the forced swim test, and enhanced learning abilities. Our prolonged training protocol, with the demonstrated ability of rats to gain emotional controllability, is proposed as a useful tool to study the neurobiological mechanisms of stress resilience.

  16. The long-term effects of phase advance shifts of photoperiod on cardiovascular parameters as measured by radiotelemetry in rats

    International Nuclear Information System (INIS)

    Molcan, L; Vesela, A; Zeman, M; Teplan, M

    2013-01-01

    Cardiovascular parameters, such as blood pressure and heart rate, exhibit both circadian and ultradian rhythms which are important for the adequate functioning of the system. For a better understanding of possible negative effects of chronodisruption on the cardiovascular system we studied circadian and ultradian rhythms of blood pressure and heart rate in rats exposed to repeated 8 h phase advance shifts of photoperiod. The experiment lasted 12 weeks, with three shifts per week. Spectral power as a function of frequency for both circadian and harmonic ultradian rhythms was expressed as the circadian–ultradian power ratio. The circadian rhythms of blood pressure, heart rate and locomotor activity were recorded during the control light:dark (LD) regimen with higher values during the D in comparison with the L. Phase advance shifts resulted in a diminished circadian–ultradian power ratio for blood pressure, heart rate and locomotor activity indicating suppressed circadian control of these traits greater in heart rate than blood pressure. In conclusion, rats kept under irregular LD conditions have suppressed circadian control of heart rate, blood pressure and locomotor activity and rely more on an acute response to the LD regime. Their ability to anticipate regular loads can be weakened and in this way chronodisruption can contribute to the pathogenesis of cardiovascular diseases. (paper)

  17. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. © 2015 American Heart Association, Inc.

  18. Synaptic long-term potentiation and depression in the rat medial vestibular nuclei depend on neural activation of estrogenic and androgenic signals.

    Directory of Open Access Journals (Sweden)

    Mariangela Scarduzio

    Full Text Available Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs and androgens (ARs. We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2 and 5α-dihydrotestosterone (DHT on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN. Long-term depression (LTD and long-term potentiation (LTP caused by different patterns of high frequency stimulation (HFS of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase and E2 (P450-aromatase from testosterone (T. We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids.

  19. Anti-neuroinflammatory and antioxidant effects of N-acetyl cysteine in long-term consumption of artificial sweetener aspartame in the rat cerebral cortex

    Directory of Open Access Journals (Sweden)

    Afaf Abbass Sayed Saleh

    2015-10-01

    Long term consumption of the artificial sweetener aspartame (ASP induced large increments in cortical inflammation and oxidative stress. Daily oral NAC administration can significantly reverse brain-derived neurotrophic factor (BDNF levels, blocked the cyclooxygenase-2 (COX-2 and prostaglandin E2 (PGE2 production with selective attenuation in expression of proinflammatory cytokines of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α in the rat cerebral cortex. Also, NAC can significantly replenish and correct intracellular glutathione (GSH levels, modulate the elevated levels of total nitric oxide (TNO and lipid peroxidation (LPO. Conclusions: The present results amply support the concept that the brain oxidative stress and inflammation coexist in experimental animals chronically treated with aspartame and they represent two distinct therapeutic targets in ASP toxicity. The present data propose that NAC attenuated ASP neurotoxicity and improved neurological functions, suppressed brain inflammation, and oxidative stress responses and may be a useful strategy for treating ASP-induced neurotoxicity.

  20. Effect of long-term propranolol administration on specific binding of 3H-WB-4101 with rat mesenteric vascular membranes

    International Nuclear Information System (INIS)

    Ismailov, S.I.; Rozhanets, V.V.; Val'dman, A.V.

    1985-01-01

    The aim of this investigation was, first, to study the affinity of certain beta-adrenoblockers for specific binding sites of 3 H-WB-4101 (identifiable as alpha-adrenoreceptors) of brain membranes and, second, to study the characteristics of these same receptors in membranes of mesenteric vessels of rats during long-term administration of propranolol. Isotherms of specific binding, because of the limited quantity of vascular membranes, were determined by the use of three concentrations of 3 H-WB-4101: 0.1, 0.5, and 1.0 nM. It is shown that some beta-adrenoblockers have weak affinity for alpha-adrenoreceptors of brain synaptic membranes exhibited only when these compounds are present in relatively high concentrations. It is also shown that administration of propranolol for 15 days led to a significant decrease in affinity of the alpha-adrenorecptors for their specific antagonist WB-4101

  1. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  2. Rapid and reversible impairments of short- and long-term social recognition memory are caused by acute isolation of adult rats via distinct mechanisms.

    Science.gov (United States)

    Shahar-Gold, Hadar; Gur, Rotem; Wagner, Shlomo

    2013-01-01

    Mammalian social organizations require the ability to recognize and remember individual conspecifics. This social recognition memory (SRM) can be examined in rodents using their innate tendency to investigate novel conspecifics more persistently than familiar ones. Here we used the SRM paradigm to examine the influence of housing conditions on the social memory of adult rats. We found that acute social isolation caused within few days a significant impairment in acquisition of short-term SRM of male and female rats. Moreover, SRM consolidation into long-term memory was blocked following only one day of social isolation. Both impairments were reversible, but with different time courses. Furthermore, only the impairment in SRM consolidation was reversed by systemic administration of arginine-vasopressin (AVP). In contrast to SRM, object recognition memory was not affected by social isolation. We conclude that acute social isolation rapidly induces reversible changes in the brain neuronal and molecular mechanisms underlying SRM, which hamper its acquisition and completely block its consolidation. These changes occur via distinct, AVP sensitive and insensitive mechanisms. Thus, acute social isolation of rats swiftly causes changes in their brain and interferes with their normal social behavior.

  3. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase.

    Science.gov (United States)

    Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang

    2012-05-01

    It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats.

    Science.gov (United States)

    Chan, Jiangping; Guan, Xin; Ni, Yiling; Luo, Lilu; Yang, Liqiang; Zhang, Pengyue; Zhang, Jichuan; Chen, Yanmei

    2017-03-15

    The Lateral Habenula (LHb) plays an important role in emotion and cognition. Recent experiments suggest that LHb has functional interaction with the hippocampus and plays an important role in spatial learning. LHb is reciprocally connected with midbrain monoaminergic brain areas such as the ventral tegmental area (VTA). However, the role of dopamine type 1 receptor (D1R) in LHb in learning and memory is not clear yet. In the present study, D1R agonist or antagonist were administered bilaterally into the LHb in rats. We found that both D1R agonist and antagonist impaired the acquisition of contextual fear memory in rats. D1R agonist or antagonist also impaired long term potentiation (LTP) in hippocampal CA3-CA1 synapses in freely moving rats and attenuated learning induced phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at Ser831 and Ser845 in hippocampus. Taken together, our results suggested that dysfunction of D1R in LHb affected the function of hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Differential Effects of Long Term FTY720 Treatment on Endothelial versus Smooth Muscle Cell Signaling to S1P in Rat Mesenteric Arteries.

    Science.gov (United States)

    Hamidi Shishavan, Mahdi; Bidadkosh, Arash; Yazdani, Saleh; Lambooy, Sebastiaan; van den Born, Jacob; Buikema, Hendrik; Henning, Robert H; Deelman, Leo E

    2016-01-01

    The sphingosine-1-phosphate (S1P) analog FTY720 exerts pleiotropic effects on the cardiovascular system and causes down-regulation of S1P receptors. Myogenic constriction is an important mechanism regulating resistance vessel function and is known to be modulated by S1P. Here we investigated myogenic constriction and vascular function of mesenteric arteries of rats chronically treated with FTY720. Wistar rats received FTY720 1mg/kg/daily for six weeks. At termination, blood pressure was recorded and small mesenteric arteries collected for vascular studies in a perfusion set up. Myogenic constriction to increased intraluminal pressure was low, but a sub-threshold dose of S1P profoundly augmented myogenic constriction in arteries of both controls and animals chronically treated with FTY720. Interestingly, endothelial denudation blocked the response to S1P in arteries of FTY720-treated animals, but not in control rats. In acute experiments, presence of FTY720 significantly augmented the contractile response to S1P, an effect that was partially abolished after the inhibition of cyclooxygenase (COX-)-derived prostaglandins. FTY720 down regulated S1P1 but not S1P2 in renal resistance arteries and in cultured human endothelial cells. This study therefore demonstrates the endothelium is able to compensate for the complete loss of responsiveness of the smooth muscle layer to S1P after long term FTY720 treatment through a mechanism that most likely involves enhanced production of contractile prostaglandins by the endothelium.

  6. Rapid and reversible impairments of short- and long-term social recognition memory are caused by acute isolation of adult rats via distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Hadar Shahar-Gold

    Full Text Available Mammalian social organizations require the ability to recognize and remember individual conspecifics. This social recognition memory (SRM can be examined in rodents using their innate tendency to investigate novel conspecifics more persistently than familiar ones. Here we used the SRM paradigm to examine the influence of housing conditions on the social memory of adult rats. We found that acute social isolation caused within few days a significant impairment in acquisition of short-term SRM of male and female rats. Moreover, SRM consolidation into long-term memory was blocked following only one day of social isolation. Both impairments were reversible, but with different time courses. Furthermore, only the impairment in SRM consolidation was reversed by systemic administration of arginine-vasopressin (AVP. In contrast to SRM, object recognition memory was not affected by social isolation. We conclude that acute social isolation rapidly induces reversible changes in the brain neuronal and molecular mechanisms underlying SRM, which hamper its acquisition and completely block its consolidation. These changes occur via distinct, AVP sensitive and insensitive mechanisms. Thus, acute social isolation of rats swiftly causes changes in their brain and interferes with their normal social behavior.

  7. Caffeine suppresses exercise-enhanced long-term and location memory in middle-aged rats: Involvement of hippocampal Akt and CREB signaling.

    Science.gov (United States)

    Cechella, José L; Leite, Marlon R; da Rocha, Juliana T; Dobrachinski, Fernando; Gai, Bibiana M; Soares, Félix A A; Bresciani, Guilherme; Royes, Luiz F F; Zeni, Gilson

    2014-11-05

    The cognitive function decline is closely related with brain changes generated by age. The ability of caffeine and exercise to prevent memory impairment has been reported in animal models and humans. The purpose of the present study was to investigate whether swimming exercise and caffeine administration enhance memory in middle-aged Wistar rats. Male Wistar rats (18months) received caffeine at a dose of 30mg/kg, 5days per week by a period of 4weeks. Animals were subjected to swimming training with a workload (3% of body weight, 20min per day for 4weeks). After 4weeks, the object recognition test (ORT) and the object location test (OLT) were performed. The results of this study demonstrated that caffeine suppressed exercise-enhanced long-term (ORT) and spatial (OLT) memory in middle-aged and this effect may be related to a decrease in hippocampal p-CREB signaling. This study also provided evidence that the effects of this protocol on memory were not accompanied by alterations in the levels of activated Akt. The [(3)H] glutamate uptake was reduced in hippocampus of rats administered with caffeine and submitted to swimming protocol. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Long-term diet-induced hypertension in rats is associated with reduced expression and function of small artery SKCa, IKCa, and Kir2.1 channels

    DEFF Research Database (Denmark)

    Gradel, Anna Katrina Jógvansdóttir; Salomonsson, Max; Sørensen, Charlotte Mehlin

    2018-01-01

    in long-term diet-induced hypertension in rats. Hypothesis: A 28-week diet rich in fat, fructose, or both, will lead to changes in K+ transporter expression and function, which is associated with increased blood pressure and decreased arterial function. Methods and Results: Male Sprague Dawley rats......RNA expression of vascular K+ transporters, and vessel myography in small mesenteric arteries. BW was increased in the High Fat and High Fat/Fruc groups, and SBP was increased in the High Fat/Fruc group. mRNA expression of SKCa, IKCa, and Kir2.1 K+ channels were reduced in the High Fat/Fruc group. Reduced EDH......-type relaxation to acetylcholine was seen in the High Fat and High Fat/Fruc groups. Ba2+-sensitive dilatation to extracellular K+ was impaired in all experimental diet groups. Conclusions: Reduced expression and function of SKCa, IKCa and Kir2.1 channels is associated with elevated blood pressure in rats fed...

  9. Impact peculiarities of long-term gamma-irradiation with low-dose rate on the development of laboratory rats and their sperm production

    International Nuclear Information System (INIS)

    Klepko, A.V.; Motrina, O.A.; Vatlyitsova, O.S.; And Others

    2015-01-01

    The experiments were performed on laboratory white rats of 2.5 months in age. Animals were irradiated in gamma-field of 'Ethalon' device in a dose range 0.1-1.0 Gy. Testicles, epididymices, ventral prostate were retrieved from decapitated animal, each organ weight being determined for every exposure dose. Sperm quantities in testicles and epididymices were identified with aid of phase-contrast microscopy after tissue homogenization in saline containing Triton X-100 and NaN_3. Kinetic characteristics of spermatozoa were analyzed by video recording at 37 C. The longterm gamma-irradiation with low dose rate was shown to cause no effect on the dynamics of animal weight and weight of epididymices changes. However the testes weight was noticed to diminish at doses 0.1, 0.3, 0.6 and 1.0 Gy, the latter dose being stimulative for the ventral prostate growth and weight accumulation. Total sperm quantities in testicles and epididymices along with daily sperm production declined in gamma-irradiated rats compared to control. However curvilinear and straight line spermatozoid velocity as well as the frequency of tail oscillations tended to increase. Long-term gamma-irradiation of the rat whole body with low dose rate just insignificantly affects the development of testes and ventral prostate. Apart from this, radiation effects showed up in sperm production slight suppression, from the on hand, and sperm velocity along with tail oscillations intensification, from the other hand

  10. The relationship between NMDA receptors and microwave-induced learning and memory impairment: a long-term observation on Wistar rats.

    Science.gov (United States)

    Wang, Hui; Peng, Ruiyun; Zhao, Li; Wang, Shuiming; Gao, Yabing; Wang, Lifeng; Zuo, Hongyan; Dong, Ji; Xu, Xinping; Zhou, Hongmei; Su, Zhentao

    2015-03-01

    Abstract Purpose: To investigate whether high power microwave could cause continuous disorders to learning and memory in Wistar rats and to explore the underlying mechanisms. Eighty Wistar rats were exposed to a 2.856 GHz pulsed microwave source at a power density of 0 mW/cm(2) and 50 mW/cm(2) microwave for 6 min. The spatial memory ability, the structure of the hippocampus, contents of amino acids neurotransmitters in hippocampus and the expression of N-methyl-D-aspartic acid receptors (NMDAR) subunit 1, 2A and 2B (NR1, NR2A and NR2B) were detected at 1, 3, 6, 9, 12 and 18 months after microwave exposure. Our results showed that the microwave-exposed rats showed consistent deficiencies in spatial learning and memory. The level of amino acid neurotransmitters also decreased after microwave radiation. The ratio of glutamate (Glu) and gammaaminobutyric acid (GABA) significantly decreased at 6 months. Besides, the hippocampus showed varying degrees of degeneration of neurons, increased postsynaptic density and blurred synaptic clefts in the exposure group. The NR1 and NR2B expression showed a significant decrease, especially the NR2B expression. This study indicated that the content of amino acids neurotransmitters, the expression of NMDAR subunits and the variation of hippocampal structure might contribute to the long-term cognitive impairment after microwave exposure.

  11. Long-term accumulation of uranium in bones of Wistar rats as a function of intake dosages.

    Science.gov (United States)

    Arruda-Neto, J D T; Guevara, M V Manso; Nogueira, G P; Saiki, M; Cestari, A C; Shtejer, K; Deppman, A; Pereira Filho, J W; Garcia, F; Geraldo, L P; Gouveia, A N; Guzmán, F; Mesa, J; Rodriguez, O; Semmler, R; Vanin, V R

    2004-01-01

    Groups of Wistar rats were fed with ration doped with uranyl nitrate at concentration A ranging from 0.5 to 100 ppm, starting after the weaning period and lasting until the postpuberty period when the animals were sacrificed. Uranium in the ashes of bones was determined by neutron activation analysis. It was found that the uranium concentration in the bones, as a function of A, exhibits a change in its slope at approximately 20 ppm-a probable consequence of the malfunctioning of kidneys. The uranium transfer coefficient was obtained and an analytical expression was fitted into the data, thus allowing extrapolation down to low doses. Internal and localized doses were calculated. Absorbed doses exceeded the critical dose, even for the lowest uranium dosage.

  12. Long-term accumulation of uranium in bones of Wistar rats as a function of intake dosages

    International Nuclear Information System (INIS)

    Arruda-Neto, J. D. T.; Manso Guevara, M. V.; Nogueira, G. P.; Saiki, M.; Cestari, A. C.; Shtejer, K.; Deppman, A.; Pereira Filho, J. W.; Garcia, F.; Geraldo, L. P.; Gouveia, A. N.; Guzman, F.; Mesa, J.; Rodriguez, O.; Semmler, R.; Vanin, V. R.

    2004-01-01

    Groups of Wistar rats were fed with ration doped with uranyl nitrate at concentration A ranging from 0.5 to 100 ppm, starting after the weaning period and lasting until the post-puberty period when the animals were sacrificed. Uranium in the ashes of bones was determined by neutron activation analysis. It was found that the uranium concentration in the bones, as a function of A, exhibits a change in its slope at ∼ 20 ppm - a probable consequence of the malfunctioning of kidneys. The uranium transfer coefficient was obtained and an analytical expression was fitted into the data, thus allowing extrapolation down to low doses. Internal and localized doses were calculated. Absorbed doses exceeded the critical dose, even for the lowest uranium dosage. (authors)

  13. Infection in a rat model reactivates attenuated virulence after long-term axenic culture of Acanthamoeba spp

    Directory of Open Access Journals (Sweden)

    Carolina De Marco Verissimo

    2013-11-01

    Full Text Available Prolonged culturing of many microorganisms leads to the loss of virulence and a reduction of their infective capacity. However, little is known about the changes in the pathogenic strains of Acanthamoeba after long culture periods. Our study evaluated the effect of prolonged culturing on the invasiveness of different isolates of Acanthamoeba in an in vivo rat model. ATCC strains of Acanthamoeba, isolates from the environment and clinical cases were evaluated. The in vivo model was effective in establishing the infection and differentiating the pathogenicity of the isolates and re-isolates. The amoebae cultured in the laboratory for long periods were less virulent than those that were recently isolated, confirming the importance of passing Acanthamoeba strains in animal models.

  14. Effect of unbalanced diets on the long-term metabolism of a toxicant. 1. Lead in rats: preliminary note.

    Science.gov (United States)

    Baldini, M; Coni, E; Mantovani, A; Stacchini, A; Zanasi, F

    1989-01-01

    The aim of this study was the evaluation of the effect of dietary imbalances on absorption and distribution of lead in the female Sprague-Dawley rat. In this note preliminary results on the relationship between blood concentrations of lead and unbalanced diets are presented. Hyperproteic, hyperglycidic, hyperlipidic and balanced diets were prepared, and most of them included 15 mg/kg lead. Blood samples were collected at day 0, 21, 36, and 95 of the diets and analyzed by anodic stripping voltammetry (ASV). Lead uptake as a function of feed consumption was found to decrease in the order: balanced, hyperproteic and hyperglycidic, hyperlipidic diet. On the other hand lead blood levels were as follows (decreasing order): hyperlipidic, hyperproteic, hyperglycidic, balanced. Further research is being carried out on the influences of dietary imbalances on whole-body distribution of lead.

  15. Effects of long-term thyroid hormone level alterations, n-3 polyunsaturated fatty acid supplementation and statin administration in rats

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš

    2014-01-01

    Roč. 63, Suppl.1 (2014), S119-S131 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) LH12058; GA MŠk(CZ) 7AMB12SK158; GA MŠk(CZ) 7AMB14SK123 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional support: RVO:67985823 Keywords : thyroid hormones * n-3 polyunsaturated fatty acids (n-3 PUFA) * statin s * rat muscle proteins * cardiac remodeling Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  16. Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats.

    Science.gov (United States)

    Bisson, Jean-François; Nejdi, Amine; Rozan, Pascale; Hidalgo, Sophie; Lalonde, Robert; Messaoudi, Michaël

    2008-07-01

    Numerous studies have indicated that increased vulnerability to oxidative stress may be the main factor involved in functional declines during normal and pathological ageing, and that antioxidant agents, such as polyphenols, may improve or prevent these deficits. We examined whether 1-year administration of a cocoa polyphenolic extract (Acticoa powder), orally delivered at the dose of 24 mg/kg per d between 15 and 27 months of age, affects the onset of age-related cognitive deficits, urinary free dopamine levels and lifespan in old Wistar-Unilever rats. Acticoa powder improved cognitive performances in light extinction and water maze paradigms, increased lifespan and preserved high urinary free dopamine levels. These results suggest that Acticoa powder may be beneficial in retarding age-related brain impairments, including cognitive deficits in normal ageing and perhaps neurodegenerative diseases. Further studies are required to elucidate the mechanisms of cocoa polyphenols in neuroprotection and to explore their effects in man.

  17. Long-term collections

    CERN Multimedia

    Collectes à long terme

    2007-01-01

    The Committee of the Long Term Collections (CLT) asks for your attention for the following message from a young Peruvian scientist, following the earthquake which devastated part of her country a month ago.

  18. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    Science.gov (United States)

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia.

  19. Protective Effects of Long Term Administration of Zinc on Bone Metabolism Parameters in Male Wistar Rats Treated with Cadmium

    Directory of Open Access Journals (Sweden)

    Shiva Najafi

    2016-10-01

    Full Text Available Background Violent poisoning by cadmium in human is created through drinks or meals which have packed in the metallic tins with cadmium plating. The symptoms of variation in the mineral metabolism of bones are observed and different conditions maybe appeared. The toxic (poisonous effect due to cadmium can be neutralized by intervening zinc. This study has been designed to investigate the protective effects of zinc for reducing the poisonous effects due to cadmium on the metabolism in the parameters related to the bone in rat. Methods In this experimental study, 48 male rats of wistar species were distributed in eight experimental groups and tested in the investigative lab of Falavarjan university. These groups were received 0.5 cc physiological serum, 0.5 mg/kg Zinc, 0.5, 1, 2 mg/kg Cadmium respectively and some groups were included in those were taken all there cadmium and zinc concentrations synchronously. Blood samples were taken in a 60 days period and those factors related to the bone metabolism were measured. The data were analyzed by 2-ANOVA Ways, complementary tests through software SPSS 16. Results The results showed that 0.5, 1, 2 mg/kg doses cadmium chloride caused to increase alkaline Phosphatase, calcium, phosphorus, magnesium and decrease albumin as compared with control group. Also, synchronous usage of all three cadmium chloride concentrations with zinc cause to decrease alkaline phosphatase, calcium, phosphorus, magnesium and increase albumin concentration. In a word, the other bone parameters have been significant in different cadmium and zinc doses (P < 0.05. Conclusions Findings showed that zinc can play a protective role on the metabolism parameters related to bone against to poisoning caused by cadmium.

  20. The impact of chronic mild stress on long-term depressive behavior in rats which have survived sepsis.

    Science.gov (United States)

    Steckert, Amanda V; Dominguini, Diogo; Michels, Monique; Abelaira, Helena M; Tomaz, Débora B; Sonai, Beatriz; de Moura, Airam B; Matos, Danyela; da Silva, Júlia B I; Réus, Gislaine Z; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe

    2017-11-01

    The present study was created to investigate the effects of chronic mild stress (CMS) on the depressive behavior and neurochemical parameters of rats that were subjected to sepsis. Wistar rats were subjected to a CMS protocol, and sepsis was induced by cecal ligation and perforation (CLP). The animals were then divided into 4 separate groups; Control + Sham (n = 20), Control + CLP (n = 30), CMS + Sham (n = 20) and CMS + CLP (n = 30). Body weight, food and water intake and mortality were measured on a daily basis for a period of 10 days after the induction of sepsis. Locomotor activity, splash and forced swimming tests were performed ten days after CLP. At the end of the test period, the animals were euthanized, and the prefrontal cortex and hippocampus were removed to determine the levels of cytokines and oxidative damage. Our results show that there was no significant interaction between CMS and CLP in relation to locomotor activity and the forced swimming test. However, we did observe a significant decrease in total grooming time in the Control + CLP and CMS + Sham groups, with the CMS + CLP group showing behavior similar to that of the control animals. This was found to be related to a decrease in the levels of brain cytokines, and not to oxidative damage parameters. Collectively, our results suggest that a previous stress caused by CMS can protect the brain against the systemic acute and severe stress elicited by sepsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Effects of Early Postnatal Diuretics Treatment on Kidney Development and Long-Term Kidney Function in Wistar Rats.

    Science.gov (United States)

    Bueters, Ruud R G; Jeronimus-Klaasen, Annelies; Maicas, Nuria; Florquin, Sandrine; van den Heuvel, Lambertus P; Schreuder, Michiel F

    2016-01-01

    Diuretics are administered to neonates to control fluid balance. We studied whether clinical doses affected kidney development and function and whether extrauterine growth retardation (EUGR) could be a modulator. Wistar rats were cross-fostered in normal food or food restricted litters at postnatal day (PND) 2 and treated daily with 0.9% NaCl, 5 mg/kg furosemide or 5 mg/kg hydrochlorothiazide (HCTZ) up to PND 8. Kidneys were evaluated on proliferation, apoptosis and a set of mRNA target genes at PND 8, glomerular- and glomerular generation count at PND 35, clinical pathology parameters at 3- and 9 months, neutrophil gelatinase-associated lipocalin at PND 8, 3 and 6 months, monthly blood pressure from 3 months onward and histopathology at study end. Treatment with furosemide or HCTZ did not have relevant effects on measured parameters. EUGR resulted in lower body weight from day 3 onwards (-29% at weaning; p < 0.001, -10% at necropsy; p < 0.001), less glomerular generations (4.4 ± 0.32 vs. 5.0 ± 0.423; p = 0.025, males only), decreased glomerular numbers (27,861 ± 3,468 vs. 30,527 ± 4,096; p = 0.026), higher creatinine clearance (0.84 ± 0.1 vs. 0.77 ± 0.09 ml/min/kg; p = 0.047) at 3 months and lower plasma creatinine (25.7 ± 1.8 vs. 27.5 ± 2.8 µmol/l; p = 0.043) at 9 months. Furosemide and HCTZ did not influence kidney development or function when administered in a clinically relevant dose to rat pups at a stage of ongoing nephrogenesis. EUGR led to impaired kidney development but did not modify furosemide or HCTZ findings. © 2016 S. Karger AG, Basel.

  2. Long-term exposure to nicotine markedly reduces kynurenic acid in rat brain - In vitro and ex vivo evidence

    International Nuclear Information System (INIS)

    Zielinska, Elzbieta; Kuc, Damian; Zgrajka, Wojciech; Turski, Waldemar A.; Dekundy, Andrzej

    2009-01-01

    Kynurenic acid (KYNA) is a recognized broad-spectrum antagonist of excitatory amino acid receptors with a particularly high affinity for the glycine co-agonist site of the N-methyl-D-aspartate (NMDA) receptor complex. KYNA is also a putative endogenous neuroprotectant. Recent studies show that KYNA strongly blocks α7 subtype of nicotinic acetylcholine receptors (nAChRs). The present studies were aimed at assessing effects of acute and chronic nicotine exposure on KYNA production in rat brain slices in vitro and ex vivo. In brain slices, nicotine significantly increased KYNA formation at 10 mM but not at 1 or 5 mM. Different nAChR antagonists (dihydro-β-erythroidine, methyllycaconitine and mecamylamine) failed to block the influence exerted by nicotine on KYNA synthesis in cortical slices in vitro. Effects of acute (1 mg/kg, i.p.), subchronic (10-day) and chronic (30-day) administration of nicotine in drinking water (100 μg/ml) on KYNA brain content were evaluated ex vivo. Acute treatment with nicotine (1 mg/kg i.p.) did not affect KYNA level in rat brain. The subchronic exposure to nicotine in drinking water significantly increased KYNA by 43%, while chronic exposure to nicotine resulted in a reduction in KYNA by 47%. Co-administration of mecamylamine with nicotine in drinking water for 30 days reversed the effect exerted by nicotine on KYNA concentration in the cerebral cortex. The present results provide evidence for the hypothesis of reciprocal interaction between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  3. Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Llorente-Berzal, Alvaro; Garcia-Segura, Luis M; Viveros, Maria-Paz

    2014-03-01

    Many young people consume ecstasy as a recreational drug and often in combination with cannabis. In this study, we aimed to mimic human consumption patterns and investigated, in male and female animals, the long-term effects of Δ(9) -tetrahydrocannabinol (THC) and 3,4-methylenedioxymethamphetamine (MDMA) on diverse neuroinflammation and neurotoxic markers. Male and female Wistar rats were chronically treated with increasing doses of THC and/or MDMA during adolescence. The effects of THC and/or MDMA on glial reactivity and on serotoninergic and cannabinoid systems were assessed by immunohistochemistry in the hippocampus and parietal cortex. THC increased the area staining for glial fibrilar acidic protein in both sexes. In males, both drugs, either separately or in combination, increased the proportion of reactive microglia cells [ionized calcium binding adaptor molecule 1 (Iba-1)]. In contrast, in females, each drug, administered alone, decreased of this proportion, whereas the combination of both drugs resulted in a 'normalization' to control values. In males, MDMA reduced the number of SERT positive fibres, THC induced the opposite effect and the group receiving both drugs did not significantly differ from the controls. In females, MDMA reduced the number of SERT positive fibres and the combination of both drugs counteracted this effect. THC also reduced immunostaining for CB1 receptors in females and this effect was aggravated by the combination with MDMA. Adolescent exposure of rats to THC and/or MDMA induced long-term, sex-dependent neurochemical and glial alterations, and revealed interactions between the two drugs. This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6. © 2013 The British Pharmacological Society.

  4. Metabonomics evaluation of urine from rats administered with phorate under long-term and low-level exposure by ultra-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Sun, Xiaowei; Xu, Wei; Zeng, Yan; Hou, Yurong; Guo, Lin; Zhao, Xiujuan; Sun, Changhao

    2014-02-01

    The purpose of this study was to investigate the toxic effect of long-term and low-level exposure to phorate using a metabonomics approach based on ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Male Wistar rats were given phorate daily in drinking water at low doses of 0.05, 0.15 or 0.45 mg kg⁻¹ body weight (BW) for 24 weeks consecutively. Rats in the control group were given an equivalent volume of drinking water. Compared with the control group, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), urea nitrogen (BUN) and creatinine (CR) were increased in the middle- and high-dose groups whereas albumin (ALB) and cholinesterase (CHE) were decreased. Urine metabonomics profiles were analyzed by UPLC-MS. Compared with the control group, 12 metabolites were significantly changed in phorate-treated groups. In the negative mode, metabolite intensities of uric acid, suberic acid and citric acid were significantly decreased in the middle- and high-dose groups, whereas indoxyl sulfic acid (indican) and cholic acid were increased. In the positive mode, uric acid, creatinine, kynurenic acid and xanthurenic acid were significantly decreased in the middle- and high-dose groups, but 7-methylguanine (N⁷G) was increased. In both negative and positive modes, diethylthiophosphate (DETP) was significantly increased, which was considered as a biomarker of exposure to phorate. In conclusion, long-term and low-level exposure to phorate can cause disturbances in energy-related metabolism, liver and kidney function, the antioxidant system, and DNA damage. Moreover, more information can be provided on the evaluation of toxicity of phorate using metabonomics combined with clinical chemistry. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Long-term effects of chronic intermittent ethanol exposure in adolescent and adult rats: radial-arm maze performance and operant food reinforced responding.

    Directory of Open Access Journals (Sweden)

    Mary-Louise Risher

    Full Text Available Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM and operant food-reinforced responding in male rats.Male Sprague Dawley rats were exposed to CIE (or saline and then allowed to recover. Animals were then trained in either the RAM task or an operant task using fixed- and progressive- ratio schedules. After baseline testing was completed all animals received an acute ethanol challenge while blood ethanol levels (BECs were monitored in a subset of animals. CIE exposure during adolescence, but not adulthood decreased the amount of time that animals spent in the open portions of the RAM arms (reminiscent of deficits in risk-reward integration and rendered animals more susceptible to the acute effects of an ethanol challenge on working memory tasks. The operant food reinforced task showed that these effects were not due to altered food motivation or to differential sensitivity to the nonspecific performance-disrupting effects of ethanol. However, CIE pre-treated animals had lower BEC levels than controls during the acute ethanol challenges indicating persistent pharmacokinetic tolerance to ethanol after the CIE treatment. There was little evidence of enduring effects of CIE alone on traditional measures of spatial and working memory.These effects indicate that adolescence is a time of selective vulnerability to the long-term effects of repeated ethanol exposure on neurobehavioral function and acute ethanol sensitivity. The positive and negative findings reported here help to further define the nature and extent of the impairments observed after adolescent CIE and provide direction for future

  6. Long-Term Effects of Chronic Intermittent Ethanol Exposure in Adolescent and Adult Rats: Radial-Arm Maze Performance and Operant Food Reinforced Responding

    Science.gov (United States)

    Risher, Mary-Louise; Fleming, Rebekah L.; Boutros, Nathalie; Semenova, Svetlana; Wilson, Wilkie A.; Levin, Edward D.; Markou, Athina; Swartzwelder, H. Scott; Acheson, Shawn K.

    2013-01-01

    Background Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM) and operant food-reinforced responding in male rats. Methodology/Principal Findings Male Sprague Dawley rats were exposed to CIE (or saline) and then allowed to recover. Animals were then trained in either the RAM task or an operant task using fixed- and progressive- ratio schedules. After baseline testing was completed all animals received an acute ethanol challenge while blood ethanol levels (BECs) were monitored in a subset of animals. CIE exposure during adolescence, but not adulthood decreased the amount of time that animals spent in the open portions of the RAM arms (reminiscent of deficits in risk-reward integration) and rendered animals more susceptible to the acute effects of an ethanol challenge on working memory tasks. The operant food reinforced task showed that these effects were not due to altered food motivation or to differential sensitivity to the nonspecific performance-disrupting effects of ethanol. However, CIE pre-treated animals had lower BEC levels than controls during the acute ethanol challenges indicating persistent pharmacokinetic tolerance to ethanol after the CIE treatment. There was little evidence of enduring effects of CIE alone on traditional measures of spatial and working memory. Conclusions/Significance These effects indicate that adolescence is a time of selective vulnerability to the long-term effects of repeated ethanol exposure on neurobehavioral function and acute ethanol sensitivity. The positive and negative findings reported here help to further define the nature and extent of the impairments observed

  7. 7,8-dihydroxyflavone, a TrkB receptor agonist, blocks long-term spatial memory impairment caused by immobilization stress in rats.

    Science.gov (United States)

    Andero, Raül; Daviu, Núria; Escorihuela, Rosa Maria; Nadal, Roser; Armario, Antonio

    2012-03-01

    Post-traumatic stress disorder (PTSD) patients show cognitive deficits, but it is unclear whether these are a consequence of the pathology or a pre-existing factor of vulnerability to PTSD. Animal models may help to demonstrate whether or not exposure to certain stressors can actually induce long-lasting (LL; days) impairment of hippocampus-dependent memory tasks and to characterize neurobiological mechanisms. Adult male rats were exposed to 2-h immobilization on boards (IMO), a severe stressor, and spatial learning in the Morris water maze (MWM) was studied days later. Exposure to IMO did not modify learning or short-term memory in the MWM when learning started 3 or 9 days after IMO, but stressed rats did show impaired long-term memory at both times, in accordance with the severity of the stressor. New treatments to prevent PTSD symptoms are needed. Thus, considering the potential protective role of brain-derived neurotrophic factor (BDNF) on hippocampal function, 7,8-dihydroxyflavone (7,8-DHF), a recently characterized agonist of the BDNF receptor TrkB, was given before or after IMO in additional experiments. Again, exposure to IMO resulted in LL deficit in long-term memory, and such impairment was prevented by the administration of 7,8-DHF either 2 h prior IMO or 8 h after the termination of IMO. The finding that IMO-induced impairment of spatial memory was prevented by pharmacological potentiation of TrkB pathway with 7,8-DHF even when the drug was given 8 h after IMO suggests that IMO-induced impairment is likely to be a LL process that is strongly dependent on the integrity of the BDNF-TrkB system and is susceptible to poststress therapeutic interventions. 7,8-DHF may represent a new therapeutic approach for early treatment of subjects who have suffered traumatic experiences. Copyright © 2010 Wiley Periodicals, Inc.

  8. Effect of long-term treatment with urocortin on the activity of somatic angiotensin-converting enzyme in spontaneously hypertensive rats.

    Science.gov (United States)

    Yang, Cui; Liu, Xiuxia; Li, Shengnan

    2010-02-01

    Our previous acute study on urocortin (Ucn) demonstrated that Ucn altered serum and tissue angiotensin-converting enzyme (ACE) activity in rats. Therefore, the present investigation was designed to explore the effect of long-term treatment with Ucn on somatic ACE (sACE) and other components of the renin-angiotensin system (RAS). After 8 weeks of intravenous administration of Ucn in spontaneously hypertensive rats (SHR), serum and tissue sACE, angiotensin II (Ang II), nitric oxide (NO), Ang-(1-7), and tissue chymase activities were evaluated. RT-PCR analysis was performed to determine the quantity of tissue sACE mRNA. Serum sACE activity was reduced by Ucn, although tissue sACE activity and tissue sACE mRNA were elevated. Chymase activity was observed to be enhanced by Ucn, whereas the ACE inhibitor enalapril failed to influence chymase. Serum and tissue Ang II activity was reduced, but NO and Ang-(1-7) production was increased in a concentration-dependent manner after Ucn treatment. Meanwhile, a significant decrease of the systolic blood pressure (SBP) was observed after the long-term Ucn administration, and there was a significant positive correlation (r2 = 0.6993) between serum ACE activity and SBP. Pretreatment with the corticotropin-releasing factor (CRF) blocker astressin and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway blocker PD98059 abolished these effects of Ucn. Our findings further support the hypothesis that the changes of sACE activity and the production of other RAS components may play roles in the vasodilatory property of Ucn via the activation of the ERK1/2 pathway.

  9. Effects of sevoflurane and clonidine on acid base status and long-term emotional and cognitive outcomes in spontaneously breathing rat pups.

    Directory of Open Access Journals (Sweden)

    Nicole Almenrader

    Full Text Available Numerous experiments in rodents suggest a causative link between exposure to general anaesthetics during brain growth spurt and poor long-lasting neurological outcomes. Many of these studies have been questioned with regard of their translational value, mainly because of extremely long anaesthesia exposure. Therefore, the aim of the present study was to assess the impact of a short sevoflurane anaesthesia, alone or combined with clonidine treatment, on respiratory function in spontaneously breathing rat pups and overall effects on long-lasting emotional and cognitive functions.At postnatal day (PND 7, male Sprague Dawley rat pups were randomized into four groups and exposed to sevoflurane for one hour, to a single dose of intraperitoneal clonidine or to a combination of both and compared to a control group. Blood gas analysis was performed at the end of sevoflurane anaesthesia and after 60 minutes from clonidine or saline injection. Emotional and cognitive outcomes were evaluated in different group of animals at infancy (PND12, adolescence (PND 30-40 and adulthood (PND 70-90.Rat pups exposed to either sevoflurane or to a combination of sevoflurane and clonidine developed severe hypercapnic acidosis, but maintained normal arterial oxygenation. Emotional and cognitive outcomes were not found altered in any of the behavioural task used either at infancy, adolescence or adulthood.Sixty minutes of sevoflurane anaesthesia in newborn rats, either alone or combined with clonidine, caused severe hypercapnic acidosis in spontaneously breathing rat pups, but was devoid of long-term behavioural dysfunctions in the present setting.

  10. Neurobehavioral changes and activation of neurodegenerative apoptosis on long-term consumption of aspartame in the rat brain

    Directory of Open Access Journals (Sweden)

    I. Ashok

    2015-12-01

    Full Text Available Though several studies on toxic effect of aspartame metabolite have been studied, there are scanty data on whether aspartame exposure administration could release formate, a methanol metabolite thereby inducing oxidative stress and neurodegeneration in brain discrete region. To mimic the human methanol metabolism, the methotrexate (MTX treated folate deficient rats were used. Aspartame was administered orally to the MTX treated animals and was studied along with controls and MTX treated controls. Oral intubations of FDA approved 40 mg/kg b.wt aspartame were given daily for 90 days. The loco–motor activity and emotionality behavior in the aspartame treated animals showed a marked increase in the immobilization, fecal bolus with a marked decrease in ambulation, rearing, grooming. The anxiety behavior in the aspartame treated animals showed a marked decrease in percentage of open arm entry, percentage of time spent in open arm and number of head dips. It is appropriate to point out, formaldehyde and formate could have led to an increased formation of free radical in the aspartame treated animals resulting in altered neurobehavioral changes owing to neuronal oxidative damage. Aspartame induced ROS may be also linked to increased neuronal apoptosis. In this study the aspartame treated animals showed an up regulation in the apoptotic gene expression along with protein expression in the respective brain region indicating the enhancement of neuronal cell death. This study intends to corroborate that chronic aspartame consumption can alter the behavior and neurodegeneration in brain discrete regions.

  11. Autoshaping induces ethanol drinking in nondeprived rats: evidence of long-term retention but no induction of ethanol preference.

    Science.gov (United States)

    Tomie, Arthur; Kuo, Teresa; Apor, Khristine R; Salomon, Kimberly E; Pohorecky, Larissa A

    2004-04-01

    The effects of autoshaping procedures (paired vs. random) and sipper fluid (ethanol vs. water) on sipper-directed drinking were evaluated in male Long-Evans rats maintained with free access to food and water. For the paired/ethanol group (n=16), autoshaping procedures consisted of presenting the ethanol sipper (containing 0% to 28% unsweetened ethanol) conditioned stimulus (CS) followed by the response-independent presentation of food unconditioned stimulus (US). The random/ethanol group (n=8) received the sipper CS and food US randomly with respect to one another. The paired/water group (n=8) received only water in the sipper CS. The paired/ethanol group showed higher grams per kilogram ethanol intake than the random/ethanol group did at ethanol concentrations of 8% to 28%. The paired/ethanol group showed higher sipper CS-directed milliliter fluid consumption than the paired/water group did at ethanol concentrations of 1% to 6%, and 15%, 16%, 18%, and 20%. Following a 42-day retention interval, the paired/ethanol group showed superior retention of CS-directed drinking of 18% ethanol, relative to the random/ethanol group, and superior retention of CS-directed milliliter fluid drinking relative to the paired/water group. When tested for home cage ethanol preference using limited access two-bottle (28% ethanol vs. water) procedures, the paired/ethanol and random/ethanol groups did not differ on any drinking measures.

  12. Effect of ascorbic acid on fatigue of skeletal muscle fibres in long term cold exposed sprague dawley rats

    International Nuclear Information System (INIS)

    Rashid, A.; Ayub, M.

    2011-01-01

    On exposure to prolonged cold temperature, the body responds for effective heat production both by shivering and non-shivering thermo genesis. Cold exposure increases the production of reactive oxygen species which influence the sarcoplasmic reticulum Ca/sup ++/ release from the skeletal muscles and affect their contractile properties. The role of ascorbic acid supplementation on force of contraction during fatigue of cold exposed skeletal muscles was evaluated in this study. Method: Ninety healthy, male Sprague Dawley rats were randomly divided into three groups of control, cold exposed, and cold exposed with ascorbic acid 500 mg/L supplementation mixed in drinking water. Group II and III were given cold exposure by keeping their cages in ice-filled tubs for 1 hr/day for one month. After one month, the extensor digitorum longus muscle was dissected out and force of contraction during fatigue in the skeletal muscle fibres was analysed on a computerised data acquisition system. Results: The cold exposed group showed a significant delay in the force of contraction during fatigue of skeletal muscle fibres compared to control group. Group III showed easy fatigability and a better force of contraction than the cold exposed group. Conclusions: Ascorbic acid increases the force of contraction and decreases resistance to fatigue in the muscles exposed to chronic cold. (author)

  13. Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats

    International Nuclear Information System (INIS)

    Ihsan, Awais; Wang Xu; Liu Zhaoying; Wang Yulian; Huang Xianju; Liu Yu; Yu Huan; Zhang Hongfei; Li Tingting; Yang Chunhui; Yuan Zonghui

    2011-01-01

    Mequindox (MEQ) is a synthetic antimicrobial chemical of quinoxaline 1, 4-dioxide group. This study was designed to investigate the hypothesis that MEQ exerts testicular toxicity by causing oxidative stress and steroidal gene expression profiles and determine mechanism of MEQ testicular toxicity. In this study, adult male Wistar rats were fed with MEQ for 180 days at five different doses as 0, 25, 55, 110 and 275 mg/kg, respectively. In comparison to control, superoxide dismutase (SOD), reduced glutathione (GSH) and 8-hydroxydeoxyguanosine (8-OHdG) levels were elevated at 110 and 275 mg/kg MEQ, whereas the malondialdehyde (MDA) level was slightly increase at only 275 mg/kg. Furthermore, in LC/MS-IT-TOF analysis, one metabolite 2-isoethanol 4-desoxymequindox (M11) was found in the testis. There was significant decrease in body weight, testicular weight and testosterone at 275 mg/kg, serum follicular stimulating hormone (FSH) at 110 and 275 mg/kg, while lutinizing hormone (LH) levels were elevated at 110 mg/kg. Moreover, histopathology of testis exhibited germ cell depletion, contraction of seminiferous tubules and disorganization of the tubular contents of testis. Compared with control, mRNA expression of StAR, P450scc and 17β-HSD in testis was significantly decreased after exposure of 275 mg/kg MEQ while AR and 3β-HSD mRNA expression were significantly elevated at the 110 mg/kg MEQ group. Taken together, our findings provide the first and direct evidence in vivo for the formation of free radicals during the MEQ metabolism through N → O group reduction, which may have implications to understand the possible mechanism of male infertility related to quinoxaline derivatives.

  14. Working and reference memory across the estrous cycle of rat: a long-term study in gonadally intact females.

    Science.gov (United States)

    Pompili, Assunta; Tomaz, Carlos; Arnone, Benedetto; Tavares, Maria Clotilde; Gasbarri, Antonella

    2010-11-12

    The results of many studies conducted over the past two decades suggested a role of estrogen on mammal's ability to learn and remember. In the present paper, we analyzed the influence that the endogenous fluctuation of estrogen, naturally present across the different phases of estrous cycle of female rats, can exert over the performance of tasks utilized to assess memory. In particular, we analyzed the performances in an eight arms radial maze task, dependent upon working memory, and in a water maze (WM) task, dependent upon spatial reference memory. The water maze is aversively motivated by the desire to escape onto a safe platform, whereas the radial arm maze (RAM) is motivated by food reward. The difference in reinforcement may affect the speed of learning, the strategy adopted and the necessity for accurate navigation. Therefore, coherent results obtained through the two different tasks can be due to mnemonic factors. The study was conducted during a long period of time, 14 months, utilizing gonadally intact females, without pharmacological and surgical treatments. In order to evaluate the post-acquisition phase we first trained the animals to reach the criterion in performing tasks, and then we submitted them to experimental phase. Our results show that estrogen can have an effect on memory processes, and that this effect may be different in relation to different kinds of memory. In fact, in our study, estrogen selectively improved working memory, but not reference memory, during post-acquisition performance of a RAM task with four baited and four un-baited arms. Moreover, WM performances showed that estrogen have a negative effect on spatial reference memory. (c) 2010 Elsevier B.V. All rights reserved.

  15. Long-term effects of maternal diabetes on blood pressure and renal function in rat male offspring.

    Directory of Open Access Journals (Sweden)

    Jie Yan

    Full Text Available AIMS/HYPOTHESIS: Gestational diabetes mellitus (GDM is increasing rapidly worldwide. Previous animal models were established to study consequences of offspring after exposure to severe intrauterine hyperglycemia. In this study we are aiming to characterize the blood pressure levels and renal function of male offspring obtained from diabetic mothers with moderate hyperglycemia. METHODS: We established a rat model with moderate hyperglycemia after pregnancy by a single intraperitoneal injection of streptozotocin (STZ. The male offspring were studied and fed with either normal diet or high salt diet after weaning. Arterial pressure and renal function were measured. RESULTS: Arterial pressure of male offspring increased from 12 weeks by exposure to intrauterine moderate hyperglycemia. At 20 weeks, high salt diet accelerated the blood pressure on diabetic offspring compared to diabetic offspring fed with normal diet. We found offspring exposed to intrauterine moderate hyperglycemia had a trend to have a higher creatinine clearance rate and significant increase of urinary N-acetyl-β-D-glucosaminidase (NAG excretion indicating an early stage of nephropathy progression. CONCLUSIONS/INTERPRETATION: We observed the high blood pressure level and early renal dysfunction of male offspring obtained from diabetic mothers with moderate hyperglycemia. Furthermore, we investigated high salt diet after weaning on offspring exposed to intrauterine hyperglycemia could exacerbate the blood pressure and renal function. Renin angiotensin system (RAS plays an important role in hypertension pathogenesis and altered gene expression of RAS components in offspring with in utero hyperglycemia exposure may account for the programmed hypertension. Therefore, our study provides evidence "fetal programming" of maternal diabetes is critical for metabolic disease development.

  16. Short and Long Term Effects of High-Intensity Interval Training on Hormones, Metabolites, Antioxidant System, Glycogen Concentration, and Aerobic Performance Adaptations in Rats.

    Science.gov (United States)

    de Araujo, Gustavo G; Papoti, Marcelo; Dos Reis, Ivan Gustavo Masselli; de Mello, Maria A R; Gobatto, Claudio A

    2016-01-01

    The purpose of the study was to investigate the effects of short and long term High-Intensity Interval Training (HIIT) on anaerobic and aerobic performance, creatinine, uric acid, urea, creatine kinase, lactate dehydrogenase, catalase, superoxide dismutase, testosterone, corticosterone, and glycogen concentration (liver, soleus, and gastrocnemius). The Wistar rats were separated in two groups: HIIT and sedentary/control (CT). The lactate minimum (LM) was used to evaluate the aerobic and anaerobic performance (AP) (baseline, 6, and 12 weeks). The lactate peak determination consisted of two swim bouts at 13% of body weight (bw): (1) 30 s of effort; (2) 30 s of passive recovery; (3) exercise until exhaustion (AP). Tethered loads equivalent to 3.5, 4.0, 4.5, 5.0, 5.5, and 6.5% bw were performed in incremental phase. The aerobic capacity in HIIT group increased after 12 weeks (5.2 ± 0.2% bw) in relation to baseline (4.4 ± 0.2% bw), but not after 6 weeks (4.5 ± 0.3% bw). The exhaustion time in HIIT group showed higher values than CT after 6 (HIIT = 58 ± 5 s; CT = 40 ± 7 s) and 12 weeks (HIIT = 62 ± 7 s; CT = 49 ± 3 s). Glycogen (mg/100 mg) increased in gastrocnemius for HIIT group after 6 weeks (0.757 ± 0.076) and 12 weeks (1.014 ± 0.157) in comparison to baseline (0.358 ± 0.024). In soleus, the HIIT increased glycogen after 6 weeks (0.738 ± 0.057) and 12 weeks (0.709 ± 0.085) in comparison to baseline (0.417 ± 0.035). The glycogen in liver increased after HIIT 12 weeks (4.079 ± 0.319) in relation to baseline (2.400 ± 0.416). The corticosterone (ng/mL) in HIIT increased after 6 weeks (529.0 ± 30.5) and reduced after 12 weeks (153.6 ± 14.5) in comparison to baseline (370.0 ± 18.3). In conclusion, long term HIIT enhanced the aerobic capacity, but short term was not enough to cause aerobic adaptations. The anaerobic performance increased in HIIT short and long term compared with CT, without differences between HIIT short and long term. Furthermore, the

  17. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats.

    Science.gov (United States)

    Sadeghi, Malihe; Reisi, Parham; Radahmadi, Maryam

    2017-12-01

    Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long-term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. Stress impaired spatial memory significantly ( P stress group. With respect to the control group, both fEPSP amplitude and slope were significantly ( P stress group. However, there were no differences between responses of the control-CCK and Stress-CCK groups compared to the control group. The present results suggest that high levels of CCK-8S during induction of stress can modulate the destructive effects of stress on hippocampal synaptic plasticity and memory. Therefore, the mediatory effects of CCK in stress are likely as compensatory responses.

  18. Effects of long-term consumption of high fructose corn syrup containing peach nectar on body weight gain in sprague dawley rats

    Directory of Open Access Journals (Sweden)

    Gulsah OZCAN SINIR

    Full Text Available Abstract High fructose corn syrup (HFCS is one of the most used sweeteners in the food industry. Health concerns regarding the consumption of HFCS-containing foods have developed in parallel with the increasing amount of people who become overweight. This study was conducted to investigate whether HFCS-containing peach nectar (pn-HFCS consumption has more detrimental effects on anthropometrical and biochemical parameters compared with sucrose-containing peach nectar (pn-sucrose. Fifty-day-old Sprague Dawley rats were divided into three groups and were fed (A pn-HFCS + ad libitum chow, (B pn-sucrose + ad libitum chow and (C only ad libitum chow for 7 months. The percentage change in body weight (PCBW, body mass index (BMI, and Lee index were calculated, and serum triglyceride, glucose, insulin and leptin concentrations were measured. The PCBW, BMI, Lee index, serum triglyceride, glucose, insulin and leptin concentrations were insignificant among the three groups. We can suggest that peach nectar consumption resulted in more energy intake than the control and since pn-HFCS group consumed more chow than the pn-sucrose group. The results show that long term daily HFCS or sucrose consumption in peach nectar is not associated with weight gain and does not stimulate metabolic changes in Sprague Dawley rats.

  19. The effect of cinnamon extract and long-term aerobic training on heart function, biochemical alterations and lipid profile following exhaustive exercise in male rats.

    Science.gov (United States)

    Badalzadeh, Reza; Shaghaghi, Mehrnoush; Mohammadi, Mustafa; Dehghan, Gholamreza; Mohammadi, Zeynab

    2014-12-01

    Regular training is suggested to offer a host of benefits especially on cardiovascular system. In addition, medicinal plants can attenuate oxidative stress-mediated damages induced by stressor insults. In this study, we investigated the concomitant effect of cinnamon extract and long-term aerobic training on cardiac function, biochemical alterations and lipid profile following exhaustive exercise. Male Wistar rats (250-300 g) were divided into five groups depending on receiving regular training, cinnamon bark extraction, none or both of them, and then encountered with an exhausted exercise in last session. An 8-week endurance training program was designed with a progressive increase in training speed and time. Myocardial hemodynamics was monitored using a balloon-tipped catheter inserted into left ventricles. Blood samples were collected for analyzing biochemical markers, lipid profiles and lipid-peroxidation marker, malondealdehyde (MDA). Trained animals showed an enhanced cardiac force and contractility similar to cinnamon-treated rats. Co-application of regular training and cinnamon had additive effect in cardiac hemodynamic (Ptraining and supplementation with cinnamon significantly decreased serum levels of total cholesterol, low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) level and HDL/LDL ratio as compared to control group (Ptraining significantly reduced MDA level elevation induced by exhausted exercise (Ptraining improved cardiac hemodynamic through an additive effect. The positive effects of cinnamon and regular training on cardiac function were associated with a reduced serum MDA level and an improved blood lipid profile.

  20. Long-term intake of a high protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats

    KAUST Repository

    Diaz Rua, Ruben

    2017-04-19

    Intake of high-protein (HP) diets has increased over the last years, mainly due to their popularity for body weight control. Liver is the main organ handling ingested macronutrients and it is associated with the beginning of different pathologies. We aimed to deepen our knowledge on molecular pathways affected by long-term intake of an HP diet. We performed a transcriptome analysis on liver of rats chronically fed with a casein-rich HP diet and analyzed molecular parameters related to liver injury. Chronic increase in the dietary protein/carbohydrate ratio up-regulated processes related with amino acid uptake/metabolism and lipid synthesis, promoting a molecular environment indicative of hepatic triacylglycerol (TG) deposition. Moreover, changes in expression of genes involved in acid–base maintenance and oxidative stress indicate alterations in the pH balance due to the high acid load of the diet, which has been linked to liver/health damage. Up-regulation of immune-related genes was also observed. In concordance with changes at gene expression level, we observed increased liver TG content and increased serum markers of hepatic injury/inflammation (aspartate transaminase, C-reactive protein and TNF-alpha). Moreover, the HP diet strongly increased hepatic mRNA and protein levels of HSP90, a marker of liver injury. Thus, we show for the first time that long-term consumption of an HP diet, resulting in a high acid load, results in a hepatic transcriptome signature reflecting increased TG deposition and increased signs of health risk (increased inflammation, alterations in the acid–base equilibrium and oxidative stress). Persistence of this altered metabolic status could have unhealthy consequences.

  1. Long-term intake of a high protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats

    KAUST Repository

    Diaz Rua, Ruben; Keijer, Jaap; Palou, Andreu; van Schothorst, Evert M.; Oliver, Paula

    2017-01-01

    Intake of high-protein (HP) diets has increased over the last years, mainly due to their popularity for body weight control. Liver is the main organ handling ingested macronutrients and it is associated with the beginning of different pathologies. We aimed to deepen our knowledge on molecular pathways affected by long-term intake of an HP diet. We performed a transcriptome analysis on liver of rats chronically fed with a casein-rich HP diet and analyzed molecular parameters related to liver injury. Chronic increase in the dietary protein/carbohydrate ratio up-regulated processes related with amino acid uptake/metabolism and lipid synthesis, promoting a molecular environment indicative of hepatic triacylglycerol (TG) deposition. Moreover, changes in expression of genes involved in acid–base maintenance and oxidative stress indicate alterations in the pH balance due to the high acid load of the diet, which has been linked to liver/health damage. Up-regulation of immune-related genes was also observed. In concordance with changes at gene expression level, we observed increased liver TG content and increased serum markers of hepatic injury/inflammation (aspartate transaminase, C-reactive protein and TNF-alpha). Moreover, the HP diet strongly increased hepatic mRNA and protein levels of HSP90, a marker of liver injury. Thus, we show for the first time that long-term consumption of an HP diet, resulting in a high acid load, results in a hepatic transcriptome signature reflecting increased TG deposition and increased signs of health risk (increased inflammation, alterations in the acid–base equilibrium and oxidative stress). Persistence of this altered metabolic status could have unhealthy consequences.

  2. Short- and long-term behavioral effects of exposure to 21%, 40% and 100% oxygen after perinatal hypoxia-ischemia in the rat.

    Science.gov (United States)

    Woodworth, K Nina; Palmateer, Julie; Swide, Joseph; Grafe, Marjorie R

    2011-10-01

    Until recently, supplementation with 100% oxygen was standard therapy for newborns who required resuscitation at birth or suffered later hypoxic-ischemic events. Exposure to high concentrations of oxygen, however, may worsen oxidative stress induced by ischemic injury. In this study we investigated the short- and long-term behavioral outcomes in rats that had undergone hypoxic-ischemic brain injury on postnatal day 7, followed by 2h exposure to 21%, 40%, or 100% oxygen, compared to normal controls. There were no differences in the development of walking, head lifting and righting reflexes from postnatal days 9 to 15. Cliff avoidance showed some abnormal responses in the H21 animals. From postnatal days 28 to 56, three tests of sensorimotor coordination were performed weekly: ledged tapered beam, cylinder, and bilateral tactile stimulation. The ledged tapered beam test without prior training of animals was sensitive to injury, but did not distinguish between treatment groups. The cylinder test showed a greater use of the unimpaired limb in female 21% and 40% oxygen groups compared to controls. Performance in both cylinder and the beam tests showed a correlation with the degree of brain injury. The bilateral tactile stimulation test showed that the male 21% oxygen groups had worse sensory asymmetry than male 40% or 100% oxygen groups, but was not statistically significantly different from controls. We thus found a minor benefit to post-hypoxia-ischemic treatment with 100% and 40% oxygen compared to 21% in one test of early motor skills. Our results for long-term sensorimotor behavior, however, showed conflicting results, however, as males treated with 40% or 100% oxygen had less sensory asymmetry (better performance) in the bilateral tactile stimulation test than males treated with 21% oxygen, while females had impaired motor performance in the cylinder test with both 21% and 40% oxygen. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  3. Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice

    Directory of Open Access Journals (Sweden)

    Zhao Zhi-Qi

    2010-01-01

    Full Text Available Abstract Background Our previous study demonstrated that nitric oxide (NO contributes to long-term potentiation (LTP of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. Results By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT stably induced LTP of field excitatory postsynaptic potentials (fEPSPs. Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5P3 receptor (IP3R antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs. Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons. Conclusions These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.

  4. Long-term intake of a high-protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats.

    Science.gov (United States)

    Díaz-Rúa, Rubén; Keijer, Jaap; Palou, Andreu; van Schothorst, Evert M; Oliver, Paula

    2017-08-01

    Intake of high-protein (HP) diets has increased over the last years, mainly due to their popularity for body weight control. Liver is the main organ handling ingested macronutrients and it is associated with the beginning of different pathologies. We aimed to deepen our knowledge on molecular pathways affected by long-term intake of an HP diet. We performed a transcriptome analysis on liver of rats chronically fed with a casein-rich HP diet and analyzed molecular parameters related to liver injury. Chronic increase in the dietary protein/carbohydrate ratio up-regulated processes related with amino acid uptake/metabolism and lipid synthesis, promoting a molecular environment indicative of hepatic triacylglycerol (TG) deposition. Moreover, changes in expression of genes involved in acid-base maintenance and oxidative stress indicate alterations in the pH balance due to the high acid load of the diet, which has been linked to liver/health damage. Up-regulation of immune-related genes was also observed. In concordance with changes at gene expression level, we observed increased liver TG content and increased serum markers of hepatic injury/inflammation (aspartate transaminase, C-reactive protein and TNF-alpha). Moreover, the HP diet strongly increased hepatic mRNA and protein levels of HSP90, a marker of liver injury. Thus, we show for the first time that long-term consumption of an HP diet, resulting in a high acid load, results in a hepatic transcriptome signature reflecting increased TG deposition and increased signs of health risk (increased inflammation, alterations in the acid-base equilibrium and oxidative stress). Persistence of this altered metabolic status could have unhealthy consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    Science.gov (United States)

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  6. Short and long-term physiological responses of male and female rats to two dietary levels of pre-gelatinized maca (lepidium peruvianum chacon).

    Science.gov (United States)

    Meissner, H O; Kedzia, B; Mrozikiewicz, P M; Mscisz, A

    2006-02-01

    The aim of this study is to identify physiological responses of male and female rats to either a short- or long-term administration of two doses of Maca (Lepidium peruvianum) and observe relationships which may exist between groups of hormones and effects mediated by them. The effect of pre-gelatinized (extruded) organic Maca powder (Maca-GO) was studied on Sprague-Dowley male and female rats (1:1 ratio) receiving two dietary levels of Maca-GO (0.75 g/kg and 7.5 g/kg body weight) and assessed against control during 28 and 90 day laboratory trials on 30 and 60 rats respectively. Blood morphology, biochemistry (hormones, lipids and minerals) and histology of internal organs were determined. Homogenates of skeletal muscles and bones of rats were also analyzed. Maca-GO has low toxicity (LD=7.5 g/kg) and appears to be safe for short-term and extended use as dietary supplement or as a component of functional dietary and therapeutic preparations. There were different responses of male and female rats to different levels of Maca-GO administered during a short- and a longer-term periodl. When administered at higher dose for extended period of time (90 days), Maca-GO acted as a toner of hormonal processes in adult female rats at increased progesterone and a steady estradiol level, without affecting levels of blood FSH, LH and TSH. Obtained results justify further clinical research on use of Maca-GO in sportsmen, physically-active people of both sexes and peri-menopausal women to clarify mechanisms underlaying physiological mode of action of Maca-GO validaet in clinical study on humans. Substantial decrease in blood cortisol levels in a short- and longer-term trial and simultaneous tendency to lower blood ACTH, may indicate antidepressive effect of Maca-GO, which together with reduction in body weight, lowering triglycerides in blood plasma and increasing calcium and phosphorus deposition in bone and muscle tissues is worthy consideration in potential application to women at

  7. Effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats

    Directory of Open Access Journals (Sweden)

    Noemi A. V. Roza

    2016-02-01

    Full Text Available Background: This study determines whether -week high-fat diet (HFD consumption alters insulin sensitivity, kidney function, and blood pressure (BP in female rats when compared with standard rodent diet (ND intake in gender- and age-matched rats. Methods: The present study investigates, in female Wistar HanUnib rats, the effect of long-term high-fat fed group (HFD compared with standard chow on BP by an indirect tail-cuff method using an electrosphygmomanometer, insulin and glucose function, and kidney function by creatinine and lithium clearances. Results: The current study shows glucose tolerance impairment, as demonstrated by increased fasting blood glucose (ND: ±2.8 vs. HFD: 87±3.8 mg/dL associated with reduced insulin secretion (ND: 0.58±0.07 vs. HFD: 0.40±0.03 ng/mL in 8-week female HFD-treated rats. The incremental area under the curve (AUC, ND: 1,4558.0±536.0 vs. HFD: 1,6507.8±661.9, homeostasis model assessment of insulin resistance (HOMA-IR index, and the first-order rate constant for the disappearance of glucose (Kitt were significantly enhanced in 8-week HFD-treated rats compared with age-matched ND group (respectively, P=0.03, P=0.002, and P<0.0001. The current study also shows a significantly higher systolic BP measured in 5 and 8 weeks posttreatment in HFD (5-week HFD-treated: 155.25±10.54 mmHg and 8-week HFD-treated: 165±5.8 mmHg (P=0.0001, when compared to BP values in 5-week ND, 137±4.24 mmHg and 8-week ND, 131.75±5.8 mmHg age-matched group. Otherwise, the glomerular filtration rate and renal sodium handling evaluated by FENa, FEPNa and FEPPNa, were unchanged in both groups. Conclusion: We may conclude that 8-week female HFD-fed rats compared with ND group stimulate harmful effects, such as BP rise and peripheral glucose intolerance. The increased BP occurs through insulin resistance and supposedly decreased vasodilatation response without any change on renal function.

  8. Effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats.

    Science.gov (United States)

    Roza, Noemi A V; Possignolo, Luiz F; Palanch, Adrianne C; Gontijo, José A R

    2016-01-01

    This study determines whether 8-week high-fat diet (HFD) consumption alters insulin sensitivity, kidney function, and blood pressure (BP) in female rats when compared with standard rodent diet (ND) intake in gender- and age-matched rats. The present study investigates, in female Wistar HanUnib rats, the effect of long-term high-fat fed group (HFD) compared with standard chow on BP by an indirect tail-cuff method using an electrosphygmomanometer, insulin and glucose function, and kidney function by creatinine and lithium clearances. The current study shows glucose tolerance impairment, as demonstrated by increased fasting blood glucose (ND: 78±2.8 vs. HFD: 87±3.8 mg/dL) associated with reduced insulin secretion (ND: 0.58±0.07 vs. HFD: 0.40±0.03 ng/mL) in 8-week female HFD-treated rats. The incremental area under the curve (AUC, ND: 1,4558.0±536.0 vs. HFD: 1,6507.8±661.9), homeostasis model assessment of insulin resistance (HOMA-IR) index, and the first-order rate constant for the disappearance of glucose (Kitt) were significantly enhanced in 8-week HFD-treated rats compared with age-matched ND group (respectively, P=0.03, P=0.002, and P<0.0001). The current study also shows a significantly higher systolic BP measured in 5 and 8 weeks posttreatment in HFD (5-week HFD-treated: 155.25±10.54 mmHg and 8-week HFD-treated: 165±5.8 mmHg) (P=0.0001), when compared to BP values in 5-week ND, 137±4.24 mmHg and 8-week ND, 131.75±5.8 mmHg age-matched group. Otherwise, the glomerular filtration rate and renal sodium handling evaluated by FENa, FEPNa and FEPPNa, were unchanged in both groups. We may conclude that 8-week female HFD-fed rats compared with ND group stimulate harmful effects, such as BP rise and peripheral glucose intolerance. The increased BP occurs through insulin resistance and supposedly decreased vasodilatation response without any change on renal function.

  9. Long-term effect of altered nutrition induced by litter size manipulation and cross-fostering in suckling male rats on development of obesity risk and health complications.

    Science.gov (United States)

    Mozeš, Stefan; Sefčíková, Zuzana; Raček, L'ubomír

    2014-08-01

    We investigated the long-term effect of pre-weaning nutrition on positive and/or adverse regulation of obesity risk and health complications in male Sprague-Dawley rats. Two experimental models were used in the present work: (1) To induce postnatal over- or normal nutrition, the litter size was adjusted to 4 (small litters-SL) and to 10 pups (normal litters-NL) in the nest, (2) in suckling pups at day 10, we used cross-fostering to identify the effect of altered dietary environment on their future body fat regulation, food intake, blood pressure, and the duodenal and jejunal alkaline phosphatase activity. After weaning, these control (NL, SL) and cross-fostered (NL-SL, SL-NL) groups were exposed to standard laboratory diet. On day 50, the SL in comparison with NL rats became heavier and displayed enhanced adiposity accompanied by significantly increased systolic blood pressure (19%) and duodenal (16%) and jejunal (21%) alkaline phosphatase (AP) activity. The impact of pre-weaning over-nutrition of NL-SL pups was associated with long-lasting positive effect on obesity. In contrast, SL-NL rats submitted until weaning to the opposite normalized feeding condition on day 50 showed significantly decreased fat deposition (21%), systolic blood pressure (20%), and AP activity in duodenum and jejunum (14%). These results contribute to a better understanding of how early-acquired dietary habits determine the attenuation or prevention of obesity development in later life and can provide some benefit for optimizing the future dietary strategies in young and adult obese individuals.

  10. Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats.

    Science.gov (United States)

    Dossat, Amanda M; Jourdi, Hussam; Wright, Katherine N; Strong, Caroline E; Sarkar, Ambalika; Kabbaj, Mohamed

    2017-01-06

    In humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC) mediates sex differences in social interaction. In the present study, we aimed to examine the effects of gonadectomy (GNX) in male rats on mPFC Zif268 expression, mood and cognitive behaviors. We also examined whether reinstitution of Zif268 in GNX rats will correct some of the behavioral deficits observed following GNX. Our results show that GNX induced a downregulation of Zif268 protein in the mPFC, which was concomitant with impaired memory in the y-maze and spontaneous object recognition test, reduced social interaction time, and depression-like behaviors in the forced swim test. Reinstitution of mPFC Zif268, using a novel adeno-associated-viral (AAV) construct, abrogated GNX-induced working memory and long-term memory impairments, and reductions in social interaction time, but not GNX-induced depression-like behaviors. These findings suggest that mPFC Zif268 exerts beneficial effects on memory and social interaction, and could be a potential target for novel treatments for behavioral impairments observed in hypogonadal and aged men with declining levels of gonadal hormones. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Short and long-term impact of lipectomy on expression profile of hepatic anabolic genes in rats: a high fat and high cholesterol diet-induced obese model.

    Science.gov (United States)

    Ling, Bey-Leei; Chiu, Chun-Tang; Lu, Hsiu-Chin; Lin, Jin-Jin; Kuo, Chiung-Yin; Chou, Fen-Pi

    2014-01-01

    To understand the molecular basis of the short and long-term effects of an immediate shortage of energy storage caused by lipectomy on expression profile of genes involved in lipid and carbohydrate metabolism in high fat and high cholesterol diet-induced obese rats. The hepatic mRNA levels of enzymes, regulator and transcription factors involved in glucose and lipid metabolism were analyzed by quantitative real time polymerase chain reaction (RT-qPCR) ten days and eight weeks after lipectomy in obese rats. Body and liver weights and serum biochemical parameters, adiponectin, leptin and insulin were determined. No significant difference was observed on the food intake between the lipectomized and sham-operated groups during the experimental period. Ten days after the operation, the lipectomized animals showed significant higher triacylglycerol, glucose and insulin levels, a lower adiponectin concentration than the sham-operated rats, along with significant higher hepatic mRNA levels of hepatocyte nuclear factor 4α (HNF4α) and the enzymes involved in lipogenesis, sterol biosynthesis and gluconeogenesis. The results of immunohistochemical (IHC) analysis also confirmed increased levels of lipogenic enzymes in the liver of lipectomized versus sham-operated animals. The lipectomized group had a significantly lower adiponectin/leptin ratio that was positively correlated to the level of LDL (r = 0.823, Pshort term enhancement of the expression of hepatic anabolic genes involved in lipid and carbohydrate metabolism was triggered that might eventually lead to the final extra weight gain. These metabolic changes could be the results of reduced circulating adiponectin that further influences the functions of insulin and hepatic HNF4α.

  12. Long-Term Collections

    CERN Multimedia

    Comité des collectes à long terme

    2011-01-01

    It is the time of the year when our fireman colleagues go around the laboratory for their traditional calendars sale. A part of the money of the sales will be donated in favour of the long-term collections. We hope that you will welcome them warmly.

  13. Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Togashi, Hiroko; Matsumoto, Machiko; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro

    2008-08-21

    Several lines of evidence have shown that exposure to stress impairs long-term potentiation (LTP) in the CA1 field of the hippocampus, but the detailed mechanisms for this effect remain to be clarified. The present study elucidated the synaptic mechanism of stress-induced LTP suppression in conscious, freely moving rats using electrophysiological approaches. Open field stress (i.e., novel environment stress) and elevated platform stress (i.e., uncontrollable stress) were employed. Basal synaptic transmission was significantly reduced during exposure to elevated platform stress but not during exposure to open field stress. LTP induction was blocked by elevated platform stress but not influenced by open field stress. Significant increases in serum corticosterone levels were observed in the elevated platform stress group compared with the open field stress group. Furthermore, LTP suppression induced by elevated platform stress was prevented by pretreatment with an anxiolytic drug diazepam (1 mg/kg, i.p.). These results suggest that stress-induced LTP suppression depends on the relative intensity of the stressor. The inhibitory synaptic response induced by an intense psychological stress, such as elevated platform stress, may be attributable to LTP impairment in the CA1 field of the hippocampus.

  14. Long-term tissue distribution and steady state activity ratios of 232Th and its daughters in rats after intravascular injection of thorotrast

    International Nuclear Information System (INIS)

    Norimura, Toshiyuki; Tsuchiya, Takehiko; Hatakeyama, Satoru; Yamamoto, Hisao; Okajima, Shunzo.

    1989-01-01

    To estimate the absorbed dose in the critical organs of Thorotrast patients, it is necessary to know not only the distribution and concentration of 232 Th but also its daughter nuclides in the body. The present investigation was undertaken in order to clarify the long-term 232 Th tissue distribution and steady state activity ratios between subsequent daughters in the critical tissues, using about 30 Wister male rats, as a basis for estimating absorbed doses. The tissue distribution of thorium was examined by means of an autoradiographty of the whole body and/or the gamma-ray spectrometry at various times during 2 to 24 months following injection. The concentrations of daughter nuclides in tissues were determined by repetitive gamma examination over a period from 1 hr to 35 days after being sacrificed. The data indicate (1) that approximately 90% of injected Thorotrast is retained in the body for a prolonged period, but about 50% of radium and 10% of radon produced from thorium are eliminated from the body, (2) that the mean steady state activity ratios of 224 Ra and 212 Pb to 228 Th for liver are 0.56 and 0.28, and 0.54 and 0.16 for spleen, 0.58 and 0.82 for lungs, respectively, and (3) that the parent 228 Th is translocated to the bone. (author)

  15. Levothyroxine rescues the lead-induced hypothyroidism and impairment of long-term potentiation in hippocampal CA1 region of the developmental rats

    International Nuclear Information System (INIS)

    Wu Chuanyun; Liu Bing; Wang Huili; Ruan Diyun

    2011-01-01

    Lead (Pb) exposure during development has been associated with impaired long-term potentiation (LTP). Hypothyroidism happening upon subjects with occupational exposure to Pb is suggestive of an adverse effect of Pb on thyroid homeostasis, leading to the hypothesis that Pb exposure may alter thyroid hormone homeostasis. Hippocampus is one of the targets of Pb exposure, and is sensitive to and dependent on thyroid hormones, leading us to explore whether levothyroxine (L-T 4 ) administration could alter the thyroid disequilibrium and impairment of LTP in rat hippocampus caused by Pb exposure. Our results show that Pb exposure caused a decrease in triiodothyronine (T 3 ) and tetraiodothyronine (T 4 ) levels accompanied by a dramatic decrease of TSH and application of L-T 4 restored these changes to about control levels. Hippocampal and blood Pb concentration were significantly reduced following L-T 4 treatment. L-T 4 treatment rescued the impairment of LTP induced by the Pb exposure. These results suggest that Pb exposure may lead to thyroid dysfunction and induce hypothyroidism and provide a direct electrophysiological proof that L-T 4 relieves chronic Pb exposure-induced impairment of synaptic plasticity. - Highlights: → Lead may interfere with thyroid hormone homeostasis and induce hypothyroidism. → Levothyroxine decreases the hippocampal and blood Pb concentration. → Levothyroxine amends the T 3 , T 4 and TSH levels in blood. → Levothyroxine rescues the impaired LTP in CA1.

  16. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    Science.gov (United States)

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  17. Oxidant stress evoked damage in rat hepatocyte leading to triggered nitric oxide synthase (NOS levels on long term consumption of aspartame

    Directory of Open Access Journals (Sweden)

    Iyaswamy Ashok

    2015-12-01

    Full Text Available This study investigates how long-term (40 mg/kg b.wt consumption of aspartame can alter the antioxidant status, stress pathway genes, and apoptotic changes in the liver of Wistar albino rats. Numerous controversial reports are available on the use of aspartame as it releases methanol as one of its metabolites during metabolism. To mimic the human methanol metabolism the methotrexate treated rats were included to study the aspartame effects. The aspartame treated methotrexate (MTX animals showed a marked significant increase in the superoxide dismutase (SOD, catalase (CAT, lipid peroxidation (LPO, and Glutathione peroxidase (GPx activity in the liver from control and MTX control animals, and showed a significant decrease in reduced glutathione (GSH and protein thiol in aspartame treated animals. The aspartame treated MTX animals showed a marked significant decrease in the body weight, brain, and liver weight. The aspartame treated MTX animals showed a marked increase in the inducible nitric oxide (iNOS, neuronal nitric oxide (nNOS, c-fos, Heat shock protein (Hsp 70 Tumour necrosis Factor (TNFα, caspase 8, c-jun N terminal kinases (JNK 3 and Nuclear factor kappa B (NFkB gene expression in the liver from control and MTX control animals. The aspartame treated MTX animals showed a marked increase in the c-fos, Hsp 70, iNOS Caspase 8, and JNK 3 protein expression in the liver from control and MTX control animals indicating the enhancement of stress and apoptosis. The aspartame treated MTX animals showed a streak of marked DNA fragmentation in the liver. On immunohistochemical analysis aspartame treated animals showed brown colored positive hepatocytes indicating the stress specific and apoptotic protein expression. Since aspartame consumption is on the rise among people, it is essential to create awareness regarding the usage of this artificial sweetener.

  18. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats.

    Science.gov (United States)

    Li, Xiaoliang; Sun, Wei; An, Lei

    2018-06-01

    Manufactured metal nanoparticles and their applications are continuously expanding because of their unique characteristics while their increasing use may predispose to potential health problems. Several studies have reported the adverse effects of copper oxide nanoparticles (nano-CuO) relative to ecotoxicity and cell toxicity, whereas little is known about the neurotoxicity of nano-CuO. The present study aimed to examine its effects on spatial cognition, hippocampal function, and the possible mechanisms. Male Wistar rats were used to establish an animal model, and nano-CuO was administered at a dose of 0.5 mg/kg/day for 2 weeks. The Morris water maze (MWM) test was employed to evaluate learning and memory. The long-term potentiation (LTP) from Schaffer collaterals to the hippocampal CA1 region, and the effects of nano-CuO on synases were recorded in the hippocampal CA1 neurons of rats. MWM test showed that learning and memory abilities were impaired significantly by nano-CuO ( p nano-CuO-treated groups compared with the control group ( p nano-CuO markedly depressed the frequencies of both spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), indicating an effect of nano-CuO on inhibiting the release frequency of glutamate presynapticly ( p nano-CuO-treated animals, which suggested that the effect of nano-CuO modulates postsynaptic receptor kinetics ( p nano-CuO impaired glutamate transmission presynapticly and postsynapticly, which may contribute importantly to diminished LTP and other induced cognitive deficits.

  19. Long-term effects of maternal exposure to Di (2-ethylhexyl Phthalate on sperm and testicular parameters in Wistar rats offspring

    Directory of Open Access Journals (Sweden)

    Ahmad Ali Moazedi

    2012-01-01

    Full Text Available Background: Phthalate esters have been shown to cause reproductive toxicity in both developing and adult animals. Objective: This study was designed to assess long-term effects of maternal exposure to Di (2-ethylhexyl Phthalate (DEHP on reproductive ability of both neonatal and adult male offspring.Materials and Methods: 60 female rats randomly divided in four equal groups; vehicle control and three treatment groups that received 10, 100 and 500 mg/kg/day DEHP via gavage during gestation and lactation. At different ages after birth, the volumes of testes were measured by Cavellieri method, testes weights recorded and epididymal sperm samples were assessed for number and gross morphology of spermatozoa. Following tissue processing, seminiferous tubules diameter and germinal epithelium height evaluated with morphometric techniques.Results: Mean testis weight decreased significantly (p<0.05 in 500 mg/kg/day dose group from 28 to 150 days after birth. Significant decreases were seen in total volumes of testis in 100 (p<0.05 and 500 (p<0.01 mg/kg/day doses groups until 150 days after birth. Seminiferous tubules diameter and germinal epithelium height decreased significantly in 100 (p<0.05 and 500 (p<0.01 mg/kg/day doses groups during postnatal development. Also, mean sperm density in 100 mg/kg/day (p<0.05 and 500 mg/kg/day (p<0.01 doses groups and percent of morphologically normal sperm in highest dose group (p<0.05 decreased significantly until 150 days after birth. Conclusion: Present study showed that maternal exposure to Di (2-ethylhexyl Phthalate during gestation and lactation caused to permanent and dose-related reductions of sperm and testicular parameters in rats offspring

  20. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China); Teng, Weiping, E-mail: twpendocrine@yahoo.com.cn [Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China)

    2013-09-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  1. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    International Nuclear Information System (INIS)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui; Teng, Weiping; Chen, Jie

    2013-01-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  2. α1-Adrenoceptors in the hippocampal dentate gyrus involved in learning-dependent long-term potentiation during active-avoidance learning in rats.

    Science.gov (United States)

    Lv, Jing; Zhan, Su-Yang; Li, Guang-Xie; Wang, Dan; Li, Ying-Shun; Jin, Qing-Hua

    2016-11-09

    The hippocampus is the key structure for learning and memory in mammals and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. The influences of norepinephrine (NE) on the modulation of learning and memory, as well as LTP, through β-adrenoceptors are well documented, whereas the role of α1-adrenoceptors in learning-dependent LTP is not yet clear. In the present study, we measured extracellular concentrations of NE in the hippocampal dentate gyrus (DG) region using an in-vivo brain microdialysis and high-performance liquid chromatography techniques during the acquisition and extinction of active-avoidance behavior in freely moving conscious rats. Next, the effects of prazosin (an antagonist of α1-adrenoceptor) and phenylephrine (an agonist of the α1-adrenoceptor) on amplitudes of field excitatory postsynaptic potential were measured in the DG region during the active-avoidance behavior. Our results showed that the extracellular concentration of NE in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to the baseline level following extinction training. A local microinjection of prazosin into the DG significantly accelerated the acquisition of the active-avoidance behavior, whereas a local microinjection of phenylephrine retarded the acquisition of the active-avoidance behavior. Furthermore, in all groups, the changes in field excitatory postsynaptic potential amplitude were accompanied by corresponding changes in active-avoidance behavior. Our results suggest that NE activation of α1-adrenoceptors in the hippocampal DG inhibits active-avoidance learning by modulation of synaptic efficiency in rats.

  3. Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression

    Science.gov (United States)

    Zhang, Shufang; Jiang, Yang Zi; Zhang, Wei; Chen, Longkun; Tong, Tong; Liu, Wanlu; Mu, Qin; Liu, Hua; Ji, Junfeng; Ouyang, Hong Wei

    2013-01-01

    Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models. PMID:22788986

  4. Corrigendum to “Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain" [Neurosci.Lett. 580 (2014) 12–16] A possible new animal model of autism

    DEFF Research Database (Denmark)

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen

    2015-01-01

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20 mg/kg or 100 mg/kg) continuously during the last 9–12 d...

  5. Long-term effects on biotransformation of labelled choline in different parts of the rat brain induced by single choline injections

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, A.; Wahlstroem, G.

    1988-01-01

    The long-term effects of single choline (Ch) injections on the uptake and metabolism of a tracer dose of /sup 3/H-Ch were studied in male rats. Choline was administered as a threshold infusion to obtain convulsions 10 and 4 weeks before sacrific (group 1). At a single threshold infusion of choline 4 weeks before sacrifice no convulsions were induced in 50% of the animals in a second group (group 2-) whereas convulsions were induced in the remainder of the animals in this group (group 2+). Group 3 contained control animals. One min. after administration of a tracer dose of /sup 3/H-Ch the animals were sacrificed and examined for /sup 3/H-total activity, /sup 3/H-Ch, /sup 3/H-acetylcholine (/sup 3/H-ACh) and /sup 3/H-phosphorylcholine (/sup 3/-H-PhCh). These activities were determined in three parts of the brain (cortex, striatum, midbrain + medulla oblongata). In the cortex a significant negative correlation between brain weight and /sup 3/H-ACh synthesis was seen in group 1. A comparison between group 2+ and group 2- indicated that induced convulsions were not critical for this effect. In the striatum there was a significant reduction in the total uptake of radioactivity in group 1 and group 2- when values were compared to the control group. Furthermore a significant positive correlation was detected between the concentration of radiolabel and /sup 3/H-ACh synthesis and a negative relationship with the level of /sup 3/H-Ch. In the midbrain preparation the synthesis of /sup 3/H-ACh was reduced in group 1 where a significant negative correlation was found between the average threshold dose of choline and both /sup 3/H-Ach and /sup 3/H-PhCh synthesis. Thus the Ch threshold doses given several weeks before testing seem to have long term effects on the uptake and utilization of a tracer dose of /sup 3/H-Ch in the cortex and striatum.

  6. Long-term aerobic swimming training by rats reduces the number of aberrant crypt foci in 1,2-dimethylhydrazine-induced colon cancer

    Directory of Open Access Journals (Sweden)

    W. Lunz

    2008-11-01

    Full Text Available We determined the effect of long-term aerobic swimming training regimens of different intensities on colonic carcinogenesis in rats. Male Wistar rats (11 weeks old were given 4 subcutaneous injections (40 mg/kg body weight each of 1,2-dimethyl-hydrazine (DMH, dissolved in 0.9% NaCl containing 1.5% EDTA, pH 6.5, at 3-day intervals and divided into three exercise groups that swam with 0% body weight (EG1, N = 11, 2% body weight (EG2, N = 11, and 4% body weight of load (EG3, N = 10, 20 min/day, 5 days/week for 35 weeks, and one sedentary control group (CG, N = 10. At sacrifice, the colon was removed and counted for tumors and aberrant crypt foci. Tumor size was measured and intra-abdominal fat was weighed. The mean number of aberrant crypt foci was reduced only for EG2 compared to CG (26.21 ± 2.99 vs 36.40 ± 1.53 crypts; P < 0.05. Tumor incidence was not significantly different among groups (CG: 90%; EG1: 72.7%; EG2: 90%; EG3: 80%. Swimming training did not affect either tumor multiplicity (CG: 2.30 ± 0.58; EG1: 2.09 ± 0.44; EG2: 1.27 ± 0.19; EG3: 1.50 ± 0.48 tumors or size (CG: 1.78 ± 0.24; EG1: 1.81 ± 0.14; EG2: 1.55 ± 0.21; EG3: 2.17 ± 0.22 cm³. Intra-abdominal fat was not significantly different among groups (CG: 10.54 ± 2.73; EG1: 6.12 ± 1.15; EG2: 7.85 ± 1.24; EG3: 5.11 ± 0.74 g. Aerobic swimming training with 2% body weight of load protected against the DMH-induced preneoplastic colon lesions, but not against tumor development in the rat.

  7. Effects of Long-Term Caffeine Consumption on the Adenosine A1 Receptor in the Rat Brain: an In Vivo PET Study with [18F]CPFPX.

    Science.gov (United States)

    Nabbi-Schroeter, Danje; Elmenhorst, David; Oskamp, Angela; Laskowski, Stefanie; Bauer, Andreas; Kroll, Tina

    2018-04-01

    Caffeine, a nonselective antagonist of adenosine receptors, is the most popular psychostimulant worldwide. Recently, a protective role of moderate chronic caffeine consumption against neurodegenerative diseases such as Alzheimer's and Parkinson's disease has been discussed. Thus, aim of the present study was an in vivo investigation of effects of long-term caffeine consumption on the adenosine A 1 receptor (A 1 AR) in the rat brain. Sixteen adult, male rats underwent five positron emission tomography (PET) scans with the highly selective A 1 AR radioligand [ 18 F]CPFPX in order to determine A 1 AR availability. After the first baseline PET scan, the animals were assigned to two groups: Caffeine treatment and control group. The caffeine-treated animals received caffeinated tap water (30 mg/kg bodyweight/day, corresponding to 4-5 cups of coffee per day in humans) for 12 weeks. Subsequently, caffeine was withdrawn and repeated PET measurements were performed on day 1, 2, 4, and 7 of caffeine withdrawal. The control animals were measured according to the same time schedule. At day 1, after 4.4 h of caffeine withdrawal, a significant decrease (- 34.5%, p < 0.001) of whole brain A 1 AR availability was observed. Unlike all other investigated brain regions in caffeine-treated rats, the hypothalamus and nucleus accumbens showed no significant intraindividual differences between baseline and first withdrawal PET scan. After approximately 27 h of caffeine withdrawal, the region- and group-specific effects disappeared and A 1 AR availability settled around baseline. The present study provides evidence that chronic caffeine consumption does not lead to persistent changes in functional availability of cerebral A 1 ARs which have previously been associated with neuroprotective effects of caffeine. The acute and region-specific decrease in cerebral A 1 AR availability directly after caffeine withdrawal is most likely caused by residual amounts of caffeine metabolites

  8. Short and long-term impact of lipectomy on expression profile of hepatic anabolic genes in rats: a high fat and high cholesterol diet-induced obese model.

    Directory of Open Access Journals (Sweden)

    Bey-Leei Ling

    Full Text Available OBJECTIVE: To understand the molecular basis of the short and long-term effects of an immediate shortage of energy storage caused by lipectomy on expression profile of genes involved in lipid and carbohydrate metabolism in high fat and high cholesterol diet-induced obese rats. METHODS: The hepatic mRNA levels of enzymes, regulator and transcription factors involved in glucose and lipid metabolism were analyzed by quantitative real time polymerase chain reaction (RT-qPCR ten days and eight weeks after lipectomy in obese rats. Body and liver weights and serum biochemical parameters, adiponectin, leptin and insulin were determined. RESULTS: No significant difference was observed on the food intake between the lipectomized and sham-operated groups during the experimental period. Ten days after the operation, the lipectomized animals showed significant higher triacylglycerol, glucose and insulin levels, a lower adiponectin concentration than the sham-operated rats, along with significant higher hepatic mRNA levels of hepatocyte nuclear factor 4α (HNF4α and the enzymes involved in lipogenesis, sterol biosynthesis and gluconeogenesis. The results of immunohistochemical (IHC analysis also confirmed increased levels of lipogenic enzymes in the liver of lipectomized versus sham-operated animals. The lipectomized group had a significantly lower adiponectin/leptin ratio that was positively correlated to the level of LDL (r = 0.823, P<0.05 and negatively to glucose and insulin (r = -0.821 and -0.892 respectively, P<0.05. Eight weeks after the operation, the lipectomized animals revealed significant higher body and liver weights, weight gain, liver to body weight ratio, hepatic triacylglycerol and serum insulin level. CONCLUSIONS: In response to lipectomy a short term enhancement of the expression of hepatic anabolic genes involved in lipid and carbohydrate metabolism was triggered that might eventually lead to the final extra weight gain. These

  9. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    Science.gov (United States)

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  10. Long-term Morphine-treated Rats are more Sensitive to Antinociceptive Effect of Diclofenac than the Morphine-naive rats

    OpenAIRE

    Akbari, Esmaeil; Mirzaei, Ebrahim; Shahabi Majd, Naghi

    2013-01-01

    This study investigates the effectiveness of the antinociceptive effects of diclofenac, an NSAID, on the nociceptive behavior of morphine-treated rats on formalin test. Rats were treated with morphine-containing drinking water for twenty one days, which induced morphine dependence. The antinociceptive effects of 8, 16, and 32 mg/kg doses of diclofenac were then evaluated and compared with distilled water in a formalin-based model of pain. Diclofenac potentiated pain suppression in morphine-de...

  11. Long-Term Collections

    CERN Multimedia

    Staff Association

    2016-01-01

    45 years helping in developing countries! CERN personnel have been helping the least fortunate people on the planet since 1971. How? With the Long-Term Collections! Dear Colleagues, The Staff Association’s Long-Term Collections (LTC) Committee is delighted to share this important milestone in the life of our Laboratory with you. Indeed, whilst the name of CERN is known worldwide for scientific discoveries, it also shines in the many humanitarian projects which have been supported by the LTC since 1971. Several schools and clinics, far and wide, carry its logo... Over the past 45 years, 74 projects have been supported (9 of which are still ongoing). This all came from a group of colleagues who wanted to share a little of what life offered them here at CERN, in this haven of mutual understanding, peace and security, with those who were less fortunate elsewhere. Thus, the LTC were born... Since then, we have worked as a team to maintain the dream of these visionaries, with the help of regular donat...

  12. Long-Term Collection

    CERN Multimedia

    Staff Association

    2016-01-01

    Dear Colleagues, As previously announced in Echo (No. 254), your delegates took action to draw attention to the projects of the Long-Term Collections (LTC), the humanitarian body of the CERN Staff Association. On Tuesday, 11 October, at noon, small Z-Cards were widely distributed at the entrances of CERN restaurants and we thank you all for your interest. We hope to have achieved an important part of our goal, which was to inform you, convince you and find new supporters among you. We will find out in the next few days! An exhibition of the LTC was also set up in the Main Building for the entire week. The Staff Association wants to celebrate the occasion of the Long-Term Collection’s 45th anniversary at CERN because, ever since 1971, CERN personnel have showed great support in helping the least fortunate people on the planet in a variety of ways according to their needs. On a regular basis, joint fundraising appeals are made with the Directorate to help the victims of natural disasters around th...

  13. Collectes à long terme

    CERN Multimedia

    Collectes à long terme

    2014-01-01

    En cette fin d’année 2014 qui approche à grands pas, le Comité des Collectes à Long Terme remercie chaleureusement ses fidèles donatrices et donateurs réguliers pour leurs contributions à nos actions en faveur des plus démunis de notre planète. C’est très important, pour notre Comité, de pouvoir compter sur l’appui assidu que vous nous apportez. Depuis plus de 40 ans maintenant, le modèle des CLT est basé principalement sur des actions à long terme (soit une aide pendant 4-5 ans par projet, mais plus parfois selon les circonstances), et sa planification demande une grande régularité de ses soutiens financiers. Grand MERCI à vous ! D’autres dons nous parviennent au cours de l’année, et ils sont aussi les bienvenus. En particulier, nous tenons à remercier...

  14. Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats.

    Science.gov (United States)

    Esmaeilpour, Khadijeh; Sheibani, Vahid; Shabani, Mohammad; Mirnajafi-Zadeh, Javad

    2017-01-01

    Kindled seizures can impair learning and memory. In the present study the effect of low-frequency electrical stimulation (LFS) on kindled seizure-induced impairment in spatial learning and memory was investigated and followed up to one month. Animals were kindled by electrical stimulation of hippocampal CA1 area in a semi-rapid manner (12 stimulations per day). One group of animals received four trials of LFS at 30s, 6h, 24h, and 30h following the last kindling stimulation. Each LFS trial was consisted of 4 packages at 5min intervals. Each package contained 200 monophasic square wave pulses of 0.1ms duration at 1Hz. The Open field, Morris water maze, and novel object recognition tests were done 48h, 1week, 2weeks, and one month after the last kindling stimulation respectively. Kindled animals showed a significant impairment in learning and memory compared to control rats. LFS decreased the kindling-induced learning and memory impairments at 24h and one week following its application, but not at 2week or 1month after kindling. In the group of animals that received the same 4 trials of LFS again one week following the last kindling stimulation, the improving effect of LFS was observed even after one month. Obtained results showed that application of LFS in fully kindled animals has a long-term improving effect on spatial learning and memory. This effect can remain for a long duration (one month in this study) by increasing the number of applied LFS. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Different contributions of platelet-activating factor and nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Pettorossi, V E; Grassi, S

    2001-01-01

    In rat brainstem slices, we investigated the differential role of nitric oxide (NO) and platelet-activating factor (PAF) in long-term potentiation (LTP) induced in the ventral portion of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferents. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) and the PAF receptor antagonist ginkgolide B (BN-52021) were administered before and after induction of potentiation. The effect of carboxy-PTIO was to completely prevent LTP. By contrast, BN-52021 only reduced the amplitude of HFS potentiation, which could develop fully at the drug washout or decline to zero, becoming a short-term phenomenon, in the case of long-lasting PAF receptor block. Both drugs, when given after HFS, had no effect on the already established potentiation, but whilst BN-52021 showed an influence within 5 min of the LTP induction, carboxy-PTIO did not affect the response once HFS was delivered. Moreover, we showed that the NO donor, sodium nitroprusside, and methylcarbamyl PAF (mc-PAF) induced LTP which was associated with an increase in glutamate release as shown by reduction in the paired-pulse facilitation ratio. The mc-PAF LTP was prevented by the NO scavenger, while NO LTP was only reduced by BN-52021. We suggest that NO and PAF are implicated as retrograde messengers in two different phases of vestibular LTP: NO in the induction phase; and PAF in the full expression phase.

  16. Protective effects of long-term administration of Ziziphus jujuba fruit extract on cardiovascular responses in L-NAME hypertensive rats.

    Science.gov (United States)

    Mohebbati, Reza; Bavarsad, Kosar; Rahimi, Maryam; Rakhshandeh, Hasan; Khajavi Rad, Abolfazl; Shafei, Mohammad Naser

    2018-01-01

    Ziziphus jujuba stimulates the release of nitric oxide (NO). Because NO is involved in cardiovascular regulations, in this study the effects of hydroalcoholic extract of Z. jujuba on cardiovascular responses in acute NG-nitro-L-arginine methyl ester (L-NAME) hypertensive rats were evaluated. Rats were divided into 6 group (n=6): 1) saline, 2) L-NAME received (10mg/kg) intravenously, 3) sodium nitroprusside (SNP) (50µg/kg)+L-NAME group received SNP before L-NAME and 4-6) three groups of Z. jujuba (100, 200 and 400mg/kg) that treated for four weeks and on the 28 th day, L-NAME was injected. Femoral artery and vein were cannulated for recording cardiovascular responses and drug injection, respectively. Systolic blood pressure (SBP), Mean arterial pressure (MAP) and heart rate (HR) were recorded continuously. Maximal changes (∆) of SBP, MAP and HR were calculated and compared to control and L-NAME groups. In L-NAME group, maximal ΔSBP (L-NAME: 44.15±4.0 mmHg vs control: 0.71±2.1 mmHg) and ΔMAP (L-NAME: 40.8±4.0 mmHg vs control: 0.57±1.6 mmHg) significantly increased (p0.05). All doses of Z. jujuba attenuated maximal ∆SBP and ∆MAP induced by L-NAME but only the lowest dose (100 mg/kg) had significant effects (ΔSBP: 20.36±5.6 mmHg vs L-NAME: 44.1±4.0 mmHg and ΔMAP: 20.8±4.5 mmHg vs L-NAME: 40.8±3.8 mmHg (pL-NAME group (p>0.05). Because long-term consumption of Z. jujuba extract, especially its lowest dose, attenuated cardiovascular responses induced by L-NAME, we suggest that Z. jujuba has potential beneficial effects in prevention of hypertension induced by NO deficiency.

  17. The administration of long-term high-fat diet in ovariectomized wistar rat (Study on Daily Food Intake, Lee Index, Abdominal Fat Mass and Leptin Serum Levels

    Directory of Open Access Journals (Sweden)

    Dita Fitriani

    2016-12-01

    Conclusion: Serum leptin levels positively correlated with Lee index and abdominal fat mass, but negatively correlated with daily food intake. Administration of long-term high-fat diet in this study cannot induce leptin resistance.

  18. Early and long-term effects of low- and high-LET radiation on rat behavior and monoamine metabolism in different brain regions

    Science.gov (United States)

    Belov, Oleg

    Space radiation is one of the factors representing a significant health risk to the astronauts during deep-space missions. A most harmful component of space radiation beyond the Earth's magnetosphere is the galactic cosmic rays which are composed of high-energy protons, α particles, and high charge and energy (HZE) nuclei. Recent studies performed at particle accelerators have revealed a significant impact of HZE nuclei on the central nervous system and, in particular, on the cognitive functions. However the exact molecular mechanisms behind the observed impairments remain mostly unclear. This research is focused on study of early and long-term effects of low- and high-linear-energy-transfer (LET) radiation on the rat behavior and monoamine metabolism in the brain regions involved in behavior and motor control and form emotional and motivational states. Different groups of rats were whole-body exposed to 500 MeV/u (12) C particles (LET 10.6 keV/µm) available at the Nuclotron accelerator of the Joint Institute for Nuclear Research (Dubna, Russia) and to gamma rays at the equivalent dose of 1 Gy. An additional group of animals was sham-irradiated and considered as a control. The isolated brain regions have included the prefrontal cortex, nucleus accumbens, hypothalamus, hippocampus, and striatum where we determined the concentrations of noradrenalin, dopamine and its metabolites 3,4-doxyphenylacetic acid, homovanillic acid, and 3-methoxytyramine and serotonin and its metabolite 5-hydroxyindoleacetic acid. The following effects were observed in the different periods after irradiation. 1 day after exposure to (12) C particles strong changes in the concentration of monoamines and their metabolites were observed in three structures, namely, the prefrontal cortex, nucleus accumbens, and hippocampus. However, significant changes were found in the prefrontal cortex and weaker changes were seen in the nucleus accumbens, whereas changes were insignificant in the hippocampus

  19. Effect of long-term inhalation of uranium dust on balance of certain metabolites and enzymes of Krebs cycle on rat kidney tissues

    International Nuclear Information System (INIS)

    Sarsenova, L.K.; Mustafina, R.Kh.

    2010-01-01

    Kidney is the main organ for transportation and cumulation of soluble radioactive nuclides. The changing of bioenergetic processes has the most value for investigation of kidney infringements nature. Purpose of study: exploring the changing dynamics of Krebs cycle dehydrogenases activity and of tricarbonic acid content in rat kidney tissues after long-term inhalation of Uranium ore dust (UOD) for 10 mpc and application of licorice root aqueous solution. The investigation had been performed on winter breeding white out bred male rats which body weight was 120-140 g. UOD inhalation had been conducted in exposure chamber during the 120 days,4 hours per day 5 days per week. Licorice root aqueous solution was injected per os in dose 100 mg/kg 30 days after the inhalation. Isocitric (ICA) and malic acids (MA) were quantified by Hohorost enzymatic method. Activity rate of a-Ketoglutarate, Malat, Succinate and Isocitrate dehydrogenases (AKDG, MDG, SDG, IDG) in the kidney tissue was determined by Kun and Abood method in modification of Oda and Okazaki and Natochin, and assessed by reduction of Neotetrazolium. As control groups intact rats (norm) and intact animals (control) which stood in exposure chamber without UOD 4 hours/day 5 days in week were serving. Each group of 6-10 animals consisted. Data was processed statistically. At UOD inhalation in 10 mpc doze during the first 30 days the ICA content level has decreased more than in 2 times, by 90-th days this indicator has grown in 4 times and has exceeded control on 70 %. By the experiment end for 120 days the level of ICA has decreased, coming nearer to the control. Decrease in concentration of the MA was longer. The decrease maximum - in 2,2 times - has been fixed for 90-s' days of an inhalation. In the subsequent term - to the 120-th day -there was an increase of concentration to the level comparable to the control. Character and depth of radiation influence of the long inhalation of UOD are shown by change of a parity

  20. Introduction: Long term prediction

    International Nuclear Information System (INIS)

    Beranger, G.

    2003-01-01

    Making a decision upon the right choice of a material appropriate to a given application should be based on taking into account several parameters as follows: cost, standards, regulations, safety, recycling, chemical properties, supplying, transformation, forming, assembly, mechanical and physical properties as well as the behaviour in practical conditions. Data taken from a private communication (J.H.Davidson) are reproduced presenting the life time range of materials from a couple of minutes to half a million hours corresponding to applications from missile technology up to high-temperature nuclear reactors or steam turbines. In the case of deep storage of nuclear waste the time required is completely different from these values since we have to ensure the integrity of the storage system for several thousand years. The vitrified nuclear wastes should be stored in metallic canisters made of iron and carbon steels, stainless steels, copper and copper alloys, nickel alloys or titanium alloys. Some of these materials are passivating metals, i.e. they develop a thin protective film, 2 or 3 nm thick - the so-called passive films. These films prevent general corrosion of the metal in a large range of chemical condition of the environment. In some specific condition, localized corrosion such as the phenomenon of pitting, occurs. Consequently, it is absolutely necessary to determine these chemical condition and their stability in time to understand the behavior of a given material. In other words the corrosion system is constituted by the complex material/surface/medium. For high level nuclear wastes the main features for resolving problem are concerned with: geological disposal; deep storage in clay; waste metallic canister; backfill mixture (clay-gypsum) or concrete; long term behavior; data needed for modelling and for predicting; choice of appropriate solution among several metallic candidates. The analysis of the complex material/surface/medium is of great importance

  1. Long-Term Symbolic Learning

    National Research Council Canada - National Science Library

    Kennedy, William G; Trafton, J. G

    2007-01-01

    What are the characteristics of long-term learning? We investigated the characteristics of long-term, symbolic learning using the Soar and ACT-R cognitive architectures running cognitive models of two simple tasks...

  2. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats

    Directory of Open Access Journals (Sweden)

    Janssen William GM

    2006-01-01

    Full Text Available Abstract Background Intrathecal (IT gene transfer is an attractive approach for targeting spinal mechanisms of nociception but the duration of gene expression achieved by reported methods is short (up to two weeks impairing their utility in the chronic pain setting. The overall goal of this study was to develop IT gene transfer yielding true long-term transgene expression defined as ≥ 3 mo following a single vector administration. We defined "IT" administration as atraumatic injection into the lumbar cerebrospinal fluid (CSF modeling a lumbar puncture. Our studies focused on recombinant adeno-associated virus (rAAV, one of the most promising vector types for clinical use. Results Conventional single stranded rAAV2 vectors performed poorly after IT delivery in rats. Pseudotyping of rAAV with capsids of serotypes 1, 3, and 5 was tested alone or in combination with a modification of the inverted terminal repeat. The former alters vector tropism and the latter allows packaging of self-complementary rAAV (sc-rAAV vectors. Combining both types of modification led to the identification of sc-rAAV2/l as a vector that performed superiorly in the IT space. IT delivery of 3 × 10e9 sc-rAAV2/l particles per animal led to stable expression of enhanced green fluorescent protein (EGFP for ≥ 3 mo detectable by Western blotting, quantitative PCR, and in a blinded study by confocal microscopy. Expression was strongest in the cauda equina and the lower sections of the spinal cord and only minimal in the forebrain. Microscopic examination of the SC fixed in situ with intact nerve roots and meninges revealed strong EGFP fluorescence in the nerve roots. Conclusion sc-rAAVl mediates stable IT transgene expression for ≥ 3 mo. Our findings support the underlying hypothesis that IT target cells for gene transfer lack the machinery for efficient conversion of the single-stranded rAAV genome into double-stranded DNA and favor uptake of serotype 1 vectors over 2

  3. Short post-weaning social isolation induces long-term changes in the dopaminergic system and increases susceptibility to psychostimulants in female rats.

    Science.gov (United States)

    Lampert, Carine; Arcego, Danusa Mar; de Sá Couto-Pereira, Natividade; Dos Santos Vieira, Aline; Toniazzo, Ana Paula; Krolow, Rachel; Garcia, Emily; Vendite, Deusa Aparecida; Calcagnotto, Maria Elisa; Dalmaz, Carla

    2017-10-01

    parameters evaluated, despite having modified some oxidative parameters. This study showed for the first time that a short post-weaning social isolation was able to induce long-term changes in the striatal dopaminergic system and increased the response to psychostimulants. These results emphasize the importance of stressful experiences during a short period of development on programming susceptibility to psychostimulants later in life. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. LONG TERM COLLECTIONS

    CERN Multimedia

    STAFF ASSOCIATION

    2010-01-01

    ACKNOWLEDGMENTS The Long-Term Collections (CLT) committee would like to warmly thank its faithful donors who, year after year, support our actions all over the world. Without you, all this would not be possible. We would like to thank, in particular, the CERN Firemen’s Association who donated 5000 CHF in the spring thanks to the sale of their traditional calendar, and the generosity of the CERN community. A huge thank you to the firemen for their devotion to our cause. And thank you to all those who have opened their door, their heart, and their purses! Similarly, we warmly thank the CERN Yoga Club once again for its wonderful donation of 2000 CHF we recently received. We would also like to tell you that all our projects are running well. Just to remind you, we are currently supporting the activities of the «Réflexe-Partage» Association in Mali; the training centre of «Education et Développement» in Abomey, Benin; and the orphanage and ...

  5. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory.

    Science.gov (United States)

    Noack, Julia; Richter, Karin; Laube, Gregor; Haghgoo, Hojjat Allah; Veh, Rüdiger W; Engelmann, Mario

    2010-11-01

    When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Uso de quercetina a longo prazo em ratos cirróticos The long term use of querce