Long-range correlated percolation
International Nuclear Information System (INIS)
Weinrib, A.
1984-01-01
This paper is a study of the percolation problem with long-range correlations in the site or bond occupations. An extension of the Harris criterion for the relevance of the correlations is derived for the case that the correlations decay as x/sup -a/ for large distances x. For a d the correlations are relevant if dν-2<0. Applying this criterion to the behavior that results when the correlations are relevant, we argue that the new behavior will have ν/sub long/ = 2/a. It is shown that the correlated bond percolation problem is equivalent to a q-state Potts model with quenched disorder in the limit q→1. With the use of this result, a renormalization-group study of the problem is presented, expanding in epsilon = 6-d and in delta = 4-a. In addition to the normal percolation fixed point, we find a new long-range fixed point. The crossover to this new fixed point follows the extended Harris criterion, and the fixed point has exponents ν/sub long/ = 2/a (as predicted) and eta/sub long/ = (1/11)(delta-epsilon). Finally, several results on the percolation properties of the Ising model at its critical point are shown to be in agreement with the predictions of this paper
Long range correlations, event simulation and parton percolation
International Nuclear Information System (INIS)
Pajares, C.
2011-01-01
We study the RHIC data on long range rapidity correlations, comparing their main trends with different string model simulations. Particular attention is paid to color percolation model and its similarities with color glass condensate. As both approaches corresponds, at high density, to a similar physical picture, both of them give rise to a similar behavior on the energy and the centrality of the main observables. Color percolation explains the transition from low density to high density.
One-dimensional long-range percolation: A numerical study
Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.
2017-07-01
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .
Long range position and orientation tracking system
International Nuclear Information System (INIS)
Armstrong, G.A.; Jansen, J.F.; Burks, B.L.; Bernacki, B.E.; Nypaver, D.J.
1995-01-01
The long range position and orientation tracking system (LRPOTS) will consist of two measurement pods, a VME-based computer system, and a detector array. The system is used to measure the position and orientation of a target that may be attached to a robotic arm, teleoperated manipulator, or autonomous vehicle. The pods have been designed to be mounted in the man-ways of the domes of the Fernald K-65 waste silos. Each pod has two laser scanner subsystems as well as lights and camera systems. One of the laser scanners will be oriented to scan in the pan direction, the other in the tilt direction. As the lasers scan across the detector array, the angles of incidence with each detector are recorded. Combining measurements from each of the four lasers yields sufficient data for a closed-form solution of the transform describing the location and orientation of the Content Mobilization System (CMS). Redundant detectors will be placed on the CMS to accommodate occlusions, to provide improved measurement accuracy, and to determine the CMS orientation
Long range position and Orientation Tracking System
International Nuclear Information System (INIS)
Armstrong, G.A.; Jansen, J.F.; Burks, B.L.
1996-01-01
The long range Position and Orientation Tracking System is an active triangulation-based system that is being developed to track a target to a resolution of 6.35 mm (0.25 in.) and 0.009 degrees(32.4 arcseconds) over a range of 13.72 m (45 ft.). The system update rate is currently set at 20 Hz but can be increased to 100 Hz or more. The tracking is accomplished by sweeping two pairs of orthogonal line lasers over infrared (IR) sensors spaced with known geometry with respect to one another on the target (the target being a rigid body attached to either a remote vehicle or a remote manipulator arm). The synchronization and data acquisition electronics correlates the time that an IR sensor has been hit by one of the four lasers and the angle of the respective mirror at the time of the hit. This information is combined with the known geometry of the IR sensors on the target to determine position and orientation of the target. This method has the advantage of allowing the target to be momentarily lost due to occlusions and then reacquired without having to return the target to a known reference point. The system also contains a camera with operator controlled lighting in each pod that allows the target to be continuously viewed from either pod, assuming their are no occlusions
Energy Technology Data Exchange (ETDEWEB)
Goyal, A. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States)]. E-mail: goyala@ornl.gov; Rutter, N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States); University of Cambridge, Pembroke St., Cambridge CB2 3QZ (United Kingdom); Cantoni, C. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States); Lee, D.F. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States)
2005-10-01
Calculations of long-range current flow using an advanced percolation model show that with the presently observed texture in RABiTS substrates, the dependence of J {sub c} on length as a function of width is greatly reduced. Furthermore, this dependence becomes almost negligible in applied fields. These results suggest that sub-division of a wide conductor into narrow filaments should be possible without loss in J {sub c}. The relative importance of the out-of-plane texture in affecting intergranular J {sub c} was also explored by fabricating RABiTS substrates with different out-of-plane textures but approximately the same in-plane texture. This was accomplished by using TiN as a seed layer for which significant sharpening of the out-of-plane texture is observed. Similar J {sub c} was found for samples with differing out-of-plane texture but almost the same in-plane texture. Finally, separation of the total misorientation in GB networks into in-plane and out-of-plane misorientations using manipulations in Rodrigues space shows that J {sub c} correlates best with in-plane texture.
Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki
2018-03-01
We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.
Long-range position and orientation tracking system
International Nuclear Information System (INIS)
Armstrong, G.A.; Jansen, J.F.; Burks, B.L.
1995-01-01
The long-range position and orientation tracking system will consist of two measurement pods, a VME-based computer system, and a detector array. The system is used to measure the position and orientation of a target that may be attached to a robotic arm, teleoperated manipulator, or autonomous vehicle. The pods have been designed to be mounted in the manways of the domes of the Fernald K-65 waste silos. Each pod has two laser scanner subsystems as well as lights and camera systems. One of the laser scanners will be oriented to scan in the pan direction, the other in the tilt direction. As the lasers scan across the detector array, the angles of incidence with each detector are recorded. Combining measurements from each of the four lasers yields sufficient data for a closed-form solution of the transform describing the location and orientation of the content mobilization system (CMS). Redundant detectors will be placed on the CMS to accommodate occlusions, to provide improved measurement accuracy, and to determine the CMS orientation
International Nuclear Information System (INIS)
Fontes, L.R.G.; Sidoravicius, V.
2004-01-01
Percolation is the phenomenon of transport of a fluid through a porous medium. For example, oil or gas through rock, or water through coffee powder. The medium consists of microscopic pores and channels through which the fluid might pass. In a simple situation, each channel will be open or closed to the passage of the fluid, depending on several characteristics of the medium which could be summed up in a few parameters. The distribution of open and closed channels could be described probabilistically. In the simplest case, each channel, independently of the others, is open with probability p, the single parameter of the model, and closed with probability 1 - p. We will model the medium microscopically by the d-dimensional hipercubic lattice, Z d , whose sites and (nearest neighbor) bonds represent the pores and channels, respectively. This constitutes what we will call the independent (Bernoulli) bond percolation model (in Z d ). It will be focused on in Part I of these notes. A basic question is the occurrence or not of percolation, that is, the existence of an infinite path, through open bonds only, cutting through the medium. In the next sections of this introduction, we will define the model in detail and show its first non-trivial result, establishing the existence of a phase transition in 2 and higher dimensions, that is, establishing the existence of a critical value for the parameter p, p c is an element of (0, 1), such that the model does not exhibit percolation almost surely for values of p below p c , and does exhibit percolation almost surely for values of p above p c . In Part II, we consider an oriented percolation model in a random environment which is related to several interesting questions in discrete probability. In Part III, we depart further from the initial model, and consider stochastic Ising models at zero temperature, which are not immediately related to the models in the previous parts, but rather to a dynamical percolation model called
Hofherr, O.; Wachten, Christian; Müller, C.; Reinecke, H.
2014-11-01
High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) accurately determine x-y-z coordinates of passive retroreflectors. Next-generation systems answer the need to measure an object`s rotational orientation (pitch, yaw, roll). So far, these devices are based either on photogrammetry or on enhanced retroreflectors. Here we present a new method to measure all six degrees of freedom in conjunction with a LT. The basic principle is to analyze the orientation to the LT's beam path by coupling-out laser radiation. The optical design is inspired by a cat's eye retroreflector equipped with an integrated beam splitter layer. The optical spherical aberration is compensated, which reduces the divergence angle for the reflected beam by one order of magnitude compared to an uncompensated standard system of the same size. The wave front distortion is reduced to less than 0.1 λ @ 633 nm for beam diameters up to 8 mm. Our active retroreflector is suitable for long-range measurements for a distance > 10 m.
The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions
Tzioufas, Achillefs
2018-04-01
We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.
Complex dynamic behaviors of oriented percolation-based financial time series and Hang Seng index
International Nuclear Information System (INIS)
Niu, Hongli; Wang, Jun
2013-01-01
Highlights: • We develop a financial time series model by two-dimensional oriented percolation system. • We investigate the statistical behaviors of returns for HSI and the financial model by chaos-exploring methods. • We forecast the phase point of reconstructed phase space by RBF neural network. -- Abstract: We develop a financial price model by the two-dimensional oriented (directed) percolation system. The oriented percolation model is a directed variant of ordinary (isotropic) percolation, and it is applied to describe the fluctuations of stock prices. In this work, we assume that the price fluctuations result from the participants’ investment attitudes toward the market, and we investigate the information spreading among the traders and the corresponding effect on the price fluctuations. We study the complex dynamic behaviors of return time series of the model by using the multiaspect chaos-exploring methods. And we also explore the corresponding behaviors of the actual market index (Hang Seng Index) for comparison. Further, we introduce the radial basic function (RBF) neural network to train and forecast the phase point of reconstructed phase space
van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.
2015-01-01
The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855
Energy Technology Data Exchange (ETDEWEB)
Macrae, K.I.; Riegert, R.J. (Maryland Univ., College Park (USA). Center for Theoretical Physics)
1984-10-01
We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession.
International Nuclear Information System (INIS)
Macrae, K.I.; Riegert, R.J.
1984-01-01
We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Allen, P. W.; Jessup, E. A.; White, R. E. [Air Resources Field Research Office, Las Vegas, Nevada (United States)
1967-07-01
A single air molecule can have a trajectory that can be described with a line, but most meteorologists use single lines to represent the trajectories of air parcels. A single line trajectory has the disadvantage that it is a categorical description of position. Like categorized forecasts it provides no qualification, and no provision for dispersion in case the parcel contains two or more molecules which may take vastly different paths. Diffusion technology has amply demonstrated that an initial aerosol cloud or volume of gas in the atmosphere not only grows larger, but sometimes divides into puffs, each having a different path or swath. Yet, the average meteorologist, faced with the problem of predicting the future motion of a cloud, usually falls back on the line trajectory approach with the explanation that he had no better tool for long range application. In his more rational moments, he may use some arbitrary device to spread his cloud with distance. One such technique has been to separate the trajectory into two or more trajectories, spaced about the endpoint of the original trajectory after a short period of travel, repeating this every so often like a chain reaction. This has the obvious disadvantage of involving a large amount of labor without much assurance of improved accuracy. Another approach is to draw a circle about the trajectory endpoint, to represent either diffusion or error. The problem then is to know what radius to give the circle and also whether to call it diffusion or error. Meteorologists at the Nevada Test Site (NTS) are asked frequently to provide advice which involves trajectory technology, such as prediction of an aerosol cloud path, reconstruction of the motion of a volume of air, indication of the dilution, and the possible trajectory prediction error over great distances. Therefore, we set out, nearly three years ago, to provide some statistical knowledge about the status of our trajectory technology. This report contains some of the
Heteronuclear Long-Range Correlation
DEFF Research Database (Denmark)
Sørensen, Ole W.
The lecture will cover heteronuclear long-range correlation techniques like HMBC, H2BC, and HAT HMBC with the emphasis on determining the number of covalent bonds between two spins being correlated. H2BC and HMBC spectra are quite complementary as a peak can be strong in one of the two spectra...
Long Range Aircraft Trajectory Prediction
Magister, Tone
2009-01-01
The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...
Long range supergravity coupling strengths
International Nuclear Information System (INIS)
Kenyon, I.R.
1991-01-01
A limit of 2x10 -13 has recently been deduced for the fractional difference between the gravitational masses of the K 0 and anti K 0 mesons. This limit is applied here to put stringent limits on the strengths of the long range vector-scalar gravitational couplings envisaged in supergravity theories. A weaker limit is inferred from the general relativistic fit to the precession of the orbit of the pulsar PSR1913+16. (orig.)
International Nuclear Information System (INIS)
MacArthur, D.W.; McAtee, J.L.
1991-01-01
Historically, alpha-particle and alpha-contamination detectors have been limited by the very short range of alpha particles in air and by relatively poor sensitivity even if the particles are intercepted. Alpha detectors have had to be operated in a vacuum or in close proximity to the source if reasonable efficiency is desired. Alpha particles interact with the ambient air, producing ionization in the air at the rate of ∼30,000 ion pairs per mega-electron-volt of alpha energy. These charges can be transported over significant distances (several meters) in a moving current of air generated by a small fan. An ion chamber located in front of the fan measures the current carried by the moving ions. The long-range alpha detector (LRAD) offers several advantages over more traditional alpha detectors. First and foremost, it can operate efficiently even if the contamination is not easily accessible. Second, ions generated by contamination in crevices and other unmonitorable locations can be detected if the airflow penetrates those areas. Third, all of the contamination on a large surface will generate ions that can be detected in a single detector; hence, the detector's sensitivity to distributed sources is not limited by the size of the probe. Finally, a simple ion chamber can detect very small electric currents, making this technique potentially quite sensitive
International Nuclear Information System (INIS)
Peurrung, A.J.; Stromswold, D.C.; Hansen, R.R.; Reeder, P.L.; Barnett, D.S.
1999-01-01
A neutron detector designed for detecting neutron sources at distances of 50 to 100 m has been constructed and tested. This detector has a large surface area (1 m 2 ) to enhance detection efficiency, and it contains a collimator and shielding to achieve direction sensitivity and reduce background. An unusual feature of the detector is that it contains no added moderator, such as polyethylene, to moderate fast neutrons before they reach the 3 He detector. As a result, the detector is sensitive mainly to thermal neutrons. The moderator-free design reduces the weight of the detector, making it more portable, and it also aids in achieving directional sensitivity and background reduction. Test results show that moderated fission-neutron sources of strength about 3 x 10 5 n/s can be detected at a distance out to 70 m in a counting time of 1000 s. The best angular resolution of the detector is obtained at distances of 30 m or less. As the separation .distance between the source and detector increases, the contribution of scattered neutrons to the measured signal increases with a resultant decrease in the ability to detect the direction to a distant source. Applications for which the long-range detector appears to be suitable include detecting remote neutron sources (including sources in moving vehicles) and monitoring neutron storage vaults for the intrusion of humans and the effects they make on the detected neutron signal. Also, the detector can be used to measure waste for the presence of transuranic material in the presence of high gamma-ray background. A test with a neutron source (3 x 10 5 n/s) in a vehicle showed that the detector could readily measure an increase in count rate at a distance of 10 m for vehicle speeds up to 35 mph (the highest speed tested). These results. indicate that the source should be detectable at this distance at speeds up to 55 mph
Goldenberg, J.; Libai, B.; Solomon, S.; Jan, N.; Stauffer, D.
2000-09-01
A percolation model is presented, with computer simulations for illustrations, to show how the sales of a new product may penetrate the consumer market. We review the traditional approach in the marketing literature, which is based on differential or difference equations similar to the logistic equation (Bass, Manage. Sci. 15 (1969) 215). This mean-field approach is contrasted with the discrete percolation on a lattice, with simulations of "social percolation" (Solomon et al., Physica A 277 (2000) 239) in two to five dimensions giving power laws instead of exponential growth, and strong fluctuations right at the percolation threshold.
Long-range interaction of anisotropic systems
Zhang, Junyi
2015-02-01
The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.
Long-range interaction of anisotropic systems
Zhang, Junyi; Schwingenschlö gl, Udo
2015-01-01
The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.
Long range order and giant components of quantum random graphs
Ioffe, D
2006-01-01
Mean field quantum random graphs give a natural generalization of classical Erd\\H{o}s-R\\'{e}nyi percolation model on complete graph $G_N$ with $p =\\beta /N$. Quantum case incorporates an additional parameter $\\lambda\\geq 0$, and the short-long range order transition should be studied in the $(\\beta ,\\lambda)$-quarter plane. In this work we explicitly compute the corresponding critical curve $\\gamma_c$, and derive results on two-point functions and sizes of connected components in both short and long range order regions. In this way the classical case corresponds to the limiting point $(\\beta_c ,0) = (1,0)$ on $\\gamma_c$.
DEFF Research Database (Denmark)
Vasiljevic, Nikola; Lea, Guillaume; Courtney, Michael
2016-01-01
The technical aspects of a multi-Doppler LiDAR instrument, the long-range WindScanner system, are presented accompanied by an overview of the results from several field campaigns. The long-range WindScanner system consists of three spatially-separated, scanning coherent Doppler LiDARs and a remote......-rangeWindScanner system measures the wind field by emitting and directing three laser beams to intersect, and then scanning the beam intersection over a region of interest. The long-range WindScanner system was developed to tackle the need for high-quality observations of wind fields on scales of modern wind turbine...
Long range diffusion of hydrogen in yttrium
International Nuclear Information System (INIS)
Anderson, I.S.; Scherrer, P.; Ross, D.K.
1989-01-01
The diffusion of H in single crystals of YH 0.2 is investigated by means of Quasielastic neutron scattering between 593 K and 695 K. Individual jump rates giving rise to long range and local diffusion are determined. (orig.)
Long-range spin deformations around quasiparticles
International Nuclear Information System (INIS)
Godfrey, M.; Gunn, M.
1989-01-01
The quasi-particle formed by a hole in a Heisenberg antiferromagnet has an associated long-range spin distortion whose amplitude increases with the velocity of the hole. The authors show that the existence and properties of this distortion follow from simple classical arguments based on the long-wavelength equations of motion for the spin system. A similar long-range distortion is found in the quantum-mechanical problem of an electron exchange coupled to a Heisenberg antiferromagnet
Long range correlations in condensed matter
International Nuclear Information System (INIS)
Bochicchio, R.C.
1990-01-01
Off diagonal long range order (ODLRO) correlations are strongly related with the generalized Bose-Einstein condensation. Under certain boundary conditions, one implies the other. These phenomena are of great importance in the description of quantum situations with a macroscopic manifestation (superfluidity, superconductivity, etc.). Since ion pairs are not bosons, the definition of ODLRO is modified. The information contained with the 2-particle propagator (electron pairs) and the consequences that lead to pairs statistics are shown in this presentation. The analogy between long range correlations and fluids is also analyzed. (Author). 17 refs
Passive long range acousto-optic sensor
Slater, Dan
2006-08-01
Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).
International Nuclear Information System (INIS)
Kunz, H.
1980-01-01
Percolation is a unifying which appeared to be rather useful in trying to understand some properties of disordered physical systems, or some phase transitions in polymers, like gelation or vulcanisation. Although implicitely used in the pioneering work of Flory in 1941 on the sol-gel transition of polymers, it was first introduced in a well-defined way by the mathematicians Hammersley and Broadbent in 1957, who obtained the first rigorous result. Since then, the subject has seen a variety of new applications and its recent study has largely benefited from the vigorous development of critical phenomena after the introduction of the RG ideas and techniques. (author)
Long-range terms in atomic collisions
International Nuclear Information System (INIS)
McGuire, J.H.; Weaver, O.L.
1986-01-01
Various separations, or ''gauge choices,'' are possible for the decomposition of the total Hamiltonian into electronic and internuclear terms. We show that, for one particular choice, all long-range Coulomb terms are associated with the internuclear motion. The potential then associated with electronic transitions is non-Coulombic. Some practical consequences of this gauge choice are discussed
Resources and Long-Range Forecasts
Smith, Waldo E.
1973-01-01
The author argues that forecasts of quick depletion of resources in the environment as a result of overpopulation and increased usage may not be free from error. Ignorance still exists in understanding the recovery mechanisms of nature. Long-range forecasts are likely to be wrong in such situations. (PS)
Look Ahead: Long-Range Learning Plans
Weinstein, Margery
2010-01-01
Faced with an unsteady economy and fluctuating learning needs, planning a learning strategy designed to last longer than the next six months can be a tall order. But a long-range learning plan can provide a road map for success. In this article, four companies (KPMG LLP, CarMax, DPR Construction, and EMC Corp.) describe their learning plans, and…
Long range diffusion of hydrogen in yttrium
Energy Technology Data Exchange (ETDEWEB)
Anderson, I S; Scherrer, P [Paul Scherrer Inst., Villigen (Switzerland); Ross, D K [Birmingham Univ. (UK). Dept. of Physics; Bonnet, J E [Laboratoire pour l' Utilisation du Rayonnement Electromagnetique (LURE), Paris-11 Univ., 91 - Orsay (France)
1989-01-01
The diffusion of H in single crystals of YH{sub 0.2} is investigated by means of Quasielastic neutron scattering between 593 K and 695 K. Individual jump rates giving rise to long range and local diffusion are determined. (orig.).
Definition of percolation thresholds on self-affine surfaces
Marrink, S.J.; Paterson, Lincoln; Knackstedt, Mark A.
2000-01-01
We study the percolation transition on a two-dimensional substrate with long-range self-affine correlations. We find that the position of the percolation threshold on a correlated lattice is no longer unique and depends on the spanning rule employed. Numerical results are provided for spanning
Long-range correlations from colour confinement
International Nuclear Information System (INIS)
Jurkiewicz, J.; Zenczykowski, P.
1979-01-01
A class of independent parton emission models is generalized by the introduction of the colour degrees of freedom. In the proposed models colour confinement extorts strong long-range forward-backward correlations, the rise of one-particle inclusive distribution and the KNO scaling. It leads to the analytically calculable definite asymptotic predictions for the D/ ratio which depends only on the choice of the colour group. Multiplicity distribution develops a remarkably long tail. (author)
Gauge hierarchy and long range forces
International Nuclear Information System (INIS)
Pal, P.B.; Keung, Wai-Yee; Chang, D.
1990-01-01
With the aid of simple examples, we show how a long range attractive force can arise in a gauge theory with a hierarchy. The force is due to the exchange of a Higgs boson whose mass and matter couplings are both naturally suppressed by the hierarchical mass ratio. Such bosons appear if there is an accidental global symmetry in the low-energy renormalizable Lagrangian after the high energy symmetry breaking. 6 refs
Long-range interaction between spins
International Nuclear Information System (INIS)
Naik, P.C.; Pradhan, T.
1981-01-01
It is shown that invariance of Lagrangian field theory under a class of the coordinate-dependent Lorentz group of transformations requires the introduction of a massless axial vector gauge field which gives rise to a super-weak long-range spin-spin force between particles in vacuum. Recent experiments demonstrating repulsion and attraction between circularly polarised laser beams are interpreted to be due to such a force enhanced by spin polarisation of sodium vapour, through which these beams pass. (author)
Rapidly solidified long-range-ordered alloys
International Nuclear Information System (INIS)
Lee, E.H.; Koch, C.C.; Liu, C.T.
1981-01-01
The influence of rapid solidification processing on the microstructure of long-range-ordered alloys in the (Fe, Co, Ni) 3 V system has been studied by transmission electron microscopy. The main microstructural feature of the as-quenched alloys was a fine cell structure (approx. 300 nm diameter) decorated with carbide particles. This structure was maintained aftr annealing treatments which develop the ordered crystal structure. Other features of the microstructures both before and after annealing are presented and discussed. 6 figures
Long-range forecasting of intermittent streamflow
F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby
2011-01-01
Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine th...
Long-range forecasting of intermittent streamflow
F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby
2011-01-01
Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probabil...
Imaging using long range dipolar field effects
International Nuclear Information System (INIS)
Gutteridge, Sarah
2002-01-01
The work in this thesis has been undertaken by the author, except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. These maps directly yield an absolute value for the water content of the sample that is unaffected by relaxation and any RF inhomogeneity or calibration errors in the radio frequency pulses applied. It has also been suggested that the signal generated by dipolar field effects may provide novel contrast in functional magnetic resonance imaging. In the third application, the effects of microscopic susceptibility variation on the signal are studied and the relaxation rate of the signal is compared to that of a conventional spin echo. (author)
The third stage of hospital long-range planning: the marketing approach.
Rynne, T J
1980-01-01
Today most hospital administrators are convinced they should implement long-range planning. The marketing approach to long-range planning is an effective strategy that is consumer oriented. It starts the planning process with the consumer, letting the consumer's needs and wants guide the organization's planning.
Long-range order in canary song.
Markowitz, Jeffrey E; Ivie, Elizabeth; Kligler, Laura; Gardner, Timothy J
2013-01-01
Bird songs range in form from the simple notes of a Chipping Sparrow to the rich performance of the nightingale. Non-adjacent correlations can be found in the syntax of some birdsongs, indicating that the choice of what to sing next is determined not only by the current syllable, but also by previous syllables sung. Here we examine the song of the domesticated canary, a complex singer whose song consists of syllables, grouped into phrases that are arranged in flexible sequences. Phrases are defined by a fundamental time-scale that is independent of the underlying syllable duration. We show that the ordering of phrases is governed by long-range rules: the choice of what phrase to sing next in a given context depends on the history of the song, and for some syllables, highly specific rules produce correlations in song over timescales of up to ten seconds. The neural basis of these long-range correlations may provide insight into how complex behaviors are assembled from more elementary, stereotyped modules.
Long-range alpha detector (LRAD)
International Nuclear Information System (INIS)
MacArthur, D.W.; McAtee, J.L.
1991-01-01
Historically, alpha detectors have been limited by the very short range of alpha particles in air and by relatively poor sensitivity, even if the particles are intercepted. Of necessity, these detectors are operated in a vacuum or in close proximity to the source if reasonable efficiency is desired. In our new long-range alpha detector (LRAD), alpha particles interact with the ambient air, producing ionization in the air at the rate of about 30,000 ion pairs per MeV of alpha energy. These charges can be transported over significant distances (several meters) in a moving current of air generated by a small fan. An ion chamber located in front of the fan measures the current carried by the moving ions. The LRAD-based monitor is more sensitive and more thorough than conventional monitors. We present current LRAD sensitivity limits and results, practical monitor designs, and proposed uses for LRAD monitors. 4 refs., 7 figs
Long range inductive power transfer system
International Nuclear Information System (INIS)
Lawson, James; Pinuela, Manuel; Yates, David C; Lucyszyn, Stepan; Mitcheson, Paul D
2013-01-01
We report upon a recently developed long range inductive power transfer system (IPT) designed to power remote sensors with mW level power consumption at distances up to 7 m. In this paper an inductive link is established between a large planar (1 × 1 m) transmit coil (Tx) and a small planer (170 × 170 mm) receiver coil (Rx), demonstrating the viability of highly asymmetrical coil configurations that real-world applications such as sensor networks impose. High Q factor Tx and Rx coils required for viable power transfer efficiencies over such distances are measured using a resonant method. The applicability of the Class-E amplifier in very low magnetic coupling scenarios and at the high frequencies of operation required for high Q operation is demonstrated by its usage as the Tx coil driver
Stochastic processes and long range dependence
Samorodnitsky, Gennady
2016-01-01
This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been publis...
Long-range Rocky Flats utilization study
International Nuclear Information System (INIS)
1983-02-01
The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors
Long-range forecasting of intermittent streamflow
van Ogtrop, F. F.; Vervoort, R. W.; Heller, G. Z.; Stasinopoulos, D. M.; Rigby, R. A.
2011-11-01
Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.
Long-range forecasting of intermittent streamflow
Directory of Open Access Journals (Sweden)
F. F. van Ogtrop
2011-11-01
Full Text Available Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.
Williamsport Area Community College Long Range Planning: The Long Range Plan, Update 1987.
Williamsport Area Community Coll., PA.
This update to Williamsport Area Community College's (WACC's) 1984-89 long-range plan offers a status report on each of the plan's 78 objectives, reassigns responsibility for specific objectives to make the plan responsive to the current organizational structure of the college, and offers 11 new objectives for the 1986-87 academic year. After…
Continuous limit of discrete systems with long-range interaction
International Nuclear Information System (INIS)
Tarasov, Vasily E
2006-01-01
Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class
Long-range correlation and market segmentation in bond market
Wang, Zhongxing; Yan, Yan; Chen, Xiaosong
2017-09-01
This paper investigates the long-range auto-correlations and cross-correlations in bond market. Based on Detrended Moving Average (DMA) method, empirical results present a clear evidence of long-range persistence that exists in one year scale. The degree of long-range correlation related to maturities has an upward tendency with a peak in short term. These findings confirm the expectations of fractal market hypothesis (FMH). Furthermore, we have developed a method based on a complex network to study the long-range cross-correlation structure and applied it to our data, and found a clear pattern of market segmentation in the long run. We also detected the nature of long-range correlation in the sub-period 2007-2012 and 2011-2016. The result from our research shows that long-range auto-correlations are decreasing in the recent years while long-range cross-correlations are strengthening.
PERCOLATION TRANSITION AND TOPOLOGY
Directory of Open Access Journals (Sweden)
Patricia Jouannot-Chesney
2017-06-01
Full Text Available A number of bidimensional random structures with increasing densities are simulated to explore possible links between Euler-Poincaré characteristic (EPC, or connectivity, and percolation threshold. For each structure model, the percolation threshold is compared with a number of typical points (extrema, zero crossings... of the EPC curve. From these exercises, it can be concluded that the percolation threshold cannot be generally predicted using the evolution of the EPC.
ENSEMBLE methods to reconcile disparate national long range dispersion forecasts
Mikkelsen, Torben; Galmarini, S.; Bianconi, R.; French, S.
2003-01-01
ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparatenational forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an a...
Resonant long-range interactions between polar macromolecules
International Nuclear Information System (INIS)
Preto, Jordane; Pettini, Marco
2013-01-01
Motivated by its prospective biological relevance, the issue of resonant long-range interactions between two molecules displaying oscillating dipole moments is reinvestigated within the framework of classical electrodynamics. In particular, our findings shed new light on Fröhlich's theory of selective long-range interactions between biomolecules. First, terms of a very long-range kind – which have never been reported so far – are found in the interaction potential, due to field retardation. Second, at variance with a long-standing belief, it is shown that sizable resonant long-range interactions may exist only if the interacting system is out of thermal equilibrium.
A Model for Long Range Planning for Seminole Community College.
Miner, Norris
A model for long-range planning designed to maximize involvement of college personnel, to improve communication among various areas of the college, to provide a process for evaluation of long-range plans and the planning process, to adjust to changing conditions, to utilize data developed at a level useful for actual operations, and to have…
Report of the Long-Range Planning Committee
International Nuclear Information System (INIS)
1984-01-01
This is the final report of the Long-Range Planning Committee of the Lawrence Livermore National Laboratory. It describes the make-up, purpose, working assumptions, and activities of the Committee and discusses the work done by the Committee on defense matters, energy, a number of additional topics, and future long-range planning activities
Down the Road...Long Range Planning for Automation.
Texas State Library, Austin. Dept. of Library Development.
The materials in this manual/workbook were prepared to assist participants in a workshop on long-range planning for library automation. Chapters cover the following topics: (1) "What Is Long-Range Planning?" (2) "Why Plan?" (3) "Who Needs to Participate?" (4) "Planning to Plan"; (5) "Determining Needs"; (6) "Description and Introduction"; (7)…
Degeneracy and long-range correlation: A simulation study
Directory of Open Access Journals (Sweden)
Marmelat Vivien
2011-12-01
Full Text Available We present in this paper a simulation study that aimed at evidencing a causal relationship between degeneracy and long-range correlations. Long-range correlations represent a very specific form of fluctuations that have been evidenced in the outcomes time series produced by a number of natural systems. Long-range correlations are supposed to sign the complexity, adaptability and flexibility of the system. Degeneracy is defined as the ability of elements that are structurally different to perform the same function, and is presented as a key feature for explaining the robustness of complex systems. We propose a model able to generate long-range correlated series, and including a parameter that account for degeneracy. Results show that a decrease in degeneracy tends to reduce the strength of long-range correlation in the series produced by the model.
Unusual percolation in simple small-world networks.
Cohen, Reuven; Dawid, Daryush Jonathan; Kardar, Mehran; Bar-Yam, Yaneer
2009-06-01
We present an exact solution of percolation in a generalized class of Watts-Strogatz graphs defined on a one-dimensional underlying lattice. We find a nonclassical critical point in the limit of the number of long-range bonds in the system going to zero, with a discontinuity in the percolation probability and a divergence in the mean finite-cluster size. We show that the critical behavior falls into one of three regimes depending on the proportion of occupied long-range to unoccupied nearest-neighbor bonds, with each regime being characterized by different critical exponents. The three regimes can be united by a single scaling function around the critical point. These results can be used to identify the number of long-range links necessary to secure connectivity in a communication or transportation chain. As an example, we can resolve the communication problem in a game of "telephone."
Integral hierarchies and percolation
International Nuclear Information System (INIS)
Klein, W.; Stell, G.
1985-01-01
For a variation of the Potts model which has been shown to describe continuum percolation, we derive a hierarchy of integral equations of Kirkwood-Salsburg type. The distribution functions which are the solutions of this hierarchy can be simply related to the connectedness functions in continuum percolation. From this hierarchy a second set of equations is derived from which the connectedness functions can be obtained directly. This approach is extremely useful when investigating properties of systems far from the percolation transition. These hierarchies are solved exactly in the mean-field (Kac-Baker) limit and possible implications for cluster growth are discussed. The relation between the Potts model for continuum percolation and the Widom-Rowlinson model is also noted
The internal percolation problem
International Nuclear Information System (INIS)
Bezsudnov, I.V.; Snarskii, A.A.
2010-01-01
The internal percolation problem (IP) as a new type of the percolation problem is introduced and investigated. In spite of the usual (or external) percolation problem (EP) when the percolation current flows from the top to the bottom of the system, in IP case the voltage is applied through bars which are present in the hole located within the system. The EP problem has two major parameters: M-size of the system and a 0 -size of inclusions, bond size, etc. The IP problem holds one parameter more: size of the hole L. Numerical simulation shows that the critical indexes of conductance for the IP problem are very close to those in the EP problem. On the contrary, the indexes of the relative spectral noise density of 1/f noise and higher moments differ from those in the EP problem. The basics of these facts is discussed.
Introduction to percolation theory
Stauffer, Dietrich
1991-01-01
Percolation theory deals with clustering, criticallity, diffusion, fractals, phase transitions and disordered systems. This book covers the basic theory for the graduate, and also professionals dealing with it for the first time
Long range implantation by MEVVA metal ion source
International Nuclear Information System (INIS)
Zhang Tonghe; Wu Yuguang; Ma Furong; Liang Hong
2001-01-01
Metal vapor vacuum arc (MEVVA) source ion implantation is a new technology used for achieving long range ion implantation. It is very important for research and application of the ion beam modification of materials. The results show that the implanted atom diffusion coefficient increases in Mo implanted Al with high ion flux and high dose. The implanted depth is 311.6 times greater than that of the corresponding ion range. The ion species, doses and ion fluxes play an important part in the long-range implantation. Especially, thermal atom chemistry have specific effect on the long-range implantation during high ion flux implantation at transient high target temperature
Spectral long-range interaction of temporal incoherent solitons.
Xu, Gang; Garnier, Josselin; Picozzi, Antonio
2014-02-01
We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) nonlinear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range interaction in frequency space, which is in contrast with the expected spectral short-range interaction described by the usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spectral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation.
Solomon, Sorin; Weisbuch, Gerard; de Arcangelis, Lucilla; Jan, Naeem; Stauffer, Dietrich
2000-03-01
We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.
Scintillation mitigation for long-range surveillance video
CSIR Research Space (South Africa)
Delport, JP
2010-09-01
Full Text Available Atmospheric turbulence is a naturally occurring phenomenon that can severely degrade the quality of long-range surveillance video footage. Major effects include image blurring, image warping and temporal wavering of objects in the scene. Mitigating...
Long-Range Nondestructive Testing System, Phase I
National Aeronautics and Space Administration — This proposal is for the development of a long range, multi-point non-destructive system for the detection of subsurface flaws in metallic and composite materials of...
Interim report on long range plan for nuclear physics
International Nuclear Information System (INIS)
Anon.
1995-01-01
The interim report on the updated NSAC Long Range Plan for Nuclear Physics will be presented to the community for discussion and comment before submission to the funding agencies. The presentation will be coordinated by E. Moniz chair of NSAC
Observed Orbit Effects during Long Range Beam-Beam Studies
Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D
2012-01-01
Possible limitations due to long range beam-beam effects at the LHC have been studied and are presented in this note. With a larger number of bunches and collisions in all interaction points, the crossing angles were reduced to enhance long range beam-beam effects. The analysis of the effects on the dynamic aperture and losses are documented in [1]. This note concentrates on the bunch-by-bunch orbit effects observed during the experiment.
Long-range eye tracking: A feasibility study
Energy Technology Data Exchange (ETDEWEB)
Jayaweera, S.K.; Lu, Shin-yee
1994-08-24
The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.
Testing for long-range dependence in world stock markets
Cajueiro, Daniel Oliveira; Tabak, Benjamin Miranda
2008-01-01
In this paper, we show a novel approach to rank stock market indices in terms of weak form efficiency using state of the art methodology in statistical physics. We employ the R/S and V/S methodologies to test for long-range dependence in equity returns and volatility. Empirical results suggests that although emerging markets possess stronger long-range dependence in equity returns than developed economies, this is not true for volatility. In the case of volatility, Hurst exponents...
ENSEMBLE methods to reconcile disparate national long range dispersion forecasts
DEFF Research Database (Denmark)
Mikkelsen, Torben; Galmarini, S.; Bianconi, R.
2003-01-01
ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparatenational forecasts for long-range dispersion...... emergency and meteorological forecasting centres, which may choose to integrate them directly intooperational emergency information systems, or possibly use them as a basis for future system development.......ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparatenational forecasts for long-range dispersion....... ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidentalatmospheric release of radioactive material. A series of new decision-making “ENSEMBLE” procedures...
Memory and long-range correlations in chess games
Schaigorodsky, Ana L.; Perotti, Juan I.; Billoni, Orlando V.
2014-01-01
In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series.
Long-range interactions in lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.
Long-range interactions in lattice field theory
International Nuclear Information System (INIS)
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations
Multifragmentation and percolation
International Nuclear Information System (INIS)
Campi, X.; Desbois, J.
1985-01-01
Percolation theory is applied to the problem of nucleus break-up. A model of nuclear percolation is proposed in which the rules for linkage of nucleons to form a cluster are defined in real and momentum spaces. This model exhibits a rather well defined threshold at rho ≅ 0.6. Analytical expressions for cluster size distributions at fixed concentration rho are given. Decay of excited clusters (by evaporation and fission) to give stable nuclear fragments is incorporated. The distribution law for rho in inclusive reactions is studied and the calculated mass yields are compared to experimental results
Netherlands Army Long Range Anti Armour Study - Status Report
Schagen, P.A.B. van
1989-01-01
At the end of the nineties the munition for the TOW weapon system in use at The Netherlands army, has to be replaced. The Life of Type of The Tow carrier ends in 2005. The long range anti armour study is to gain insight into the possibilities and limitations for the Netherlands army to deploy future (time period 1995-2000) weapon systems in the long range anti armour battle. The first study results are expected at the end of 1989. The study is sponsored by the Netherlands army and is carried ...
Long-range interactions among three alkali-metal atoms
International Nuclear Information System (INIS)
Marinescu, M.; Starace, A.F.
1996-01-01
The long-range asymptotic form of the interaction potential surface for three neutral alkali-metal atoms in their ground states may be expressed as an expansion in inverse powers of inter-nuclear distances. The first leading powers are proportional to the dispersion coefficients for pairwise atomic interactions. They are followed by a term responsible for a three body dipole interaction. The authors results consist in evaluation of the three body dipole interaction coefficient between three alkali-metal atoms. The generalization to long-range n atom interaction terms will be discussed qualitatively
Study of beam-beam long range compensation with octupoles
AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Tambasco, Claudia
2017-01-01
Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, ${\\beta}$${^∗}$). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are dis- cussed for the HL-LHC upgrade and extrapolations made for the FCC project.
Long-range correlations and asymmetry in the Bitcoin market
Alvarez-Ramirez, J.; Rodriguez, E.; Ibarra-Valdez, C.
2018-02-01
This work studies long-range correlations and informational efficiency of the Bitcoin market for the period from June 30, 2013 to June 3rd, 2017. To this end, the detrended fluctuation analysis (DFA) was implemented over sliding windows to estimate long-range correlations for price returns. It was found that the Bitcoin market exhibits periods of efficiency alternating with periods where the price dynamics are driven by anti-persistence. The pattern is replicated by prices samples at day, hour and second frequencies. The Bitcoin market also presents asymmetric correlations with respect to increasing and decreasing price trending, with the former trend linked to anti-persistence of returns dynamics.
Long-range correlation in cosmic microwave background radiation.
Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi
2011-08-01
We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.
Effect of simple solutes on the long range dipolar correlations in liquid water
Energy Technology Data Exchange (ETDEWEB)
Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kanth, J. Maruthi Pradeep, E-mail: jmpkanth@gmail.com [Vectra LLC, Mount Road, Chennai 600006 (India)
2016-03-14
Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) have a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.
Long-range plasmonic waveguides with hyperbolic cladding
DEFF Research Database (Denmark)
Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi
2015-01-01
waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...
Nanoimprinted reflecting gratings for long-range surface plasmon polaritons
DEFF Research Database (Denmark)
Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario
2007-01-01
We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...
Force induced unzipping of DNA with long range correlated noise
International Nuclear Information System (INIS)
Lam, Pui-Man; Zhen, Yi
2011-01-01
We derive and solve a Fokker–Planck equation for the stationary distribution of the free energy, in a model of unzipping of double-stranded DNA under external force. The autocorrelation function of the random DNA sequence can be of a general form, including long range correlations. In the case of Ornstein–Uhlenbeck noise, characterized by a finite correlation length, our result reduces to the exact result of Allahverdyan et al, with the average number of unzipped base pairs going as (X) ∼ 1/f 2 in the white noise limit, where f is the deviation from the critical force. In the case of long range correlated noise, where the integrated autocorrelation is divergent, we find that (X) is finite at f = 0, with its value decreasing as the correlations become of longer range. This shows that long range correlations actually stabilize the DNA sequence against unzipping. Our result is also in agreement with the findings of Allahverdyan et al obtained using numerical generation of the long range correlated noise
Netherlands Army Long Range Anti Armour Study - Status Report
Schagen, P.A.B. van
1989-01-01
At the end of the nineties the munition for the TOW weapon system in use at The Netherlands army, has to be replaced. The Life of Type of The Tow carrier ends in 2005. The long range anti armour study is to gain insight into the possibilities and limitations for the Netherlands army to deploy future
Long range forces and limits on unparticle interactions
International Nuclear Information System (INIS)
Deshpande, N.G.; Hsu, Stephen D.H.; Jiang Jing
2008-01-01
Couplings between standard model particles and unparticles from a nontrivial scale invariant sector can lead to long range forces. If the forces couple to quantities such as baryon or lepton (electron) number, stringent limits result from tests of the gravitational inverse square law. These limits are much stronger than from collider phenomenology and astrophysics
Long range node-strut analysis of trabecular bone microarchitecture
DEFF Research Database (Denmark)
Schmah, Tanya; Marwan, Norbert; Thomsen, Jesper Skovhus
2011-01-01
PURPOSE: We present a new morphometric measure of trabecular bone microarchitecture, called mean node strength (NdStr), which is part of a newly developed approach called long range node-strut analysis. Our general aim is to describe and quantify the apparent "latticelike" microarchitecture of th...
Helioseismology with long-range dark matter-baryon interactions
DEFF Research Database (Denmark)
Lopes, I.; Panci, Paolo; Silk, J.
2014-01-01
Assuming the existence of a primordial asymmetry in the dark sector, we study how long-range dark matter (DM)-baryon interactions, induced by the kinetic mixing of a new U(1) gauge boson and a photon, affect the evolution of the Sun and, in turn, the sound speed the profile obtained from...
Long-range interactions in dilute granular systems
Müller, M.K
2008-01-01
In this thesis, on purpose, we focussed on the most challenging, longest ranging potentials. We analyzed granular media of low densities obeying 1/r long-range interaction potentials between the granules. Such systems are termed granular gases and differ in their behavior from ordinary gases by
Singularities of elastic scattering amplitude by long-range potentials
International Nuclear Information System (INIS)
Kvitsinsky, A.A.; Komarov, I.V.; Merkuriev, S.P.
1982-01-01
The angular peculiarities and the zero energy singularities of the elastic scattering amplitude by a long-range potential are described. The singularities of the elastic (2 → 2) scattering amplitude for a system of three Coulomb particles are considered [ru
Long-range contributions to double beta decay revisited
Energy Technology Data Exchange (ETDEWEB)
Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile); Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Avenida Cisternas 1200, La Serena (Chile); Hirsch, M. [HEP Group, Instituto de Física Corpuscular,C.S.I.C./Universitat de València Edificio Institutos de Investigacion,Parc Cientific de Paterna, Apartado 22085, E-46071 València (Spain); Ota, T. [Department of Physics, Saitama University,Shimo-Okubo 255, 338-8570 Saitama-Sakura (Japan)
2016-06-01
We discuss the systematic decomposition of all dimension-7 (d=7) lepton number violating operators. These d=7 operators produce momentum enhanced contributions to the long-range part of the 0νββ decay amplitude and thus are severely constrained by existing half-live limits. In our list of possible models one can find contributions to the long-range amplitude discussed previously in the literature, such as the left-right symmetric model or scalar leptoquarks, as well as some new models not considered before. The d=7 operators generate Majorana neutrino mass terms either at tree-level, 1-loop or 2-loop level. We systematically compare constraints derived from the mass mechanism to those derived from the long-range 0νββ decay amplitude and classify our list of models accordingly. We also study one particular example decomposition, which produces neutrino masses at 2-loop level, can fit oscillation data and yields a large contribution to the long-range 0νββ decay amplitude, in some detail.
Strategic Long Range Planning for Universities. AIR Forum 1980 Paper.
Baker, Michael E.
The use of strategic long-range planning at Carnegie-Mellon University (CMU) is discussed. A structure for strategic planning analysis that integrates existing techniques is presented, and examples of planning activities at CMU are included. The key concept in strategic planning is competitive advantage: if a university has a competitive…
Long range planning of radiotherapy facilities in the Netherlands
Postma, T.J.B.M.; Terpstra, S.
2000-01-01
The subject of this paper is long range planning or policy development for healthcare in the Netherlands. Especially the co-ordinating function of planning will be discussed. In healthcare different actors or stakeholders are involved. Each of these actors may have their own interests, expectations,
Percolation of Monte Carlo clusters
International Nuclear Information System (INIS)
Wanzeller, W.G.; Krein, G.; Cucchieri, A.; Mendes, T.
2004-01-01
Percolation theory is of interest in problems of phase transitions in condensed matter physics, and in biology and chemistry. More recently, concepts of percolation theory have been invoked in studies of color deconfinement at high temperatures in Quantum Chromodynamics. In the present paper we briefly review the basic concept of percolation theory, exemplify its application to the Ising model, and present the arguments for a possible relevance of percolation theory to the problem of color deconfinement. (author)
Dynamics of bootstrap percolation
Indian Academy of Sciences (India)
precise criterion for the occurrence of a mixed transition is not very clear, and has been the subject ... ology, electronic communication, and social networks. It has also acquired a ... percolation theory is to start with a lattice with a fraction p of its sites occupied randomly, and ..... samples of a 104-node network. Probability is ...
Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain
Dutta, Anirban; Dutta, Amit
2017-09-01
We study the role of long-range interactions (more precisely, the long-range superconducting gap term) on the nonequilibrium dynamics considering a long-range p -wave superconducting chain in which the superconducting term decays with distance between two sites in a power-law fashion characterized by an exponent α . We show that the Kibble-Zurek scaling exponent, dictating the power-law decay of the defect density in the final state reached following a slow (in comparison to the time scale associated with the minimum gap in the spectrum of the Hamiltonian) quenching of the chemical potential μ across a quantum critical point, depends nontrivially on the exponent α as long as α 2 , we find that the exponent saturates to the corresponding well-known value of 1 /2 expected for the short-range model. Furthermore, studying the dynamical quantum phase transitions manifested in the nonanalyticities in the rate function of the return possibility I (t ) in subsequent temporal evolution following a sudden change in μ , we show the existence of a new region; in this region, we find three instants of cusp singularities in I (t ) associated with a single sector of Fisher zeros. Notably, the width of this region shrinks as α increases and vanishes in the limit α →2 , indicating that this special region is an artifact of the long-range nature of the Hamiltonian.
A new approach for multicriticality in directed and diode percolation
International Nuclear Information System (INIS)
Tsallis, C.; Boston Univ., MA; Redner, S.
1983-01-01
A new and very simple model for treating directed and more general diode percolation problems is presented, by allowing neighboring sites to be joined by up to two independent bonds of opposite orientations. A generalized 'break-collapse' method is developed to calculate renormalization group recursion relations. On the square lattice, a very symmetric phase diagram is obtained which displays multicritical percolation phenomena, and a variety of interesting conductivity transitions are predicted. (Author) [pt
Long-Range Research Plan, FY 1985-FY 1989
International Nuclear Information System (INIS)
1984-09-01
The Long-Range Research Plan (LRRP) was prepared by the Office of Nuclear Regulatory Research (RES) to assist the NRC in coordinating its long-range research planning with the short-range budget cycles. The LRRP lays out programmatic approaches for research to help resolve regulatory issues. The plan will be updated annually. This document is divided into the following sections: operating reactor inspection, maintenance, and repair; equipment qualification; seismic research; reactor operations and risk; thermal-hydraulic transients; severe accidents; advanced concepts; radiation protection and health effects; and waste management. The following are also listed as appendices: unresolved safety issues and TMI action plan items, priorities for research program, research program outline, and research utilization report. A glossary of acronyms is included
Conformal Invariance in the Long-Range Ising Model
Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo
2016-01-01
We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Efficient Long-Range Hole Transport Through G-Quadruplexes.
Wu, Jingyuan; Meng, Zhenyu; Lu, Yunpeng; Shao, Fangwei
2017-10-09
DNA offers a means of long-range charge transport for biology and electric nanodevices. Here, a series of tetra-stranded G-quadruplexes were assembled within a dendritic DNA architecture to explore oxidative charge transport (hole transport) through the G-quadruplex. Efficient charge transport was achieved over 28 Å upon UV irradiation. Over a longer G-quadruplex bridge, hole transport was escalated to a higher efficiency, which resulted in a higher yield than that of the optimal duplex DNA for charge transport, that is, the adenine tract. Efficient long-range hole transport suggests tetra-stranded G-quadruplexes, instead of an oxidation hotspot, hold better potential as an electron conduit than duplex DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conformal invariance in the long-range Ising model
Directory of Open Access Journals (Sweden)
Miguel F. Paulos
2016-01-01
Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Long-range hybrid ridge and trench plasmonic waveguides
Energy Technology Data Exchange (ETDEWEB)
Bian, Yusheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)
2014-06-23
We report a class of long-range hybrid plasmon polariton waveguides capable of simultaneously achieving low propagation loss and tight field localization at telecommunication wavelength. The symmetric (quasi-symmetric) hybrid configurations featuring high-refractive-index-contrast near the non-uniform metallic nanostructures enable significantly improved optical performance over conventional hybrid waveguides, exhibiting considerably longer propagation distances and dramatically enhanced figure of merits for similar degrees of confinement. Compared to their traditional long-range plasmonic counterparts, the proposed hybrid waveguides put much less stringent requirements on index-matching conditions, demonstrating nice performance under a wide range of physical dimensions and robust characteristics against certain fabrication imperfections. Studies concerning crosstalk between adjacent identical waveguides further reveal their potential for photonic integrations. In addition, alternative configurations with comparable guiding properties to the structures in our case studies are also proposed, which can potentially serve as attractive prototypes for numerous high-performance nanophotonic components.
Long-range correlations and universality in plasma edge turbulence
International Nuclear Information System (INIS)
Milligen, B.Ph. van; Pedrosa, M.A.; Carreras, B.A.
1999-01-01
Long-range correlations in turbulence, associated with self-similarity of the fluctuations, are a signature of transport by avalanches as occurs in Self-Organized Critical systems. We have investigated long-range correlations in plasma edge fluctuations in a variety of fusion devices, using the Rescaled-Range and similar techniques. We find that the degree of self-similarity in confining devices is high and similar between devices, and much different from non-confining devices where it is low. Likewise, we find that turbulent spectra show a high degree of similarity between devices. These findings strongly indicate the existence of universality in plasma edge (ohmic) turbulence, and demonstrate its non-Gaussian character. (author)
Long-range analysis of density fitting in extended systems
Varga, Scarontefan
Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long-range behavior point of view. We show that for the correct cancellation of divergent long-range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non-Coulomb metric fit can be made overlap-preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices.
Conformal invariance in the long-range Ising model
Energy Technology Data Exchange (ETDEWEB)
Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)
2016-01-15
We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Travel: a long-range goal of retired women.
Staats, Sara; Pierfelice, Loretta
2003-09-01
The authors surveyed retired persons (predominately women) with regard to their immediate, intermediate, and long-range activities following retirement. As predicted, leisure travel emerged as a frequent long-range goal for persons retired more than 5 years. The travel activity preferences of long-retired older women present challenges and opportunities to both researchers and marketers. Length of trips and frequency of trips have been predicted from regression models, with trip length in particular being well predicted by the problem of daily life hassles. A theoretical model of continued post-retirement travel is presented as a variant of Solomon's opponent process theory of affect (R. L. Solomon, 1980). The authors suggest that to the degree that places traveled to are varied and different, older people may remain stimulated and continue to enjoy retirement.
SEGMENTATION AND QUALITY ANALYSIS OF LONG RANGE CAPTURED IRIS IMAGE
Directory of Open Access Journals (Sweden)
Anand Deshpande
2016-05-01
Full Text Available The iris segmentation plays a major role in an iris recognition system to increase the performance of the system. This paper proposes a novel method for segmentation of iris images to extract the iris part of long range captured eye image and an approach to select best iris frame from the iris polar image sequences by analyzing the quality of iris polar images. The quality of iris image is determined by the frequency components present in the iris polar images. The experiments are carried out on CASIA-long range captured iris image sequences. The proposed segmentation method is compared with Hough transform based segmentation and it has been determined that the proposed method gives higher accuracy for segmentation than Hough transform.
Long-range correlation analysis of urban traffic data
International Nuclear Information System (INIS)
Peng, Sheng; Jun-Feng, Wang; Shu-Long, Zhao; Tie-Qiao, Tang
2010-01-01
This paper investigates urban traffic data by analysing the long-range correlation with detrended fluctuation analysis. Through a large number of real data collected by the travel time detection system in Beijing, the variation of flow in different time periods and intersections is studied. According to the long-range correlation in different time scales, it mainly discusses the effect of intersection location in road net, people activity customs and special traffic controls on urban traffic flow. As demonstrated by the obtained results, the urban traffic flow represents three-phase characters similar to highway traffic. Moreover, compared by the two groups of data obtained before and after the special traffic restrictions (vehicles with special numbered plates only run in a special workday) enforcement, it indicates that the rules not only reduce the flow but also avoid irregular fluctuation. (general)
Fast long-range connections in transportation networks
International Nuclear Information System (INIS)
Palhares Viana, Matheus; Fontoura Costa, Luciano da
2011-01-01
Multidimensional scaling is applied in order to visualize an analogue of the small-world effect implied by edges having different displacement velocities in transportation networks. Our findings are illustrated for two real-world systems, namely the London urban network (streets and underground) and the US highway network enhanced by some of the main US airlines routes. We also show that the travel time in these two networks is drastically changed by attacks targeting the edges with large displacement velocities. - Highlights: → Multidimensional scaling used to visualize the effects of fast long-range connections. → Fast long-range connections are important to decrease the average travel time. → The average travel time diverges quickly when the network is under target attacks.
Long range anti-ferromagnetic spin model for prebiotic evolution
International Nuclear Information System (INIS)
Nokura, Kazuo
2003-01-01
I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states
Regional and long-range transport of air pollution
International Nuclear Information System (INIS)
Sandroni, S.
1987-01-01
The Course lectures presented are organised in four sections: atmospheric transport, conversion, deposition of atmospheric trace constituents and associated problems; conventional and sophisticated techniques for atmospheric sounding (e.g., Sodar, Lidar, Cospec, tetroons, instrument-carrying aircraft) and simulation techniques (non-reactive tracers); models available for various applications (long-range episodes, long-term averages, photochemical and deposition processes); a comparison of performances of different models and the linearity problem in the formation of acid deposition
ENSEMBLE methods to reconcile disparate national long range dispersion forecasting
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, T; Galmarini, S; Bianconi, R; French, S [eds.
2003-11-01
ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)
ENSEMBLE methods to reconcile disparate national long range dispersion forecasting
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, T.; Galmarini, S.; Bianconi, R.; French, S. (eds.)
2003-11-01
ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)
Laser long-range remote-sensing program experimental results
Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe
1995-12-01
A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.
Segmentation of time series with long-range fractal correlations
Bernaola-Galván, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Ivanov, P.Ch.; Carpena, P.
2012-01-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome. PMID:23645997
Segmentation of time series with long-range fractal correlations.
Bernaola-Galván, P; Oliver, J L; Hackenberg, M; Coronado, A V; Ivanov, P Ch; Carpena, P
2012-06-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.
Long-Range Piping Inspection by Ultrasonic Guided Waves
International Nuclear Information System (INIS)
Joo, Young Sang; Lim, Sa Hoe; Eom, Heung Seop; Kim, Jae Hee
2005-01-01
The ultrasonic guided waves are very promising for the long-range inspection of large structures because they can propagate a long distance along the structures such as plates, shells and pipes. The guided wave inspection could be utilized for an on-line monitoring technique when the transmitting and receiving transducers are positioned at a remote point on the structure. The received signal has the information about the integrity of the monitoring area between the transmitting and receiving transducers. On-line monitoring of a pipe line using an ultrasonic guided wave can detect flaws such as corrosion, erosion and fatigue cracking at an early stage and collect useful information on the flaws. However the guided wave inspection is complicated by the dispersive characteristics for guided waves. The phase and group velocities are a function of the frequency-thickness product. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. In this study, we analyze the propagation characteristics of guided wave modes in a small diameter pipe of nuclear power plant and select the suitable mode for a long-range inspection. And experiments will be carried out for the practical application of a long-range inspection in a 26m long pipe by using a high-power ultrasonic inspection system
Hofstad, van der R.W.; Sakai, A.
2005-01-01
We consider self-avoiding walk and percolation in d, oriented percolation in d×+, and the contact process in d, with p D(·) being the coupling function whose range is proportional to L. For percolation, for example, each bond is independently occupied with probability p D(y–x). The above models are
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
Energy Technology Data Exchange (ETDEWEB)
Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)
2010-03-15
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
International Nuclear Information System (INIS)
Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul
2010-01-01
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Modelling control of epidemics spreading by long-range interactions.
Dybiec, Bartłomiej; Kleczkowski, Adam; Gilligan, Christopher A
2009-10-06
We have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an alpha-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the alpha-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.
Energy Technology Data Exchange (ETDEWEB)
Buckland, R.J.; Kenoyer, D.J.; LaBuy, S.A.
1995-09-01
This Long-Range Plan presents the Decontamination and Dismantlement (D&D) Program planning status for facilities at the Idaho National Engineering Laboratory (INEL). The plan provides a general description of the D&D Program objectives, management criteria, and policy; discusses current activities; and documents the INEL D&D Program cost and schedule estimate projections for the next 15 years. Appendices are included that provide INEL D&D project historical information, a comprehensive descriptive summary of each current D&D surplus facility, and a summary database of all INEL contaminated facilities awaiting or undergoing the facility transition process.
DIII-D tokamak long range plan. Revision 3
International Nuclear Information System (INIS)
1992-08-01
The DIII-D Tokamak Long Range Plan for controlled thermonuclear magnetic fusion research will be carried out with broad national and international participation. The plan covers: (1) operation of the DIII-D tokamak to conduct research experiments to address needs of the US Magnetic Fusion Program; (2) facility modifications to allow these new experiments to be conducted; and (3) collaborations with other laboratories to integrate DIII-D research into the national and international fusion programs. The period covered by this plan is 1 November 19983 through 31 October 1998
Photonic bandgap structures for long-range surface plasmon polaritons
DEFF Research Database (Denmark)
Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas
2005-01-01
Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...
Long-range interaction between dust grains in plasma
Directory of Open Access Journals (Sweden)
D.Yu. Mishagli
2014-03-01
Full Text Available The nature of long-range interactions between dust grains in plasma is discussed. The dust grain interaction potential within a cell model of dusty plasma is introduced. The attractive part of inter-grain potential is described by multipole interaction between two electro-neutral cells. This allowed us to draw an analogy with molecular liquids where attraction between molecules is determined by dispersion forces. Also main ideas of the fluctuation theory for electrostatic field in cell model are formulated, and the dominating contribution to attractive part of inter-grain potential is obtained.
INEL D ampersand D Long-Range Plan
International Nuclear Information System (INIS)
Buckland, R.J.; Kenoyer, D.J.; Preussner, D.H.
1993-10-01
This Long-Range Plan presents the Decontamination and Decommissioning (D ampersand D) Program planning status for facilities at the Idaho National Engineering Laboratory (INEL). The plan provides a general description of the D ampersand D Program objectives, management criteria, and philosophy; discusses current activities; and documents the INEL D ampersand D Program cost and schedule estimate projections for the next 15 years. appendices are included that provide INEL D ampersand D project historical information and a comprehensive descriptive summary of each current surplus facility
INEL D ampersand D long-range plan
International Nuclear Information System (INIS)
Buckland, R.J.; Kenoyer, D.J.; LaBuy, S.A.
1995-09-01
This Long-Range Plan presents the Decontamination and Dismantlement (D ampersand D) Program planning status for facilities at the Idaho National Engineering Laboratory (INEL). The plan provides a general description of the D ampersand D Program objectives, management criteria, and policy; discusses current activities; and documents the INEL D ampersand D Program cost and schedule estimate projections for the next 15 years. Appendices are included that provide INEL D ampersand D project historical information, a comprehensive descriptive summary of each current D ampersand D surplus facility, and a summary database of all INEL contaminated facilities awaiting or undergoing the facility transition process
Political Mechanisms for Long-Range Survival and Development
Marshall, W.
As the first species aware of extinction and capable of proactively ensuring our long-term survival and development, it is striking that we do not do so with the rigor, formality, and foresight it requires. Only from a reactive posture have we responded to the challenges of global warfare, human rights, environmental concerns, and sustainable development. Despite our awareness of the possibility for extinction and apocalyptic set-backs to our evolution, and despite the existence of long-range studies-which must still be dramatically increased-proactive global policy implementation regarding our long-term survival and development is arguably non-existent. This lack of long-term policy making can be attributed in part to the lack of formal political mechanisms to facilitate longer-range policy making that extends 30 years or more into the future. Political mechanisms for infusing long-range thinking, research, and strategic planning into the policy-making process can help correct this shortcoming and provide the motivation needed to adequately address long-term challenges with the political rigor required to effectively establish and implement long-term policies. There are some efforts that attempt to address longer-range issues, but those efforts often do not connect to the political process, do not extend 30 or more years into the future, are not well-funded, and are not sufficiently systemic. Political mechanisms for long-range survival and prosperity could correct these inadequacies by raising awareness, providing funding, and most importantly, leveraging political rigor to establish and enforce long-range strategic planning and policies. The feasibility of such mechanisms should first be rigorously studied and assessed in a feasibility study, which could then inform implementation. This paper will present the case for such a study and suggest some possible political mechanisms that should be investigated further in the proposed study. This work is being further
Mott scattering as a probe of long range QCD
International Nuclear Information System (INIS)
Bertulani, C.A.; Balantekin, A.B.
1993-12-01
We investigate the possibility of using the Mott scattering between identical nuclei to assess the existence of long range QCD, e.g., a color Van der Waals interaction, as suggested recently. Among other effects which were not considered before, the tail of the nuclear potential, emission of radiation by Bremsstrahlung, atomic screening, emission of delta-electrons, and the quasi-molecule binding are included in our calculations. We show that the sum of these effects can explain the observed shift in the Mott oscillations in a recent experiment. (orig.)
Cross-correlation of long-range correlated series
International Nuclear Information System (INIS)
Arianos, Sergio; Carbone, Anna
2009-01-01
A method for estimating the cross-correlation C xy (τ) of long-range correlated series x(t) and y(t), at varying lags τ and scales n, is proposed. For fractional Brownian motions with Hurst exponents H 1 and H 2 , the asymptotic expression for C xy (τ) depends only on the lag τ (wide-sense stationarity) and scales as a power of n with exponent H 1 +H 2 for τ→0. The method is illustrated on: (i) financial series, to show the leverage effect; (ii) genomic sequences, to estimate the correlations between structural parameters along the chromosomes
Finite temperature CPN-1 model and long range Neel order
International Nuclear Information System (INIS)
Ichinose, Ikuo; Yamamoto, Hisashi.
1989-09-01
We study in d space-dimensions the finite temperature behavior of long range Neel order (LRNO) in CP N-1 model as a low energy effective field theory of the antiferromagnetic Heisenberg model. For d≤1, or d≤2 at any nonzero temperature, LRNO disappears, in agreement with Mermin-Wagner-Coleman's theorem. For d=3 in the weak coupling region, LRNO exists below the critical temperature T N (Neel temperature). T N decreases as the interlayer coupling becomes relatively weak compared with that within Cu-O layers. (author)
Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons
DEFF Research Database (Denmark)
Boltasseva, Alexandra; Nikolajsen, Thomas; Leosson, Kristjan
2005-01-01
New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded......), and a bend loss of ~5 dB for a bend radius of 15 mm are evaluated for 15-nm-thick and 8-mm-wide stripes at the wavelength of 1550 nm. LR-SPP-based 3-dB power Y-splitters, multimode interference waveguides, and directional couplers are demonstrated and investigated. At 1570 nm, coupling lengths of 1.9 and 0...
Report on long range alpha detector (LRAD) performance tests
International Nuclear Information System (INIS)
Kobayashi, Hirohide; Unno, Motoyoshi; Ishikawa, Hisashi; Yoshida, Tadayoshi
2002-10-01
At present, alpha contamination measurement on objects is conducted with ZnS scintillation survey meter (direct method) and smear test (indirect method). But it is difficult to measure large and complicated objects by direct method. Long Range Alpha Detector (LRAD) was produced as a solution for this problem. We carried out performance tests of this LRAD. As a result of the performance tests, we confirmed the linear relation between the measurement values of LRAD and alpha-radioactivity on the surface of objects. (author)
Long-range dependence and sea level forecasting
Ercan, Ali; Abbasov, Rovshan K
2013-01-01
This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA
Fluctuation-induced long-range interactions in polymer systems
International Nuclear Information System (INIS)
Semenov, A N; Obukhov, S P
2005-01-01
We discover a new universal long-range interaction between solid objects in polymer media. This polymer-induced interaction is directly opposite to the van der Waals attraction. The predicted effect is deeply related to the classical Casimir interactions, providing a unique example of universal fluctuation-induced repulsion rather than normal attraction. This universal repulsion comes from the subtracted soft fluctuation modes in the ideal counterpart of the real polymer system. The effect can also be interpreted in terms of subtracted (ghost) large-scale polymer loops. We establish the general expressions for the energy of polymer-induced interactions for arbitrary solid particles in a concentrated polymer system. We find that the correlation function of the polymer density in a concentrated solution of very long chains follows a scaling law rather than an exponential decay at large distances. These novel universal long-range interactions can be of importance in various polymer systems. We discuss the ways to observe/simulate these fluctuation-induced effects
The Use of Principal Components in Long-Range Forecasting
Chern, Jonq-Gong
Large-scale modes of the global sea surface temperatures and the Northern Hemisphere tropospheric circulation are described by principal component analysis. The first and the second SST components well describe the El Nino episodes, and the El Nino index (ENI), suggested in this study, is consistent with the winter Southern Oscillation index (SOI), where this ENI is a composite component of the weighted first and second SST components. The large-scale interactive modes of the coupling ocean-atmosphere system are identified by cross-correlation analysis The result shows that the first SST component is strongly correlated with the first component of geopotential height in lead time of 6 months. In the El Nino-Southern Oscillation (ENSO) evolution, the El Nino mode strongly influences the winter tropospheric circulation in the mid -latitudes for up to three leading seasons. The regional long-range variation of climate is investigated with these major components of the SST and the tropospheric circulation. In the mid-latitude, the climate of the central United States shows a weak linkage with these large-scale circulations, and the climate of the western United States appears to be consistently associated with the ENSO modes. These El Nino modes also show a dominant influence on Eastern Asia as evidenced in Taiwan Mei-Yu patterns. Possible regional long-range forecasting schemes, utilizing the complementary characteristics of the winter El Nino mode and SST anomalies, are examined with the Taiwan Mei-Yu.
Helioseismology with long-range dark matter-baryon interactions
Energy Technology Data Exchange (ETDEWEB)
Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Panci, Paolo [CP3-Origins and DIAS, University of Southern Denmark, DK-5230 Odense (Denmark); Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: panci@iap.fr, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, F-75014 Paris (France)
2014-11-10
Assuming the existence of a primordial asymmetry in the dark sector, we study how long-range dark matter (DM)-baryon interactions, induced by the kinetic mixing of a new U(1) gauge boson and a photon, affect the evolution of the Sun and, in turn, the sound speed the profile obtained from helioseismology. Thanks to the explicit dependence on the exchanged momenta in the differential cross section (Rutherford-like scattering), we find that DM particles with a mass of ∼10 GeV, kinetic mixing parameter of the order of 10{sup –9}, and a mediator with a mass smaller than a few MeV improve the agreement between the best solar model and the helioseismic data without being excluded by direct detection experiments. In particular, the LUX detector will soon be able to either constrain or confirm our best-fit solar model in the presence of a dark sector with long-range interactions that reconcile helioseismology with thermal neutrino results.
The Frontiers of Nuclear Science: A Long-Range Plan
Energy Technology Data Exchange (ETDEWEB)
None, None
2007-12-01
In a letter dated July 17, 2006, the Department of Energy’s (DOE) Office of Science for Nuclear Physics and the National Science Foundation’s (NSF) Mathematical and Physical Sciences Directorate charged the Nuclear Science Advisory Committee (NSAC) to “conduct a study of the opportunities and priorities for U.S. nuclear physics research and recommend a long range plan that will provide a framework for coordinated advancement of the nation’s nuclear science research programs over the next decade.” This request set in motion a bottom-up review and forward look by the nuclear science community. With input from this community-wide process, a 59 member working group, which included the present NSAC members, gathered at the beginning of May, 2007, to develop guidance on how to optimize the future research directions for the field based on the projected resources outlined in the charge letter from DOE and NSF. A new long range plan—The Frontiers of Nuclear Science—grew out of this meeting. For the last decade, the top priority for nuclear science has been to utilize the flagship facilities that were built with investments by the nation in the 1980s and 1990s. Research with these facilities has led to many significant new discoveries that have changed our understanding of the world in which we live. But new discoveries demand new facilities, and the successes cannot continue indefinitely without new investment.
Dimensional crossover in directed percolation
International Nuclear Information System (INIS)
Chame, A.M.N.; Queiroz, S.L.A. de; Santos, Raimundo R. dos.
1984-04-01
We study the dimensional crossover in directed percolation in three dimensions. Bonds are allowed to have different concentrations along the three cartesian axes of the lattice. Through a Position Space Renormalization Group we obtain the phase-diagrama where non-percolating, 1-D, 2-D and 3-D percolating phases are present. We find that the isotropic fixed points are unstable with respect to anisotropy, thus driving the system into a different universality class. (author) [pt
Long-Range Self-Study, 1975-1985.
Williamsport Area Community Coll., PA.
This self-study contains recommendations and objectives for Williamsport Area Community College (WACC), a one-campus, vocational-technical oriented college in an industrial community in Pennsylvania. The methodology employed in producing this self-study is intended to form the framework for a continuous learning-oriented short and long-range…
The field theory approach to percolation processes
International Nuclear Information System (INIS)
Janssen, Hans-Karl; Taeuber, Uwe C.
2005-01-01
We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features are governed, respectively, by the directed (DP) and dynamic isotropic percolation (dIP) universality classes. We discuss the construction of a field theory representation for these Markovian stochastic processes based on fundamental phenomenological considerations, as well as from a specific microscopic reaction-diffusion model realization. Subsequently we explain how dynamic renormalization group (RG) methods can be applied to obtain the universal properties near the critical point in an expansion about the upper critical dimensions d c = 4 (DP) and 6 (dIP). We provide a detailed overview of results for critical exponents, scaling functions, crossover phenomena, finite-size scaling, and also briefly comment on the influence of long-range spreading, the presence of a boundary, multispecies generalizations, coupling of the order parameter to other conserved modes, and quenched disorder
Percolation in Heterogeneous Media
International Nuclear Information System (INIS)
Vocka, Radim
1999-01-01
This work is a theoretical reflection on the problematic of the modeling of heterogeneous media, that is on the way of their simple representation conserving their characteristic features. Two particular problems are addressed in this thesis. Firstly, we study the transport in porous media, that is in a heterogeneous media which structure is quenched. A pore space is represented in a simple way - a pore is symbolized as a tube of a given length and a given diameter. The fact that the correlations in the distribution of pore sizes are taken into account by a construction of a hierarchical network makes possible the modeling of porous media with a porosity distributed over several length scales. The transport in the hierarchical network shows qualitatively different phenomena from those observed in simpler models. A comparison of numerical results with experimental data shows that the hierarchical network gives a good qualitative representation of the structure of real porous media. Secondly, we study a problem of the transport in a heterogeneous media which structure is evolving during the time. The models where the evolution of the structure is not influenced by the transport are studied in detail. These models present a phase transition of the same nature as that observed on the percolation networks. We propose a new theoretical description of this transition, and we express critical exponents describing the evolution of the conductivity as a function of fundamental exponents of percolation theory. (author) [fr
Long-range alpha detector for contamination monitoring
International Nuclear Information System (INIS)
MacArthur, D.W.; Allander, K.S.; McAtee, J.L.
1991-01-01
Historically, alpha detectors have been limited by the very short range of alpha particles in air and by relatively poor sensitivity, even if the particles are intercepted. Of necessity, these detectors are operated in a vacuum or in close proximity to the source if reasonable efficiency is desired. In our new long-range alpha detector (LRAD), alpha particles interact with the ambient air, producing ionization in the air at the rate of about 30,000 ion pairs per MeV of alpha energy. These charges can be transported over significant distances (several meters) in a moving current of air generated by a small fan. An ion chamber located in front of the fan measures the current carried by the moving ions. The LRAD-based monitor is more sensitive and more thorough than conventional monitors. We present current LRAD sensitivity limits and results, practical monitor designs, and proposed uses for LRAD monitors. 4 refs., 6 figs
Position-insensitive long range inductive power transfer
International Nuclear Information System (INIS)
Kwan, Christopher H; Lawson, James; Yates, David C; Mitcheson, Paul D
2014-01-01
This paper presents results of an improved inductive wireless power transfer system for reliable long range powering of sensors with milliwatt-level consumption. An ultra-low power flyback impedance emulator operating in open loop is used to present the optimal load to the receiver's resonant tank. Transmitter power modulation is implemented in order to maintain constant receiver power and to prevent damage to the receiver electronics caused by excessive received voltage. Received power is steady up to 3 m at around 30 mW. The receiver electronics and feedback system consumes 3.1 mW and so with a transmitter input power of 163.3 W the receiver becomes power neutral at 4.75 m. Such an IPT system can provide a reliable alternative to energy harvesters for supplying power concurrently to multiple remote sensors
Long-Range Big Quantum-Data Transmission
Zwerger, M.; Pirker, A.; Dunjko, V.; Briegel, H. J.; Dür, W.
2018-01-01
We introduce an alternative type of quantum repeater for long-range quantum communication with improved scaling with the distance. We show that by employing hashing, a deterministic entanglement distillation protocol with one-way communication, one obtains a scalable scheme that allows one to reach arbitrary distances, with constant overhead in resources per repeater station, and ultrahigh rates. In practical terms, we show that, also with moderate resources of a few hundred qubits at each repeater station, one can reach intercontinental distances. At the same time, a measurement-based implementation allows one to tolerate high loss but also operational and memory errors of the order of several percent per qubit. This opens the way for long-distance communication of big quantum data.
Pad A treatability study long-range project plan
International Nuclear Information System (INIS)
Mousseau, J.D.
1991-06-01
This plan addresses the work to be accomplished by the Pad A Treatability Study Project. The purpose of this project is to investigate potential treatment and separation technologies, identify the best technologies, and to demonstrate by both lab- and pilot-scale demonstration, the most applicable remedial technologies for treating plutonium-contaminated salts at the Pad A site located at the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) a the Idaho National Engineering Laboratory (INEL). The conduct of this project will be supported by other DOE laboratories, universities, and private industries, who will provide support for near-term demonstrations of treatment and separation technologies. The purpose of this long-range planning document is to present the detailed plan for the implementation of the Pad A Treatability Study Project
Challenges in miniaturized automotive long-range lidar system design
Fersch, Thomas; Weigel, Robert; Koelpin, Alexander
2017-05-01
This paper discusses the current technical limitations posed on endeavors to miniaturize lidar systems for use in automotive applications and how to possibly extend those limits. The focus is set on long-range scanning direct time of flight LiDAR systems using APD photodetectors. Miniaturization evokes severe problems in ensuring absolute laser safety while maintaining the systems' performance in terms of maximum range, signal-to-noise ratio, detection probability, pixel density, or frame rate. Based on hypothetical but realistic specifications for an exemplary system the complete lidar signal path is calculated. The maximum range of the system is used as a general performance indicator. It is determined with the minimum signal-to-noise ratio required to detect an object. Various system parameters are varied to find their impact on the system's range. The reduction of the laser's pulse width and the right choice for the transimpedance amplifier's amplification have shown to be practicable measures to double the system's range.
Long-range outlook of energy demands and supplies
International Nuclear Information System (INIS)
1984-01-01
An interim report on the long-range outlook of energy demands and supplies in Japan as prepared by an ad hoc committee, Advisory Committee for Energy was given for the period up to the year 2000. As the energy demands in terms of crude oil, the following figures are set: 460 million kl for 1990, 530 million kl for 1995, and 600 million kl for 2000. In Japan, without domestic energy resources, over 80% of the primary energy has been imported; the reliance on Middle East where political situation is unstable, for petroleum is very large. The following things are described. Background and policy; energy demands in industries, transports, and people's livelihood; energy supplies by coal, nuclear energy, petroleum, etc.; energy demand/supply outlook for 2000. (Mori, K.)
Short, intermediate and long range order in amorphous ices
Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto
Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.
Sensor Control And Film Annotation For Long Range, Standoff Reconnaissance
Schmidt, Thomas G.; Peters, Owen L.; Post, Lawrence H.
1984-12-01
This paper describes a Reconnaissance Data Annotation System that incorporates off-the-shelf technology and system designs providing a high degree of adaptability and interoperability to satisfy future reconnaissance data requirements. The history of data annotation for reconnaissance is reviewed in order to provide the base from which future developments can be assessed and technical risks minimized. The system described will accommodate new developments in recording head assemblies and the incorporation of advanced cameras of both the film and electro-optical type. Use of microprocessor control and digital bus inter-face form the central design philosophy. For long range, high altitude, standoff missions, the Data Annotation System computes the projected latitude and longitude of central target position from aircraft position and attitude. This complements the use of longer ranges and high altitudes for reconnaissance missions.
Long-range interactions in antiferromagnetic quantum spin chains
Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.
2017-08-01
We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.
Radiation protection criteria in the long-range view
International Nuclear Information System (INIS)
Snihs, J.O.; Bergman, C.
1989-01-01
The report presents by way of introduction radiation protection criteria applied to radiological activities and to disposal of low-level and intermediate-level radioactive waste. In these cases it is primarily short-range views that are relevant, up to a few thousand years as a maximum. In the case of high-level wastes where the views may extend to more than hundreds of thousands years, there are not for the present any equally well stablished criteria. Based upon preliminary results from a Nordic team for criteria for high-level radioactive wastes, dose estimates in the long-range view and alternative assessment criteria are discussed. Proposals are also presented for 12 criteria that may be applicable. As the work is not yet finshed, the criteria are however merely preliminary
On the origin of long-range correlations in texts.
Altmann, Eduardo G; Cristadoro, Giampaolo; Esposti, Mirko Degli
2012-07-17
The complexity of human interactions with social and natural phenomena is mirrored in the way we describe our experiences through natural language. In order to retain and convey such a high dimensional information, the statistical properties of our linguistic output has to be highly correlated in time. An example are the robust observations, still largely not understood, of correlations on arbitrary long scales in literary texts. In this paper we explain how long-range correlations flow from highly structured linguistic levels down to the building blocks of a text (words, letters, etc..). By combining calculations and data analysis we show that correlations take form of a bursty sequence of events once we approach the semantically relevant topics of the text. The mechanisms we identify are fairly general and can be equally applied to other hierarchical settings.
Percolation technique for galaxy clustering
Klypin, Anatoly; Shandarin, Sergei F.
1993-01-01
We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.
Group percolation in interdependent networks
Wang, Zexun; Zhou, Dong; Hu, Yanqing
2018-03-01
In many real network systems, nodes usually cooperate with each other and form groups to enhance their robustness to risks. This motivates us to study an alternative type of percolation, group percolation, in interdependent networks under attack. In this model, nodes belonging to the same group survive or fail together. We develop a theoretical framework for this group percolation and find that the formation of groups can improve the resilience of interdependent networks significantly. However, the percolation transition is always of first order, regardless of the distribution of group sizes. As an application, we map the interdependent networks with intersimilarity structures, which have attracted much attention recently, onto the group percolation and confirm the nonexistence of continuous phase transitions.
Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain
2013-12-01
This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. © 2013 European Sleep Research Society.
Effective quantum theories with short- and long-range forces
International Nuclear Information System (INIS)
Koenig, Sebastian
2013-01-01
At low energies, nonrelativistic quantum systems are essentially governed by their wave functions at large distances. For this reason, it is possible to describe a wide range of phenomena with short- or even finite-range interactions. In this thesis, we discuss several topics in connection with such an effective description and consider, in particular, modifications introduced by the presence of additional long-range potentials. In the first part we derive general results for the mass (binding energy) shift of bound states with angular momentum L ≥ 1 in a periodic cubic box in two and three spatial dimensions. Our results have applications to lattice simulations of hadronic molecules, halo nuclei, and Feshbach molecules. The sign of the mass shift can be related to the symmetry properties of the state under consideration. We verify our analytical results with explicit numerical calculations. Moreover, we discuss the case of twisted boundary conditions that arise when one considers moving bound states in finite boxes. The corresponding finite-volume shifts in the binding energies play an important role in the study of composite-particle scattering on the lattice, where they give rise to topological correction factors. While the above results are derived under the assumption of a pure finite-range interaction - and are still true up to exponentially small correction in the short-range case - in the second part we consider primarily systems of charged particles, where the Coulomb force determines the long-range part of the potential. In quantum systems with short-range interactions, causality imposes nontrivial constraints on low-energy scattering parameters. We investigate these causality constraints for systems where a long-range Coulomb potential is present in addition to a short-range interaction. The main result is an upper bound for the Coulomb-modified effective range parameter. We discuss the implications of this bound to the effective feld theory (EFT) for
Scala, Antonio
2015-03-01
We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.
International Nuclear Information System (INIS)
1992-01-01
This eighth volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the ninth session of the Executive Body held at Geneva from 18 to 22 November 1991. Part one is the Annual Review of Strategies and Policies for Air Pollution Abatement. Part two describes the critical load concept and the role of the best available technology and other approaches in air pollution abatement strategies. The report analyses the aim, elements and examples of the use of the receptor-oriented or effect-based critical load approach. It also evaluates the role of the source-oriented or technology-based approach as a supplement, rather than an alternative, to the critical load approach. The report contains a table with examples of national target loads for acidity or sulphur as well as preliminary European maps of critical loads of actual acidity, sulphur, present load computation of sulphur and the exceedance of the critical load of sulphur. Part three is an executive summary of the 1990 Forest Damage Survey in Europe, carried out under the International Co-operative Programme for Assessment and Monitoring of Air Pollution Effects on Forests. Part four is an executive summary of the interim report on cause/effect relationships in forest decline. Part five reviews recent research results on effects of acid deposition on atmospheric corrosion of materials
Long-range alpha detection applied to soil surface monitoring
International Nuclear Information System (INIS)
Caress, R.W.; Allander, K.S.; Bounds, J.A.; Catlett, M.M.; MacArthur, D.W.; Rutherford, D.A.
1992-01-01
The long-range alpha detection (LRAD) technique depends on the detection of ion pairs generated by alpha particles losing energy in air rather than on detection of the alpha particles themselves. Typical alpha particles generated by uranium will travel less than 3 cm in air. In contrast, the ions have been successfully detected many inches or feet away from the contamination. Since LRAD detection systems are sensitive to all ions simultaneously, large LRAD soil surface monitors (SSMS) can be used to collect all of the ions from a large sample. The LRAD SSMs are designed around the fan-less LRAD detector. In this case a five-sided box with an open bottom is placed on the soil surface. Ions generated by alpha decays on the soil surface are collected on a charged copper plate within the box. These ions create a small current from the plate to ground which is monitored with a sensitive electrometer. The current measured is proportional to the number of ions in the box, which is, in turn, proportional to the amount of alpha contamination on the surface of the soil. This report includes the design and construction of a 1-m by 1-m SSM as well as the results of a study at Fernald, OH, as part of the Uranium in Soils Integrated Demonstration
Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.
Directory of Open Access Journals (Sweden)
Benjamin R Jack
2016-05-01
Full Text Available Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.
ORNL long-range environmental and waste management plan
International Nuclear Information System (INIS)
Baldwin, J.S.; Bates, L.D.; Brown, C.H.; Easterday, C.A.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Payne, T.L.; Pepper, C.E.; Robinson, S.M.; Rohwer, P.S.; Scanlan, T.F.; Smith, M.A.; Stratton, L.E.; Trabalka, J.R.
1989-09-01
This report, the ORNL Long-Range Environmental and Waste Management Plan, is the annual update in a series begun in fiscal year 1985. Its primary purpose is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The document also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document; it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. As with any document of this nature, the near-term (one to three years) part of the plan is a pragmatic assessment of the current program and ongoing capital projects and reflects the efforts perceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. 55 figs., 72 tabs
Long-range transport and deposition of sulfur in Asia
International Nuclear Information System (INIS)
Arndt, R.L.; Carmichael, G.R.
1995-01-01
The long range transport of sulfur in Asia is analyzed through the use of a multi-dimensional acid deposition model. The air quality of this region is heavily influenced by the combination of Asia's growing population, its expanding economy, and the associated systems of energy consumption and production. These factors combined with a shift to using indigenous coal as the primary fuel source for the region, will result in increased emissions of pollutants into the environment. By the year 2020 sulfur emissions from Asia are projected to exceed the combined emissions from Europe and North America. The authors have estimated sulfur deposition in Asia on a one-by-one degree spatial resolution in the region from Pakistan to Japan and from Indonesia to Mongolia using a 3-layer Lagrangian model. Deposition in excess of 10 g S/m 2 is predicted in south-central China. The relationship between emission source and receptor has been developed into a deposition matrix and examples of the source-receptor relationship are presented. 11 refs., 2 figs., 2 tabs
Measured long-range repulsive Casimir–Lifshitz forces
Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian
2014-01-01
Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843
Measured long-range repulsive Casimir-Lifshitz forces.
Munday, J N; Capasso, Federico; Parsegian, V Adrian
2009-01-08
Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.
ORNL long-range environmental and waste management plan
Energy Technology Data Exchange (ETDEWEB)
Baldwin, J.S.; Bates, L.D.; Brown, C.H.; Easterday, C.A.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Payne, T.L.; Pepper, C.E.; Robinson, S.M.; Rohwer, P.S.; Scanlan, T.F.; Smith, M.A.; Stratton, L.E.; Trabalka, J.R.
1989-09-01
This report, the ORNL Long-Range Environmental and Waste Management Plan, is the annual update in a series begun in fiscal year 1985. Its primary purpose is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The document also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document; it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. As with any document of this nature, the near-term (one to three years) part of the plan is a pragmatic assessment of the current program and ongoing capital projects and reflects the efforts perceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. 55 figs., 72 tabs.
Long-range goal setting in the nuclear utility industry
International Nuclear Information System (INIS)
Beard, P.M.
1986-01-01
The Institute of Nuclear Power Operation's (INPO's) programs support the industry's efforts to improve performance in nuclear plant safety and reliability. The success of these programs can best be measured by the progress of the industry. As utilities focused their attention on nuclear plant performance, the Institute's goal was to make sure its programs and activities provided the best possible support for these efforts. INPO continues to coordinate an industry-wide plant performance indicator program to assist member utilities in assessing station performance. Closely related to this effort is the nuclear industry's establishment of long-range plant performance goals. The US nuclear utility industry currently sends INPO quarterly data on 28 key performance indicators. INPO analyzes these data and provides periodic reports to its members and participants. Selected highlights of INPO's Performance Indicators for the US Nuclear Utility, dated June 1986, are discussed. Throughout 1985, INPO interacted with members, participants, and three external ad hoc review groups to refine the overall performance indicators and to develop background for each unit. By April 1986, each utility had developed long-term goals for each unit. By April 1986, each utility had developed long-term goals for most of the overall indicators. These goals represent a commitment to achievement of excellence when applied to the day-to-day conduct of plant operations, and provide a framework for action
Examples and applications in long-range ocean acoustics
International Nuclear Information System (INIS)
Vera, M D
2007-01-01
Acoustic energy propagates effectively to long ranges in the ocean interior because of the physical properties of the marine environment. Sound propagation in the ocean is relevant to a variety of studies in communication, climatology and marine biology. Examples drawn from ocean acoustics, therefore, are compelling to students with a variety of interests. The dependence of sound speed on depth results in a waveguide that permits the detection of acoustic energy at ranges, in some experiments, of thousands of kilometres. This effect serves as an illustration of Snell's law with a continuously variable index of refraction. Acoustic tomography also offers a means for imaging the ocean's thermal structure, because of the dependence of sound speed on temperature. The ability to perform acoustic thermometry for large transects of the ocean provides an effective means of studying climate change. This application in an area of substantial popular attention allows for an effective introduction to concepts in ray propagation. Aspects of computational ocean acoustics can be productive classroom examples in courses ranging from introductory physics to upper-division mathematical methods courses
Individual differences in long-range time representation.
Agostino, Camila S; Caetano, Marcelo S; Balci, Fuat; Claessens, Peter M E; Zana, Yossi
2017-04-01
On the basis of experimental data, long-range time representation has been proposed to follow a highly compressed power function, which has been hypothesized to explain the time inconsistency found in financial discount rate preferences. The aim of this study was to evaluate how well linear and power function models explain empirical data from individual participants tested in different procedural settings. The line paradigm was used in five different procedural variations with 35 adult participants. Data aggregated over the participants showed that fitted linear functions explained more than 98% of the variance in all procedures. A linear regression fit also outperformed a power model fit for the aggregated data. An individual-participant-based analysis showed better fits of a linear model to the data of 14 participants; better fits of a power function with an exponent β > 1 to the data of 12 participants; and better fits of a power function with β discount rates in intertemporal choice to the compressed nature of subjective time must entail the characterization of subjective time on an individual-participant basis.
Research on long-range grating interferometry with nanometer resolution
International Nuclear Information System (INIS)
Chu, Xingchun; Zhao, Shanghong; Lü, Haibao
2008-01-01
Grating interferometry that features long range and nanometer resolution is presented. The optical system was established based on a single long metrology grating. The large fringe multiplication was achieved by properly selecting two high-order diffraction beams to form a fringe pattern. The fringe pattern collected by a linear array was first tailored to a few multiples of fringes in order to suppress the effect of the energy leakage on phase-extracting precision when the fast Fourier transform (FFT) algorithm was used to calculate its phase. Thus, the phase-extracting precision of a tailored fringe pattern by FFT was greatly improved. Based on this, a novel subdividing method, which exploited the time-shift property of FFT, was developed to subdivide the fringe with large multiple and high accuracy. Numerical results show that the system resolution reaches 1 nm. The experimental results obtained against a capacitive sensor in the sub-mm range show that the measurement precision of the system is less than 10 nm. (technical design note)
Nonequilibrium statistical mechanics of systems with long-range interactions
Energy Technology Data Exchange (ETDEWEB)
Levin, Yan, E-mail: levin@if.ufrgs.br; Pakter, Renato, E-mail: pakter@if.ufrgs.br; Rizzato, Felipe B., E-mail: rizzato@if.ufrgs.br; Teles, Tarcísio N., E-mail: tarcisio.teles@fi.infn.it; Benetti, Fernanda P.C., E-mail: fbenetti@if.ufrgs.br
2014-02-01
Systems with long-range (LR) forces, for which the interaction potential decays with the interparticle distance with an exponent smaller than the dimensionality of the embedding space, remain an outstanding challenge to statistical physics. The internal energy of such systems lacks extensivity and additivity. Although the extensivity can be restored by scaling the interaction potential with the number of particles, the non-additivity still remains. Lack of additivity leads to inequivalence of statistical ensembles. Before relaxing to thermodynamic equilibrium, isolated systems with LR forces become trapped in out-of-equilibrium quasi-stationary states (qSSs), the lifetime of which diverges with the number of particles. Therefore, in the thermodynamic limit LR systems will not relax to equilibrium. The qSSs are attained through the process of collisionless relaxation. Density oscillations lead to particle–wave interactions and excitation of parametric resonances. The resonant particles escape from the main cluster to form a tenuous halo. Simultaneously, this cools down the core of the distribution and dampens out the oscillations. When all the oscillations die out the ergodicity is broken and a qSS is born. In this report, we will review a theory which allows us to quantitatively predict the particle distribution in the qSS. The theory is applied to various LR interacting systems, ranging from plasmas to self-gravitating clusters and kinetic spin models.
Los Alamos Scientific Laboratory long-range alarm system
International Nuclear Information System (INIS)
DesJardin, R.; Machanik, J.
1980-01-01
The Los Alamos Scientific Laboratory (LASL) Long-Range Alarm System is described. The last few years have brought significant changes in the Department of Energy regulations for protection of classified documents and special nuclear material. These changes in regulations have forced a complete redesign of the LASL security alarm system. LASL covers many square miles of varying terrain and consists of separate technical areas connected by public roads and communications. A design study over a period of 2 years produced functional specifications for a distributed intelligence, expandable alarm system that will handle 30,000 alarm points from hundreds of data concentrators spread over a 250-km 2 area. Emphasis in the design was on nonstop operation, data security, data communication, and upward expandability to incorporate fire alarms and the computer-aided dispatching of security and fire vehicles. All aspects of the alarm system were to be fault tolerant from the central computer system down to but not including the individual data concentrators. Redundant communications lines travel over public domain from the alarmed area to the central alarm station
Long-range epidemic spreading in a random environment.
Juhász, Róbert; Kovács, István A; Iglói, Ferenc
2015-03-01
Modeling long-range epidemic spreading in a random environment, we consider a quenched, disordered, d-dimensional contact process with infection rates decaying with distance as 1/rd+σ. We study the dynamical behavior of the model at and below the epidemic threshold by a variant of the strong-disorder renormalization-group method and by Monte Carlo simulations in one and two spatial dimensions. Starting from a single infected site, the average survival probability is found to decay as P(t)∼t-d/z up to multiplicative logarithmic corrections. Below the epidemic threshold, a Griffiths phase emerges, where the dynamical exponent z varies continuously with the control parameter and tends to zc=d+σ as the threshold is approached. At the threshold, the spatial extension of the infected cluster (in surviving trials) is found to grow as R(t)∼t1/zc with a multiplicative logarithmic correction and the average number of infected sites in surviving trials is found to increase as Ns(t)∼(lnt)χ with χ=2 in one dimension.
Boundary layer parameterizations and long-range transport
International Nuclear Information System (INIS)
Irwin, J.S.
1992-01-01
A joint work group between the American Meteorological Society (AMS) and the EPA is perusing the construction of an air quality model that incorporates boundary layer parameterizations of dispersion and transport. This model could replace the currently accepted model, the Industrial Source Complex (ISC) model. The ISC model is a Gaussian-plume multiple point-source model that provides for consideration of fugitive emissions, aerodynamic wake effects, gravitational settling and dry deposition. A work group of several Federal and State agencies is perusing the construction of an air quality modeling system for use in assessing and tracking visibility impairment resulting from long-range transport of pollutants. The modeling system is designed to use the hourly vertical profiles of wind, temperature and moisture resulting from a mesoscale meteorological processor that employs four dimensional data assimilation (FDDA). FDDA involves adding forcing functions to the governing model equations to gradually ''nudge'' the model state toward the observations (12-hourly upper air observations of wind, temperature and moisture, and 3-hourly surface observations of wind and moisture). In this way it is possible to generate data sets whose accuracy, in terms of transport, precipitation, and dynamic consistency is superior to both direct interpolation of synoptic-scale analyses of observations and purely predictive mode model result. (AB) ( 19 refs.)
Two general models that generate long range correlation
Gan, Xiaocong; Han, Zhangang
2012-06-01
In this paper we study two models that generate sequences with LRC (long range correlation). For the IFT (inverse Fourier transform) model, our conclusion is the low frequency part leads to LRC, while the high frequency part tends to eliminate it. Therefore, a typical method to generate a sequence with LRC is multiplying the spectrum of a white noise sequence by a decaying function. A special case is analyzed: the linear combination of a smooth curve and a white noise sequence, in which the DFA plot consists of two line segments. For the patch model, our conclusion is long subsequences leads to LRC, while short subsequences tend to eliminate it. Therefore, we can generate a sequence with LRC by using a fat-tailed PDF (probability distribution function) of the length of the subsequences. A special case is also analyzed: if a patch model with long subsequences is mixed with a white noise sequence, the DFA plot will consist of two line segments. We have checked known models and actual data, and found they are all consistent with this study.
Long-range interaction between heterogeneously charged membranes.
Jho, Y S; Brewster, R; Safran, S A; Pincus, P A
2011-04-19
Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society
Epidemic spreading in networks with nonrandom long-range interactions
Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba
2011-09-01
An “infection,” understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both “close” contacts and “casual” encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called “conductance” controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.
Epidemic spreading in networks with nonrandom long-range interactions.
Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba
2011-09-01
An "infection," understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both "close" contacts and "casual" encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called "conductance" controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.
Autonomous long-range open area fire detection and reporting
Engelhaupt, Darell E.; Reardon, Patrick J.; Blackwell, Lisa; Warden, Lance; Ramsey, Brian D.
2005-03-01
Approximately 5 billion dollars in US revenue was lost in 2003 due to open area fires. In addition many lives are lost annually. Early detection of open area fires is typically performed by manned observatories, random reporting and aerial surveillance. Optical IR flame detectors have been developed previously. They typically have experienced high false alarms and low flame detection sensitivity due to interference from solar and other causes. Recently a combination of IR detectors has been used in a two or three color mode to reduce false alarms from solar, or background sources. A combination of ultra-violet C (UVC) and near infra-red (NIR) detectors has also been developed recently for flame discrimination. Relatively solar-blind basic detectors are now available but typically detect at only a few tens of meters at ~ 1 square meter fuel flame. We quantify the range and solar issues for IR and visible detectors and qualitatively define UV sensor requirements in terms of the mode of operation, collection area issues and flame signal output by combustion photochemistry. We describe innovative flame signal collection optics for multiple wavelengths using UV and IR as low false alarm detection of open area fires at long range (8-10 km/m2) in daylight (or darkness). A circular array detector and UV-IR reflective and refractive devices including cylindrical or toroidal lens elements for the IR are described. The dispersion in a refractive cylindrical IR lens characterizes the fire and allows a stationary line or circle generator to locate the direction and different flame IR "colors" from a wide FOV. The line generator will produce spots along the line corresponding to the fire which can be discriminated with a linear detector. We demonstrate prototype autonomous sensors with RF digital reporting from various sites.
Percolation with multiple giant clusters
International Nuclear Information System (INIS)
Ben-Naim, E; Krapivsky, P L
2005-01-01
We study mean-field percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ('gels') formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F k , of frozen clusters of size k, has a universal tail, F k ∼ k -3 . We propose freezing as a practical mechanism for controlling the gel size. (letter to the editor)
Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections
van Enter, Aernout C. D.; Hulshof, Tim
In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections
Enter, van A.C.D.; Hulshof, T.
2007-01-01
In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
The selected models of the mesostructure of composites percolation, clusters, and force fields
Herega, Alexander
2018-01-01
This book presents the role of mesostructure on the properties of composite materials. A complex percolation model is developed for the material structure containing percolation clusters of phases and interior boundaries. Modeling of technological cracks and the percolation in the Sierpinski carpet are described. The interaction of mesoscopic interior boundaries of the material, including the fractal nature of interior boundaries, the oscillatory nature of it interaction and also the stochastic model of the interior boundaries’ interaction, the genesis, structure, and properties are discussed. One of part of the book introduces the percolation model of the long-range effect which is based on the notion on the multifractal clusters with transforming elements, and the theorem on the field interaction of multifractals is described. In addition small clusters, their characteristic properties and the criterion of stability are presented.
Target-Searching on Percolation
International Nuclear Information System (INIS)
Yang Shijie
2005-01-01
We study target-searching processes on a percolation, on which a hunter tracks a target by smelling odors it emits. The odor intensity is supposed to be inversely proportional to the distance it propagates. The Monte Carlo simulation is performed on a 2-dimensional bond-percolation above the threshold. Having no idea of the location of the target, the hunter determines its moves only by random attempts in each direction. For lager percolation connectivity p ∼> 0.90, it reveals a scaling law for the searching time versus the distance to the position of the target. The scaling exponent is dependent on the sensitivity of the hunter. For smaller p, the scaling law is broken and the probability of finding out the target significantly reduces. The hunter seems trapped in the cluster of the percolation and can hardly reach the goal.
Signature of Thermal Rigidity Percolation
International Nuclear Information System (INIS)
Huerta, Adrián
2013-01-01
To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter
Percolation in real multiplex networks
Bianconi, Ginestra; Radicchi, Filippo
2016-12-01
We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.
Evaluation of long-range transport models in NOVANA
International Nuclear Information System (INIS)
Frohn, L.M.; Brandt, J.; Christensen, J.H.; Geels, C.; Hertel, O.; Skjoeth, C.A.; Ellemann, T.
2007-01-01
as good as the performance of the ACDEP model, and for the majority of the chemical parameters the performance of DEHM is better than the performance of ACDEP when model results are compared to measurements. This result is expected since the description of the long-range transport of air pollution, which contributes significantly to the concentration levels in Denmark, is better in DEHM. (BA)
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
2006 Long Range Development Plan Final Environmental ImpactReport
Energy Technology Data Exchange (ETDEWEB)
Philliber, Jeff
2007-01-22
This environmental impact report (EIR) has been prepared pursuant to the applicable provisions of the California Environmental Quality Act (CEQA) and its implementing guidelines (CEQA Guidelines), and the Amended University of California Procedures for Implementation of the California Environmental Quality Act (UC CEQA Procedures). The University of California (UC or the University) is the lead agency for this EIR, which examines the overall effects of implementation of the proposed 2006 Long Range Development Plan (LRDP; also referred to herein as the 'project' for purposes of CEQA) for Lawrence Berkeley National Laboratory (LBNL; also referred to as 'Berkeley Lab,' 'the Laboratory,' or 'the Lab' in this document). An LRDP is a land use plan that guides overall development of a site. The Lab serves as a special research campus operated by the University employees, but it is owned and financed by the federal government and as such it is distinct from the UC-owned Berkeley Campus. As a campus operated by the University of California, the Laboratory is required to prepare an EIR for an LRDP when one is prepared or updated pursuant to Public Resources Code Section 21080.09. The adoption of an LRDP does not constitute a commitment to, or final decision to implement, any specific project, construction schedule, or funding priority. Rather, the proposed 2006 LRDP describes an entire development program of approximately 980,000 gross square feet of new research and support space construction and 320,000 gross square feet of demolition of existing facilities, for a total of approximately 660,000 gross square feet of net new occupiable space for the site through 2025. Specific projects will undergo CEQA review at the time proposed to determine what, if any, additional review is necessary prior to approval. As described in Section 1.4.2, below, and in Chapter 3 of this EIR (the Project Description), the size of the project has been
Jen, H. R.; Ma, K. Y.; Stringfellow, G. B.
1989-03-01
Results are presented of transmission electron diffraction (TED) observations, demonstrating, for the first time, a CuPt-type ordering in InAs(1-x)Sb(x) alloys, over a wide range of x values (from x = 0.22 to 0.88). The InAsSb alloys were prepared by OMVPE on (001) oriented undoped InSb or InAs substrates. The ordering-induced spots on the TED patterns show the highest intensity for x of about 0.5 and the lowest intensity toward each binary end compound. Only two of the four variants are formed during growth. In some areas, the degree of order for these two variants, 1/2(-1 1 1) and 1/2(1 -1 1), is equal, and in other areas, one variant dominates.
Herega, Alexander; Sukhanov, Volodymyr; Vyrovoy, Valery
2017-12-01
It is known that the multifocal mechanism of genesis of structure of heterogeneous materials provokes intensive formation of internal boundaries. In the present papers, the dependence of the structure and properties of material on the characteristic size and shape, the number and size distribution, and the character of interaction of individual internal boundaries and their clusters is studied. The limitation on the applicability of the material damage coefficient is established; the effective information descriptor of internal boundaries is proposed. An idea of the effect of long-range interaction in irradiated solids on the realization of the second-order phase transition is introduced; a phenomenological percolation model of the effect is proposed.
Size and Origins of Long-Range Orientational Water Correlations in Dilute Aqueous Salt Solutions
Czech Academy of Sciences Publication Activity Database
Pluhařová, Eva; Laage, D.; Jungwirth, Pavel
2017-01-01
Roč. 8, č. 9 (2017), s. 2031-2035 ISSN 1948-7185 R&D Projects: GA ČR GJ17-01982Y; GA ČR(CZ) GBP208/12/G016 Grant - others:AVČR PPPLZ(CZ) L2004011651 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : molecular dynamics * hydrogen bonds * ionic strength Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.353, year: 2016
Anisotropic Percolation Analysis of Discharge
Matsumoto, Shogo; Odagaki, Takashi
2014-03-01
Exploiting a nonlinear resistor network on a square lattice in two dimensions, we investigate discharge when two opposite sides of the lattice are subjected to a constant voltage difference. Each site is ionized randomly with a probability in proportion to the square of the strength of the electric field, and the resistivity between two ionized sites is assumed to be 10-6 times smaller than the original resistivity. Using Monte Carlo simulation, we obtain the current and distribution of clusters of ionized sites as functions of the fraction of ionized sites. It is found that a wall of potential drop is formed as the fraction approaches a critical value, which is followed by discharge. The critical value is much smaller than the critical percolation probability of the standard site percolation on the square lattice. We also find that a singular behavior of the cluster distribution is expected at a critical fraction differently from that for the current, and that the critical exponents characterizing the cluster distribution satisfy the scaling relation known for two-dimensional percolation, while the critical exponent of the percolation probability is close to the value reported for a directed percolation.
25 CFR 170.410 - What is the purpose of tribal long-range transportation planning?
2010-04-01
... Program Facilities Long-Range Transportation Planning § 170.410 What is the purpose of tribal long-range... 25 Indians 1 2010-04-01 2010-04-01 false What is the purpose of tribal long-range transportation planning? 170.410 Section 170.410 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND...
Percolation Magnetism in Ferroelectric Nanoparticles
Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.
2017-06-01
Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.
Percolation Magnetism in Ferroelectric Nanoparticles.
Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N
2017-12-01
Nanoparticles of potassium tantalate (KTaO 3 ) and potassium niobate (KNbO 3 ) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe 3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.
Percolation, statistical topography, and transport in random media
International Nuclear Information System (INIS)
Isichenko, M.B.
1992-01-01
A review of classical percolation theory is presented, with an emphasis on novel applications to statistical topography, turbulent diffusion, and heterogeneous media. Statistical topography involves the geometrical properties of the isosets (contour lines or surfaces) of a random potential ψ(x). For rapidly decaying correlations of ψ, the isopotentials fall into the same universality class as the perimeters of percolation clusters. The topography of long-range correlated potentials involves many length scales and is associated either with the correlated percolation problem or with Mandelbrot's fractional Brownian reliefs. In all cases, the concept of fractal dimension is particularly fruitful in characterizing the geometry of random fields. The physical applications of statistical topography include diffusion in random velocity fields, heat and particle transport in turbulent plasmas, quantum Hall effect, magnetoresistance in inhomogeneous conductors with the classical Hall effect, and many others where random isopotentials are relevant. A geometrical approach to studying transport in random media, which captures essential qualitative features of the described phenomena, is advocated
Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.
2017-09-01
The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.
Percolation and spin glass transition
International Nuclear Information System (INIS)
Sadiq, A.; Tahir-Kheli, R.A.; Wortis, M.; Bhatti, N.A.
1980-10-01
The behaviour of clusters of curved and normal plaquette particles in a bond random, +-J, Ising model is studied in finite square and triangular lattices. Computer results for the concentration of antiferromagnetic bonds when percolating clusters first appears are found to be close to those reported for the occurrence and disappearance of spin glass phases in these systems. (author)
Percolation transitions in two dimensions
Feng, X.; Deng, Y.; Blöte, H.W.J.
2008-01-01
We investigate bond- and site-percolation models on several two-dimensional lattices numerically, by means of transfer-matrix calculations and Monte Carlo simulations. The lattices include the square, triangular, honeycomb kagome, and diced lattices with nearest-neighbor bonds, and the square
Percolation and multifragmentation of nuclei
International Nuclear Information System (INIS)
Shmakov, S.Yu.; Uzhinskij, V.V.
1989-01-01
A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs
Percolation Threshold Parameters of Fluids
Czech Academy of Sciences Publication Activity Database
Škvor, J.; Nezbeda, Ivo
2009-01-01
Roč. 79, č. 4 (2009), 041141-041147 ISSN 1539-3755 Institutional research plan: CEZ:AV0Z40720504 Keywords : percolation threshold * universality * infinite cluster Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.400, year: 2009
Geometric structure of percolation clusters.
Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin
2014-01-01
We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).
Long-range beam-beam experiments in the relativistic heavy ion collider
International Nuclear Information System (INIS)
Calaga, R; Fischer, W; Milas, N; Robert-Demolaize, G
2014-01-01
Long-range beam-beam effects are a potential limit to the LHC performance with the nominal design parameters, and certain upgrade scenarios under discussion. To mitigate long-range effects, current carrying wires parallel to the beam were proposed and space is reserved in the LHC for such wires. Two current carrying wires were installed in RHIC to study the effect of strong long-range beam-beam effects in a collider, as well as test the compensation of a single long-range interaction. The experimental data were used to benchmark simulations. We summarize this work
Processor for Real-Time Atmospheric Compensation in Long-Range Imaging, Phase II
National Aeronautics and Space Administration — Long-range imaging is a critical component to many NASA applications including range surveillance, launch tracking, and astronomical observation. However,...
Long-range terrain characterization for productive regolith excavation, Phase I
National Aeronautics and Space Administration — The proposed research will develop long-range terrain characterization technologies for autonomous excavation in planetary environments. This work will develop a...
The case for infrasound as the long-range map cue in avian navigation
Hagstrum, J.T.
2007-01-01
Of the various 'map' and 'compass' components of Kramer's avian navigational model, the long-range map component is the least well understood. In this paper atmospheric infrasounds are proposed as the elusive longrange cues constituting the avian navigational map. Although infrasounds were considered a viable candidate for the avian map in the 1970s, and pigeons in the laboratory were found to detect sounds at surprisingly low frequencies (0.05 Hz), other tests appeared to support either of the currently favored olfactory or magnetic maps. Neither of these hypotheses, however, is able to explain the full set of observations, and the field has been at an impasse for several decades. To begin, brief descriptions of infrasonic waves and their passage through the atmosphere are given, followed by accounts of previously unexplained release results. These examples include 'release-site biases' which are deviations of departing pigeons from the homeward bearing, an annual variation in homing performance observed only in Europe, difficulties orienting over lakes and above temperature inversions, and the mysterious disruption of several pigeon races. All of these irregularities can be consistently explained by the deflection or masking of infrasonic cues by atmospheric conditions or by other infrasonic sources (microbaroms, sonic booms), respectively. A source of continuous geographic infrasound generated by atmosphere-coupled microseisms is also proposed. In conclusion, several suggestions are made toward resolving some of the conflicting experimental data with the pigeons' possible use of infrasonic cues.
Controlling percolation with limited resources
Schröder, Malte; Araújo, Nuno A. M.; Sornette, Didier; Nagler, Jan
2017-12-01
Connectivity, or the lack thereof, is crucial for the function of many man-made systems, from financial and economic networks over epidemic spreading in social networks to technical infrastructure. Often, connections are deliberately established or removed to induce, maintain, or destroy global connectivity. Thus, there has been a great interest in understanding how to control percolation, the transition to large-scale connectivity. Previous work, however, studied control strategies assuming unlimited resources. Here, we depart from this unrealistic assumption and consider the effect of limited resources on the effectiveness of control. We show that, even for scarce resources, percolation can be controlled with an efficient intervention strategy. We derive such an efficient strategy and study its implications, revealing a discontinuous transition as an unintended side effect of optimal control.
International Nuclear Information System (INIS)
Lee, I-Fang; Phan, Thien Q.; Levine, Lyle E.; Tischler, Jonathan Z.; Geantil, Peter T.; Huang, Yi; Langdon, Terence G.; Kassner, Michael E.
2013-01-01
Aluminum alloy 1050 was processed by equal-channel angular pressing (ECAP) using a single pass (equivalent uniaxial strain of about 0.88). Long-range internal stresses (LRISs) were assessed in the grain/subgrain interiors using X-ray microbeam diffraction to measure the spacing of {5 3 1} planes, with normals oriented approximately +27.3°, +4.9° and −17.5° off the pressing (axial) direction. The results are consistent with mechanical analysis that suggests the maximum tensile plastic-strain after one pass is expected for +22.5°, roughly zero along the pressing axis, and maximum compressive strain for the −67.5° direction. The magnitude of the measured maximum compressive long-range internal stress is about 0.13σ a (applied stress) in low-dislocation regions within the grain/subgrain interiors. This work is placed in the context of earlier work where convergent beam electron diffraction was used to analyze LRISs in close proximity to the deformation-induced boundaries. The results are complementary and the measured stresses are consistent with a composite model for long-range internal stresses
Long range order in the ground state of two-dimensional antiferromagnets
International Nuclear Information System (INIS)
Neves, E.J.; Perez, J.F.
1985-01-01
The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt
Martinez-Garcia, Ricardo; Calabrese, Justin M.; Hernandez-Garcia, Emilio; Lopez, Cristobal
2014-05-01
Regular patterns and spatial organization of vegetation have been observed in many arid and semiarid ecosystems worldwide, covering a diverse range of plant taxa and soil types. A key common ingredient in these systems is that plant growth is severely limited by water availability, and thus plants likely compete strongly for water. The study of such patterns is especially interesting because their features may reveal much about the underlying physical and biological processes that generated them in addition to giving information on the characteristics of the ecosystem. It is possible, for instance, to infer their resilience against anthropogenic disturbances or climatic changes that could cause abrupt shifts in the system and lead it to a desert state. Therefore much research has focused on identifying the underlying mechanisms that can produce spatial patterning in water-limited systems (Klausmeier, 1999). They are believed to arise from the interplay between long-range competition and facilitation processes acting at smaller distances (Borgogno et al., 2009). This combination of mechanisms is justified by arguing that water percolates more readily through the soil in vegetated areas (short range), and that plants compete for water resources over greater distances via long lateral roots (long range). However, recent studies have shown that even in the limit of local facilitation patterns may still appear (Martinez-Garcia et al., 2013). In this work (Martinez-Garcia et al., 2013b), we show that, under rather general conditions, long-range competition alone is the minimal ingredient to shape gapped and stripped vegetation patterns typical of models that also account for facilitation in addition to competition. To this end we propose a simple, general model for the dynamics of vegetation, which includes only long-range competition between plants. Competition is introduced through a nonlocal term, where the kernel function quantifies the intensity of the interaction
Strong asymmetry for surface modes in nonlinear lattices with long-range coupling
International Nuclear Information System (INIS)
Martinez, Alejandro J.; Vicencio, Rodrigo A.; Molina, Mario I.
2010-01-01
We analyze the formation of localized surface modes on a nonlinear cubic waveguide array in the presence of exponentially decreasing long-range interactions. We find that the long-range coupling induces a strong asymmetry between the focusing and defocusing cases for the topology of the surface modes and also for the minimum power needed to generate them. In particular, for the defocusing case, there is an upper power threshold for exciting staggered modes, which depends strongly on the long-range coupling strength. The power threshold for dynamical excitation of surface modes increases (decreases) with the strength of long-range coupling for the focusing (defocusing) cases. These effects seem to be generic for discrete lattices with long-range interactions.
A special percolation problem in ceramic composites
International Nuclear Information System (INIS)
Ang Chen; Xi Dai; Yu Zhi; Yahua Bao
1993-11-01
The interface effect is taken into consideration, and a special percolation model is proposed for a two-phases metal/ceramic composite in the present paper. The computer simulation shows that the percolation threshold of this interface-controlled percolation behaviour is 4.5% in the three dimensional f.c.c. lattices, which is in good agreement with the experimental data. (author). 9 refs, 3 figs
Percolation and epidemics in random clustered networks
Miller, Joel C.
2009-08-01
The social networks that infectious diseases spread along are typically clustered. Because of the close relation between percolation and epidemic spread, the behavior of percolation in such networks gives insight into infectious disease dynamics. A number of authors have studied percolation or epidemics in clustered networks, but the networks often contain preferential contacts in high degree nodes. We introduce a class of random clustered networks and a class of random unclustered networks with the same preferential mixing. Percolation in the clustered networks reduces the component sizes and increases the epidemic threshold compared to the unclustered networks.
Attacks and infections in percolation processes
International Nuclear Information System (INIS)
Janssen, Hans-Karl; Stenull, Olaf
2017-01-01
We discuss attacks and infections at propagating fronts of percolation processes based on the extended general epidemic process. The scaling behavior of the number of the attacked and infected sites in the long time limit at the ordinary and tricritical percolation transitions is governed by specific composite operators of the field-theoretic representation of this process. We calculate corresponding critical exponents for tricritical percolation in mean-field theory and for ordinary percolation to 1-loop order. Our results agree well with the available numerical data. (paper)
Directed polymers versus directed percolation
Halpin-Healy, Timothy
1998-10-01
Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.
Spin dynamics on percolating networks
International Nuclear Information System (INIS)
Aeppli, G.; Guggenheim, H.; Uemura, Y.J.
1985-01-01
We have used inelastic neutron scattering to measure the order parameter relaxation rate GAMMA in the dilute, two-dimensional Ising antiferromagnet Rb 2 CoMg/sub 1-c/F 4 with c very close to the magnetic percolation threshold. Where kappa is the inverse magnetic correlation length, GAMMA approx. kappa/sup z/ with z = 2.4/sub -0.1//sup +0.2/. Our results are discussed in terms of current ideas about spin relaxation on fractals. 13 refs., 1 fig
International Nuclear Information System (INIS)
Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien
2005-01-01
Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers
Testing for long-range dependence in the Brazilian term structure of interest rates
International Nuclear Information System (INIS)
Cajueiro, Daniel O.; Tabak, Benjamin M.
2009-01-01
This paper presents empirical evidence of fractional dynamics in interest rates for different maturities for Brazil. A variation of a newly developed test for long-range dependence, the V/S statistic, with a post-blackening bootstrap is employed. Results suggest that Brazilian interest rates possess strong long-range dependence in volatility, even when considering the structural break in 1999. These findings imply that the development of policy models that give rise to long-range dependence in interest rates' volatility could be very useful. The long-short-term interest rates spread has strong long-range dependence, which suggests that traditional tests of expectation hypothesis of the term structure of interest rates may be misspecified.
What moves you Arizona : long-range transportation plan : 2010-2035.
2011-11-01
"What Moves You Arizona is the Arizona Department of Transportations (ADOT) Long-Range Transportation Plan (LRTP). The LRTP, or Plan, defines visionary, yet pragmatic, investment choices Arizona will make over the next 25 years to maintain a...
International Nuclear Information System (INIS)
Kang, To; Kim, Hak Joon; Song, Sung Jin; Cho, Young Do; Lee, Dong Hoon; Cho, Hyun Joon
2009-01-01
Ultrasonic guided waves have been widely utilized for long range inspection of structures. Especially, development of array guided waves techniques and its application for long range gas pipe lines(length of from hundreds meters to few km) were getting increased. In this study, focusing algorithm for array guided waves was developed in order to improve long range inspectability and accuracy of the array guided waves techniques for long range inspection of gas pipes, and performance of the developed techniques was verified by experiments using the developed array guided wave system. As a result, S/N ratio of array guided wave signals obtained with the focusing algorithm was increased higher than that of signals without focusing algorithm
Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations
Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.
2012-01-01
Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).
Long range forward-backward rapidity correlations in proton-proton collisions at LHC
International Nuclear Information System (INIS)
Brogueira, P.; Dias de Deus, J.; Pajares, C.
2009-01-01
We argue that string percolation is in the origin of (i) an approximately flat rapidity distribution and of (ii) an approximately constant forward-backward correlation parameter b over a substantial fraction of the available rapidity. Predictions are given for pp collisions at LHC, √(s)=14 TeV and √(s)=5.5 TeV.
Force-induced unzipping of DNA with long-range correlated sequence
Allahverdyan, A. E.; Gevorkian, Zh. S.
2002-01-01
We consider force-induced unzipping transition for a heterogeneous DNA model with a long-range correlated base-sequence. It is shown that as compared to the uncorrelated situation, long-range correlations smear the unzipping phase-transition, change its universality class and lead to non-self-averaging: the averaged behavior strongly differs from the typical ones. Several basic scenarios for this typical behavior are revealed and explained. The results can be relevant for explaining the biolo...
Long-range dependence in returns and volatility of Central European Stock Indices
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2010-01-01
Roč. 2010, č. 3 (2010), s. 1-19 R&D Projects: GA ČR GD402/09/H045 Institutional research plan: CEZ:AV0Z10750506 Keywords : long-range dependence * rescaled range * modified rescaled range * bootstrapping Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/kristoufek-long-range dependence in returns and volatility of central european stock indices.pdf
A better understanding of long-range temporal dependence of traffic flow time series
Feng, Shuo; Wang, Xingmin; Sun, Haowei; Zhang, Yi; Li, Li
2018-02-01
Long-range temporal dependence is an important research perspective for modelling of traffic flow time series. Various methods have been proposed to depict the long-range temporal dependence, including autocorrelation function analysis, spectral analysis and fractal analysis. However, few researches have studied the daily temporal dependence (i.e. the similarity between different daily traffic flow time series), which can help us better understand the long-range temporal dependence, such as the origin of crossover phenomenon. Moreover, considering both types of dependence contributes to establishing more accurate model and depicting the properties of traffic flow time series. In this paper, we study the properties of daily temporal dependence by simple average method and Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-range temporal dependence exert considerable influence on the traffic flow series. The DFA results reveal that the daily temporal dependence creates crossover phenomenon when estimating the Hurst exponent which depicts the long-range temporal dependence. Furthermore, through the comparison of the DFA test, PCA-based method turns out to be a better method to extract the daily temporal dependence especially when the difference between days is significant.
Khadem, Ali; Hossein-Zadeh, Gholam-Ali; Khorrami, Anahita
2016-03-01
The majority of previous functional/effective connectivity studies conducted on the autistic patients converged to the underconnectivity theory of ASD: "long-range underconnectivity and sometimes short-rang overconnectivity". However, to the best of our knowledge the total (linear and nonlinear) predictive information transfers (PITs) of autistic patients have not been investigated yet. Also, EEG data have rarely been used for exploring the information processing deficits in autistic subjects. This study is aimed at comparing the total (linear and nonlinear) PITs of autistic and typically developing healthy youths during human face processing by using EEG data. The ERPs of 12 autistic youths and 19 age-matched healthy control (HC) subjects were recorded while they were watching upright and inverted human face images. The PITs among EEG channels were quantified using two measures separately: transfer entropy with self-prediction optimality (TESPO), and modified transfer entropy with self-prediction optimality (MTESPO). Afterwards, the directed differential connectivity graphs (dDCGs) were constructed to characterize the significant changes in the estimated PITs of autistic subjects compared with HC ones. By using both TESPO and MTESPO, long-range reduction of PITs of ASD group during face processing was revealed (particularly from frontal channels to right temporal channels). Also, it seemed the orientation of face images (upright or upside down) did not modulate the binary pattern of PIT-based dDCGs, significantly. Moreover, compared with TESPO, the results of MTESPO were more compatible with the underconnectivity theory of ASD in the sense that MTESPO showed no long-range increase in PIT. It is also noteworthy that to the best of our knowledge it is the first time that a version of MTE is applied for patients (here ASD) and it is also its first use for EEG data analysis.
Fragmentation of percolation cluster perimeters
Debierre, Jean-Marc; Bradley, R. Mark
1996-05-01
We introduce a model for the fragmentation of porous random solids under the action of an external agent. In our model, the solid is represented by a bond percolation cluster on the square lattice and bonds are removed only at the external perimeter (or `hull') of the cluster. This model is shown to be related to the self-avoiding walk on the Manhattan lattice and to the disconnection events at a diffusion front. These correspondences are used to predict the leading and the first correction-to-scaling exponents for several quantities defined for hull fragmentation. Our numerical results support these predictions. In addition, the algorithm used to construct the perimeters reveals itself to be a very efficient tool for detecting subtle correlations in the pseudo-random number generator used. We present a quantitative test of two generators which supports recent results reported in more systematic studies.
Energy Technology Data Exchange (ETDEWEB)
Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Wu, Xiuqiang [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ren, Yajie [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)
2015-01-14
We study the supercurrent in clean superconductor-ferromagnet-superconductor heterostructure containing a noncollinear magnetic domain in the ferromagnetic region. It is demonstrated that the magnetic domain can lead to a spin-flip scattering process, which reverses the spin orientations of the singlet Cooper pair and simultaneously changes the sign of the corresponding electronic momentum. If the ferromagnetic layers on both sides of magnetic domain have the same features, the long-range proximity effect will take place. That is because the singlet Cooper pair will create an exact phase-cancellation effect and gets an additional π phase shift as it passes through the entire ferromagnetic region. Then, the equal spin triplet pair only exists in the magnetic domain region and can not diffuse into the other two ferromagnetic layers. So, the supercurrent mostly arises from the singlet Cooper pairs, and the equal spin triplet pairs are not involved. This result can provide a approach for generating the long-range supercurrent.
Long-range transport and global fractionation of POPs: insights from multimedia modeling studies
International Nuclear Information System (INIS)
Scheringer, M.; Salzmann, M.; Stroebe, M.; Wegmann, F.; Fenner, K.; Hungerbuehler, K.
2004-01-01
The long-range transport of persistent organic pollutants (POPs) is investigated with two multimedia box models of the global system. ChemRange is a purely evaluative, one-dimensional steady-state (level III) model; CliMoChem is a two-dimensional model with different temperatures, land/water ratios and vegetation types in different latitudinal zones. Model results are presented for three case studies: (i) the effect of atmospheric aerosol particles on the long-range transport of POPs, (ii) the effect of oceanic deposition on the long-range transport of different PCB congeners, (iii) the global fractionation of different PCB congeners. The model results for these case studies show: (i) the low atmospheric half-lives estimated for several organochlorine pesticides are likely to be inconsistent with the observed long-range transport of these compounds; (ii) export to the deep sea reduces the potential for long-range transport of highly hydrophobic compounds (but does not remove these chemicals from the biosphere); (iii) there are different meanings of the term global fractionation that refer to different aspects of the fractionation process and need to be distinguished. The case-study results further indicate that the influences of varying environmental conditions on the physicochemical properties and the degradation rate constants of POPs need to be determined. - Multimedia box models are applied to case studies of the behavior of POPs
Long-range laser scanning and 3D imaging for the Gneiss quarries survey
Schenker, Filippo Luca; Spataro, Alessio; Pozzoni, Maurizio; Ambrosi, Christian; Cannata, Massimiliano; Günther, Felix; Corboud, Federico
2016-04-01
In Canton Ticino (Southern Switzerland), the exploitation of natural stone, mostly gneisses, is an important activity of valley's economies. Nowadays, these economic activities are menaced by (i) the exploitation costs related to geological phenomena such as fractures, faults and heterogeneous rocks that hinder the processing of the stone product, (ii) continuously changing demand because of the evolving natural stone fashion and (iii) increasing administrative limits and rules acting to protect the environment. Therefore, the sustainable development of the sector for the next decades needs new and effective strategies to regulate and plan the quarries. A fundamental step in this process is the building of a 3D geological model of the quarries to constrain the volume of commercial natural stone and the volume of waste. In this context, we conducted Terrestrial Laser Scanning surveys of the quarries in the Maggia Valley to obtain a detailed 3D topography onto which the geological units were mapped. The topographic 3D model was obtained with a long-range laser scanning Riegl VZ4000 that can measure from up to 4 km of distance with a speed of 147,000 points per second. It operates with the new V-line technology, which defines the surface relief by sensing differentiated signals (echoes), even in the presence of obstacles such as vegetation. Depending on the esthetics of the gneisses, we defined seven types of natural stones that, together with faults and joints, were mapped onto the 3D models of the exploitation sites. According to the orientation of the geological limits and structures, we projected the different rock units and fractures into the excavation front. This way, we obtained a 3D geological model from which we can quantitatively estimate the volume of the seven different natural stones (with different commercial value) and waste (with low commercial value). To verify the 3D geological models and to quantify exploited rock and waste volumes the same
The influence of long-range links on spiral waves and their application for control
International Nuclear Information System (INIS)
Qian Yu
2012-01-01
The influence of long-range links on spiral waves in an excitable medium has been investigated. Spatiotemporal dynamics in an excitable small-world network transform remarkably when we increase the long-range connection probability P. Spiral waves with few perturbations, broken spiral waves, pseudo spiral turbulence, synchronous oscillations, and homogeneous rest state are discovered under different network structures. Tip number is selected to detect non-equilibrium phase transition between different spatiotemporal patterns. The Kuramoto order parameter is used to identify these patterns and explain the emergence of the rest state. Finally, we use long-range links to successfully control spiral waves and spiral turbulence. (interdisciplinary physics and related areas of science and technology)
Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.
Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing
2016-06-03
In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.
Density of states and magnetotransport in Weyl semimetals with long-range disorder
Pesin, D. A.; Mishchenko, E. G.; Levchenko, A.
2015-11-01
We study the density of states and magnetotransport properties of disordered Weyl semimetals, focusing on the case of a strong long-range disorder. To calculate the disorder-averaged density of states close to nodal points, we treat exactly the long-range random potential fluctuations produced by charged impurities, while the short-range component of disorder potential is included systematically and controllably with the help of a diagram technique. We find that, for energies close to the degeneracy point, long-range potential fluctuations lead to a finite density of states. In the context of transport, we discuss that a self-consistent theory of screening in magnetic field may conceivably lead to nonmonotonic low-field magnetoresistance.
Testing Long-Range Beam-Beam Compensation for the LHC Luminosity Upgrade
Rijoff, T L
2012-01-01
The performance of the Large Hadron Collider (LHC) at CERN and its minimum crossing angle are limited by the effect of long-range beam-beam collisions. A wire compensators can mitigate part of the long-range effects and may allow for smaller crossing angles, or higher beam intensity. A prototype long-range wire compensator could be installed in the LHC by 2014/15. Since the originally reserved position for such a wire compensator is not available for this first step, we explore other possible options. Our investigations consider various longitudinal and transverse locations, different wire shapes, different optics configurations and several crossing angles between the two colliding beams. Simulations are carried out with the weak-strong code BBtrack. New postprocessing tools are introduced to analyse tune footprints and particle stability. In particular, a new method for the Lyapunov coefficient calculation is implemented. Submitted as "Tesi di laurea" at the University of Milano, 2012.
Effect of disorder with long-range correlation on transport in graphene nanoribbon
International Nuclear Information System (INIS)
Zhang, G P; Gao, M; Shangguan, M H; Zhang, Y Y; Liu, N; Qin, Z J
2012-01-01
Transport in disordered armchair graphene nanoribbons (AGR) with long-range correlation between quantum wire contacts is investigated by a transfer matrix combined with Landauer’s formula. The metal-insulator transition is induced by disorder in neutral AGR. Therein, the conductance is one conductance quantum for the metallic phase and exponentially decays otherwise, when the length of AGR approaches infinity and far longer than its width. Similar to the case of long-range disorder, the conductance of neutral AGR first increases and then decreases while the conductance of doped AGR monotonically decreases, as the disorder strength increases. In the presence of strong disorder, the conductivity depends monotonically and non-monotonically on the aspect ratio for heavily doped and slightly doped AGR, respectively. For edge disordered graphene nanoribbon, the conductance increases with the disorder strength of long-range correlated disordered while no delocalization exists, since the edge disorder induces localization. (paper)
Fractality Evidence and Long-Range Dependence on Capital Markets: a Hurst Exponent Evaluation
Oprean, Camelia; Tănăsescu, Cristina
2014-07-01
Since the existence of market memory could implicate the rejection of the efficient market hypothesis, the aim of this paper is to find any evidence that selected emergent capital markets (eight European and BRIC markets, namely Hungary, Romania, Estonia, Czech Republic, Brazil, Russia, India and China) evince long-range dependence or the random walk hypothesis. In this paper, the Hurst exponent as calculated by R/S fractal analysis and Detrended Fluctuation Analysis is our measure of long-range dependence in the series. The results reinforce our previous findings and suggest that if stock returns present long-range dependence, the random walk hypothesis is not valid anymore and neither is the market efficiency hypothesis.
UTag: Long-range Ultra-wideband Passive Radio Frequency Tags
Energy Technology Data Exchange (ETDEWEB)
Dowla, F
2007-03-14
Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.
The topological long range order in QCD. Applications to heavy ion collisions and cosmology
Directory of Open Access Journals (Sweden)
Zhitnitsky Ariel R.
2015-01-01
Full Text Available We argue that the local violation of P invariance in heavy ion collisions is a consequence of the long range topological order which is inherent feature of strongly coupled QCD. A similar phenomenon is known to occur in some topologically ordered condensed matter systems with a gap. We also discuss possible cosmological applications of this long range order in strongly coupled gauge theories. In particular, we argue that the de Sitter behaviour might be dynamically generated as a result of the long range order. In this framework the inflaton is an auxiliary field which effectively describes the dynamics of topological sectors in a gauge theory in the expanding universe, rather than a new dynamical degree of freedom.
Long-range Coulomb interactions in low energy (e,2e) data
International Nuclear Information System (INIS)
Waterhouse, D.
2000-01-01
Full text: Proper treatment of long-range Coulomb interactions has confounded atomic collision theory since Schrodinger first presented a quantum-mechanical model for atomic interactions. The long-range Coulomb interactions are difficult to include in models in a way that treats the interaction sufficiently well but at the same time ensures the calculation remains tractable. An innovative application of an existing multi-parameter (e,2e) data acquisition system will be described. To clarify the effects of long-range Coulomb interactions, we will report the correlations and interactions that occur at low energy, observed by studying the energy sharing between outgoing electrons in the electron-impact ionisation of krypton
Percolator: Scalable Pattern Discovery in Dynamic Graphs
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sutanay; Purohit, Sumit; Lin, Peng; Wu, Yinghui; Holder, Lawrence B.; Agarwal, Khushbu
2018-02-06
We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walking through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.
Energy Technology Data Exchange (ETDEWEB)
Jo, S.B. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)
1997-12-01
The independent power producing business has expanded its size and process through the Long-range Power Supply and Demand Plan of 1993, 1995, and it is high time that full-scale competition in the power generation market began to emerge. This report assesses the marginal costs of independent and general power producing businesses on a theoretical basis on the proper size of independent power producing business, and presents the methods to compare these. But, since there follows several problems in applying this theoretical model, a practical standard to decide the proper level of independent power production amount is presented. That is, while not much burdening the existing industrial structure, I search for ways to present the amount of independent power production and the methods of power generation to make sure that the competition effect is maximized when full-scale competition started. However, in the long-term, the allotment of independent power production itself could be a violation to the basic spirit of competition. A more desirable way is to allow independent power producers and the Korea Power Corp. to freely compete on all types of power generation and facilities. The supply plan should be also operated smoothly and flexibly since the types of power generation and the amounts reflect the result of competition not the predetermined ones. Therefore, a long-range power supply and demand plan should be converted from a planning-oriented concept to a market-oriented base with the structural overhaul of the power generation industry for the effective resources distribution of power supply facilities. 18 refs., 2 figs., 7 tabs.
On discriminating between long-range dependence and changes in mean
Berkes, István; Horváth, Lajos; Kokoszka, Piotr; Shao, Qi-Man
2006-01-01
We develop a testing procedure for distinguishing between a long-range dependent time series and a weakly dependent time series with change-points in the mean. In the simplest case, under the null hypothesis the time series is weakly dependent with one change in mean at an unknown point, and under the alternative it is long-range dependent. We compute the CUSUM statistic Tn, which allows us to construct an estimator k̂ of a change-point. We then compute the statistic Tn,1 based on the observa...
Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer
DEFF Research Database (Denmark)
Westereng, Bjorge; Cannella, David; Wittrup Agger, Jane
2015-01-01
in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant...... cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds...
Long-range airplane study: The consumer looks at SST travel
Landes, K. H.; Matter, J. A.
1980-01-01
The attitudes of long-range air travelers toward several basic air travel decisions, were surveyed. Of interest were tradeoffs involving time versus comfort and time versus cost as they pertain to supersonic versus conventional wide-body aircraft on overseas routes. The market focused upon was the segment of air travelers most likely to make that type of tradeoff decision: those having flown overseas routes for business or personal reasons in the recent past. The information generated is intended to provide quantifiable insight into consumer demand for supersonic as compared to wide-body aircraft alternatives for long-range overseas air travel.
Long-range research plan. FY 1987-FY 1991. Volume 3
International Nuclear Information System (INIS)
1986-08-01
The Long-Range Research Plan (LRRP) was prepared by the Office of Nuclear Regulatory Research (RES) to assist the NRC in coordinating its long-range research planning with the short-range budget cycles. The LRRP lays out programmatic approaches for research to help resolve regulatory issues. The plan will be updated annually. It covers: operating reactor inspection, maintenance, and repair; equipment qualification; seismic research; reactor operations and risk; thermal-hydraulic transients; severe accidents; radiation protection and health effects; and waste management
Long-Range Research Plan, FY 1986-FY 1990. Volume 2
International Nuclear Information System (INIS)
1985-08-01
The Long-Range Research Plan (LRRP) was prepared by the Office of Nuclear Regulatory Research (RES) to assist the NRC in coordinating its long-range research planning with the short-range budget cycles. The LRRP lays out programmatic approaches for research to help resolve regulatory issues. The plan will be updated annually. It covers: operating reactor inspection, maintenance, and repair; equipment qualification; seismic research; reactor operations and risk; thermal-hydraulic transients; severe accidents; radiation protection and health effects; and waste management
International Nuclear Information System (INIS)
Zhan-Hai, Dong
2009-01-01
In order to look for the 120° order phase of triangular lattice Heisenberg antiferromagnet with long range couplings, the Hamiltonian is diagonalized with the Bogoliubov transformation within linear spin-wave approximation. It is found that when the long range spin couplings are taken into account, the transformation is valid only for certain regions in the spin coupling parameter space. These regions just correspond to the 120° (or Néel) ordered phase, which is very different from square lattice in terms of shape, size and topological property
Long-range dependence in returns and volatility of Central European Stock Indices
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2010-01-01
Roč. 17, č. 27 (2010), s. 50-67 ISSN 1212-074X R&D Projects: GA ČR GD402/09/H045; GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 5183/2010 Institutional research plan: CEZ:AV0Z10750506 Keywords : long-range dependence * bootstrapping * rescaled range analysis * rescaled variance analysis Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/kristoufek-long-range dependence in returns and volatility of central european stock indices bces.pdf
Long-range correlations in PbPb collisions at 158 a *GeV
Alt, C; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csato, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gal, J; Gazdzicki, M; Georgopoulos, G; Gladysz, E; Grebieszkow, K; Hegyi, S; Hohne, C; Kadija, K; Karev, A; Kliemant, M; Kniege, S; Kolesnikov, V I; Kollegger, T; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; van Leeuwen, M; Levai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnar, J; Mrowczynski, S; Palla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Pikna, M; Pinsky, L; Puhlhofer, F; Renfordt, R; Richard, A; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Seyboth, P; Sikler, F; Sitar, B; Skrzypczak, E; Stefanek, G; Stock, R; Strobele, H; Susa, T; Szentpetery, I; Sziklai, J; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G l; Vesztergombi, G; Vranie, D; Wetzler, A; Wlodarczyk, Z; Yoo, l K; Zaranek, J; Zimanyi, J; Feofilov, G; Kolevatov, R; Kondratiev, V; Naumenko, P; Vechernin, V
2005-01-01
We present the 1st results of the event-by-event study of long-range correlations between event mean Pt and charged particle multiplicity using NA49 experimental data in two separated rapidity intervals in 158 A *Ge V Pb Pb collisions at the CERN SPS. Noticeable long range correlations are found. The most striking feature is the negative Prn correlation observed for the central PbPb collisions. Results are compared to the predictions of the HIJING event generator and of the String Fusion Model favoring a string fusion hypothesis.
Percolating cluster of center vortices and confinement
International Nuclear Information System (INIS)
Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo
2003-01-01
We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster
Bootstrap percolation: a renormalisation group approach
International Nuclear Information System (INIS)
Branco, N.S.; Santos, Raimundo R. dos; Queiroz, S.L.A. de.
1984-02-01
In bootstrap percolation, sites are occupied at random with probability p, but each site is considered active only if at least m of its neighbours are also active. Within an approximate position-space renormalization group framework on a square lattice we obtain the behaviour of the critical concentration p (sub)c and of the critical exponents ν and β for m = 0 (ordinary percolation), 1,2 and 3. We find that the bootstrap percolation problem can be cast into different universality classes, characterized by the values of m. (author) [pt
Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan
2017-07-12
Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.
Volatility Behaviors of Financial Time Series by Percolation System on Sierpinski Carpet Lattice
Pei, Anqi; Wang, Jun
2015-01-01
The financial time series is simulated and investigated by the percolation system on the Sierpinski carpet lattice, where percolation is usually employed to describe the behavior of connected clusters in a random graph, and the Sierpinski carpet lattice is a graph which corresponds the fractal — Sierpinski carpet. To study the fluctuation behavior of returns for the financial model and the Shanghai Composite Index, we establish a daily volatility measure — multifractal volatility (MFV) measure to obtain MFV series, which have long-range cross-correlations with squared daily return series. The autoregressive fractionally integrated moving average (ARFIMA) model is used to analyze the MFV series, which performs better when compared to other volatility series. By a comparative study of the multifractality and volatility analysis of the data, the simulation data of the proposed model exhibits very similar behaviors to those of the real stock index, which indicates somewhat rationality of the model to the market application.
Long-Range Correlations in Sentence Series from A Story of the Stone.
Yang, Tianguang; Gu, Changgui; Yang, Huijie
2016-01-01
A sentence is the natural unit of language. Patterns embedded in series of sentences can be used to model the formation and evolution of languages, and to solve practical problems such as evaluating linguistic ability. In this paper, we apply de-trended fluctuation analysis to detect long-range correlations embedded in sentence series from A Story of the Stone, one of the greatest masterpieces of Chinese literature. We identified a weak long-range correlation, with a Hurst exponent of 0.575±0.002 up to a scale of 104. We used the structural stability to confirm the behavior of the long-range correlation, and found that different parts of the series had almost identical Hurst exponents. We found that noisy records can lead to false results and conclusions, even if the noise covers a limited proportion of the total records (e.g., less than 1%). Thus, the structural stability test is an essential procedure for confirming the existence of long-range correlations, which has been widely neglected in previous studies. Furthermore, a combination of de-trended fluctuation analysis and diffusion entropy analysis demonstrated that the sentence series was generated by a fractional Brownian motion.
Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes
Escalantet, Maryana; Escalante Marun, M.; Lenferink, Aufrid T.M.; Zhao, Yiping; Tas, Niels Roelof; Huskens, Jurriaan; Hunter, C. Neil; Subramaniam, Vinod; Otto, Cornelis
2010-01-01
Here we report the first observation of long-range transport of excitation energy within a biomimetic molecular nanoarray constructed from LH2 antenna complexes from Rhodobacter sphaeroides. Fluorescence microscopy of the emission of light after local excitation with a diffraction-limited light beam
Quantum transport with long-range steps on Watts-Strogatz networks
Wang, Yan; Xu, Xin-Jian
2016-07-01
We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.
Long-range dispersion interactions. III: Method for two homonuclear atoms
International Nuclear Information System (INIS)
Mitroy, J.; Zhang, J.-Y.
2007-01-01
A procedure for systematically evaluating the long-range dispersion interaction between two homonuclear atoms in arbitrary LS coupled states is outlined. The method is then used to generate dispersion coefficients for a number of the low-lying states of the Na and Mg dimers
Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer
DEFF Research Database (Denmark)
Westereng, Bjorge; Cannella, David; Wittrup Agger, Jane
2015-01-01
cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds...
Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends
Isakova, Anna
2018-05-17
In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.
Short versus long range interactions and the size of two-body weakly bound objects
International Nuclear Information System (INIS)
Lombard, R.J.; Volpe, C.
2003-01-01
Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)
25 CFR 170.411 - What may a long-range transportation plan include?
2010-04-01
...) Social and economic development planning to identify transportation improvements or needs to accommodate... 25 Indians 1 2010-04-01 2010-04-01 false What may a long-range transportation plan include? 170.411 Section 170.411 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN...
Current transport properties and phase diagram of a Kitaev chain with long-range pairing
Giuliano, Domenico; Paganelli, Simone; Lepori, Luca
2018-04-01
We describe a method to probe the quantum phase transition between the short-range topological phase and the long-range topological phase in the superconducting Kitaev chain with long-range pairing, both exhibiting subgap modes localized at the edges. The method relies on the effects of the finite mass of the subgap edge modes in the long-range regime (which survives in the thermodynamic limit) on the single-particle scattering coefficients through the chain connected to two normal leads. Specifically, we show that, when the leads are biased at a voltage V with respect to the superconducting chain, the Fano factor is either zero (in the short-range correlated phase) or 2 e (in the long-range correlated phase). As a result, we find that the Fano factor works as a directly measurable quantity to probe the quantum phase transition between the two phases. In addition, we note a remarkable "critical fractionalization effect" in the Fano factor, which is exactly equal to e along the quantum critical line. Finally, we note that a dual implementation of our proposed device makes it suitable as a generator of large-distance entangled two-particle states.
Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects
DEFF Research Database (Denmark)
Vernoux, Christian; Chen, Yiting; Markey, Laurent
2018-01-01
We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...
Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides
DEFF Research Database (Denmark)
Kharitonov, S.; Kiselev, R.; Kumar, Ashwani
2014-01-01
We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...
Free cooling of hard-spheres with short and long range interactions
Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan
2015-01-01
We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range
Memory traces of long-range coordinated oscillations in the sleeping human brain.
Piantoni, Giovanni; Van Der Werf, Ysbrand D; Jensen, Ole; Van Someren, Eus J W
2015-01-01
Cognition involves coordinated activity across distributed neuronal networks. Neuronal activity during learning triggers cortical plasticity that allows for reorganization of the neuronal network and integration of new information. Animal studies have shown post-learning reactivation of learning-elicited neuronal network activity during subsequent sleep, supporting consolidation of the reorganization. However, no previous studies, to our knowledge, have demonstrated reactivation of specific learning-elicited long-range functional connectivity during sleep in humans. We here show reactivation of learning-induced long-range synchronization of magnetoencephalography power fluctuations in human sleep. Visuomotor learning elicited a specific profile of long-range cortico-cortical synchronization of slow (0.1 Hz) fluctuations in beta band (12-30 Hz) power. The parieto-occipital part of this synchronization profile reappeared in delta band (1-3.5 Hz) power fluctuations during subsequent sleep, but not during the intervening wakefulness period. Individual differences in the reactivated synchronization predicted postsleep performance improvement. The presleep resting-state synchronization profile was not reactivated during sleep. The findings demonstrate reactivation of long-range coordination of neuronal activity in humans, more specifically of reactivation of coupling of infra-slow fluctuations in oscillatory power. The spatiotemporal profile of delta power fluctuations during sleep may subserve memory consolidation by echoing coordinated activation elicited by prior learning. © 2014 Wiley Periodicals, Inc.
Long-Range Correlations in Sentence Series from A Story of the Stone.
Directory of Open Access Journals (Sweden)
Tianguang Yang
Full Text Available A sentence is the natural unit of language. Patterns embedded in series of sentences can be used to model the formation and evolution of languages, and to solve practical problems such as evaluating linguistic ability. In this paper, we apply de-trended fluctuation analysis to detect long-range correlations embedded in sentence series from A Story of the Stone, one of the greatest masterpieces of Chinese literature. We identified a weak long-range correlation, with a Hurst exponent of 0.575±0.002 up to a scale of 104. We used the structural stability to confirm the behavior of the long-range correlation, and found that different parts of the series had almost identical Hurst exponents. We found that noisy records can lead to false results and conclusions, even if the noise covers a limited proportion of the total records (e.g., less than 1%. Thus, the structural stability test is an essential procedure for confirming the existence of long-range correlations, which has been widely neglected in previous studies. Furthermore, a combination of de-trended fluctuation analysis and diffusion entropy analysis demonstrated that the sentence series was generated by a fractional Brownian motion.
The long-range correlation and evolution law of centennial-scale temperatures in Northeast China.
Zheng, Xiaohui; Lian, Yi; Wang, Qiguang
2018-01-01
This paper applies the detrended fluctuation analysis (DFA) method to investigate the long-range correlation of monthly mean temperatures from three typical measurement stations at Harbin, Changchun, and Shenyang in Northeast China from 1909 to 2014. The results reveal the memory characteristics of the climate system in this region. By comparing the temperatures from different time periods and investigating the variations of its scaling exponents at the three stations during these different time periods, we found that the monthly mean temperature has long-range correlation, which indicates that the temperature in Northeast China has long-term memory and good predictability. The monthly time series of temperatures over the past 106 years also shows good long-range correlation characteristics. These characteristics are also obviously observed in the annual mean temperature time series. Finally, we separated the centennial-length temperature time series into two time periods. These results reveal that the long-range correlations at the Harbin station over these two time periods have large variations, whereas no obvious variations are observed at the other two stations. This indicates that warming affects the regional climate system's predictability differently at different time periods. The research results can provide a quantitative reference point for regional climate predictability assessment and future climate model evaluation.
Switching between bistable states in a discrete nonlinear model with long-range dispersion
DEFF Research Database (Denmark)
Johansson, Magnus; Gaididei, Yuri B.; Christiansen, Peter Leth
1998-01-01
In the framework of a discrete nonlinear Schrodinger equation with long-range dispersion, we propose a general mechanism for obtaining a controlled switching between bistable localized excitations. We show that the application of a spatially symmetric kick leads to the excitation of an internal...
Library Services and Construction Act. Long Range Plan, 1982-1986 Updates.
Seidenberg, Edward
This 1982-86 update to long-range planning designed to continue the improvement of library facilities and services in Texas includes a review of how the plan developed, the various environmental factors affecting library operations, the present development of libraries, information needs and approaches to satisfying those needs, and methods for…
Comparative analysis of long-range calls in equid stallions (Equidae ...
African Journals Online (AJOL)
Accordingly to its harem social system (type I), the pattern of long-range call in Grant's zebra deviates from that of its relatives in the direction of horses. Frequency of the first dominant band that was associated with body size separated modern horses from the archaic breed and Przewalski's horse. Playback experiments ...
Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model
DEFF Research Database (Denmark)
Kemausuor, Francis; Nygaard, Ivan; Mackenzie, Gordon A.
2015-01-01
biomass sources, through the production of biogas, liquid biofuels and electricity. Analysis was based on moderate and high use of bioenergy for transportation, electricity generation and residential fuel using the LEAP (Long-range Energy Alternatives Planning) model. Results obtained indicate...
Long-range carbon-proton spin-spin coupling constants in conformational analysis
International Nuclear Information System (INIS)
Spoormaker, T.
1979-01-01
The author has collected a reliable set of data on long range 13 C- 1 H coupling constants in aliphatic compounds and developed the use of long range 13 C- 1 H coupling constants as a tool in the conformational analysis of aliphatic compounds. An empirical determination of the torsion angle dependence of the vicinal 13 C- 1 H coupling constant for model compounds is described and the dependence of long range 13 C- 1 H coupling constants on the electronegativity of substituents attached to the coupling pathway reported for the monohalogen substituted ethanes and propanes. The electronegativity dependence of the vicinal 13 C- 1 H coupling was studied in monosubstituted propanes whose substituents are elements from the first row of the periodic table and it is shown that the vicinal 13 C- 1 H coupling constant in aliphatic systems is a constitutive property. The geminal 13 C- 1 H coupling constants in ethyl, isopropyl and tert-butyl compounds, which have been substituted by an element of the first row of the periodic table or a haline atom, are reported and the influence of electronegative substituents on the vicinal 13 C- 1 H coupling constants in the individual rotamers of 13 CH 3 -C(X)H-C(Y)H- 1 H fragments discussed. The application of long range 13 C- 1 H coupling constants to the conformational analysis of CMP-N-Acetylneuraminic acid and 2,6-dichloro-1,4-oxathiane is described. (Auth.)
Analysing the origin of long-range interactions in proteins using lattice models
Directory of Open Access Journals (Sweden)
Unger Ron
2009-01-01
Full Text Available Abstract Background Long-range communication is very common in proteins but the physical basis of this phenomenon remains unclear. In order to gain insight into this problem, we decided to explore whether long-range interactions exist in lattice models of proteins. Lattice models of proteins have proven to capture some of the basic properties of real proteins and, thus, can be used for elucidating general principles of protein stability and folding. Results Using a computational version of double-mutant cycle analysis, we show that long-range interactions emerge in lattice models even though they are not an input feature of them. The coupling energy of both short- and long-range pairwise interactions is found to become more positive (destabilizing in a linear fashion with increasing 'contact-frequency', an entropic term that corresponds to the fraction of states in the conformational ensemble of the sequence in which the pair of residues is in contact. A mathematical derivation of the linear dependence of the coupling energy on 'contact-frequency' is provided. Conclusion Our work shows how 'contact-frequency' should be taken into account in attempts to stabilize proteins by introducing (or stabilizing contacts in the native state and/or through 'negative design' of non-native contacts.
Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners
DEFF Research Database (Denmark)
Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.
2015-01-01
of the WindScanner data is high, although the fidelity of the estimated vertical velocity component is significantly limited by the elevation angles of the scanner heads. The system of long-range WindScanners presented in this paper is close to being fully operational, with the pilot study herein serving...
The dielectric constant and its role in the long range coherence in biological systems
International Nuclear Information System (INIS)
Paul, R.; Chatterjee, R.
1984-01-01
An expression for the dielectric constant has been derived, for the Froehlich model of long-range coherence in biological cells. These theoretical expressions are employed to interpret the observed rouleaux formation of red blood cells (erythrocytes). It is concluded that this unusual behaviour of the erythrocytes can be interpreted satisfactorilly by the extended Froehlich model developed by us. (Author) [pt
Long-range interactions of excited He atoms with ground-state noble-gas atoms
Zhang, J.-Y.; Qian, Ying; Schwingenschlö gl, Udo; Yan, Z.-C.
2013-01-01
The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition
Policy Directions for U. S. Agriculture; Long-Range Choices in Farming and Rural Living.
Clawson, Marion
A comprehensive view of agriculture is presented in this volume written to aid critical re-examination of long-range agricultural policy. Farm people, rural institutions and services, rural towns, the spatial organization of agriculture, and its capital structure, in addition to the usual subjects of agricultural output, demand, trade, price, and…
Long-range surface polaritons in thin layers of absorbing materials
Zhang, Y.
2011-01-01
Long-range surface polaritons (LRSPs) are electromagnetic surface modes confined at the interfaces of an thin film surrounded by a homogeneous dielectric. These modes are generally characterized by the subwavelength confinement and the long propagation length. In case of a metallic thin film, the
Mechatronic design of a fast and long range 4 degrees of freedom humanoid neck
Brouwer, Dannis Michel; Bennik, J.; Leideman, J.; Soemers, Herman; Stramigioli, Stefano
2009-01-01
This paper describes the mechatronic design of a humanoid neck. To research human machine interaction, the head and neck combination should be able to approach the human behavior as much as possible. We present a novel humanoid neck concept that is both fast, and has a long range of motion in 4
Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends
Isakova, Anna; Karuthedath, Safakath; Arnold, Thomas; Howse, Jonathan; Topham, Paul D.; Toolan, Daniel Thomas William; Laquai, Fré dé ric; Lü er, Larry
2018-01-01
In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.
Long-range prospects of world energy demands and future energy sources
International Nuclear Information System (INIS)
Kozaki, Yasuji
1998-01-01
The long-range prospects for world energy demands are reviewed, and the major factors which are influential in relation to energy demands are discussed. The potential for various kinds of conventional and new energy sources such as fossil fuels, solar energies, nuclear fission, and fusion energies to need future energy demands is also discussed. (author)
International Nuclear Information System (INIS)
1994-01-01
This tenth volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the eleventh session of the Executive Body held at Geneva from 1 to 3 December 1993. Part One is the Annual Review of Strategies and Policies for Air Pollution Abatement. National emission data and forecasts for sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), volatile organic compounds (VOCs), ammonia (NH 3 ) and carbon dioxide (CO 2 ) from 1980 to 2005 are presented. Conclusions are drawn concerning the status of implementation of the sulphur and nitrogen oxides protocols on the basis of these data. Part Two is an executive summary of the 1992 Report on the Forest Condition in Europe. The main objective of this report is to give a condensed description of the condition of forests in Europe, as it has been assessed by the transnational and national annual surveys, carried out jointly by the ECE under the Convention on Long-range Transboundary Air Pollution and by the European Community (EC). Part Three is a summary report that focuses on the reduction of air pollution from heat and electric energy production. It is based on discussion papers submitted to the fifth ECE Seminar on Emission Control Technology for Stationary Sources, held in Nuremberg (Germany) from 10 to 14 June 1991. This chapter presents the main control techniques to reduce emissions from fuel combustion, which is a major contribution in most ECE countries to air pollution by sulphur and nitrogen compounds, carbon oxides, organic compounds, as well as heavy metals. Three principal abatement options are reviewed: fuel cleaning and fuel conversion, low-emission combustion processes, and flue gas cleaning processes. Both technical and economic aspects of the different measures are discussed
Effective theory and breakdown of conformal symmetry in a long-range quantum chain
Lepori, L.; Vodola, D.; Pupillo, G.; Gori, G.; Trombettoni, A.
2016-11-01
We deal with the problem of studying the symmetries and the effective theories of long-range models around their critical points. A prominent issue is to determine whether they possess (or not) conformal symmetry (CS) at criticality and how the presence of CS depends on the range of the interactions. To have a model, both simple to treat and interesting, where to investigate these questions, we focus on the Kitaev chain with long-range pairings decaying with distance as power-law with exponent α. This is a quadratic solvable model, yet displaying non-trivial quantum phase transitions. Two critical lines are found, occurring respectively at a positive and a negative chemical potential. Focusing first on the critical line at positive chemical potential, by means of a renormalization group approach we derive its effective theory close to criticality. Our main result is that the effective action is the sum of two terms: a Dirac action SD, found in the short-range Ising universality class, and an "anomalous" CS breaking term SAN. While SD originates from low-energy excitations in the spectrum, SAN originates from the higher energy modes where singularities develop, due to the long-range nature of the model. At criticality SAN flows to zero for α > 2, while for α limit α → ∞ the ELI is restored. In order to test the validity of the determined effective theory, we compared the two-fermion static correlation functions and the von Neumann entropy obtained from them with the ones calculated on the lattice, finding agreement. These results explain two observed features characteristic of long-range models, the hybrid decay of static correlation functions within gapped phases and the area-law violation for the von Neumann entropy. The proposed scenario is expected to hold in other long-range models displaying quasiparticle excitations in ballistic regime. From the effective theory one can also see that new phases emerge for α model, are not altered. This also shows
Disorder-induced quantum bond percolation
International Nuclear Information System (INIS)
Nishino, Shinya; Katsuno, Shuji; Goda, Masaki
2009-01-01
We investigate the effects of off-diagonal disorder on localization properties in quantum bond percolation networks on cubic lattices, motivated by the finding that the off-diagonal disorder does not always enhance the quantum localization of wavefunctions. We numerically construct a diagram of the 'percolation threshold', distinguishing extended states from localized states as a function of two degrees of disorder, by using the level statistics and finite-size scaling. The percolation threshold increases in a characteristic way on increasing the disorder in the connected bonds, while it gradually decreases on increasing the disorder in the disconnected bonds. Furthermore, the exchange of connected and disconnected bonds induced by the disorder causes a dramatic change of the percolation threshold.
Percolation systems away from the critical point
Indian Academy of Sciences (India)
DEEPAK DHAR. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ... There is more to percolation theory than the critical exponents. Of course, an experi- .... simple qualitative arguments. In the summation ...
The Beasts' model of percolative transport
International Nuclear Information System (INIS)
Dubois, M.A.; Beaufume, P.; Fromont, B.
1991-12-01
A class of nonlinear dynamical systems is introduced: it is aimed to be a tool in order to study anomalous transport and percolation phenomena. We study a simple example of this system, and explore different regimes of transport exhibited
Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity
International Nuclear Information System (INIS)
Donner, R.V.; Potirakis, S.M.; Barbosa, S.M.; Matos, J.A.O.; Pereira, A.J.S.C.; Neves, L.J.M.F.
2015-01-01
The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. (authors)
Long-range GABAergic connections distributed throughout the neocortex and their possible function
Directory of Open Access Journals (Sweden)
Nobuaki eTamamaki
2010-12-01
Full Text Available Features and functions of long range GABAergic projection neurons in the developing cerebral cortex have been reported previously, although until now their significance in the adult cerebral cortex has remained uncertain. The septo-hippocampal circuit is one exception – in this system, long range mature GABAergic projection neurons have been well analyzed and their contribution to the generation of theta-oscillatory behavior in the hippocampus has been documented. To have a clue to the function of the GABAergic projection neurons in the neocortex, we view the long range GABAergic projections those participating in the cortico-cortical, cortico-fugal, and afferent projections in the cerebral cortex. Then, we consider the possibility that the GABAergic projection neurons are involved in the generation, modification, and/or synchronization of oscillations in mature neocortical neuron activity. When markers that identify the GABAergic projection neurons are examined in anatomical and developmental studies, it is clear that neuronal NO synthetase (nNOS-immunoreactivity can readily identify GABAergic projection fibers (i.e. those longer than 1.5 mm. To elucidate the role of the GABAergic projection neurons in the neocortex, it will be necessary to clarify the network constructed by nNOS-positive GABAergic projection neurons and their postsynaptic targets. Thus, our long-range goals will be to label and manipulate (including deleting the GABAergic projection neurons using genetic tools driven by a nNOS promoter. We recognize that this may be a complex endeavor, as most excitatory neurons in the murine neocortex express nNOS transiently. Nevertheless, additional studies characterizing long range GABAergic projection neurons will have great value to the overall understanding of mature cortical function.
Percolation Systems away from the Critical Point
Dhar, Deepak
2001-01-01
This article reviews some effects of disorder in percolation systems even away from the critical density p_c. For densities below p_c, the statistics of large clusters defines the animals problem. Its relation to the directed animals problem and the Lee-Yang edge singularity problem is described. Rare compact clusters give rise to Griffiths singuraties in the free energy of diluted ferromagnets, and lead to a very slow relaxation of magnetization. In biassed diffusion on percolation clusters,...
Percolation of secret correlations in a network
Leverrier, Anthony; García-Patrón, Raúl
2011-01-01
In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks, more precisely the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a...
Percolation of secret correlations in a network
Energy Technology Data Exchange (ETDEWEB)
Leverrier, Anthony; Garcia-Patron, Raul [ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels (Barcelona) (Spain); Research Laboratory of Electronics, MIT, Cambridge, MA 02139 (United States) and Max-Planck Institut fur Quantenoptik, Hans-Kopfermann Str. 1, D-85748 Garching (Germany)
2011-09-15
In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.
Percolation of secret correlations in a network
International Nuclear Information System (INIS)
Leverrier, Anthony; Garcia-Patron, Raul
2011-01-01
In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.
25 CFR 170.413 - What is the public role in developing the long-range transportation plan?
2010-04-01
... Roads Program Facilities Long-Range Transportation Planning § 170.413 What is the public role in developing the long-range transportation plan? BIA or the tribe must solicit public involvement. If there are... newspapers when the draft long-range transportation plan is complete. In the absence of local public...
Integral equation hierarchy for continuum percolation
International Nuclear Information System (INIS)
Given, J.A.
1988-01-01
In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed
Benefits of current percolation in superconducting coated conductors
International Nuclear Information System (INIS)
Rutter, N.A.; Durrell, J.H.; Blamire, M.G.; MacManus-Driscoll, J.L.; Wang, H.; Foltyn, S.R.
2005-01-01
The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca
Directory of Open Access Journals (Sweden)
Baolin MA
2017-06-01
Full Text Available Regarding the rapid compensation of the influence of the Earth’ s disturbing gravity field upon trajectory calculation, the key point lies in how to derive the analytical solutions to the partial derivatives of the state of burnout point with respect to the launch data. In view of this, this paper mainly expounds on two issues: one is based on the approximate analytical solution to the motion equation for the vacuum flight section of a long-range rocket, deriving the analytical solutions to the partial derivatives of the state of burnout point with respect to the changing rate of the final-stage pitch program; the other is based on the initial positioning and orientation error propagation mechanism, proposing the analytical calculation formula for the partial derivatives of the state of burnout point with respect to the launch azimuth. The calculation results of correction data are simulated and verified under different circumstances. The simulation results are as follows: (1 the accuracy of approximation between the analytical solutions and the results attained via the difference method is higher than 90%, and the ratio of calculation time between them is lower than 0.2%, thus demonstrating the accuracy of calculation of data corrections and advantages in calculation speed; (2 after the analytical solutions are compensated, the longitudinal landing deviation of the rocket is less than 20 m and the lateral landing deviation of the rocket is less than 10 m, demonstrating that the corrected data can meet the requirements for the hit accuracy of a long-range rocket.
Constraints on long-range spin-gravity and monopole-dipole couplings of the proton
Jackson Kimball, Derek F.; Dudley, Jordan; Li, Yan; Patel, Dilan; Valdez, Julian
2017-10-01
Results of a search for a long-range monopole-dipole coupling between the mass of the Earth and rubidium (Rb) nuclear spins are reported. The experiment simultaneously measures the spin precession frequencies of overlapping ensembles of 85Rb and 87Rb atoms contained within an evacuated, antirelaxation-coated vapor cell. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to spin-dependent interactions of the proton. The spin-dependent component of the gravitational energy of the proton in the Earth's field is found to be smaller than 3 ×10-18 eV , improving laboratory constraints on long-range monopole-dipole interactions by over 3 orders of magnitude.
Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking
Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)
2009-01-01
A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,
International Nuclear Information System (INIS)
Vitanov, Nikolay K.; Yankulova, Elka D.
2006-01-01
By means of the multifractal detrended fluctuation analysis (MFDFA) we investigate long-range correlations in the interbeat time series of heart activity of Drosophila melanogaster-the classical object of research in genetics. Our main investigation tool are the fractal spectra f(α) and h(q) by means of which we trace the correlation properties of Drosophila heartbeat dynamics for three consequent generations of species. We observe that opposite to the case of humans the time series of the heartbeat activity of healthy Drosophila do not have scaling properties. Time series from species with genetic defects can be long-range correlated. Different kinds of genetic heart defects lead to different shape of the fractal spectra. The fractal heartbeat dynamics of Drosophila is transferred from generation to generation
Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.
Riascos, A P; Mateos, José L
2015-11-01
In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.
Search for Long-Range Correlations in Relativistic Heavy-Ion Collisions at SPS Energies
Directory of Open Access Journals (Sweden)
Shakeel Ahmad
2015-01-01
Full Text Available Long-range correlations are searched for by analysing the experimental data on 16O-AgBr and 32S-AgBr collisions at 200 A GeV/c and the results are compared with the predictions of a multi phase transport (AMPT model. The findings reveal that the observed forward-backward (F-B multiplicity correlations are mainly of short range in nature. The range of F-B correlations are observed to extend with increasing projectile mass. The observed extended range of F-B correlations might be due to overall multiplicity fluctuations arising because of nuclear geometry. The findings are not sufficient for making any definite conclusions regarding the presence of long-range correlations.
Long-range effect in nitrogen ion-implanted AISI 316L stainless steel
Energy Technology Data Exchange (ETDEWEB)
Budzynski, P., E-mail: p.budzynski@pollub.pl
2015-01-01
The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 10{sup 17} ion/cm{sup 2}, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.
Self-organized molecular films with long-range quasiperiodic order.
Fournée, Vincent; Gaudry, Émilie; Ledieu, Julian; de Weerd, Marie-Cécile; Wu, Dongmei; Lograsso, Thomas
2014-04-22
Self-organized molecular films with long-range quasiperiodic order have been grown by using the complex potential energy landscape of quasicrystalline surfaces as templates. The long-range order arises from a specific subset of quasilattice sites acting as preferred adsorption sites for the molecules, thus enforcing a quasiperiodic structure in the film. These adsorption sites exhibit a local 5-fold symmetry resulting from the cut by the surface plane through the cluster units identified in the bulk solid. Symmetry matching between the C60 fullerene and the substrate leads to a preferred adsorption configuration of the molecules with a pentagonal face down, a feature unique to quasicrystalline surfaces, enabling efficient chemical bonding at the molecule-substrate interface. This finding offers opportunities to investigate the physical properties of model 2D quasiperiodic systems, as the molecules can be functionalized to yield architectures with tailor-made properties.
Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z
2012-05-01
A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.
Chiral d -wave superconductivity in a triangular surface lattice mediated by long-range interaction
Cao, Xiaodong; Ayral, Thomas; Zhong, Zhicheng; Parcollet, Olivier; Manske, Dirk; Hansmann, Philipp
2018-04-01
Adatom systems on the Si(111) surface have recently attracted an increasing attention as strongly correlated systems with a rich phase diagram. We study these materials by a single band model on the triangular lattice, including 1 /r long-range interaction. Employing the recently proposed TRILEX method, we find an unconventional superconducting phase of chiral d -wave symmetry in hole-doped systems. Contrary to usual scenarios where charge and spin fluctuations are seen to compete, here the superconductivity is driven simultaneously by both charge and spin fluctuations and crucially relies on the presence of the long-range tail of the interaction. We provide an analysis of the relevant collective bosonic modes and predict how a cumulative charge and spin paring mechanism leads to superconductivity in doped silicon adatom materials.
Unitarity corrections to short-range order long-range rapidity correlations
Capella, A
1978-01-01
Although the effective hadronic forces have short range in rapidity space, one nevertheless expects long-range dynamical correlations induced by unitarity constraints. This paper contains a thorough discussion of long-range rapidity correlations in high-multiplicity events. In particular, the authors analyze in detail the forward- backward multiplicity correlations, measured recently in the whole CERN ISR energy range. They find from these data that the normalized variance of the number n of exchanged cut Pomerons, ((n/(n)-1)/sup 2/) , is most probably in the range 0.32 to 0.36. They show that such a number is obtained from Reggeon theory in the eikonal approximation. The authors also predict a very specific violation of local compensation of charge in multiparticle events: The violation should appear in the fourth-order zone correlation function and is absent in the second-order correlation function, the only one measured until now. (48 refs).
UMER: An analog computer for dynamics of swarms interacting via long-range forces
International Nuclear Information System (INIS)
Kishek, R.A.; Bai, G.; Bernal, S.; Feldman, D.; Godlove, T.F.; Haber, I.; O'Shea, P.G.; Quinn, B.; Papadopoulos, C.; Reiser, M.; Stratakis, D.; Tian, K.; Tobin, C.J.; Walter, M.
2006-01-01
Some of the most challenging and interesting problems in nature involve large numbers of objects or particles mutually interacting through long-range forces. Examples range from galaxies and plasmas to flocks of birds and traffic flow on a highway. Even in cases where the form of the interacting force is precisely known, such as the 1/r 2 -dependent Coulomb and gravitational forces, such problems present a formidable theoretical and modeling challenge for large numbers of interacting bodies. This paper reports on a newly constructed, scaled particle accelerator that will serve as an experimental testbed for the dynamics of swarms interacting through long-range forces. Primarily designed for intense beam dynamics studies for advanced accelerators, the University of Maryland Electron Ring (UMER) design is described in detail and an update on commissioning is provided. An example application to a system other than a charged particle beam is discussed
Dasbiswas, K.; Alster, E.; Safran, S. A.
2016-06-01
Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.
FY 1991--FY 1995 Information Technology Resources Long-Range Plan
Energy Technology Data Exchange (ETDEWEB)
1989-12-01
The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.
Long-range effect in nitrogen ion-implanted AISI 316L stainless steel
Budzynski, P.
2015-01-01
The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 1017 ion/cm2, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.
Yangian symmetry of long-range gl(N) integrable spin chains
International Nuclear Information System (INIS)
Beisert, Niklas; Erkal, Denis
2008-01-01
An interesting type of spin chain has appeared in the context of the planar AdS/CFT correspondence: it is based on an integrable nearest-neighbor spin chain, and it is perturbatively deformed by long-range interactions which apparently preserve the integrable structure. Similar models can be constructed by demanding the existence of merely one conserved local charge. Although the latter is not a sufficient integrability condition in general, the models often display convincing signs of full integrability. Here we consider a class of long-range spin chains with spins transforming in the fundamental representation of gl(N). For the most general such model with one conserved local charge we construct a conserved Yangian generator and show that it obeys the Serre relations. We thus provide a formal proof of integrability for this class of models
Entropy and long-range memory in random symbolic additive Markov chains.
Melnik, S S; Usatenko, O V
2016-06-01
The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.
Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads
DEFF Research Database (Denmark)
Ergemen, Yunus Emre; Haldrup, Niels; Rodríguez-Caballero, Carlos Vladimir
to strong seasonal periodicity, and along the cross-sectional dimension, i.e. the hours of the day, there is a strong dependence which necessarily has to be accounted for in order to avoid spurious inference when focusing on the time series dependence alone. The long-range dependence is modelled in terms...... of a fractionally integrated panel data model and it is shown that both prices and loads consist of common factors with long memory and with loadings that vary considerably during the day. Due to the competitiveness of the Nordic power market the aggregate supply curve approximates well the marginal costs...... data approaches to analyse the time series and the cross-sectional dependence of hourly Nord Pool electricity spot prices and loads for the period 2000-2013. Hourly electricity prices and loads data are characterized by strong serial long-range dependence in the time series dimension in addition...
International Nuclear Information System (INIS)
Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou
2016-01-01
In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = −1 or −2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction. (paper)
Information resources management long-range plan, FY1994--1998
Energy Technology Data Exchange (ETDEWEB)
1993-04-01
This document describes IRM activities and the information technology resources and capabilities of the Department, the future requirements, and the strategies and plans to satisfy the identified requirements. The long-range planning process provides the systematic means to meet this objective and assists the Department in assuring that information technology (IT) support is provided in an efficient, effective, and timely manner so that its programmatic missions can be accomplished. Another important objective of the Plan is to promote better understanding, both within and external to the Department, of its IT environment, requirements, issues, and recommended solutions. This DOE IRM Plan takes into consideration the IRM requirements of approximately 50 different sites. The annual long-range planning cycle for supporting this Plan was initiated by a Call in August 1991 for site plans to be submitted in February 1992 by those Departmental components and contractors with major IRM requirements.
Information resources management long-range plan, FY1994--1998
International Nuclear Information System (INIS)
1993-04-01
This document describes IRM activities and the information technology resources and capabilities of the Department, the future requirements, and the strategies and plans to satisfy the identified requirements. The long-range planning process provides the systematic means to meet this objective and assists the Department in assuring that information technology (IT) support is provided in an efficient, effective, and timely manner so that its programmatic missions can be accomplished. Another important objective of the Plan is to promote better understanding, both within and external to the Department, of its IT environment, requirements, issues, and recommended solutions. This DOE IRM Plan takes into consideration the IRM requirements of approximately 50 different sites. The annual long-range planning cycle for supporting this Plan was initiated by a Call in August 1991 for site plans to be submitted in February 1992 by those Departmental components and contractors with major IRM requirements
Boosting nearest-neighbour to long-range integrable spin chains
International Nuclear Information System (INIS)
Bargheer, Till; Beisert, Niklas; Loebbert, Florian
2008-01-01
We present an integrability-preserving recursion relation for the explicit construction of long-range spin chain Hamiltonians. These chains are generalizations of the Haldane–Shastry and Inozemtsev models and they play an important role in recent advances in string/gauge duality. The method is based on arbitrary nearest-neighbour integrable spin chains and it sheds light on the moduli space of deformation parameters. We also derive the closed chain asymptotic Bethe equations. (letter)
International Nuclear Information System (INIS)
Rossi, J.; Valkama, I.
1985-01-01
A model for estimating radiation doses resulting from long range atmospheric transport of released radionuclides in accidents is precented. The model (TRADOS) is able to treat changing diffusion conditions. For example the plume can be exposed to temporary rain, changes in turbulence and mixing depth. This can result in considerable changes in individual doses. The method is applied to an example trajectory and the doses caused by a serious reactor accident are calculated
Sampling and instrumentation requirements for long-range D and D activities at INEL
International Nuclear Information System (INIS)
Ahlquist, A.J.
1985-01-01
Assistance was requested to help determine sampling and instrumentation requirements for the long-range decontamination and decommissioning activities at the Idaho National Engineering Laboratory. Through a combination of literature review, visits to other DOE contractors, and a determination of the needs for the INEL program, a draft report has been prepared that is now under review. The final report should be completed in FY 84
Perfomance of a high purity germanium multi-detector telescope for long range particles
International Nuclear Information System (INIS)
Riepe, G.; Protic, D.; Suekoesd, C.; Didelez, J.P.; Frascaria, N.; Gerlic, E.; Hourani, E.; Morlet, M.
1980-01-01
A telescope of stacked high purity germanium detectors designed for long range charged particles was tested using medium energy protons. Particle identification and the rejection of the low energy tail could be accomplished on-line allowing the measurement of complex spectra. The efficiency of the detector stack for protons was measured up to 156 MeV incoming energy. The various factors affecting the energy resolution are discussed and their estimated contributions are compared with the experimental results
An Energy-Efficient Link with Adaptive Transmit Power Control for Long Range Networks
DEFF Research Database (Denmark)
Lynggaard, P.; Blaszczyk, Tomasz
2016-01-01
A considerable amount of research is carried out to develop a reliable smart sensor system with high energy efficiency for battery operated wireless IoT devices in the agriculture sector. However, only a limited amount of research has covered automatic transmission power adjustment schemes...... and algorithms which are essential for deployment of wireless IoT nodes. This paper presents an adaptive link algorithm for farm applications with emphasis on power adjustment for long range communication networks....
Long-range dispersion interactions. I. Formalism for two heteronuclear atoms
International Nuclear Information System (INIS)
Zhang, J.-Y.; Mitroy, J.
2007-01-01
A general procedure for systematically evaluating the long-range dispersion interaction between two heteronuclear atoms in arbitrary states is outlined. The C 6 dispersion parameter can always be written in terms of sum rules involving oscillator strengths only and formulas for a number of symmetry cases are given. The dispersion coefficients for excited alkali-metal atoms interacting with the ground-state H and He are tabulated
Detecting long-range correlation with detrended fluctuation analysis: Application to BWR stability
Energy Technology Data Exchange (ETDEWEB)
Espinosa-Paredes, Gilberto [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico)]. E-mail: gepe@xanum.uam.mx; Alvarez-Ramirez, Jose [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico); Vazquez, Alejandro [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico)
2006-11-15
The aim of this paper is to explore the application of detrended fluctuation analysis (DFA) to study boiling water reactor stability. DFA is a scaling method commonly used for detecting long-range correlations in non-stationary time series. This method is based on the random walk theory and was applied to neutronic power signal of Forsmark stability benchmark. Our results shows that the scaling properties breakdown during unstable oscillations.
Real-space, mean-field algorithm to numerically calculate long-range interactions
Cadilhe, A.; Costa, B. V.
2016-02-01
Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.
Bertoncini, Carlos W.; Jung, Young-Sang; Fernandez, Claudio O.; Hoyer, Wolfgang; Griesinger, Christian; Jovin, Thomas M.; Zweckstetter, Markus
2005-01-01
In idiopathic Parkinson's disease, intracytoplasmic neuronal inclusions (Lewy bodies) containing aggregates of the protein α-synuclein (αS) are deposited in the pigmented nuclei of the brainstem. The mechanisms underlying the structural transition of innocuous, presumably natively unfolded, αS to neurotoxic forms are largely unknown. Using paramagnetic relaxation enhancement and NMR dipolar couplings, we show that monomeric αS assumes conformations that are stabilized by long-range interactio...
Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves
International Nuclear Information System (INIS)
Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.
2006-02-01
This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods
Long-Range Planning Can Improve the Efficiency of Agricultural Research and Development.
1981-07-24
planning is not done » Conclusions Recommendat ion Agency comments ADVISORY BODIES HAVE HAD MIXED SUCCESS IN AFFECTING LONG-RANGE PLANNING... kfc r Their efforts have more impact on determining priorities for the short-range budgeting cycle rather than influencing development of long...cultural products, (2) developing an efficient marketing and processing system, (3) conserving natural resources, and (4) im- proving the well-being of
Long range ordered alloys modified by addition of niobium and cerium
International Nuclear Information System (INIS)
Liu, C.T.
1987-01-01
A long range ordered alloy composition is described consisting essentially of iron, nickel, cobalt, vanadium and a ductility enhancing metal, having the nominal composition (Fe, Ni,Co)/sub 3/(V,M) where M is the ductility enhancing metal selected from the group Ti, Zr, Hf and mixtures thereof. Effective amounts of creep property enhance elements selected from the group cerium, niobium and mixtures thereof sufficient to enhance creep properties in the resulting alloy without adversely affecting the fabrication of the alloy
Enss' theory in long range scattering: Second order hyperbolic and parabolic operators
International Nuclear Information System (INIS)
Muthuramalingam, P.
1984-01-01
We prove asymptotic completeness using Enss' method for h 0 (P)+Wsub(S)(Q)+Wsub(L)(Q) where h 0 :Rsup(n) -> R is a polynomial of degree 2 with lim vertical strokeh 0 (zeta)vertical stroke +/nabla h 0 (zeta)vertical stroke = infinite, Wsub(S) a short range potential and Wsub(L) a smooth long range potential. (orig.)
Simulation of wire-compensation of long range beam beam interaction in high energy accelerators
International Nuclear Information System (INIS)
Dorda, U.; )
2006-01-01
Full text: We present weak-strong simulation results for the effect of long-range beam-beam (LRBB) interaction in LHC as well as for proposed wire compensation schemes or wire experiments, respectively. In particular, we discuss details of the simulation model, instability indicators, the effectiveness of compensation, the difference between nominal and PACMAN bunches for the LHC, beam experiments, and wire tolerances. The simulations are performed with the new code BBTrack. (author)
Possible biomechanical origins of the long-range correlations in stride intervals of walking
Gates, Deanna H.; Su, Jimmy L.; Dingwell, Jonathan B.
2007-07-01
When humans walk, the time duration of each stride varies from one stride to the next. These temporal fluctuations exhibit long-range correlations. It has been suggested that these correlations stem from higher nervous system centers in the brain that control gait cycle timing. Existing proposed models of this phenomenon have focused on neurophysiological mechanisms that might give rise to these long-range correlations, and generally ignored potential alternative mechanical explanations. We hypothesized that a simple mechanical system could also generate similar long-range correlations in stride times. We modified a very simple passive dynamic model of bipedal walking to incorporate forward propulsion through an impulsive force applied to the trailing leg at each push-off. Push-off forces were varied from step to step by incorporating both “sensory” and “motor” noise terms that were regulated by a simple proportional feedback controller. We generated 400 simulations of walking, with different combinations of sensory noise, motor noise, and feedback gain. The stride time data from each simulation were analyzed using detrended fluctuation analysis to compute a scaling exponent, α. This exponent quantified how each stride interval was correlated with previous and subsequent stride intervals over different time scales. For different variations of the noise terms and feedback gain, we obtained short-range correlations (α1.0). Our results indicate that a simple biomechanical model of walking can generate long-range correlations and thus perhaps these correlations are not a complex result of higher level neuronal control, as has been previously suggested.
Long-range transport of air pollution under light gradient wind conditions
International Nuclear Information System (INIS)
Kurita, H.; Sasaki, K.; Muroga, H.; Ueda, H.; Wakamatsu, S.
1985-01-01
The long-range transport of air pollution on clear days under light gradient wind conditions is investigated from an analysis of all days with high oxidant concentrations in 1979 at locations in central Japan that are far from pollutant sources. Surface-level wind and pressure distributions over a 300 x 300 km area were analyzed, together with concentration isopleths of oxidants and suspended particles produced by photochemical reactions
Mobile network architecture of the long-range WindScanner system
Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per; Jensen, Henrik M.
2016-01-01
In this report we have presented the network architecture of the long-range WindScanner system that allows utilization of mobile network connections without the use of static public IP addresses. The architecture mitigates the issues of additional fees and contractual obligations that are linked to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki...
Structure factor of 36Ar and long range pair-potential properties
International Nuclear Information System (INIS)
Barocchi, F.; Chieux, P.; Fredrikze, H.; Magli, R.
1992-01-01
Recent diffraction data on low density Ar have been analyzed with the aim of determining the low k behaviour of the structure factor and from that the long range dipole-dipole interaction strength. The results are compared with the presently best known estimates of the van der Waals C 6 coefficient and with a previous analysis of neutron diffraction data on liquid Ar. (orig.)
Thermodynamics and Long-Range Order of Nitrogen in γ'-Fe4N1-x
Kooi, Bart J.; Somers, Marcel A.J.; Mittemeijer, Eric J.
1996-01-01
Models are given for the description of the chemical potential of nitrogen in γ'-Fe4N1-x. In previous work, γ'-Fe4N1-x was treated as a (sub)regular solution, thereby assuming that the N atoms are distributed randomly on the sites of their own sublattice. However, in γ'-Fe4N1-x, long-range ordering
Detecting long-range correlation with detrended fluctuation analysis: Application to BWR stability
International Nuclear Information System (INIS)
Espinosa-Paredes, Gilberto; Alvarez-Ramirez, Jose; Vazquez, Alejandro
2006-01-01
The aim of this paper is to explore the application of detrended fluctuation analysis (DFA) to study boiling water reactor stability. DFA is a scaling method commonly used for detecting long-range correlations in non-stationary time series. This method is based on the random walk theory and was applied to neutronic power signal of Forsmark stability benchmark. Our results shows that the scaling properties breakdown during unstable oscillations
Rolling estimations of long range dependence volatility for high frequency S&P500 index
Cheong, Chin Wen; Pei, Tan Pei
2015-10-01
This study evaluates the time-varying long range dependence behaviors of the S&P500 volatility index using the modified rescaled adjusted range (R/S) statistic. For better computational result, a high frequency rolling bipower variation realized volatility estimates are used to avoid possible abrupt jump. The empirical analysis findings allow us to understand better the informationally market efficiency before and after the subprime mortgage crisis.
Identification of long-range transport of aerosols over Austria using EARLINET lidar measurements
Camelia, Talianu
2018-04-01
The aims of the study is to identify the paths of the long-range transported aerosols over Austria and their potential origin, and to estimate their properties, using lidar measurements from EARLINET stations closest to Austria from Germany and Romania and aerosol transport models. As of now, there is no lidar station in Austria. The study is part of a project to estimate the usefulness of a lidar station located in Vienna, Austria.
Enhancing Transportation Equity Analysis for Long Range Planning and Decision Making
Bills, Tierra Suzan
2013-01-01
Metropolitan Planning Organizations (MPOs) regularly perform equity analyses for their long-range transportation plans, as this is required by Environmental Justice regulations. These regional-level plans may propose hundreds of transportation infrastructure and policy changes (e.g. highway and transit extensions, fare changes, pricing schemes, etc.) as well as land-use policy changes. The challenge is to assess the distribution of impacts from all the proposed changes across different popula...
Exploring flavor-dependent long-range forces in long-baseline neutrino oscillation experiments
Chatterjee, Sabya Sachi; Dasgupta, Arnab; Agarwalla, Sanjib Kumar
2015-12-01
The Standard Model gauge group can be extended with minimal matter content by introducing anomaly free U(1) symmetry, such as L e - L μ or L e - L τ . If the neutral gauge boson corresponding to this abelian symmetry is ultra-light, then it will give rise to flavor-dependent long-range leptonic force, which can have significant impact on neutrino oscillations. For an instance, the electrons inside the Sun can generate a flavor-dependent long-range potential at the Earth surface, which can suppress the ν μ → ν e appearance probability in terrestrial experiments. The sign of this potential is opposite for anti-neutrinos, and affects the oscillations of (anti-)neutrinos in different fashion. This feature invokes fake CP-asymmetry like the SM matter effect and can severely affect the leptonic CP-violation searches in long-baseline experiments. In this paper, we study in detail the possible impacts of these long-range flavor-diagonal neutral current interactions due to L e - L μ symmetry, when (anti-)neutrinos travel from Fermilab to Homestake (1300 km) and CERN to Pyhäsalmi (2290 km) in the context of future high-precision superbeam facilities, DUNE and LBNO respectively. If there is no signal of long-range force, DUNE (LBNO) can place stringent constraint on the effective gauge coupling α eμ < 1.9 × 10-53 (7.8 × 10-54) at 90% C.L., which is almost 30 (70) times better than the existing bound from the Super-Kamiokande experiment. We also observe that if α eμ ≥ 2 × 10-52, the CP-violation discovery reach of these future facilities vanishes completely. The mass hierarchy measurement remains robust in DUNE (LBNO) if α eμ < 5 × 10-52 (10-52).
Brines, G. L.
1972-01-01
A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.
System Estimation of Panel Data Models under Long-Range Dependence
DEFF Research Database (Denmark)
Ergemen, Yunus Emre
A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects...... and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed...
Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal
Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana
2014-05-01
The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling
International Nuclear Information System (INIS)
Kammenzind, B.F.; Berquist, B.M.; Bajaj, R.; Kreyns, P.H.; Franklin, D.G.
1998-01-01
Zircaloy-4, which is used widely as a core structural material in pressurized water reactors (PWRs), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and zirconium hydride phases precipitate after the Zircaloy-4 lattice becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4, degrading its mechanical performance as a structural material. Because hydrogen can move rapidly through the Zircaloy-4 lattice, the potential exists for large concentrations of hydride to accumulate in local regions of a Zircaloy component remote from its point of entry into the component. Much has been reported in the literature regarding the long range migration of hydrogen through Zircaloy under concentration gradients and temperature gradients. Relatively little has been reported, however, regarding the long range migration of hydrogen under stress gradients. This paper presents experimental results regarding the long range migration of hydrogen through Zircaloy in response to both tensile and compressive stress gradients. The importance of this driving force for hydrogen migration relative to concentration and thermal gradients is discussed
International Nuclear Information System (INIS)
Painter, S.
1999-02-01
Nonclassical stochastic continuum models incorporating long-range spatial dependence are evaluated as models for fractured crystalline rock. Open fractures and fracture zones are not modeled explicitly in this approach. The fracture zones and intact rock are modeled as a single stochastic continuum. The large contrasts between the fracture zones and unfractured rock are accounted for by making use of random field models specifically designed for highly variable systems. Hydraulic conductivity data derived from packer tests in the vicinity of the Aespoe Hard Rock Laboratory form the basis for the evaluation. The Aespoe log K data were found to be consistent with a fractal scaling model based on bounded fractional Levy motion (bfLm), a model that has been used previously to model highly variable sedimentary formations. However, the data are not sufficient to choose between this model, a fractional Brownian motion model for the normal-score transform of log K, and a conventional geostatistical model. Stochastic simulations conditioned by the Aespoe data coupled with flow and tracer transport calculations demonstrate that the models with long-range dependence predict earlier arrival times for contaminants. This demonstrates the need to evaluate this class of models when assessing the performance of proposed waste repositories. The relationship between intermediate-scale and large-scale transport properties in media with long-range dependence is also addressed. A new Monte Carlo method for stochastic upscaling of intermediate-scale field data is proposed
Proudhon, Charlotte; Snetkova, Valentina; Raviram, Ramya; Lobry, Camille; Badri, Sana; Jiang, Tingting; Hao, Bingtao; Trimarchi, Thomas; Kluger, Yuval; Aifantis, Iannis; Bonneau, Richard; Skok, Jane A
2016-06-07
V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage- and stage-specific manner. Unexpectedly, we find that both active and inactive AgR enhancers cooperate to disseminate their effects in a localized and long-range manner. Here, we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. Furthermore, we establish that, in T cells, long-range contact and cooperation between the inactive Igk enhancer MiEκ and the active Tcrb enhancer Eβ alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage- and stage-specific control. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation
Directory of Open Access Journals (Sweden)
Charlotte Proudhon
2016-06-01
Full Text Available V(DJ recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR loci in a lineage- and stage-specific manner. Unexpectedly, we find that both active and inactive AgR enhancers cooperate to disseminate their effects in a localized and long-range manner. Here, we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. Furthermore, we establish that, in T cells, long-range contact and cooperation between the inactive Igk enhancer MiEκ and the active Tcrb enhancer Eβ alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage- and stage-specific control.
Tensorial analysis of the long-range interaction between metastable alkaline-earth-metal atoms
International Nuclear Information System (INIS)
Santra, Robin; Greene, Chris H.
2003-01-01
Alkaline-earth-metal atoms in their lowest (nsnp) 3 P 2 state are exceptionally long lived and can be trapped magnetically. The nonspherical atomic structure leads to anisotropic long-range interactions between two metastable alkaline-earth-metal atoms. The anisotropy affects the rotational motion of the diatomic system and couples states of different rotational quantum numbers. This paper develops a tensorial decomposition of the most important long-range interaction operators, and a systematic inclusion of molecular rotations, in the presence of an external magnetic field. This analysis illuminates the nature of the coupling between the various degrees of freedom. The consequences are illustrated by application to a system of practical interest: metastable 88 Sr. Using atomic parameters determined in a nearly ab initio calculation, we compute adiabatic potential-energy curves. The anisotropic interatomic interaction, in combination with the applied magnetic field, is demonstrated to induce the formation of a long-range molecular potential well. This curve correlates to two fully polarized, low-field seeking atoms in a rotational s-wave state. The coupling among molecular rotational states controls the existence of the potential well, and its properties vary as a function of magnetic-field strength, thus allowing the scattering length in this state to be tuned. The scattering length of metastable 88 Sr displays a resonance at a field of 339 G
Reaction energetics on long-range corrected density functional theory: Diels-Alder reactions.
Singh, Raman K; Tsuneda, Takao
2013-02-15
The possibility of quantitative reaction analysis on the orbital energies of long-range corrected density functional theory (LC-DFT) is presented. First, we calculated the Diels-Alder reaction enthalpies that have been poorly given by conventional functionals including B3LYP functional. As a result, it is found that the long-range correction drastically improves the reaction enthalpies. The barrier height energies were also computed for these reactions. Consequently, we found that dispersion correlation correction is also crucial to give accurate barrier height energies. It is, therefore, concluded that both long-range exchange interactions and dispersion correlations are essentially required in conventional functionals to investigate Diels-Alder reactions quantitatively. After confirming that LC-DFT accurately reproduces the orbital energies of the reactant and product molecules of the Diels-Alder reactions, the global hardness responses, the halves of highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, along the intrinsic reaction coordinates of two Diels-Alder reactions were computed. We noticed that LC-DFT results satisfy the maximum hardness rule for overall reaction paths while conventional functionals violate this rule on the reaction pathways. Furthermore, our results also show that the HOMO-LUMO gap variations are close to the reaction enthalpies for these Diels-Alder reactions. Based on these results, we foresee quantitative reaction analysis on the orbital energies. Copyright © 2012 Wiley Periodicals, Inc.
Viability of long range dragonfly migration across the Indian Ocean: An energetics perspective
Saha, Sandeep; Nirwal, Satvik
2016-11-01
Recently Pantala flavescens (dragonflies) have been reported to migrate in millions from India to Eastern Africa on a multigenerational migratory circuit of length 14000-18000 kms. We attempt to understand the ability of dragonflies to perform long range migration by examining the energetics using computer simulations. In absence of a theory for long range insect migrations, we resort to the extensive literature on long range bird migration from the energetics perspective. The flight energetics depends upon instantaneous power and velocity. The mechanical flight power is computed from the power curve which is then converted to mass depletion using Brequet's equation. However, the mechanical flight power itself depends upon the instantaneous velocity which can vary depending upon the current mass. In order to predict the range in our simulations, we assume that the insect progressively tries to achieve the maximum range velocity. The results indicate that the migration range is approximately 1260 kms in 70 hours based on the true airspeed. However, our analysis is restricted by the lack of data and certain caveats in drag prediction and basal metabolism rate.
Contribution of long-range interactions to the secondary structure of an unfolded globin.
Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia
2010-09-08
This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Long-range tactile masking occurs in the postural body schema.
D'Amour, Sarah; Harris, Laurence R
2016-02-01
Long-range tactile masking has been reported between mirror symmetric body locations. This suggests a general principle of contralateral inhibition between corresponding points on each side of the body that may serve to enhance distinguishing touches on the two halves of the body. Do such effects occur before or after posture is added to the body schema? Here, we address this question by exploring the effect of arm position on long-range tactile masking. The influence of arm position was investigated using different positions of both the test and masking arms. Tactile sensitivity was measured on one forearm, while vibrotactile-masking stimulation was applied to the opposite arm or to a control site on the shoulder. No difference was found in sensitivity when test arm position was varied. Physical contact between the arms significantly increased the effectiveness of a masking stimulus applied to the other arm. Long-range masking between the arms was strongest when the arms were held parallel to each other and was abolished if the position of either the test arm or the masking arm was moved from this position. Modulation of the effectiveness of masking by the position of both the test and masking arms suggests that these effects occur after posture information is added to the body's representation in the brain.
Long-range correlations of electroencephalogram in rats irradiated by millimeter wave
International Nuclear Information System (INIS)
Xie Taorong; Pei Jian; Li Fen; Zhang Jie; Qi Hongxing; Chen Shude; Qiao Dengjiang
2011-01-01
A quantitative study was conducted on stress reaction in rat induced by 35 GHz millimeter wave. Long-range correlations analysis of the rat electroencephalogram(EEG) was investigated. The scaling exponents α 1 and α 2 were calculated by de-trended fluctuation analysis (DFA) method. The exponent α 1 shows that the high frequency EEG component is characterized by Brownian noise before irradiated by 35 GHz millimeter wave while it has long-range correlations during irradiation. The exponent α 2 shows that the low frequency EEG component has long-range correlations before irradiation while it is characterized by Brownian noise during irradiation. Introducing stress parameter k(k=α 2 /α 1 ), the average change rate of k was used to evaluate the intensity of stress in rat evoked by 35 GHz millimeter wave. The k increases 49.9%±13.6% during irradiation, which indicates that the high frequency EEG component becomes more ordered and the low frequency EEG component becomes more disordered, showing the acute stress in rat induced by 35 GHz millimeter wave. (authors)
Laser diode stack beam shaping for efficient and compact long-range laser illuminator design
Lutz, Y.; Poyet, J. M.
2014-04-01
Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is best suited for long-range image recording. Even when the laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) micro-lenses, their beam parameter products BPP are not compatible with direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long-range applications. A solution to overcome these difficulties is to enhance the poor slow-axis BPP by virtually restacking the laser diode stack. We present a beam shaping and homogenization method that is low-cost and efficient and has low alignment sensitivity. After conducting simulations, we have realized and characterized the illuminator. A compact long-range laser illuminator has been set up with a divergence of 3.5×2.6 mrad and a global efficiency of 81%. Here, a projection lens with a clear aperture of 62 mm and a focal length of 571 mm was used.
Describing long-range charge-separation processes with subsystem density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany); Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, 73 Warren St., Newark, New Jersey 07102 (United States)
2014-04-28
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.
Latella, Ivan; Pérez-Madrid, Agustín
2013-10-01
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Linear response theory for long-range interacting systems in quasistationary states.
Patelli, Aurelio; Gupta, Shamik; Nardini, Cesare; Ruffo, Stefano
2012-02-01
Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary states which have lifetimes that diverge with the system size. In this work, we address the question of how a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement with N-particle simulations for large N. We also show the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium state. © 2012 American Physical Society
Structure function analysis of long-range correlations in plasma turbulence
International Nuclear Information System (INIS)
Yu, C.X.; Gilmore, M.; Peebles, W.A.; Rhodes, T.L.
2003-01-01
Long-range correlations (temporal and spatial) have been predicted in a number of different turbulence models, both analytical and numerical. These long-range correlations are thought to significantly affect cross-field turbulent transport in magnetically confined plasmas. The Hurst exponent, H - one of a number of methods to identify the existence of long-range correlations in experimental data - can be used to quantify self-similarity scalings and correlations in the mesoscale temporal range. The Hurst exponent can be calculated by several different algorithms, each of which has particular advantages and disadvantages. One method for calculating H is via structure functions (SFs). The SF method is a robust technique for determining H with several inherent advantages that has not yet been widely used in plasma turbulence research. In this article, the SF method and its advantages are discussed in detail, using both simulated and measured fluctuation data from the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. In addition, it is shown that SFs used in conjunction with rescaled range analysis (another method for calculating H) can be used to mitigate the effects of coherent modes in some cases
Describing long-range charge-separation processes with subsystem density-functional theory
International Nuclear Information System (INIS)
Solovyeva, Alisa; Neugebauer, Johannes; Pavanello, Michele
2014-01-01
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states
Metal Contamination of the Natural Environment in Norway from Long Range Atmospheric Transport
International Nuclear Information System (INIS)
Steinnes, E.
2001-01-01
Long range atmospheric transport is the most important source of contamination to the natural environment in Norway with many heavy metals. Investigations based on aerosol studies, bulk deposition measurements and moss analysis show that airborne transport from other parts of Europe is the major mode for supply of vanadium, zinc, arsenic, selenium, molybdenum, cadmium, tin,antimony, tellurium, thallium, lead, and bismuth, whereas metals such as chromium, nickel, and copper are mainly derived from point sources within Norway and in northwestern Russia close to the Norwegian border. Elements associated with long range transport show substantial enrichment in the humus horizon of natural soils in southern Norway, sometimes to levels suspected to cause effects on soil microbial processes. E.g. lead concentration values of 150-200 ppm are observed in the most contaminated areas in the south as compared to about 5 ppm in the far north. Elements such as lead and cadmium also show enrichment in some terrestrial food chains. These elements also show considerably elevated levels over background concentrations in the water and sediment of small lakes in the southern part of the country. Retrospective studies based on ombrogenous peatcores indicate that long range transport has been a significant source of heavy metal contamination in southern Norway for the last couple of centuries. The deposition of most heavy metals in Norway has been considerably reduced over the last 20 yr, with the exception of contributions in the north from Russian smelters
Long-range correlations in rectal temperature fluctuations of healthy infants during maturation.
Directory of Open Access Journals (Sweden)
Georgette Stern
Full Text Available BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec fluctuations exhibit fractal long-range correlations with a mean (SD alpha of 1.51 (0.11, indicating that T(rec is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07 at 4 weeks to 1.58 (0.04 at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec pattern in young infants, reflective of maturation of
Statistical mechanics and dynamics of solvable models with long-range interactions
International Nuclear Information System (INIS)
Campa, Alessandro; Dauxois, Thierry; Ruffo, Stefano
2009-01-01
For systems with long-range interactions, the two-body potential decays at large distances as V(r)∼1/r α , with α≤d, where d is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive: the sum of the energies of macroscopic subsystems is not equal to the energy of the whole system. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties of the thermodynamics of short-range systems is at the origin of ensemble inequivalence. In turn, this inequivalence implies that specific heat can be negative in the microcanonical ensemble, and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity allows us to easily spot regions of parameter space where ergodicity may be broken. Historically, negative specific heat had been found for gravitational systems and was thought to be a specific property of a system for which the existence of standard equilibrium statistical mechanics itself was doubted. Realizing that such properties may be present for a wider class of systems has renewed the interest in long-range interactions. Here, we present a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of solvable systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Remarkably, the entropy of all these models can be obtained using the method of large deviations. Long-range interacting systems display an extremely slow relaxation towards thermodynamic equilibrium and, what is more striking, the convergence towards quasi-stationary states. The
Empirical mode decomposition and long-range correlation analysis of sunspot time series
International Nuclear Information System (INIS)
Zhou, Yu; Leung, Yee
2010-01-01
Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the
Growth dominates choice in network percolation
Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.
2013-09-01
The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.
International Nuclear Information System (INIS)
1995-01-01
This eleventh volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the twelfth session of the Executive Body held at Geneva from 28 November to 1 December 1994. Part one focuses on the possible impact of acid deposition on the quality of groundwater in the ECE region. The objective of this report is to present an updated review of available knowledge on the possible impact of deposition of sulphur and nitrogen compounds on the status of groundwater, including a brief survey of recent research results in this field. It updates an earlier report on the effects of air pollutants on groundwater, prepared within the Convention (EB.AIR/WG.1/R.9). Part two is an executive summary of the 1993 Report on the Forest Condition in Europe (Forest Condition in Europe. Results of the 1993 Survey. 1994 Report, EC-UN/ECE, Brussels, Geneva, 1994). The report describes the results of both the national and the transnational surveys which are conducted annually within the International Cooperative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) of the United Nations Economic Commission for Europe (ECE) and under European Community Council Regulation (EEC) 3528/86 on the protection of the Community's Forests against Atmospheric Pollution. Part three is a summary report on the options for further reduction of nitrogen oxide emissions from road heavy-duty vehicles (HDVs). This report is primarily focused on reduction options for road HDVs, but some of the technical measures reviewed can, however, also be applied to some non-road diesel engines, such as machinery in construction, agriculture or forestry
Fluid leakage near the percolation threshold
Dapp, Wolf B.; Müser, Martin H.
2016-02-01
Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.
Directory of Open Access Journals (Sweden)
Brook T Chernet
2015-01-01
Full Text Available In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions – key mediators of cell-cell communication – in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors – significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host’s physiological parameters.
The phase transition in the anisotropic Heisenberg model with long range dipolar interactions
International Nuclear Information System (INIS)
Mól, L.A.S.; Costa, B.V.
2014-01-01
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems
Influence of long-range Coulomb interaction in velocity map imaging.
Barillot, T; Brédy, R; Celep, G; Cohen, S; Compagnon, I; Concina, B; Constant, E; Danakas, S; Kalaitzis, P; Karras, G; Lépine, F; Loriot, V; Marciniak, A; Predelus-Renois, G; Schindler, B; Bordas, C
2017-07-07
The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.
Long-range-corrected Rung 3.5 density functional approximations
Janesko, Benjamin G.; Proynov, Emil; Scalmani, Giovanni; Frisch, Michael J.
2018-03-01
Rung 3.5 functionals are a new class of approximations for density functional theory. They provide a flexible intermediate between exact (Hartree-Fock, HF) exchange and semilocal approximations for exchange. Existing Rung 3.5 functionals inherit semilocal functionals' limitations in atomic cores and density tails. Here we address those limitations using range-separated admixture of HF exchange. We present three new functionals. LRC-ωΠLDA combines long-range HF exchange with short-range Rung 3.5 ΠLDA exchange. SLC-ΠLDA combines short- and long-range HF exchange with middle-range ΠLDA exchange. LRC-ωΠLDA-AC incorporates a combination of HF, semilocal, and Rung 3.5 exchange in the short range, based on an adiabatic connection. We test these in a new Rung 3.5 implementation including up to analytic fourth derivatives. LRC-ωΠLDA and SLC-ΠLDA improve atomization energies and reaction barriers by a factor of 8 compared to the full-range ΠLDA. LRC-ωΠLDA-AC brings further improvement approaching the accuracy of standard long-range corrected schemes LC-ωPBE and SLC-PBE. The new functionals yield highest occupied orbital energies closer to experimental ionization potentials and describe correctly the weak charge-transfer complex of ethylene and dichlorine and the hole-spin distribution created by an Al defect in quartz. This study provides a framework for more flexible range-separated Rung 3.5 approximations.
Pivotal role of hMT+ in long-range disambiguation of interhemispheric bistable surface motion.
Duarte, João Valente; Costa, Gabriel Nascimento; Martins, Ricardo; Castelo-Branco, Miguel
2017-10-01
It remains an open question whether long-range disambiguation of ambiguous surface motion can be achieved in early visual cortex or instead in higher level regions, which concerns object/surface segmentation/integration mechanisms. We used a bistable moving stimulus that can be perceived as a pattern comprehending both visual hemi-fields moving coherently downward or as two widely segregated nonoverlapping component objects (in each visual hemi-field) moving separately inward. This paradigm requires long-range integration across the vertical meridian leading to interhemispheric binding. Our fMRI study (n = 30) revealed a close relation between activity in hMT+ and perceptual switches involving interhemispheric segregation/integration of motion signals, crucially under nonlocal conditions where components do not overlap and belong to distinct hemispheres. Higher signal changes were found in hMT+ in response to spatially segregated component (incoherent) percepts than to pattern (coherent) percepts. This did not occur in early visual cortex, unlike apparent motion, which does not entail surface segmentation. We also identified a role for top-down mechanisms in state transitions. Deconvolution analysis of switch-related changes revealed prefrontal, insula, and cingulate areas, with the right superior parietal lobule (SPL) being particularly involved. We observed that directed influences could emerge either from left or right hMT+ during bistable motion integration/segregation. SPL also exhibited significant directed functional connectivity with hMT+, during perceptual state maintenance (Granger causality analysis). Our results suggest that long-range interhemispheric binding of ambiguous motion representations mainly reflect bottom-up processes from hMT+ during perceptual state maintenance. In contrast, state transitions maybe influenced by high-level regions such as the SPL. Hum Brain Mapp 38:4882-4897, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley
Long-Range Electron Effects upon Irradiation of Molecular Solids and Polymers
International Nuclear Information System (INIS)
Feldman, V.I.
2006-01-01
Long-range electron effects are responsible for specific localization and selectivity of the radiation-induced chemical transformations occurring in molecular solids and polymers, when the classic diffusion mobility is essentially restricted. In particullar, understanding of the effects of this kind may be of key significance for establishing new ways to control the radiation sensitivity of macromolecules and organized polymeric systems, nanomaterials and biopolymers. This talk will present an overview of model studies of the long-range electron effects with the characteristic scale from several angstroms to ten nanometers. The following aspects of the problem will be analyzed: (1) Positive hole delocalization in ionized molecules. This phenomenon has been demonstrated experimentally and confirmed by quantum chemical calculations for a number of various-type molecules (alkanes, conjugated polyenes, bifunctional compounds). The effective delocalization length was found to be up to 2 nm (or even larger). The role of this effect in site-selective radiation chemistry will be discussed in the frame of concepts of distributed reactivity and 'switching' between delocalized and localized states. (2) Trap-to-trap positive hole and electron migration between isolated molecules or functional groups. The characteristic distance for this process was estimated to be 2 to 4 nm. Special impact will be made on the possible role of this process in selection of specific isomers or conformers upon irradiation of complex systems and macromolecules. (3) The effects of long-range scavenging of low-energy secondary electrons in polymers and organized polymeric systems. As revealed by model experiments, the radius of electron capture in solid polymers may be in the range of 1 to 10 nm. Possible implications of scavenging effects for controlling the radiation chemistry of polymers and organized polymeric systems will be considered
An evaluation of dry deposition from the long range atmospheric dispersion
International Nuclear Information System (INIS)
Suh, K.S.; Kim, E.H.; Hwang, W.T.; Han, M.H.; Lee, H.S.; Lee, C.W.
2003-01-01
The dry deposition of pollutants released into the atmosphere must be evaluated to estimate the radiological dose of terrestrial plants and foodstuffs in the ecosystem. Especially, the atmospheric dispersion and dry deposition models have been widely developed to predict and minimize the radiological damage for the surrounding environment after the TMI-2 and the Chernobyl accidents. A Lagrangian particle model for the evaluation the long-range dispersion has been firstly developed in Korea since 2001. The particle tracking method was used for the estimation of the concentration distribution of the radioactive materials released into the atmosphere. The model is designed to estimate air concentration and ground deposition at distances up to some thousands of kilometers from the source point in the horizontal direction. The turbulent motion is considered to separate the treatment of particles within the mixing layer and above the mixing layer. Also, the dispersion model is designed to receive the results of the MM5 model being operated by KMA (Korea Meteorological Administration). The test run of the long-range dispersion model has been performed in the area which covered extends from 102.47deg E to 173.34deg E and from 12.27deg N to 53.72deg N in Northeast Asia. The release point of Cs-137 assumed in the east part of the China. The long range dispersion model has been firstly developed to estimate the radiological consequences against a nuclear accident. The model will be supplemented by the comparative study using the data of the ETEX experiments. (author)
Percolation under noise: Detecting explosive percolation using the second-largest component
Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.
2016-05-01
We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.
Improvement of linear reactivity methods and application to long range fuel management
International Nuclear Information System (INIS)
Woehlke, R.A.; Quan, B.L.
1982-01-01
The original development of the linear reactivity theory assumes flat burnup, batch by batch. The validity of this assumption is explored using multicycle burnup data generated with a detailed 3-D SIMULATE model. The results show that the linear reactivity method can be improved by correcting for batchwise power sharing. The application of linear reactivity to long range fuel management is demonstrated in several examples. Correcting for batchwise power sharing improves the accuracy of the analysis. However, with regard to the sensitivity of fuel cost to changes in various parameters, the corrected and uncorrected linear reactivity theories give remarkably similar results
Energy Technology Data Exchange (ETDEWEB)
Elfimova, E.A.; Ivanov, A.O. [Ural Federal University, ul. Lenina 51, Yekaterinburg 620000 (Russian Federation); Popescu, L.B. [Institute for Space Sciences, Atomistilor 409, Magurele RO-077125 (Romania); Socoliuc, V., E-mail: vsocoliuc@acad-tim.tm.edu.ro [Romanian Academy-Timisoara Branch, Center for Fundamental and Advanced Technical Research, Lab. Magnetic Fluids, Bv.M. Viteazu 24, Timisoara RO-300223 (Romania)
2017-06-01
A comparative study between experiment and the predictions of a theoretical model developed for the description of magnetically induced dichroism in ferrofluids with long range interacting bidisperse spherical nanoparticles is presented. Magnetically induced dichroism in dilution series of two ferrofluids with different surfactant thickness was measured. Both ferrofluids show a concave solid volume fraction dependence of the specific dichroism, whose characteristics are very well qualitatively explained by the theoretical model. The theory fails to satisfactorily explain the magnetic field dependence of the highly concentrated samples specific dichroism, due to inherent approximations in the virial expansion of the pair correlation function.
Simulation of the flow past a long-range artillery projectile
Kaurinkoski, Petri
2000-01-01
In this work, an eddy breakup model for chemical reactions is implemented to an existing multi-block Navier-Stokes solver, which is then used to solve the flow past a supersonic long-range base-bleed projectile. The new scheme is validated by simulating an axisymmetric bluff-body stabilized flame, which has been measured in a wind tunnel and simulated numerically by other work groups. Comparison of the numerical results for the projectile shows the importance of the chemistry modelling fo...
Long-range inverse two-spin correlations in one-dimensional Potts lattices
International Nuclear Information System (INIS)
Tejero, C.F.; Cuesta, J.A.; Brito, R.
1989-01-01
The inverse two-spin correlation function of a one-dimensional three-state Potts lattice with constant nearest-neighbor interactions in a uniform external field is derived exactly. It is shown that the external field induces long-range correlations. The inverse two-spin correlation function decays in a monotonic exponential fashion for a ferromagnetic lattice, while it decays in an oscillatory exponential fashion for an antiferromagnetic lattice. With no external field the inverse two-spin correlation function has a finite range equal to that of the interactions
Photonic band gap structures for long-range surface plasmon polaritons
DEFF Research Database (Denmark)
Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas
2005-01-01
Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of ~20 nm centered at 1550 nm. The possibilities...
Molina-Mendoza, Aday J; Rodrigo, José G; Island, Joshua; Burzuri, Enrique; Rubio-Bollinger, Gabino; van der Zant, Herre S J; Agraït, Nicolás
2014-02-01
The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.
Energy Technology Data Exchange (ETDEWEB)
Molina-Mendoza, Aday J., E-mail: aday.molina@uam.es [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Rodrigo, José G.; Rubio-Bollinger, Gabino [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Island, Joshua; Burzuri, Enrique; Zant, Herre S. J. van der [Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Agraït, Nicolás [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid (Spain)
2014-02-15
The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.
Surface Roughness Measurements Utilizing Long-Range Surface-Plasma Waves
1984-11-01
8217 The theory dealt only with the depen- modes, one symmetric and one antisymmetric, dence of the real wave vector on the real part of that propagate...quantity, while the wave vector is complex. It is shown that for both the supported and unsup- From Eqs. (1) and (2) one obtains the real implic- ported...Opt. Soc. sabbatical leave from the University of Toledo. Am.). Optical feild enhancemeft by long-range surface- I" ouT In O’ in OUT way@, plasma waves
Generalized Efficient Inference on Factor Models with Long-Range Dependence
DEFF Research Database (Denmark)
Ergemen, Yunus Emre
. Short-memory dynamics are allowed in the common factor structure and possibly heteroskedastic error term. In the estimation, a generalized version of the principal components (PC) approach is proposed to achieve efficiency. Asymptotics for efficient common factor and factor loading as well as long......A dynamic factor model is considered that contains stochastic time trends allowing for stationary and nonstationary long-range dependence. The model nests standard I(0) and I(1) behaviour smoothly in common factors and residuals, removing the necessity of a priori unit-root and stationarity testing...
A long-range attractive interaction of rotons in superfluid 4He
International Nuclear Information System (INIS)
Nishiyama, Toshiyuki; Sai, Shunkichi
1974-01-01
With the use of the method of the collective description developed by one of the authors (N) for superfluid 4 He, it is shown that a long-range interaction of rotons transmitted by phonons is attractive and yields a resonance state of a roton pair with the binding energy of the order of magnitude 0.12 K which is relevant to the recent experimental results of the Raman scattering. The effect of the short-range mutual interaction of rotons is also discussed. Some comments on the relationship to the other theories of the collective description are made in appendices. (author)
Solvent extraction treatment of PCB contaminated soil at Sparrevohn Long Range Radar Station, Alaska
International Nuclear Information System (INIS)
Weimer, L. D.
1999-01-01
On-site soil treatment at a long range radar station in Alaska, which was contaminated with between 50 and 350 mg/kg of polychlorinated biphenyls (PCBs) is described. The stock-piled soil was treated by the Terra Kleen Response Group, using a solvent extraction process. After the treatment, PCB concentrations in the treated soil were found to have been reduced to less than the target treatment level of 15 mg/kg. Not only was the process successful, it also saved the government about $ 1 million over what hauling and off-site treatment and disposal would have cost. 1 tab
Surface enhanced raman scattering at Ag-Pyridine interface by use of long range surface plasmon
International Nuclear Information System (INIS)
Baik, Moon Gu; Ko, Eu; Kwan, Do Kyeong; Lee, Ja Hyung; Chang, Joon Sung
1990-01-01
Surface-enhanced Raman scattering (SERS) experiment of pyridine (C 5 H 5 N) has been performed at silverpyridine interface by use of long range surface plasmon (LRSP) which is generated in the Sarid-type attenuated total reflection (ATR) structure consisting of prism, dielectic, metal and dielectic media. Generation of LRSP has been confirmed by observing the propagation of the LRSP. Raman signal of pyridine adsorbed on the silver surface in the above layered structure has been observed and compared with the bulk Raman signal and SERS signal from the chemically adsorbed pyridine. SERS experiment by use of LRSP has not yet reported to the best of our knowledge. (Author)
Gavrilov, S. S.
2018-01-01
The system of cavity polaritons driven by a plane electromagnetic wave is found to undergo the spontaneous breaking of spatial symmetry, which results in a lifted phase locking with respect to the driving field and, consequently, in the possibility of internal ordering. In particular, periodic spin and intensity patterns arise in polariton wires; they exhibit strong long-range order and can serve as media for signal transmission. Such patterns have the properties of dynamical chimeras: they are formed spontaneously in perfectly homogeneous media and can be partially chaotic. The reported new mechanism of chimera formation requires neither time-delayed feedback loops nor nonlocal interactions.
Heteronuclear long-range correlation, what’s new and how far can it take us?
DEFF Research Database (Denmark)
Sørensen, Ole W.
: A novel experiment for small-molecule and biomolecular NMR at natural isotopic abundance. Sebastian Meier, Andrew J. Benie, Jens Ø. Duus and Ole W. Sørensen, Journal of Magnetic Resonance, in press, doi:10.1016/j.jmr.2009.06.017 Recent progress in heteronuclear long-range NMR of complex carbohydrates: 3D...... H2BC and clean HMBC. Sebastian Meier, Bent O. Petersen, Jens Ø. Duus, Ole W. Sørensen. Carbohydrate Research, in press, doi:10.1016/j.carres.2009.08.013...
Two-dimensional angular momentum in the presence of long-range magnetic flux
International Nuclear Information System (INIS)
Jackiw, R.; Redlich, A.N.
1983-01-01
It is shown that eigenvalues of two-dimensional angular momentum remain integer valued in the magnetic field of a solenoid, contrary to published assertions that they are modified by the flux. For a vortex, flux does contribute, and the angular momentum can fractionize, as asserted in the literature, provided phases of wave functions are chosen consistently with the solenoid problem. Long-range effects of flux, the distinction between orbital and canonical angular momentum, and interactions with Cooper pairs are essential to this argument
Energy Technology Data Exchange (ETDEWEB)
Catechis, Christopher Spyros
2013-02-01
The property subject to this Environmental Baseline Survey (EBS) is located at the Oliktok Long Range Radar Station (LRRS). The Oliktok LRRS is located at 70À 30 W latitude, 149À 53 W longitude. It is situated at Oliktok Point on the shore of the Beaufort Sea, east of the Colville River. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.
Time delays of supernova neutrinos from new long-range interactions
International Nuclear Information System (INIS)
Malaney, R.A.; Starkman, G.D.; Tremaine, S.
1995-01-01
A new long-range interaction between heavy neutrinos may solve some current problems in large-scale structure, if the new interaction mimics gravity. Assuming that the dark matter is dominated by ∼100 eV τ neutrinos, we investigate whether time delay measurements on supernova neutrinos can test this possibility. We find that such experiments can rule out or detect specific forms of the new interaction potential. In addition, we find the exact dispersive nature of the interacting medium to be critical in determining the time delay: even small corrections to the potential can dramatically alter the magnitude of the effect
Propagation of long-range surface plasmon polaritons in photonic crystals
DEFF Research Database (Denmark)
Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.
2005-01-01
We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded...... structures, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....
Neutrino-Pair Exchange Long-Range Force Between Aggregate Matter
Segarra, A.
2016-01-01
We study the long-range force arising between two neutral---of electric charge---aggregates of matter due to a neutrino-pair exchange, in the limit of zero neutrino mass. The conceptual basis for the construction of the effective potential comes from the coherent scattering amplitude at low values of t. This amplitude is obtained using the methodology of an unsubtracted dispersion relation in t at threshold for s, where (s, t) are the Lorentz invariant scattering variables. The ultraviolet be...
Meromorphic extension of the scattering matrix for long range two-body problems
International Nuclear Information System (INIS)
Gerard, C.; Martinez, A.
1989-01-01
We prove the existence of a meromorphic extension of the scattering matrix for long range potentials analytic at infinity. This extension exists as a bounded operator on some Gevrey spaces on S n-1 , with critical depending on the rate of decay of the potential at infinity. We use a semi-stationary definition of the scattering operator due to Isozaki-Kitada, using time independent modifiers. We show that the poles of the scattering matrix coincide with the resonances of the Hamiltonian [fr
International Nuclear Information System (INIS)
Choi, Myoung Seon; Heo, Won Nyoung
2013-01-01
In long range ultrasonic testing, a phased array probe composed of multiple identical transducers with an uniform interval of one quarter wavelength is usually used for the transmission or reception directivity control. This paper shows that the propagation directions of individual echoes can be identified in real time by displaying the inputs of a process for summing the constitution reception signals after compensating the phase difference due to the transducer interval, together with the output of the process. A constructive interference of the constitution echoes indicates a forward direction echo propagating along an intended direction while a destructive interference implies a reverse direction echo propagating along the direction opposite to the intended one
Long-range effects of direct-hit ultraviolet and particle radiation in oncogene activation
International Nuclear Information System (INIS)
Ladik, J.J.
1990-01-01
A simple statistical analysis shows that the oncogene-activation effect of chemical carcinogens cannot be explained if one takes into account only short-range effects. As one of the most probable solid state physical long-range effects, the generation at the site of carcinogen binding of travelling solitary waves, which can interfere with DNA-blocking protein interactions, is discussed. It has been shown that the direct hit carcinogenic effects on DNA by ultraviolet--or particle radiation can also be explained by the generation of solitary waves (in the latter case the first step is a collective plasma oscillation which decays to individual local excitations and ionizations)
DEFF Research Database (Denmark)
Darden, Safi-Kirstine Klem; Dabelsteen, Torben; Pedersen, Simon Boel
2003-01-01
Vocal individuality has been found in a number canid species. This natural variation can have applications in several aspects of species conservation, from behavioral studies to estimating population density or abundance. The swift fox (Vulpes velox) is a North American canid listed as endangered...... in Canada and extirpated, endangered, or threatened in parts of the United States. The barking sequence is a long-range vocalization in the species' vocal repertoire. It consists of a series of barks and is most common during the mating season. We analyzed barking sequences recorded in a standardized...
Spontaneous Lorentz violation and the long-range gravitational preferred-frame effect
International Nuclear Information System (INIS)
Graesser, Michael L.; Jenkins, Alejandro; Wise, Mark B.
2005-01-01
Lorentz-violating operators involving Standard Model fields are tightly constrained by experimental data. However, bounds are more model-independent for Lorentz violation appearing in purely gravitational couplings. The spontaneous breaking of Lorentz invariance by the vacuum expectation value of a vector field selects a universal rest frame. This affects the propagation of the graviton, leading to a modification of Newton's law of gravity. We compute the size of the long-range preferred-frame effect in terms of the coefficients of the two-derivative operators in the low-energy effective theory that involves only the graviton and the Goldstone bosons
Neutron diffraction study of the magnetic long-range order in Tb
DEFF Research Database (Denmark)
Dietrich, O.W.; Als-Nielsen, Jens Aage
1967-01-01
Like other heavy rare-earth metals, Tb exhibits a magnetic phase with a spiral structure. This appears within the temperature region from 216 to 226deg K between the ferromagnetic phase and the paramagnetic phase. The transition between ferromagnetic and spiral structure is of first order and imp...... at 216deg K to 20.7deg at 226deg K. The temperature variation of the transverse magnetostriction has also been measured and was found to vary approximately in proportion to the square of the magnetic long-range order....
CGC/saturation approach for soft interactions at high energy: long range rapidity correlations
International Nuclear Information System (INIS)
Gotsman, E.; Maor, U.; Levin, E.
2015-01-01
In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y 1 , y 2 ) ≥ 1, which is independent of y 1 and y 2 . Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)
Worldwide status of long range atmospheric transportation models for use in emergency situations
International Nuclear Information System (INIS)
Tveten, U.
1992-02-01
This report contains the results of the work of a working group put together in order to summarize the status of long range atmospheric transportation models for use in an emergency situation in real-time mode. The most important characteristics of the various models are summarized. The models in use in the Nordic countries as well as a couple of non-Nordic models are presented in more detail. A discussion of the desired characteristics of real-time models (also referred to as Emergency Response Assisting Systems) is included
Long range order and hydrogen bonding in liquid methanol: A Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Shilov, I.Y.; Rode, B.M. [Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria); Durov, V.A. [Department of Physical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation)
1999-02-01
A Monte Carlo simulation of liquid methanol was performed in NVT ensemble at 298 K using a cubic simulation box containing 500 molecules. Long-range correlations in the liquid are discussed on the basis of site-site radial distribution functions. Hydrogen bonding and topological structure of the methanol aggregates were evaluated in detail, namely the number of linked molecules, formation of branches and cyclic structures. The necessity of larger simulation boxes for a full structural description and thermodynamic characterization of hydrogen-bonded liquids is clearly established by the results. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Information content of long-range NMR data for the characterization of conformational heterogeneity
Energy Technology Data Exchange (ETDEWEB)
Andrałojć, Witold [University of Florence, Center for Magnetic Resonance (CERM) (Italy); Berlin, Konstantin; Fushman, David, E-mail: fushman@umd.edu [University of Maryland, Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization (United States); Luchinat, Claudio, E-mail: luchinat@cerm.unifi.it; Parigi, Giacomo; Ravera, Enrico [University of Florence, Center for Magnetic Resonance (CERM) (Italy); Sgheri, Luca [CNR, Istituto per le Applicazioni del Calcolo, Sezione di Firenze (Italy)
2015-07-15
Long-range NMR data, namely residual dipolar couplings (RDCs) from external alignment and paramagnetic data, are becoming increasingly popular for the characterization of conformational heterogeneity of multidomain biomacromolecules and protein complexes. The question addressed here is how much information is contained in these averaged data. We have analyzed and compared the information content of conformationally averaged RDCs caused by steric alignment and of both RDCs and pseudocontact shifts caused by paramagnetic alignment, and found that, despite the substantial differences, they contain a similar amount of information. Furthermore, using several synthetic tests we find that both sets of data are equally good towards recovering the major state(s) in conformational distributions.
Mechanism of long-range penetration of low-energy ions in botanic samples
International Nuclear Information System (INIS)
Liu Feng; Wang Yugang; Xue Jianming; Wang Sixue; Du Guanghua; Yan Sha; Zhao Weijiang
2002-01-01
The authors present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100 keV Ar + ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60 μm thick kidney bean slices with the probability of about 1.0 x 10 -5 . The energy spectrum of 1 MeV He + ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples
Long-range PCR facilitates the identification of PMS2-specific mutations.
Clendenning, Mark; Hampel, Heather; LaJeunesse, Jennifer; Lindblom, Annika; Lockman, Jan; Nilbert, Mef; Senter, Leigha; Sotamaa, Kaisa; de la Chapelle, Albert
2006-05-01
Mutations within the DNA mismatch repair gene, "postmeiotic segregation increased 2" (PMS2), have been associated with a predisposition to hereditary nonpolyposis colorectal cancer (HNPCC; Lynch syndrome). The presence of a large family of highly homologous PMS2 pseudogenes has made previous attempts to sequence PMS2 very difficult. Here, we describe a novel method that utilizes long-range PCR as a way to preferentially amplify PMS2 and not the pseudogenes. A second, exon-specific, amplification from diluted long-range products enables us to obtain a clean sequence that shows no evidence of pseudogene contamination. This method has been used to screen a cohort of patients whose tumors were negative for the PMS2 protein by immunohistochemistry and had not shown any mutations within the MLH1 gene. Sequencing of the PMS2 gene from 30 colorectal and 11 endometrial cancer patients identified 10 novel sequence changes as well as 17 sequence changes that had previously been identified. In total, putative pathologic mutations were detected in 11 of the 41 families. Among these were five novel mutations, c.705+1G>T, c.736_741del6ins11, c.862_863del, c.1688G>T, and c.2007-1G>A. We conclude that PMS2 mutation detection in selected Lynch syndrome and Lynch syndrome-like patients is both feasible and desirable. Published 2006 Wiley-Liss, Inc.
Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models.
Mehta, Neil A; Levin, Deborah A
2018-03-01
Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.
Han, SangEun; Moon, Eun-Gook
2018-06-01
Topological states may be protected by a lattice symmetry in a class of topological semimetals. In three spatial dimensions, the Berry flux around gapless excitations in momentum space concretely defines a chirality, so a protecting symmetry may be referred to as a chiral symmetry. Prime examples include a Dirac semimetal (DSM) in a distorted spinel, BiZnSiO4, protected by a mirror symmetry, and a DSM in Na3Bi , protected by a rotational symmetry. In these states, topology and chiral symmetry are intrinsically tied. In this Rapid Communication, the characteristic interplay between a chiral symmetry order parameter and an instantaneous long-range Coulomb interaction is investigated with the standard renormalization group method. We show that a topological transition associated with chiral symmetry is stable under the presence of a Coulomb interaction and the electron velocity always becomes faster than the one of a chiral symmetry order parameter. Thus, the transition must not be relativistic, which implies that supersymmetry is intrinsically forbidden by the long-range Coulomb interaction. Asymptotically exact universal ratios of physical quantities such as the energy gap ratio are obtained, and connections with experiments and recent theoretical proposals are also discussed.
Cubic–quintic long-range interactions with double well potentials
International Nuclear Information System (INIS)
Tsilifis, Panagiotis A; Kevrekidis, Panayotis G; Rothos, Vassilis M
2014-01-01
In the present work, we examine the combined effects of cubic and quintic terms of the long-range type in the dynamics of a double well potential. Employing a two-mode approximation, we systematically develop two cubic–quintic ordinary differential equations and assess the contributions of the long-range interactions in each of the relevant prefactors, gauging how to simplify the ensuing dynamical system. Finally, we obtain a reduced canonical description for the conjugate variables of relative population imbalance and relative phase between the two wells and proceed to a dynamical systems analysis of the resulting pair of ordinary differential equations. While in the case of cubic and quintic interactions of the same kind (e.g. both attractive or both repulsive), only a symmetry-breaking bifurcation can be identified, a remarkable effect that emerges e.g. in the setting of repulsive cubic but attractive quintic interactions is a ‘symmetry-restoring’ bifurcation. Namely, in addition to the supercritical pitchfork that leads to a spontaneous symmetry breaking of the antisymmetric state, there is a subcritical pitchfork that eventually reunites the asymmetric daughter branch with the antisymmetric parent one. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. The model is argued to be of physical relevance, especially so in the context of optical thermal media. (paper)
Long-range Transport Modeling System and its Application over the Northeast Asia
Directory of Open Access Journals (Sweden)
Il-Soo Park
2006-06-01
Full Text Available A Comprehensive Acid Deposition Modeling (CADM was developed at the National Institute of Environmental Research (NIER and Yonsei University in South Korea in order to simulate the long-range transboundary air pollutants and regional acid deposition processes over the Northeast Asia. The modeling system CADM is composed of a real-time numerical weather forecasting model (RAMS and an Eulerian air pollution transport/dispersion/deposition model including gas- and aqueous-phase atmospheric chemical processes for the real-time acquisition of model results and prediction of acidic pollutants. The main objective of CADM is to facilitate an efficient assessment tools by providing the explicit information on the acidic deposition processes. This paper introduces the components of CADM, and describes the comprehensive atmospheric modeling system including atmospheric chemistry for the simulation of acidic processes over the Eastern Asia. The presently developed modeling system CADM has been used to simulate long-range transport over the Northeast Asian region during the spring season from March 5 to 15 2002. For the model validation, the simulated results are compared with both aircraft measurements and surface monitoring observations, and discussed for its operational consideration in Korea
The feasibility of long range battery electric cars in New Zealand
International Nuclear Information System (INIS)
Duke, Mike; Andrews, Deborah; Anderson, Timothy
2009-01-01
New Zealand transport accounts for over 40% of the carbon emissions with private cars accounting for 25%. In the Ministry of Economic Development's recently released 'New Zealand Energy Strategy to 2050', it proposed the wide scale deployment of electric vehicles as a means of reducing carbon emissions from transport. However, New Zealand's lack of public transport infrastructure and its subsequent reliance on private car use for longer journeys could mean that many existing battery electric vehicles (BEVs) will not have the performance to replace conventionally fuelled cars. As such, this paper discusses the potential for BEVs in New Zealand, with particular reference to the development of the University of Waikato's long-range UltraCommuter BEV. It is shown that to achieve a long range at higher speeds, BEVs should be designed specifically rather than retrofitting existing vehicles to electric. Furthermore, the electrical energy supply for a mixed fleet of 2 million BEVs is discussed and conservatively calculated, along with the number of wind turbines to achieve this. The results show that approximately 1350 MW of wind turbines would be needed to supply the mixed fleet of 2 million BEVs, or 54% of the energy produced from NZ's planned and installed wind farms.
An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation
AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry
2015-01-01
In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.
An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation
Energy Technology Data Exchange (ETDEWEB)
Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk
2015-06-01
In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.
Proper construction of ab initio global potential surfaces with accurate long-range interactions
International Nuclear Information System (INIS)
Ho, Tak-San; Rabitz, Herschel
2000-01-01
An efficient procedure based on the reproducing kernel Hilbert space interpolation method is presented for constructing intermolecular potential energy surfaces (PES) using not only calculated ab initio data but also a priori information on long-range interactions. Explicitly, use of the reciprocal power reproducing kernel on the semiinfinite interval [0,∞) yields a set of exact linear relations between dispersion (multipolar) coefficients and PES data points at finite internuclear separations. Consequently, given a combined set of ab initio data and the values of dispersion (multipolar) coefficients, the potential interpolation problem subject to long-range interaction constraints can be solved to render globally smooth, asymptotically accurate ab initio potential energy surfaces. Very good results have been obtained for the one-dimensional He-He potential curve and the two-dimensional Ne-CO PES. The construction of the Ne-CO PES was facilitated by invoking a new reproducing kernel for the angular coordinate based on the optimally stable and shape-preserving Bernstein basis functions. (c) 2000 American Institute of Physics
Long-range psu(2,2|4) Bethe ansatze for gauge theory and strings
International Nuclear Information System (INIS)
Beisert, Niklas; Staudacher, Matthias
2005-01-01
We generalize various existing higher-loop Bethe ansatze for simple sectors of the integrable long-range dynamic spin chain describing planar N=4 super-Yang-Mills theory to the full psu(2,2|4) symmetry and, asymptotically, to arbitrary loop order. We perform a large number of tests of our conjectured equations, such as internal consistency, comparison to direct three-loop diagonalization and expected thermodynamic behavior. In the special case of the su(1|2) subsector, corresponding to a long-range t-J model, we are able to derive, up to three loops, the S-matrix and the associated nested Bethe ansatz from the gauge theory dilatation operator. We conjecture novel all-order S-matrices for the su(1|2) and su(1,1|2) subsectors, and show that they satisfy the Yang-Baxter equation. Throughout the paper, we muse about the idea that quantum string theory on AdS 5 xS 5 is also described by a psu(2,2|4) spin chain. We propose asymptotic all-order Bethe equations for this putative ''string chain'', which differ in a systematic fashion from the gauge theory equations
Long-range Self-interacting Dark Matter in the Sun
International Nuclear Information System (INIS)
Chen, Jing; Liang, Zheng-Liang; Wu, Yue-Liang; Zhou, Yu-Feng
2015-01-01
We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in a non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided
Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.
Directory of Open Access Journals (Sweden)
Maria Carmela Padula
Full Text Available Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders.
Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order
Morozovska, A. N.; Eliseev, E. A.
2010-02-01
The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.
R-matrix-valued Lax pairs and long-range spin chains
Sechin, I.; Zotov, A.
2018-06-01
In this paper we discuss R-matrix-valued Lax pairs for slN Calogero-Moser model and their relation to integrable quantum long-range spin chains of the Haldane-Shastry-Inozemtsev type. First, we construct the R-matrix-valued Lax pairs for the third flow of the classical Calogero-Moser model. Then we notice that the scalar parts (in the auxiliary space) of the M-matrices corresponding to the second and third flows have form of special spin exchange operators. The freezing trick restricts them to quantum Hamiltonians of long-range spin chains. We show that for a special choice of the R-matrix these Hamiltonians reproduce those for the Inozemtsev chain. In the general case related to the Baxter's elliptic R-matrix we obtain a natural anisotropic extension of the Inozemtsev chain. Commutativity of the Hamiltonians is verified numerically. Trigonometric limits lead to the Haldane-Shastry chains and their anisotropic generalizations.
ANL site response for the DOE FY1994 information resources management long-range plan
Energy Technology Data Exchange (ETDEWEB)
Boxberger, L.M.
1992-03-01
Argonne National Laboratory's ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory's previous submissions. The response contains both narrative and tabular material. It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory's Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.
ANL site response for the DOE FY1994 information resources management long-range plan
Energy Technology Data Exchange (ETDEWEB)
Boxberger, L.M.
1992-03-01
Argonne National Laboratory`s ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory`s previous submissions. The response contains both narrative and tabular material. It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory`s Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, ``Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.
Long Range Dependence Prognostics for Bearing Vibration Intensity Chaotic Time Series
Directory of Open Access Journals (Sweden)
Qing Li
2016-01-01
Full Text Available According to the chaotic features and typical fractional order characteristics of the bearing vibration intensity time series, a forecasting approach based on long range dependence (LRD is proposed. In order to reveal the internal chaotic properties, vibration intensity time series are reconstructed based on chaos theory in phase-space, the delay time is computed with C-C method and the optimal embedding dimension and saturated correlation dimension are calculated via the Grassberger–Procaccia (G-P method, respectively, so that the chaotic characteristics of vibration intensity time series can be jointly determined by the largest Lyapunov exponent and phase plane trajectory of vibration intensity time series, meanwhile, the largest Lyapunov exponent is calculated by the Wolf method and phase plane trajectory is illustrated using Duffing-Holmes Oscillator (DHO. The Hurst exponent and long range dependence prediction method are proposed to verify the typical fractional order features and improve the prediction accuracy of bearing vibration intensity time series, respectively. Experience shows that the vibration intensity time series have chaotic properties and the LRD prediction method is better than the other prediction methods (largest Lyapunov, auto regressive moving average (ARMA and BP neural network (BPNN model in prediction accuracy and prediction performance, which provides a new approach for running tendency predictions for rotating machinery and provide some guidance value to the engineering practice.
Induction of early long-range epigenetic changes by α-irradiation in arabidopsis thaliana plants
International Nuclear Information System (INIS)
Xu Shuyan; Li Fanghua; Wang Ting; Bian Po; Wu Yuejin
2011-01-01
Along the way, the mutagenic mechanism of low-energy ions irradiation is a debatable issue. Recently, the existence of radiation induced long-range (mutagenic) effects in vivo in plants has been performed in a series of studies of our group, which account for the mutagenesis of low-energy ions irradiation in a new perspective. However, numerous distinct biology phenomena remain to be addressed, which bear obvious characteristics to epigenetic.In the present study, using the expression of methylation-related AtDML3 gene and methylation level of specific gene segments as end points, the methylation of cytosine, the most important feature of epigenetic,was investigated. It was shown that, in A. thaliana, root-localized α-irradiation could induce epigenetic changes in aerial parts which avoided the direct irradiation. The radiation induced long-range epigenetic changes were confirmed in this study, which supplied innovative ideas for the further investigation of the mutagenetic mechanism of low-energy ions irradiation. (authors)
Relative phase asynchrony and long-range correlation of long-term solar magnetic activity
Deng, Linhua
2017-07-01
Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.
Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition.
Basu, Jayeeta; Zaremba, Jeffrey D; Cheung, Stephanie K; Hitti, Frederick L; Zemelman, Boris V; Losonczy, Attila; Siegelbaum, Steven A
2016-01-08
The cortico-hippocampal circuit is critical for storage of associational memories. Most studies have focused on the role in memory storage of the excitatory projections from entorhinal cortex to hippocampus. However, entorhinal cortex also sends inhibitory projections, whose role in memory storage and cortico-hippocampal activity remains largely unexplored. We found that these long-range inhibitory projections enhance the specificity of contextual and object memory encoding. At the circuit level, these γ-aminobutyric acid (GABA)-releasing projections target hippocampal inhibitory neurons and thus act as a disinhibitory gate that transiently promotes the excitation of hippocampal CA1 pyramidal neurons by suppressing feedforward inhibition. This enhances the ability of CA1 pyramidal neurons to fire synaptically evoked dendritic spikes and to generate a temporally precise form of heterosynaptic plasticity. Long-range inhibition from entorhinal cortex may thus increase the precision of hippocampal-based long-term memory associations by assessing the salience of mnemonormation to the immediate sensory input. Copyright © 2016, American Association for the Advancement of Science.
Boundary Associated Long Noncoding RNA Mediates Long-Range Chromosomal Interactions.
Directory of Open Access Journals (Sweden)
Ifeoma Jane Nwigwe
Full Text Available CCCTC binding factor (CTCF is involved in organizing chromosomes into mega base-sized, topologically associated domains (TADs along with other factors that define sub-TAD organization. CTCF-Cohesin interactions have been shown to be critical for transcription insulation activity as it stabilizes long-range interactions to promote proper gene expression. Previous studies suggest that heterochromatin boundary activity of CTCF may be independent of Cohesin, and there may be additional mechanisms for defining topological domains. Here, we show that a boundary site we previously identified known as CTCF binding site 5 (CBS5 from the homeotic gene cluster A (HOXA locus exhibits robust promoter activity. This promoter activity from the CBS5 boundary element generates a long noncoding RNA that we designate as boundary associated long noncoding RNA-1 (blncRNA1. Functional characterization of this RNA suggests that the transcript stabilizes long-range interactions at the HOXA locus and promotes proper expression of HOXA genes. Additionally, our functional analysis also shows that this RNA is not needed in the stabilization of CTCF-Cohesin interactions however CTCF-Cohesin interactions are critical in the transcription of blncRNA1. Thus, the CTCF-associated boundary element, CBS5, employs both Cohesin and noncoding RNA to establish and maintain topologically associated domains at the HOXA locus.
Long-ranged interactions in thin TiN films at the superconductor-insulator transition?
Energy Technology Data Exchange (ETDEWEB)
Kronfeldner, Klaus; Strunk, Christoph [Institute for Experimental and Applied Physics, University of Regensburg (Germany); Baturina, Tatyana [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk (Russian Federation)
2015-07-01
We measured IV-characteristics and magnetoresistance of square TiN-films in the vicinity of the disorder-tuned superconductor-insulator transition (SIT) for different sizes (5 μm to 240 μm). While the films are superconducting at zero magnetic field, at finite fields a SIT occurs. The resistance shows thermally activated behaviour on both sides of the SIT. Deep in the superconducting regime the activation energy grows linear with the sample size as expected for a size-independent critical current density. Closer to the SIT the activation energy becomes clearly size independent. On the insulating side the magnetoresistance maximum and the activation energy both grow logarithmically with sample size which is consistent with a size-limited charge BKT (Berezinskii-Kosterlitz-Thouless) scenario. In order to test for the presence of long-ranged interactions in our films, we investigate the influence of a topgate. It is expected to screen the possible long-ranged interactions as the distance of the film to the gate is much shorter than the electrostatic screening length deduced from the size-dependent activation energy.
Szczelkun, Mark D
2011-04-01
To cleave DNA, the Type III RM (restriction-modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.
Quasiuniversal Connectedness Percolation of Polydisperse Rod Systems
Nigro, B.; Grimaldi, C.; Chatterjee, A.P.; van der Schoot, P. P. A. M.
2013-01-01
The connectedness percolation threshold (ηc) and critical coordination number (Zc) of systems of penetrable spherocylinders characterized by a length polydispersity are studied by way of Monte Carlo simulations for several aspect ratio distributions. We find that (i) ηc is a nearly universal
Conformal Field Theory of Percolation (1)
CERN. Geneva
2015-01-01
This series of 5 lectures will describe what is known about the Logarithmic CFT describing the critical point of percolation. The subsequent lectures will take place in TH Conference room on: (2) Wednesday Sep 16 at 10am (3) Thursday Sep 17 at 10am (4) Thursday Sep 17 at 2pm (5) Friday Sep 18 at 10am
Percolation of interdependent network of networks
International Nuclear Information System (INIS)
Havlin, Shlomo; Stanley, H. Eugene; Bashan, Amir; Gao, Jianxi; Kenett, Dror Y.
2015-01-01
Complex networks appear in almost every aspect of science and technology. Previous work in network theory has focused primarily on analyzing single networks that do not interact with other networks, despite the fact that many real-world networks interact with and depend on each other. Very recently an analytical framework for studying the percolation properties of interacting networks has been introduced. Here we review the analytical framework and the results for percolation laws for a Network Of Networks (NONs) formed by n interdependent random networks. The percolation properties of a network of networks differ greatly from those of single isolated networks. In particular, because the constituent networks of a NON are connected by node dependencies, a NON is subject to cascading failure. When there is strong interdependent coupling between networks, the percolation transition is discontinuous (first-order) phase transition, unlike the well-known continuous second-order transition in single isolated networks. Moreover, although networks with broader degree distributions, e.g., scale-free networks, are more robust when analyzed as single networks, they become more vulnerable in a NON. We also review the effect of space embedding on network vulnerability. It is shown that for spatially embedded networks any finite fraction of dependency nodes will lead to abrupt transition
Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film
Lai, K.; Nakamura, M.; Kundhikanjana, W.; Kawasaki, M.; Tokura, Y.; Kelly, M. A.; Shen, Z.-X.
2010-01-01
Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.
Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film
Lai, K.
2010-07-08
Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.
Mesoscopic percolating resistance network in a strained manganite thin film.
Lai, Keji; Nakamura, Masao; Kundhikanjana, Worasom; Kawasaki, Masashi; Tokura, Yoshinori; Kelly, Michael A; Shen, Zhi-Xun
2010-07-09
Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd(1/2)Sr(1/2)MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.
Moukhtar, Julien; Faivre-Moskalenko, Cendrine; Milani, Pascale; Audit, Benjamin; Vaillant, Cedric; Fontaine, Emeline; Mongelard, Fabien; Lavorel, Guillaume; St-Jean, Philippe; Bouvet, Philippe; Argoul, Françoise; Arneodo, Alain
2010-04-22
Sequence dependency of DNA intrinsic bending properties has been emphasized as a possible key ingredient to in vivo chromatin organization. We use atomic force microscopy (AFM) in air and liquid to image intrinsically straight (synthetic), uncorrelated (hepatitis C RNA virus) and persistent long-range correlated (human) DNA fragments in various ionic conditions such that the molecules freely equilibrate on the mica surface before being captured in a particular conformation. 2D thermodynamic equilibrium is experimentally verified by a detailed statistical analysis of the Gaussian nature of the DNA bend angle fluctuations. We show that the worm-like chain (WLC) model, commonly used to describe the average conformation of long semiflexible polymers, reproduces remarkably well the persistence length estimates for the first two molecules as consistently obtained from (i) mean square end-to-end distance measurement and (ii) mean projection of the end-to-end vector on the initial orientation. Whatever the operating conditions (air or liquid, concentration of metal cations Mg(2+) and/or Ni(2+)), the persistence length found for the uncorrelated viral DNA underestimates the value obtained for the straight DNA. We show that this systematic difference is the signature of the presence of an uncorrelated structural intrinsic disorder in the hepatitis C virus (HCV) DNA fragment that superimposes on local curvatures induced by thermal fluctuations and that only the entropic disorder depends upon experimental conditions. In contrast, the WLC model fails to describe the human DNA conformations. We use a mean-field extension of the WLC model to account for the presence of long-range correlations (LRC) in the intrinsic curvature disorder of human genomic DNA: the stronger the LRC, the smaller the persistence length. The comparison of AFM imaging of human DNA with LRC DNA simulations confirms that the rather small mean square end-to-end distance observed, particularly for G
Biogeochemical Impact of Long-Range Transported Dust over Northern South China Sea
Tsay, Si-Chee; Wang, S. H.; Hsu, N. C.
2011-01-01
Transpacific transport and impact of Asian dust aerosols have been well documented (e.g., results from ACE-Asia and regional follow-on campaigns), but little is known about dust invasion to the South China Sea (SCS). On 19-21 March 2010, a fierce Asian dust storm affected large areas from the Gobi deserts to the West Pacific, including Taiwan and Hong Kong. As a pilot study of the 7-SEAS (Seven South East Asian Studies) in the northern SCS, detailed characteristics of long-range transported dust aerosols were first observed by a comprehensive set of ground-based instruments deployed at the Dongsha islands (20deg42'52" N, 116deg43'51" E). Aerosol measurements such as particle mass concentrations, size distribution, optical properties, hygroscopicity, and vertical profiles help illustrate the evolution of this dust outbreak. Our results indicate that these dust particles were mixed with anthropogenic and marine aerosols, and transported near the surface. Satellite assessment of biogeochemical impact of dust deposition into open oceans is hindered by our current inability in retrieving areal dust properties and ocean colors over an extensive period of time, particularly under the influence of cloudy conditions. In this paper, we analyze the changes of retrieved Chlorophyll-a (Chl-a) concentration over the northern SCS, considered as oligotophic waters in the spring, from long-term SeaWiFS measurements since 1997. Over the past decade, six long-range transported dust events are identified based on spatiotemporal evolutions of PM10 measurements from regional monitoring stations, with the aid of trajectory analysis. Multi-year composites of Chl-a imagery for dust event and non-dust background during March-April are applied to overcome insufficient retrievals of Chl-a due to cloudy environment. Due to anthropogenic modification within a shallow boundary layer off the densely populated and industrial southeast coast of China, the iron ion activation of deliquescent dust
Electron spin resonance for the detection of long-range spin nematic order
Furuya, Shunsuke C.; Momoi, Tsutomu
2018-03-01
Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low
Global earthquake catalogs and long-range correlation of seismic activity (Invited)
Ogata, Y.
2009-12-01
In view of the long-term seismic activity in the world, homogeneity of a global catalog is indispensable. Lately, Engdahl and Villaseñor (2002) compiled a global earthquake catalog of magnitude (M)7.0 or larger during the last century (1900-1999). This catalog is based on the various existing catalogs such as Abe catalog (Abe, 1981, 1984; Abe and Noguchi, 1983a, b) for the world seismicity (1894-1980), its modified catalogs by Perez and Scholz (1984) and by Pacheco and Sykes (1992), and also the Harvard University catalog since 1975. However, the original surface wave magnitudes of Abe catalog were systematically changed by Perez and Scholz (1984) and Pacheco and Sykes (1992). They suspected inhomogeneity of the Abe catalog and claimed that the two seeming changes in the occurrence rate around 1922 and 1948 resulted from magnitude shifts for some instrumental-related reasons. They used a statistical test assuming that such a series of large earthquakes in the world should behave as the stationary Poisson process (uniform occurrences). It is obvious that their claim strongly depends on their a priori assumption of an independent or short-range dependence of earthquake occurrence. We question this assumption from the viewpoint of long-range dependence of seismicity. We make some statistical analyses of the spectrum, dispersion-time diagrams and R/S for estimating and testing of the long-range correlations. We also attempt to show the possibility that the apparent rate change in the global seismicity can be simulated by a certain long-range correlated process. Further, if we divide the globe into the two regions of high and low latitudes, for example, we have different shapes of the cumulative curves to each other, and the above mentioned apparent change-points disappear from the both regions. This suggests that the Abe catalog shows the genuine seismic activity rather than the artifact of the suspected magnitude shifts that should appear in any wide enough regions
25 CFR 170.412 - How is the tribal IRR long-range transportation plan developed and approved?
2010-04-01
...-range transportation plan developed and approved? (a) The tribal IRR long-range transportation plan is... 25 Indians 1 2010-04-01 2010-04-01 false How is the tribal IRR long-range transportation plan developed and approved? 170.412 Section 170.412 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR...
Long-range and head-on beam-beam compensation studies in RHIC with lessons for the LHC
International Nuclear Information System (INIS)
Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J.-P.; Sterbini, G.; Zimmermann, F.; Kim, H.-J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.
2009-01-01
Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations
Long-range autocorrelations of CpG islands in the human genome.
Directory of Open Access Journals (Sweden)
Benjamin Koester
Full Text Available In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes.
Devinck, Frédéric; Delahunt, Peter B; Hardy, Joseph L; Spillmann, Lothar; Werner, John S
2005-05-01
When a dark chromatic contour delineating a figure is flanked on the inside by a brighter chromatic contour, the brighter color will spread into the entire enclosed area. This is known as the watercolor effect (WCE). Here we quantified the effect of color spreading using both color-matching and hue-cancellation tasks. Over a wide range of stimulus chromaticities, there was a reliable shift in color appearance that closely followed the direction of the inducing contour. When the contours were equated in luminance, the WCE was still present, but weak. The magnitude of the color spreading increased with increases in luminance contrast between the two contours. Additionally, as the luminance contrast between the contours increased, the chromaticity of the induced color more closely resembled that of the inside contour. The results support the hypothesis that the WCE is mediated by luminance-dependent mechanisms of long-range color assimilation.
Theoretical analysis of ridge gratings for long-range surface plasmon polaritons
DEFF Research Database (Denmark)
Søndergaard, Thomas; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra
2006-01-01
Optical properties of ridge gratings for long-range surface plasmon polaritons (LRSPPs) are analyzed theoretically in a two-dimensional configuration via the Lippmann-Schwinger integral equation method. LRSPPs being supported by a thin planar gold film embedded in dielectric are considered...... to be scattered by an array of equidistant gold ridges on each side of the film designed for in-plane Bragg scattering of LRSPPs at the wavelength ~1550 nm. Out-of-plane scattering (OUPS), LRSPP transmission, reflection, and absorption are investigated with respect to the wavelength, the height of the ridges...... peak it is preferable to use longer gratings with smaller ridges compared to gratings with larger ridges, because the former result in a smaller OUPS from the grating facets than the latter. The theoretical analysis and its conclusions are supported with experimental results on the LRSPP reflection...
CGC/saturation approach for soft interactions at high energy: long range rapidity correlations
Energy Technology Data Exchange (ETDEWEB)
Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico- Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)
2015-11-15
In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y{sub 1}, y{sub 2}) ≥ 1, which is independent of y{sub 1} and y{sub 2}. Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)
A review on the long-range strategy of nuclear power development
International Nuclear Information System (INIS)
An, Shigehiro; Kondo, Shunsuke; Ishida, Hiroshi.
1979-01-01
Nuclear power generation in Japan is proceeding steadily, such as the world's second in power generating capacity and the nation's own development of power reactors. Meanwhile, however, there are number of problems for future solution, like the establishment of nuclear fuel cycle, before nuclear energy is fully harnessed. Looking as far ahead as the 21st century, the long-range strategy of nuclear power development is reviewed: politics on uranium supply outlook, a compromise between uranium enrichment and nuclear nonproliferation, LWR technology with safety, FBR development scheme, uranium resources saving and heavy water reactor, HTGR development, a 2nd fuel reprocessing plant, high level wastes management, reactors decommissioning, research in nuclear energy development, and fostering of a nuclear power industry. (J.P.N.)
The rf sigmameter: A digital phase-locked technique for accurate long-range laser scanning
International Nuclear Information System (INIS)
Zhu, M.; Hall, J.L.
1986-01-01
The authors use a new version of a sigmameter, the two-channel field-widened rf sigmameter, to map optical frequency into the phase of an rf signal. This enables them to lock the laser frequency on the interferometer by using a phase-locked loop (PLL). Controlling the reference phase of the PLL electronically, they are able to scan the laser frequency over a long range step by step or with substeps. The systematic error of each substep is cancelled automatically when the authors change one step (which is ten substeps, for example), and that of each step is cancelled when they change the reference phase by 2π (which corresponds to 256 steps in their scheme)
Characterization of long-range plasmonic waveguides at visible to near-infrared regime
Directory of Open Access Journals (Sweden)
Sheng-Ting Huang
2017-12-01
Full Text Available Long-range surface plasmon polariton waveguides composed with thin gold stripes embedded in SU-8 polymer cladding with various stripe widths were fabricated. Material properties of the polymer cladding layer, gold thin film, and the device structures were discussed. Optical properties based on modal propagation were characterized at visible to near-infrared wavelengths. The measured propagation losses of waveguide widths from 3 to 9 μm at 633, 785, and 1550 nm are 7.5-18.8, 6.8-12.5, and 1.9-3.9 dB/mm, respectively. Guiding mode properties such as overlap integrals between the simulated and the measured fields and the polarization extinction ratios of the waveguides with different stripe widths were investigated at the telecommunication wavelength. Good accordance between the measurement and simulation results was presented.
Integrated-Optics Components Utilizing Long-Range Surface Plasmon Polaritons
DEFF Research Database (Denmark)
Boltasseva, Alexandra
2004-01-01
This thesis describes a new class of components for integrated optics, based on the propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in a dielectric. These novel components can provide guiding of light as well as coupling and splitting from/into a number...... with experimental results is obtained. The interaction of LR-SPPs with photonic crystals (PCs) is also studied. The PC structures are formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film. The LR-SPP transmission through...... of channels with good performance. Guiding of LR-SPPs along nm-thin and µm-wide gold stripes embedded in polymer is investigated in the wavelength range of 1250 – 1650 nm. LR-SPP guiding properties, such as the propagation loss and mode field diameter, are studied for different stripe widths and thicknesses...
Long-range alpha detection applied to soil contamination and waste monitoring
International Nuclear Information System (INIS)
MacArthur, D.W.; Allander, K.S.; Bounds, J.A.; Close, D.A.; McAtee, J.L.
1992-01-01
Alpha contamination monitoring has been traditionally limited by the short range of alpha particles in air and through detector windows. The long-range alpha detector (LRAD) described in this paper circumvents that limitation by detecting alpha-produced ions, rather than alpha particles directly. Since the LRAD is sensitive to all ions, it can monitor all contamination present on a large surface at one time. Because air is the ''detector gas,'' the LRAD can detect contamination on any surface to which air can penetrate. We present data showing the sensitivity of LRAD detectors, as well as documenting their ability to detect alpha sources in previously unmonitorable locations, and verifying the ion lifetime. Specific designs and results for soil contamination and waste monitors are also included
Application of Back Trajectory Model to Predict Long Range Transport of Pollutant
International Nuclear Information System (INIS)
Shamsiah Abdul Rahman; Mohd Suhaimi Hamzah; Mohd Suhaimi Elias
2011-01-01
Trans-boundary haze pollution in Malaysia has become an issue that created a public attention over the past several years. The presence of haze not only caused by internal and external sources but it sometime coincided with the El Nino phenomenon which prolonged the dry season during the southwest monsoon in May to September. In this study fine particulate data (PM 2.5) of Klang Valley region covering the period from 1997 to 2008 were used to investigate the source location that responsible for the long range transport of pollutant. Back trajectory model the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was used to calculate the air mass backward trajectories up to 120 hours (5 days) for the days when fine particle were sampled. (author)
Long-range correlation in synchronization and syncopation tapping: a linear phase correction model.
Directory of Open Access Journals (Sweden)
Didier Delignières
Full Text Available We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-paced and synchronization tapping, for a unifying framework of event-based timing.
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Olivier, Nicolas
2016-01-01
We study experimentally and theoretically nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The nonlinear absorption of the plasmonic modes in the waveguides is measured with femtosecond pulses revealing a strong dependence of the third......-order nonlinear susceptibility of the gold core on the pulse duration and layer thickness. A comprehensive model for the pulse duration dependence of the third-order nonlinear susceptibility is developed on the basis of the nonlinear Schrödinger equation for plasmonic mode propagation in the waveguides....... The model accounts for the intrinsic delayed (noninstantaneous) nonlinearity of free electrons of gold as well as the thickness of the gold film and is experimentally verified. The obtained results are important for the development of active plasmonic and nanophotonic components....
Atmospheric emissions and long-range transport of persistent organic chemicals
Directory of Open Access Journals (Sweden)
Scheringer M.
2010-12-01
Full Text Available Persistent organic chemicals include several groups of halogenated compounds, such as polychlorinated biphenyls (PCBs, polybrominated diphenylethers (PBDEs, and polyfluorinated carboxylic acids (PFCAs. These chemicals remain for long times (years to decades in the environment and cycle between different media (air, water, sediment, soil, vegetation, etc.. The environmental distribution of this type of chemicals can conveniently be analyzed by multimedia models. Multimedia models consist of a set of coupled mass balance equations for the environmental media considered; they can be set up at various scales from local to global. Two applications of multimedia models to airborne chemicals are discussed in detail: the day-night cycle of PCBs measured in air near the surface, and the atmospheric long-range transport of volatile precursors of PFCAs, formation of PFCAs by oxidation of these precursors, and subsequent deposition of PFCAs to the surface in remote regions such as the Arctic.
Pipeline defect prediction using long range ultrasonic testing and intelligent processing
International Nuclear Information System (INIS)
Dino Isa; Rajprasad Rajkumar
2009-01-01
This paper deals with efforts to improve nondestructive testing (NDT) techniques by using artificial intelligence in detecting and predicting pipeline defects such as cracks and wall thinning. The main emphasis here will be on the prediction of corrosion type defects rather than just detection after the fact. Long range ultrasonic testing will be employed, where a ring of piezoelectric transducers are used to generate torsional guided waves. Various defects such as cracks as well as corrosion under insulation (CUI) will be simulated on a test pipe. The machine learning algorithm known as the Support Vector Machine (SVM) will be used to predict and classify transducer signals using regression and large margin classification. Regression results show that the SVM is able to accurately predict future defects based on trends of previous defect. The classification performance was also exceptional showing a facility to detect defects at different depths as well as for distinguishing closely spaced defects. (author)
International Nuclear Information System (INIS)
Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.
2005-01-01
We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment
Alternative long-ranged charge optimized many-body potential for aluminium.
Mo, Yunjie; He, Yingyou; Feng, Xiaofang; Jiang, Shaoji
2017-12-06
A new COMB3 potential was developed for aluminium, which focuses on long-range interaction and phase transition. The potential was developed by fitting the equilibrium lattice properties of different phases and defects to ensure its transferability to general systems. The quality of the potential was tested in several problems and compared with the EAM potential as well as the published COMB3 potential, the effect of the cutoff method was studied in detail to demonstrate the necessity to extend the cutoff region. Systems of strong deformations along the Bain path, under a trigonal strain and with planar stacking faults were calculated and the present potential performed as well as the EAM potential. At last, a surface process that involves adsorption and diffusion was studied using the present potential.
Long-range correlations of serial FEV1 measurements in emphysematous patients and normal subjects
DEFF Research Database (Denmark)
Dirksen, A; Holstein-Rathlou, N H; Madsen, F
1998-01-01
are autocorrelated. The purpose of this study was to describe the correlation structure in time series of FEV1 measurements. Nineteen patients with severe alpha1-antitrypsin deficiency (phenotype PiZ) and moderate to severe emphysema and two subjects with normal lungs were followed for several years with daily self......In obstructive lung disease the annual change in lung function is usually estimated from serial measurements of forced expiratory volume in 1 s (FEV1). Frequent measurements in each patient may not improve this estimate because data are not statistically independent; i.e., the measurements...... measurements show long-range correlations. The practical implication is that FEV1 need not be measured more often than once every 3 mo in studies of the long-term trends in lung function....
High-power laser delocalization in plasmas leading to long-range beam merging
Energy Technology Data Exchange (ETDEWEB)
Nakatsutsumi, M; Marques, J R; Antici, P; Bourgeois, N; Romagnani, L; Audebert, P; Fuchs, J [UPMC, CEA, CNRS, LULI, Ecole Polytech, F-91128 Palaiseau (France); Nakatsutsumi, M; Kodama, R [Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871 (Japan); Antici, P [Univ Roma La Sapienza, Dipartimento SBAI, I-00161 Rome (Italy); Feugeas, J L; Nicolai, P [Univ Bordeaux 1, CNRS, CEA, Ctr Lasers Intenses and Applicat, F-33405 Talence (France); Lin, T [Fox Chase Canc Ctr, Philadelphia, PA 19111 (United States)
2010-07-01
Attraction and fusion between co-propagating light beams, mutually coherent or not, can take place in nonlinear media as a result of the beam power modifying the refractive index of the medium. In the context of high-power light beams, induced modifications of the beam patterns could potentially impact many topics, including long-range laser propagation, the study of astrophysical colliding blast waves and inertial confinement fusion. Here, through experiments and simulations, we show that in a fully ionized plasma, which is a nonlinear medium, beam merging can take place for high-power and mutually incoherent beams that are initially separated by several beam diameters. This is in contrast to the usual assumption that this type of interaction is limited to beams separated by only one beam diameter. This effect, which is orders of magnitude more significant than Kerr-like nonlinearity in gases, demonstrates the importance of potential cross-talk amongst multiple beams in plasma. (authors)
Long-range correlations in a simple stochastic model of coupled transport
International Nuclear Information System (INIS)
Larralde, Hernan; Sanders, David P
2009-01-01
We study coupled transport in the nonequilibrium stationary state of a model consisting of independent random walkers, moving along a one-dimensional channel, which carry a conserved energy-like quantity, with density and temperature gradients imposed by reservoirs at the ends of the channel. In our model, walkers interact with other walkers at the same site by sharing energy at each time step, but the amount of energy carried does not affect the motion of the walkers. We find that already in this simple model long-range correlations arise in the nonequilibrium stationary state which are similar to those observed in more realistic models of coupled transport. We derive an analytical expression for the source of these correlations, which we use to obtain semi-analytical results for the correlations themselves assuming a local-equilibrium hypothesis. These are in very good agreement with results from direct numerical simulations.
DEFF Research Database (Denmark)
Kunstmann-Olsen, Casper; Hoyland, James; Rubahn, Horst-Günter
2012-01-01
Details of hydrodynamic focusing in a 2D microfluidic channel-junction are investigated experimentally and theoretically, especially the effect on the focusing width of volumetric flow ratio r between main and side channels, as well as angle θ between channels. A non-linear relationship is observed...... and it is observed that in the middle section of the channel, a smaller θ induces less divergence. This effect is of importance for microfluidic systems utilizing hydrodynamic focusing in long, straight channels....... where the focus width decreases rapidly with increasing r and levels off at higher values. For the dependence on θ, results from both experiments and modeling show that an increased focusing effect is obtained as θ approaches 90°. Long-range focusing is explored along a 1 cm long channel...
International Nuclear Information System (INIS)
Yu-Dong, Chen; Li, Li; Yi, Zhang; Jian-Ming, Hu
2009-01-01
In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain power-law between the mean flux (activity) (F i ) of the i-th node and its variance σ i as σ i α (F i ) α . Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaling phenomenon. (general)
International Nuclear Information System (INIS)
Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles
2003-01-01
We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms
Protein adsorption on tailored substrates: long-range forces and conformational changes
Energy Technology Data Exchange (ETDEWEB)
Bellion, M; Santen, L [Department of Theoretical Physics, Saarland University, 66041 Saarbruecken (Germany); Mantz, H; Haehl, H; Quinn, A; Nagel, A; Gilow, C; Weitenberg, C; Schmitt, Y; Jacobs, K [Department of Experimental Physics, Saarland University, 66041 Saarbruecken (Germany)], E-mail: k.jacobs@physik.uni-saarland.de
2008-10-08
Adsorption of proteins onto solid surfaces is an everyday phenomenon that is not yet fully understood. To further the current understanding, we have performed in situ ellipsometry studies to reveal the adsorption kinetics of three different proteins, lysozyme, {alpha}-amylase and bovine serum albumin. As substrates we offer Si wafers with a controlled Si oxide layer thickness and a hydrophilic or hydrophobic surface functionalization, allowing the tailoring of the influence of short- and long-range interactions. Our studies show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate. We compare the experimental findings to results of a colloidal Monte Carlo approach that includes conformational changes of the adsorbed proteins induced by density fluctuations.
Bond alternation in the infinite polyene: effect of long range Coulomb interactions
International Nuclear Information System (INIS)
Mazumdar, S.; Campbell, D.K.
1985-01-01
We investigate the effects of long-range Coulomb interactions on bond and site dimerizations in a one-dimensional half-filled band. It is shown that the ground state broken symmetry is determined by two sharp inequalities involving the Coulomb parameters. Broken symmetry with periodicity 2k/sub F/ is guaranteed only if the first inequality (downward convexity of the intersite potential) is obeyed, while the second inequality gives the phase boundary between the bond-dimerized and site-dimerized phases. Application of these inequalities to the Pariser-Parr-Pople model for linear polyenes shows that the infinite polyene has enhanced bond alternation for both Ohno and Mataga-Nishimoto parametrizations of the intersite Coulomb terms. The possible role of distant neighbor interactions in photogeneration experiments is discussed. 26 refs., 3 figs
Zemcov, Michael; Immel, Poppy; Nguyen, Chi; Cooray, Asantha; Lisse, Carey M; Poppe, Andrew R
2017-04-11
The cosmic optical background is an important observable that constrains energy production in stars and more exotic physical processes in the universe, and provides a crucial cosmological benchmark against which to judge theories of structure formation. Measurement of the absolute brightness of this background is complicated by local foregrounds like the Earth's atmosphere and sunlight reflected from local interplanetary dust, and large discrepancies in the inferred brightness of the optical background have resulted. Observations from probes far from the Earth are not affected by these bright foregrounds. Here we analyse the data from the Long Range Reconnaissance Imager (LORRI) instrument on NASA's New Horizons mission acquired during cruise phase outside the orbit of Jupiter, and find a statistical upper limit on the optical background's brightness similar to the integrated light from galaxies. We conclude that a carefully performed survey with LORRI could yield uncertainties comparable to those from galaxy counting measurements.
Propagation of long-range surface plasmon polaritons in photonic band gap structures
DEFF Research Database (Denmark)
Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas
2005-01-01
We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate......, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....
8th Annual report 1999. UN ECE convention on long-range transboundary air pollution
Energy Technology Data Exchange (ETDEWEB)
Kleemola, S.; Forsius, M. [eds.
1999-07-01
The Integrated Monitoring Programme (ICP IM) is part of the Effects Monitoring Strategy under the UN ECE Convention on Long-Range Transboundary Air Pollution. The main aim of ICP IM is to provide a framework to observe and understand the complex changes occurring in the external environment. This report summarizes the work carried out by the ICP IM Programme Centre and several collaborating institutes. The emphasis of the report is in the work done during the programme year 1998/99 including: - a short summary of previous data assessments - a short status report of the ICP IM activities, content of the IM database, and the present geographical coverage of the monitoring network - a documentation of the scientific strategies to carry out data assessment on two priority topics: - assessment of heavy metal pools and fluxes - assessment of cause-effect relationships for understorey vegetation - a description of the WATBAL-model for estimating monthly water balance components, including soil water fluxes. (orig.)
Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections
Energy Technology Data Exchange (ETDEWEB)
Chai, Jeng-Da; Head-Gordon, Martin
2008-06-14
We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical atom-atom dispersion corrections. The resulting functional, {omega}B97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, {omega}B97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our previous functionals, such as {omega}B97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.
International Nuclear Information System (INIS)
Mourragui, Mustapha; Orlandi, Enza
2013-01-01
A particle system with a single locally-conserved field (density) in a bounded interval with different densities maintained at the two endpoints of the interval is under study here. The particles interact in the bulk through a long-range potential parametrized by β⩾0 and evolve according to an exclusion rule. It is shown that the empirical particle density under the diffusive scaling solves a quasilinear integro-differential evolution equation with Dirichlet boundary conditions. The associated dynamical large deviation principle is proved. Furthermore, when β is small enough, it is also demonstrated that the empirical particle density obeys a law of large numbers with respect to the stationary measures (hydrostatic). The macroscopic particle density solves a non-local, stationary, transport equation. (paper)
Oak Ridge National Laboratory Health and Safety Long-Range Plan: Fiscal years 1989--1995
Energy Technology Data Exchange (ETDEWEB)
1989-06-01
The health and safety of its personnel is the first concern of ORNL and its management. The ORNL Health and Safety Program has the responsibility for ensuring the health and safety of all individuals assigned to ORNL activities. This document outlines the principal aspects of the ORNL Health and Safety Long-Range Plan and provides a framework for management use in the future development of the health and safety program. Each section of this document is dedicated to one of the health and safety functions (i.e., health physics, industrial hygiene, occupational medicine, industrial safety, nuclear criticality safety, nuclear facility safety, transportation safety, fire protection, and emergency preparedness). Each section includes functional mission and objectives, program requirements and status, a summary of program needs, and program data and funding summary. Highlights of FY 1988 are included.
About long range pairing correlations in the Hubbard U-t-t' models
International Nuclear Information System (INIS)
Moreo, A.
1991-01-01
Using a quantum Monte Carlo method the authors measured pair correlation functions with different symmetries as a function of the filling, U/t and t'/t for the Hubbard and U-t-t' models. For the first time the Monte Carlo results are presented for U/t larger than the bandwidth 8t, away from half-filling. D-wave and extended S-wave pairing correlations are enhanced. D-wave pairing is stronger at half-filling but this behavior is reversed when the filling decreases. However, none of the eight pairing correlations that were studied increases as a function of lattice size, which makes the existence of long range superconducting order unlikely. (author). 10 refs.; 5 figs
International Nuclear Information System (INIS)
Charusiri, W.; Eua-arporn, B.; Ubonwat, J.
2008-01-01
In 2004, the total energy consumption in Thailand increased 8.8 per cent, from 47,806 to 60,260 ktoe. Long-range Energy Alternatives Planning (LEAP) is an accounting tool that simulates future energy scenarios. According to a Business As Usual (BAU) case, the overall energy demand in Thailand is estimated to increase from 61,262 to 254,200 ktoe between 2004 and 2030. Commercial energy consumption, which comprises petroleum products, natural gas, coal and its products, and electricity, increased by 9.0 per cent in Thailand in 2004, and new and renewable energy increased by 7.8 per cent. Nearly 60 per cent of the total commercial energy supply in Thailand was imported and increased for a fifth year in a row. The changes in energy consumption can be attributed to population growth and increase in economic activity and development. 10 refs., 5 tabs., 14 figs
Control of long range turbulent transport with biasing in the tokamak scrape-off-layer
International Nuclear Information System (INIS)
Figarella, C.F.; Ghendrih, Ph.; Sarazin, Y.; Attuel, G.; Benkadda, S.; Beyer, P.; Falchetto, G.; Fleurence, E.; Garbet, X.; Grandgirard, V.
2005-01-01
Cross-field transport in the SOL influences tokamak performance in particular regarding the divertor efficiency. Recent experiment evidence emphasizes non-exponential and/or flat SOL profiles that suggest a large perpendicular transport. A 2D fluid model based on the interchange instability to simulate the SOL turbulence was found to exhibits intermittent dynamics of the particle flux. We propose a control method that prevents long range transport events from reaching the far SOL: It consists in biasing the far SOL leading to a transport barrier which stops the propagation of these intermittent events. The best trade off is to localize the biased toroidal ring around the baffles. We show that such a control is achievable providing the strength of the barrier is strong enough. The investigation of the minimal biasing power required to achieve the control as well as its experimental estimate is performed
Non-linear characteristics and long-range correlations in Asian stock markets
Jiang, J.; Ma, K.; Cai, X.
2007-05-01
We test several non-linear characteristics of Asian stock markets, which indicates the failure of efficient market hypothesis and shows the essence of fractal of the financial markets. In addition, by using the method of detrended fluctuation analysis (DFA) to investigate the long range correlation of the volatility in the stock markets, we find that the crossover phenomena exist in the results of DFA. Further, in the region of small volatility, the scaling behavior is more complicated; in the region of large volatility, the scaling exponent is close to 0.5, which suggests the market is more efficient. All these results may indicate the possibility of characteristic multifractal scaling behaviors of the financial markets.
Long-range interactions of excited He atoms with ground-state noble-gas atoms
Zhang, J.-Y.
2013-10-09
The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition operators. The large-n expansions for the sums over the He oscillator strength divided by the corresponding transition energy are presented for these series. Using the expansions, the C6 coefficients for the systems involving He(131,3S) and He(131,3P) are calculated and found to be in good agreement with directly calculated values.
Possible manifestation of long range forces in high energy hadron collisions
International Nuclear Information System (INIS)
Kuraev, Eh.A.; Ferro, P.; Trentadue, L.
1997-01-01
Pion-pion and photon-photon scattering are discussed.. We obtain, starting from the impact representation introduced by Cheng and Wu a new contribution to the high energy hadron-hadron scattering amplitude for small transferred momentum q 2 of the form is (q 2 /m 4 )ln(-q 2 /m 2 ). This behaviour may be interpreted as a manifestation of long transverse-range forces between hadrons which, for ρ>> m -1 fall off as ρ -4 . We consider the examples of pion and photon scattering with photons converted in the intermediate state to two pairs of quarks interacting by exchanging two gluon colorless state. A phenomenological approach for proton impact factor is used to analyze proton-proton scattering. The analysis of the lowest order radiative corrections for the case of photon-photon scattering is done. We discuss the possibility of observing the effects of these long range forces
Shiga toxin induces membrane reorganization and formation of long range lipid order
DEFF Research Database (Denmark)
Solovyeva, Vita; Johannes, Ludger; Simonsen, Adam Cohen
2015-01-01
membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids...... inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin...... binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains....
Long-range cargo transport on crowded microtubules: The motor jamming mechanism
Rossi, Lucas W.; Radtke, Paul K.; Goldman, Carla
2014-05-01
The hopping model for cargo transport by molecular motors introduced in Goldman and Sena (2009), Goldman (2010) is extended here in order to incorporate the movement of cargo-motor complexes (C-MC). Hopping processes in this context express the possibility for cargo to be exchanged between neighboring motors at a microtubule where the transport takes place. Jamming of motors is essential for cargos to execute long-range movement in this way. Results from computer simulations accompanied by a mean-field analysis of the extended model confirm our previous analytical results and suggests that an interplay between cargo hopping and the movement of the C-MC’s would control the efficiency of cargo transfer and cargo delivery in these model systems.
Spectral properties of an extended Hubbard ladder with long range anti-ferromagnetic order
Yang, Chun; Feiguin, Adrian
We study the spectral properties of a Hubbard ladder with anti-ferromagnetic long range order by introducing a staggered Heisenberg interaction that decays algebraically. Unlike an alternating field or the t -Jz model, our problem preserves both SU (2) and translational invariance. We solve the problem with the time-dependent density matrix renormalization group and analyze the binding between holons and spinons and the structure of the elementary excitations. We discuss the implications in the context of the 2D Hubbard model at, and away from half-filling by using cluster perturbation theory (CPT). AF acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, for support under Grant DE-SC0014407.
A Sinusoidal Applied Electric Potential can Induce a Long-Range, Steady Electrophoretic Force
Amrei, Seyyed Hashemi; Ristenpart, William D.; Miller, Greg R.
2017-11-01
We use the standard electrokinetic model to numerically investigate the electric field in aqueous solutions between parallel electrodes under AC polarization. In contrast to prior work, we invoke no simplifying assumptions regarding the applied voltage, frequency, or mismatch in ionic mobilities. We find that the nonlinear electromigration terms significantly contribute to the overall shape of the electric potential vs. time, which at sufficiently high applied potentials develops multi-modal peaks. More surprisingly, we find that electrolytes with non-equal mobilities yield an electric field with non-zero time average at large distances from the electrodes. Our calculations indicate this long-range electric field suffices to levitate colloidal particles many microns away from the electrode against the gravitational field, in accord with experimental observations of such behavior (Woehl et al., PRX, 2015). Moreover, the results indicate that particles will aggregate laterally near electrodes in some electrolytes but separate in others, helping explain a longstanding but not well understood phenomenon.
Airborne lidar observations of long-range transport in the free troposphere
Shipley, S. T.; Browell, E. V.; Mcdougal, D. S.; Orndorff, B. L.; Haagenson, P.
1984-01-01
Airborne lidar measurements of ozone and aerosols in the lower troposphere show the presence of pollutant layers above the mixed layer. Two case studies are analyzed to identify probable source regions and mechanisms for material injection into the free troposphere above local mixed layers. An elevated haze/oxidant layer observed over South Carolina on Aug. 2, 1980, was found to originate in cumulus convection over Georgia on Aug. 1, 1980. An extensive haze/oxidant layer observed over southeastern Virginia on July 31, 1981, is shown to have been in contact with the New England mixed layer on July 30, 1981. This transported air mass is estimated to contribute approximately 30 percent of the ozone maximum measured at the surface in the Norfolk, VA, area on July 31, 1981. Such elevated 'reservoir' layers are transported over long ranges and are not detected by sensors which are confined to the surface.
Tagliazucchi, Enzo; von Wegner, Frederic; Morzelewski, Astrid; Brodbeck, Verena; Jahnke, Kolja; Laufs, Helmut
2013-09-17
The integration of segregated brain functional modules is a prerequisite for conscious awareness during wakeful rest. Here, we test the hypothesis that temporal integration, measured as long-term memory in the history of neural activity, is another important quality underlying conscious awareness. For this aim, we study the temporal memory of blood oxygen level-dependent signals across the human nonrapid eye movement sleep cycle. Results reveal that this property gradually decreases from wakefulness to deep nonrapid eye movement sleep and that such decreases affect areas identified with default mode and attention networks. Although blood oxygen level-dependent spontaneous fluctuations exhibit nontrivial spatial organization, even during deep sleep, they also display a decreased temporal complexity in specific brain regions. Conversely, this result suggests that long-range temporal dependence might be an attribute of the spontaneous conscious mentation performed during wakeful rest.
Integration of long-range planning for management of defense transuranic waste
International Nuclear Information System (INIS)
Gilbert, K.V.; McFadden, M.H.; Raudenbush, M.H.; Smith, L.J.
1984-01-01
As described in The Defense Waste Management Plan, the defense TRU program goal is to achieve permanent disposal and to end interim storage. TRU waste is currently stored at six Department of Energy (DOE) sites, and new waste is generated at several more sites. The Waste Isolation Pilot Plant (WIPP) project is well defined, and it has been necessary to integrate the activities of other parts of the TRU program in support of DOE Headquarters policy and the WIPP schedules and technical requirements. The strategy is described in the Defense Transuranic Waste Program Strategy Document. More detailed, quantitative plans have been developed through the use of several system models, with a Long-Range Master Plan for Defense Transuranic Waste Management as the focal point for coordination of proposed plans with all the parties involved
Quantum-state transfer through long-range correlated disordered channels
Almeida, Guilherme M. A.; de Moura, Francisco A. B. F.; Lyra, Marcelo L.
2018-05-01
We study quantum-state transfer in XX spin-1/2 chains where both communicating spins are weakly coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modeled by long-range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the channel is able to perform almost perfect quantum-state transmissions even in the presence of significant amounts of disorder provided the degree of those correlations is strong enough, with the cost of having long transfer times and unavoidable timing errors. Still, we show that the lack of mirror symmetry in the channel does not affect much the likelihood of having high-quality outcomes. Our results suggest that coexistence between localized and delocalized states can diminish effects of static perturbations in solid-state devices for quantum communication.
Theoretical analysis of long range turbulent transport in the scrape-off-layer
International Nuclear Information System (INIS)
Ghendrih, Ph.; Sarazin, Y.; Attuel, G.; Clement, C.; Falchetto, G.; Garbet, X.; Grandgirard, V.; Ottaviani, M.
2002-12-01
2-D fluid simulations of Scrape-Off Layer (SOL) turbulence with non constrained energy content (flux driven) are characterized by profile relaxation and strong outward bursts of density. The ballistic propagation extends well beyond the e-folding length of the SOL with a Mach number ∼ 0.04. Turbulence stabilisation is achieved by biasing part of the limiter surface. The critical radial extent to achieve this stabilisation is derived. This effect governs the size of the biased ring required to insulate the wall from the long range bursts of matter. The same characteristic scale also governs the critical size of Langmuir probe tips. For probe tips in excess of this size, the flux tube to the probe is found to be decoupled from the background plasma. (authors)
An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations.
Sawai, Satoshi; Thomason, Peter A; Cox, Edward C
2005-01-20
Nutrient-deprived Dictyostelium amoebae aggregate to form a multicellular structure by chemotaxis, moving towards propagating waves of cyclic AMP that are relayed from cell to cell. Organizing centres are not formed by founder cells, but are dynamic entities consisting of cores of outwardly rotating spiral waves that self-organize in a homogeneous cell population. Spiral waves are ubiquitously observed in chemical reactions as well as in biological systems. Although feedback control of spiral waves in spatially extended chemical reactions has been demonstrated in recent years, the mechanism by which control is achieved in living systems is unknown. Here we show that mutants of the cyclic AMP/protein kinase A pathway show periodic signalling, but fail to organize coherent long-range wave territories, owing to the appearance of numerous spiral cores. A theoretical model suggests that autoregulation of cell excitability mediated by protein kinase A acts to optimize the number of signalling centres.
Wavepacket dynamics in one-dimensional system with long-range correlated disorder
Yamada, Hiroaki S.
2018-03-01
We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.
Models with short- and long-range interactions: the phase diagram and the reentrant phase
International Nuclear Information System (INIS)
Dauxois, Thierry; Lori, Leonardo; Ruffo, Stefano; De Buyl, Pierre
2010-01-01
We study the phase diagram of two different Hamiltonians with competing local, nearest-neighbour, and mean-field couplings. The first example corresponds to the HMF Hamiltonian with an additional short-range interaction. The second example is a reduced Hamiltonian for dipolar layered spin structures, with a new feature with respect to the first example: the presence of anisotropies. The two examples are solved in both the canonical and the microcanonical ensemble using a combination of the min–max method with the transfer operator method. The phase diagrams present typical features of systems with long-range interactions: ensemble inequivalence, negative specific heat and temperature jumps. Moreover, for a given range of parameters, we report the signature of phase reentrance. This can also be interpreted as the presence of azeotropy with the creation of two first-order phase transitions with ensemble inequivalence, as one parameter is varied continuously
A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.
Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark
2016-09-09
LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.
Homonuclear long-range correlation spectra from HMBC experiments by covariance processing.
Schoefberger, Wolfgang; Smrecki, Vilko; Vikić-Topić, Drazen; Müller, Norbert
2007-07-01
We present a new application of covariance nuclear magnetic resonance processing based on 1H--13C-HMBC experiments which provides an effective way for establishing indirect 1H--1H and 13C--13C nuclear spin connectivity at natural isotope abundance. The method, which identifies correlated spin networks in terms of covariance between one-dimensional traces from a single decoupled HMBC experiment, derives 13C--13C as well as 1H--1H spin connectivity maps from the two-dimensional frequency domain heteronuclear long-range correlation data matrix. The potential and limitations of this novel covariance NMR application are demonstrated on two compounds: eugenyl-beta-D-glucopyranoside and an emodin-derivative. Copyright (c) 2007 John Wiley & Sons, Ltd.
A Study of LoRa: Long Range & Low Power Networks for the Internet of Things
Directory of Open Access Journals (Sweden)
Aloÿs Augustin
2016-09-01
Full Text Available LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s, connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.
Opportunities in Nuclear Science: A Long-Range Plan for the Next Decade
Energy Technology Data Exchange (ETDEWEB)
None, None
2002-04-01
The DOE/NSF Nuclear Science Advisory Committee of the Department of Energy and the National Science Foundation is charged with providing advice on a continuing basis regarding the management of the national basic nuclear science research program. In July 2000, the Committee was asked to study the opportunities and priorities for U.S. nuclear physics research, and to develop a long-range plan that will serve as a frame-work for the coordinated advancement of the field for the next decade. The plan contained here is the fifth that has been pre-pared since the Committee was established. Each of the earlier plans has had substantial impact on new directions and initiatives in the field.
Problem of long-range forces in the computer simulation of condensed media
International Nuclear Information System (INIS)
Ceperely, D.
1980-07-01
Simulation (both Monte Carlo and molecular dynamical) has become a powerful tool in the study of classical systems of particles interacting with short-range pair potentials. For systems involving long-range forces (e.g., Coulombic, dipolar, hydrodynamic) it is a different story. Relating infinite-system properties to the results of computer simulation involving relatively small numbers of particles, periodically replicated, raises difficult and challenging problems. The purpose of the workshop was to bring together a group of scientists, all of whom share a strong direct interest in clearly formulating and resolving these problems. There were 46 participants, most of whom have been actively engaged in simulations of Hamiltonian models of condensed media. A few participants were scientists who are not primarily concerned, themselves, with simulation, but who are deeply involved in the theory of such models
Periodic long-range transport in a large volume dc glow discharge dusty plasma
International Nuclear Information System (INIS)
Thomas, Edward Jr.; Amatucci, William E.; Compton, Christopher; Christy, Brian; Jackson, Jon David
2003-01-01
In an earlier paper, the authors reported on observations of a variety of particle transport phenomena observed in DUPLEX--the DUsty PLasma EXperiment at the Naval Research Laboratory [E. Thomas, Jr., W. E. Amatucci, C. Compton, and B. Christy, Phys. Plasmas 9, 3154 (2002)]. DUPLEX is a large, transparent polycarbonate cylinder that is 40 cm in radius and 80 cm in height. dc glow discharge argon plasmas are generated in DUPLEX. In this paper, the authors expand upon one particular feature of particle transport in DUPLEX, the long-range (i.e., greater than 15 cm), periodic (T∼2.5 min) transport of suspended alumina particles through the plasma. A detailed description of this particle motion through the plasma is presented. Finally, a qualitative model describing the phenomena that lead to this transport is also given
Control of long range turbulent transport with biasing in the tokamak scrape-off-layer
International Nuclear Information System (INIS)
Figarella, C.F.; Ghendrih, Ph.; Sarazin, Y.; Attuel, G.; Falchetto, G.; Fleurence, E.; Garbet, X.; Grandgirard, V.
2004-01-01
Cross field transport in the SOL (scrape-off-layer) influences tokamak performance in particular regarding the divertor efficiency. Recent experiment evidence emphasizes non-exponential and/or flat SOL profiles that suggest a large perpendicular transport. A 2-dimensional fluid model based on the interchange instability to simulate the SOL turbulence was found to exhibits intermittent dynamics of the particle flux. We propose a control method that prevents long range transport events from reaching the far SOL: It consists in biasing the far SOL leading to a transport barrier which stops the propagation of these intermittent events. The best trade off is to localize the biased toroidal ring around the baffles. We show that such a control is achievable providing the strength of the barrier is strong enough. The investigation of the minimal biasing power required to achieve the control as well as its experimental estimate is performed. (authors)