WorldWideScience

Sample records for long-baseline off-axis neutrino

  1. Long Baseline Neutrino Experiments

    Science.gov (United States)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  2. Long Baseline Neutrino Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, Brian; /Fermilab

    2009-10-01

    There is compelling evidence for neutrino flavor change as neutrinos propagate. The evidence for this phenomenon has been provided by several experiments observing neutrinos that traverse distances of several hundred kilometers between production and detection. This review outlines the evidence for neutrino flavor change from such experiments and describes recent results in the field.

  3. Long-Baseline Neutrino Experiments

    CERN Document Server

    Diwan, M V; Qian, X; Rubbia, A

    2016-01-01

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We proceed from the first evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research.

  4. Long-Baseline Neutrino Experiments

    Science.gov (United States)

    Diwan, M. V.; Galymov, V.; Qian, X.; Rubbia, A.

    2016-10-01

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We summarize the current best knowledge of neutrino parameters and phenomenology, with a focus on the evolution of the experimental technique. We proceed from the first evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research.

  5. Long-baseline Neutrino Oscillation at DUNE

    Science.gov (United States)

    Worcester, Elizabeth; DUNE Collaboration Collaboration

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a long-baseline neutrino oscillation experiment with primary physics goals of determining the neutrino mass hierarchy and measuring δc P with sufficient sensitivity to discover CP violation in neutrino oscillation. CP violation sensitivity in DUNE requires careful understanding of systematic uncertainty, with contributions expected from uncertainties in the neutrino flux, neutrino interactions, and detector effects. In this presentation, we will describe the expected sensitivity of DUNE to long-baseline neutrino oscillation parameters, how various aspects of the experimental design contribute to that sensitivity, and the planned strategy for constraining systematic uncertainty in these measurements.

  6. Neutrino Interactions and Long-Baseline Experiments

    CERN Document Server

    Mosel, Ulrich

    2016-01-01

    The extraction of neutrino mixing parameters and the CP-violating phase requires knowledge of the neutrino energy. This energy must be reconstructed from the final state of a neutrino-nucleus reaction since all long-baseline experiments use nuclear targets. This reconstruction requires detailed knowledge of the neutrino reactions with bound nucleons and of the final state interactions of hadrons with the nuclear environment. Quantum-kinetic transport theory can be used to build an event generator for this reconstruction that takes basic nuclear properties, such as binding, into account. Some examples are discussed that show the effects of nuclear interactions on observables in long-baseline experiments

  7. Study of neutrino oscillations in long-baseline accelerator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kudenko, Yurii G [Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-06-30

    A review of the title subject is given. The phenomenology of neutrino oscillations in the framework of the so-called neutrino Standard Model ({nu}SM) with three active neutrinos is considered. The recently completed long-baseline accelerator experiment K2K and currently in-progress MINOS and OPERA experiments are described in detail. The oscillation parameters obtained from the global analysis of all oscillation data are given. The short-baseline experiment MiniBooNE and its results on the search for light sterile neutrinos are discussed in detail. Considerable attention is given to searching for {nu}{sub {mu}{yields}{nu}e} oscillations and measuring the {theta}{sub 13} angle in muon neutrino experiments. The concept of the off-axis neutrino beam is reviewed. The T2K experiment, collecting statistics since early 2010, is described for its details and objectives. The NO{nu}A experiment under construction and the next-generation beta beam and neutrino factory experiments are also discussed. (reviews of topical problems)

  8. Long-Baseline Neutrino Oscillation Experiments

    CERN Document Server

    Sousa, Alexandre

    2011-01-01

    During the past decade, long-baseline neutrino experiments played a fundamental role in confirming neutrino flavor change and in measuring the neutrino mixing matrix with high precision. This role will be amplified with the next generation of experiments, which will begin probing the possibility of CP violation in the leptonic sector and possibly pin down the neutrino mass hierarchy. An account of the most recent results from the MINOS experiment is presented, along with the earlier measurement from the K2K experiment. The next generation projects, T2K and NOvA, are described and their current status, schedule and physics reach discussed. Finally, we report on future efforts, currently in the R&D stage, such as the LBNE and T2KK projects.

  9. The OPERA long baseline neutrino oscillation experiment

    Science.gov (United States)

    Wilquet, G.

    2008-05-01

    OPERA is a long baseline neutrino oscillation experiment designed to observe the appearance of vτ in a pure vμ beam in the parameter space indicated by the atmospheric neutrinos oscillation signal. The detector is situated in the underground LNGS laboratory under 3 800 water meter equivalent at a distance of 730 km from CERN where the CNGS neutrino beam to which it is exposed originates. It consists of two identical 0.68 kilotons lead/nuclear emulsion targets, each instrumented with a tracking device and complemented by a muon spectrometer. The concept and the status of the detector are described and the first results obtained with cosmic rays and during two weeks of beam commissioning in 2006 are reported.

  10. Searching for neutrino oscillation parameters in long baseline experiments

    CERN Document Server

    Vihonen, Sampsa

    2016-01-01

    Developing neutrino astronomy requires a good understanding of the neutrino oscillations mechanism. The European strategy for neutrino oscillation physics sets a high priority on future long baseline neutrino experiments with the aim to measure the intrinsic parameters that govern the neutrino oscillations. In this work we take a look at the next generation of long baseline experiments and discuss their prospects in future research.

  11. Dissipative Effect in Long Baseline Neutrino Experiments

    CERN Document Server

    Oliveira, Roberto L N

    2016-01-01

    The propagation of neutrinos in long baselines experiments may be influenced by dissipation effects. Using Lindblad Master Equation we evolve neutrinos taking into account these dissipative effects. The MSW and the dissipative effects may change the probabilities behavior. In this work, we show and explain how the behavior of the probabilities can change due to the decoherence and relaxation effects acting individually with the MSW effect. A new exotic peak appears in this case and we show the difference between the decoherence and relaxation effects in the appearance of this peak. We also adapt the usual approximate expression for survival and appearance probabilities with all possible decoherence effects. We suppose the baseline of DUNE and show how each decoherence parameters change the probabilities analyzing the possible modification using numeric and analytic approach.

  12. First faint dual-field off-axis observations in optical long baseline interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Woillez, J.; Wizinowich, P.; Ragland, S. [W. M. Keck Observatory, Kamuela, HI 96743 (United States); Akeson, R.; Millan-Gabet, R. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Colavita, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Eisner, J. [University of Arizona, Tucson, AZ 85721-0065 (United States); Monnier, J. D. [University of Michigan, Ann Arbor, MI 48109-1090 (United States); Pott, J.-U. [Max-Planck-Institut für Astronomie, Heidelberg, D-69117 (Germany)

    2014-03-10

    Ground-based long baseline interferometers have long been limited in sensitivity in part by the short integration periods imposed by atmospheric turbulence. The first observation fainter than this limit was performed on 2011 January 22 when the Keck Interferometer observed a K = 11.5 target, about 1 mag fainter than its K = 10.3 atmospherically imposed limit; the currently demonstrated limit is K = 12.5. These observations were made possible by the Dual-Field Phase-Referencing (DFPR) instrument, part of the NSF-funded ASTrometry and phase-Referenced Astronomy project; integration times longer than the turbulence time scale are made possible by its ability to simultaneously measure the real-time effects of the atmosphere on a nearby bright guide star and correct for it on the faint target. We present the implementation of DFPR on the Keck Interferometer. Then, we detail its on-sky performance focusing on the accuracy of the turbulence correction and the resulting fringe contrast stability.

  13. Determining the neutrino mass hierarchy and CP violation in NoVA with a second off-axis detector

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; /Fermilab; Palomares-Ruiz, Sergio; /Vanderbilt U.; Pascoli, Silvia; /CERN /Durham U., IPPP

    2005-10-01

    We consider a Super-NOVA-like experimental configuration based on the use of two detectors in a long-baseline experiment as NOVA. We take the far detector as in the present NOVA proposal and add a second detector at a shorter baseline. The location of the second off-axis detector is chosen such that the ratio L/E is the same for both detectors, being L the baseline and E the neutrino energy. We consider liquid argon and water- Cerenkov techniques for the second off-axis detector and study, for different experimental setups, the detector mass required for the determination of the neutrino mass hierarchy, for different values of {theta}{sub 13}. We also study the capabilities of such an experimental setup for determining CP-violation in the neutrino sector. Our results show that by adding a second off-axis detector a remarkable enhancement on the capabilities of the current NOVA experiment could be achieved.

  14. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia [Univ. of Colorado, Boulder, CO (United States)

    2015-06-29

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinosμ) and the appearance of electron neutrinose), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of νe appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of νμ disappearance and νe appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  15. Off-Axis Neutrino Scattering in GRB Central Engines

    CERN Document Server

    George, N D; McGhee, J M; Miller, W A; George, Nathan D.; Kheyfets, Arkady; Ghee, John M. Mc; Miller, Warner A.

    2003-01-01

    The search for an understanding of an energy source great enough to explain the gamma-ray burst (GRB) phenomena has attracted much attention from the astrophysical community since its discovery. In this paper we extend the work of K. Asano and T. Fukuyama, and J. D. Salmonson and J. R. Wilson, and analyze the off-axis contributions to the energy-momentum deposition rate (MDR) from the neutrino anti-neutrino collisions above a rotating black hole/thin accretion disk system. Our calculations are performed by imaging the accretion disk at a specified observer using the full geodesic equations, and calculating the cumulative MDR from the scattering of all pairs of neutrinos and anti-neutrinos arriving at the observer. Our results shed light on the beaming efficiency of GRB models of this kind. Although we confirm Asano and Fukuyama's conjecture as to the constancy of the beaming for small angles away from the axis; nevertheless, we find the dominant contribution to the MDR comes from near the surface of the disk ...

  16. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia [Univ. of Colorado, Boulder, CO (United States)

    2015-06-29

    This is nal report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is fo- cussed on making precise measurements of neutrino properties using in- tense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino exper- iment [6], currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design e ort for a future Long-Baseline Neu- trino Facility (LBNF) in the US.1 She is also a member of the NA61/SHINE particle production experiment at CERN, but as that e ort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos ( ) and the appearance of electron neutrinos ( e), using a beam of muon neu- trino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K rst reported indications of e appearance [2], a pre- viously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of disappearance and e appearance [1], and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the uni- verse. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This e ort will be very high-priority particle physics project in the US over the next decade.

  17. Detecting dark energy in long baseline neutrino oscillations

    Institute of Scientific and Technical Information of China (English)

    GU Pei-Hong; BI Xiao-Jun; FENG Bo; YOUNG Bing-Lin; ZHANG Xin-Min

    2008-01-01

    In this paper, we discuss a possibility of studying properties of dark energy in long baseline neutrino oscillation experiments. We consider two types of models of neutrino dark energy. For one type of models the scalar field is taken to be quintessence-like and for the other phantom-like. In these models the scalar fields couple to the neutrinos to give rise to spatially varying neutrino masses. We will show that the two types of models predict different behaviors of the spatial variation of the neutrino masses inside the Earth and consequently result in different signals in long baseline neutrino oscillation experiments.

  18. Future long-baseline neutrino oscillations: View from Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hayato, Yoshinari [Kamioka Observatory, ICRR, The University of Tokyo (Japan)

    2015-07-15

    Accelerator based long-baseline neutrino oscillation experiments have been playing important roles in revealing the nature of neutrinos. However, it turned out that the current experiments are not sufficient to study two major remaining problems, the CP violation in the lepton sector and the mass hierarchy of neutrinos. Therefore, several new experiments have been proposed. Among of them, two accelerator based long-baseline neutrino oscillation experiments, the J-PARC neutrino beam and Hyper-Kamiokande, and MOMENT, have been proposed in Asia. These two projects are reviewed in this article.

  19. Linking solar and long baseline terrestrial neutrino experiments.

    Science.gov (United States)

    Akhmedov, E K; Branco, G C; Rebelo, M N

    2000-04-17

    We show that, in the framework of three light neutrino species with hierarchical masses and assuming no fine tuning between the entries of the neutrino mass matrix, one can use the solar neutrino data to obtain information on the element U(e3) of the lepton mixing matrix. Conversely, a measurement of U(e3) in atmospheric or long baseline accelerator or reactor neutrino experiments would help discriminate between possible oscillation solutions of the solar neutrino problem.

  20. First Muon-Neutrino Disappearance Study with an Off-Axis Beam

    CERN Document Server

    Abe, K; Ajima, Y; Aihara, H; Albert, J B; Andreopoulos, C; Andrieu, B; Anerella, M D; Aoki, S; Araoka, O; Argyriades, J; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Badertscher, A; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S; Berardi, V; Berger, B E; Bertram, I; Besnier, M; Beucher, J; Beznosko, D; Bhadra, S; Blaszczyk, F d M; Blocki, J; Blondel, A; Bojechko, C; Bouchez, J; Boyd, S B; Bravar, A; Bronner, C; Brook-Roberge, D G; Buchanan, N; Budd, H; Calland, R; Calvet, D; Rodriguez, J Caravaca; Cartwright, S L; Carver, A; Castillo, R; Catanesi, M G; Cazes, A; Cervera, A; Chavez, C; Choi, S; Christodoulou, G; Coleman, J; Collazuol, G; Coleman, W; Connolly, K; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davies, G S; Davis, S; Day, M; De Rosa, G; de André, J P A M; de Perio, P; Dealtry, T; Delbart, A; Densham, C; Di Lodovico, F; Di Luise, S; Tran, P Dinh; Dobson, J; Dore, U; Drapier, O; Duboyski, T; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Dziomba, M; Emery, S; Ereditato, A; Escallier, J E; Escudero, L; Esposito, L S; Fechner, M; Ferrero, A; Finch, A J; Frank, E; Fujii, Y; Fukuda, Y; Galymov, V; Ganetis, G L; Gannaway, F C; Gaudin, A; Gendotti, A; George, M A; Giffin, S; Giganti, C; Gilje, K; Ghosh, A K; Golan, T; Goldhaber, M; Gomez-Cadenas, J J; Gomi, S; Gonin, M; Grant, N; Grant, A; Gumplinger, P; Guzowski, P; Hadley, D R; Haesler, A; Haigh, M D; Hamano, K; Hansen, C; Hansen, D; Hara, T; Harrison, P F; Hartfiel, B; Hartz, M; Haruyama, T; Hasegawa, T; Hastings, N C; Hatzikoutelis, A; Hayashi, K; Hayato, Y; Hearty, C; Helmer, R L; Henderson, R; Higashi, N; Hignight, J; Hillairet, A; Hiraki, T; Hirose, E; Holeczek, J; Horikawa, S; Huang, K; Hyndman, A; Ichikawa, A K; Ieki, K; Ieva, M; Iida, M; Ikeda, M; Ilic, J; Imber, J; Ishida, T; Ishihara, C; Ishii, T; Ives, S J; Iwasaki, M; Iyogi, K; Izmaylov, A; Jamieson, B; Johnson, R A; Joo, K K; Jover-Manas, G V; Jung, C K; Kaji, H; Kajita, T; Kakuno, H; Kameda, J; Kaneyuki, K; Karlen, D; Kasami, K; Kato, I; Kawamuko, H; Kearns, E; Khabibullin, M; Khanam, F; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, J; Kim, J Y; Kim, S B; Kimura, N; Kirby, B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Koike, S; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kouzuma, Y; Kowalik, K; Kravtsov, V; Kreslo, I; Kropp, W; Kubo, H; Kubota, J; Kudenko, Y; Kulkarni, N; Kurimoto, Y; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laing, A; Laveder, M; Lawe, M; Lee, K P; Le, P T; Levy, J M; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Litos, M; Longhin, A; Lopez, G D; Loverre, P F; Ludovici, L; Lux, T; Macaire, M; Magaletti, L; Mahn, K; Makida, Y; Malek, M; Manly, S; Marchionni, A; Marino, A D; Marone, A J; Marteau, J; Martin, J F; Maruyama, T; Maryon, T; Marzec, J; Masliah, P; Mathie, E L; Matsumura, C; Matsuoka, K; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; McLachlan, T; Messina, M; Metcalf, W; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A D; Mituka, G; Miura, M; Mizouchi, K; Monfregola, L; Moreau, F; Morgan, B; Moriyama, S; Muir, A; Murakami, A; Muratore, J F; Murdoch, M; Murphy, S; Myslik, J; Nagai, N; Nakadaira, T; Nakahata, M; Nakai, T; Nakajima, K; Nakamoto, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Navin, M L; Nicholls, T C; Nielsen, B; Nielsen, C; Nishikawa, K; Nishino, H; Nitta, K; Nobuhara, T; Nowak, J A; Obayashi, Y; Ogitsu, T; Ohhata, H; Okamura, T; Okumura, K; Okusawa, T; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Ozaki, T; Pac, M Y; Palladino, V; Paolone, V; Paul, P; Payne, D; Pearce, G F; Perkin, J D; Pettinacci, V; Pierre, F; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Qian, W; Raaf, J L; Radicioni, E; Ratoff, P N; Raufer, T M; Ravonel, M; Raymond, M; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roney, J M; Rossi, B; Roth, S; Rubbia, A; Ruterbories, D; Sabouri, S; Sacco, R; Sakashita, K; Sánchez, F; Sarrat, A; Sasaki, K; Scholberg, K; Schwehr, J; Scott, M; Scully, D I; Seiya, Y; Sekiguchi, T; Sekiya, H; Shibata, M; Shimizu, Y; Shiozawa, M; Short, S; Sinclair, P D; Siyad, M; Smith, B M; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Stahl, A; Stamoulis, P; Steinmann, J; Still, B; Stone, J; Stodulski, M; Strabel, C; Sulej, R; Suzuki, A; Suzuki, K; Suzuki, S; Suzuki, S Y; Suzuki, Y; Suzuki, Y; Swierblewski, J; Szeglowski, T; Szeptycka, M; Tacik, R; Tada, M; Taguchi, M; Takahashi, S; Takeda, A; Takenaga, Y; Takeuchi, Y; Tanaka, K; Tanaka, H A; Tanaka, M; Tanaka, M M; Tanimoto, N; Tashiro, K; Taylor, I; Terashima, A; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Toki, W; Tobayama, S; Tomaru, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Veledar, O; Wachala, T; Walding, J J; Waldron, A V; Walter, C W; Wanderer, P J; Wang, J; Ward, M A; Ward, G P; Wark, D; Wascko, M O; Weber, A; Wendell, R; West, N; Whitehead, L H; Wikström, G; Wilkes, R J; Wilking, M J; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, S; Yamada, Y; Yamamoto, A; Yamamoto, K; Yamanoi, Y; Yamaoka, H; Yamauchi, T; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2012-01-01

    We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43 10**20 protons on target, we observe 31 fully-contained single muon-like ring events in Super-Kamiokande, compared with an expectation of 104 +- 14 (syst) events without neutrino oscillations. The best-fit point for two-flavor nu_mu -> nu_tau oscillations is sin**2(2 theta_23) = 0.98 and |\\Delta m**2_32| = 2.65 10**-3 eV**2. The boundary of the 90 % confidence region includes the points (sin**2(2 theta_23),|\\Delta m**2_32|) = (1.0, 3.1 10**-3 eV**2), (0.84, 2.65 10**-3 eV**2) and (1.0, 2.2 10**-3 eV**2).

  1. First muon-neutrino disappearance study with an off-axis beam

    Science.gov (United States)

    Abe, K.; Abgrall, N.; Ajima, Y.; Aihara, H.; Albert, J. B.; Andreopoulos, C.; Andrieu, B.; Anerella, M. D.; Aoki, S.; Araoka, O.; Argyriades, J.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Badertscher, A.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S.; Berardi, V.; Berger, B. E.; Bertram, I.; Besnier, M.; Beucher, J.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. D. M. M.; Blondel, A.; Bojechko, C.; Bouchez, J.; Boyd, S. B.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Budd, H.; Calland, R. G.; Calvet, D.; Caravaca Rodríguez, J.; Cartwright, S. L.; Carver, A.; Castillo, R.; Catanesi, M. G.; Cazes, A.; Cervera, A.; Chavez, C.; Choi, S.; Christodoulou, G.; Coleman, J.; Collazuol, G.; Coleman, W.; Connolly, K.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davies, G. S.; Davis, S.; Day, M.; de Rosa, G.; de André, J.. P. A. M.; de Perio, P.; Dealtry, T.; Delbart, A.; Densham, C.; di Lodovico, F.; di Luise, S.; Dinh Tran, P.; Dobson, J.; Dore, U.; Drapier, O.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escallier, J. E.; Escudero, L.; Esposito, L. S.; Fechner, M.; Ferrero, A.; Finch, A. J.; Frank, E.; Fujii, Y.; Fukuda, Y.; Galymov, V.; Ganetis, G. L.; Gannaway, F. C.; Gaudin, A.; Gendotti, A.; George, M. A.; Giffin, S.; Giganti, C.; Gilje, K.; Ghosh, A. K.; Golan, T.; Goldhaber, M.; Gomez-Cadenas, J. J.; Gomi, S.; Gonin, M.; Grant, N.; Grant, A.; Gumplinger, P.; Guzowski, P.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamano, K.; Hansen, C.; Hansen, D.; Hara, T.; Harrison, P. F.; Hartfiel, B.; Hartz, M.; Haruyama, T.; Hasegawa, T.; Hastings, N. C.; Hatzikoutelis, A.; Hayashi, K.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Henderson, R.; Higashi, N.; Hignight, J.; Hillairet, A.; Hiraki, T.; Hirose, E.; Holeczek, J.; Horikawa, S.; Huang, K.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Iida, M.; Ikeda, M.; Ilic, J.; Imber, J.; Ishida, T.; Ishihara, C.; Ishii, T.; Ives, S. J.; Iwasaki, M.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Joo, K. K.; Jover-Manas, G. V.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kaneyuki, K.; Karlen, D.; Kasami, K.; Kato, I.; Kawamuko, H.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, J.; Kim, J. Y.; Kim, S. B.; Kimura, N.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Koike, S.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kouzuma, Y.; Kowalik, K.; Kravtsov, V.; Kreslo, I.; Kropp, W.; Kubo, H.; Kubota, J.; Kudenko, Y.; Kulkarni, N.; Kurimoto, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lawe, M.; Lee, K. P.; Le, P. T.; Levy, J. M.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Litos, M.; Longhin, A.; Lopez, G. D.; Loverre, P. F.; Ludovici, L.; Lux, T.; Macaire, M.; Magaletti, L.; Mahn, K.; Makida, Y.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marone, A. J.; Marteau, J.; Martin, J. F.; Maruyama, T.; Maryon, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metcalf, W.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A. D.; Mituka, G.; Miura, M.; Mizouchi, K.; Monfregola, L.; Moreau, F.; Morgan, B.; Moriyama, S.; Muir, A.; Murakami, A.; Muratore, J. F.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagai, N.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamoto, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Naples, D.; Navin, M. L.; Nicholls, T. C.; Nielsen, B.; Nielsen, C.; Nishikawa, K.; Nishino, H.; Nitta, K.; Nobuhara, T.; Nowak, J. A.; Obayashi, Y.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Okumura, K.; Okusawa, T.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Ozaki, T.; Pac, M. Y.; Palladino, V.; Paolone, V.; Paul, P.; Payne, D.; Pearce, G. F.; Perkin, J. D.; Pettinacci, V.; Pierre, F.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Qian, W.; Raaf, J. L.; Radicioni, E.; Ratoff, P. N.; Raufer, T. M.; Ravonel, M.; Raymond, M.; Reeves, M.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roney, J. M.; Rossi, B.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sabouri, S.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sarrat, A.; Sasaki, K.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shibata, M.; Shimizu, Y.; Shiozawa, M.; Short, S.; Sinclair, P. D.; Siyad, M.; Smith, B. M.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Stahl, A.; Stamoulis, P.; Steinmann, J.; Still, B.; Stone, J.; Strabel, C.; Sulej, R.; Suzuki, A.; Suzuki, K.; Suzuki, S.; Suzuki, S. Y.; Suzuki, Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Taguchi, M.; Takahashi, S.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Tanaka, K.; Tanaka, H. A.; Tanaka, M.; Tanaka, M. M.; Tanimoto, N.; Tashiro, K.; Taylor, I.; Terashima, A.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Toki, W.; Tobayama, S.; Tomaru, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Veledar, O.; Wachala, T.; Walding, J. J.; Waldron, A. V.; Walter, C. W.; Wanderer, P. J.; Wang, J.; Ward, M. A.; Ward, G. P.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; West, N.; Whitehead, L. H.; Wikström, G.; Wilkes, R. J.; Wilking, M. J.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, S.; Yamada, Y.; Yamamoto, A.; Yamamoto, K.; Yamanoi, Y.; Yamaoka, H.; Yamauchi, T.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2012-02-01

    We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43×1020 protons on target, we observe 31 fully-contained single μ-like ring events in Super-Kamiokande, compared with an expectation of 104±14(syst) events without neutrino oscillations. The best-fit point for two-flavor νμ→ντ oscillations is sin⁡2(2θ23)=0.98 and |Δm322|=2.65×10-3eV2. The boundary of the 90% confidence region includes the points (sin⁡2(2θ23),|Δm322|)=(1.0,3.1×10-3eV2), (0.84, 2.65×10-3eV2) and (1.0, 2.2×10-3eV2).

  2. NA61/SHINE Data For Long Baseline Neutrino Experiments

    CERN Document Server

    Hälser, Alexis

    2015-01-01

    Accelerator based long baseline neutrino experiments require precise neutrino fl ux predictions to reach their physics goals. These experiments are commonly based on a set of two detectors. At the near detector, cross section measurements are performed and the neutrino fl ux can be observed before oscillation, while at the far detector the signal for neutrino oscillations is studied. An accurate knowledge on hadron production is mandatory in order to predict the neutrino fluxes. The NA61/SHINE facility at the CERN SPS has proven its ability to deliver high quality measurements of hadron production for the long baseline neutrino experiments. In this paper, the latest results from N A61 /SHINE for the neutrino physics programme are reviewed and future plans are presented.

  3. Future long-baseline neutrino oscillations: View from Europe

    Energy Technology Data Exchange (ETDEWEB)

    Patzak, T. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2015-07-15

    Since about a decade the european physics community interested in neutrino and neutrino-astrophysics develops a plan to conceive the next generation large underground neutrino observatory. Recently, the LAGUNA-LBNO collaboration made the outcome of the FP7 design study public which shows a clear path for the realization of such experiment. In this paper the LAGUNA and LAGUNA-LBNO Design studies, resulting in a proposal for the LBNO experiment, will be discussed. The author will focus on the long baseline neutrino oscillation search, especially on the potential to discover the neutrino mass ordering and the search for CP violation in the lepton sector.

  4. Long baseline accelerator neutrino experiments present and future

    CERN Document Server

    Rubbia, André

    2000-01-01

    A nu /sub mu / disappearance effect has been seen in atmospheric neutrino experiments. This has led to the "evidence for neutrino oscillations". The next problem in neutrino physics is to perform the right experiment(s) to elucidate in a comprehensive way the pattern of neutrino masses and mixings. The long baseline experiments will play a fundamental role at settling definitively the question of flavor oscillation and at measuring with good precision the oscillation parameters. The CERN-NGS beam coupled with the proposed ICANOE and OPERA detectors is the only programme capable of sensitive tau and electron appearance searches. (14 refs).

  5. Degeneracies in long-baseline neutrino experiments from nonstandard interactions

    CERN Document Server

    Liao, Jiajun; Whisnant, Kerry

    2016-01-01

    We study parameter degeneracies that can occur in long-baseline neutrino appearance experiments due to nonstandard interactions (NSI). For a single off-diagonal NSI parameter, and neutrino and antineutrino measurements at a single L/E, there exists a continuous four-fold degeneracy (related to the mass hierarchy and $\\theta_{23}$ octant) that renders the mass hierarchy, octant, and CP phase unknowable. Even with a combination of NO$\

  6. Configurations of the Long-Baseline Neutrino Experiment

    CERN Document Server

    Barger, Vernon; Chatterjee, Animesh; Gandhi, Raj; Marfatia, Danny; Masud, Mehedi

    2014-01-01

    We perform a comprehensive study of the ability of the Long-Baseline Neutrino Experiment (LBNE) to answer outstanding questions in the neutrino sector. We consider the sensitivities to the mass hierarchy, the octant of $\\theta_{23}$ and to CP violation using data from beam and atmospheric neutrinos. We evaluate the dependencies on the precision with which $\\theta_{13}$ will be measured by reactor experiments, on the detector size, beam power and exposure time, on detector magnetization, and on the systematic uncertainties achievable with and without a near detector. We find that a 35 kt LBNE with a near detector will resolve the eight-fold degeneracy that is intrinsic to long baseline experiments and will meet the primary goals of oscillation physics that it is designed for.

  7. Future long-baseline neutrino oscillations: View from North America

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Robert J., E-mail: wilson@colostate.edu [Department of Physics, Colorado State University, Fort Collins, CO 80523-1875 (United States)

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  8. Future Long-Baseline Neutrino Oscillations: View from North America

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  9. Future Long-Baseline Neutrino Facilities and Detectors

    Directory of Open Access Journals (Sweden)

    Milind Diwan

    2013-01-01

    Full Text Available We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  10. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  11. Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

    Science.gov (United States)

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-11-22

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  12. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-Axis Beam

    Science.gov (United States)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kim, S. B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-11-01

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin⁡2(θ23)=0.514±0.082 and mass splitting |Δm322|=2.44-0.15+0.17×10-3eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  13. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-axis Beam

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodriguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sanchez, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-01-01

    The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to $3.01 \\times 10^{20}$ protons on target. In the absence of neutrino oscillations, $205 \\pm 17$ (syst.) events are expected to be detected and only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum assuming three neutrino flavors, normal mass hierarchy and $\\theta_{23}\\leq \\pi/4$ yields a best-fit mixing angle $\\sin^2(2\\theta_{23})=1.000$ and mass splitting $|\\Delta m^2_{32}| =2.44 \\times 10^{-3}$ eV$^2$/c$^4$. If $\\theta_{23}\\geq \\pi/4$ is assumed, the best-fit mixing angle changes to $\\sin^2(2\\theta_{23})=0.999$ and the mass splitting remains unchanged.

  14. Long-Baseline Neutrino Physics in the U.S

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Sacha E. [Department of Physics, University of Texas at Austin, 1 University Station C1600, Austin, Texas 78712 (United States)

    2007-06-15

    Long-baseline neutrino oscillation physics in the U.S. is centered at the Fermi National Accelerator Laboratory (FNAL), in particular at the Neutrinos at the Main Injector (NuMI) beamline commissioned in 2004-2005. Already, the MINOS experiment has published its first results confirming the disappearance of {nu}{sub {mu}}'s across a 735 km baseline. The forthcoming NO{nu}A experiment will search for the transition {nu}{sub {mu}}{yields}{nu}{sub e} and use this transition to understand the mass heirarchy of neutrinos. These, as well as other conceptual ideas for future experiments using the NuMI beam, will be discussed. The turn-on of the NuMI facility has been positive, with over 310 kW beam power achieved. Plans for increasing the beam intensity once the Main Injector accelerator is fully-dedicated to the neutrino program will be presented.

  15. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    CERN Document Server

    Adams, C; Andrews, M; Anghel, I; Arrieta-Diaz, E; Artuso, M; Asaadi, J; Bai, X; Baird, M; Balantekin, B; Baller, B; Baptista, B; Barker, D; Barletta, W; Barr, G; Bashyal, A; Bass, M; Bellini, V; Berger, B E; Bergevin, M; Berman, E; Berns, H; Bernstein, A; Bernstein, R; Bhatnagar, V; Bhuyan, B; Bishai, M; Blake, A; Blaufuss, E; Bleakley, B; Blucher, E; Blusk, S; Bocean, V; Bolton, T; Breedon, R; Brandt, A; Bromberg, C; Brown, R; Buchanan, N; Bugg, B; Camilleri, L; Carr, R; Carminati, G; Cavanna, F; Chen, A; Chen, H; Chen, K; Cherdack, D; Chi, C; Childress, S; Choudhary, B; Christofferson, C; Church, E; Cline, D; Coan, T; Coelho, J; Coleman, S; Conrad, J; Convery, M; Corey, R; Corwin, L; Davies, G S; Dazeley, S; de Gouvea, A; de Jong, J K; Escobar, C; De, K; Demuth, D; Diwan, M; Djurcic, Z; Dolph, J; Drake, G; Duyang, H; Dye, S; Edmunds, D; Elliott, S; Eno, S; Enomoto, S; Farbin, A; Falk, L; Felde, J; Feyzi, F; Fields, L; Fleming, B; Fowler, J; Fox, W; Friedland, A; Fujikawa, B; Gallagher, H; Gandhi, R; Garvey, G; Gehman, V M; Geronimo, G; Gill, R; Goodman, M C; Goon, J; Graham, M; Gran, R; Grant, C; Greenlee, H; Greenler, L; Guarino, V; Guardincerri, E; Guenette, R; Habib, S; Habig, A; Hackenburg, R W; Hahn, A; Haines, T; Handler, T; Hans, S; Hartnell, J; Harton, J; Hatcher, R; Hatzikoutelis, A; Hays, S; Hazen, E; Headley, M; Heavey, A; Heeger, K; Heise, J; Hellauer, R; Himmel, A; Hogan, M; Holin, A; Horton-Smith, G; Howell, J; Hurh, P; Huston, J; Hylen, J; Imlay, R; Insler, J; Isvan, Z; Jackson, C; Jaffe, D; James, C; Johnson, M; Johnson, R; Johnson, S; Johnston, W; Johnstone, J; Jones, B; Jostlein, H; Junk, T; Kadel, R; Karagiorgi, G; Kaspar, J; Katori, T; Kayser, B; Kearns, E; Keener, P; Kettell, S H; Kirby, M; Klein, J; Koizumi, G; Kopp, S; Kropp, W; Kudryavtsev, V A; Kumar, A; Kumar, J; Kutter, T; Lande, K; Lane, C; Lang, K; Lanni, F; Lanza, R; Latorre, T; La Zia, F; Learned, J; Lee, D; Lee, K; Li, S; Li, Y; Li, Z; Libo, J; Linden, S; Ling, J; Link, J; Littenberg, L; Liu, H; Liu, Q; Liu, T; Losecco, J; Louis, W; Lundberg, B; Lundin, T; Maesano, C; Magill, S; Mahler, G; Malys, S; Mammoliti, F; Mandal, S; Mann, A; Mantsch, P; Marchionni, A; Marciano, W; Mariani, C; Maricic, J; Marino, A; Marshak, M; Marshall, J; Matsuno, S; Mauger, C; Mayer, N; McCluskey, E; McDonald, K; McFarland, K; McKee, D; McKeown, R; McTaggart, R; Mehdiyev, R; Mei, D; Meng, Y; Mercurio, B; Messier, M D; Metcalf, W; Meyhandan, R; Milincic, R; Miller, W; Mills, G; Mishra, S; Sher, S Moed; Mokhov, N; Montanari, D; Moore, C D; Morfin, J; Morse, W; Mufson, S; Muller, D; Musser, J; Naples, D; Napolitano, J; Newcomer, M; Niner, E; Norris, B; Olson, T; Page, B; Pakvasa, S; Paley, J; Palamara, O; Paolone, V; Papadimitriou, V; Park, S; Parsa, Z; Paulos, B; Partyka, K; Pavlovic, Z; Perch, A; Perkin, J D; Peeters, S; Petti, R; Plunkett, R; Polly, C; Pordes, S; Potenza, R; Prakash, A; Prokofiev, O; Perdue, G; Qian, X; Raaf, J L; Radeka, V; Rajendran, R; Rakhno, I; Rameika, R; Ramsey, J; Rebel, B; Rescia, S; Reitzner, D; Richardson, M; Riesselman, K; Robinson, M; Ronquest, M; Rosen, M; Rosenfeld, C; Rucinski, R; Sahijpal, S; Sahoo, H; Samios, N; Sanchez, M C; Schellman, H; Schmitt, R; Schmitz, D; Schneps, J; Scholberg, K; Seibert, S; Shaevitz, M; Shanahan, P; Sharma, R; Shaw, T; Simos, N; Singh, V; Sinnis, G; Sippach, W; Skwarnicki, T; Smy, M; Sobel, H; Soderberg, M; Sondericker, J; Sondheim, W; Spooner, N J C; Stancari, M; Stancu, I; Stefanik, A; Stewart, J; Stone, S; Strait, J; Strait, M; Striganov, S; Sullivan, G; Suter, L; Svoboda, R; Szczerbinska, B; Szydagis, M; Szelc, A; Talaga, R; Tamsett, M; Tariq, S; Tayloe, R; Taylor, C; Taylor, D; Teymourian, A; Themann, H; Thiesse, M; Thomas, J; Thompson, L F; Thomson, M; Thorn, C; Tian, X; Tiedt, D; Toki, W; Tolich, N; Tripathi, M; Tropin, I; Tzanov, M; Urheim, J; Usman, S; Vagins, M; Van Berg, R; Van de Water, R; Varner, G; Vaziri, K; Velev, G; Viren, B; Wachala, T; Wahl, D; Waldron, A; Walter, C W; Wang, H; Wang, W; Warner, D; Wasserman, R; Watson, B; Weber, A; Wei, W; Wendell, R; Wetstein, M; White, A; White, H; Whitehead, L; Whittington, D; Willhite, J; Willis, W; Wilson, R J; Winslow, L; Worcester, E; Wyman, T; Xin, T; Yarritu, K; Ye, J; Yu, J; Yeh, M; Yu, B; Zeller, G; Zhang, C; Zimmerman, E D; Zwaska, R

    2013-01-01

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC...

  16. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  17. Updated results of the OPERA long baseline neutrino experiment

    CERN Document Server

    Chukanov, Artem

    2012-01-01

    The OPERA neutrino detector built in the underground Gran Sasso Laboratory is designed to detect (mu) -> (tau) oscillations in direct appearance mode. The hybrid apparatus consists of an emulsion/lead target complemented by electronic detectors. It is placed in the long-baseline CERN to Gran Sasso neutrino beam (CNGS) 730 km away from the source. The experimental setup and ancillary facilities used to extract data recorded in the emulsion will be described, with the special procedures used to locate the interactions vertices and detect short decay topologies. OPERA is taking data since 2008. A first (tau) interaction candidate was already published in 2010. An improved analysis scheme associated with a more detailed simulation has been developed and new results with increased statistics will be presented.

  18. Physics Potential of a Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    CERN Document Server

    Abe, K; Andreopoulos, C; Anghel, I; Ariga, A; Ariga, T; Asfandiyarov, R; Askins, M; Back, J J; Ballett, P; Barbi, M; Barker, G J; Barr, G; Bay, F; Beltrame, P; Berardi, V; Bergevin, M; Berkman, S; Berry, T; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bolognesi, S; Boyd, S B; Bravar, A; Bronner, C; Cafagna, F S; Carminati, G; Cartwright, S L; Catanesi, M G; Choi, K; Choi, J H; Collazuol, G; Cowan, G; Cremonesi, L; Davies, G; De Rosa, G; Densham, C; Detwiler, J; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Emery, S; Ereditato, A; Fernández, P; Feusels, T; Finch, A; Fitton, M; Friend, M; Fujii, Y; Fukuda, Y; Fukuda, D; Galymov, V; Ganezer, K; Gonin, M; Gumplinger, P; Hadley, D R; Haegel, L; Haesler, A; Haga, Y; Hartfiel, B; Hartz, M; Hayato, Y; Hierholzer, M; Hill, J; Himmel, A; Hirota, S; Horiuchi, S; Huang, K; Ichikawa, A K; Iijima, T; Ikeda, M; Imber, J; Inoue, K; Insler, J; Intonti, R A; Irvine, T; Ishida, T; Ishino, H; Ishitsuka, M; Itow, Y; Izmaylov, A; Jamieson, B; Jang, H I; Jiang, M; Joo, K K; Jung, C K; Kaboth, A; Kajita, T; Kameda, J; Karadhzov, Y; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, J Y; Kim, S B; Kishimoto, Y; Kobayashi, T; Koga, M; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W R; Kudenko, Y; Kutter, T; Kuze, M; Labarga, L; Lagoda, J; Laveder, M; Lawe, M; Learned, J G; Lim, I T; Lindner, T; Longhin, A; Ludovici, L; Ma, W; Magaletti, L; Mahn, K; Malek, M; Mariani, C; Marti, L; Martin, J F; Martin, C; Martins, P P J; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; Mezzetto, M; Minakata, H; Minamino, A; Mine, S; Mineev, O; Miura, M; Monroe, J; Mori, T; Moriyama, S; Mueller, T; Muheim, F; Nakahata, M; Nakamura, K; Nakaya, T; Nakayama, S; Needham, M; Nicholls, T; Nirkko, M; Nishimura, Y; Noah, E; Nowak, J; Nunokawa, H; O'Keeffe, H M; Okajima, Y; Okumura, K; Oser, S M; O'Sullivan, E; Ovsiannikova, T; Owen, R A; Oyama, Y; Pérez, J; Pac, M Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Pistillo, C; Playfer, S; Posiadala-Zezula, M; Poutissou, J -M; Quilain, B; Quinto, M; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A; Redij, A; Retiere, F; Riccio, C; Richard, E; Rondio, E; Rose, H J; Ross-Lonergan, M; Rott, C; Rountree, S D; Rubbia, A; Sacco, R; Sakuda, M; Sanchez, M C; Scantamburlo, E; Scholberg, K; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Shaikhiev, A; Shimizu, I; Shiozawa, M; Short, S; Sinnis, G; Smy, M B; Sobczyk, J; Sobel, H W; Stewart, T; Stone, J L; Suda, Y; Suzuki, Y; Suzuki, A T; Svoboda, R; Tacik, R; Takeda, A; Taketa, A; Takeuchi, Y; Tanaka, H A; Tanaka, H K M; Tanaka, H; Terri, R; Thompson, L F; Thorpe, M; Tobayama, S; Tolich, N; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vagins, M R; Vasseur, G; Vogelaar, R B; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilson, J R; Xin, T; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Zito, M

    2015-01-01

    Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW $\\times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56\\times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam, it is expected that the leptonic $CP$ phase $\\delta_{CP}$ can be determined to better than 19 degrees for all possible values of $\\delta_{CP}$, and $CP$ violation can be establis...

  19. Constraints on New Physics from Long Baseline Neutrino Oscillation Experiments

    CERN Document Server

    Honda, Minako; Okamura, Naotoshi; Pronin, Alexey; Takeuchi, Tatsu

    2007-01-01

    New physics beyond the Standard Model can lead to extra matter effects on neutrino oscillation if the new interactions distinguish among the three flavors of neutrino. In a previous paper, we argued that a long-baseline neutrino oscillation experiment in which the Fermilab-NUMI beam in its high-energy mode is aimed at the planned Hyper-Kamiokande detector would be capable of constraining the size of those extra effects, provided the vacuum value of \\sin^2 2\\theta_{23} is not too close to one. In this paper, we discuss how such a constraint would translate into limits on the coupling constants and masses of new particles in various models. The models we consider are: models with generation distinguishing Z's such as topcolor assisted technicolor, models containing various types of leptoquarks, R-parity violating SUSY, and extended Higgs sector models. In several cases, we find that the limits thus obtained could be competitive with those expected from direct searches at the LHC. In the event that any of the pa...

  20. GPS survey in long baseline neutrino-oscillation measurement

    CERN Document Server

    Noumi, H; Inagaki, T; Hasegawa, T; Katoh, Y; Kohama, M; Kurodai, M; Kusano, E; Maruyama, T; Minakawa, M; Nakamura, K; Nishikawa, K; Sakuda, M; Suzuki, Y; Takasaki, M; Tanaka, K H; Yamanoi, Y; 10.1109/TNS.2004.836042

    2004-01-01

    We made a series of surveys to obtain neutrino beam line direction toward SuperKamiokande (SK) at a distance of 250 km for the long- baseline neutrino oscillation experiment at KEK. We found that the beam line is directed to SK within 0.03 mr and 0.09 mr (in sigma) in the horizontal and vertical directions, respectively. During beam operation, we monitored the muon distribution from secondary pions produced at the target and collected by a magnetic horn system. We found that the horn system functions like a lens of a point-to- parallel optics with magnification of approximately -100 and the focal length of 2.3 m. Namely, a small displacement of the primary beam position at the target is magnified about a factor -100 at the muon centroid, while the centroid position is almost stable against a change of the incident angle of the primary beam. Therefore, the muon centroid can be a useful monitor of the neutrino beam direction. We could determine the muon centroid within 6 mm and 12 mm in horizontal and vertical ...

  1. Long baseline neutrino physics: From Fermilab to Kamioka

    Energy Technology Data Exchange (ETDEWEB)

    DeJongh, Fritz

    2002-03-01

    We have investigated the physics potential of very long baseline experiments designed to measure nu_mu to nu_e oscillation probabilities. The principles of our design are to tune the beam spectrum to the resonance energy for the matter effect, and to have the spectrum cut off rapidly above this energy. The matter effect amplifies the signal, and the cut-off suppresses backgrounds which feed-down from higher energy. The signal-to-noise ratio is potentially better than for any other conventional nu_mu beam experiment. We find that a beam from Fermilab aimed at the Super-K detector has excellent sensitivity to sin^2(2theta_13) and the sign of Delta M^2. If the mass hierarchy is inverted, the beam can be run in antineutrino mode with a similar signal-to-noise ratio, and event rate 55% as high as for the neutrino mode. Combining the Fermilab beam with the JHF-Kamioka proposal adds very complementary information. We find good sensitivity to maximal CP violation for values of sin^2(2theta_13) ranging from 0.001 to 0.05.

  2. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Strait, James [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); McCluskey, Elaine [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lundin, Tracy [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Willhite, Joshua [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Hamernik, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Marchionni, Alberto [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kim, Min Jeong [National Inst. of Nuclear Physics (INFN), Frascati (Italy). National Lab. of Frascati (INFN-LNF); Nessi, Marzio [Univ. of Geneva (Switzerland); Montanari, David [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Heavey, Anne [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  3. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015

    CERN Document Server

    Strait, James; Lundin, Tracy; Willhite, Joshua; Hamernik, Thomas; Papadimitriou, Vaia; Marchionni, Alberto; Kim, Min Jeong; Nessi, Marzio; Montanari, David; Heavey, Anne

    2016-01-01

    This volume of the LBNF/DUNE Conceptual Design Report cover the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  4. Searches for sterile neutrinos using the T2K off-axis near detector

    CERN Document Server

    Dewhurst, Debra

    2015-01-01

    In the last decades, the results from a number of short-baseline neutrino experiments and the reanalysis of previous reactor experiments with updated antineutrino fluxes suggest some incompatibility with the standard three-neutrino model. A possible solution to these anomalies is the existence of neutrinos that do not interact via the electroweak force, known as sterile neutrinos. The existence of sterile neutrinos can be investigated with the T2K Experiment. Here we present a search for the disappearance of electron neutrinos over a baseline of 280 m using the T2K off-axis near detector. The data analysed corresponds to an exposure of $5.9 \\times 10^{20}$ protons on target. The region $\\sin^2 2 \\theta > 0.2$ and $\\Delta m^2 > 8~\\textrm{eV}^2$ is excluded at 95% CL. We also present an introduction to a new analysis looking for muon neutrino disappearance with the T2K near detector, which is in its early stages but promises to have interesting results in 2015.

  5. A new approach to anti-neutrino running in long baseline neutrino oscillation experiments

    CERN Document Server

    Agarwalla, Sanjib K; Link, Jonathan M; Mohapatra, Debabrata

    2010-01-01

    We study the possibility to replace the anti-neutrino run of a long baseline neutrino oscillation experiment, with anti-neutrinos from muon decay at rest. The low energy of these neutrinos allows the use of inverse beta decay for detection in a Gadolinium-doped water Cerenkov detector. We show that this approach yields a factor of five times larger anti-neutrino event sample. The resulting discovery reaches in theta_13, the mass hierarchy and leptonic CP violation are compared with those from a conventional superbeam experiment with combined neutrino and anti-neutrino running. We find that this approach yields a greatly improved reach for CP violation and theta_13 while leaving the ability to measure the mass hierarchy intact.

  6. Systematic uncertainties in long-baseline neutrino-oscillation experiments

    CERN Document Server

    Ankowski, Artur M

    2016-01-01

    Thanks to global efforts over the past two decades, the phenomenon of neutrino oscillations is now well established. In ongoing experiments, the parameters driving the oscillations are being determined with rapidly increasing precision. Yet there still are open issues that have implications going well beyond neutrino physics. The next two decades are expected to bring definite answers to the neutrino-mass hierarchy and violation of charge-particle (CP) symmetry in neutrino oscillations. The question of the mass hierarchy---whether the neutrino masses follow the pattern of the charged-lepton masses---is relevant for cosmology, astrophysics and unification theories. On the other hand, CP violating oscillations have the potential to give an important, or event dominant, contribution to the matter-antimatter asymmetry in the Universe. For the success of future neutrino-oscillation studies it is, however, necessary to ensure a significant reduction of uncertainties, particularly those related to neutrino-energy re...

  7. A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    CERN Document Server

    :,; Aihara, H; Andreopoulos, C; Anghel, I; Ariga, A; Ariga, T; Asfandiyarov, R; Askins, M; Back, J J; Ballett, P; Barbi, M; Barker, G J; Barr, G; Bay, F; Beltrame, P; Berardi, V; Bergevin, M; Berkman, S; Berry, T; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bolognesi, S; Boyd, S B; Bravar, A; Bronner, C; Cafagna, F S; Carminati, G; Cartwright, S L; Catanesi, M G; Choi, K; Choi, J H; Collazuol, G; Cowan, G; Cremonesi, L; Davies, G; De Rosa, G; Densham, C; Detwiler, J; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Emery, S; Ereditato, A; Fernandez, P; Feusels, T; Finch, A; Fitton, M; Friend, M; Fujii, Y; Fukuda, Y; Fukuda, D; Galymov, V; Ganezer, K; Gonin, M; Gumplinger, P; Hadley, D R; Haegel, L; Haesler, A; Haga, Y; Hartfiel, B; Hartz, M; Hayato, Y; Hierholzer, M; Hill, J; Himmel, A; Hirota, S; Horiuchi, S; Huang, K; Ichikawa, A K; Iijima, T; Ikeda, M; Imber, J; Inoue, K; Insler, J; Intonti, R A; Irvine, T; Ishida, T; Ishino, H; Ishitsuka, M; Itow, Y; Izmaylov, A; Jamieson, B; Jang, H I; Jiang, M; Joo, K K; Jung, C K; Kaboth, A; Kajita, T; Kameda, J; Karadhzov, Y; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, J Y; Kim, S B; Kishimoto, Y; Kobayashi, T; Koga, M; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W R; Kudenko, Y; Kutter, T; Kuze, M; Labarga, L; Lagoda, J; Laveder, M; Lawe, M; Learned, J G; Lim, I T; Lindner, T; Longhin, A; Ludovici, L; Ma, W; Magaletti, L; Mahn, K; Malek, M; Mariani, C; Marti, L; Martin, J F; Martin, C; Martins, P P J; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; Mezzetto, M; Minakata, H; Minamino, A; Mine, S; Mineev, O; Miura, M; Monroe, J; Mori, T; Moriyama, S; Mueller, T; Muheim, F; Nakahata, M; Nakamura, K; Nakaya, T; Nakayama, S; Needham, M; Nicholls, T; Nirkko, M; Nishimura, Y; Noah, E; Nowak, J; Nunokawa, H; O'Keeffe, H M; Okajima, Y; Okumura, K; Oser, S M; O'Sullivan, E; Owen, R A; Oyama, Y; Perez, J; Pac, M Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Pistillo, C; Playfer, S; Posiadala-Zezula, M; Poutissou, J -M; Quilain, B; Quinto, M; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M; Redij, A; Retiere, F; Riccio, C; Richard, E; Rondio, E; Rose, H J; Ross-Lonergan, M; Rott, C; Rountree, S D; Rubbia, A; Sacco, R; Sakuda, M; Sanchez, M C; Scantamburlo, E; Scholberg, K; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Shaikhiev, A; Shimizu, I; Shiozawa, M; Short, S; Sinnis, G; Smy, M B; Sobczyk, J; Sobel, H W; Stewart, T; Stone, J L; Suda, Y; Suzuki, Y; Suzuki, A T; Svoboda, R; Tacik, R; Takeda, A; Taketa, A; Takeuchi, Y; Tanaka, H A; Tanaka, H K M; Tanaka, H; Terri, R; Thompson, L F; Thorpe, M; Tobayama, S; Tolich, N; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vagins, M R; Vasseur, G; Vogelaar, R B; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilson, J R; Xin, T; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Zito, M

    2014-01-01

    Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex

  8. Sterile Neutrino Production Through a Matter Effect Enhancement at Long Baselines

    Science.gov (United States)

    Bramante, Joseph

    2013-06-01

    If sterile neutrinos have a neutral coupling to standard model fermions, matter effect resonant transitions to sterile neutrinos and excess neutral-current events could manifest at long baseline experiments. Assuming a single sterile neutrino with a neutral coupling to fermionic matter, we re-examine bounds on sterile neutrino production at long baselines from the MINOS result Pνμ →νs space of sterile neutrino matter effect fits of the LSND and MiniBooNe data, we show that in the case of a vector singlet coupling of sterile neutrinos to matter, some favored parametrizations of these fits would create neutral-current event excesses above standard model predictions at long baseline experiments (e.g. MINOS and OPERA).

  9. Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam

    Science.gov (United States)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×1020 protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin2(θ23) is 0.514-0.056+0.055 (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm322=(2.51±0.10)×10-3 eV2/c4 (inverted hierarchy: Δm132=(2.48±0.10)×10-3 eV2/c4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  10. Precise Measurement of the Neutrino Mixing Parameter \\theta_{23} from Muon Neutrino Disappearance in an Off-axis Beam

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de, P; De, G; Dealtry, T; Dennis, S R; Densham, C; Di, F; Di, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iwai, E; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-01-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = 2.51 +- 0.10 x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = 2.48 +- 0.10 x 10^{-3} eV^2/c^4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  11. Report of the US long baseline neutrino experiment study

    CERN Document Server

    Barger, V; Bogert, D; Bromberg, C; Curioni, A; Dierckxsens, M; Diwan, M; Dufour, F; Finley, D; Fleming, B T; Gallardo, J; Heim, J; Huber, P; Jung, C K; Kahn, S; Kearns, E; Kirk, H; Kirk, T; Lande, K; Laughton, C; Lee, W Y; Lesko, K; Lewis, C; Litchfield, P J; Mann, A K; Marchionni, A; Marciano, W; Marfatia, D; Marino, A D; Marshak, M; Menary, S; McDonald, K; Messier, M; Pariseau, W; Parsa, Z; Pordes, S; Potenza, R; Rameika, R; Saoulidou, N; Simos, N; Van Berg, R; Viren, B; Whisnant, K; Wilson, R; Winter, W; Yanagisawa, C; Yumiceva, F; Zimmerman, E D; Zwaska, R

    2007-01-01

    This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability could be unique compared to anywhere else in the world because of the available beam intensity and baseline distances. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermi National Accelerator Laboratory and, as the study evolved, it also provided responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the ...

  12. REPORT OF THE US LONG BASELINE NEUTRINO EXPERIMENT STUDY.

    Energy Technology Data Exchange (ETDEWEB)

    BARGER,V.; FINLEY, D.; LAUGHTON, C.; PORDES, S.; MARCHIONNI, A.; RAMEIKA, R.; SAOULIDOU, N.; ZWASKA, R.; BISHAI, M.; DIWAN, M.; DIERCKXSENS, M.; KIRK, H.; KAHN, S.; SIMOS, N.; MARCIANO, W.; PARSA, Z.; VIREN, B.; ET AL.

    2007-01-01

    This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability is not likely to be challenged anywhere else in the world for at least two decades into the future. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermilab and, as the study evolved, it also provides responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the study results and conclusions are provided in this report and its appendices. A summary of the conclusions is provided in the Executive Summary.

  13. Capabilities of long-baseline experiments in the presence of a sterile neutrino

    CERN Document Server

    Dutta, Debajyoti; Kayser, Boris; Masud, Mehedi; Prakash, Suprabh

    2016-01-01

    Assuming that there is a sterile neutrino, we ask what then is the ability of long-baseline experiments to i) establish that neutrino oscillation violates CP, ii) determine the three-neutrino mass ordering, and iii) determine which CP-violating phase or phases are the cause of any CP violation that may be observed. We find that the ability to establish CP violation and to determine the mass ordering could be very substantial. However, the effects of the sterile neutrino could be quite large, and it might prove very difficult to determine which phase is responsible for an observed CP violation. We explain why a sterile neutrino changes the long-baseline sensitivities to CP violation and to the mass ordering in the ways that it does. We note that long-baseline experiments can probe the presence of sterile neutrinos in a way that is different from, and complementary to, the probes of short-baseline experiments. We explore the question of how large sterile-active mixing angles need to be before long-baseline expe...

  14. Investigation of neutrino oscillations in the T2k long-baseline accelerator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Izmaylov, A. O., E-mail: izmaylov@inr.ru; Yershov, N. V.; Kudenko, Yu. G.; Matveev, V. A.; Mineev, O. V.; Musienko, Yu. V.; Khabibulliun, M. M.; Khotjantsev, A. N.; Shaykhiev, A. T. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2012-02-15

    High-sensitivity searches for transitions of muon neutrinos to electron neutrinos are the main task of the T2K (Tokai-to-Kamioka) second-generation long-baseline accelerator neutrino experiment. The present article is devoted to describing basic principles of T2K, surveying experimental apparatuses that it includes, and considering in detail the muon-range detector (SMRD) designed and manufactured by a group of physicists from the Institute of Nuclear Research (Russian Academy of Sciences, Moscow). The results of the first measurements with a neutrino beam are presented, and plans for the near future are discussed.

  15. The Science and Strategy for Phasing of the Long-Baseline Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Milind V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-05-22

    This note is about the principles behind a phased plan for realizing a Long-Baseline Neutrino Experiment(LBNE) in the U.S.. The most important issue that must be resolved is the direction of the first phase of the experiment. Based on both scientific and programmatic considerations, the U.S. should pursue the best option for accelerator neutrino physics, which is the longer baseline towards Homestake with an optimizedbroadband intense beam.

  16. Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam

    Science.gov (United States)

    Abe, K.; Abgrall, N.; Ajima, Y.; Aihara, H.; Albert, J. B.; Andreopoulos, C.; Andrieu, B.; Aoki, S.; Araoka, O.; Argyriades, J.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Badertscher, A.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Bay, F.; Bentham, S.; Berardi, V.; Berger, B. E.; Bertram, I.; Besnier, M.; Beucher, J.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. D. M. M.; Blondel, A.; Bojechko, C.; Bouchez, J.; Boyd, S. B.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Budd, H.; Calvet, D.; Cartwright, S. L.; Carver, A.; Castillo, R.; Catanesi, M. G.; Cazes, A.; Cervera, A.; Chavez, C.; Choi, S.; Christodoulou, G.; Coleman, J.; Coleman, W.; Collazuol, G.; Connolly, K.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davies, G. S.; Davis, S.; Day, M.; de Rosa, G.; de André, J. P. A. M.; de Perio, P.; Delbart, A.; Densham, C.; di Lodovico, F.; di Luise, S.; Dinh Tran, P.; Dobson, J.; Dore, U.; Drapier, O.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Esposito, L. S.; Fechner, M.; Ferrero, A.; Finch, A. J.; Frank, E.; Fujii, Y.; Fukuda, Y.; Galymov, V.; Gannaway, F. C.; Gaudin, A.; Gendotti, A.; George, M. A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Goldhaber, M.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Grant, A.; Gumplinger, P.; Guzowski, P.; Haesler, A.; Haigh, M. D.; Hamano, K.; Hansen, C.; Hansen, D.; Hara, T.; Harrison, P. F.; Hartfiel, B.; Hartz, M.; Haruyama, T.; Hasegawa, T.; Hastings, N. C.; Hastings, S.; Hatzikoutelis, A.; Hayashi, K.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Henderson, R.; Higashi, N.; Hignight, J.; Hirose, E.; Holeczek, J.; Horikawa, S.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Iida, M.; Ikeda, M.; Ilic, J.; Imber, J.; Ishida, T.; Ishihara, C.; Ishii, T.; Ives, S. J.; Iwasaki, M.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Joo, K. K.; Jover-Manas, G. V.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kaneyuki, K.; Karlen, D.; Kasami, K.; Kato, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, J.; Kim, J. Y.; Kim, S. B.; Kimura, N.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Koike, S.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kouzuma, Y.; Kowalik, K.; Kravtsov, V.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kulkarni, N.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lee, K. P.; Le, P. T.; Levy, J. M.; Licciardi, C.; Lim, I. T.; Lindner, T.; Litchfield, R. P.; Litos, M.; Longhin, A.; Lopez, G. D.; Loverre, P. F.; Ludovici, L.; Lux, T.; Macaire, M.; Mahn, K.; Makida, Y.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Maryon, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metcalf, W.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A. D.; Mituka, G.; Miura, M.; Mizouchi, K.; Monfregola, L.; Moreau, F.; Morgan, B.; Moriyama, S.; Muir, A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamoto, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Naples, D.; Navin, M. L.; Nelson, B.; Nicholls, T. C.; Nishikawa, K.; Nishino, H.; Nowak, J. A.; Noy, M.; Obayashi, Y.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Okumura, K.; Okusawa, T.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Ozaki, T.; Pac, M. Y.; Palladino, V.; Paolone, V.; Paul, P.; Payne, D.; Pearce, G. F.; Perkin, J. D.; Pettinacci, V.; Pierre, F.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Qian, W.; Raaf, J. L.; Radicioni, E.; Ratoff, P. N.; Raufer, T. M.; Ravonel, M.; Raymond, M.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roney, J. M.; Rossi, B.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sabouri, S.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sarrat, A.; Sasaki, K.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shibata, M.; Shimizu, Y.; Shiozawa, M.; Short, S.; Siyad, M.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Stahl, A.; Stamoulis, P.; Steinmann, J.; Still, B.; Stone, J.; Strabel, C.; Sulak, L. R.; Sulej, R.; Sutcliffe, P.; Suzuki, A.; Suzuki, K.; Suzuki, S.; Suzuki, S. Y.; Suzuki, Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Tanaka, K.; Tanaka, H. A.; Tanaka, M.; Tanaka, M. M.; Tanimoto, N.; Tashiro, K.; Taylor, I.; Terashima, A.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Toki, W.; Tomaru, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Walding, J. J.; Waldron, A. V.; Walter, C. W.; Wanderer, P. J.; Wang, J.; Ward, M. A.; Ward, G. P.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; West, N.; Whitehead, L. H.; Wikström, G.; Wilkes, R. J.; Wilking, M. J.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, S.; Yamada, Y.; Yamamoto, A.; Yamamoto, K.; Yamanoi, Y.; Yamaoka, H.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2011-07-01

    The T2K experiment observes indications of νμ→νe appearance in data accumulated with 1.43×1020 protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm232|=2.4×10-3eV2, sin⁡22θ23=1 and sin⁡22θ13=0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10-3, equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04)

  17. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam.

    Science.gov (United States)

    Abe, K; Abgrall, N; Ajima, Y; Aihara, H; Albert, J B; Andreopoulos, C; Andrieu, B; Aoki, S; Araoka, O; Argyriades, J; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Badertscher, A; Barbi, M; Barker, G J; Barr, G; Bass, M; Bay, F; Bentham, S; Berardi, V; Berger, B E; Bertram, I; Besnier, M; Beucher, J; Beznosko, D; Bhadra, S; Blaszczyk, F d M M; Blondel, A; Bojechko, C; Bouchez, J; Boyd, S B; Bravar, A; Bronner, C; Brook-Roberge, D G; Buchanan, N; Budd, H; Calvet, D; Cartwright, S L; Carver, A; Castillo, R; Catanesi, M G; Cazes, A; Cervera, A; Chavez, C; Choi, S; Christodoulou, G; Coleman, J; Coleman, W; Collazuol, G; Connolly, K; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davies, G S; Davis, S; Day, M; De Rosa, G; de André, J P A M; de Perio, P; Delbart, A; Densham, C; Di Lodovico, F; Di Luise, S; Dinh Tran, P; Dobson, J; Dore, U; Drapier, O; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Dziomba, M; Emery, S; Ereditato, A; Escudero, L; Esposito, L S; Fechner, M; Ferrero, A; Finch, A J; Frank, E; Fujii, Y; Fukuda, Y; Galymov, V; Gannaway, F C; Gaudin, A; Gendotti, A; George, M A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Goldhaber, M; Gomez-Cadenas, J J; Gonin, M; Grant, N; Grant, A; Gumplinger, P; Guzowski, P; Haesler, A; Haigh, M D; Hamano, K; Hansen, C; Hansen, D; Hara, T; Harrison, P F; Hartfiel, B; Hartz, M; Haruyama, T; Hasegawa, T; Hastings, N C; Hastings, S; Hatzikoutelis, A; Hayashi, K; Hayato, Y; Hearty, C; Helmer, R L; Henderson, R; Higashi, N; Hignight, J; Hirose, E; Holeczek, J; Horikawa, S; Hyndman, A; Ichikawa, A K; Ieki, K; Ieva, M; Iida, M; Ikeda, M; Ilic, J; Imber, J; Ishida, T; Ishihara, C; Ishii, T; Ives, S J; Iwasaki, M; Iyogi, K; Izmaylov, A; Jamieson, B; Johnson, R A; Joo, K K; Jover-Manas, G V; Jung, C K; Kaji, H; Kajita, T; Kakuno, H; Kameda, J; Kaneyuki, K; Karlen, D; Kasami, K; Kato, I; Kearns, E; Khabibullin, M; Khanam, F; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, J; Kim, J Y; Kim, S B; Kimura, N; Kirby, B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Koike, S; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kouzuma, Y; Kowalik, K; Kravtsov, V; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kulkarni, N; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lee, K P; Le, P T; Levy, J M; Licciardi, C; Lim, I T; Lindner, T; Litchfield, R P; Litos, M; Longhin, A; Lopez, G D; Loverre, P F; Ludovici, L; Lux, T; Macaire, M; Mahn, K; Makida, Y; Malek, M; Manly, S; Marchionni, A; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Maryon, T; Marzec, J; Masliah, P; Mathie, E L; Matsumura, C; Matsuoka, K; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; McLachlan, T; Messina, M; Metcalf, W; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A D; Mituka, G; Miura, M; Mizouchi, K; Monfregola, L; Moreau, F; Morgan, B; Moriyama, S; Muir, A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakai, T; Nakajima, K; Nakamoto, T; Nakamura, K; Nakayama, S; Nakaya, T; Naples, D; Navin, M L; Nelson, B; Nicholls, T C; Nishikawa, K; Nishino, H; Nowak, J A; Noy, M; Obayashi, Y; Ogitsu, T; Ohhata, H; Okamura, T; Okumura, K; Okusawa, T; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Ozaki, T; Pac, M Y; Palladino, V; Paolone, V; Paul, P; Payne, D; Pearce, G F; Perkin, J D; Pettinacci, V; Pierre, F; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Qian, W; Raaf, J L; Radicioni, E; Ratoff, P N; Raufer, T M; Ravonel, M; Raymond, M; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roney, J M; Rossi, B; Roth, S; Rubbia, A; Ruterbories, D; Sabouri, S; Sacco, R; Sakashita, K; Sánchez, F; Sarrat, A; Sasaki, K; Scholberg, K; Schwehr, J; Scott, M; Scully, D I; Seiya, Y; Sekiguchi, T; Sekiya, H; Shibata, M; Shimizu, Y; Shiozawa, M; Short, S; Siyad, M; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Stahl, A; Stamoulis, P; Steinmann, J; Still, B; Stone, J; Strabel, C; Sulak, L R; Sulej, R; Sutcliffe, P; Suzuki, A; Suzuki, K; Suzuki, S; Suzuki, S Y; Suzuki, Y; Suzuki, Y; Szeglowski, T; Szeptycka, M; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takenaga, Y; Takeuchi, Y; Tanaka, K; Tanaka, H A; Tanaka, M; Tanaka, M M; Tanimoto, N; Tashiro, K; Taylor, I; Terashima, A; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Toki, W; Tomaru, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Walding, J J; Waldron, A V; Walter, C W; Wanderer, P J; Wang, J; Ward, M A; Ward, G P; Wark, D; Wascko, M O; Weber, A; Wendell, R; West, N; Whitehead, L H; Wikström, G; Wilkes, R J; Wilking, M J; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, S; Yamada, Y; Yamamoto, A; Yamamoto, K; Yamanoi, Y; Yamaoka, H; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M

    2011-07-22

    The T2K experiment observes indications of ν(μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3)  eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2θ(13) < 0.28(0.34) for δ(CP) = 0 and a normal (inverted) hierarchy.

  18. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    Energy Technology Data Exchange (ETDEWEB)

    Brice, S. J. [Fermilab; Cooper, R. L. [Indiana U.; DeJongh, F. [Fermilab; Empl, A. [Houston U.; Garrison, L. M. [Indiana U.; Hime, A. [Los Alamos; Hungerford, E. [Houston U.; Kobilarcik, T. [Fermilab; Loer, B. [Fermilab; Mariani, C. [Virginia Tech.; Mocko, M. [Los Alamos; Muhrer, G. [Los Alamos; Pattie, R. [North Carolina State U.; Pavlovic, Z. [Los Alamos; Ramberg, E. [Fermilab; Scholberg, K. [Duke U.; Tayloe, R. [Indiana U.; Thornton, R. T. [Indiana U.; Yoo, J. [Fermilab; Young, A. [North Carolina State U.

    2014-04-03

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  19. A New Method for Measuring Coherent Elastic Neutrino Nucleus Scattering at an Off-Axis High-Energy Neutrino Beam Target

    CERN Document Server

    Brice, S J; DeJongh, F; Empl, A; Garrison, L M; Hime, A; Hungerford, E; Kobilarcik, T; Loer, B; Mariani, C; Mocko, M; Muhrer, G; Pattie, R; Pavlovic, Z; Ramberg, E; Scholberg, K; Tayloe, R; Thornton, R T; Yoo, J; Young, A

    2013-01-01

    We present a new experimental method for measuring the process of Coherent Elastic Neutrino Nucleus Scattering (CENNS). This method uses a detector situated transverse to a high energy neutrino beam production target. This detector would be sensitive to the low energy neutrinos arising from pion decays-at-rest in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  20. Near Detectors based on gas TPCs for neutrino long baseline experiments

    CERN Document Server

    Blondel, A

    2017-01-01

    Time Projection Chambers have been used with success for the T2K ND280 near detector and are proposed for an upgrade of the T2K near detector. High pressure TPCs are also being considered for future long-baseline experiments like Hyper-Kamiokande and DUNE. A High Pressure TPC would be a very sensitive detector for the detailed study of neutrino-nucleus interactions, a limiting factor for extracting the ultimate precision in long baseline experiments. The requirements of TPCs for neutrino detectors are quite specific. We propose here the development of state-of-the-art near detectors based on gas TPC: atmospheric pressure TPCs for T2K-II and a high-pressure TPC for neutrino experiments. The project proposed here benefits from a strong involvement of the European (CERN) members of the T2K collaboration and beyond. It is a strongly synergetic precursor of other projects of near detectors using gas TPCs that are under discussion for the long baseline neutrino projects worldwide. It will help maintain and develop...

  1. The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups

    CERN Document Server

    Akiri, T; Andrews, M; Arisaka, K; Arrieta-Diaz, E; Artuso, M; Bai, X; Balantekin, B; Baller, B; Barletta, W; Barr, G; Bass, M; Beck, A; Becker, B; Bellini, V; Benhar, O; Berger, B; Bergevin, M; Berman, E; Berns, H; Bernstein, A; Beroz, F; Bhatnagar, V; Bhuyan, B; Bionta, R; Bishai, M; Blake, A; Blaufuss, E; Bleakley, B; Blucher, E; Blusk, S; Boehnlein, D; Bolton, T; Brack, J; Bradford, R; Breedon, R; Bromberg, C; Brown, R; Buchanan, N; Camilleri, L; Campbell, M; Carr, R; Carminati, G; Chen, A; Chen, H; Cherdack, D; Chi, C; Childress, S; Choudhary, B; Church, E; Cline, D; Coleman, S; Corey, R; D'Agostino, M; Davies, G; Dazeley, S; De Jong, J; DeMaat, B; Demuth, D; Dighe, A; Djurcic, Z; Dolph, J; Drake, G; Drozhdin, A; Duan, H; Duyang, H; Dye, S; Dykhuis, T; Edmunds, D; Elliott, S; Enomoto, S; Escobar, C; Felde, J; Feyzi, F; Fleming, B; Fowler, J; Fox, W; Friedland, A; Fujikawa, B; Gallagher, H; Garilli, G; Garvey, G; Gehman, V; Geronimo, G; Gill, R; Goodman, M; Goon, J; Gorbunov, D; Gran, R; Guarino, V; Guarnaccia, E; Guenette, R; Gupta, P; Habig, A; Hackenberg, R; Hahn, A; Hahn, R; Haines, T; Hans, S; Harton, J; Hays, S; Hazen, E; He, Q; Heavey, A; Heeger, K; Hellauer, R; Himmel, A; Horton-Smith, G; Howell, J; Huber, P; Hurh, P; Huston, J; Hylen, J; Insler, J; Jaffe, D; James, C; Johnson, C; Johnson, M; Johnson, R; Johnson, W; Johnston, W; Johnstone, J; Jones, B; Jostlein, H; Junk, T; Junnarkar, S; Kadel, R; Kafka, T; Kaminski, D; Karagiorgi, G; Karle, A; Kaspar, J; Katori, T; Kayser, B; Kearns, E; Kettell, S; Khanam, F; Klein, J; Kneller, J; Koizumi, G; Kopp, J; Kopp, S; Kropp, W; Kudryavtsev, V; Kumar, A; Kumar, J; Kutter, T; Lackowski, T; Lande, K; Lane, C; Lang, K; Lanni, F; Lanza, R; Latorre, T; Learned, J; Lee, D; Lee, K; Li, Y; Linden, S; Ling, J; Link, J; Littenberg, L; Loiacono, L; Liu, T; Losecco, J; Louis, W; Lucas, P; Lunardini, C; Lundberg, B; Lundin, T; Makowiecki, D; Malys, S; Mandal, S; Mann, A; Mann, A; Mantsch, P; Marciano, W; Mariani, C; Maricic, J; Marino, A; Marshak, M; Maruyama, R; Mathews, J; Matsuno, S; Mauger, C; McCluskey, E; McDonald, K; McFarland, K; McKeown, R; McTaggart, R; Mehdiyev, R; Melnitchouk, W; Meng, Y; Mercurio, B; Messier, M; Metcalf, W; Milincic, R; Miller, W; Mills, G; Mishra, S; MoedSher, S; Mohapatra, D; Mokhov, N; Moore, C; Morfin, J; Morse, W; Moss, A; Mufson, S; Musser, J; Naples, D; Napolitano, J; Newcomer, M; Norris, B; Ouedraogo, S; Page, B; Pakvasa, S; Paley, J; Paolone, V; Papadimitriou, V; Parsa, Z; Partyka, K; Pavlovic, Z; Pearson, C; Perasso, S; Petti, R; Plunkett, R; Polly, C; Pordes, S; Potenza, R; Prakash, A; Prokofiev, O; Qian, X; Raaf, J; Radeka, V; Raghavan, R; Rameika, R; Rebel, B; Rescia, S; Reitzner, D; Richardson, M; Riesselman, K; Robinson, M; Rosen, M; Rosenfeld, C; Rucinski, R; Russo, T; Sahijpal, S; Salon, S; Samios, N; Sanchez, M; Schmitt, R; Schmitz, D; Schneps, J; Scholberg, K; Seibert, S; Sergiampietri, F; Shaevitz, M; Shanahan, P; Shaposhnikov, M; Sharma, R; Simos, N; Singh, V; Sinnis, G; Sippach, W; Skwarnicki, T; Smy, M; Sobel, H; Soderberg, M; Sondericker, J; Sondheim, W; Spitz, J; Spooner, N; Stancari, M; Stancu, I; Stewart, J; Stoler, P; Stone, J; Stone, S; Strait, J; Straszheim, T; Striganov, S; Sullivan, G; Svoboda, R; Szczerbinska, B; Szelc, A; Talaga, R; Tanaka, H; Tayloe, R; Taylor, D; Thomas, J; Thompson, L; Thomson, M; Thorn, C; Tian, X; Toki, W; Tolich, N; Tripathi, M; Trovato, M; Tseung, H; Tzanov, M; Urheim, J; Usman, S; Vagins, M; Van Berg, R; Van de Water, R; Varner, G; Vaziri, K; Velev, G; Viren, B; Wachala, T; Walter, C; Wang, H; Wang, Z; Warner, D; Webber, D; Weber, A; Wendell, R; Wendt, C; Wetstein, M; White, H; White, S; Whitehead, L; Willis, W; Wilson, R J; Winslow, L; Ye, J; Yeh, M; Yu, B; Zeller, G; Zhang, C; Zimmerman, E; Zwaska, R

    2011-01-01

    In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011.

  2. Prospect of a very long baseline neutrino oscillation experiment HIPA to Beijing

    CERN Document Server

    Chen, H; He, J; Kuang, H; Lu, Y; Ma, Y; Shan, L; Shen, C; Wang, Y; Yang, C; Zhang, X; Zhu, Q; Qing, C; Xiong, Z; Yang, J M; Zhang, Z; Chen, J; Ye, Y; Lee, S C; Wong, H T; Whisnant, K; Young Bing Lin; Chen, Hesheng; Ding, Linkai; He, Jingtang; Kuang, Haohuai; Lu, Yusheng; Ma, Yuqian; Shan, Lianyou; Shen, Changquan; Wang, Yifang; Yang, Changgen; Zhang, Xinmin; Zhu, Qingqi; Qing, Chengrui; Xiong, Zhaohua; Yang, Jin Min; Zhang, Zhaoxi; Chen, Jiaer; Ye, Yanlin; Whisnant, Kerry; Young, Bing-Lin

    2001-01-01

    We discuss the prospects of a very long baseline neutrino oscillation experiment from HIPA to Beijing. The current understanding of neutrino oscillations, both theoretically and experimentally, are summarized. The figure of merits for interested physics measurements are defined and compared at different distances: 300 km, 700 km, 2100 km and 3000 km. We conclude that a baseline more than 2100 km is optimal. A large water cerenkov calorimeter was proposed and its performance is satisfactory from a Monte Carlo simulation study. Such a large detector can do many other measurements on cosmic-rays physics and astrophysics.

  3. Neutrino Interactions with Nucleons and Nuclei: Importance for Long Baseline Experiments

    CERN Document Server

    Mosel, Ulrich

    2016-01-01

    This article reviews our present knowledge of neutrino interactions with nucleons. It then discusses the interactions with nuclei, the target material of all presently running and planned long-baseline experiments. Particular emphasis is placed on descriptions of semi-inclusive reactions and full descriptions of the final state; the latter are needed to reconstruct the incoming neutrino energy from final state observations. Monte-Carlo generator and more advanced transport theoretical approaches are then discussed in connection with experimental results on various reaction mechanisms. Finally the effects of uncertainties in the reconstruction of the incoming neutrino energy on oscillation parameters are described. It is argued that the precision era of neutrino physics also needs precision era generators.

  4. NEUTRINO SUPER BEAM FACILITY FOR A LONG BASELINE EXPERIMENT FROM BNL TO HOMESTAKE.

    Energy Technology Data Exchange (ETDEWEB)

    KAHN,S.

    2002-10-21

    An upgrade to the BNL Alternate Gradient Synchrotron (AGS) could produce a very intense proton source at a relatively low cost. Such a proton beam could be used to generate a conventional neutrino beam with a significant flux at large distances from the laboratory. This provides the possibility of a very long baseline neutrino experiment at the Homestake mine. The construction of this facility would allow a program of experiments to study many of the aspects of neutrino oscillations including CP violations. This study examines a 1 MW proton source at BNL and a large 1 megaton detector positioned at the Homestake Mine as the ultimate goal of a staged program to study neutrino oscillations.

  5. The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    CERN Document Server

    Agarwalla, S.K.; Aittola, M.; Alekou, A.; Andrieu, B.; Antoniou, F.; Asfandiyarov, R.; Autiero, D.; Besida, O.; Balik, A.; Ballett, P.; Bandac, I.; Banerjee, D.; Bartmann, W.; Bay, F.; Biskup, B.; Blebea-Apostu, A.M.; Blondel, A.; Bogomilov, M.; Bolognesi, S.; Borriello, E.; Brancus, I.; Bravar, A.; Buizza-Avanzini, M.; Caiulo, D.; Calin, M.; Calviani, M.; Campanelli, M.; Cantini, C.; Cata-Danil, G.; Chakraborty, S.; Charitonidis, N.; Chaussard, L.; Chesneanu, D.; Chipesiu, F.; Crivelli, P.; Dawson, J.; De Bonis, I.; Declais, Y.; del Amo Sanchez, P.; Delbart, A.; Di Luise, S.; Duchesneau, D.; Dumarchez, J.; Efthymiopoulos, I.; Eliseev, A.; Emery, S.; Enqvist, T.; Enqvist, K.; Epprecht, L.; Erykalov, A.N.; Esanu, T.; Franco, D.; Friend, M.; Galymov, V.; Gavrilov, G.; Gendotti, A.; Giganti, C.; Gilardoni, S.; Goddard, B.; Gomoiu, C.M.; Gornushkin, Y.A.; Gorodetzky, P.; Haesler, A.; Hasegawa, T.; Horikawa, S.; Huitu, K.; Izmaylov, A.; Jipa, A.; Kainulainen, K.; Karadzhov, Y.; Khabibullin, M.; Khotjantsev, A.; Kopylov, A.N.; Korzenev, A.; Kosyanenko, S.; Kryn, D.; Kudenko, Y.; Kuusiniemi, P.; Lazanu, I.; Lazaridis, C.; Levy, J.M.; Loo, K.; Maalampi, J.; Margineanu, R.M.; Marteau, J.; Martin-Mari, C.; Matveev, V.; Mazzucato, E.; Mefodiev, A.; Mineev, O.; Mirizzi, A.; Mitrica, B.; Murphy, S.; Nakadaira, T.; Narita, S.; Nesterenko, D.A.; Nguyen, K.; Nikolics, K.; Noah, E.; Novikov, Yu.; Oprima, A.; Osborne, J.; Ovsyannikova, T.; Papaphilippou, Y.; Pascoli, S.; Patzak, T.; Pectu, M.; Pennacchio, E.; Periale, L.; Pessard, H.; Popov, B.; Ravonel, M.; Rayner, M.; Resnati, F.; Ristea, O.; Robert, A.; Rubbia, A.; Rummukainen, K.; Saftoiu, A.; Sakashita, K.; Sanchez-Galan, F.; Sarkamo, J.; Saviano, N.; Scantamburlo, E.; Sergiampietri, F.; Sgalaberna, D.; Shaposhnikova, E.; Slupecki, M.; Smargianaki, D.; Stanca, D.; Steerenberg, R.; Sterian, A.R.; Sterian, P.; Stoica, S.; Strabel, C.; Suhonen, J.; Suvorov, V.; Toma, G.; Tonazzo, A.; Trzaska, W.H.; Tsenov, R.; Tuominen, K.; Valram, M.; Vankova-Kirilova, G.; Vannucci, F.; Vasseur, G.; Velotti, F.; Velten, P.; Venturi, V.; Viant, T.; Vihonen, S.; Vincke, H.; Vorobyev, A.; Weber, A.; Wu, S.; Yershov, N.; Zambelli, L.; Zito, M.

    2014-01-01

    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $\\sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\\delta_{CP}$ and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure ...

  6. The impact of sterile neutrinos on CP measurements at long baselines

    CERN Document Server

    Gandhi, Raj; Masud, Mehedi; Prakash, Suprabh

    2015-01-01

    With the Deep Underground Neutrino Experiment (DUNE) as an example, we show that the presence of even one sterile neutrino of mass $\\sim$1 eV can significantly impact the measurements of CP violation in long baseline experiments. Using a probability level analysis and neutrino-antineutrino asymmetry calculations, we discuss the large magnitude of these effects, and show how they translate into significant event rate deviations at DUNE. Our results demonstrate that measurements which, when interpreted in the context of the standard three family paradigm, indicate CP conservation at long baselines, may, in fact hide large CP violation if there is a sterile state. Similarly, any data indicating the violation of CP cannot be properly interpreted within the standard paradigm unless the presence of sterile states of mass O(1 eV) can be conclusively ruled out. Our work underscores the need for a parallel and linked short baseline oscillation program and a highly capable near detector for DUNE, in order that its high...

  7. An intermediate gamma beta-beam neutrino experiment with long baseline

    CERN Document Server

    Meloni, Davide; Orme, Christopher; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2008-01-01

    In order to address some fundamental questions in neutrino physics a wide, future programme of neutrino oscillation experiments is currently under discussion. Among those, long baseline experiments will play a crucial role in providing information on the value of theta13, the type of neutrino mass ordering and on the value of the CP-violating phase delta, which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an intermediate Lorentz factor gamma=450 and a baseline of 1050 km. This could be achieved in Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in the United Kingdom. We analyse the physics potential of this setup in detail and study two different exposures (1 x 10^{21} and 5 x 10^{21} ions-kton-years). In both cases, we find that the type of neutrino mass hierarchy could be determined at 99% CL, for all values of delta, for sin^2(2 theta13) > 0.03. In the high-exposure scenario, we find that the value of the CP-violating phase delta could be meas...

  8. Results and Status of the T2K and NOvA long-baseline neutrino experiments

    Science.gov (United States)

    Muether, Mathew

    2016-03-01

    The discovery of neutrino oscillations and the resulting implication that neutrinos have mass, recently awarded the Nobel Prize in Physics, has bolstered a world-wide effort to exploit this effect as a handle on the properties of neutrinos. In the decades since the initial discovery of neutrino oscillations, great strides have been made in understanding the nature of these elusive particles, yet important and fundamental questions remain open, such as: How are the neutrino masses ordered? And Do neutrinos and antineutrinos oscillate differently? The current generation of accelerator based long-baseline neutrino oscillation experiments, T2K in Japan and NOvA in the United States, are actively pursuing the answers to these questions. In this talk, I will review the recent results and current status of the T2K and NOvA long-baseline neutrino experiments.

  9. Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO)

    CERN Document Server

    Stahl, A; Guler, A M; Kamiscioglu, M; Sever, R; Yilmazer, A U; Gunes, C; Yilmaz, D; Del Amo Sanchez, P; Duchesneau, D; Pessard, H; Marcoulaki, E; Papazoglou, I A; Berardi, V; Cafagna, F; Catanesi, M G; Magaletti, L; Mercadante, A; Quinto, M; Radicioni, E; Ereditato, A; Kreslo, I; Pistillo, C; Weber, M; Ariga, A; Ariga, T; Strauss, T; Hierholzer, M; Kawada, J; Hsu, C; Haug, S; Jipa, A; Lazanu, I; Cardini, A; Lai, A; Oldeman, R; Thomson, M; Blake, A; Prest, M; Auld, A; Elliot, J; Lumbard, J; Thompson, C; Gornushkin, Y A; Pascoli, S; Collins, R; Haworth, M; Thompson, J; Bencivenni, G; Domenici, D; Longhin, A; Blondel, A; Bravar, A; Dufour, F; Karadzhov, Y; Korzenev, A; Noah, E; Ravonel, M; Rayner, M; Asfandiyarov, R; Haesler, A; Martin, C; Scantamburlo, E; Cadoux, F; Bayes, R; Soler, F J P; Aalto-Setälä, L; Enqvist, K; Huitu, K; Rummukainen, K; Nuijten, G; Eskola, K J; Kainulainen, K; Kalliokoski, T; Kumpulainen, J; Loo, K; Maalampi, J; Manninen, M; Moore, I; Suhonen, J; Trzaska, W H; Tuominen, K; Virtanen, A; Bertram, I; Finch, A; Grant, N; Kormos, L L; Ratoff, P; Christodoulou, G; Coleman, J; Touramanis, C; Mavrokoridis, K; Murdoch, M; McCauley, N; Payne, D; Jonsson, P; Kaboth, A; Long, K; Malek, M; Scott, M; Uchida, Y; Wascko, M O; Di Lodovico, F; Wilson, J R; Still, B; Sacco, R; Terri, R; Campanelli, M; Nichol, R; Thomas, J; Izmaylov, A; Khabibullin, M; Khotjantsev, A; Kudenko, Y; Matveev, V; Mineev, O; Yershov, N; Palladino, V; Evans, J; Söldner-Rembold, S; Yang, U K; Bonesini, M; Pihlajaniemi, T; Weckström, M; Mursula, K; Enqvist, T; Kuusiniemi, P; Räihä, T; Sarkamo, J; Slupecki, M; Hissa, J; Kokko, E; Aittola, M; Barr, G; Haigh, M D; de Jong, J; O'Keeffe, H; Vacheret, A; Weber, A; Galvanin, G; Temussi, M; Caretta, O; Davenne, T; Densham, C; Ilic, J; Loveridge, P; Odell, J; Wark, D; Robert, A; Andrieu, B; Popov, B; Giganti, C; Levy, J -M; Dumarchez, J; Buizza-Avanzini, M; Cabrera, A; Dawson, J; Franco, D; Kryn, D; Obolensky, M; Patzak, T; Tonazzo, A; Vanucci, F; Orestano, D; Di Micco, B; Tortora, L; Bésida, O; Delbart, A; Emery, S; Galymov, V; Mazzucato, E; Vasseur, G; Zito, M; Kudryavtsev, V A; Thompson, L F; Tsenov, R; Kolev, D; Rusinov, I; Bogomilov, M; Vankova, G; Matev, R; Vorobyev, A; Novikov, Yu; Kosyanenko, S; Suvorov, V; Gavrilov, G; Baussan, E; Dracos, M; Jollet, C; Meregaglia, A; Vallazza, E; Agarwalla, S K; Li, T; Autiero, D; Chaussard, L; Déclais, Y; Marteau, J; Pennacchio, E; Rondio, E; Lagoda, J; Zalipska, J; Przewlocki, P; Grzelak, K; Barker, G J; Boyd, S; Harrison, P F; Litchfield, R P; Ramachers, Y; Badertscher, A; Curioni, A; Degunda, U; Epprecht, L; Gendotti, A; Knecht, L; Di Luise, S; Horikawa, S; Lussi, D; Murphy, S; Natterer, G; Petrolo, F; Periale, L; Rubbia, A; Sergiampietri, F; Viant, T

    2012-01-01

    This Expression of Interest (EoI) describes the motivation for and the feasibility studies of a long baseline neutrino oscillation experiment (LBNO) with a new conventional neutrino beamline facility (CN2PY). The beam will be aimed at a next generation deep-underground neutrino observatory comprising a double phase liquid argon (LAr) detector and a magnetized iron calorimeter, located at the Pyh\\"asalmi (Finland) mine at a distance of 2300~km. The double phase LAr Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC) is known to provide excellent tracking and calorimetry performance that can outperform other techniques. An initial 20~kton LAr fiducial volume, as considered here, comparable to the fiducial mass of SuperKamiokande and NOvA, offers a new insight and an increase in sensitivity reach for many physics channels. A magnetized iron calorimeter with muon momentum and charge determination collects an independent neutrino sample, and serves as a tail catcher for CERN beam eve...

  10. Very Long Baseline Neutrino Oscillation Experiments for Precise Measurements of Mixing Parameters and CP Violating Effects

    CERN Document Server

    Diwan, M V; Gallardo, J; Kahn, S; Kirk, H; Marciano, W; Morse, W; Parsa, Z; Samios, Nicholas P; Semertzidis, Y K; Viren, B M; Weng, W; Yamin, P; Frati, W; Lande, K; Mann, A K; Berg, R V; Wildenhain, P S; Klein, J R; Mocioiu, I; Shrock, R E; McDonald, K T

    2003-01-01

    We analyze the prospects of a feasible, very long baseline neutrino oscillation experiment consisting of a conventional horn produced low energy wide band beam and a detector of 500 kT fiducial mass with modest requirements on event recognition and resolution. Such an experiment is intended primarily to measure CP violating effects in the neutrino sector for 3-generation mixing. We analyze the sensitivity of such an experiment. We conclude that this experiment will allow determination of the CP parameter $\\delta_{CP}$, if the currently unknown mixing parameter $\\sin ^2 2 \\theta_{13} \\geq 0.01$, a value about 10 times lower than the present experimental upper limit. In addition to $\\theta_{13}$ and $\\delta_{CP}$, the experiment has great potential for precise measurements of most other parameters in the neutrino mixing matrix including $\\Delta m^2_{32}$, $\\sin^2 2\\theta_{23}$, $\\Delta m^2_{21}\\times \\sin^2 2 \\theta_{12}$, and the mass ordering of neutrinos through the observation of the matter effect in the $\\...

  11. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    CERN Document Server

    Acciarri, R.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; Anderson, J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Anghel, I.; Anjos, J. d.; Ankowski, A.; Antonello, M.; Aranda Fernandez, A.; Ariga, A.; Ariga, T.; Aristizabal, D.; Arrieta-Diaz, E.; Aryal, K.; Asaadi, J.; Asner, D.; Athar, M.S.; Auger, M.; Aurisano, A.; Aushev, V.; Autiero, D.; Avila, M.; Back, J.J.; Bai, X.; Baibussinov, B.; Baird, M.; Balantekin, B.; Baller, B.; Ballett, P.; Bambah, B.; Bansal, M.; Bansal, S.; Barker, G.J.; Barletta, W.A.; Barr, G.; Barros, N.; Bartosz, B.; Bartoszek, L.; Bashyal, A.; Bass, M.; Bay, F.; Beacom, J.; Behera, B.R.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benetti, P.A.; Bercellie, A.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, R.; Bertolucci, S.; Bhandari, B.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Biery, K.; Bishai, M.; Blackburn, T.; Blake, A.; Blaszczyk, F. d. M.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Bocean, V.; Boffelli, F.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bonesini, M.; Boone, T.; Booth, C.; Bordoni, S.; Borysova, M.; Bourguille, B.; Boyd, S.B.; Brailsford, D.; Brandt, A.; Bremer, J.; Brice, S.; Bromberg, C.; Brooijmans, G.; Brown, G.; Brown, R.; Brunetti, G.; Bu, X.; Buchanan, N.; Budd, H.; Bugg, B.; Calafiura, P.; Calligarich, E.; Calvo, E.; Camilleri, L.; Campanelli, M.; Cantini, C.; Carls, B.; Carr, R.; Cascella, M.; Castromonte, C.; Mur, E.Catano; Cavanna, F.; Centro, S.; Cervera Villanueva, A.; Chalifour, M.; Chandratre, V.B.; Chatterjee, A.; Chattopadhyay, S.; Chattopadhyay, S.; Chaussard, L.; Chembra, S.; Chen, H.; Chen, K.; Chen, M.; Cherdack, D.; Chi, C.; Childress, S.; Choubey, S.; Choudhary, B.C.; Christodoulou, G.; Christofferson, C.; Church, E.; Cianci, D.; Cline, D.; Coan, T.; Cocco, A.; Coelho, J.; Cole, P.; Collin, G.; Conrad, J.M.; Convery, M.; Corey, R.; Corwin, L.; Cranshaw, J.; Crivelli, P.; Cronin-Hennessy, D.; Curioni, A.; Cushing, J.; Adams, D.L.; Dale, D.; Das, S.R.; Davenne, T.; Davies, G.S.; Davies, J.; Dawson, J.; De, K.; de Gouvea, A.; de Jong, J.K.; de Jong, P.; De Lurgio, P.; Decowski, M.; Delbart, A.; Densham, C.; Dharmapalan, R.; Dhingra, N.; Di Luise, S.; Diamantopoulou, M.; Diaz, J.S.; Diaz Bautista, G.; Diwan, M.; Djurcic, Z.; Dolph, J.; Drake, G.; Duchesneau, D.; Duvernois, M.; Duyang, H.; Dwyer, D.A.; Dye, S.; Dytman, S.; Eberly, B.; Edgecock, R.; Edmunds, D.; Elliott, S.; Elnimr, M.; Emery, S.; Endress, E.; Eno, S.; Ereditato, A.; Escobar, C.O.; Evans, J.; Falcone, A.; Falk, L.; Farbin, A.; Farnese, C.; Farzan, Y.; Fava, A.; Favilli, L.; Felde, J.; Felix, J.; Fernandes, S.; Fields, L.; Finch, A.; Fitton, M.; Fleming, B.; Forest, T.; Fowler, J.; Fox, W.; Fried, J.; Friedland, A.; Fuess, S.; Fujikawa, B.; Gago, A.; Gallagher, H.; Galymov, S.; Gamble, T.; Gandhi, R.; Garcia-Gamez, D.; Gardiner, S.; Garvey, G.; Gehman, V.M.; Gendotti, A.; Geronimo, G. d.; Ghag, C.; Ghoshal, P.; Gibin, D.; Gil-Botella, I.; Gill, R.; Girardelli, D.; Giri, A.; Glavin, S.; Goeldi, D.; Golapinni, S.; Gold, M.; Gomes, R.A.; Gomez Cadenas, J.J.; Goodman, M.C.; Gorbunov, D.; Goswami, S.; Graf, N.; Graf, N.; Graham, M.; Gramelini, E.; Gran, R.; Grant, C.; Grant, N.; Greco, V.; Greenlee, H.; Greenler, L.; Greenley, C.; Groh, M.; Grullon, S.; Grundy, T.; Grzelak, K.; Guardincerri, E.; Guarino, V.; Guarnaccia, E.; Guedes, G.P.; Guenette, R.; Guglielmi, A.; Habig, A.T.; Hackenburg, R.W.; Hackenburg, A.; Hadavand, H.; Haenni, R.; Hahn, A.; Haigh, M.D.; Haines, T.; Hamernik, T.; Handler, T.; Hans, S.; Harris, D.; Hartnell, J.; Hasegawa, T.; Hatcher, R.; Hatzikoutelis, A.; Hays, S.; Hazen, E.; Headley, M.; Heavey, A.; Heeger, K.; Heise, J.; Hennessy, K.; Hewes, J.; Higuera, A.; Hill, T.; Himmel, A.; Hogan, M.; Holanda, P.; Holin, A.; Honey, W.; Horikawa, S.; Horton-Smith, G.; Howard, B.; Howell, J.; Hurh, P.; Huston, J.; Hylen, J.; Imlay, R.; Insler, J.; Introzzi, G.; Ioanisyan, D.; Ioannisian, A.; Iwamoto, K.; Izmaylov, A.; Jackson, C.; Jaffe, D.E.; James, C.; James, E.; Jediny, F.; Jen, C.; Jhingan, A.; Jimenez, S.; Jo, J.H.; Johnson, M.; Johnson, R.; Johnstone, J.; Jones, B.J.; Joshi, J.; Jostlein, H.; Jung, C.K.; Junk, T.; Kaboth, A.; Kadel, R.; Kafka, T.; Kalousis, L.; Kamyshkov, Y.; Karagiorgi, G.; Karasavvas, D.; Karyotakis, Y.; Kaur, A.; Kaur, P.; Kayser, B.; Kazaryan, N.; Kearns, E.; Keener, P.; Kemboi, S.; Kemp, E.; Kettell, S.H.; Khabibullin, M.; Khandaker, M.; Khotjantsev, A.; Kirby, B.; Kirby, M.; Klein, J.; Kobilarcik, T.; Kohn, S.; Koizumi, G.; Kopylov, A.; Kordosky, M.; Kormos, L.; Kose, U.; Kostelecky, A.; Kramer, M.; Kreslo, I.; Kriske, R.; Kropp, W.; Kudenko, Y.; Kudryavtsev, V.A.; Kulagin, S.; Kumar, A.; Kumar, G.; Kumar, J.; Kumar, L.; Kutter, T.; Laminack, A.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Learned, J.; Lebrun, P.; Lee, D.; Lee, H.; Lee, K.; Lee, W.M.; Leigui de Oliveira, M.A.; Li, Q.; Li, S.; Li, S.; Li, X.; Li, Y.; Li, Z.; Libo, J.; Lin, C.S.; Lin, S.; Ling, J.; Link, J.; Liptak, Z.; Lissauer, D.; Littenberg, L.; Littlejohn, B.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N.; Loew, T.; Lokajicek, M.; Long, K.; Lopes, M.D.L.; Lopez, J.P.; Losecco, J.; Louis, W.; Lowery, J.; Luethi, M.; Luk, K.; Lundberg, B.; Lundin, T.; Luo, X.; Lux, T.; Lykken, J.; Machado, A.A.; Macier, J.R.; Magill, S.; Mahler, G.; Mahn, K.; Malek, M.; Malhotra, S.; Malon, D.; Mammoliti, F.; Mancina, S.; Mandal, S.K.; Mandodi, S.; Manly, S.L.; Mann, A.; Marchionni, A.; Marciano, W.; Mariani, C.; Maricic, J.; Marino, A.; Marshak, M.; Marshall, C.; Marshall, J.; Marteau, J.; Martin-Albo, J.; Martinez, D.; Matsuno, S.; Matthews, J.; Mauger, C.; Mavrokoridis, K.; Mayilyan, D.; Mazzucato, E.; McCauley, N.; McCluskey, E.; McConkey, N.; McDonald, K.; McFarland, K.S.; McGowan, A.M.; McGrew, C.; McKeown, R.; McNulty, D.; McTaggart, R.; Mefodiev, A.; Mehrian, M.; Mehta, P.; Mei, D.; Mena, O.; Menary, S.; Mendez, H.; Menegolli, A.; Meng, G.; Meng, Y.; Mertins, D.; Merritt, H.; Messier, M.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Milincic, R.; Miller, W.; Mills, G.; Mineev, O.; Miranda, O.; Mishra, C.S.; Mishra, S.R.; Mitrica, B.; Mladenov, D.; Mocioiu, I.; Mohanta, R.; Mokhov, N.; Montanari, C.; Montanari, D.; Moon, J.; Mooney, M.; Moore, C.; Morfin, J.; Morgan, B.; Morris, C.; Morse, W.; Moss, Z.; Mossey, C.; Moura, C.A.; Mousseau, J.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, S.; Musser, J.; Musser, R.; Nakajima, Y.; Naples, D.; Napolitano, J.; Navarro, J.; Navas, D.; Nelson, J.; Nessi, M.; Newcomer, M.; Ng, Y.; Nichol, R.; Nicholls, T.C.; Nikolics, K.; Niner, E.; Norris, B.; Noto, F.; Novakova, P.; Novella, P.; Nowak, J.; Nunes, M.S.; O'Keeffe, H.; Oldeman, R.; Oliveira, R.; Olson, T.; Onishchuk, Y.; Osta, J.; Ovsjannikova, T.; Page, B.; Pakvasa, S.; Pal, S.; Palamara, O.; Palazzo, A.; Paley, J.; Palomares, C.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Park, J.; Parke, S.; Parsa, Z.; Pascoli, S.; Patterson, R.; Patton, S.; Patzak, T.; Paulos, B.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Peeters, S.; Pennacchio, E.; Perch, A.; Perdue, G.N.; Periale, L.; Perkin, J.D.; Pessard, H.; Petrillo, G.; Petti, R.; Petukhov, A.; Pietropaolo, F.; Plunkett, R.; Pordes, S.; Potekhin, M.; Potenza, R.; Potukuchi, B.; Poudyal, N.; Prokofiev, O.; Pruthi, N.; Przewlocki, P.; Pushka, D.; Qian, X.; Raaf, J.L.; Raboanary, R.; Radeka, V.; Radovic, A.; Raffelt, G.; Rakhno, I.; Rakotondramanana, H.T.; Rakotondravohitra, L.; Ramachers, Y.A.; Rameika, R.; Ramsey, J.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Rebel, B.; Regenfus, C.; Reichenbacher, J.; Reitzner, D.; Remoto, A.; Renshaw, A.; Rescia, S.; Richardson, M.; Rielage, K.; Riesselmann, K.; Robinson, M.; Rochester, L.; Rodrigues, O.B.; Rodrigues, P.; Roe, B.; Rosen, M.; Roser, R.M.; Ross-Lonergan, M.; Rossella, M.; Rubbia, A.; Rubbia, C.; Rucinski, R.; von Rohr, C.Rudolph; Russell, B.; Ruterbories, D.; Saakyan, R.; Sahu, N.; Sala, P.; Samios, N.; Sanchez, F.; Sanchez, M.; Sands, B.; Santana, S.; Santorelli, R.; Santucci, G.; Saoulidou, N.; Scaramelli, A.; Schellman, H.; Schlabach, P.; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Schukraft, A.; Schwehr, J.; Segreto, E.; Seibert, S.; Sepulveda-Quiroz, J.A.; Sergiampietri, F.; Sexton-Kennedy, L.; Sgalaberna, D.; Shaevitz, M.; Shahi, J.; Shahsavarani, S.; Shanahan, P.; Shankar, S.U.; Sharma, R.; Sharma, R.K.; Shaw, T.; Shrock, R.; Shyrma, I.; Simos, N.; Sinev, G.; Singh, I.; Singh, J.; Singh, J.; Singh, V.; Sinnis, G.; Sippach, W.; Smargianaki, D.; Smy, M.; Snider, E.; Snopok, P.; Sobczyk, J.; Sobel, H.; Soderberg, M.; Solomey, N.; Sondheim, W.; Sorel, M.; Sousa, A.; Soustruznik, K.; Spitz, J.; Spooner, N.J.; Stancari, M.; Stancu, I.; Stefan, D.; Steiner, H.M.; Stewart, J.; Stock, J.; Stoica, S.; Stone, J.; Strait, J.; Strait, M.; Strauss, T.; Striganov, S.; Sulej, R.; Sullivan, G.; Sun, Y.; Suter, L.; Sutera, C.M.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Soldner-Rembold, S.; Talaga, R.; Tamsett, M.; Tariq, S.; Tatar, E.; Tayloe, R.; Taylor, C.; Taylor, D.; Terao, K.; Thiesse, M.; Thomas, J.; Thompson, L.F.; Thomson, M.; Thorn, C.; Thorpe, M.; Tian, X.; Tiedt, D.; Timm, S.C.; Tonazzo, A.; Tope, T.; Topkar, A.; Torres, F.R.; Torti, M.; Tortola, M.; Tortorici, F.; Toups, M.; Touramanis, C.; Tripathi, M.; Tropin, I.; Tsai, Y.; Tsang, K.V.; Tsenov, R.; Tufanli, S.; Tull, C.; Turner, J.; Tzanov, M.; Tziaferi, E.; Uchida, Y.; Urheim, J.; Usher, T.; Vagins, M.; Vahle, P.; Valdiviesso, G.A.; Valerio, L.; Vallari, Z.; Valle, J.; Van Berg, R.; Van de Water, R.; Van Gemmeren, P.; Varanini, F.; Varner, G.; Vasseur, G.; Vaziri, K.; Velev, G.; Ventura, S.; Verdugo, A.; Viant, T.; Vieira, T.V.; Vignoli, C.; Vilela, C.; Viren, B.; Vrba, T.; Wachala, T.; Wahl, D.; Wallbank, M.; Walsh, N.; Wang, B.; Wang, H.; Wang, L.; Wang, T.; Warburton, T.K.; Warner, D.; Wascko, M.; Waters, D.; Watson, T.B.; Weber, A.; Weber, M.; Wei, W.; Weinstein, A.; Wells, D.; Wenman, D.; Wetstein, M.; White, A.; Whitehead, L.; Whittington, D.; Wilking, M.; Willhite, J.; Wilson, P.; Wilson, R.J.; Winslow, L.; Wittich, P.; Wojcicki, S.; Wong, H.H.; Wood, K.; Worcester, E.; Worcester, M.; Wu, S.; Xin, T.; Yanagisawa, C.; Yang, S.; Yang, T.; Yarritu, K.; Ye, J.; Yeh, M.; Yershov, N.; Yonehara, K.; Yu, B.; Yu, J.; Zalesak, J.; Zalewska, A.; Zamorano, B.; Zang, L.; Zani, A.; Zani, A.; Zavala, G.; Zeller, G.; Zhang, C.; Zhang, C.; Zimmerman, E.D.; Zito, M.; Zwaska, R.

    2016-01-01

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  12. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  13. Long baseline neutrino oscillation experiment at the AGS. Physics design report

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D.; Carroll, A.; Chiang, I. [Brookhaven National Lab., Long Island, NY (United States); E889 Collaboration

    1995-04-01

    The authors present a design for a multi-detector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the {nu}{sub {mu}}, disappearance channel and the {nu}{sub {mu}} {leftrightarrow} {nu}{sub e} appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68km from the AGS neutrino source. Observed depletion of the {nu}{sub {mu}} flux (via quasi-elastic muon neutrino events, {nu}{sub {mu}}n {yields} {mu}{sup {minus}}p) in the far detectors not attended by an observed proportional increase of the {nu}{sub e} flux (via quasi-elastic electron neutrino events, {nu}{sub e}n {yields} e{sup {minus}}p) in those detectors will be prima facie evidence for the oscillation channel {nu}{sub {mu}} {leftrightarrow} {nu}{sub {tau}}. The experiment is directed toward exploration of the region of the neutrino oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy ({approx} 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.

  14. Observation of Muon Neutrino Charged Current Events in an Off-Axis Horn-Focused Neutrino Beam Using the NOvA Prototype Detector

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Enrique Arrieta [Michigan State Univ., East Lansing, MI (United States)

    2014-01-01

    The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactions with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 1020 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70+0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.

  15. Non-standard interactions and the resolution of ordering of neutrino masses at DUNE and other long baseline experiments

    CERN Document Server

    Masud, Mehedi

    2016-01-01

    In the era of precision neutrino physics, we study the influence of matter NSI on the question of neutrino mass ordering and its resolution. At long baseline experiments, since matter effects play a crucial role in addressing this very important question, it is timely to investigate how sub-leading effects due to NSI may affect and drastically alter inferences pertaining to this question. We demonstrate that the sensitivity to mass ordering gets significantly impacted due to NSI effects for various long baseline experiments including the upcoming long baseline experiment, Deep Underground Neutrino Experiment (DUNE). Finally we draw a comparison of DUNE, with the sensitivities offered by two of the current neutrino beam experiments NOvA and T2K.

  16. Systematic uncertainties in long-baseline neutrino oscillations for large θ₁₃

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar; Huber, Patrick; Kopp, Joachim; Winter, Walter

    2013-02-01

    We study the physics potential of future long-baseline neutrino oscillation experiments at large θ₁₃, focusing especially on systematic uncertainties. We discuss superbeams, \\bbeams, and neutrino factories, and for the first time compare these experiments on an equal footing with respect to systematic errors. We explicitly simulate near detectors for all experiments, we use the same implementation of systematic uncertainties for all experiments, and we fully correlate the uncertainties among detectors, oscillation channels, and beam polarizations as appropriate. As our primary performance indicator, we use the achievable precision in the measurement of the CP violating phase $\\deltacp$. We find that a neutrino factory is the only instrument that can measure $\\deltacp$ with a precision similar to that of its quark sector counterpart. All neutrino beams operating at peak energies ≳2 GeV are quite robust with respect to systematic uncertainties, whereas especially \\bbeams and \\thk suffer from large cross section uncertainties in the quasi-elastic regime, combined with their inability to measure the appearance signal cross sections at the near detector. A noteworthy exception is the combination of a γ =100 \\bbeam with an \\spl-based superbeam, in which all relevant cross sections can be measured in a self-consistent way. This provides a performance, second only to the neutrino factory. For other superbeam experiments such as \\lbno and the setups studied in the context of the \\lbne reconfiguration effort, statistics turns out to be the bottleneck. In almost all cases, the near detector is not critical to control systematics since the combined fit of appearance and disappearance data already constrains the impact of systematics to be small provided that the three active flavor oscillation framework is valid.

  17. Design Study for a Future Laguna-LBNO Long-Baseline Neutrino Facility at CERN

    CERN Document Server

    Alabau-Gonzalvo, J; Antoniou, F; Benedikt, M; Calviani, M; Efthymiopoulos, I; Ferrari, A; Garoby, R; Gerigk, F; Gilardoni, S; Goddard, B; Kosmicki, A; Lazaridis, C; Osborne, J; Papaphillippou, Y; Parfenova, A; Shaposhnikova, E; Steerenberg, R; Velten, P; Vincke, H

    2013-01-01

    The Large Apparatus studying Grand Unification and Neutrino Astrophysics (LAGUNA) study [1] investigated seven pre-selected underground sites in Europe (Finland, France, Italy, Poland, Romania, Spain and UK), capable of housing large volume detectors for terrestrial, accelerator generated and astrophysical neutrino research. The study was focused on geo-technical assessment of the sites, concluding that no show-stoppers exist for the construction of the required large underground caverns in the chosen sites. The LAGUNA-LBNO FP7/EC-funded design study extends the LAGUNA study in two key aspects: the detailed engineering of detector construction and operation, and the study of a long-baseline neutrino beam from CERN, and possibly other accelerator centres in Europe. Based on the findings of the LAGUNA study, the Pyh¨asalmi mine in Finland is chosen as prime site for the far detector location. The mine offers the deepest underground location in Europe (-1400 m) and a baseline of 2’300 km from CERN (Fig. 1). ...

  18. Large-θ 13 perturbation theory of neutrino oscillation for long-baseline experiments

    Science.gov (United States)

    Asano, Katsuhiro; Minakata, Hisakazu

    2011-06-01

    The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ɛ ≡ ∆ m {21/2} ∆ m {31/2} ≃ 0 .03 under the 21assumption s 13 ≃ ɛ. If θ 13 is large, as suggested by a candidate ν e event at T2K as well as the recent global analyses, higher order corrections of s 13 to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking θ 13 as {s_{13}} ˜ sqrt { in } ˜eq 0.18 , which guarantees its validity in a wide range of θ 13 below the Chooz limit. We show on general ground that the correction terms must be of order ɛ2. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large θ 13 hypothesis are discussed.

  19. Octant Degeneracy, Quadrant of leptonic CPV phase at Long Baseline Neutrino Experiments and Baryogenesis

    CERN Document Server

    Bora, Kalpana; Dutta, Debajyoti

    2016-01-01

    In a recent work by us, we have studied, how CP violation discovery potential can be improved at long baseline neutrino experiments (LBNE/DUNE), by combining with its ND (near detector) and reactor experiments. In this work, we discuss how this study can be further analysed to resolve entanglement of the quadrant of leptonic CPV phase and Octant of atmospheric mixing angle $ \\theta_{23} $, at LBNEs. The study is done for both NH (Normal hierarchy) and IH (Inverted hierarchy), HO (Higher Octant) and LO (Lower Octant). We show how baryogenesis can enhance the effect of resolving this entanglement, and how possible values of the leptonic CP-violating phase $ \\delta_{CP} $ can be predicted in this context. With respect to the latest global fit data of neutrino mixing angles, we predict the values of $ \\delta_{CP} $ for different cases. In this context we present favoured values of $ \\delta_{CP} $ ($ \\delta_{CP} $ range at $ \\geq $ 2$ \\sigma $ ) constrained by the latest updated BAU range and also confront our pre...

  20. TARGET AND HORN COOLING FOR THE VERY LONG BASELINE NEUTRINO EXPERIMENT.

    Energy Technology Data Exchange (ETDEWEB)

    BELLAVIA, S.; KAHN, S.; KIRK, H.; LUDEWIG, H.; RAPARIA, D.; SIMOS, N.

    2005-05-16

    Thermodynamic studies have been performed for the beam target and focusing horn system to be used in a very long baseline neutrino oscillation experiment [1]. A 2mm rms beam spot with power deposition of over 18 KW presents challenging material and engineering solutions to this project. Given that the amount of heat transferred by radiation alone from the target to the horn is quite small, the primary mechanism is heat removal by forced convection in the annular space between the target and the horn. The key elements are the operating temperature of the target, the temperature of the cooling fluid and the heat generation rate in the volume of the target that needs to be removed. These working parameters establish the mass flow rate and velocity of the coolant necessary to remove the generated heat. Several cooling options were explored using a carbon-carbon target and aluminum horn. Detailed analysis, trade studies and simulations were performed for cooling the horn and target with gaseous helium as well as water.

  1. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    Science.gov (United States)

    Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.

    2017-07-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  2. Overview of the T2K long baseline neutrino oscillation experiment

    CERN Document Server

    Le, Trung

    2009-01-01

    Neutrino oscillations were discovered by atmospheric and solar neutrino experiments, and have been confirmed by experiments using neutrinos from accelerators and nuclear reactors. It has been found that there are large mixing angles in the $\

  3. Search for Sterile Neutrinos at OPERA and other Long--Baseline Experiments

    CERN Document Server

    Stanco, Luca

    2015-01-01

    The OPERA experiment at the CNGS beam has observed muon to tau neutrino oscillations in the atmospheric sector. Based on this result new limits on the mixing parameters of a massive sterile neutrino may be set. Preliminary results of the analysis done in the 3+1 neutrino framework are here presented. An update of the search for sterile neutrinos in the $\

  4. arXiv Search for Sterile Neutrinos at OPERA and other Long-Baseline Experiments

    CERN Document Server

    Stanco, Luca

    2016-02-23

    The OPERA experiment at the CNGS beam has observed muon to tau neutrino oscillations in the atmospheric sector. Based on this result new limits on the mixing parameters of a massive sterile neutrino may be set. Preliminary results of the analysis done in the 3+1 neutrino framework are here presented. An update of the search for sterile neutrinos in the $\

  5. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    Directory of Open Access Journals (Sweden)

    N. Simos

    2017-07-01

    Full Text Available In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF of the Deep Underground Neutrino Experiment (DUNE four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ∼6.1×10^{20}  p/cm^{2} and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ∼10^{20}  cm^{−2} where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite

  6. Implications of lepton flavour violation on long baseline neutrino oscillation experiments

    CERN Document Server

    Soumya, C

    2016-01-01

    Non-standard neutrino interactions (NSIs), the sub-leading effects in the flavour transitions of neutrinos, play a crucial role in the determination of the various unknowns in neutrino oscillations, such as neutrino mass hierarchy, Dirac CP violating phase and the octant of atmospheric mixing angle. In view of the recent experimental observation of several lepton flavor universality (LFU) violating observables in $B$ decays, we study the possible implications of these interactions in the determination of various neutrino oscillation parameters. We consider the model with an additional $Z'$ boson (which is quite successful in explaining the observed LFU anomalies) and analyze its effect in the lepton flavour violating (LFV) $\\tau$ decays, i.e., $\\tau^- \\to e^- e^+ e^-$ and $\\tau^- \\to e^- \\pi^0$. From the present upper bounds of these decay rates, we obtain the constraints on the new physics parameters, which are related to the corresponding NSI parameters in the neutrino sector by $SU(2)_L$ symmetry. These ne...

  7. Search for Sterile Neutrinos with the MINOS Long-Baseline Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Ashley Michael [Univ. of Manchester (United Kingdom)

    2016-01-01

    This thesis will present a search for sterile neutrinos using data taken with the MINOS experiment between 2005 and 2012. MINOS is a two-detector on-axis experiment based at Fermilab. The NuMI neutrino beam encounters the MINOS Near Detector 1km downstream of the neutrino-production target before traveling a further 734km through the Earth's crust, to reach the Far Detector located at the Soudan Underground Laboratory in Northern Minnesota. By searching for oscillations driven by a large mass splitting, MINOS is sensitive to the existence of sterile neutrinos through looking for any energy-dependent perturbations using a charged-current sample, as well as looking at any relative deficit in neutral current events between the Far and Near Detectors. This thesis will discuss the novel analysis that enabled a search for sterile neutrinos covering five orders of magnitude in the mass splitting and setting a limit in previously unexplored regions of the parameter space $\\left\\{\\Delta m^{2}_{41},\\sin^2\\theta_{24}\\right\\}$, where a 3+1-flavour phenomenological model was used to extract parameter limits. The results presented in this thesis are sensitive to the sterile neutrino parameter space suggested by the LSND and MiniBooNE experiments.

  8. Neutrino Scattering Uncertainties and their Role in Long Baseline Oscillation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Harris; G. Blazey; Arie Bodek; D. Boehnlein; S. Boyd; William Brooks; Antje Bruell; Howard S. Budd; R. Burnstein; D. Casper; A. Chakravorty; Michael Christy; Jesse Chvojka; M.A.C. Cummings; P. deBarbaro; D. Drakoulakos; J. Dunmore; Rolf Ent; Hugh Gallagher; David Gaskell; Ronald Gilman; Charles Glashausser; Wendy Hinton; Xiaodong Jiang; T. Kafka; O. Kamaev; Cynthia Keppel; M. Kostin; Sergey Kulagin; Gerfried Kumbartzki; Steven Manly; W.A. Mann; Kevin Mcfarland-porter; Wolodymyr Melnitchouk; Jorge Morfin; D. Naples; John Nelson; Gabriel Niculescu; Maria-ioana Niculescu; W. Oliver; Michael Paolone; Emmanuel Paschos; A. Pla-Dalmau; Ronald Ransome; C. Regis; P. Rubinov; V. Rykalin; Willis Sakumoto; P. Shanahan; N. Solomey; P. Spentzouris; P. Stamoulis; G. Tzanakos; Stephen Wood; F.X. Yumiceva; B. Ziemer; M. Zois

    2004-10-01

    The field of oscillation physics is about to make an enormous leap forward in statistical precision: first through the MINOS experiment in the coming year, and later through the NOvA and T2K experiments. Because of the relatively poor understanding of neutrino interactions in the energy ranges of these experiments, there are systematics that can arise in interpreting far detector data that can be as large as or even larger than the expected statistical uncertainties. We describe how these systematic errors arise, and how specific measurements in a dedicated neutrino scattering experiment like MINERvA can reduce the cross section systematic errors to well below the statistical errors.

  9. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ryan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Backhouse, Christopher [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bays, Kirk [California Inst. of Technology (CalTech), Pasadena, CA (United States); Lozier, Joseph [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pershey, Daniel [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-10-01

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award’s proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA’s recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  10. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Ryan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Backhouse, Christopher [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bays, Kirk [California Inst. of Technology (CalTech), Pasadena, CA (United States); Lozier, Joseph [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pershey, Daniel [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-10-06

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award’s proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA’s recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  11. The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment

    CERN Document Server

    Agarwalla, S.K.; Aittola, M.; Alekou, A.; Andrieu, B.; Angus, D.; Antoniou, F.; Ariga, A.; Ariga, T.; Asfandiyarov, R.; Autiero, D.; Ballett, P.; Bandac, I.; Banerjee, D.; Barker, G.J.; Barr, G.; Bartmann, W.; Bay, F.; Berardi, V.; Bertram, I.; Bésida, O.; Blebea-Apostu, A.M.; Blondel, A.; Bogomilov, M.; Borriello, E.; Boyd, S.; Brancus, I.; Bravar, A.; Buizza-Avanzini, M.; Cafagna, F.; Calin, M.; Calviani, M.; Campanelli, M.; Cantini, C.; Caretta, O.; Cata-Danil, G.; Catanesi, M.G.; Cervera, A.; Chakraborty, S.; Chaussard, L.; Chesneanu, D.; Chipesiu, F.; Christodoulou, G.; Coleman, J.; Crivelli, P.; Davenne, T.; Dawson, J.; De Bonis, I.; De Jong, J.; Déclais, Y.; Sanchez, P. Del Amo; Delbart, A.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Duchesneau, D.; Dumarchez, J.; Efthymiopoulos, I.; Eliseev, A.; Emery, S.; Enqvist, K.; Enqvist, T.; Epprecht, L.; Ereditato, A.; Erykalov, A.N.; Esanu, T.; Finch, A.J.; Fitton, M.D.; Franco, D.; Galymov, V.; Gavrilov, G.; Gendotti, A.; Giganti, C.; Goddard, B.; Gomez, J.J.; Gomoiu, C.M.; Gornushkin, Y.A.; Gorodetzky, P.; Grant, N.; Haesler, A.; Haigh, M.D.; Hasegawa, T.; Haug, S.; Hierholzer, M.; Hissa, J.; Horikawa, S.; Huitu, K.; Ilic, J.; Ioannisian, A.N.; Izmaylov, A.; Jipa, A.; Kainulainen, K.; Kalliokoski, T.; Karadzhov, Y.; Kawada, J.; Khabibullin, M.; Khotjantsev, A.; Kokko, E.; Kopylov, A.N.; Kormos, L.L.; Korzenev, A.; Kosyanenko, S.; Kreslo, I.; Kryn, D.; Kudryavtsev, V.A.; Kudenko, Y.; Kumpulainen, J.; Kuusiniemi, P.; Lagoda, J.; Lazanu, I.; Levy, J. -M.; Litchfield, R.P.; Loo, K.; Loveridge, P.; Maalampi, J.; Magaletti, L.; Margineanu, R.M.; Marteau, J.; Martin-Mari, C.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; Mercadante, A.; Mineev, O.; Mirizzi, A.; Mitrica, B.; Morgan, B.; Murdoch, M.; Murphy, S.; Narita, S.; Nesterenko, D.A.; Nguyen, K.; Nikolics, K.; Noah, E.; Novikov, Yu.; O'Keeffe, H.; Odell, J.; Oprima, A.; Palladino, V.; Pascoli, S.; Patzak, T.; Payne, D.; Pectu, M.; Pennacchio, E.; Papaphilippou, Y.; Periale, L.; Pessard, H.; Pistillo, C.; Popov, B.; Przewlocki, P.; Quinto, M.; Radicioni, E.; Ramachers, Y.; Ratoff, P.N.; Ravonel, M.; Rayner, M.; Resnati, F.; Ristea, O.; Robert, A.; Rondio, E.; Rubbia, A.; Rummukainen, K.; Sacco, R.; Saftoiu, A.; Sakashita, K.; Sarkamo, J.; Sato, F.; Saviano, N.; Scantamburlo, E.; Sergiampietri, F.; Sgalaberna, D.; Shaposhnikova, E.; Slupecki, M.; Sorel, M.; Spooner, N.J.C.; Stahl, A.; Stanca, D.; Steerenberg, R.; Sterian, A.R.; Sterian, P.; Still, B.; Stoica, S.; Strauss, T.; Suhonen, J.; Suvorov, V.; Szeptycka, M.; Terri, R.; Thompson, L.F.; Toma, G.; Tonazzo, A.; Touramanis, C.; Trzaska, W.H.; Tsenov, R.; Tuominen, K.; Vacheret, A.; Valram, M.; Vankova-Kirilova, G.; Vanucci, F.; Vasseur, G.; Velotti, F.; Velten, P.; Viant, T.; Vincke, H.; Virtanen, A.; Vorobyev, A.; Wark, D.; Weber, A.; Weber, M.; Wiebusch, C.; Wilson, J.R.; Wu, S.; Yershov, N.; Zalipska, J.; Zito, M.

    2014-01-01

    The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrat...

  12. Impact of lepton flavor universality violation on CP-violation sensitivity of long-baseline neutrino oscillation experiments

    Science.gov (United States)

    Soumya, C.; Mohanta, R.

    2017-01-01

    The observation of neutrino oscillation as well as the recent experimental results on lepton flavor universality (LFU) violation in B meson decays are indications of new physics beyond the standard model. Many theoretical models, which are introduced in the literature as an extension of SM to explain these observed deviations in LFU, lead to a new kind of interactions, the so-called non-standard interaction (NSI) between the elementary particles. In this paper, we consider a model with an additional Z' boson (which is quite successful in explaining the observed LFU anomalies) and analyze its effect in the lepton flavor violating (LFV) B_d→ τ ^± e^∓ decay modes. From the present upper bound of the B_d→ τ ^± e^∓ branching ratio, we obtain the constraints on the new physics parameters, which are related to the corresponding NSI parameters in the neutrino sector by SU(2)_L symmetry. These new parameters are expected to have potential implications in the neutrino oscillation studies and in this work we investigate the possibility of observing the effects of these interactions in the currently running and upcoming long-baseline experiments, i.e., NOν A and DUNE, respectively.

  13. Exploring Flavor-Dependent Long-Range Forces in Long-Baseline Neutrino Oscillation Experiments

    CERN Document Server

    Chatterjee, Sabya Sachi; Agarwalla, Sanjib Kumar

    2015-01-01

    The Standard Model gauge group can be extended with minimal matter content by introducing anomaly free U(1) symmetry, such as $L_e-L_{\\mu}$ or $L_e-L_{\\tau}$. If the neutral gauge boson corresponding to this global symmetry is ultra-light, then it will give rise to flavor-dependent long-range leptonic force, which can have significant impact on neutrino oscillations. For an instance, the electrons inside the Sun can generate a flavor-dependent long-range potential at the Earth surface, which can suppress the $\

  14. Optimizing the θ 23 octant search in long baseline neutrino experiments

    Science.gov (United States)

    Das, C. R.; Maalampi, J.; Pulido, J.; Vihonen, S.

    2017-09-01

    Determination of the θ 23 octant will be an important goal for the next generation of neutrino oscillation experiments, as it will show whether the true value of θ 23 lies in the high octant, θ 23 > 45°, or in the low octant, θ 23 terms of baseline length and beam sharing and use the LBNO setup as our benchmark. We also show the interference on the octant determination that arises from the unconstrained CP violation angle δ CP. In our results, we show the impact of matter effects on the octant determination potential and establish a connection between the beam sharing and mass hierarchy.

  15. A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)

    CERN Document Server

    Baibussinov, B; Battistoni, G; Benetti, P; Borio, A; Calligarich, E; Cambiaghi, M; Cavanna, F; Centro, Sandro; Cocco, A G; Dolfini, R; Berzolari, A Gigli; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Gibin, D; Guglielmi, A M; Mannocchi, G; Mauri, F; Menegolli, A; Meng, G; Montanari, C; Palamara, O; Periale, L; Piazzoli, A; Picchi, P; Pietropaolo, F; Rappoldi, A; Raselli, G L; Rubbia, Carlo; Sala, P; Satta, G; Varanini, F; Ventura, Sandro; Vignoli, C

    2007-01-01

    The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about ...

  16. A long baseline RICH with a 27-kiloton water target and radiator for detection of neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Ypsilantis, T.; Seguinot, J.; Zichichi, A.

    1997-01-01

    A 27 kt water volume is investigated as a target for a long baseline neutrino beam from CERN to Gran Sasso. Charged secondaries from the neutrino interactions produce Cherenkov photons in water which are imaged as rings by a spherical mirror. The photon detector elements are 14 400 photomultipliers (PM`s) of 127 mm diameter or 3600 HPD`s of 250 mm diameter with single photon sensitivity. A coincidence signal of about 300 pixel elements in time with the SPS beam starts readout in bins of 1 ns over a period of 128 ns. Momentum, direction, and velocity of hadrons and mucons are determined from the width, center, and radius of the rings, respectively. Momentum is measured if multiple scattering dominates the ring width, as is the case for most of the particles of interest. Momentum, direction, and velocity of hadrons and muons are determined from the width, center, and radius of the rings, respectively. Momentum is measured if multiple scattering dominates the ring width, as is the case for most of the particles of interest. Momentum resolutions of 1-10%, mass resolutions of 5-50 MeV, and direction resolutions of < 1 mrad are achievable. Thresholds in water for muons, pions, kaons, and protons are 0.12, 0.16, 0.55, and 1.05 GeV/c, respectively. Electrons and gammas can be measured with energy resolution {sigma}{sub E}/E{approx}8.5%/{radical}E(GeV) and with direction resolution {approx} 1 mrad. The detector can be sited either inside a Gran Sasso tunnel or above ground because it is directional and the SPS beam is pulsed; thus the rejection of cosmic ray background is excellent.

  17. A model for manuscript submitted to the nth IIR conference on overview of the long-baseline neutrino facility cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, David [FERMILAB; Adamowski, Mark [Fermilab; Bremer, Johan [CERN; Delaney, Michael [Fermilab; Aurelien, Diaz [CERN; Doubnik, Roza [Fermilab; Haaf, Kevin [Fermilab; Hentschel, Steve [Fermilab; Norris, Barry [Fermilab; Voirin, Erik [Fermilab

    2017-03-09

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. As a result, it also details the status of the design, present and future needs.

  18. The T2K ND280 Off-Axis Pi-Zero Detector

    CERN Document Server

    Assylbekov, S; Berns, H; Beznosko, D; Bodek, A; Bradford, R; Buchanan, N; Budd, H; Caffari, Y; Connolly, K; Danko, I; Das, R; Davis, S; Day, M; Dytman, S; Dziomba, M; Flight, R; Forbush, D; Gilje, K; Hansen, D; Hignight, J; Imber, J; Johnson, R A; Jung, C K; Kravtsov, V; Le, P T; Lopez, G D; Malafis, C J; Manly, S; Marino, A D; McFarland, K S; McGrew, C; Metelko, C; Nagashima, G; Naples, D; Nielsen, B; Paolone, V; Paul, P; Qian, W; Ramos, K; Rodrigues, P A; Ruterbories, D; Schmidt, J; Schwehr, J; Siyad, M; Steffens, J; Tadepalli, A S; Taylor, I J; Toki, W; Vanek, C; Warner, D; Weber, A; Wilkes, R J; Wilson, R J; Yanagisawa, C; Yuan, T

    2011-01-01

    The Pi-Zero detector (P{\\O}D) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the P{\\O}D is to measure the relevant cross sections for neutrino interactions that generate pi-zero's, especially the cross section for neutral current pi-zero interactions, which are one of the dominant sources of background to the electron neutrino appearance signal in T2K. The P{\\O}D is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.

  19. Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Baller, B; Barr, G; Barrett, W L; Becker, B R; Belias, A; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Bower, C; Buckley-Geer, E; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coleman, S J; Culling, A J; De Jong, J K; Dierckxsens, M; Diwan, M V; Dorman, M; Dytman, S A; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Frohne, M V; Gallagher, H R; Godley, A; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Heller, K; Himmel, A; Holin, A; Hsu, L; Hylen, J; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Kim, J J; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Ma, J; Mann, W A; Marchionni, A; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Messier, M D; Metelko, C J; Michael, D G; Miller, W H; Mishra, S R; Moore, C D; Morfn, J; Mualem, i L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovi, Z; Pawloski, G; Pearce, G F; Peck, C W; Petyt, D A; Pittam, R; Plunkett, R K; Rahaman, cA; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Shanahan, P; Smart, W; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Yang, T; Zhang, K; Zwaska, R

    2008-01-01

    We have measured the rates and spectra of neutral-current neutrino interactions in the MINOS detectors, which are separated by 734 km. A depletion in the rate at the far site would indicate mixing between muon neutrinos and a sterile particle. The depletion of the total neutral-current event rate at the far site is limited to be below 17% at 90% confidence level without electron neutrino appearance. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra shows the fraction of muon neutrinos oscillating to a sterile neutino is 0.28^{+0.25}_{-0.28} (stat.+syst.). Including electron neutrino appearance at the current experimental upper bound limits the depletion to be below 21% at 90% confidence level and the fit fraction of muon neutrinos oscillating to a sterile neutrino is 0.43^{+0.23}_{-0.27} (stat.+syst.).

  20. Neutrino oscillations from warped flavor symmetry: predictions for long baseline experiments T2K, NOvA and DUNE

    CERN Document Server

    Pasquini, Pedro; Valle, J W F

    2016-01-01

    Here we study the pattern of neutrino oscillations emerging from a previously proposed warped model construction incorporating $\\Delta(27)$ flavor symmetry. In addition to a complete description of fermion masses, the model predicts the lepton mixing matrix in terms of two parameters. The good measurement of $\\theta_{13}$ makes these two parameters nearly proportional, leading to an approximate one-parameter description of neutrino oscillations. There is a sharp fourfold degenerate correlation between $\\delta_{CP}$ and the atmospheric mixing angle $\\theta_{23}$, so that maximal $\\theta_{23}$ also implies maximal leptonic CP violation. The predicted electron neutrino and anti-neutrino appearance probabilities indicate that the model should be tested at the T2K, NO$\

  1. The T2K ND280 off-axis pi-zero detector

    Energy Technology Data Exchange (ETDEWEB)

    Assylbekov, S. [Colorado State University, Department of Physics, Fort Collins, CO (United States); Barr, G. [Oxford University, Department of Physics, Oxford (United Kingdom); Berger, B.E. [Colorado State University, Department of Physics, Fort Collins, CO (United States); Berns, H. [University of Washington, Department of Physics, Seattle, WA (United States); Beznosko, D. [State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, NY (United States); Bodek, A.; Bradford, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Buchanan, N. [Colorado State University, Department of Physics, Fort Collins, CO (United States); Budd, H. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Caffari, Y. [Colorado State University, Department of Physics, Fort Collins, CO (United States); Connolly, K. [University of Washington, Department of Physics, Seattle, WA (United States); Danko, I. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, PA (United States); Das, R. [Colorado State University, Department of Physics, Fort Collins, CO (United States); Davis, S. [University of Washington, Department of Physics, Seattle, WA (United States); Day, M. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Dytman, S. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, PA (United States); Dziomba, M. [University of Washington, Department of Physics, Seattle, WA (United States); Flight, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Forbush, D. [University of Washington, Department of Physics, Seattle, WA (United States); Gilje, K. [State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, NY (United States); and others

    2012-09-11

    The pi-zero detector (POD) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the POD is to measure the relevant cross-sections for neutrino interactions that generate {pi}{sup 0}'s, especially the cross-section for neutral current {pi}{sup 0} interactions, which are one of the dominant sources of background to the {nu}{sub {mu}}{yields}{nu}{sub e} appearance signal in T2K. The POD is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.

  2. VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS FOR PRECISE MEASURMENTS OF OSCILLATION PARAMETERS AND SEARCH FOR N MU YIELDS N EPSILON.

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; BEAVIS,D.; BRENNAN,M.; CHEN,M.C.; FERNOW,R.; ET AL

    2002-10-18

    Brookhaven National Laboratory and collaborators started a neutrino working group to identify new opportunities in the field of neutrino oscillations and explore how our laboratory facilities can be used to explore this field of research. The memo to the working group and the charge are included in Appendix I. This report is the result of the deliberations of the working group. Previously, we wrote a letter of intent to build a new high intensity neutrino beam at BNL. A new intense proton beam will be used to produce a conventional horn focused neutrino beam directed at a detector located in either the Homestake mine in Lead, South Dakota at 2540 km or the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM at 2880 km. As a continuation of the study that produced the letter of intent, this report examines several items in more detail. We mainly concentrate on the use of water Cherenltov detectors because of their size, resolution, and background rejection capability, and cost. We examine the prospects of building such a detector in the Homestake mine. The accelerator upgrade will be carried out in phases. We expect the first phase to yield a 0.4 MW proton beam and the second phase to result in a 1.0 MW beam. The details of this upgrade will be reported in a companion report. In this report we assume accelerator intensity of 1 MW for calculating event rates and spectra. We also assume a total experimental duration of 5 years with running time of 10{sup 7} seconds per year. We examine the target station and the horn produced neutrino beam with focus on two topics: target and horn design for a 1 MW beam and the broad band spectrum of neutrinos from a 28 GeV proton beam.

  3. Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment.

    Science.gov (United States)

    Adamson, P; Andreopoulos, C; Arms, K E; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Baller, B; Barr, G; Barrett, W L; Becker, B R; Belias, A; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, G J; Boehm, J; Boehnlein, D J; Bogert, D; Bower, C; Buckley-Geer, E; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coleman, S J; Culling, A J; de Jong, J K; Dierckxsens, M; Diwan, M V; Dorman, M; Dytman, S A; Escobar, C O; Evans, J J; Harris, E Falk; Feldman, G J; Frohne, M V; Gallagher, H R; Godley, A; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Heller, K; Himmel, A; Holin, A; Hsu, L; Hylen, J; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Kim, J J; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Ma, J; Mann, W A; Marchionni, A; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Messier, M D; Metelko, C J; Michael, D G; Miller, W H; Mishra, S R; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlović, Z; Pawloski, G; Pearce, G F; Peck, C W; Petyt, D A; Pittam, R; Plunkett, R K; Rahaman, A; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Shanahan, P; Smart, W; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Yang, T; Zhang, K; Zwaska, R

    2008-11-28

    We report the first detailed comparisons of the rates and spectra of neutral-current neutrino interactions at two widely separated locations. A depletion in the rate at the far site would indicate mixing between nu(mu) and a sterile particle. No anomalous depletion in the reconstructed energy spectrum is observed. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra limits the fraction of nu(mu) oscillating to a sterile neutrino to be below 0.68 at 90% confidence level. A less stringent limit due to a possible contribution to the measured neutral-current event rate at the far site from nu(e) appearance at the current experimental limit is also presented.

  4. Long Baseline Neutrino Experiment Target Material Radiation Damage Studies Using Energetic Protons of the Brookhaven Linear Isotope Production (BLIP) Facility

    CERN Document Server

    Simos, N; Hurh, P; Mokhov, N; Kotsina, Z

    2014-01-01

    One of the future multi-MW accelerators is the LBNE Experiment where Fermilab aims to produce a beam of neutrinos with a 2.3 MW proton beam as part of a suite of experiments associated with Project X. Specifically, the LBNE Neutrino Beam Facility aims for a 2+ MW, 60 -120 GeV pulsed, high intensity proton beam produced in the Project X accelerator intercepted by a low Z solid target to facilitate the production of low energy neutrinos. The multi-MW level LBNE proton beam will be characterized by intensities of the order of 1.6 e+14 p/pulse, {\\sigma} radius of 1.5 -3.5 mm and a 9.8 microsecond pulse length. These parameters are expected to push many target materials to their limit thus making the target design very challenging. To address a host of critical design issues revealed by recent high intensity beam on target experience a series of experimental studies on radiation damage and thermal shock response conducted at BNL focusing on low-Z materials have been undertaken with the latest one focusing on LBNE.

  5. Baseline Optimization for the Measurement of CP Violation, Mass Hierarchy, and $\\theta_{23}$ Octant in a Long-Baseline Neutrino Oscillation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bass, M. [Colorado State U.; Bishai, M. [Brookhaven; Cherdack, D. [Colorado State U.; Diwan, M. [Brookhaven; Djurcic, Z. [Argonne; Hernandez, J. [Houston U.; Lundberg, B. [Fermilab; Paolone, V. [Pittsburgh U.; Qian, X. [Brookhaven; Rameika, R. [Fermilab; Whitehead, L. [Houston U.; Wilson, R. J. [Colorado State U.; Worcester, E. [Brookhaven; Zeller, G. [Fermilab

    2015-03-19

    Next-generation long-baseline electron neutrino appearance experiments will seek to discover CP violation, determine the mass hierarchy and resolve the θ23 octant. In light of the recent precision measurements of θ13, we consider the sensitivity of these measurements in a study to determine the optimal baseline, including practical considerations regarding beam and detector performance. We conclude that a detector at a baseline of at least 1000 km in a wide-band muon neutrino beam is the optimal configuration.

  6. Systematic errors in long baseline oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A.; /Fermilab

    2006-02-01

    This article gives a brief overview of long baseline neutrino experiments and their goals, and then describes the different kinds of systematic errors that are encountered in these experiments. Particular attention is paid to the uncertainties that come about because of imperfect knowledge of neutrino cross sections and more generally how neutrinos interact in nuclei. Near detectors are planned for most of these experiments, and the extent to which certain uncertainties can be reduced by the presence of near detectors is also discussed.

  7. Physics Potential of Long-Baseline Experiments

    Directory of Open Access Journals (Sweden)

    Sanjib Kumar Agarwalla

    2014-01-01

    Full Text Available The discovery of neutrino mixing and oscillations over the past decade provides firm evidence for new physics beyond the Standard Model. Recently, θ13 has been determined to be moderately large, quite close to its previous upper bound. This represents a significant milestone in establishing the three-flavor oscillation picture of neutrinos. It has opened up exciting prospects for current and future long-baseline neutrino oscillation experiments towards addressing the remaining fundamental questions, in particular the type of the neutrino mass hierarchy and the possible presence of a CP-violating phase. Another recent and crucial development is the indication of non-maximal 2-3 mixing angle, causing the octant ambiguity of θ23. In this paper, I will review the phenomenology of long-baseline neutrino oscillations with a special emphasis on sub-leading three-flavor effects, which will play a crucial role in resolving these unknowns. First, I will give a brief description of neutrino oscillation phenomenon. Then, I will discuss our present global understanding of the neutrino mass-mixing parameters and will identify the major unknowns in this sector. After that, I will present the physics reach of current generation long-baseline experiments. Finally, I will conclude with a discussion on the physics capabilities of accelerator-driven possible future long-baseline precision oscillation facilities.

  8. Measurement of the muon-neutrino charged-current cross section on water with zero pions

    CERN Document Server

    Yuan, Tianlu

    2016-01-01

    The Tokai to Kamioka (T2K) experiment is a 295-km long-baseline neutrino experiment aimed towards the measurement of neutrino oscillation parameters ${\\theta}_{13}$ and ${\\theta}_{23}$. Precise measurement of these parameters requires accurate knowledge of neutrino cross sections. We present a flux-averaged double differential measurement of the charged-current cross section on water with zero pions in the final state using the T2K off-axis near detector, ND280. A selection of $\

  9. Physics Potential of Long-Baseline Experiments

    CERN Document Server

    Agarwalla, Sanjib Kumar

    2014-01-01

    The discovery of neutrino mixing and oscillations over the past decade provides firm evidence for new physics beyond the Standard Model. Recently, theta13 has been determined to be moderately large, quite close to its previous upper bound. This represents a significant milestone in establishing the three-flavor oscillation picture of neutrinos. It has opened up exciting prospects for current and future long-baseline neutrino oscillation experiments towards addressing the remaining fundamental questions, in particular the type of the neutrino mass hierarchy and the possible presence of a CP-violating phase. Another recent and crucial development is the indication of non-maximal 2-3 mixing angle, causing the octant ambiguity of theta23. In this paper, I will review the phenomenology of long-baseline neutrino oscillations with a special emphasis on sub-leading three-flavor effects, which will play a crucial role in resolving these unknowns. First, I will give a brief description of neutrino oscillation phenomeno...

  10. Letter on intent to build an off-axis detector to study nu sub m sub u-> nu sub e oscillations with the NuMI neutrino beam. Version 6.0

    CERN Document Server

    Ayres, D; Guarino, V; Joffe-Minor, T M; Reyna, D; Talaga, R; Thron, J

    2003-01-01

    The question of neutrino masses is of fundamental importance. Neutrino oscillations seem to be the only tool available to us to unravel the pattern of neutrino masses and, perhaps, shed some light on the origin of masses in general. The NuMI neutrino beam line and the MINOS experiment represent a major investment of US High Energy Physics in the area of neutrino physics. the forthcoming results could decisively establish neutrino oscillations as the underlying physics mechanism for the atmospheric nu submu deficit and provide a precise measurement of the corresponding oscillation parameters, DELTA m sub 3 sub 2 sup 2 and sin sup 2 2 theta sub 2 sub 3. This, however, is just a beginning of a long journey into uncharted territories. The key to these new territories is the detection of nu submu -> nu sub e oscillations associated with the atmospheric nu submu deficit, controlled by the little known mixing angle sin sup 2 2 theta sub 1 sub 3. A precise measurement of the amplitude of these oscillations will enabl...

  11. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  12. A CERN-based high-intensity high-energy proton source for long baseline neutrino oscillation experiments with next-generation large underground detectors for proton decay searches and neutrino physics and astrophysics

    CERN Document Server

    Rubbia, A

    2010-01-01

    The feasibility of a European next-generation very massive neutrino observatory in seven potential candidate sites located at distances from CERN ranging from 130 km to 2300 km, is being considered within the LAGUNA design study. The study is providing a coordinated technical design and assessment of the underground research infrastructure in the various sites, and its coherent cost estimation. It aims at a prioritization of the sites within summer 2010 and a start of operation around 2020. In addition to a rich non-accelerator based physics programme including the GUT-scale with proton decay searches, the detection of a next-generation neutrino superbeam tuned to measure the flavor-conversion oscillatory pattern (i.e. 1st and 2nd oscillation maxima) would allow to complete our understanding of the leptonic mixing matrix, in particular by determining the neutrino mass hierarchy and by studying CP-violation in the leptonic sector, thereby addressing the outstanding puzzle of the origin of the excess of matter ...

  13. Measurement of double-differential muon neutrino charged-current interactions on C$_8$H$_8$ without pions in the final state using the T2K off-axis beam

    CERN Document Server

    Abe, K; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Avanzini, M Buizza; Calland, R G; Cao, S; Rodríguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S G; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosomi, F; Huang, K; Ichikawa, A K; Ieki, K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Guerra, E S Pinzon; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-01-01

    We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734$\\times10^{20}$ protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross-section in muon kinematic variables ($\\cos\\theta_\\mu$, $p_\\mu$), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not solve the degeneracy between different models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross-sect...

  14. Octant degeneracy, CPV phase at Long Baseline $\

    CERN Document Server

    Bora, Kalpana; Dutta, Debajyoti

    2015-01-01

    In a recent work by two of us, we have studied, how CP violation discovery potential can be improved at long baseline neutrino experiments (LBNE/DUNE), by combining with its ND (near detector) and reactor experiments. In this work, we discuss how this study can be further analysed to resolve entanglement of the quadrant of CPV phase and Octant of atmospheric mixing angle {\\theta}23, at LBNEs. The study is done for both NH (Normal hierarchy) and IH (Inverted hierarchy). We further show how leptogenesis can enhance this effect of resolving this entanglement. A detailed analytic and numerical study of baryogenesis through leptogenesis is performed in this framework in a model independent way. We then compare our result of the baryon to photon ratio with the the current observational data of the baryon asymmetry.

  15. Coherent off-axis undulator radiation from short electron bunches

    Directory of Open Access Journals (Sweden)

    C. P. Neuman

    2000-03-01

    Full Text Available The nature of off-axis undulator radiation is discussed. Of particular interest is coherent off-axis radiation, where the wavelengths of emission are longer than the electron bunch length. We show how this off-axis radiation may be used to measure relative electron bunch lengths. The theory is presented, and calculated spectra are presented in a number of cases of interest.

  16. Off-axis dose distribution for rectangle proton beam

    Institute of Scientific and Technical Information of China (English)

    Gou Cheng-Jun; Luo Zheng-Ming; Huang Chu-Ye; Feng Xiao-Ning; Wu Zhang-Wen

    2008-01-01

    This paper modifies an analytical algorithm originally developed for electron dose calculations to evaluate the off-axis dose distribution of rectangle proton beam. This spatial distribution could be described by Fermi-Eyges theory since a proton undergoes small-angle scattering when it passes through medium. Predictions of the algorithm for relative off-axis dose distribution by a 6 cm 6 cm initial monoenergetic proton beam are compared with the results from the published Monte Carlo simulations. The excellent levcl of agreement between the results of these two methods of dose calculation (< 2%) demonstrates that the off-axis dose distribution from rectangle proton beam may be computed with high accuracy using this algorithm. The results also prompts the necessity to consider the off-axis distribution when the proton is applied to clinical radiotherapy since the penumbra is significant at the distal of its range (about 0.6 cm at the Bragg-peak depth).

  17. Discovery of off-axis jet structure of TeV blazar Mrk 501 with mm-VLBI

    CERN Document Server

    Koyama, S; Giroletti, M; Doi, A; Giovannini, G; Orienti, M; Hada, K; Ros, E; Niinuma, K; Nagai, H; Savolainen, T; Krichbaum, T P; Pérez-Torres, M Á

    2016-01-01

    High-resolution millimeter wave very-long-baseline interferometry (mm-VLBI) is an ideal tool for probing the structure at the base of extragalactic jets in detail. The TeV blazar Mrk 501 is one of the best targets among BL Lac objects for studying the nature of off-axis jet structures because it shows different jet position angles at different scales. The aim of this study is to investigate the properties of the off-axis jet structure through high-resolution mm-VLBI images at the jet base and physical parameters such as kinematics, flux densities, and spectral indices. We performed Very Long Baseline Array (VLBA) observations over six epochs from 2012 February to 2013 February at 43 GHz. Quasi-simultaneous Global Millimeter VLBI Array (GMVA) observations at 86 GHz were performed in May 2012. We discover a new jet component at the northeast direction from the core in all the images at 43 and 86 GHz. The new component shows the off-axis location from the persistent jet extending to the southeast. The 43 GHz ima...

  18. Off-Axis Aspheric Surfacing Using Sub-Aperture Tools

    Science.gov (United States)

    Feng, Yunpeng; Qiao, Xiaoyan; Cheng, Haobo; Tam, Hon-Yuen

    2013-10-01

    The off-axis aspheric surface used in modern optical systems widely can obtain nearly perfect quality, realize both small packet-size and low-mass, and avoid the central obscuration. But it is difficult to fabricate because of asymmetry. There are some key technologies during the testing and fabrication of off-axis asphere. In this article, we proposed a method of the best fit sphere based on non-negative minimized removal criterion. And a measured data fitting algorithm was presented to estimate the geometry parameters of off-axis aspheric surface. Then an off-axis mirror was fabricated, and the interferometrically measured data was corrected to eliminate the distortion introduced by null compensator in every run. Finally, the surface error of off-axis mirror reduced to pv = 0.372λ, rms = 0.046λ, the surface roughness reached 0.72 nm. These methods mentioned in the article are suitable for off-axis aspheric optics.

  19. Off-axis illumination direct-to-digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  20. Alignment method of off-axis RC reflective optical system

    Science.gov (United States)

    Xue-min, Zhang; Xing, Song; Zhi-jun, Zhang; Hou, Xiao-hua

    2016-10-01

    Off-axis optical system has a wide application in space optics and remote detective area. The high surface shape accuracy can be ensured with the development of advanced manufacture technique. So the only condition which limits the wide application of off-axis optical system is how to realize the precise alignment of it. Based on a RC reflective optical system whose diameter is 400mm, the alignment method which combines the high resolution initial placement and computer-aided alignment is introduced. By designing a system which can measure the off-axis fabrication and off-axis angle precisely, the high resolution initial placement of off-axis mirror can be ensured with a measurement accuracy of +/-0.05mm and +/-10". The good initial placement can give a good initial state, so the computer-aided model can be converged well. The experiment shows that a system which has a good initial placement could have a good wave aberration of 0.04λ after three times iteration adjustment.

  1. Computer Controlled Polishing of the Off-axis Aspheric Mirrors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the manufacturing and testing procedures to make large off-axis aspherical mirrors are presented. The difficulties in polishing and testing for both circular-aperture and rectangular-aperture mirrors are previewed, and a possible solution is given. The two mirrors have been polished by means of CCOS, and the final accuracy is 25nm rms for 770mm×210mm rectangular mirror and 20nm rms for φ600mm circular mirror. These results just meet the optical tolerances specified by the designer, and the manufacturing and testing procedures presented here show good ability to make the large off-axis aspherical mirrors.

  2. NRAO Very Long Baseline Array (VLBA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It's the world's largest, sharpest, dedicated telescope array. With an eye...

  3. Alfven eigenmode structure during off-axis neutral beam injection

    NARCIS (Netherlands)

    Tobias, B.; Bass, E. M.; Classen, I.G.J.; Domier, C.W.; Grierson, B. A.; Heidbrink, W. W.; N C Luhmann Jr.,; Nazikian, R.; Park, H. K.; Spong, D. A.; VanZeeland, M. A.

    2012-01-01

    The spatial structure of Alfven eigenmodes on the DIII-D tokamak is compared for contrasting fast ion deposition profiles resulting from on- and off-axis neutral beam injection (NBI). In both cases, poloidal mode rotation and eigenmode twist, or radial phase variation, are correlated with the direct

  4. Transport Phenomena of Off-Axis Sputtering Deposition

    Science.gov (United States)

    Zhu, S.; Su, C. H.; Lehoczky, S. L.; Zhang, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Various high quality epitaxial films, especially oxides, have been synthesized using off-axis sputtering deposition. In this presentation, we report the experiment results of ZnO films grown by the off-axis sputtering deposition. Films were synthesized in temperatures ranged from room temperature to 600 C, and pressures from 5 mTorr to 150 mTorr. Film growth rate was measured by surface profilometer, ellipsometer, and wavelength dispersive spectrometry. Due to the collisions between the sputtered species and the residue gases, the kinetic energy of species was reduced and the transport of depositing species changed from a ballistic movement for low pressure to a diffuse drift for high pressure in which the transport species were almost thermalized. The measurements show an increase of growth rates along the gravity vector when the Knodson (Knudsen??) number of transport species is less than 0.05, which suggests that gravity affected the transport characterization in off-axis sputtering deposition. Because the product of pressure (p) and travel distance (d) of sputtered species, p exceeds several mTorr-cm during film deposition, the classical simulations for sputtering process in high vacuum system may not be applied. Based on these experimental measurements, a transport process of the off-axis sputtering deposition is proposed. Several methods including the Monte Carlo method and gravity-driven flow dynamics simulation will be discussed.

  5. The manufacturing and metrology of off-axis mirrors

    Science.gov (United States)

    Penzkofer, Karlheinz; Rascher, Rolf; Küpper, Lutz; Liebl, Johannes

    2015-10-01

    Especially in the area of the large mirror manufacturing only a few manufacturers are capable to produce optical surfaces of high quality. Therefore a deterministic process should be developed in the project IFasO. In the field of telescope optics off-axis optical systems are becoming increasingly important. These systems try to avoid an obstructing of the incoming light by moving the secondary mirror out of the primary mirror's optical axis. This advantage leads to an increasing market for this type of optical surface. Until now off-axis mirrors were difficult or almost impossible to produce. With the processes developed in IFasO, high quality mirrors become possible. For this reason, this paper describes the manufacturing of off-axis surfaces and its problems. The mirror production used in the project IFasO is based on the specific design of the CNC center developed by the company Optotech. This center UPG2000 is capable of grinding, polishing, sagitta measurement and interferometric measurement in one mounting of the specimen. Usually a large optics has to be transported during their manufacturing after every individual process step. There is always a risk of damage of the specimen. The exact orientation of the surface relatively to the tool position is also required. This takes a huge amount of time and makes up most of the production time. In this presentation the use of UPG2000 and the next steps within the process development are described. In the current status the manufacturing of large off-axis elements with a PV < λ/10 rms is reproducible.

  6. Super Earth Explorer: Coronagraphic Off-Axis Space Telescope

    CERN Document Server

    Schneider, J; Mawet, D; Baudoz, P; Beuzit, J L; Doyon, R; Marley, M; Stam, D; Tinetti, G; Traub, W; Trauger, J; Aylward, A; Cho, J Y K; Keller, C U; Udry, S

    2008-01-01

    The Super-Earth Explorer is an Off-Axis Space Telescope (SEE-COAST) designed for high contrast imaging. Its scientific objective is to make the physico-chemical characterization of exoplanets possibly down to 2 Earth radii >. For that purpose it will analyze the spectral and polarimetric properties of the parent starlight reflected by the planets, in the wavelength range 400-1250 nm

  7. Noise estimation for off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: Falk.Roeder@Triebenberg.de [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Lubk, Axel; Wolf, Daniel [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Niermann, Tore [Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany)

    2014-09-15

    Off-axis electron holography provides access to the phase of the elastically scattered wave in a transmission electron microscope at scales ranging from several hundreds of nanometres down to 0.1 nm. In many cases the reconstructed phase shift is directly proportional to projected electric and magnetic potentials rendering electron holography a useful and established characterisation method for materials science. However, quantitative interpretation of experimental phase shifts requires quantitative knowledge about the noise, which has been previously established for some limiting cases only. Here, we present a general noise transfer formalism for off-axis electron holography allowing to compute the covariance (noise) of reconstructed amplitude and phase from characteristic detector functions and general properties of the reconstruction process. Experimentally, we verify the presented noise transfer formulas for two different cameras with and without objects within the errors given by the experimental noise determination. - Highlights: • We derive a general noise transfer for the off-axis holographic reconstruction. • Noise transfer formulas given by F. Lenz are included as a special case. • We estimate the covariance of a hologram using the noise spread function. • We experimentally verify the derived noise transfer formulas.

  8. GLoBES: General Long Baseline Experiment Simulator

    Science.gov (United States)

    Huber, Patrick; Kopp, Joachim; Lindner, Manfred; Rolinec, Mark; Winter, Walter

    2007-09-01

    GLoBES (General Long Baseline Experiment Simulator) is a flexible software package to simulate neutrino oscillation long baseline and reactor experiments. On the one hand, it contains a comprehensive abstract experiment definition language (AEDL), which allows to describe most classes of long baseline experiments at an abstract level. On the other hand, it provides a C-library to process the experiment information in order to obtain oscillation probabilities, rate vectors, and Δχ-values. Currently, GLoBES is available for GNU/Linux. Since the source code is included, the port to other operating systems is in principle possible. GLoBES is an open source code that has previously been described in Computer Physics Communications 167 (2005) 195 and in Ref. [7]). The source code and a comprehensive User Manual for GLoBES v3.0.8 is now available from the CPC Program Library as described in the Program Summary below. The home of GLobES is http://www.mpi-hd.mpg.de/~globes/. Program summaryProgram title: GLoBES version 3.0.8 Catalogue identifier: ADZI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 145 295 No. of bytes in distributed program, including test data, etc.: 1 811 892 Distribution format: tar.gz Programming language: C Computer: GLoBES builds and installs on 32bit and 64bit Linux systems Operating system: 32bit or 64bit Linux RAM: Typically a few MBs Classification: 11.1, 11.7, 11.10 External routines: GSL—The GNU Scientific Library, www.gnu.org/software/gsl/ Nature of problem: Neutrino oscillations are now established as the leading flavor transition mechanism for neutrinos. In a long history of many experiments, see, e.g., [1], two oscillation frequencies have been identified: The fast atmospheric

  9. Status of the nuSTORM Facility and a Possible Extension for Long-Baseline $\

    Energy Technology Data Exchange (ETDEWEB)

    Bross, Alan D. [Fermilab; Liu, Ao [Fermilab; Lagrange, Jean-Baptiste [Imperial Coll., London; Pasternak, Jaroslaw [Imperial Coll., London

    2015-11-03

    Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called “Neo-conventional" muon neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. In this paper we describe the facility and give a detailed description of the neutrino beam fluxes that are available and the precision to which these fluxes can be determined. We then present sensitivity plots that indicated how well the facility can perform for short-baseline oscillation searches and show its potential for a neutrino interaction physics program. Finally, we comment on the performance potential of the "Neo-conventional" muon neutrino beam optimized for long- baseline neutrino-oscillation physics.

  10. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  11. Impedances and power losses for an off-axis beam

    CERN Document Server

    Kurennoy, S S

    1996-01-01

    A method for calculating coupling impedances and power losses for off-axis beams is developed. It is applied to calculate impedances of small localized discontinuities like holes and slots, as well as the impedance due to a finite resistivity of chamber walls, in homogeneous chambers with an arbitrary shape of the chamber cross section. The approach requires to solve a two-dimensional electrostatic problem, which can be easily done numerically in the general case, while for some particular cases analytical solutions are obtained.

  12. On the off-axis tensile test for unidirectional composites

    Science.gov (United States)

    Nemeth, M. P.; Herakovich, C. T.; Post, D.

    1982-01-01

    The off axis tensile test was examined experimentally to obtain actual displacement fields over the surface of graphite polyimide coupon specimens. The experimental results were compared with approximate analytical solutions and generated finite element results. An optical method of high sensitivity moire interferometry was used to determine the actual displacements to high precision. The approximate analytical solution and the finite element results compare very favorably with the measured centerline displacements in the test section, and the finite element displacement fields provide excellent agreement with the moire displacements throughout the specimen. A 15 degree fiber orientation and coupon aspect ratios of 5 and 15 are presented.

  13. Local charge measurement using off-axis electron holography

    DEFF Research Database (Denmark)

    Beleggia, Marco; Gontard, L.C.; Dunin-Borkowski, R.0E.

    2016-01-01

    A model-independent approach based on Gauss’ theorem for measuring the local charge in a specimen from an electron-optical phase image recorded using off-axis electron holography was recently proposed. Here, we show that such a charge measurement is reliable when it is applied to determine...... the total charge enclosed within an object. However, the situation is more complicated for a partial charge measurement when the integration domain encloses only part of the object. We analyze in detail the effects on charge measurement of the mean inner potential of the object, of the presence of induced...

  14. Long-baseline experiments, now and soon!

    Indian Academy of Sciences (India)

    Jenny Thomas

    2012-11-01

    The new results available this year from a number of neutrino experiments bring into stronger focus the details in the `Standard Model' of neutrino oscillations described by the PMNS mixing matrix. However, the parameters are still not known to very high precision. The next few years look bright for accelerator neutrino experiments, with much action occurring in the near future. We still have to wait a little longer, however, to be sure, but making educated guesses is needed to make plans for the future.

  15. Off-axis self-interference incoherent digital holographic microscopy

    Science.gov (United States)

    Jeon, Philjun; Lee, Heejung; So, Byunghwy; Hwang, Wonsang; Bae, Yoonsung; Kim, Dugyoung

    2017-03-01

    3D imaging is demanding technology required in fluorescence microscopy. Even though holography is a powerful technique, it could not be used easily in fluorescence microscopy because of low coherence of fluorescence light. Lately, several incoherent holographic methods such as scanning holography, Fresnel in coherent correlation holography (FINCH), and self-interference incoherent digital holography (SIDH) have been proposed. However, these methods have many problems to be overcome for practical applications. For example, DC term removal, twin image ambiguity, and phase unwrapping problems need to be resolved. Off-axis holography is a straightforward solution which can solve most of these problems. We built an off-axis SIDH system for fluorescence imaging, and investigated various conditions and requirements for practical holographic fluorescence microscopy. Our system is based on a modified Michelson interferometer with a flat mirror at one arm and a curved mirror at the other arm of the interferometer. We made a phantom 3D fluorescence object made of 2 single-mode fibers coupled to a single red LED source to mimic 2 fluorescence point sources distributed by a few tens of micrometers apart. A cooled EM-CCD was used to take holograms of these fiber ends which emit only around 180 nW power.

  16. Working group report: Neutrino and astroparticle physics

    Indian Academy of Sciences (India)

    Raj Gandhi; Kamales Kar; S Uma Sankar; Abhijit Bandyopadhyay; Rahul Basu; Pijushpani Bhattacharjee; Biswajoy Brahmachari; Debrupa Chakraborti; M Chaudhury; J Chaudhury; Sandhya Choubey; E J Chun; Atri Desmukhya; Anindya Datta; Gautam Dutta; Sukanta Dutta; Raj Gandhi; Anjan Giri; Sourendu Gupta; Srubabati Goswami; Kamales Kar; Namit Mahajan; H S Mani; A Mukherjee; Biswarup Mukhopadhyaya; S N Nayak; M Randhawa; Subhendu Rakshit; Asim K Ray; Amitava Raychaudhuri; D P Roy; Probir Roy; Suryadeep Roy; Shiv Sethi; G Sigl; Arunansu Sil; N Nimai Singh; S Uma Sankar; Mark Vagins; Urjit Yagnik

    2003-02-01

    This is the report of neutrino and astroparticle physics working group at WHEPP-7. Discussions and work on CP violation in long baseline neutrino experiments, ultra high energy neutrinos, supernova neutrinos and water Cerenkov detectors are discussed.

  17. APS-U LATTICE DESIGN FOR OFF-AXIS ACCUMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; Borland, M.; Lindberg, R.; Sajaev, V.

    2017-06-25

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is being proposed for a future Advanced Photon Source (APS) multi-bend-achromat (MBA) upgrade project. This lattice design pushes for smaller emittance and requires use of a swap-out (on-axis) injection scheme due to limited dynamic acceptance. Alternate lattice design work has also been performed for the APS upgrade to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow off-axis accumulation. Two such alternate H7BA lattice designs, which target a still-low emittance of 90 pm, are discussed in detail in this paper. Although the single-particle-dynamics performance is good, simulations of collective effects indicate that surprising difficulty would be expected accumulating high single-bunch charge in this lattice. The brightness of the 90-pm lattice is also a factor of two lower than the 67-pm H7BA lattice.

  18. Optical voice recorder by off-axis digital holography.

    Science.gov (United States)

    Matoba, Osamu; Inokuchi, Hiroki; Nitta, Kouichi; Awatsuji, Yasuhiro

    2014-11-15

    An optical voice recorder capable of recording and reproducing propagating sound waves by using off-axis digital holography, as well as quantitative visualization, is presented. Propagating sound waves temporally modulate the phase distribution of an impinging light wave via refractive index changes. This temporally modulated phase distribution is recorded in the form of digital holograms by a high-speed image sensor. After inverse propagation using Fresnel diffraction of a series of the recorded holograms, the temporal phase profile of the reconstructed object wave at each three-dimensional position can be used to reproduce the original sound wave. Experimental results using a tuning fork vibrating at 440 Hz and a human voice are presented to show the feasibility of the proposed method.

  19. Off-Axis Nulling Transfer Function Measurement: A First Assessment

    Science.gov (United States)

    Vedova, G. Dalla; Menut, J.-L.; Millour, F.; Petrov, R.; Cassaing, F.; Danchi, W. C.; Jacquinod, S.; Lhome, E.; Lopez, B.; Lozi, J.; hide

    2013-01-01

    We want to study a polychromatic inverse problem method with nulling interferometers to obtain information on the structures of the exozodiacal light. For this reason, during the first semester of 2013, thanks to the support of the consortium PERSEE, we launched a campaign of laboratory measurements with the nulling interferometric test bench PERSEE, operating with 9 spectral channels between J and K bands. Our objective is to characterise the transfer function, i.e. the map of the null as a function of wavelength for an off-axis source, the null being optimised on the central source or on the source photocenter. We were able to reach on-axis null depths better than 10(exp -4). This work is part of a broader project aiming at creating a simulator of a nulling interferometer in which typical noises of a real instrument are introduced. We present here our first results.

  20. Radio sources - Very, Very Long Baseline Interferometry

    Science.gov (United States)

    Roberts, D. H.

    1983-03-01

    With resolution of a thousandth of an arcsecond, the radio technique of Very Long Baseline Interferometry (VLBI) provides astronomers with their highest-resolution view of the universe. Data taken with widely-separated antennas are combined, with the help of atomic clocks, to form a Michelson interferometer whose size may be as great as the earth's diameter. Extraordinary phenomena, from the birth of stars as signaled by the brilliant flashes of powerful interstellar masers to the 'faster-than-light' expansion of the cores of distant quasars, are being explored with this technique. However, earth-bound VLBI suffers from several restrictions due to the location of the component antennas at fixed places on the earth's surface. The use of one or more antennas in space in concert with ground-based equipment will greatly expand the technical and scientific capabilities of VLBI, leading to a more complete and even higher resolution view of cosmic phenomena.

  1. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  2. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  3. Charged current disappearance measurements in the NuMI off-axis beam

    Energy Technology Data Exchange (ETDEWEB)

    R. H. Bernstein

    2003-09-25

    This article studies the potential of combining charged-current disappearance measurements of {nu}{sub {mu}} {yields} {nu}{sub {tau}} from MINOS and an off-axis beam. The author finds that the error on {Delta}m{sup 2} from a 100 kt-yr off-axis measurement is a few percent of itself. Further, the author found little improvement to an off-axis measurement by combining it with MINOS.

  4. Detectors and experiments at future neutrino facilities

    CERN Document Server

    Dydak, Friedrich

    2003-01-01

    Starting from the experimental opportunities at a neutrino factory, possibilities at other facilities which might become available well before the neutrino factory, will be discussed. Ideas abound on neutrino super-beams, beta-beams, and the use of conventional neutrino beams in off-axis mode. Nevertheless the costs and time- scales for realization will be decisive. (22 refs).

  5. X-ray microfocusing with off-axis ellipsoidal mirror

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kohmura, Yoshiki; Ishikawa, Tetsuya [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Ohashi, Haruhiko [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-07-27

    High-precision ellipsoidal mirrors for two-dimensionally focusing X-rays to nanometer sizes have not been realized because of technical problems in their fabrication processes. The objective of the present study is to develop fabrication techniques for ellipsoidal focusing mirrors in the hard-X-ray region. We design an off-axis ellipsoidal mirror for use under total reflection conditions up to the X-ray energy of 8 keV. We fabricate an ellipsoidal mirror with a surface roughness of 0.3 nm RMS (root-mean-square) and a surface figure error height of 3.0 nm RMS by utilizing a surface profiler and surface finishing method developed by us. The focusing properties of the mirror are evaluated at the BL29XUL beamline in SPring-8. A focusing beam size of 270 nm × 360 nm FWHM (full width at half maximum) at an X-ray energy of 7 keV is observed with the use of the knife-edge scanning method. We expect to apply the developed fabrication techniques to construct ellipsoidal nanofocusing mirrors.

  6. Off-Axis Undulator Radiation for CLIC Drive Beam Diagnostics

    CERN Document Server

    Jeff, A; Welsch, CP

    2013-01-01

    The Compact LInear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. In this paper we propose the use of relatively inexpensive permanent-magnet undulators to generate off-axis visible Synchrotron Radiation from the CLIC Drive Beam. The field strength and period length of the undulator should be designed such that the on-axis undulator wavelength is in the ultra-violet. A smaller but still useable amount of visible light is then generated in a hollow cone. This light can be reflected out of the beam pipe by a ring-shaped mirror placed downstream and imaged on a camera. In this contribution, results of SRW and ZEMA...

  7. Lorentz symmetry and very long baseline interferometry

    Science.gov (United States)

    Le Poncin-Lafitte, C.; Hees, A.; Lambert, S.

    2016-12-01

    Lorentz symmetry violations can be described by an effective field theory framework that contains both general relativity and the Standard Model of particle physics called the Standard Model extension (SME). Recently, postfit analysis of Gravity Probe B and binary pulsars led to an upper limit at the 10-4 level on the time-time coefficient s¯T T of the pure-gravity sector of the minimal SME. In this work, we derive the observable of very long baseline interferometry (VLBI) in SME and then implement it into a real data analysis code of geodetic VLBI observations. Analyzing all available observations recorded since 1979, we compare estimates of s¯T T and errors obtained with various analysis schemes, including global estimations over several time spans, and with various Sun elongation cutoff angles, and by analysis of radio source coordinate time series. We obtain a constraint on s¯ T T=(-5 ±8 )×10-5 , directly fitted to the observations and improving by a factor of 5 previous postfit analysis estimates.

  8. Lorentz symmetry and Very Long Baseline Interferometry

    CERN Document Server

    Poncin-Lafitte, C Le; lambert, S

    2016-01-01

    Lorentz symmetry violations can be described by an effective field theory framework that contains both General Relativity and the Standard Model of particle physics called the Standard-Model extension (SME). Recently, post-fit analysis of Gravity Probe B and binary pulsars lead to an upper limit at the $10^{-4}$ level on the time-time coefficient $\\bar s^{TT}$ of the pure-gravity sector of the minimal SME. In this work, we derive the observable of Very Long Baseline Interferometry (VLBI) in SME and then we implement it into a real data analysis code of geodetic VLBI observations. Analyzing all available observations recorded since 1979, we compare estimates of $\\bar s^{TT}$ and errors obtained with various analysis schemes, including global estimations over several time spans and with various Sun elongation cut-off angles, and with analysis of radio source coordinate time series. We obtain a constraint on $\\bar s^{TT}=(-5\\pm 8)\\times 10^{-5}$, directly fitted to the observations and improving by a factor 5 pr...

  9. Neutrino discoveries lead to precision measurements

    CERN Document Server

    Altmann, M

    2002-01-01

    The science of neutrino physics has reached a watershed, with discovery giving way to precision measurements. The author reports from the XXth International Conference on Neutrino Physics and Astrophysics. Topics covered are low-energy neutrinos, atmospheric neutrinos, long-baseline experiments, accelerator experiments, neutrino properties, neutrinos in astrophysics and cosmology, dark matter and neutrino telescopes.

  10. CP violation and matter effect for a variable earth density in very long baseline experiments

    CERN Document Server

    Brahmachari, B; Roy, P; Brahmachari, Biswajoy; Choubey, Sandhya; Roy, Probir

    2003-01-01

    The perturbative treatment of subdominant oscillation and the matter effect in neutrino beams/superbeams, propagating over long baselines and being used to look for CP violation, is studied here for a general matter density function varying with distance. New lowest order analytic expressions are given for different flavour transition and survival probabilities in a general neutrino mixing basis and a variable earth matter density profile. It is demonstrated that the matter effect in the muon neutrino (antineutrino) flavour survival probability vanishes to this order, provided the depletion, observed for atmospheric muon neutrinos and antineutrinos at super-Kamiokande, is strictly maximal. This result is independent of the earth density profile and the distance L between the source and the detector. In the general variable density case we show that one cannot separate the matter induced asymmetry from a genuine CP effect by keeping two detectors at distances $L_1$ and $L_2$ from the source while maintaining a...

  11. Non-standard interactions spoiling the CP violation sensitivity at DUNE and other long baseline experiments

    CERN Document Server

    Masud, Mehedi

    2016-01-01

    It is by now established that neutrino oscillations occur due to non-zero masses and parameters in the leptonic mixing matrix. The extraction of oscillation parameters may be complicated due to subleading effects such as non-standard neutrino interactions (NSI) and one needs to have a fresh look how a particular parameter value is inferred from experimental data. In the present work, we focus on an important parameter entering the oscillation framework - the leptonic CP violating phase $\\delta$, about which we know very little. We demonstrate that the sensitivity to CP violation gets significantly impacted due to NSI effects for the upcoming long baseline experiment, Deep Underground Neutrino Experiment (DUNE). We also draw a comparison with the sensitivities of other ongoing neutrino beam experiments such as NOvA, and T2K, as well as a future generation experiment, T2HK.

  12. CP violation and matter effect for a variable earth density in very long baseline experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brahmachari, Biswajoy; Choubey, Sandhya E-mail: sandhya@he.sissa.it; Roy, Probir

    2003-11-03

    The perturbative treatment of subdominant oscillation and matter effect in neutrino beams/superbeams, propagating over long baselines and being used to look for CP violation, is studied here for a general matter density function varying with distance. New lowest order analytic expressions are given for different flavour transition and survival probabilities in a general neutrino mixing basis and a variable earth matter density profile. It is demonstrated that the matter effect in the muon neutrino (antineutrino) flavour survival probability vanishes to this order, provided the depletion, observed for atmospheric muon neutrinos and antineutrinos at super-Kamiokande, is strictly maximal. This result is independent of the earth density profile and the distance L between the source and the detector. In the general variable density case we show that one cannot separate the matter induced asymmetry from a genuine CP effect by keeping two detectors at distances L{sub 1} and L{sub 2} from the source while maintaining a fixed ratio L{sub 1}/E{sub 1}=L{sub 2}/E{sub 2}. This needs to be done numerically and we estimate the asymmetry generated by the earth matter effect with particular density profiles and some chosen parameters for very long baseline neutrino oscillation experiments.

  13. Atmospheric and accelerator neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)

    2006-05-15

    Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.

  14. 10 Degree Off-Axis Tensile Test for Intralaminar Shear Characterization of Fiber Composites.

    Science.gov (United States)

    1976-04-01

    A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the...from Mod-I/epoxy, T-300/epoxy, and S-glass/ epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is

  15. An off-axis digital holographic microscope with quasimonochromatic partially spatially coherent illumination in transmission

    Science.gov (United States)

    Grebenyuk, Anton A.; Tarakanchikova, Yana V.; Ryabukho, Vladimir P.

    2014-10-01

    We propose an off-axis imaging approach for digital holographic microscopy (DHM) with quasimonochromatic partially spatially coherent illumination in transmission, which is intended to provide the advantages of off-axis partially coherent DHM imaging with a comparatively simple optical scheme. This approach does not require a diffraction grating for creating the off-axis modality and also allows for convenient control of the spatial frequency of carrier interference fringes for hologram sampling optimization. Theoretical analysis of the off-axis imaging process in this microscope is performed. An off-axis DHM based on the proposed approach is built and quantitative phase imaging of test objects is performed with suppressed coherent noise.

  16. Concentration of off-axis radiation by solar concentrators for space power

    Science.gov (United States)

    Jefferies, Kent S.

    1989-01-01

    Four types of off-axis radiation are discussed. These are: (1) small off-axis angles during walk-off, (2) large off-axis angles, (3) an extended off-axis source such as Earth albedo, and (4) miscellaneous off-axis sources including radio frequency sources and local point sources. A code named OFFSET has been developed to represent the solar concentrator being developed for Space Station Freedom. It is a detailed, ray-tracing model which represents 50 ray originating points on the Sun and reflections from 10 points on each of the 456 concentrator facets. Results of this code are generally similar to the PIXEL results although there are small differences due to the more detailed representations of the Sun and concentrator that were used in the OFFSET code.

  17. Concentration of off-axis radiation by solar concentrators for space power

    Science.gov (United States)

    Jefferies, Kent S.

    1989-01-01

    Four types of off-axis radiation are discussed. These are: (1) small off-axis angles during walk-off, (2) large off-axis angles, (3) an extended off-axis source such as Earth albedo, and (4) miscellaneous off-axis sources including radio frequency sources and local point sources. A code named OFFSET has been developed to represent the solar concentrator being developed for Space Station Freedom. It is a detailed, ray-tracing model which represents 50 ray originating points on the Sun and reflections from 10 points on each of the 456 concentrator facets. Results of this code are generally similar to the PIXEL results although there are small differences due to the more detailed representations of the Sun and concentrator that were used in the OFFSET code.

  18. Solar neutrinos and neutrino physics

    CERN Document Server

    Maltoni, Michele

    2015-01-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. Theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters theta12 and Delta_m21^2 have been measured; theta13 extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3nu paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. T...

  19. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Niner, Evan David [Indiana Univ., Bloomington, IN (United States)

    2015-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin213, δ , and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 X 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  20. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  1. Neutrino Data and Neutrino-Antineutrino Transition

    CERN Document Server

    Alexeyev, E N

    2005-01-01

    A problem, whether a neutrino-antineutrino transition could be responsible for the muon neutrino deficit found in underground experiments (Super-Kamiokande, MACRO, Soudan 2) and in the accelerator long-baseline K2K experiment, is discussed in this paper. The intention of the work is not consideration of concrete models for muon neutrino-antineutrino transition but a desire to attract an attention to another possibility of understanding the nature of the measured muon neutrino deficit in neutrino experiments.

  2. Analysis of nodal aberration properties in off-axis freeform system design.

    Science.gov (United States)

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.

  3. Neutrinos

    CERN Document Server

    de Gouvea, A; Scholberg, K; Zeller, G P; Alonso, J; Bernstein, A; Bishai, M; Elliott, S; Heeger, K; Hoffman, K; Huber, P; Kaufman, L J; Kayser, B; Link, J; Lunardini, C; Monreal, B; Morfin, J G; Robertson, H; Tayloe, R; Tolich, N; Abazajian, K; Akiri, T; Albright, C; Asaadi, J; Babu, K S; Balantekin, A B; Barbeau, P; Bass, M; Blake, A; Blondel, A; Blucher, E; Bowden, N; Brice, S J; Bross, A; Carls, B; Cavanna, F; Choudhary, B; Coloma, P; Connolly, A; Conrad, J; Convery, M; Cooper, R L; Cowen, D; da Motta, H; de Young, T; Di Lodovico, F; Diwan, M; Djurcic, Z; Dracos, M; Dodelson, S; Efremenko, Y; Ekelof, T; Feng, J L; Fleming, B; Formaggio, J; Friedland, A; Fuller, G; Gallagher, H; Geer, S; Gilchriese, M; Goodman, M; Grant, D; Gratta, G; Hall, C; Halzen, F; Harris, D; Heffner, M; Henning, R; Hewett, J L; Hill, R; Himmel, A; Horton-Smith, G; Karle, A; Katori, T; Kearns, E; Kettell, S; Klein, J; Kim, Y; Kim, Y K; Kolomensky, Yu; Kordosky, M; Kudenko, Yu; Kudryavtsev, V A; Lande, K; Lang, K; Lanza, R; Lau, K; Lee, H; Li, Z; Littlejohn, B R; Lin, C J; Liu, D; Liu, H; Long, K; Louis, W; Luk, K B; Marciano, W; Mariani, C; Marshak, M; Mauger, C; McDonald, K T; McFarland, K; McKeown, R; Messier, M; Mishra, S R; Mosel, U; Mumm, P; Nakaya, T; Nelson, J K; Nygren, D; Gann, G D Orebi; Osta, J; Palamara, O; Paley, J; Papadimitriou, V; Parke, S; Parsa, Z; Patterson, R; Piepke, A; Plunkett, R; Poon, A; Qian, X; Raaf, J; Rameika, R; Ramsey-Musolf, M; Rebel, B; Roser, R; Rosner, J; Rott, C; Rybka, G; Sahoo, H; Sangiorgio, S; Schmitz, D; Shrock, R; Shaevitz, M; Smith, N; Smy, M; Sobel, H; Sorensen, P; Sousa, A; Spitz, J; Strauss, T; Svoboda, R; Tanaka, H A; Thomas, J; Tian, X; Tschirhart, R; Tully, C; Van Bibber, K; Van de Water, R G; Vahle, P; Vogel, P; Walter, C W; Wark, D; Wascko, M; Webber, D; Weerts, H; White, C; White, H; Whitehead, L; Wilson, R J; Winslow, L; Wongjirad, T; Worcester, E; Yokoyama, M; Yoo, J; Zimmerman, E D

    2013-01-01

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  4. An effective correction algorithm for off-axis portal dosimetry errors

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Daniel W.; Kumaraswamy, Lalith; Podgorsak, Matthew B. [Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States)

    2009-09-15

    Portal dosimetric images acquired for IMRT pretreatment verification show dose errors of up to 15% near the detector edges as compared to dose predictions calculated by a treatment planning system for these off-axis regions. A method is proposed to account for these off-axis effects by precisely correcting the off-axis output factors, which calibrate the imager for absolute dose. Using this method, agreement between the predicted and the measured doses improves by up to 15% for fields near the detector edges, resulting in passing rate improvements of as much as 60% for gamma evaluation of 3 mm, 3% within the collimator jaws.

  5. An effective correction algorithm for off-axis portal dosimetry errors.

    Science.gov (United States)

    Bailey, Daniel W; Kumaraswamy, Lalith; Podgorsak, Matthew B

    2009-09-01

    Portal dosimetric images acquired for IMRT pretreatment verification show dose errors of up to 15% near the detector edges as compared to dose predictions calculated by a treatment planning system for these off-axis regions. A method is proposed to account for these off-axis effects by precisely correcting the off-axis output factors, which calibrate the imager for absolute dose. Using this method, agreement between the predicted and the measured doses improves by up to 15% for fields near the detector edges, resulting in passing rate improvements of as much as 60% for gamma evaluation of 3 mm, 3% within the collimator jaws.

  6. Test of a slow off-axis parabola at its center of curvature.

    Science.gov (United States)

    Parks, R E; Evans, C J; Shao, L

    1995-11-01

    We describe the interferometric testing of a slow (ƒ/16 at the center of curvature) off-axis parabola, intended for use in an x-ray spectrometer, that uses a spherical wave front matched to the mean radius of the asphere. We find the figure error in the off-axis mirror by removing the theoretical difference between the off-axis segment and the spherical reference from the measured wave-front error. This center of curvature test is easy to perform because the spherical reference wave front has no axis and thus alignment is trivial. We confirm that the test results are the same as the double-pass null test for a parabola that uses a plane autocollimating mirror. We also determine that the off-axis section apparently warped as the result of being cut from the symmetric parent part.

  7. Photographic simulation of off-axis blurring due to chromatic aberration in spectacle lenses.

    Science.gov (United States)

    Doroslovački, Pavle; Guyton, David L

    2015-02-01

    Spectacle lens materials of high refractive index (nd) tend to have high chromatic dispersion (low Abbé number [V]), which may contribute to visual blurring with oblique viewing. A patient who noted off-axis blurring with new high-refractive-index spectacle lenses prompted us to do a photographic simulation of the off-axis aberrations in 3 readily available spectacle lens materials, CR-39 (nd = 1.50), polyurethane (nd = 1.60), and polycarbonate (nd = 1.59). Both chromatic and monochromatic aberrations were found to cause off-axis image degradation. Chromatic aberration was more prominent in the higher-index materials (especially polycarbonate), whereas the lower-index CR-39 had more astigmatism of oblique incidence. It is important to consider off-axis aberrations when a patient complains of otherwise unexplained blurred vision with a new pair of spectacle lenses, especially given the increasing promotion of high-refractive-index materials with high chromatic dispersion.

  8. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Robert J. [Fermilab

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  9. Proto-Model of an Infrared Wide-Field Off-Axis Telescope

    CERN Document Server

    Kim, Sanghyuk; Chang, Seunghyuk; Kim, Geon Hee; Yang, Sun Choel; Kim, Myung Sang; Lee, Sungho; Lee, Hanshin; 10.5303/JKAS.2010.43.5.169

    2010-01-01

    We develop a proto-model of an off-axis reflective telescope for infrared wide-field observations based on the design of Schwarzschild-Chang type telescope. With only two mirrors, this design achieves an entrance pupil diameter of 50 mm and an effective focal length of 100 mm. We can apply this design to a mid-infrared telescope with a field of view of 8 deg X 8 deg. In spite of the substantial advantages of off-axis telescopes in the infrared compared to refractive or on-axis reflective telescopes, it is known to be difficult to align the mirrors in off-axis systems because of their asymmetric structures. Off-axis mirrors of our telescope are manufactured at the Korea Basic Science Institute (KBSI). We analyze the fabricated mirror surfaces by fitting polynomial functions to the measured data. We accomplish alignment of this two-mirror off-axis system using a ray tracing method. A simple imaging test is performed to compare a pinhole image with a simulated prediction.

  10. Fast processing of quantitative phase profiles from off-axis interferograms for real-time applications

    Science.gov (United States)

    Girshovitz, Pinhas; Shaked, Natan T.

    2015-03-01

    We review new and efficient algorithms, lately presented by us, for rapid reconstruction of quantitative phase maps from off-axis digital interferograms. These algorithms improve the conventional Fourier-based algorithm by using the Fourier transforms and the phase unwrapping process more efficiently, and thus decrease the calculation complexity required for extracting the sample phase map from the recorded interferograms. Using the new algorithms, on a standard personal computer without using the graphic processing-unit programming or parallel computing, we were able to speed up the processing and reach frame rates of up to 45 frames per second for one megapixel off-axis interferograms. These capabilities allow real-time visualization, calculation and data extraction for dynamic samples and processes, inspected by off-axis digital holography. Specific applications include biological cell imaging without labeling and real-time nondestructive testing.

  11. Optical Design for the Off-axis Reflective Optics with Wide Field

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Reflective optics with wide field of view has been applied more and more widely in EUVL or space optics, and also plays an important role in promoting scientific and technological research. Among the reflective optics, the off-axis reflective optics is the most hopeful solution to the ever-highest demands of these applications. This paper gives the requirements of both the above mentioned applications and the similarities and differences between these two kinds of optical systems. Finally, a design example of off-axis reflective optics with wide field of view is presented and described.

  12. A two-dimensional matrix correction for off-axis portal dose prediction errors

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Daniel W. [Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Kumaraswamy, Lalith; Bakhtiari, Mohammad [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Podgorsak, Matthew B. [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone

  13. Micromechanical Analysis of Interfacial Debonding in Metal Matrix Composites Subjected to off-axis Loading

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Zhu; Xuefeng Chen; Zhi Zhai; Qiang Chen; Shaohua Tian; Zhengjia He

    2013-01-01

    This study aims to investigate the effects of interfacial debonding and fiber volume fraction on the stress -strain behavior of the fiber reinforced metal matrix composites subjected to off -axis loading .The generalized method of cells ( GMC) is used to analyze a representative element whose fiber shape is circular .The constant compliant interface model (CCI) is also adopted to study the response of composites with imperfect interfacial bonding .Results show that for the com-posites subjected to off-axis loading ,the mechanical behaviors are affected appreciably by the interfacial debonding and the fiber volume fraction .

  14. Off-Axis Astigmatic Gaussian Beam Combination Beyond the Paraxial Approximation

    Institute of Scientific and Technical Information of China (English)

    GAO Zeng-Hui; L(U) Bai-Da

    2007-01-01

    Taking the off-axis astigmatic Gaussian beam combination as an example, the beam-combination concept is extended to the nonparaxial regime. The closed-form propagation expressions for coherent and incoherent combinations of nonparaxial off-axis astigmatic Gaussian beams with rectangular geometry are derived and illustrated with numerical examples. It is shown that the intensity distributions of the resulting beam depend on the combination scheme and beam parameters in general, and in the paraxial approximation (i.e., for the small f-parameter)our results reduce to the paraxial ones.

  15. A publication database for optical long baseline interferometry

    CERN Document Server

    Malbet, Fabien; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain

    2010-01-01

    Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.

  16. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  17. Solar neutrinos and neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Maltoni, Michele [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Smirnov, Alexei Yu. [Max-Planck Institute for Nuclear Physics, Heidelberg (Germany); ICTP, Trieste (Italy)

    2016-04-15

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ{sub 12} and Δm{sup 2}{sub 21} have been measured; θ{sub 13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos. (orig.)

  18. Vortex Breakdown Generated by off-axis Bifurcation in a cylinder with rotating covers

    DEFF Research Database (Denmark)

    Bisgaard, Anders; Brøns, Morten; Sørensen, Jens Nørkær

    2006-01-01

    Vortex breakdown of bubble type is studied for the flow in a cylinder with rotating top and bottom covers. For large ratios of the angular velocities of the covers, we observe numerically that the vortex breakdown bubble in the steady regime may occur through the creation of an off-axis vortex ring...

  19. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    Science.gov (United States)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  20. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Zhou, H.W.; Li, H.Y.; Gui, L.L.;

    2013-01-01

    Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different a...

  1. Extremely Soft X-ray Flash as the indicator of off-axis orphan GRB afterglow

    CERN Document Server

    Urata, Yuji; Yamazaki, Ryo; Sakamoto, Takanori

    2015-01-01

    We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRBs) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum $E^{src}_{obs}$, (2) redshift measurements, and (3) multi-color observations of an earlier (or brightening) phase. XRF020903 was the only sample selected basis of these criteria. A complete optical multi-color afterglow light curve of XRF020903 obtained from archived data and photometric results in literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, $\\theta_{jet}$) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle ($>\\sim2\\theta_{jet}$) could be discovered using an 8-m ...

  2. Off-axis beam dynamics in rf-gun-based electron photoinjectors

    Science.gov (United States)

    Huang, R.; Mitchell, C.; Papadopoulos, C.; Qian, H.; Venturini, M.; Qiang, J.; Filippetto, D.; Staples, J.; Jia, Q.; Sannibale, F.

    2016-11-01

    The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this mode may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.

  3. Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping.

    Science.gov (United States)

    Backoach, Ohad; Kariv, Saar; Girshovitz, Pinhas; Shaked, Natan T

    2016-02-22

    We present parallel processing implementation for rapid extraction of the quantitative phase maps from off-axis holograms on the Graphics Processing Unit (GPU) of the computer using computer unified device architecture (CUDA) programming. To obtain efficient implementation, we parallelized both the wrapped phase map extraction algorithm and the two-dimensional phase unwrapping algorithm. In contrast to previous implementations, we utilized unweighted least squares phase unwrapping algorithm that better suits parallelism. We compared the proposed algorithm run times on the CPU and the GPU of the computer for various sizes of off-axis holograms. Using the GPU implementation, we extracted the unwrapped phase maps from the recorded off-axis holograms at 35 frames per second (fps) for 4 mega pixel holograms, and at 129 fps for 1 mega pixel holograms, which presents the fastest processing framerates obtained so far, to the best of our knowledge. We then used common-path off-axis interferometric imaging to quantitatively capture the phase maps of a micro-organism with rapid flagellum movements.

  4. GRB off-axis afterglows and the emission from the accompanying supernovae

    CERN Document Server

    Kathirgamaraju, Adithan; Giannios, Dimitrios

    2016-01-01

    Gamma-Ray Burst (GRB) afterglows are likely produced in the shock that is driven as the GRB jet interacts with the external medium. Long duration GRBs are also associated with powerful supernovae (SN). We consider the optical and radio afterglows of long GRBs for both blasts viewed along the jet axis ("on-axis" afterglows) and misaligned observes ("off-axis" afterglows). Comparing the optical emission from the afterglow with that of the accompanying SN, using SN 1998bw as an archetype, we find that only a few percent of afterglows viewed off-axis are brighter than the SN. For observable optical off-axis afterglows the viewing angle is at most twice the half-opening angle of the GRB jet. Radio off-axis afterglows should be detected with upcoming radio surveys within a few hundred Mpc. We propose that these surveys will act as "radio triggers," and that dedicated radio facilities should follow-up these sources. Follow-ups can unveil the presence of the radio supernova remnant, if present. In addition, they can ...

  5. GRB off-axis afterglows and the emission from the accompanying supernovae

    Science.gov (United States)

    Kathirgamaraju, Adithan; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2016-09-01

    Gamma-ray burst (GRB) afterglows are likely produced in the shock that is driven as the GRB jet interacts with the external medium. Long-duration GRBs are also associated with powerful supernovae (SNe). We consider the optical and radio afterglows of long GRBs for both blasts viewed along the jet axis (`on-axis' afterglows) and misaligned observes (`off-axis' afterglows). Comparing the optical emission from the afterglow with that of the accompanying SN, using SN 1998bw as an archetype, we find that only a few per cent of afterglows viewed off-axis are brighter than the SN. For observable optical off-axis afterglows, the viewing angle is at most twice the half-opening angle of the GRB jet. Radio off-axis afterglows should be detected with upcoming radio surveys within a few hundred Mpc. We propose that these surveys will act as `radio triggers', and that dedicated radio facilities should follow-up these sources. Follow-ups can unveil the presence of the radio SN remnant, if present. In addition, they can probe the presence of a mildly relativistic component, either associated with the GRB jet or the SN ejecta, expected in these sources.

  6. Off-Axis Gaussian Beams with Random Displacement in Atmospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Yahya Baykal

    2006-10-01

    Full Text Available Our recent work in which we study the propagation of the general Hermite-sinusoidal-Gaussian laser beams in wireless broadband access telecommunication systems is elaborated in this paper to cover the special case of an off-axis Gaussian beam. We mainly investigate the propagation characteristics in atmospheric turbulence of an off-axis Gaussian beam possessing Gaussian distributed random displacement parameters. Our interest is to search for different types of laser beams that will improve the performance of a wireless broadband access system when atmospheric turbulence is considered. Our formulation is based on the basic solution of the second order mutual coherence function evaluated at the receiver plane. For fixed turbulence strength, the coherence length calculated at the receiver plane is found to decrease as the variance of the random displacement is increased. It is shown that as the turbulence becomes stronger, coherence lengths due to off-axis Gaussian beams tend to approach the same value, irrespective of the variance of the random displacement. As expected, the beam spreading is found to be pronounced for larger variance of displacement parameter. Average intensity profiles when atmospheric turbulence is present are plotted for different values of the variance of the random displacement parameter of the off-axis Gaussian beam.

  7. Light curves and spectra from off-axis gamma-ray bursts

    Science.gov (United States)

    Salafia, O. S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F.

    2016-10-01

    If gamma-ray burst prompt emission originates at a typical radius, and if material producing the emission moves at relativistic speed, then the variability of the resulting light curve depends on the viewing angle. This is due to the fact that the pulse evolution time-scale is Doppler contracted, while the pulse separation is not. For off-axis viewing angles θview ≳ θjet + Γ-1, the pulse broadening significantly smears out the light-curve variability. This is largely independent of geometry and emission processes. To explore a specific case, we set up a simple model of a single pulse under the assumption that the pulse rise and decay are dominated by the shell curvature effect. We show that such a pulse observed off-axis is (i) broader, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that a highly variable light curve (as seen on-axis) becomes smooth and apparently single-pulsed (when seen off-axis) because of pulse overlap. To test the relevance of this fact, we estimate the fraction of off-axis gamma-ray bursts detectable by Swift as a function of redshift, finding that a sizeable fraction (between 10 per cent and 80 per cent) of nearby (z < 0.1) bursts are observed with θview ≳ θjet + Γ-1. Based on these results, we argue that low-luminosity gamma-ray bursts are consistent with being ordinary bursts seen off-axis.

  8. THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Partnership, ALMA [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Fomalont, E. B.; Vlahakis, C.; Corder, S.; Remijan, A.; Barkats, D.; Dent, W. R. F.; Phillips, N.; Cox, P.; Hales, A. S. [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago (Chile); Lucas, R. [Institut de Planétologie et d’Astrophysique de Grenoble (UMR 5274), BP 53, F-38041 Grenoble Cedex 9 (France); Hunter, T. R.; Brogan, C. L.; Amestica, R.; Cotton, W. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Asaki, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Matsushita, S. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Hills, R. E. [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Richards, A. M. S. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Broguiere, D., E-mail: efomalon@nrao.edu [Institut de Radioastronomie Millime´trique (IRAM), 300 rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d’Hères (France); and others

    2015-07-20

    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ∼15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ∼350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.

  9. The 2014 ALMA Long Baseline Campaign : An Overview

    NARCIS (Netherlands)

    ALMA Partnership, [Unknown; Fomalont, E. B.; Vlahakis, C.; Corder, S.; Remijan, A.; Barkats, D.; Lucas, R.; Hunter, T. R.; Brogan, C. L.; Asaki, Y.; Matsushita, S.; Dent, W. R. F.; Hills, R. E.; Phillips, N.; Richards, A. M. S.; Cox, P.; Amestica, R.; Broguiere, D.; Cotton, W.; Hales, A. S.; Hiriart, R.; Hirota, A.; Hodge, J. A.; Impellizzeri, C. M. V.; Kern, J.; Kneissl, R.; Liuzzo, E.; Marcelino, N.; Marson, R.; Mignano, A.; Nakanishi, K.; Nikolic, B.; Perez, J. E.; Pérez, L. M.; Toledo, I.; Aladro, R.; Butler, B.; Cortes, J.; Cortes, P.; Dhawan, V.; Di Francesco, J.; Espada, D.; Galarza, F.; Garcia-Appadoo, D.; Guzman-Ramirez, L.; Humphreys, E. M.; Jung, T.; Kameno, S.; Laing, R. A.; Leon, S.; Mangum, J.; Marconi, G.; Nagai, H.; Nyman, L.-A.; Radiszcz, M.; Rodón, J. A.; Sawada, T.; Takahashi, S.; Tilanus, R. P. J.; van Kempen, T.; Vila Vilaro, B.; Watson, L. C.; Wiklind, T.; Gueth, F.; Tatematsu, K.; Wootten, A.; Castro-Carrizo, A.; Chapillon, E.; Dumas, G.; de Gregorio-Monsalvo, I.; Francke, H.; Gallardo, J.; Garcia, J.; Gonzalez, S.; Hibbard, J. E.; Hill, T.; Kaminski, T.; Karim, A.; Krips, M.; Kurono, Y.; Lopez, C.; Martin, S.; Maud, L.; Morales, F.; Pietu, V.; Plarre, K.; Schieven, G.; Testi, L.; Videla, L.; Villard, E.; Whyborn, N.; Alves, F.; Andreani, P.; Avison, A.; Barta, M.; Bedosti, F.; Bendo, G. J.; Bertoldi, F.; Bethermin, M.; Biggs, A.; Boissier, J.; Brand, J.; Burkutean, S.; Casasola, V.; Conway, J.; Cortese, L.; Dabrowski, B.; Davis, T. A.; Diaz Trigo, M.; Fontani, F.; Franco-Hernandez, R.; Fuller, G.; Galvan Madrid, R.; Giannetti, A.; Ginsburg, A.; Graves, S. F.; Hatziminaoglou, E.; Hogerheijde, M.; Jachym, P.; Jimenez Serra, I.; Karlicky, M.; Klaasen, P.; Kraus, M.; Kunneriath, D.; Lagos, C.; Longmore, S.; Leurini, S.; Maercker, M.; Magnelli, B.; Marti Vidal, I.; Massardi, M.; Maury, A.; Muehle, S.; Muller, S.; Muxlow, T.; O’Gorman, E.; Paladino, R.; Petry, D.; Pineda, J.; Randall, S.; Richer, J. S.; Rossetti, A.; Rushton, A.; Rygl, K.; Sanchez Monge, A.; Schaaf, R.; Schilke, P.; Stanke, T.; Schmalzl, M.; Stoehr, F.; Urban, S.; van Kampen, E.; Vlemmings, W.; Wang, K.; Wild, W.; Yang, Y.; Iguchi, S.; Hasegawa, T.; Saito, M.; Inatani, J.; Mizuno, N.; Asayama, S.; Kosugi, G.; Morita, K.-I.; Chiba, K.; Kawashima, S.; Okumura, S. K.; Ohashi, N.; Ogasawara, R.; Sakamoto, S.; Noguchi, T.; Huang, Y.-D.; Liu, S.-Y.; Kemper, F.; Koch, P. M.; Chen, M.-T.; Chikada, Y.; Hiramatsu, M.; Iono, D.; Shimojo, M.; Komugi, S.; Kim, J.; Lyo, A.-R.; Muller, E.; Herrera, C.; Miura, R. E.; Ueda, J.; Chibueze, J.; Su, Y.-N.; Trejo-Cruz, A.; Wang, K.-S.; Kiuchi, H.; Ukita, N.; Sugimoto, M.; Kawabe, R.; Hayashi, M.; Miyama, S.; Ho, P. T. P.; Kaifu, N.; Ishiguro, M.; Beasley, A. J.; Bhatnagar, S.; Braatz, J. A., III; Brisbin, D. G.; Brunetti, N.; Carilli, C.; Crossley, J. H.; D’Addario, L.; Donovan Meyer, J. L.; Emerson, D. T.; Evans, A. S.; Fisher, P.; Golap, K.; Griffith, D. M.; Hale, A. E.; Halstead, D.; Hardy, E. J.; Hatz, M. C.; Holdaway, M.; Indebetouw, R.; Jewell, P. R.; Kepley, A. A.; Kim, D.-C.; Lacy, M. D.; Leroy, A. K.; Liszt, H. S.; Lonsdale, C. J.; Matthews, B.; McKinnon, M.; Mason, B. S.; Moellenbrock, G.; Moullet, A.; Myers, S. T.; Ott, J.; Peck, A. B.; Pisano, J.; Radford, S. J. E.; Randolph, W. T.; Rao Venkata, U.; Rawlings, M. G.; Rosen, R.; Schnee, S. L.; Scott, K. S.; Sharp, N. K.; Sheth, K.; Simon, R. S.; Tsutsumi, T.; Wood, S. J.

    2015-01-01

    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ∼15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried

  10. Neutrino SuperBeams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2011-08-23

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  11. An Overview of the 2014 ALMA Long Baseline Campaign

    CERN Document Server

    Partnership, ALMA; Vlahakis, C; Corder, S; Remijan, A; Barkats, D; Lucas, R; Hunter, T R; Brogan, C L; Asaki, Y; Matsushita, S; Dent, W R F; Hills, R E; Phillips, N; Richards, A M S; Cox, P; Amestica, R; Broguiere, D; Cotton, W; Hales, A S; Hiriart, R; Hirota, A; Hodge, J A; Impellizzeri, C M V; Kern, J; Kneissl, R; Liuzzo, E; Marcelino, N; Marson, R; Mignano, A; Nakanishi, K; Nikolic, B; Perez, J E; Pérez, L M; Toledo, I; Aladro, R; Butler, B; Cortes, J; Cortes, P; Dhawan, V; Di Francesco, J; Espada, D; Galarza, F; Garcia-Appadoo, D; Guzman-Ramirez, L; Humphreys, E M; Jung, T; Kameno, S; Laing, R A; Leon, S; Mangum, J; Marconi, G; Nagai, H; Nyman, L -A; Perley, R; Radiszcz, M; Rodón, J A; Sawada, T; Takahashi, S; Tilanus, R P J; van Kempen, T; Vilaro, B Vila; Watson, L C; Wiklind, T; Gueth, F; Tatematsu, K; Wootten, A; Castro-Carrizo, A; Chapillon, E; Dumas, G; de Gregorio-Monsalvo, I; Francke, H; Gallardo, J; Garcia, J; Gonzalez, S; Hibbard, J E; Hill, T; Kaminski, T; Karim, A; Krips, M; Kurono, Y; Lopez, C; Martin, S; Maud, L; Morales, F; Pietu, V; Plarre, K; Schieven, G; Testi, L; Videla, L; Villard, E; Whyborn, N; Zwaan, M A; Alves, F; Andreani, P; Avison, A; Barta, M; Bedosti, F; Bendo, G J; Bertoldi, F; Bethermin, M; Biggs, A; Boissier, J; Brand, J; Burkutean, S; Casasola, V; Conway, J; Cortese, L; Dabrowski, B; Davis, T A; Trigo, M Diaz; Fontani, F; Franco-Hernandez, R; Fuller, G; Madrid, R Galvan; Giannetti, A; Ginsburg, A; Graves, S F; Hatziminaoglou, E; Hogerheijde, M; Jachym, P; Serra, I Jimenez; Karlicky, M; Klaasen, P; Kraus, M; Kunneriath, D; Lagos, C; Longmore, S; Leurini, S; Maercker, M; Magnelli, B; Vidal, I Marti; Massardi, M; Maury, A; Muehle, S; Muller, S; Muxlow, T; O'Gorman, E; Paladino, R; Petry, D; Pineda, J; Randall, S; Richer, J S; Rossetti, A; Rushton, A; Rygl, K; Monge, A Sanchez; Schaaf, R; Schilke, P; Stanke, T; Schmalzl, M; Stoehr, F; Urban, S; van Kampen, E; Vlemmings, W; Wang, K; Wild, W; Yang, Y; Iguchi, S; Hasegawa, T; Saito, M; Inatani, J; Mizuno, N; Asayama, S; Kosugi, G; Morita, K -I; Chiba, K; Kawashima, S; Okumura, S K; Ohashi, N; Ogasawara, R; Sakamoto, S; Noguchi, T; Huang, Y -D; Liu, S -Y; Kemper, F; Koch, P M; Chen, M -T; Chikada, Y; Hiramatsu, M; Iono, D; Shimojo, M; Komugi, S; Kim, J; Lyo, A -R; Muller, E; Herrera, C; Miura, R E; Ueda, J; Chibueze, J; Su, Y -N; Trejo-Cruz, A; Wang, K -S; Kiuchi, H; Ukita, N; Sugimoto, M; Kawabe, R; Hayashi, M; Miyama, S; Ho, P T P; Kaifu, N; Ishiguro, M; Beasley, A J; Bhatnagar, S; Braatz, J A; Brisbin, D G; Brunetti, N; Carilli, C; Crossley, J H; D'Addario, L; Meyer, J L Donovan; Emerson, D T; Evans, A S; Fisher, P; Golap, K; Griffith, D M; Hale, A E; Halstead, D; Hardy, E J; Hatz, M C; Holdaway, M; Indebetouw, R; Jewell, P R; Kepley, A A; Kim, D -C; Lacy, M D; Leroy, A K; Liszt, H S; Lonsdale, C J; Matthews, B; McKinnon, M; Mason, B S; Moellenbrock, G; Moullet, A; Myers, S T; Ott, J; Peck, A B; Pisano, J; Radford, S J E; Randolph, W T; Venkata, U Rao; Rawlings, M; Rosen, R; Schnee, S L; Scott, K S; Sharp, N K; Sheth, K J; Simon, R S; Tsutsumi, T; Wood, S J

    2015-01-01

    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long...

  12. THE FIRST VERY LONG BASELINE INTERFEROMETRIC SETI EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rampadarath, H.; Morgan, J. S.; Tingay, S. J.; Trott, C. M., E-mail: hayden.rampadarath@icrar.org [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA (Australia)

    2012-08-15

    The first Search for Extra-Terrestrial Intelligence (SETI) conducted with very long baseline interferometry (VLBI) is presented. By consideration of the basic principles of interferometry, we show that VLBI is efficient at discriminating between SETI signals and human generated radio frequency interference (RFI). The target for this study was the star Gliese 581, thought to have two planets within its habitable zone. On 2007 June 19, Gliese 581 was observed for 8 hr at 1230-1544 MHz with the Australian Long Baseline Array. The data set was searched for signals appearing on all interferometer baselines above five times the noise limit. A total of 222 potential SETI signals were detected and by using automated data analysis techniques were ruled out as originating from the Gliese 581 system. From our results we place an upper limit of 7 MW Hz{sup -1} on the power output of any isotropic emitter located in the Gliese 581 system within this frequency range. This study shows that VLBI is ideal for targeted SETI including follow-up observations. The techniques presented are equally applicable to next-generation interferometers, such as the long baselines of the Square Kilometre Array.

  13. High efficiency off-axis current drive by high frequency fast waves

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V.

    2014-02-01

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves ("helicons" or "whistlers"). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n∥, a result that can be understood from examination of the evolution of n∥ as the waves propagate in the plasma. Because of this insensitivity, relatively large values (˜3) of n∥ can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n∥ spectrum, which also helps avoid mode conversion.

  14. Off-axis electron holography for the measurement of active dopants in silicon semiconductor devices

    Science.gov (United States)

    Cooper, David

    2016-11-01

    There is a need in the semiconductor industry for a dopant profiling technique with nm-scale resolution. Here we demonstrate that off-axis electron holography can be used to provide maps of the electrostatic potential in semiconductor devices with nm-scale resolution. In this paper we will discuss issues regarding the spatial resolution and precision of the technique. Then we will discuss problems with specimen preparation and how this affects the accuracy of the measurements of the potentials. Finally we show results from experimental off-axis electron holography applied to nMOS and pMOS CMOS devices grown on bulk silicon and silicon- on-insulator type devices and present solutions to common problems that are encountered when examining these types of devices.

  15. Ten deg off-axis tensile test for intralaminar shear characterization of fiber composites

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1976-01-01

    A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite element analysis were used to determine theoretically the stress-strain variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization and it is recommended that it should be considered as a possible standard test specimen for such a characterization.

  16. A Comprehensive Analysis on Chandra Deep Follow-up GRBs: Implications for Off-Axis Jets

    CERN Document Server

    Zhang, Bin-Bin; Ryan, David N Burrows Geoffrey Scott; Racusin, Judith L; Troja, Eleonora; MacFadyen, Andrew

    2014-01-01

    We present a sample of 27 GRBs with detailed Swift light curves supplemented by late time Chandra observations. By fitting to empirical mathematical functions, we find a higher fraction of jet-break candidates 56% than previous studies using Swift-only samples (12%) and different analysis techniques. To answer the missing jet-break problem in general, we further develop a numerical simulation based model which can be directly fit to the data using a Bayesian Monte Carlo method. Our numerical model takes into account all the factors that can shape a jet-break: (i) lateral expansion (ii) edge effects and (iii) off-axis effects. Comparing to the empirical function fit, our results provide improved fits to the light curves and better constraints on physical parameters. More importantly, our results suggest that off-axis effects are important and must be included in interpretations of GRB jet breaks.

  17. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  18. Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer

    Science.gov (United States)

    Bai, Hongyi; Zhong, Zhi; Shan, Mingguang; Liu, Lei; Guo, Lili; Zhang, Yabin

    2017-03-01

    An interferometric phase microscopy (IPM) is proposed using slightly-off-axis reflective point diffraction interferometry for quantitative phase imaging. A retro-reflector consisting two mirrors is used to generate an angle between the object beam and reference beam, and a 45° tilted polarizing beam splitter is used to split the horizontal and vertical components of the both beams. Two carrier interferograms with π/2 phase-shift can be acquired in one shot, and the phase distribution of a thin specimen can be retrieved using a fast reconstruction method. The new IPM without loss in the utilization of the input-plane field of view combines the real time and optimizing detector bandwidth measurement benefit associated with slightly-off-axis method, high stability associated with common path geometry, and simplicity in terms of procedure and setup. Experiments are carried out on both static and dynamic specimens to demonstrate the validity and stability of the proposed method.

  19. Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography.

    Science.gov (United States)

    Turko, Nir A; Shaked, Natan T

    2017-01-01

    We present a dual-wavelength external holographic microscopy module for quantitative phase imaging of 3D structures with extended thickness range. This is done by simultaneous acquisition of two off-axis interferograms, each at a different wavelength, and generation of a synthetic wavelength, which is larger than the sample optical thickness, allowing two-wavelength unwrapping. The simultaneous acquisition is carried out by using optical multiplexing of the two interferograms onto the camera, where each of them has orthogonal off-axis interference fringe direction in relation to the other one. We used the system to quantitatively image a 7.96 μm step target and 30.5 μm circular copper pillars.

  20. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco;

    2015-01-01

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron...... holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  1. Optimum signal-to-noise ratio in off-axis integrated cavity output spectroscopy.

    Science.gov (United States)

    Dyroff, Christoph

    2011-04-01

    The signal-to-noise ratio (SNR) in off-axis integrated cavity output spectroscopy (OA-ICOS) is investigated and compared to direct absorption spectroscopy using multipass absorption cells [tunable diode laser absorption spectroscopy (TDLAS)]. Applying measured noise characteristics of a near-IR tunable diode laser and detector, it is shown that the optimum SNR is not generally reached at the highest effective absorption path length. Simulations are used to determine the parameters for maximized SNR of OA-ICOS.

  2. Magnetic microstructure of iron sulfide crystals in magnetotactic bacteria from off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, T. [Frontier Research System, Institute of Physical and Chemical Research (Japan); Department of Materials Science and Metallurgy, University of Cambridge (United Kingdom); Posfai, M. [Department of Earth and Environmental Sciences, University of Veszprem (Hungary); Chong, R.K.K. [Department of Materials Science and Metallurgy, University of Cambridge (United Kingdom); Finlayson, A.P. [Department of Materials Science and Metallurgy, University of Cambridge (United Kingdom); Dunin-Borkowski, R.E. [Department of Materials Science and Metallurgy, University of Cambridge (United Kingdom); Frontier Research System, Institute of Physical and Chemical Research (Japan); Frankel, R.B. [Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)]. E-mail: rfrankel@calpoly.edu

    2006-10-01

    Transmission electron microscopy, off-axis electron holography and energy-selected imaging were used to study the crystallography, morphology, and magnetic microstructure of nanoscale greigite (Fe{sub 3}S{sub 4}) magnetosomes in magnetotactic bacteria from a sulfidic habitat. The greigite magnetosomes were organized in chains, but were less ordered than magnetite magnetosomes in other bacteria. Nevertheless, the magnetosomes comprise a permanent magnetic dipole, sufficient for magnetotaxis.

  3. A comparison of on-axis and off-axis heliostat alignment strategies

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.A.

    1996-03-01

    Heliostat installation and alignment costs will be an important element in future solar power tower projects. The predicted annual performances of on- and-off axis strategies are compared for 95 m{sup 2} flat-glass heliostats and an external, molten-salt receiver. Actual approaches to heliostat alignment that have been used in the past are briefly discussed, and relative strengths and limitations are noted. The optimal approach can vary with the application.

  4. Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation

    Science.gov (United States)

    Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.

    2006-01-01

    Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.

  5. Lightweight off-axis 8-m class telescope: a case study to ELT approximation

    Science.gov (United States)

    Ruiz, Elfego; Sohn, Erika; Luna, Esteban; Salas, Luis; Cruz-Gonzalez, Irene

    2004-07-01

    Two main trends presently prevail in ELT design: arrays of hundreds of small (1 - 2 m) hexagonal mirrors and the use of several large (~8m) monolithic mirrors. We present a conceptual study of an off axis 8 m telescope with different mirror options, which can be useful as an experiment towards the design of large multi-mirror telescopes, in terms of different mirror materials, ideas for the optics and new solutions for the telescope mechanical assembly.

  6. Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints’ Applications

    KAUST Repository

    Saleh, Mohamed Nasr

    2016-09-26

    The effect of circular notch has been evaluated for three different architectures of three-dimensional (3D) carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) through open-hole quasi-static tension and double-lap bearing strength tests in the off-axis (45°) direction. Damage characterisation is monitored using Digital Image correlation (DIC) for open-hole testing and X-ray Computed Tomography (CT) for double-lap bearing strength test. The off-axis notched 3D woven composites exhibits minor reduction (less than 10 %) of the notched strength compared to the un-notched strength. DIC strain contour clearly show stress/strain localisation regions around the hole periphery and stress/strain redistribution away from the whole due to the z-binder existence, especially for ORT architecture. Up to 50 % bearing strain, no significant difference in the bearing stress/bearing strain response is observed. However when ORT architecture was loaded up to failure, it demonstrates higher strain to failure (~140 %) followed by AI (~105 %) and lastly LTL (~85 %). X-ray CT scans reveal the effect of the z-binder architecture on damage evolution and delamination resistance. The study suggests that off-axis loaded 3D woven composites, especially ORT architecture, has a great potential of overcoming the current challenges facing composite laminates when used in composite joints’ applications. © 2016 The Author(s)

  7. Commissioning of the off-axis neutral beamline on the DIII-D tokamak

    Science.gov (United States)

    Scoville, J. T.; Murphy, C. J.; Hong, R. M.

    2011-10-01

    One of the four neutral beam injection systems on DIII-D has recently been rebuilt to allow off-axis injection. A system of hydraulically operated pistons was fit to the beamline to allow tilting up to an angle of 16.5 deg, enabling injection of 5 MW of neutral beam power up to 40 cm below the plasma centroid. Off-axis injection required rebuilding the two ion sources to produce more strongly focused and narrower beams that can inject the power at an angle through the port box of the vacuum vessel. The internal beamline collimation system was replaced with a new system compatible with the stronger focused sources. An extensive alignment process was carried out for all beamline internal components and ion sources. Extensive analysis has been carried out using thermocouple and calorimetry data to document the performance of the collimation system, leading to an extension of the allowable pulse length. We present a description of the modifications that were made to the ion sources and collimation systems and the results of heating and performance studies for the off-axis beam injection system. Work supported by U.S. DOE under DE-FC02-04ER54698.

  8. Optical design of off-axis Cassegrain telescope using freeform surface at the secondary mirror

    Science.gov (United States)

    Gautam, Suryakant; Gupta, Amit; Singh, Ganga Sharan

    2015-02-01

    Freeform surfaces enable imaginative optics by providing abundant degrees of freedom for an optical designer as compared to spherical surfaces. An off-axis two-mirror-based telescope design is presented, in which the primary mirror is a concave prolate spheroid and the secondary mirror is freeform surface-based. The off-axis configuration is employed here for removing the central obscuration problem which otherwise limits the central maxima in the point spread function. In this proposed design, an extended X-Y polynomial is used as a surface descriptor for the off-axis segment of the secondary mirror. The coefficients of this extended polynomial are directly related to the Seidel aberrations, and are thus optimized here for a better control of asymmetric optical aberrations at various field points. For this design, the aperture stop is located 500 mm before the primary mirror and the entrance pupil diameter is kept as 80 mm. The effective focal length is 439 mm and covers a full field of view of 2 deg. The image quality obtained here is near diffraction limited which can be inferred from metrics such as the spot diagram and modulation transfer function.

  9. Study on the optical properties of the off-axis parabolic collimator with eccentric pupil

    Science.gov (United States)

    Li, Gang; Gao, Xin; Duan, Jing; Zhang, Henjin

    2017-02-01

    The off-axis parabolic collimator with eccentric pupil has the advantages of wide spectrum, simple structure, easy assembly and adjustment, high performance price ratio. So, it is widely used for parameters testing and image quality calibration of ground-based and space-based cameras. In addition to the Strehl ratio, resolution, wavefront aberration, modulation transfer function, the general evaluation criteria on the imaging quality of the optical system, the beam parallelism characterize the collimator angle resolving capability and collimation condition of the collimator with the target board, can be measured easily ,quickly and operation process is simple, but the study mainly focus on how to measure it so far. In order to solve Quantitative calculation of this problem, firstly, the discussion of aberration condition of the off- axis parabolic is carried out based on the primary aberration theory. Secondly, analysis on the influencing factor on collimator optical properties is given, including the geometrical aberrations of spherical aberration, coma, astigmatism , the relation between the position of the eccentric pupil and the aberration and optical element surface wavefront aberration, after that, according to the basis of diffraction and wavefront aberration theory, the paper deduced calculation method of the beam parallelism, at last, an example of a 400mm diameter off-axis parabolic collimator with eccentric pupil is given to calculate, the practical results shows that calculation data is well in accordance with actual measurement data and results can meet the demand and has a guiding significance to the actual project manufacture and the theory analysis.

  10. Simulation study on the emittance compensation of off-axis emitted beam in RF photoinjector

    Science.gov (United States)

    Huang, Rui-Xuan; Mitchell, Chad; Jia, Qi-Ka; Papadopoulos, Christos; Sannibale, Fernando

    2016-11-01

    To make full use of the photocathode material and improve its quantum efficiency lifetime, it can be necessary to operate the laser away from the cathode center in photoinjectors. In RF guns, the off-axis emitted beam will see a time-dependent RF effect, which would generate a significant growth in transverse emittance. It has been demonstrated that such an emittance growth can be almost completely compensated by orienting the beam on a proper orbit in the downstream RF cavities along the injector [1]. In this paper we analyze in detail the simulation techniques used in reference [1] and the issues associated with them. The optimization of photoinjector systems involving off-axis beams is a challenging problem. To solve this problem, one needs advanced simulation tools including both genetic algorithms and an efficient algorithm for 3D space charge. In this paper, we report on simulation studies where the two codes ASTRA and IMPACT-T are used jointly to overcome these challenges, in order to optimize a system designed to compensate for the emittance growth in a beam emitted off axis. Supported by National Nature Science Foundation of China (11375199), and Chinese Scholarship Council

  11. Light curves and spectra from off-axis gamma-ray burst single pulses

    CERN Document Server

    Salafia, Om S; Pescalli, Alessio; Ghirlanda, Giancarlo; Nappo, Francesco

    2016-01-01

    We set up a simple model to compute the bolometric light curve and time dependent spectrum of a single pulse of a Gamma-Ray Burst under the assumption that the pulse rise and decay are dominated by the shell curvature effect. For the first time, our model includes the effect of an arbitrary off-axis viewing angle. We show that a pulse observed off-axis is (i) longer, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that many observed properties found in time-resolved spectral analysis of Gamma-Ray Burst light curves are reproduced in curves with a slightly off-axis viewing angle. Such properties include the fact that the spectral peak energy evolution tracks the variations in flux, leading them slightly. Based on these results, we argue that low lum...

  12. Real-time processing of off-axis interferograms: from the camera to the user

    Science.gov (United States)

    Girshovitz, Pinhas; Gabay, Tamir; Shaked, Natan T.

    2014-07-01

    We review new algorithms that have been presented by us lately1 for fast reconstruction and phase unwrapping of sample wave-fronts recorded using off-axis digital holographic imaging. These algorithms enable reconstruction and phase unwrapping of sample wave-fronts up to 16 times faster than the conventional Fourier-based reconstruction algorithm. The algorithms exploit the compression properties of holographic imaging for decreasing the calculation complexity required for extracting the sample wave-front from the recorded interferogram. Using the presented algorithms, we were able to reconstruct, for the first time, 1 Mega pixels off-axis interferograms in more than 30 frames per second using a standard single-core personal computer on a Matlab-Labview interface, without using a graphic processing-unit programming or parallel computing. This computational speedup is important for real-time visualization, calculation and data extraction for dynamic samples and processes that are evaluated using off-axis digital holography such as biological cell imaging and real-time nondestructive testing.

  13. A TWO-DOF Controlled Lens Drive Actuator for Off-Axis Laser Beam Cutting

    Science.gov (United States)

    Morimoto, Yoshihiro; Shinshi, Tadahiko; Nakai, Takahiro

    This paper describes a two-degree-of-freedom (two-DOF) controlled electromagnetic actuator guided by an elastic hinge mechanism to realize off-axis laser beam cutting. In the laser beam cutting process, a focused laser beam melts and vaporizes part of the workpiece, and the molten material is blown away by an assist gas jet. The cutting speed and quality are related to the flow of the assist gas jet. In order to improve the removal capability of the molten material and to reduce gas consumption in off-axis laser beam cutting, the lens is driven radially by the proposed two-DOF actuator to generate relative motion between the assist gas nozzle and the laser. Experimental results show the prototype actuator possesses a positioning stroke of ±500µm within 3µm of tracking error and bandwidths more than 150Hz in the two-DOF directions. In the acceleration test supposed at a maximum acceleration of 2G, the prototype actuator maintains the relative displacement between the lens holder and the laser head within 10µm. Off-axis laser beam cutting by using the prototype actuator achieves high speed and less dross processing.

  14. Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints' Applications

    Science.gov (United States)

    Saleh, Mohamed Nasr; Wang, Ying; Yudhanto, Arief; Joesbury, Adam; Potluri, Prasad; Lubineau, Gilles; Soutis, Constantinos

    2017-04-01

    The effect of circular notch has been evaluated for three different architectures of three-dimensional (3D) carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) through open-hole quasi-static tension and double-lap bearing strength tests in the off-axis (45°) direction. Damage characterisation is monitored using Digital Image correlation (DIC) for open-hole testing and X-ray Computed Tomography (CT) for double-lap bearing strength test. The off-axis notched 3D woven composites exhibits minor reduction (less than 10 %) of the notched strength compared to the un-notched strength. DIC strain contour clearly show stress/strain localisation regions around the hole periphery and stress/strain redistribution away from the whole due to the z-binder existence, especially for ORT architecture. Up to 50 % bearing strain, no significant difference in the bearing stress/bearing strain response is observed. However when ORT architecture was loaded up to failure, it demonstrates higher strain to failure ( 140 %) followed by AI ( 105 %) and lastly LTL ( 85 %). X-ray CT scans reveal the effect of the z-binder architecture on damage evolution and delamination resistance. The study suggests that off-axis loaded 3D woven composites, especially ORT architecture, has a great potential of overcoming the current challenges facing composite laminates when used in composite joints' applications.

  15. Hybridization of phase retrieval and off-axis digital holography for high resolution imaging of complex shape objects

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2017-05-01

    In this paper, a hybrid method of phase retrieval and off-axis digital holography is proposed for imaging of the complex shape objects. Off-axis digital hologram and in-line hologram are recorded. The approximate phase distributions in the recording plane and object plane are obtained by constrained optimization approach from the off-axis hologram, and they are used as the initial value and the constraints in the phase retrieval for eliminating the twin image of in-line holography. Numerical simulations and optical experiments were carried out to validate the proposed method.

  16. Solar Neutrino Oscillation Parameters in Experiments with Reactor Anti-Neutrinos

    CERN Document Server

    Choubey, Sandhya

    2004-01-01

    We review the current status of the solar neutrino oscillation parameters. We discuss the conditions under which measurements from future solar neutrino experiments would determine the oscillation parameters precisely. Finally we expound the potential of long baseline reactor anti-neutrino experiments in measuring the solar neutrino oscillation parameters.

  17. Can we probe intrinsic C P and T violations and nonunitarity at long baseline accelerator experiments?

    Science.gov (United States)

    Rout, Jogesh; Masud, Mehedi; Mehta, Poonam

    2017-04-01

    One of the fundamental parameters entering the neutrino oscillation framework is the leptonic C P phase δ13, and its measurement is an important goal of the planned long baseline experiments. It should be noted that ordinary matter effects complicate the determination of this parameter, and there are studies in the literature that deal with separation of intrinsic vs extrinsic C P violation. It is important to investigate the consequences of new physics effects that can not only hamper the measurement of δ13 but also impact the consequences of discrete symmetries such as C P , T , and unitarity in different oscillation channels. In the present work, we explore these discrete symmetries and implications on unitarity in the presence of two new physics scenarios (nonstandard interaction in propagation and the presence of sterile neutrinos) that serve as good examples of going beyond the standard scenario in different directions. We uncover the impact of new physics scenarios on disentangling intrinsic and extrinsic C P violation.

  18. Transparent conducting zinc oxide thin film prepared by off-axis rf magnetron sputtering

    Indian Academy of Sciences (India)

    M K Jayaraj; Aldrin Antony; Manoj Ramachandran

    2002-06-01

    Highly conducting and transparent ZnO : Al thin films were grown by off-axis rf magnetron sputtering on amorphous silica substrates without any post-deposition annealing. The electrical and optical properties of the films deposited at various substrate temperatures and target to substrate distances were investigated in detail. Optimized ZnO : Al films have conductivity of 2200 S cm–1 and average transmission in the visible range is higher than 85%. The conductivity and mobility show very little temperature dependence.

  19. Autofocusing of digital holographic microscopy based on off-axis illuminations.

    Science.gov (United States)

    Gao, Peng; Yao, Baoli; Min, Junwei; Guo, Rongli; Ma, Baiheng; Zheng, Juanjuan; Lei, Ming; Yan, Shaohui; Dan, Dan; Ye, Tong

    2012-09-01

    An auto-focusing method for digital holographic microscopy has been proposed by employing two off-axis illumination beams. When specimens are illuminated by two plane waves in different directions, it is found that the farther the reconstruction plane is from the image plane, the wider the two reconstructed images are separated from each other. Thus, the image plane can be determinated by finding the minimum of the variation between the two reconstructed object waves on both the amplitude and phase distributions. The feasibility of the proposed method is demonstrated by the corresponding simulation and experiment.

  20. Off-axis quantitative phase imaging processing using CUDA: toward real-time applications.

    Science.gov (United States)

    Pham, Hoa; Ding, Huafeng; Sobh, Nahil; Do, Minh; Patel, Sanjay; Popescu, Gabriel

    2011-07-01

    We demonstrate real time off-axis Quantitative Phase Imaging (QPI) using a phase reconstruction algorithm based on NVIDIA's CUDA programming model. The phase unwrapping component is based on Goldstein's algorithm. By mapping the process of extracting phase information and unwrapping to GPU, we are able to speed up the whole procedure by more than 18.8× with respect to CPU processing and ultimately achieve video rate for mega-pixel images. Our CUDA implementation also supports processing of multiple images simultaneously. This enables our imaging system to support high speed, high throughput, and real-time image acquisition and visualization.

  1. Resolution improvement in off-axis digital holography using an iterative scheme

    Science.gov (United States)

    He, Jing; Liu, Cheng; Veetil, Suhas P.; Gao, Shumei; Wang, Jicheng; Wang, Yueke

    2014-08-01

    The image quality in off-axis digital holography (DH) is often degraded by inaccuracies in the reference wave used for reconstruction and the spatial filtering adopted to avoid twin images and zeroth order diffraction. To enhance the image quality in such cases, coherent diffraction imaging is combined with a DH technique to iteratively reconstruct the hologram. By using a small aperture on the sample plane as a spatial constraint and the recorded diffraction pattern as an intensity constraint, a higher spatial resolution than usual is obtained with the proposed method.

  2. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Buj C.

    2015-09-01

    Full Text Available A very fast innovative holographic off-axis non-contact detection method for Photoacoustic Tomography (PAT is introduced. It overcomes the main problems of most state-of-the-art photoacoustic imaging approaches that are long acquisition times and the requirement of acoustic contact. In order to increase the acquisition speed significantly, the surface displacements of the object, caused by the photoacoustic pressure waves, are measured interferometrically in two dimensions. Phase alterations in the observed speckle field are used to identify changes in the object’s topography. A sampling rate of up to 80 MHz is feasible, which reduces the occurrence of motion artefacts.

  3. Orbital Angular Momentum in Noncollinear Second Harmonic Generation by off-axis vortex beams

    CERN Document Server

    Bovino, Fabio Antonio; Giardina, Maurizio; Sibilia, Concita

    2011-01-01

    We experimentally study the behavior of orbital angular momentum (OAM) of light in a noncollinear second harmonic generation (SHG) process. The experiment is performed by using a type I BBO crystal under phase matching conditions with femtosecond pumping fields at 830 nm. Two specular off-axis vortex beams carrying fractional orbital angular momentum at the fundamental frequency (FF) are used. We analyze the behavior of the OAM of the SH signal when the optical vortex of each input field at the FF is displaced from the beam's axis. We obtain different spatial configurations of the SH field, always carrying the same zero angular momentum.

  4. Alignment of multiple-off-axis-beam imaging/interference systems.

    Science.gov (United States)

    Vadivel, Shruthi K; Leibovici, Matthieu C R; Gaylord, Thomas K

    2016-04-20

    The alignment of components in complex multibeam arrangements is typically prone to errors that limit the performance of the system. A systematic procedure for aligning such systems is presented here. The method facilitates the precision alignment of the optical elements to achieve the accurate projection of multiple on- and off-axis images and the simultaneous interference of the multiple beams. In addition to the multibeam imaging/interference system presented, the procedure can be employed in other multibeam imaging and/or interfering configurations.

  5. Electron gun with off-axis beam injection for a race-track microtron

    Energy Technology Data Exchange (ETDEWEB)

    Aloev, A.V. [Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation); Carrillo, D. [CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Kubyshin, Yu.A., E-mail: iouri.koubychine@upc.ed [Institute of Energy Technologies, Technical University of Catalonia, Campus Sud, Av. Diagonal 647, 08028 Barcelona (Spain); Pakhomov, N.I.; Shvedunov, V.I. [Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation)

    2010-12-01

    A miniature 12 MeV race-track microtron for medical applications is under construction at the Technical University of Catalonia in collaboration with several Spanish centers and companies and the Skobeltsyn Institute of Nuclear Physics of the Moscow State University. As a source of electrons a compact 3D on-axis electron gun with an off-axis cathode has been designed to allow a direct and efficient injection into the accelerating structure. Its prototype has been built and successfully tested. Results of the electron gun design simulations and of the prototype performance are herein described.

  6. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam.

    Science.gov (United States)

    Basistiy, I V; Slyusar, V V; Soskin, M S; Vasnetsov, M V; Bekshaev, A Ya

    2003-07-15

    We report what is to our knowledge the first all-optical detection of the frequency beats between Gaussian and Laguerre-Gaussian LG0(1) modes in their axial superposition, caused by the rotational Doppler effect. The relation between the observable off-axis optical vortex rotation and the rotational frequency shift of the Laguerre-Gaussian component is ascertained. The results can be used as a physical basis for recognition of Laguerre-Gaussian mode spectra along their orbital angular momenta.

  7. Transmitting characteristic analysis of antenna with off-axis parabolic rotating surfaces configuration.

    Science.gov (United States)

    Guo, Jianyu; Jiang, Ping; Yang, Huajun; Niu, Ye; Xianyu, Jiawei

    2017-03-20

    A novel optical antenna with an off-axis confocal parabolic rotating surfaces configuration is designed for achieving maximum transmission efficiency. An improved 3-D ray tracing method based on the vector theory of reflection is used to simulate spatial rays transmitting through the antenna system. Aberrations and the spatial divergence angles of the output beam, which are caused by on-axial defocusing and off-axial defocusing between the primary reflector and secondary reflector, are visualized and effects on receiver efficiency of the antenna system are analyzed in detail. This work will provide a reference for improving the transmission efficiency of long-range communication systems.

  8. Off-axis mirror based optical system design for circularization, collimation, and expansion of elliptical laser beams

    Science.gov (United States)

    Serkan, Mert; Kirkici, Hulya; Cetinkaya, Hakan

    2007-08-01

    In this paper, we present two optical system design methods for beam circularization, collimation, and expansion of semiconductor laser output beam for possible application in LIDAR systems. Two different optical mirror systems are investigated: an off-axis hyperbolic/parabolic mirror system and an off-axis parabolic mirror system. Equations specific to these mirror systems are derived and computer package programs such as ZEMAX and MATLAB are used to simulate the optical designs. The beam reshaping results are presented.

  9. The effects of eccentricities on the fracture of off-axis fiber composites. [carbon fiber reinforced plastics

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of-plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to assess the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.

  10. Precise geodesy with the Very Long Baseline Array

    CERN Document Server

    Petrov, Leonid; Gipson, John; MacMillan, Dan; Ma, Chopo; Fomalont, Ed; Walker, R Craig; Carabajal, Claudia

    2008-01-01

    We report on a program of regular measurements between 1994 and 2007 which used the Very Long Baseline Array and up to 10 additional stations. One of the goals of these sessions was to monitor positions of the array at 1 millimeter level of accuracy and to tie the VLBA into the International Terrestrial Reference Frame. The large number of stations and the many competing goals made scheduling these sessions manually difficult, and lead to advances in scheduling software. We describe the analysis of these data, which is non-standard, and involves translating the data into a form useful for geodetic VLBI. We also describe several interesting geophysical results including measured station displacement due to crustal motion, earthquakes, and antenna tilt. In terms of both formal errors and observed scatter, these sessions are among the very best geodetic VLBI sessions.

  11. Laser-Ranging Long Baseline Differential Atom Interferometers for Space

    CERN Document Server

    Chiow, Sheng-wey; Yu, Nan

    2015-01-01

    High sensitivity differential atom interferometers are promising for precision measurements in science frontiers in space, including gravity field mapping for Earth science studies and gravitational wave detection. We propose a new configuration of twin atom interferometers connected by a laser ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and a means to phase-lock the two independent interferometer lasers over long distances, thereby further enhancing the feasibility of long baseline differential atom interferometers. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential atom interferometer measurement system. LRI-AI isolates the laser requirements for atom interferometers and for optical phase readout between distant locations, thus enabling optimized allocation of available laser power within a limited physical size and resource budget. A unique aspect of LRI-AI also enables...

  12. Adapting a Cryogenic Sapphire Oscillator for Very Long Baseline Interferometry

    CERN Document Server

    Doeleman, Sheperd; Rogers, Alan; Hartnett, John; Tobar, Michael; Nand, Nitin; 10.1086/660156

    2011-01-01

    Extension of very long baseline interferometry (VLBI) to observing wavelengths shorter than 1.3mm provides exceptional angular resolution (~20 micro arcsec) and access to new spectral regimes for the study of astrophysical phenomena. To maintain phase coherence across a global VLBI array at these wavelengths requires that ultrastable frequency references be used for the heterodyne receivers at all participating telescopes. Hydrogen masers have traditionally been used as VLBI references, but atmospheric turbulence typically limits (sub) millimeter VLBI coherence times to ~1-30 s. Cryogenic Sapphire Oscillators (CSO) have better stability than Hydrogen masers on these time scale and are potential alternatives to masers as VLBI references. Here, We describe the design, implementation and tests of a system to produce a 10 MHz VLBI frequency standard from the microwave (11.2 GHz) output of a CSO. To improve long-term stability of the new reference, the CSO was locked to the timing signal from the Global Positionin...

  13. Simulation Study on the Emittance Compensation of Off-axis Emitted Beam in RF Photoinjector

    CERN Document Server

    Huang, Rui-Xuan; Jia, Qi-Ka; Papadopoulos, Christos; Sannibale, Fernando

    2016-01-01

    To make full use of photocathode material and improve its quantum efficiency lifetime, it can be necessary to operate laser away from the cathode center in photoinjectors. In RF guns, the off-axis emitted beam will see a time-dependent RF effect, which would generate a significant growth in transverse emittance. It has been demonstrated that such an emittance growth can be almost completely compensated by orienting the beam on a proper orbit in the downstream RF cavities along the injector. In this paper we analyze in detail the simulation techniques used in reference[1] and the issues associated with them. The optimization of photoinjector systems involving off-axis beams is a challenging problem. To solve this problem, one needs advanced simulation tools including both genetic algorithms and an efficient algorithm for 3D space charge. In this paper, we report on simulation studies where the two codes ASTRA and IMPACT-T are used jointly to overcome these challenges, in order to optimize a system designed to ...

  14. High efficiency off-axis current drive by high frequency fast waves

    Energy Technology Data Exchange (ETDEWEB)

    Prater, R.; Pinsker, R. I.; Moeller, C. P. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Porkolab, M.; Vdovin, V. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2014-02-12

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ∥}, a result that can be understood from examination of the evolution of n{sub ∥} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (∼3) of n{sub ∥} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ∥} spectrum, which also helps avoid mode conversion.

  15. Initial Off-Axis Neutral Beam Checkout and Physics Experiments on DIII-D

    Science.gov (United States)

    van Zeeland, M. A.; Ferron, J. R.; Hyatt, A. W.; Murphy, C. J.; Petty, C. C.; Prater, R.; Scoville, J. T.; Heidbrink, W. W.; Muscatello, C. M.; Park, J. M.; Murakami, M.; Pace, D. C.; Holcomb, C. T.; Grierson, B. A.; Tobias, B. J.; Solomon, W. M.; Moyer, R. A.

    2011-10-01

    Two of the eight neutral beam sources on DIII-D have been modified to allow vertical steering, with the injection angle varying from horizontal to downward at an angle of 16.5 degrees for off-axis deposition. Initial experiments to assess the basic beam functionality, geometry, and confinement were carried out. Dα images of beam into gas and plasma yield beam neutral profiles and are key in assessing beam shape and clipping. Neutron and fast-ion Dα (FIDA) diagnostics verify classical behavior of the off-axis beam ions in MHD-quiescent conditions. An initial physics experiment takes advantage of the downward steered beams to vary the fast-ion gradient ∇βf from centrally peaked to hollow. Systematic scans determine the stability and impact of reversed shear Alfvén eigenmodes and toroidal Alfvén eigenmodes as a function of ∇βf . Supported by US DOE under DE-FC02-04ER54698, SC-G903402, DE-AC05-00OR22725, DE-AC05-06OR23100, DE-AC52-07NA27344, DE-AC02-09CH11466, & DE-FG02-07ER54917.

  16. Reflective off-axis point-diffraction interferometer based on Michelson architecture

    Science.gov (United States)

    Bai, Hongyi; Guo, Lili; Zhong, Zhi; Shan, Mingguang; Zhang, Yabin

    2015-02-01

    A reflective off-axis point-diffraction interferometer based on Michelson architecture is built to measure static and dynamic quantitative phase in a single shot. The interferometer is constructed by a beam-splitter, a pinhole mirror, a reflective mirror and two lenses to build a 4f optical system. The pinhole mirror is used as a low-pass spatial filter to generate reference wave. By tilting the reflective mirror, a small angle is created between the object beam and the reference beam to enable an off-axis interferogram. To reconstruct an interferogram with a few fringes, Kreis Fourier method is used to recovery the specimen phase. Using a plano-convex cylinder lens and an evaporative alcohol drop as the specimens, experiments are run to verify the effectiveness and robustness with this interferometer. Experimental results show that this interferometer has not only simple setup and good anti-interference performance, but also good real-time ability, which makes it suitable for dynamic phase measurement.

  17. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    Science.gov (United States)

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  18. Phase reconstruction of living human embryonic kidney 293 cells based on two off-axis holograms

    Science.gov (United States)

    Zhou, Wenjing; Yu, Yingjie; Duan, Yanhong; Asundi, Anand

    2008-11-01

    In this paper, we validate experimentally the potential of off-axis digital micro-holography for 3D image reconstruction of a live Human Embryonic Kidney 293(HEK293) cell that is widely used as transfection and expression. A subtraction method of two off-axis holograms to reconstruct the phase of the live microscopic object is discussed. The presented subtraction method can remove some main noise, for example, the quadratic phase aberration introduced by microscope objective (MO), other phase aberration introduced by the liquid in tank and other interference noise introduced by the optical parts. Thus an improvement in the measurement precision of live cells in aqueous solution is observed. The potential of this method is demonstrated by providing the phase reconstruction results of a phase grating and a single HEK293 cell. The results showed good correspondence to the actual character of HEK293 cell prove the capability of digital micro-holography as a tool to monitor the dynamic transfection process of the living HEK 293 cells.

  19. Fabrication technique for the production of on- and off-axis conic surfaces of revolution (WAGNER)

    Science.gov (United States)

    Faehnle, Oliver W.; van Brug, Hedser H.; Frankena, Hans J.

    1997-11-01

    A new fabrication technique, derived from an earlier development to produce on- and off-axis optical surfaces of revolution is presented. Although based on a shape copying method, it is possible to generate different types of surfaces with the same machine tool. Load controlled point- contact machining is applied using a small tool which is guided along a pre-determined tool-path, not requiring an in-process tool-path control. This fabrication technique employs a self-correcting process and is characterized by an advantageous error propagation between tool and workpiece. The characteristics of this fabrication technique are discussed together with its application for the generation of on- and off-axis surfaces with conic sections as generators. The design of a first set-up for production of conic surfaces is presented with which it is possible to generate all kinds of conic surfaces on the same machine, featuring a pantograph enabling the production of different scales of the surfaces, together with the discussion of fist experimental data.

  20. Elimination of off-axis light leakage in a homogeneously aligned liquid crystal cell

    Science.gov (United States)

    Oh, Seung-Won; Park, Byung Wok; Yoon, Tae-Hoon

    2015-03-01

    Among various liquid crystal display modes, the in-plane switching mode exhibits the widest viewing angle because the liquid crystals are homogeneously-aligned initially and rotate within a plane parallel to the substrates when an in-plane field is applied. However, further improvement is still needed for viewing high-quality dark images from the bisector direction of the crossed polarizers. Several compensation schemes have been proposed to eliminate the off-axis light leakage in a homogeneously-aligned liquid crystal cell. Although a 100:1 iso-contrast contour at an wavelength of 550 nm can cover the entire viewing cone, light leakage at other wavelengths still remains very severe. In this paper we introduce achromatic optical compensation methods using uniaxial films to eliminate the off-axis light leakage at the dark state in homogeneously-aligned liquid crystal cell.Uniaxial films with different dispersion characteristics are used so that they can compensate one another to achieve achromatic optical compensation. The retardation values are optimized through numerical research with the aid of the Poincaré sphere.

  1. Dynamics of the off axis intense beam propagation in a spiral inflector

    Science.gov (United States)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2017-01-01

    In this paper the dynamics of space charge dominated beam in a spiral inflector is discussed by developing equations of motion for centroid and beam envelope for the off axis beam propagation. Evolution of the beam centroid and beam envelope is studied as a function of the beam current for various input beam parameters. The transmission of beam through the inflector is also estimated as a function of the beam current for an on axis and off axis beam by tracking a large number of particles. Simulation studies show that shift of the centroid from the axis at the inflector entrance affects the centroid location at the exit of the inflector and causes reduction in the beam transmission. The centroid shift at the entrance in the horizontal plane (h plane) is more critical as it affects the centroid shift in the vertical plane (u plane) by a large amount near the inflector exit where the available aperture is small. The beam transmission is found to reduce with increase in the centroid shift as well as with the beam current.

  2. Propagation of the off-axis superposition of partially coherent beams through atmospheric turbulence

    Institute of Scientific and Technical Information of China (English)

    Zhang En-Tao; Ji Xiao-Ling; Lü Bai-Da

    2009-01-01

    The propagation properties of the off-axis superposition of partially coherent beams through atmospheric tur-bulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (PIB)are studied in detail, where the effects of partial coherence, off-axis beam superposition and atmospheric turbulence are considered. The analytical expressions for the intensity, the beam width and the PIB are derived, and illustrative examples are given numerically. It is shown that the maximum intensity/max and the PIB decrease and ω(z) increases as the refraction index structure constant C2n increases. Therefore, the turbulence results in a degradation of the beam quality. However, the resulting partially coherent beam with a smaller value of spatial correlation parameter γ and larger values of separate distance Xd and beam number M is less affected by the turbulence than that with a larger value of γ and smaller values of xd and M. The main results obtained in this paper are explained physically.

  3. Measurement of multiaxial ply strength by an off-axis flexure test

    Science.gov (United States)

    Crews, John H., Jr.; Naik, Rajiv A.

    1992-01-01

    An off-axis flexure (OAF) test was performed to measure ply strength under multiaxial stress states. This test involves unidirectional off-axis specimens loaded in bending, using an apparatus that allows these anisotropic specimens to twist as well as flex without the complications of a resisting torque. A 3D finite element stress analysis verified that simple beam theory could be used to compute the specimen bending stresses at failure. Unidirectional graphite/epoxy specimens with fiber angles ranging from 90 deg to 15 deg have combined normal and shear stresses on their failure planes that are typical of 45 deg plies in structural laminates. Tests for a range of stress states with AS4/3501-6 specimens showed that both normal and shear stresses on the failure plane influenced cracking resistance. This OAF test may prove to be useful for generating data needed to predict ply cracking in composite structures and may also provide an approach for studying fiber-matrix interface failures under stress states typical of structures.

  4. Enhanced tau neutrino appearance through invisible decay

    CERN Document Server

    Pagliaroli, Giulia; Mannarelli, Massimo

    2016-01-01

    The decay of neutrino mass eigenstates leads to a change of the conversion and survival probability of neutrino flavor eigenstates. Remarkably, we find that the neutrino decay provides an enhancement of the expected tau appearance signal with respect to the standard oscillation scenario for the long-baseline OPERA experiment. The increase of the $\

  5. Gravity sensing with Very Long Baseline Atom Interferometry

    Science.gov (United States)

    Schlippert, Dennis; Albers, Henning; Richardson, Logan L.; Nath, Dipankar; Meiners, Christian; Wodey, Etienne; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst M.

    2016-05-01

    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Extending the baseline of atomic gravimeters from tens of centimeters to meters opens the route towards competition with superconducting gravimeters. The VLBAI-test stand will consist of a 10m-baseline atom interferometer allowing for free fall times of seconds. In order to suppress environmental noise, the facility utilizes a state-of-the-art vibration isolation platform and a three-layer magnetic shield. We envisage a resolution of local gravitational acceleration of 5 .10-10 m/ s2 with sub-ppb inaccuracy. Operation as a gradiometer will allow to resolve the gravity gradient at a resolution of 5 .10-10 1/ s2. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level, with the potential to surpass the accuracy of the best experiments to date. We report on a quantum test of the UFF using two different chemical elements, 39 K and 87 Rb, reaching a 100 ppb inaccuracy and show the potential of UFF tests in VLBAI at an inaccuracy of 10-13 and beyond.

  6. Combined GPS + BDS for short to long baseline RTK positioning

    Science.gov (United States)

    Odolinski, R.; Teunissen, P. J. G.; Odijk, D.

    2015-04-01

    The BeiDou Navigation Satellite System (BDS) has become fully operational in the Asia-Pacific region and it is of importance to evaluate what BDS brings when combined with the Global Positioning System (GPS). In this contribution we will look at the short, medium and long single-baseline real-time kinematic (RTK) positioning performance. Short baseline refers to when the distance between the two receivers is at most a few kilometers so that the relative slant ionospheric and tropospheric delays can be assumed absent, whereas with medium baseline we refer to when the uncertainty of these ionospheric delays can reliably be modeled as a function of the baseline length. With long baseline we refer to the necessity to parameterize the ionospheric delays and (wet) Zenith Tropospheric Delay (ZTD) as completely unknown. The GNSS real data are collected in Perth, Australia. It will be shown that combining the two systems allows for the use of higher than customary elevation cut-off angles. This can be of particular benefit in environments with restricted satellite visibility such as in open pit mines or urban canyons.

  7. LBCS: the LOFAR Long-Baseline Calibrator Survey

    CERN Document Server

    Jackson, N; Deller, A; Moldón, J; Varenius, E; Morabito, L; Wucknitz, O; Carozzi, T; Conway, J; Drabent, A; Kapinska, A; Orrù, E; Brentjens, M; Blaauw, R; Kuper, G; Sluman, J; Schaap, J; Vermaas, N; Iacobelli, M; Cerrigone, L; Shulevski, A; ter Veen, S; Fallows, R; Pizzo, R; Sipior, M; Anderson, J; Avruch, M; Bell, M; van Bemmel, I; Bentum, M; Best, P; Bonafede, A; Breitling, F; Broderick, J; Brouw, W; Brüggen, M; Ciardi, B; Corstanje, A; de Gasperin, F; de Geus, E; Eislöffel, J; Engels, D; Falcke, H; Garrett, M; Griessmeier, J; Gunst, A; van Haarlem, M; Heald, G; Hoeft, M; Hörandel, J; Horneffer, A; Intema, H; Juette, E; Kuniyoshi, M; van Leeuwen, J; Loose, G; Maat, P; McFadden, R; McKay-Bukowski, D; McKean, J; Mulcahy, D; Munk, H; Pandey-Pommier, M; Polatidis, A; Reich, W; Röttgering, H; Rowlinson, A; Scaife, A; Schwarz, D; Steinmetz, M; Swinbank, J; Thoudam, S; Toribio, M; Vermeulen, R; Vocks, C; van Weeren, R; Wise, M; Yatawatta, S; Zarka, P

    2016-01-01

    (abridged). We outline LBCS (the LOFAR Long-Baseline Calibrator Survey), whose aim is to identify sources suitable for calibrating the highest-resolution observations made with the International LOFAR Telescope, which include baselines >1000 km. Suitable sources must contain significant correlated flux density (50-100mJy) at frequencies around 110--190~MHz on scales of a few hundred mas. At least for the 200--300-km international baselines, we find around 1 suitable calibrator source per square degree over a large part of the northern sky, in agreement with previous work. This should allow a randomly selected target to be successfully phase calibrated on the international baselines in over 50% of cases. Products of the survey include calibrator source lists and fringe-rate and delay maps of wide areas -- typically a few degrees -- around each source. The density of sources with significant correlated flux declines noticeably with baseline length over the range 200--600~km, with good calibrators on the longest...

  8. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  9. Sterile neutrinos at LBNE

    CERN Document Server

    Hollander, David

    2014-01-01

    In this paper we examine the sensitivity of the Long Baseline Neutrino Oscillation Experiment to the inclusion of two new sterile neutrino flavors with masses in the eV range. We implement a modified Casas-Ibarra parametrization which can accommodate medium scale mass eigenstates and introduces a new complex mixing angle. We explore the new mixing angle parameter space and demonstrate how LBNE can be used to either provide evidence for or rule out a particular model of sterile neutrinos. Certain three-flavor CP-violation scenarios cannot be distinguished from the sterile neutrinos. Constraints from the Daya Bay reactor experiment are used to help lift this degeneracy.

  10. A vector model for off-axis hysteresis loops using anisotropy field

    Science.gov (United States)

    Jamali, Ali; Torre, Edward Della; Cardelli, Ermanno; ElBidweihy, Hatem; Bennett, Lawrence H.

    2016-11-01

    A model for the off-axis vector magnetization of a distribution of uniaxial particles is presented. Recent work by the authors decomposed the magnetization into two components and modeled the total vector magnetization as their vector sum. In this paper, to account for anisotropy, the direction of the reversible magnetization component is specified by the vector sum of the applied field and an effective anisotropy field. The formulation of the new anisotropy field (AF) model is derived and its results are discussed considering (i) oscillation and rotational modes, (ii) lag angle, and (iii) unitary magnetization. The advantages of the AF model are outlined by comparing its results to the results of the classical Stoner-Wohlfarth model.

  11. Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy

    CERN Document Server

    He, Xuefei; Pratap, Mrinalini; Zheng, Yujie; Wang, Yi; Nisbet, David R; Williams, Richard J; Rug, Melanie; Maier, Alexander G; Lee, Woei Ming

    2016-01-01

    Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase image. Here we describe a region-recognition approach that combines shape recognition with an iterative thresholding to extracts the optimal shape of frequency components. The region recognition technique offers fully automated adaptive filtering that can operate with a variety of samples and imaging conditions. When imaging through optically scattering biological hydrogel matrix, the technique surpasses previous histogram thresholding techniques without requiring any manual intervention. Finally, we automate the extraction of the statistical difference of optical height between malaria parasite infected and uninfected re...

  12. Iterative approach for zero-order term elimination in off-axis multiplex digital holography

    Science.gov (United States)

    Zhao, Dongliang; Xie, Dongzhuo; Yang, Yong; Zhai, Hongchen

    2017-01-01

    An iterative approach is proposed to eliminate the zero-order term from an off-axis multiplexed hologram that contains several sub-holograms. The zero-order components of each sub-hologram are effectively eliminated one by one using the proposed iterative procedure. Because of the reduction of the zero-order components in the frequency domain, enlarged filtering windows can be used to separate each of the +1 order components and improve the signal-to-noise ratio. The proposed method does not require prior knowledge of the object images, and only needs each of the reference wave intensities, which can be acquired before acquisition of the multiplexed hologram. The feasibility of the proposed approach is confirmed through mathematical deductions and numerical simulations, and the robustness of the proposed approach is verified using a practical multiplexed hologram.

  13. Stress optical path difference analysis of off-axis lens ray trace footprint

    Science.gov (United States)

    Hsu, Ming-Ying; Chan, Chia-Yen; Lin, Wei-Cheng; Wu, Kun-Huan; Chen, Chih-Wen; Chan, Shenq-Tsong; Huang, Ting-Ming

    2013-06-01

    The mechanical and thermal stress on lens will cause the glass refractive index different, the refractive index of light parallel and light perpendicular to the direction of stress. The refraction index changes will introduce Optical Path Difference (OPD). This study is applying Finite Element Method (FEM) and optical ray tracing; calculate off axis ray stress OPD. The optical system stress distribution result is calculated from finite element simulation, and the stress coordinate need to rotate to optical path direction. Meanwhile, weighting stress to each optical ray path and sum the ray path OPD. The Z-direction stress OPD can be fitted by Zernike polynomial, the separated to sag difference, and rigid body motion. The fitting results can be used to evaluate the stress effect on optical component.

  14. Host galaxies of luminous quasars: population synthesis of optical off-axis spectra

    CERN Document Server

    Wold, I; Wolf, M J; Hooper, E J

    2010-01-01

    There is increasing evidence of a connection between AGN activity and galaxy evolution. To obtain further insight into this potentially important evolutionary phase, we analyse the properties of quasar host galaxies. In this paper, we present a population synthesis modeling technique for off-axis spectra, the results of which constrain host colour and the stellar ages of luminous quasars (M_V(nuc) 10^40 erg s^-1) quasars to be located in redder host galaxies in comparison to th eir less luminous radio counterparts. While the host colour and age of our radio luminous sample is in close proximity to the green valley, our radio faint sample is consistent with quiescent star-forming galaxies. However, further observations are needed to confirm these results. Finally, we discuss future applications for our technique on a larger sample of objects being obtained via SALT and WIYN telescope observing campaigns.

  15. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Sadegh, E-mail: sadegh.yazdi@cen.dtu.dk [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Center for Electron Nanoscopy, Technical University of Denmark, DK 2800 Lyngby (Denmark); Kasama, Takeshi; Beleggia, Marco; Samaie Yekta, Maryam [Center for Electron Nanoscopy, Technical University of Denmark, DK 2800 Lyngby (Denmark); McComb, David W. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Twitchett-Harrison, Alison C. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Dunin-Borkowski, Rafal E. [Center for Electron Nanoscopy, Technical University of Denmark, DK 2800 Lyngby (Denmark); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2015-05-15

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron holography to characterize an electrically-biased Si p–n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic potential simulations highlights several remaining challenges to quantitative analysis. Our results illustrate how the determination of reliable potential distributions from phase images of electrically biased devices requires electrostatic fringing fields, surface charges, specimen preparation damage and the effects of limited spatial resolution to be taken into account.

  16. Off-axis retrieval of orbital angular momentum of light stored in cold atoms

    CERN Document Server

    de Oliveira, R A; Barbosa, P S; Martins, W S; Barreiro, S; Felinto, D; Bloch, D; Tabosa, J W R

    2014-01-01

    We report on the storage of orbital angu- lar momentum (OAM) of light of a Laguerre-Gaussian mode in an ensemble of cold cesium atoms and its re- trieval along an axis different from the incident light beam. We employed a time-delayed four-wave mixing configuration to demonstrate that at small angle (2o), after storage, the retrieved beam carries the same OAM as the one encoded in the input beam. A calculation based on mode decomposition of the retrieved beam over the Laguerre-Gaussian basis is in agreement with the experimental observations done at small angle values. However, the calculation shows that the OAM retrieving would get lost at larger angles, reducing the fidelity of such storing-retrieving process. In addition, we have also observed that by applying an external magnetic field to the atomic ensemble the retrieved OAM presents Larmor oscillations, demonstrating the possibility of its manipulation and off-axis retrieval.

  17. A water-cooled x-ray monochromator for using off-axis undulator beam.

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.; Maser, J.

    2000-12-11

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided.

  18. Off-Axis Orbits in Realistic Helical Wigglers Fixed Points and Time Averaged Dynamical Variables

    CERN Document Server

    ThomasDonohue, John

    2004-01-01

    Many years ago Fajans, Kirkpatrick and Bekefi studied off-axis orbits in a realistic helical wiggler, both experimentally and theoretically. They found that as the distance from the axis of symmetry to the guiding center increased, both the mean axial velocity and the precession frequency of the guiding center varied. . They proposed a clever semi-empirical model which yielded an excellent description of both these variations. We point out that a approximate model proposed by us several years ago can be made to predict these delicate effects correctly, provided we extend our truncated quadratic Hamiltonian to include appropriate cubic terms. We develop an argument similar to the virial theorem to compare time averaged and fixed-point values of dynamical variables. Illustrative comparisons of our model with numerical calculation are presented.

  19. Hydrothermal Cooling Within the Lau Integrated Study Site: No Evidence for Off-axis Discharge

    Science.gov (United States)

    Baker, E. T.; Resing, J. A.; Martinez, F.; Walker, S. L.; Buck, N.; Edwards, M. H.; Nakamura, K.

    2008-12-01

    Decades of intensive hydrothermal surveying, overwhelmingly concentrated within hundreds of meters of the axes of ridge crests, has supported the view that discrete fluid discharge is predominantly concentrated in this same region. This simple view, however, conflicts with emerging evidence for a crustal high-temperature, low-velocity volume (LVV) that extends 2-3 km beyond the ridge crest and generates strongly focused hydrothermal cooling along its off-axis vertical boundaries. In March/April 2008, we used high-resolution sampling of near-bottom waters along 175 km of the hydrothermally active Valu Fa Ridge (VFR) and Eastern Lau Spreading Center (ELSC) to comprehensively test the hypothesis that hydrothermal discharge is predominantly near-axis. Our sampling array included a suite of Miniature Autonomous Plume Recorders (temperature, light scattering, oxidation-reduction potential (ORP)) attached above (to a nominal altitude of 400 m) and below the deep-towed IMI120 sonar, plus CTDs and sensors at the bottom of the string (50 m) and on the clump weight (120 m). The ELSC between 19.9° and 21°S (spreading ~80 mm/yr) grades from a broad, flat valley in the north to a shallow high in the south. Ten survey lines at 1 km spacing were centered on the axis, plus five interleaved lines around the axial high of the ABE vent field (1300 km of track). The VFR from 21.9° to 22.4°S (~50 mm/yr) is a sharp ridge that deepens ~200 m within 1 km of the axis. Seven survey lines were run at 0.7 km spacing, plus two shorter lines adjacent to a broad overlapping spreading center (390 km). CTD tows and casts supplemented the IMI120 surveys. The surveys detected emissions from the several known on-axis vent fields, and also identified a substantial unexplored field near 20.65°S, ~10 km north of the ABE field. In neither survey area, however, did we detect evidence of high-temperature discharge beyond the near-axis (±1 km) zone. Because off-axis discharge may be largely low

  20. Optimization on manufacturing and testing technology for rectangle aperture off-axis aspheric mirror fine grinding

    Science.gov (United States)

    Chen, Xi; Guo, Peiji; Wang, Dongdong

    2016-10-01

    High precision aspheric surface can be obtained conveniently by using single point diamond turning technology, liquidmagnetic polishing technology and ion beam polishing technology, but the costs of manufacturing is too enormous to be widely used. In fact, in the field of optical processing, the most commonly used technical solution is still making a best fit sphere firstly compared with aspheric equation, and then remove the material on the glass to correct the error between aspheric and best fit sphere by precision grinding and precision polishing. The resolving of the best-fit sphere and the material removal, however, is a very important problem during the fabrications. The two dimensional maps of surface error between the best fit sphere and the corresponding aspheric surface shows W shaped which has the maximum removal at the center and the edge of the workpeace and gradually reduces to zero at the 70.7 percent of the diameter. In the process of deterministic optical manufacturing, the edge effect will arise because of the change of machining conditions when polishing tool locates in edge area, which will lower the surface accuracy of workpiece and debase machining efficiency. W shaped error distribution and the edge effect will make it difficult to remove the error on the edge of the workpiece. Aiming at the situation, an algorithm available for control of edge effect is proposed. Considering the requirement of minimum material removal and the control of edge effect, the radius of the anti-edge effect sphere is calculated by programming. The advantage of the algorithm is shown by the comparison of results derived from new algorithm and empirical equation. At the same time, the application in the off-axis asphere fabrications also proves the correctness of the algorithm. This algorithm is very helpful for the theory and practice of the fabrications of off-axis asphere.

  1. Doping GaP Core-Shell Nanowire pn-Junctions: A Study by Off-Axis Electron Holography.

    Science.gov (United States)

    Yazdi, Sadegh; Berg, Alexander; Borgström, Magnus T; Kasama, Takeshi; Beleggia, Marco; Samuelson, Lars; Wagner, Jakob B

    2015-06-10

    The doping process in GaP core-shell nanowire pn-junctions using different precursors is evaluated by mapping the nanowires' electrostatic potential distribution by means of off-axis electron holography. Three precursors, triethyltin (TESn), ditertiarybutylselenide, and silane are investigated for n-type doping of nanowire shells; among them, TESn is shown to be the most efficient precursor. Off-axis electron holography reveals higher electrostatic potentials in the regions of nanowire cores grown by the vapor-liquid-solid (VLS) mechanism (axial growth) than the regions grown parasitically by the vapor-solid (VS) mechanism (radial growth), attributed to different incorporation efficiency between VLS and VS of unintentional p-type carbon doping originating from the trimethylgallium precursor. This study shows that off-axis electron holography of doped nanowires is unique in terms of the ability to map the electrostatic potential and thereby the active dopant distribution with high spatial resolution.

  2. Gravity sensing with Very Long Baseline Atom Interferometry

    Science.gov (United States)

    Schlippert, Dennis; Albers, Henning; Richardson, Logan L.; Nath, Dipankar; Meiners, Christian; Wodey, Étienne; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst M.

    2016-04-01

    Very Long Baseline Atom Interferometry (VLBAI) represents a new class of atom optics experiments with applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Extending the baseline of atomic gravimeters from tens of centimeters to several meters opens the route towards competition with superconducting gravimeters. The VLBAI-test stand will consist of a 10m-baseline atom interferometer allowing for free fall times on the order of seconds, which will implemented in the Hannover Institut für Technologie (HITec) of the Leibniz Universität Hannover. In order to suppress environmental noise, the facility utilizes a state-of-the-art vibration isolation platform and a three-layer magnetic shield. We envisage a resolution of local gravitational acceleration of 5 ṡ 10-10 m/s2 with an inaccuracy < 10-9 m/s2. Operation as a gravity-gradiometer will allow to resolve the first-order gravity gradient with a resolution of 5 ṡ 10-10 1/s2. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of ytterbium and rubidium atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level [1], with the potential to surpass the accuracy of the best experiments to date [2]. We report on the first quantum test of the UFF using two different chemical elements, 39K and 87Rb [3], reaching a 100 ppb inaccuracy and show the potential of UFF tests in VLBAI at an inaccuracy of 10-13 and beyond. References J. Hartwig et al., New J. Phys. 17, 035011- (2015) S. Schlamminger et al., Phys. Rev. Lett. 100, 041101- (2008) D. Schlippert et al., Phys. Rev. Lett. 112, 203002 (2014)

  3. Optimum aberration coefficients for recording high-resolution off-axis holograms in a Cs-corrected TEM

    Energy Technology Data Exchange (ETDEWEB)

    Linck, Martin, E-mail: linck@ceos-gmbh.de [CEOS GmbH, Englerstr. 28, D-69126 Heidelberg (Germany)

    2013-01-15

    Amongst the impressive improvements in high-resolution electron microscopy, the Cs-corrector also has significantly enhanced the capabilities of off-axis electron holography. Recently, it has been shown that the signal above noise in the reconstructable phase can be significantly improved by combining holography and hardware aberration correction. Additionally, with a spherical aberration close to zero, the traditional optimum focus for recording high-resolution holograms ('Lichte's defocus') has become less stringent and both, defocus and spherical aberration, can be selected freely within a certain range. This new degree of freedom can be used to improve the signal resolution in the holographically reconstructed object wave locally, e.g. at the atomic positions. A brute force simulation study for an aberration corrected 200 kV TEM is performed to determine optimum values for defocus and spherical aberration for best possible signal to noise in the reconstructed atomic phase signals. Compared to the optimum aberrations for conventional phase contrast imaging (NCSI), which produce 'bright atoms' in the image intensity, the resulting optimum values of defocus and spherical aberration for off-axis holography enable 'black atom contrast' in the hologram. However, they can significantly enhance the local signal resolution at the atomic positions. At the same time, the benefits of hardware aberration correction for high-resolution off-axis holography are preserved. It turns out that the optimum is depending on the object and its thickness and therefore not universal. -- Highlights: Black-Right-Pointing-Pointer Optimized aberration parameters for high-resolution off-axis holography. Black-Right-Pointing-Pointer Simulation and analysis of noise in high-resolution off-axis holograms. Black-Right-Pointing-Pointer Improving signal resolution in the holographically reconstructed phase shift. Black-Right-Pointing-Pointer Comparison of &apos

  4. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  5. LBCS: The LOFAR Long-Baseline Calibrator Survey

    Science.gov (United States)

    Jackson, N.; Tagore, A.; Deller, A.; Moldón, J.; Varenius, E.; Morabito, L.; Wucknitz, O.; Carozzi, T.; Conway, J.; Drabent, A.; Kapinska, A.; Orrù, E.; Brentjens, M.; Blaauw, R.; Kuper, G.; Sluman, J.; Schaap, J.; Vermaas, N.; Iacobelli, M.; Cerrigone, L.; Shulevski, A.; ter Veen, S.; Fallows, R.; Pizzo, R.; Sipior, M.; Anderson, J.; Avruch, I. M.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; Corstanje, A.; de Gasperin, F.; de Geus, E.; Eislöffel, J.; Engels, D.; Falcke, H.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Hörandel, J.; Horneffer, A.; Intema, H.; Juette, E.; Kuniyoshi, M.; van Leeuwen, J.; Loose, G. M.; Maat, P.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Pandey-Pommier, M.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Rowlinson, A.; Scaife, A. M. M.; Schwarz, D. J.; Steinmetz, M.; Swinbank, J.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wise, M. W.; Yatawatta, S.; Zarka, P.

    2016-11-01

    We outline the LOFAR Long-Baseline Calibrator Survey (LBCS), whose aim is to identify sources suitable for calibrating the highest-resolution observations made with the International LOFAR Telescope, which include baselines >1000 km. Suitable sources must contain significant correlated flux density (≳ 50 - 100 mJy) at frequencies around 110-190 MHz on scales of a few hundred milliarcseconds. At least for the 200-300-km international baselines, we find around 1 suitable calibrator source per square degree over a large part of the northern sky, in agreement with previous work. This should allow a randomly selected target to be successfully phase calibrated on the international baselines in over 50% of cases. Products of the survey include calibrator source lists and fringe-rate and delay maps of wide areas - typically a few degrees - around each source. The density of sources with significant correlated flux declines noticeably with baseline length over the range 200-600 km, with good calibrators on the longest baselines appearing only at the rate of 0.5 per sq. deg. Coherence times decrease from 1-3 min on 200-km baselines to about 1 min on 600-km baselines, suggesting that ionospheric phase variations contain components with scales of a few hundred kilometres. The longest median coherence time, at just over 3 min, is seen on the DE609 baseline, which at 227 km is close to being the shortest. We see median coherence times of between 80 and 110 s on the four longest baselines (580-600 km), and about 2 min for the other baselines. The success of phase transfer from calibrator to target is shown to be influenced by distance, in a manner that suggests a coherence patch at 150-MHz of the order of 1 deg. Although source structures cannot be measured in these observations, we deduce that phase transfer is affected if the calibrator source structure is not known. We give suggestions for calibration strategies and choice of calibrator sources, and describe the access to

  6. Muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Toner, R. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Pawloski, G. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Whitehead, L. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2012-08-15

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 Multiplication-Sign 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new results are presented.

  7. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  8. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish [Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, California 94041-1518 (United States); Liebson, Lindsay [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2012-04-15

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the

  9. Solar neutrino experiments: now and future

    CERN Document Server

    Nakahata, M

    2003-01-01

    The deficit of the solar neutrino event rate (so called 'solar neutrino problem') was initially presented by Davis since 1960s. It was established as a deficit of the solar neutrino flux by Kamiokande led by Koshiba. In the recent two years, it was found that the solar neutrino problem is due to neutrino oscillations by the results from Super-Kamiokande and SNO experiments. Combining with other solar neutrino experiments, most probable solution of the neutrino oscillation parameters was the Large Mixing Angle (LMA) solution. In December 2002, the reactor long baseline experiment, KamLAND, confirmed that the LMA is the correct solution. (author)

  10. Optical reconstruction of digital off-axis Fresnel holograms using phase-only LCOS SLM "HoloEye PLUTO VIS"

    Science.gov (United States)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Porshneva, L. A.; Starikov, R. S.; Starikov, S. N.

    2014-09-01

    Optical reconstruction of digital holograms using SLM is used for imaging of 3D scenes, interferometry, microscopy, and etc. In this article reconstruction of digital off-axis Fresnel holograms using phase-only LCOS SLM "HoloEye PLUTO VIS" is described. Experimental and numerically simulated results of reconstruction are presented.

  11. Extending the detection limit of dopants for focused ion beam prepared semiconductor specimens examined by off-axis electron holography

    DEFF Research Database (Denmark)

    Cooper, David; Rivallin, Pierrette; Hartmann, Jean-Michel;

    2009-01-01

    Silicon specimens containing p-n junctions have been prepared for examination by off-axis electron holography using focused ion beam (FIB) milling. FIB milling modifies the surfaces of the specimens due to gallium implantation and the creation of defects which has the effect of reducing the activ...

  12. Step-flow growth of fluorescent 4H-SiC layers on 4 degree off-axis substrates

    DEFF Research Database (Denmark)

    Schimmel, S.; Kaiser, M.; Hens, P.;

    2013-01-01

    Homoepitaxial layers of fluorescent 4H-SiC were grown on 4 degree off-axis substrates by sublimation epitaxy. Luminescence in the green spectral range was obtained by co-doping with nitrogen and boron utilizing donor-acceptor pair luminescence. This concept opens possibilities to explore green...

  13. The measurement of electrostatic potentials in core/shell GaN nanowires using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Ciechonski, R;

    2013-01-01

    Core-shell GaN nanowires are expected to be building blocks of future light emitting devices. Here we apply off-axis electron holography to map the electrostatic potential distributions in such nanowires. To access the cross-section of selected individual nanowires, focused ion beam (FIB) milling...

  14. ALMA Long Baseline Campaigns: Phase Characteristics of Atmosphere at Long Baselines in the Millimeter and Submillimeter Wavelengths

    Science.gov (United States)

    Matsushita, Satoki; Asaki, Yoshiharu; Fomalont, Edward B.; Morita, Koh-Ichiro; Barkats, Denis; Hills, Richard E.; Kawabe, Ryohei; Maud, Luke T.; Nikolic, Bojan; Tilanus, Remo P. J.; Vlahakis, Catherine; Whyborn, Nicholas D.

    2017-03-01

    We present millimeter- and submillimeter-wave phase characteristics measured between 2012 and 2014 of Atacama Large Millimeter/submillimeter Array long baseline campaigns. This paper presents the first detailed investigation of the characteristics of phase fluctuation and phase correction methods obtained with baseline lengths up to ∼15 km. The basic phase fluctuation characteristics can be expressed with the spatial structure function (SSF). Most of the SSFs show that the phase fluctuation increases as a function of baseline length, with a power-law slope of ∼0.6. In many cases, we find that the slope becomes shallower (average of ∼0.2–0.3) at baseline lengths longer than ∼1 km, namely showing a turn-over in SSF. These power law slopes do not change with the amount of precipitable water vapor (PWV), but the fitted constants have a weak correlation with PWV, so that the phase fluctuation at a baseline length of 10 km also increases as a function of PWV. The phase correction method using water vapor radiometers (WVRs) works well, especially for the cases where PWV > 1 {mm}, which reduces the degree of phase fluctuations by a factor of two in many cases. However, phase fluctuations still remain after the WVR phase correction, suggesting the existence of other turbulent constituent that cause the phase fluctuation. This is supported by occasional SSFs that do not exhibit any turn-over; these are only seen when the PWV is low (i.e., when the WVR phase correction works less effectively) or after WVR phase correction. This means that the phase fluctuation caused by this turbulent constituent is inherently smaller than that caused by water vapor. Since in these rare cases there is no turn-over in the SSF up to the maximum baseline length of ∼15 km, this turbulent constituent must have scale height of 10 km or more, and thus cannot be water vapor, whose scale height is around 1 km. Based on the characteristics, this large scale height turbulent constituent is

  15. Application of High Harmonic Fast Waves to Off-Axis Current Drive in DIII-D

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V. L.

    2013-10-01

    High harmonic fast waves, also called ``whistlers'' or ``helicons,'' may be an effective means of driving current off-axis in high performance discharges in DIII-D. Modeling using the GENRAY ray tracing code APP shows that fast waves launched with frequency 500 MHz tend to spiral around the magnetic axis. If the electron beta is above 1.7%, the waves are damped around ρ = 0 . 5 for a broad range of conditions. The fast wave current drive in the test discharge is 2 to 4 times larger per MW than that from the electron cyclotron heating or neutral beam injection systems on DIII-D. Interestingly, the current drive location and magnitude are nearly independent of the launched n| | over the range 2 to 4. Use of a moderately large value, n| | = 3 , reduces the possibility of mode conversion to the slow wave. A traveling wave antenna is expected to be effective at launching the wave with a narrow spectrum of n| |, which also helps avoid mode conversion. A test of the physics of high harmonic fast wave current drive is planned for DIII-D. Work supported in part by the US Department of Energy under DE-FC02-04ER54698.

  16. Metallicity Distribution Functions, Radial Velocities, and Alpha Element Abundances in Three Off-Axis Bulge Fields

    CERN Document Server

    Johnson, Christian I; Kobayashi, Chiaki; Kunder, Andrea; Pilachowski, Catherine A; Koch, Andreas; De Propris, Roberto

    2013-01-01

    We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch (RGB) stars in three Galactic bulge off-axis fields located near (l,b)=(-5.5,-7), (-4,-9), and (+8.5,+9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R~18,000), high signal-to-noise ratio (S/N~75-300) spectra obtained with the Hydra spectrographs on the Blanco 4m and WIYN 3.5m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affected by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H]\\approx-1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in ...

  17. Millimeter-Wave Phaseless Antenna Measurement Based on a Modified Off-Axis Holography Setup

    Science.gov (United States)

    Arboleya, Ana; Ala-Laurinaho, Juha; Laviada, Jaime; Álvarez, Yuri; Las-Heras, Fernando; Räisänen, Antti V.

    2016-02-01

    A novel scheme for planar near-field phaseless antenna measurement based on off-axis holography is presented. Separation of the image terms of the hologram is artificially increased by multiplexing the measurements of two sub-sampled holograms generated with two 180° phase-shifted reference waves. Combination of both sub-sampled holograms produces replicas of the image terms at half a period distance of the originals in the spectral domain, while the amplitude of the original image terms is highly reduced, easing the filtering process of the desired replica. The higher separation of the image terms reduces overlapping making the method suitable also for the characterization of medium and low gain antennas in the near-field. As the separation is artificially increased, the reference antenna can be placed close to the antenna under test allowing to reduce the scan distance and the sensitivity to scan axis errors. Nevertheless, spatial multiplexing requires the retrieved data to be spatially low-pass filtered to remove the effect of the aliasing. Mirror reflection is used for illuminating the acquisition plane with the reference wave, being the phase shift achieved by means of a mechanical displacement of the mirror. The effect of the location of the reference antenna on the position and shape of the image terms and their replicas has been studied through numerical simulations for a setup in the W-band. Experimental validation of the method is presented for the characterization of three different antennas at 94 GHz.

  18. Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam.

    Science.gov (United States)

    Qu, Tan; Wu, Zhen-Sen; Shang, Qing-Chao; Li, Zheng-Jun; Bai, Lu

    2013-08-01

    Electromagnetic scattering of a zero-order Bessel beam by an anisotropic spherical particle in the off-axis configuration is investigated. Based on the spherical vector wave functions, the expansion expression of the zero-order Bessel beam is derived, and its convergence is numerically discussed in detail. Utilizing the tangential continuity of the electromagnetic fields, the expressions of scattering coefficients are given. The effects of the conical angle of the wave vector components of the zero-order Bessel beam, the ratio of the radius of the sphere to the central spot radius of the zero-order Bessel beam, the shift of the beam waist center position along both the x and y axes, the permittivity and permeability tensor elements, and the loss of the sphere on the radar cross section (RCS) are numerically analyzed. It is revealed that the maximum RCS appears in the conical direction or neighboring direction when the sphere is illuminated by a zero-order Bessel beam. Furthermore, the RCS will decrease and the symmetry is broken with the shift of the beam waist center.

  19. MODELING SiC/SiC COMPOSITES WITH OFF-AXIS FIBERS

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.

    2008-03-04

    SiC is an excellent material for fusion reactor environments, including first wall plasma facing materials and breeder-blanket modules. In the form of woven or braided composites with high-strength SiC fibers it has the requisite mechanical, thermal, and electrical properties to be a useful and versatile material system for fusion applications [1-7]. The use of SiC-reinforced composites for fusion reactors or other nuclear applications will not be restricted to 0/90 aligned fiber architecture in all cases. It is important to understand the role of fiber orientation in the strength, toughness, and time-dependent properties for such materials. The use of high-strength ceramic fibers for composites is predicated on optimizing the strength, fracture resistance, and retained strength in aggressive environments, which argues for the best use of fiber strengths, namely on-axis loading for full load transfer to the high-strength fibers. Relatively few researchers have systematically studied the effects of fiber orientation on composite properties [8-10], and none have, to the best of our knowledge, performed any time-dependent testing of composites with off-axis or inclined fiber orientations.

  20. Synthesis of ZnO:As Films Using Off-Axis Sputtering Deposition

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    As a novel oxide semiconductor material, ZnO is interesting for use in many applications. For fabricating electronic devices, it is important to have n- and p- type ZnO materials. Arsenic has been proven to be one of the p-type dopants for ZnO materials. However, information in studying the ZnAsO ternary compound films has been scarce. In order to investigate the morphology, structure and electrical properties of ZnAsO ternary compounds, ZnO:As films have been synthesized using off-axis sputtering deposition on various substrates including (100) Si and (0001) sapphire crystals. Films are grown under various growth conditions. ZnO:As targets with the atomic weight ratios of arsenic to zinc from 0.01 to 0.10 are used for film synthesis. The growth temperatures and pressures range from 350 to 550C and 5 to 150 mTorr, respectively. Argon to oxygen gas ratio for film growth is varied to examine the film quality as well. Film surface morphology, crystal structure, and compositions, are characterized using atomic force microscopy, x-ray diffraction, and energy dispersive spectroscopy, respectively. The compositions of target material and ZnO:As films grown under various conditions are then assessed. The electrical properties were also measured. The detail of these measurements will be discussed in the presentation.

  1. Influence of temperature on the optical system with large diameter off-axis parabolic lenses

    Science.gov (United States)

    Su, Yaru; Ruan, Hao; Liu, Jie

    2016-10-01

    In this work, an optical system with large diameter off-axis parabolic lenses was adopted to achieve diffraction gratings by laser interference exposure. The diffraction wavefront aberration caused by temperature variations was simulated using ZEMAX. Through theoretical analysis and optical simulation, it is proved that the diffraction wavefront aberration of holographic grating caused by the pinhole's location errors (it is assumed that when the displacement of pinhole exists along one axis, the locations of the pinhole along the other two orthogonal axes are in a state of precise adjustment ) is much larger when the displacement occurs along z axis than along the other two axes, and the diffraction wavefront aberration is the smallest when the displacement occurs along x axis. If the ambient temperature changes by 1 degree, the PV value is 0.0631λ when the location of the pinhole changes by 0.121mm along z axis, 0.0034λor 0.0672λ when the location of the pinhole changes by 0.002mm along x axis or 0.03mm along y axis. To reach the diffraction limit (that means the PV value is 0.25λ), the decentering value of the pinhole along z axis should be less than 0.0341mm. In conclusion, the position error along z axis is an important factor to influence the PV value of diffraction grating, and the effect of temperature on the PV value of diffraction grating can be neglected.

  2. Robust, compact implementation of an off-axis digital holographic microscope.

    Science.gov (United States)

    Wallace, J Kent; Rider, Stephanie; Serabyn, Eugene; Kühn, Jonas; Liewer, Kurt; Deming, Jody; Showalter, Gordon; Lindensmith, Chris; Nadeau, Jay

    2015-06-29

    Recent advances in digital technologies, such as high-speed computers and large-format digital imagers, have led to a burgeoning interest in the science and engineering of digital holographic microscopy (DHM). Here we report on a novel off-axis DHM, based on a twin-beam optical design, which avoids the limitations of prior systems, and provides many advantages, including compactness, intrinsic stability, robustness against misalignment, ease of use, and cost. These advantages are traded for a physically constrained sample volume, as well as a fixed fringe spacing. The first trade is not overly restrictive for most applications, and the latter provides for a pre-set assembly alignment that optimizes the spatial frequency sampling. Moreover, our new design supports use in both routine laboratory settings as well as extreme environments without any sacrifice in performance, enabling ready observation of microbial species in the field. The instrument design is presented in detail here, along with a demonstration of bacterial video imaging at sub-micrometer resolution at temperatures down to -15 °C.

  3. Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator

    Science.gov (United States)

    Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.

    2000-01-01

    NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.

  4. Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction

    Science.gov (United States)

    Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang

    2017-09-01

    A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.

  5. Radio follow-up observations of stellar tidal disruption flares: Constraints on off-axis jets

    Directory of Open Access Journals (Sweden)

    Körding E.

    2012-12-01

    Full Text Available Observations of active galactic nuclei (AGN and X-ray binaries have shown that relativistic jets are ubiquitous when compact objects accrete. One could therefore anticipate the launch of a jet after a star is disrupted and accreted by a massive black hole. This birth of a relativistic jet may have been observed recently in two stellar tidal disruption flares (TDFs, which were discovered in gamma-rays by Swift. Yet no transient radio emission has been detected from the tens of TDF candidates that were discovered at optical to soft X-ray frequencies. Because the sample that was followed-up at radio frequencies is small, the non-detections can be explained by Doppler boosting, which reduces the jet flux for off-axis observers. Plus, the existing followup observation are mostly within ∼ 10 months of the discovery, so the non-detections can also be due to a delay of the radio emission with respect to the time of disruption. To test the conjecture that all TDFs launch jets, we obtained 5 GHz follow-up observations with the Jansky VLA of six known TDFs. To avoid missing delayed jet emission, our observations probe 1–8 years since the estimated time of disruption. None of the sources are detected, with very deep upper limits at the 10 micro Jansky level. These observations rule out the hypothesis that these TDFs launched jets similar to radio-loud quasars. We also constrain the possibility that the flares hosted a jet identical to Sw 1644+57.

  6. Constraints on neutrinoless double $\\beta$ decay from neutrino oscillation experiments

    CERN Document Server

    Bilenky, S M; Monteno, M

    1997-01-01

    We show that, in the framework of a general model with mixing of three Majorana neutrinos and a neutrino mass hierarchy, the results of the Bugey and Krasnoyarsk reactor neutrino oscillation experiments imply strong limitations for the effective Majorana mass || that characterizes the amplitude of neutrinoless double beta decay. We obtain further limitations on || from the data of the atmospheric neutrino experiments. We discuss the possible implications of the results of the future long baseline neutrino oscillation experiments for neutrinoless double beta decay.

  7. A Comprehensive Analysis of GRB Afterglows with Deep Chandra Follow-up: Implications for Off-Axis Jets

    Science.gov (United States)

    Burrows, David N.; Zhang, Binbin; et al.

    2015-01-01

    We present a sample of 27 GRBs with detailed Swift light curves supplemented by late time Chandra observations. By fitting to empirical mathematical functions, we find a higher fraction of jet-break candidates (56%) than previous studies using Swift-only samples and different analysis techniques (12%). To answer the missing jet-break problem in general, we further develop a numerical simulation-based model which can be directly fit to the data using Monte Carlo methods. Our numerical model takes into account all the factors that can shape a jet break: (i) lateral expansion (ii) edge effects and (iii) off-axis effects. Comparing to the empirical function fit, our results provide improved fits to the light curves and better constraints on physical parameters. More importantly, our results suggest that off-axis effects are important and must be included in interpretations of GRB jet breaks.

  8. Phase-derivative-based estimation of a digital reference wave from a single off-axis digital hologram.

    Science.gov (United States)

    Khodadad, Davood

    2016-03-01

    This paper describes a method to obtain an estimated digital reference wave from a single off-axis digital hologram that matches the actual experimental reference wave as closely as possible. The proposed method is independent of a reference flat plate and speckles. The digital reference wave parameters are estimated directly from the recorded phase information. The parameters include both the off-axis tilt angle and the curvature of the reference wave. Phase derivatives are used to extract the digital reference wave parameters without the need for a phase unwrapping process. Thus, problems associated with phase wrapping are avoided. Experimental results for the proposed method are provided. The simulated effect of the digital reference wave parameters on the reconstructed image phase distribution is shown. The pseudo phase gradient originating from incorrect estimation of the digital reference wave parameters and its effect on object reconstruction are discussed.

  9. Multipole contribution from an off-axis orbit in an IR quadrupole and the consequences on the dynamic aperture

    Science.gov (United States)

    Sullivan, M.; Caspi, S.; Forest, E.; Robin, D.; Zholents, A.; Cai, Y.; Destaebler, H.; Donald, M.; Helm, R.; Irwin, J.

    1994-06-01

    The low-energy beam of the proposed PEP-II B factory enters the first quadrupole (Q1) after the interaction point off axis in order to separate the low-energy beam from the high-energy beam. The off-axis beam orbit in Q1 gives rise to significant feed-down terms from higher multipoles that originate from systematic effects and random fabrication errors. The authors study superconducting and permanent magnet designs of Q1, and look at the effect these different designs have on the dynamic aperture. Including a dipole field in a superconducting design allows one to offset the magnetic axis from the mechanical axis, thereby maintaining the separation of the beams while greatly reducing the feed-down effect. They illustrate relevant points of the discussion with tracking results for the PEP-II low-energy ring.

  10. Solar mass-varying neutrino oscillations.

    Science.gov (United States)

    Barger, V; Huber, Patrick; Marfatia, Danny

    2005-11-18

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density. Measurements of MeV and lower energy solar neutrinos will provide a rigorous test of the idea.

  11. Manufacturing progress of production of high aspherical axis and off-axis astronomical and space optics for the last decade

    Science.gov (United States)

    Semenov, Aleksandr P.; Abdulkadyrov, Magomed A.; Belousov, Sergey P.; Ignatov, Aleksandr N.; Patrikeev, Vladimir E.

    2016-10-01

    The article describes the technology of production of astronomical and space mirrors from Astrositall CO-115M including its properties and stability of these properties over time and presents the results of material long-term testing. The article also describes computer-controlled methods of large-scaled optics production and testing, including high aspherical, off-axis and thin mirrors, using the examples of production of mirrors at JSC LZOS.

  12. Geometrical control of 3C and 6H-SiC nucleation on low off-axis substrates

    DEFF Research Database (Denmark)

    Jokubavicius, Valdas; Liljedahl, Rickard; Ou, Yiyu;

    2011-01-01

    Growth of 3C or 6H-SiC epilayers on low off-axis 6H-SiC substrates can be mastered by changing the size of the on axis plane formed by long terraces in the epilayer using geometrical control. The desired polytype can be selected in thick (~200 μm) layers of both 6H-SiC and 3C-SiC polytypes on sub...

  13. Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma

    Science.gov (United States)

    Deng, Z. G.; Zhang, Z. M.; Zhang, B.; He, S. K.; Teng, J.; Hong, W.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Gu, Y. Q.

    2017-02-01

    Electrons can be efficiently injected into a plasma wave by colliding two counterpropagating laser pulses in a laser wakefield acceleration. However, the generation of a high-quality electron beam with a large charge is difficult in the traditional on-axis colliding scheme due to the growth of the electron beam duration coming from the increase of the beam charge. To solve this problem, we propose an off-axis colliding scheme, in which the collision point is away from the axis of the driver pulse. We show that the electrons injected from the off-axis region are highly concentered on the tail of the bubble even for a large trapped charge, thus feeling almost the same accelerating field. As a result, quasimonoenergetic electron beams with a large charge can be produced. The validity of this scheme is confirmed by both the particle-in-cell simulations and the Hamiltonian model. Furthermore, it is shown that a Laguerre-Gauss (LG) laser can be adopted as the injection pulse to realize the off-axis colliding injection in three dimensions symmetrically, which may be useful in simplifying the technical layout of the real experiment setup.

  14. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  15. State of the art in atomic resolution off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Linck, Martin, E-mail: mlinck@lbl.gov [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, Zum Triebenberg 50, 01328 Dresden (Germany); Freitag, Bert; Kujawa, Stephan [FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven (Netherlands); Lehmann, Michael; Niermann, Tore [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)

    2012-05-15

    As proposed by Hannes Lichte, to resolve structure-property relations not only the question 'Which atom is where?' but also the question 'Which fields are around?' has to be answered. High-resolution off-axis electron holography opens up an access to these key questions in that it allows accessing the complete exit-wave of the object provided within the information limit of the microscope, i.e. amplitude and phase including atomic details such as position and species, and moreover, information about large area electric potentials and magnetic fields, which a conventional transmission electron microscope is blind for-also when using a Cs-corrector. For an excellent object exit-wave reconstruction, special care has to be taken on the hologram quality, i.e. interference fringe contrast and electron dose. Severe restrictions are given to signal resolution by the limited brightness of the electron source. Utilizing a new high-brightness Schottky field electron emitter in a state-of-the-art transmission electron microscope operated at 300 kV, the phase signal resolution at atomic resolution can significantly be enhanced. An improvement by at least a factor of 2.88 compared to the most recently reported single hologram at atomic resolution is found. To proof the applicability of this setup to real materials science problems, a grain boundary of gold has been investigated holographically. -- Highlights: Black-Right-Pointing-Pointer Impact of the brightness on the reconstructed signal in electron holography. Black-Right-Pointing-Pointer Factor 2.8 gain in signal quality by setup with a high brightness electron gun. Black-Right-Pointing-Pointer Investigation of a grain boundary in gold with a state-of-the-art holography setup. Black-Right-Pointing-Pointer A-posteriori aberration fine-tuning for true one Angstrom resolution in the object wave. Black-Right-Pointing-Pointer Mistilt analysis on the atomic scale by numerical wave optics.

  16. Pacific Neutrinos: Towards a High Precision Measurement of CP Violation ?

    CERN Document Server

    Vallee, Claude

    2016-01-01

    The application of deep sea low energy neutrino detection techniques to long baseline neutrino physics is investigated, with a focus on a possible configuration based on a FNAL neutrino beam impinging a detector hosted by the NEPTUNE/OOI submarine observatories offshore of British Columbia.

  17. Neutrino interactions with nuclei

    CERN Document Server

    Leitner, T; Mosel, U; Alvarez-Ruso, L

    2008-01-01

    Current long baseline experiments aim at measuring neutrino oscillation parameters with a high precision. A critical quantity is the neutrino energy which can not be measured directly but has to be reconstructed from the observed hadrons. A good knowledge of neutrino-nucleus interactions is thus necessary to minimize the systematic uncertainties in neutrino fluxes, backgrounds and detector responses. In particular final-state interactions inside the target nucleus modify considerably the particle yields through rescattering, charge-exchange and absorption. Nuclear effects can be described with our coupled channel GiBUU transport model where the neutrino first interacts with a bound nucleon producing secondary particles which are then transported out of the nucleus. In this contribution, we give some examples for the application of our model focusing in particular on the MiniBooNE and K2K experiments.

  18. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  19. Effect of Non Unitarity on Neutrino Mass Hierarchy determination at DUNE, NO$\

    CERN Document Server

    Dutta, Debajyoti; Roy, Samiran

    2016-01-01

    The neutrino mass ordering is one of the principal unknowns in the neutrino sector. Long baseline neutrino experiments have the potential of resolving this issue as they are sensitive to large matter effects. The superbeam experiment DUNE is one of the most promising candidates to study the neutrino mass hierarchy, along with NO$\

  20. Lorentz noninvariant oscillations of massless neutrinos are excluded

    CERN Document Server

    Barger, Vernon; Marfatia, Danny; Whisnant, Kerry

    2011-01-01

    The bicycle model of Lorentz noninvariant neutrino oscillations without neutrino masses naturally predicts maximal mixing and a 1/E dependence of the oscillation argument for muon-neutrino to tau-neutrino oscillations of atmospheric and long-baseline neutrinos, but cannot also simultaneously fit the data for solar neutrinos and KamLAND. We search for other possible structures of the effective Hamiltonian for Lorentz noninvariant oscillations of massless neutrinos that naturally have a 1/E dependence at high neutrino energy. Due to the lack of any evidence for direction dependence, we consider only direction-independent oscillations. Although we find a number of models with a 1/E dependence for atmospheric and long-baseline neutrinos, none can also simultaneously fit solar and KamLAND data.

  1. Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Panezai, Spozmai; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2017-10-01

    A hybrid phase retrieval method with the assistance of off-axis digital holography is proposed for imaging objects on the surfaces of a transparent medium with uneven thickness. The approximate phase distribution is obtained by a constrained optimization approach from the off-axis hologram, and it is used in an iterative procedure for retrieving the complex field of the object from the Gabor hologram. Furthermore, principal component analysis is introduced for compensating for phase aberrations caused by the medium. Numerical simulations and optical experiments were carried out to validate the proposed method. The quality of the reconstructed image is improved remarkably compared to only off-axis digital holography.

  2. Future perspectives in neutrino physics: The Laguna-LBNO case

    CERN Document Server

    Buizza Avanzini, M

    2013-01-01

    LAGUNA-LBNO is a Design Study funded by the European Commission to develop the de- sign of a deep underground neutrino observatory; its physics program involves the study of neutrino oscillations at long baselines, the investigation of the Grand Unication of elemen- tary forces and the detection of neutrinos from known and unknown astrophysical sources. Building on the successful format and on the ndings of the previous LAGUNA Design Study, LAGUNA-LBNO is more focused and is specically considering Long Baseline Neutrino Oscil- lations (LBNO) with neutrino beams from CERN. Two sites, Frejus (in France at 130 km) and Pyhasalmi (in Finland at 2300 km), are being considered. Three dierent detector technolo- gies are being studied: Water Cherenkov, Liquid Scintillator and Liquid Argon. Recently the LAGUNA-LBNO consortium has submitted an Expression of Interest for a very long baseline neutrino experiment, selecting as a rst priority the option of a Liquid Argon detector at Pyhasalmi.

  3. Constraints on three flavor neutrino mixing

    Indian Academy of Sciences (India)

    Mohan Narayan

    2000-01-01

    We summarize the constraints on three flavor neutrino mixing coming from data. We first map out the allowed region in the three neutrino parameter space using solar and atmospheric neutrino data. We then incorporate the results of reactor and long baseline experiments in our analysis and show that the parameter space is drastically reduced. We conclude by pointing out that the results of Borexino and SNO will further help in constraining the parameter space.

  4. Future possibilities with Fermilab neutrino beams

    Energy Technology Data Exchange (ETDEWEB)

    Saoulidou, Niki

    2008-01-01

    We will start with a brief overview of neutrino oscillation physics with emphasis on the remaining unanswered questions. Next, after mentioning near future reactor and accelerator experiments searching for a non zero {theta}{sub 13}, we will introduce the plans for the next generation of long-baseline accelerator neutrino oscillation experiments. We will focus on experiments utilizing powerful (0.7-2.1 MW) Fermilab neutrino beams, either existing or in the design phase.

  5. Progress toward fully noninductive discharge operation in DIII-D using off-axis neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Ferron, J. R.; Luce, T. C.; Politzer, P. A.; Hyatt, A. W.; La Haye, R. J.; Lanctot, M. J.; Petrie, T. W.; Petty, C. C. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Holcomb, C. T. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550-9234 (United States); Park, J. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Turco, F.; Hanson, J. M. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States); Heidbrink, W. W. [University of California, Irvine, University Dr., Irvine, California 92697 (United States); Doyle, E. J.; Zeng, L. [University of California, Los Angeles, PO Box 957099, Los Angeles, California 90095-7099 (United States); In, Y. [FAR-TECH, Inc., 10350 Science Center Dr., San Diego, California 92121-1136 (United States); Okabayashi, M. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543-0451 (United States)

    2013-09-15

    The initial experiments on off-axis neutral beam injection into high noninductive current fraction (f{sub NI}), high normalized pressure (β{sub N}) discharges in DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] have demonstrated changes in the plasma profiles that increase the limits to plasma pressure from ideal low-n instabilities. The current profile is broadened and the minimum value of the safety factor (q{sub min}) can be maintained above 2 where the profile of the thermal component of the plasma pressure is found to be broader. The off-axis neutral beam injection results in a broadening of the fast-ion pressure profile. Confinement of the thermal component of the plasma is consistent with the IPB98(y,2) scaling, but global confinement with q{sub min}>2 is below the ITER-89P scaling, apparently as a result of enhanced transport of fast ions. A 0-D model is used to examine the parameter space for f{sub NI}=1 operation and project the requirements for high performance steady-state discharges. Fully noninductive solutions are found with 4<β{sub N}<5 and bootstrap current fraction near 0.5 for a weak shear safety factor profile. A 1-D model is used to show that a f{sub NI}=1 discharge at the top of this range of β{sub N} that is predicted stable to n=1, 2, and 3 ideal MHD instabilities is accessible through further broadening of the current and pressure profiles with off-axis neutral beam injection and electron cyclotron current drive.

  6. Significant flux trapping in single grain GdBCO bulk superconductor under off-axis field cooled magnetization

    Science.gov (United States)

    Li, Zhi; Ida, Tetsuya; Miki, Motohiro; Teshima, Hidekazu; Morita, Mitsuru; Izumi, Mitsuru

    2017-03-01

    A single grain bulk high-temperature superconductor (HTS) exhibits intensified flux trapping performance upon field cooled magnetization. The world record of trapped flux is 17.6 T achieved by using stacked two-fold GdBCO bulks. However, the majority of magnetization studies focused on the magnetization along the crystallographic c-axis. In the present study, we clarify the flux trapping performance under field cooled magnetization using an off-axis magnetic field with respect to the c-axis. The results show that the trapped flux is almost polarized along the applied field as expected. This tendency remains up to a high off-axis angle θ around 60°. It is worth mentioning that, with θ of 30°, the maximum trapped flux component B // max parallel to the c-axis significantly remains more than 96% of 1.6 T which occurs under on-axis magnetization. Meanwhile, the angular dependence of the c-axis parallel component exhibits that observed flux density is higher than that expected from 1.6 cosθ. In addition, to visualize the flux line upon magnetization at θ of 90°, we successfully demonstrate the continuous flux line trace using steel wires; different trapped flux behaviour appears when applied field penetrates the bulk through the growth sectors centre and along the growth sector boundary, respectively. We interpret these results may come from the microstructure as a result of melt growth. It is highly emphasized that the off-axis magnetization with the finite inclination angle is quite useful for introducing into the design of HTS applications.

  7. Off-axis sparse aperture imaging using phase optimization techniques for application in wide-area imaging systems.

    Science.gov (United States)

    Mahalanobis, Abhijit; Neifeld, Mark; Bhagavatula, Vijaya Kumar; Haberfelde, Thomas; Brady, David

    2009-10-01

    Sparse apertures find imaging applications in diverse fields such as astronomy and medicine. We are motivated by the design of a wide-area imaging system where sparse apertures can be used to construct novel and efficient optical designs. Specifically, we investigate the use of sparse apertures for off-axis imaging at infrared wavelengths while combating the effects of chromaticity to preserve resolution. In principle, several such sparse apertures can be interleaved within a common aperture to simultaneously image in multiple directions. This can ultimately lead to the design of wide-area imaging systems that require considerably less optical and electronic hardware. The resolution achievable using a sparse aperture is the same as that of a fully open aperture. In the case of off-axis imaging, however, the point spread function (PSF) introduces a blur due to chromaticity that degrades the resolution of the system. Of course, the blur can be eliminated by imaging at a single wavelength. However the signal-to-noise ratio (SNR) is poor, which ultimately degrades image quality. To improve SNR, it is necessary to widen the band of wavelengths, which of course degrades resolution due to chromaticity. Hence there is a fundamental trade between the SNR and the resolution as a function of bandwidth. We show that by using a combination of microprisms and phase optimized micropistons it is possible to reduce the chromatic blur over a band of wavelengths and improve the PSF considerably to restore the resolution of the image. The concepts are validated by means of simulations and verified with experimental data to demonstrate the advantages of phase optimized micropistons in off-axis sparse aperture imaging systems.

  8. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    Science.gov (United States)

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  9. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    Science.gov (United States)

    MacPhee, A. G.; Dymoke-Bradshaw, A. K. L.; Hares, J. D.; Hassett, J.; Hatch, B. W.; Meadowcroft, A. L.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V.; Hilsabeck, T. J.; Kilkenny, J. D.

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  10. Time and dose-dependent deformation of SiC/SiC composites With off-axis fiber alignment

    Energy Technology Data Exchange (ETDEWEB)

    Henager, C.H. [Pacific Northwest National Laboratory, Richland WA (United States)

    2007-07-01

    Full text of publication follows: The use of SiC-reinforced composites for fusion reactors or other nuclear applications will not be restricted to 0/90 aligned fiber architecture in all cases. It is important to understand the role of fiber orientation in the strength, toughness, and time-dependent properties for such materials. The use of high-strength ceramic fibers for composites is predicated on optimizing the strength, fracture resistance, and retained strength in aggressive environments, which argues for the best use of fiber strengths, namely on-axis loading for full load transfer to the high-strength fibers. Relatively few researchers have systematically studied the effects of fiber orientation on composite properties, and none have, to the best of our knowledge, performed any time-dependent testing of composites with off-axis fiber orientations. We have performed mechanical property tests on Hi-Nicalon Type-S fiber SiC/SiC composites as a function of fiber orientation. The mechanical testing consisted of 4- point bend strength, 4-point single-edge notched bend fracture toughness, and 4-point bend slow crack growth testing on two composite architectures from ambient to 1600 deg. C (1873 K). The two composite materials that were tested included a {+-}55 deg.-braided-weave composite with Type-S fibers inclined at 55 deg. to the principal composite axes to simulate a tubular-weave architecture and a Type-S 0/90 satin-weave composite as a reference material. A time-dependent fiber-bridging model that accounts for fiber orientation has been developed and its predictions are compared to the strength and crack growth data. The level of agreement suggests that existing models of off-axis bridging fibers are adequate for fusion reactor designs using SiC/SiC composites in off-axis orientations. However, the strength data suggests that off-axis orientations are much weaker than aligned fiber orientations and, thus, care must be taken to ensure that some fraction of

  11. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A. G., E-mail: macphee2@llnl.gov; Hatch, B. W.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Dymoke-Bradshaw, A. K. L.; Hares, J. D. [Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire OX10 8BD (United Kingdom); Hassett, J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Meadowcroft, A. L. [AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2016-11-15

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  12. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography.

    Science.gov (United States)

    Cuche, E; Marquet, P; Depeursinge, C

    2000-08-10

    Off-axis holograms recorded with a CCD camera are numerically reconstructed with a calculation of scalar diffraction in the Fresnel approximation. We show that the zero order of diffraction and the twin image can be digitally eliminated by means of filtering their associated spatial frequencies in the computed Fourier transform of the hologram. We show that this operation enhances the contrast of the reconstructed images and reduces the noise produced by parasitic reflections reaching the hologram plane with an incidence angle other than that of the object wave.

  13. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

    Science.gov (United States)

    Zhang, D.; Ray, N. M.; Petuskey, W. T.; Smith, D. J.; McCartney, M. R.

    2014-08-01

    We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (˜90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

  14. European Strategy for Accelerator-Based Neutrino Physics

    CERN Document Server

    Bertolucci, Sergio; Cervera, Anselmo; Donini, Andrea; Dracos, Marcos; Duchesneau, Dominique; Dufour, Fanny; Edgecock, Rob; Efthymiopoulos, Ilias; Gschwendtner, Edda; Kudenko, Yury; Long, Ken; Maalampi, Jukka; Mezzetto, Mauro; Pascoli, Silvia; Palladino, Vittorio; Rondio, Ewa; Rubbia, Andre; Rubbia, Carlo; Stahl, Achim; Stanco, Luca; Thomas, Jenny; Wark, David; Wildner, Elena; Zito, Marco

    2012-01-01

    Massive neutrinos reveal physics beyond the Standard Model, which could have deep consequences for our understanding of the Universe. Their study should therefore receive the highest level of priority in the European Strategy. The discovery and study of leptonic CP violation and precision studies of the transitions between neutrino flavours require high intensity, high precision, long baseline accelerator neutrino experiments. The community of European neutrino physicists involved in oscillation experiments is strong enough to support a major neutrino long baseline project in Europe, and has an ambitious, competitive and coherent vision to propose. Following the 2006 European Strategy for Particle Physics (ESPP) recommendations, two complementary design studies have been carried out: LAGUNA/LBNO, focused on deep underground detector sites, and EUROnu, focused on high intensity neutrino facilities. LAGUNA LBNO recommends, as first step, a conventional neutrino beam CN2PY from a CERN SPS North Area Neutrino Fac...

  15. Energy deposition in a thin copper target downstream and off-axis of a proton-radiography target

    CERN Document Server

    Greene, G A; Snead, C L; Hanson, A L; Murray, M M

    2002-01-01

    A series of proton energy-deposition experiments was conducted to measure the energy deposited in a copper target located downstream and off-axis of a high-energy proton-radiography target. The proton/target interactions involved low-intensity bunches of protons at 24 GeV/c onto a spherical target consisting of concentric shells of tungsten and copper. The energy-deposition target was placed at five locations downstream of the proton-radiography target, off-axis of the primary beam transport, and was either unshielded or shielded by 5 or 10 cm of lead. Maximum temperature rises measured in the energy-deposition target due to single bunches of 5x10 sup 1 sup 0 protons on the proton-radiography target were approximately 20 mK per bunch. The data indicated that the scattered radiation was concentrated close to the primary transport axis of the beam line. The energy deposited in the energy-deposition target was reduced by moving the target radially away from the primary transport axis. Placing lead shielding in f...

  16. THE ABUNDANCE OF X-SHAPED RADIO SOURCES. I. VLA SURVEY OF 52 SOURCES WITH OFF-AXIS DISTORTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David H.; Cohen, Jake P.; Lu, Jing [Department of Physics MS-057, Brandeis University, Waltham, MA 02454-0911 (United States); Saripalli, Lakshmi; Subrahmanyan, Ravi, E-mail: roberts@brandeis.edu [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2015-09-15

    Cheung identified a sample of 100 candidate X-shaped radio galaxies using the NRAO FIRST survey; these are small-axial-ratio extended radio sources with off-axis emission. Here, we present radio images of 52 of these sources that have been made from archival Very Large Array data with resolution of about 1″. Fifty-one of the 52 were observed at 1.4 GHz, 7 were observed at 1.4 and 5 GHz, and 1 was observed only at 5 GHz. We also present overlays of the Sloan Digital Sky Survey red images for 48 of the sources, and DSS II overlays for the remainder. Optical counterparts have been identified for most sources, but there remain a few empty fields. Our higher resolution VLA images along with FIRST survey images of the sources in the sample reveal that extended extragalactic radio sources with small axial ratios are largely (60%) cases of double radio sources with twin lobes that have off-axis extensions, usually with inversion-symmetric structure. The available radio images indicate that at most 20% of sources might be genuine X-shaped radio sources that could have formed by a restarting of beams in a new direction following an interruption and axis flip. The remaining 20% are in neither of these categories. The implications of this result for the gravitational wave background are discussed in Roberts et al.

  17. Characterization of Al-Doped ZnO Transparent Conducting Thin Film Prepared by Off-Axis Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Sin-Liang Ou

    2016-01-01

    Full Text Available The off-axis sputtering technique was used to deposit Al-doped ZnO (AZO films on glass substrates at room temperature. For the illustration of the sample position in the sputtering chamber, the value of R/r is introduced. Here, r is the radius of AZO target and R is the distance between the sample and the center of substrate holder. A systematic study for the effect of deposition parameters on structural, optical, and electrical properties of AZO films has been investigated in detail. As the sample position of R/r is fixed at 1.8, it is found that the as-deposited AZO film has relatively low resistivity of 2.67 × 10−3 Ω-cm and high transmittance above 80% in the visible region. Additionally, after rapid thermal annealing (RTA at 600°C with N2 atmosphere, the resistivity of this AZO film can be further reduced to 1.19 × 10−3 Ω-cm. This indicates the AZO films prepared by off-axis magnetron sputtering and treated via the appropriate RTA process have great potential in optoelectronic applications.

  18. The Abundance of X-Shaped Radio Sources I. VLA Survey of 52 Sources With Off-Axis Distortions

    CERN Document Server

    Roberts, David H; Lu, Jing; Saripalli, Lakshmi; Subrahmanyan, Ravi

    2015-01-01

    Cheung (2007) identified a sample of 100 candidate X-shaped radio galaxies using the NRAO FIRST survey; these are small-axial-ratio extended radio sources with off-axis emission. Here we present radio images of 52 of these sources that have been made from archival Very Large Array data with resolution of about 1 arcsec. Fifty-one of the 52 were observed at 1.4 GHz, seven were observed at 1.4 GHz and 5 GHz, and one was observed only at 5 GHz. We also present overlays of the SDSS red images for 41 of the sources, and DSS II overlays for the remainder. Optical counterparts have been identified for most sources, but there remain a few empty fields. Our higher resolution VLA images along with FIRST survey images of the sources in the sample reveal that extended extragalactic radio sources with small axial ratios are largely (60%) cases of double radio sources with twin lobes that have off-axis extensions, usually with inversion-symmetric structure. The available radio images indicate that at most 20% sources might...

  19. Domain structure and perpendicular magnetic anisotropy in CoFe/Pd multilayers using off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Desai, E-mail: dzhang28@asu.edu [School of Engineering for Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Shaw, Justin M., E-mail: justin.shaw@nist.gov [Electromagnetics Division, National Institute of Standards and Technology, Boulder, CO 80305 (United States); Smith, David J., E-mail: David.Smith@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287, United States (United States); McCartney, Martha R., E-mail: Molly.McCartney@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287, United States (United States)

    2015-08-15

    Multilayers of Co{sub 90}Fe{sub 10}/Pd with different bilayer thicknesses, have been deposited by dc-magnetron sputtering on thermally oxidized Si wafers. Transmission electron microscopy showed that the highly textured crystalline films had columnar structure, while scanning transmission electron microscopy and atomic force microscopy respectively indicated some layer waviness and surface roughness. The magnetic domain structure and perpendicular magnetic anisotropy (PMA) of the Co{sub 90}Fe{sub 10}/Pd multilayers were investigated by off-axis electron holography and magnetic force microscopy. The Co{sub 90}Fe{sub 10} layer thickness was the primary factor determining the magnetic domain size and the perpendicular magnetization: both decreased as the thickness increased. The strongest PMA was observed in the sample with the thinnest magnetic layer of 0.45 nm. - Highlights: • Multilayers of C{sub o90}F{sub e10}/Pd with different bilayer thickness were deposited using sputtering. • Sample examined using (S)TEM and off-axis electron holography.. • C{sub o90}F{sub e10} layer thickness was the primary factor determining magnetic domain morphology. • Perpendicular magnetic isotropy (PMA) decreased as C{sub o90}F{sub e10} layer thickness increased.

  20. The African Very Long Baseline Interferometry Network:The Ghana Antenna Conversion

    CERN Document Server

    Copley, C J; Loots, A; Bangani, S; Cloete, K; Combrinck, L; Gioio, S; Ludick, J; Nicolson, G; Pollak, A W; Pretorius, P; Quick, J F H; Taylor, G; Ebrahim, F; Humphreys, C; Maake, K; Maganane, R; Majinjiva, R; Mapunda, A; Manzini, M; Mogakwe, N; Moseki, A; Qwabe, N; Royi, N; Rosie, K; Smith, J; Schietekat, S; Toruvanda, O; Tong, C; van Niekerk, B; Walbrugh, W; Zeeman, W

    2016-01-01

    The African Very Long Baseline Interferometry Network (AVN) is a pan-African project that will develop Very Long Baseline Interferometry (VLBI) observing capability in several countries across the African continent, either by conversion of existing telecommunications antennas into radio telescopes, or by building new ones. This paper focuses on the conversion of the Nkutunse satellite communication station (near Accra, Ghana), specifically the early mechanical and infrastructure upgrades, together with the development of a custom ambient receiver and digital backend. The paper concludes with what remains to be done, before the station can be commissioned as an operational VLBI station.

  1. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  2. nuSTORM: Neutrinos from STORed Muons

    CERN Document Server

    Kyberd, P; Coney, L; Pascoli, S; Ankenbrandt, C; Brice, S J; Bross, A D; Cease, H; Kopp, J; Mokhov, N; Morfin, J; Neuffer, D; Popovic, M; Rubinov, P; Striganov, S; Blondel, A; Bravar, A; Noah, E; Bayes, R; Soler, F J P; Dobbs, A; Long, K; Pasternak, J; Santos, E; Wascko, M O; Agarwalla, S K; Bogacz, S A; Mori, Y; Lagrange, J B; de Gouvêa, A; Kuno, Y; Sato, A; Blackmore, V; Cobb, J; Tunnell, C D; Link, J M; Huber, P; Winter, W

    2012-01-01

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly give tantalizing hints of new physics. Models beyond the neutrino-SM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or "sterile." Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this Letter of Intent, we describe a facility, nuSTORM, "Neutrinos from STORed Muons," and an appropriate far detector for neutrino oscillation searches at short baseline. We present sensitivity plots that indicated that this experimental approach can provide over 10 sigma confirmation or rejection of the LSND/MinBooNE results. In addition we indicate how the facility can be used to make precision neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments.

  3. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Justin; /University Coll. London; Whitehead, Lisa; /Brookhaven

    2010-01-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 x 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented.

  4. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Lisa [Brookhaven National Laboratory, Building 510E, P.O. Box 5000, Upton, NY 11973-5000 (United States); Evans, Justin [Physics building, University College London, Gower Street, London - WC1E 6BT (United Kingdom)

    2010-07-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a nonzero value for the neutrino mixing angle {theta}{sub 13}. The present 7x10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented. (author)

  5. Active galactic nuclei cores in infrared-faint radio sources: Very long baseline interferometry observations using the Very Long Baseline Array

    CERN Document Server

    Herzog, Andreas; Norris, Ray P; Spitler, Lee R; Deller, Adam T; Collier, Jordan D; Parker, Quentin A

    2015-01-01

    Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z >~ 2). Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginal...

  6. A strong adaptable autofocusing approach of off-axis infrared digital holography under different quality conditions of holograms

    Science.gov (United States)

    Liu, Ning; Yang, Chao

    2017-01-01

    In this paper, we present an innovative autofocusing criterion for the reconstruction of infrared digital holograms. This criterion has the advantages of fast, efficient and precision when determining the reconstruction distance of off-axis digital holography. This criterion is a mean-free high frequency calculation process. We focus on the problem of mean value drifting found in previous published methods and design our new approach to solve it. Unlike the previous methods perform well only with high quality holograms, our method is effective for both high and low quality holograms. Even when hologram is degraded by destructive interference, our method still performs well. This method helps to automatically determine the precise reconstruction distance, and we are sure that this technology can be applied in industrial applications in the future.

  7. Structural Design of a 4-Meter Off-Axis Space Telescope for the Habitable-Zone Exoplanet Direct Imaging Mission

    Science.gov (United States)

    Arnold, William, Sr.; Stahl, H Philip

    2017-01-01

    This design study was conducted to support the HABEX project. There are a number of companion papers at this conference which go into detail on what all the HABEX goals are. The objective of this paper is to establish a baseline primary mirror design which satisfies the following structural related requirements. The designs in this study have a high TRL (Technology Readiness Level), realistic manufacturing limits and performance in line with the HABEX mission. A secondary goal of the study was to evaluate a number competing criteria for the selection. Questions such as differences in the on axis versus off axis static and dynamic response to disturbances. This study concentrates on the structural behavior, companion papers cover thermal and long term stability aspects of the problem.

  8. Propagation properties of off-axis Hermite-cosh-Gaussian beam combinations through a first-order optical system

    Institute of Scientific and Technical Information of China (English)

    Tang Qian-Jin; Chen Da-Ming; Yu Yong-Ai; Hu Qi-Quan

    2006-01-01

    Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh-Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.

  9. Strain Rate Dependent Deformation of a Polymer Matrix Composite with Different Microstructures Subjected to Off-Axis Loading

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2014-01-01

    Full Text Available This paper aims to investigate the comprehensive influence of three microstructure parameters (fiber cross-section shape, fiber volume fraction, and fiber off-axis orientation and strain rate on the macroscopic property of a polymer matrix composite. During the analysis, AS4 fibers are considered as elastic solids, while the surrounding PEEK resin matrix exhibiting rate sensitivities are described using the modified Ramaswamy-Stouffer viscoplastic state variable model. The micromechanical method based on generalized model of cells has been used to analyze the representative volume element of composites. An acceptable agreement is observed between the model predictions and experimental results found in the literature. The research results show that the stress-strain curves are sensitive to the strain rate and the microstructure parameters play an important role in the behavior of polymer matrix.

  10. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    Science.gov (United States)

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  11. Off axis holography of doped and intrinsic silicon nanowires: Interpretation and influence of fields in the vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hertog, M I den; Rouviere, J L; Gentile, P; Oehler, F [INAC/SP2M, 17 rue des Martyrs, 38052 Grenoble Cedex 9 (France); Schmid, H; Bjoerk, M T; Riel, H; Karg, S; Riess, W [IBM Research GmbH, Saeumerstrasse 4, 8803 Rueschlikon (Switzerland); Cooper, D; Dhalluin, F; Ferret, P; Rivallin, P [LETI, 17 rue des Martyrs, 38052 Grenoble Cedex 9 (France); Baron, T, E-mail: martien.den-hertog@cea.f [LTM, CNRS UMR-5129, 17 rue des Martyrs, 38052 Grenoble Cedex 9 (France)

    2010-02-01

    Intrinsic and axially modulated doped silicon nanowires (NWs) were studied by off-axis electron holography. Phase gradients in the vacuum were observed and compared to simulations of NWs with a varying charge density at the wire-oxide interface. It seems that intrinsic NWs are positively charged with a charge density around 2x10{sup 10} e.c. (electron charges) cm{sup -2} and axially modulated doped NWs (with n-doped regions) are negatively charged with a charge density around -1x10{sup 12} e.c. cm{sup -2}. Expected fringing fields around the doped regions are incidentally observed but smaller than predicted by simulations. The effect of the surface charge on the reference wave is evaluated, and should not modify the obtained phase image.

  12. Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada)

    2014-07-21

    Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.

  13. Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry

    Science.gov (United States)

    Spencer, Mark F.; Raynor, Robert A.; Banet, Matthias T.; Marker, Dan K.

    2017-03-01

    This paper develops wave-optics simulations which explore the estimation accuracy of digital-holographic detection for wavefront sensing in the presence of distributed-volume or "deep" turbulence and detection noise. Specifically, the analysis models spherical-wave propagation through varying deep-turbulence conditions along a horizontal propagation path and formulates the field-estimated Strehl ratio as a function of the diffraction-limited sampling quotient and signal-to-noise ratio. Such results will allow the reader to assess the number of pixels, pixel field of view, pixel-well depth, and read-noise standard deviation needed from a focal-plane array when using digital-holographic detection in the off-axis image plane recording geometry for deep-turbulence wavefront sensing.

  14. High-resolution, flat-field, plane-grating, f/10 spectrograph with off-axis parabolic mirrors.

    Science.gov (United States)

    Schieffer, Stephanie L; Rimington, Nathan W; Nayyar, Ved P; Schroeder, W Andreas; Longworth, James W

    2007-06-01

    A high-resolution, flat-field, plane-grating, f/10 spectrometer based on the novel design proposed by Gil and Simon [Appl. Opt. 22, 152 (1983)] is demonstrated. The spectrometer design employs off-axis parabolic collimation and camera mirrors in a configuration that eliminates spherical aberrations and minimizes astigmatism, coma, and field curvature in the image plane. In accordance with theoretical analysis, the performance of this spectrometer achieves a high spatial resolution over the large detection area, which is shown to be limited only by the quality of its optics and their proper alignment within the spatial resolution of a 13 microm x 13 microm pixelated CCD detector. With a 1500 lines/mm grating in first order, the measured spectral resolving power of lambda/Dlambda = 2.5(+/-0.5) x 10(4) allows the clear resolution of the violet Ar(I) doublet at 419.07 and 419.10 nm.

  15. Null test of an off-axis parabolic mirror. II. Configuration with planar reference wave and spherical return surface.

    Science.gov (United States)

    Burke, Jan

    2009-03-01

    This paper complements our previous study on testing a 25.4 mm diameter diamond-turned 90 masculine off-axis commercial-quality parabolic mirror with a spherical test wave in a phase-shifting Fizeau interferometer (Opt. Express 17, 3196-3210 (2009). In this study I reverse the optical system and use the Fizeau interferometer with a planar reference surface, auxiliary components, and the surface of the transmission sphere as a reflecting spherical return surface. As in the previous paper, I present a description of the necessary steps for alignment and measurement validation. The reversal of the optical system, and associated co-ordinate systems, necessitates some changes of hardware and analysis that provide insight into the underlying symmetries, and may prove useful in a wider context.

  16. Near-diffraction-limited segmented broad area diode laser based on off-axis spectral beam combining

    DEFF Research Database (Denmark)

    Jensen, O.B.; Thestrup Nielsen, Birgitte; Andersen, Peter E.;

    2006-01-01

    The beam quality of a 500-mu m-wide broad area diode laser with five active segments has been improved beyond the beam quality of the individual segments. The principle of this new laser system is based on off-axis feedback in combination with spectral beam combining. By using a double......-feedback scheme we are able to improve the beam quality of the laser by a factor of 23 from M-2 = 55 for the free-running diode laser to M-2 = 2.4 for the laser with feedback at a drive current of 2.2 A. The improved M-2 value is a factor of 3.4 below M-2 = 8.2 for a single free-running segment. This is the first...... time that the beam quality of a segmented broad area diode laser has been improved beyond the beam quality of the individual segments....

  17. Simple, portable, and low-cost microscope based on off-axis digital holography using two spherical waves.

    Science.gov (United States)

    Lu, Yujie; Liu, Yunhui; Lau, Tak Kit

    2014-08-01

    In this Letter, we present a highly compact and low-cost holographic microscope which is especially suitable for observing transparent samples with certain specific supports such as microchannels. This microscope employs only an inexpensive laser diode, a dual precision round aperture, and a digital light sensor. The total cost of the system except for the digital sensor is less than 400 US dollars, and a hand-held system can be made based on our setup. Besides the simple, cheap, and compact setup, this system can capture the off-axis interference pattern of two spherical waves and reconstruct the quantitative phase profile along with the amplitude image of the observed sample with the twin image eliminated in real time. Experimental results show that the resolution of our system is better than 2 μm, and the 3D structure of blood cells can be retrieved.

  18. Measuring the Disappearance of Muon Neutrinos with the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Alexander [Univ. College London, Bloomsbury (United Kingdom)

    2013-08-01

    MINOS is a long baseline neutrino oscillation experiment. It measures the flux from the predominately muon neutrino NuMI beam first 1 km from beam start and then again 735 km later using a pair of steel scintillator tracking calorimeters. The comparison of measured neutrino energy spectra at our Far Detector with the prediction based on our Near Detector measurement allows for a measurement of the parameters which define neutrino oscillations. This thesis will describe the most recent measurement of muon neutrino disappearance in the NuMI muon neutrino beam using the MINOS experiment.

  19. Design of CMOS compatible and compact, thermally-compensated electro-optic modulator based on off-axis microring resonator for dense wavelength division multiplexing applications.

    Science.gov (United States)

    Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K

    2014-09-22

    In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.

  20. Electrical properties of SiO{sub 2}/SiC interfaces on 2°-off axis 4H-SiC epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vivona, M., E-mail: marilena.vivona@imm.cnr.it [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy); Fiorenza, P. [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy); Sledziewski, T.; Krieger, M. [Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Department of Physics, Staudtstrasse 7/Bld. A3, D-91058 Erlangen (Germany); Chassagne, T.; Zielinski, M. [NOVASiC, Savoie Technolac, BP267, F-73375 Le Bourget-du-Lac Cedex (France); Roccaforte, F. [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Processing and electrical characterization of MOS capacitors fabricated on 4H-SiC epilayers grown on 2°-off axis heavily doped substrates. • Excellent characteristics of the SiO{sub 2}/4H-SiC interface in terms of flatness, interface state density and oxide reliability. • Electrical behavior of the MOS devices comparable with that obtained for the state-of-the-art of 4°-off axis 4H-SiC material. • Demonstration of the maturity of the 2°-off axis material for application in 4H-SiC MOSFET device technology. - Abstract: In this paper, the electrical properties of the SiO{sub 2}/SiC interface on silicon carbide (4H-SiC) epilayers grown on 2°-off axis substrates were studied. After epilayer growth, chemical mechanical polishing (CMP) allowed to obtain an atomically flat surface with a roughness of 0.14 nm. Metal-oxide-semiconductor (MOS) capacitors, fabricated on this surface, showed an interface state density of ∼1 × 10{sup 12} eV{sup −1} cm{sup −2} below the conduction band, a value which is comparable to the standard 4°-off-axis material commonly used for 4H-SiC MOS-based device fabrication. Moreover, the Fowler–Nordheim and time-zero-dielectric breakdown analyses confirmed an almost ideal behavior of the interface. The results demonstrate the maturity of the 2°-off axis material for 4H-SiC MOSFET device fabrication.

  1. Growth of strained ZnSe layers on GaAs substrates by pulsed laser deposition carried out in an off-axis deposition geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ganguli, Tapas [Raja Ramanna Centre for Advanced Technology, Indore, 452 013 (India)], E-mail: tapas@cat.ernet.in; Porwal, Sanjay; Sharma, Tarun; Ingale, Alka; Kumar, Shailendra; Tiwari, Pragya [Raja Ramanna Centre for Advanced Technology, Indore, 452 013 (India); Balamurugan, A.K.; Rajagopalan, S.; Tyagi, A.K. [Materials Science Division, IGCAR, Kalpakkam 603 102 (India); Chandrasekaran, K.S.; Arora, B.M. [Department of Condensed Matter Physics and Materials Science, TIFR, Mumbai 400 005 (India); Rustagi, K.C. [Department of Physics, IIT, Powai, Mumbai 400 076 (India)

    2007-07-31

    We have deposited thin layers of ZnSe on (001) oriented GaAs substrates by pulsed laser deposition at different incident laser fluence (referred to as normal geometry) and in an off-axis geometry where the plasma plume direction is at an angle of {approx} 25{sup o} away from the direction of the substrate. The crystalline quality of these layers has been studied by high-resolution X-ray diffraction measurements and Raman scattering. We find that we are in a position to deposit pseudomorphic strained layers of ZnSe on GaAs in the off-axis deposition geometry when the ZnSe layer thickness is less than the critical thickness of ZnSe on GaAs i.e. 150 nm. Secondary ion mass spectroscopy, scanning electron microscopy, photoluminescence and electrical transport measurements have also been carried out in all the ZnSe layers and the results of all the above characterizations have been compared for the normal geometry and the off-axis geometry of deposition. All the results indicate that the ZnSe layers deposited in the off-axis geometry have better crystalline quality and an improved interface as compared to the ones deposited in the normal geometry. We attribute this improvement in the overall quality of the ZnSe layers in the off-axis geometry to the reduction in the average energy of the plume particles that reach the GaAs substrate in the off-axis geometry.

  2. Multileaf collimator tongue-and-groove effect on depth and off-axis doses: A comparison of treatment planning data with measurements and Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Jung [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul (Korea, Republic of); Department of Biomedical Engineering, Seoul National University, Seoul (Korea, Republic of); Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul (Korea, Republic of); Kim, Siyong [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States); Park, Yang-Kyun [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul (Korea, Republic of); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Kim, Jung-in [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Park, Jong Min [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul (Korea, Republic of); Department of Transdisciplinary Studies, Seoul National University, Seoul (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul (Korea, Republic of); Department of Transdisciplinary Studies, Seoul National University, Seoul (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of)

    2015-01-01

    To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF ranged from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.

  3. Neutrino oscillations: Present status and outlook

    Indian Academy of Sciences (India)

    Thomas Schwetz

    2009-01-01

    The status of neutrino oscillations from global data is summarized, with the focus on the three-flavour picture. The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Further-more, an outlook on the measurement of the mixing angle 13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type of the neutrino mass ordering by long-baseline experiments in the long term future are given.

  4. Unveiling neutrino mixing and leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; /Fermilab

    2005-01-01

    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle {theta}{sub 13} and the CP-phase {delta}. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.

  5. Effects of small misalignments on the intensity and Strehl ratio for a laser beam focused by an off-axis parabola.

    Science.gov (United States)

    Labate, Luca; Ferrara, Paolo; Fulgentini, Lorenzo; Gizzi, Leonida A

    2016-08-10

    A general procedure is described to calculate the intensity and Strehl ratio, at a generic plane in the focal region, of a beam focused by an off-axis parabolic mirror in the presence of small misalignments. The general theoretical framework is first developed, which allows a full vector diffraction treatment in the case of general misalignments. Then, a parametric numerical study is reported, aimed at highlighting the tolerances of both the intensity and Strehl ratio for small misalignments, for different focusing and off-axis parabola parameters. A set of experimental measurements aimed at validating the theoretical model is also discussed.

  6. Neutrino induced charged-current coherent $\\rho$ production

    CERN Document Server

    ,

    2013-01-01

    We present the latest results of coherent $\\rho$ (Coh$\\rho$) production using the large data set collected by the NOMAD detector in which the momenta, charges, and photons are precisely measured. We discuss the application of using Coh$\\rho$ process to constrain the neutrino flux with the proposed Long-Baseline Neutrino Experiment Near Detector, the high resolution Straw Tube Tracker.

  7. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.

    2015-06-01

    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  8. Sterile Neutrinos and Flavor Ratios in IceCube

    CERN Document Server

    Brdar, Vedran; Wang, Xiao-Ping

    2016-01-01

    The flavor composition of astrophysical neutrinos observed in neutrino telescopes is a powerful discriminator between different astrophysical neutrino production mechanisms and can also teach us about the particle physics properties of neutrinos. In this paper, we investigate how the possible existence of light sterile neutrinos can affect these flavor ratios. We consider two scenarios: (i) neutrino production in conventional astrophysical sources, followed by partial oscillation into sterile states; (ii) neutrinos from dark matter decay with a primary flavor composition enhanced in tau neutrinos or sterile neutrinos. Throughout the paper, we constrain the sterile neutrino mixing parameters from a full global fit to short and long baseline data. We present our results in the form of flavor triangles and, for scenario (ii), as exclusion limits on the dark matter mass and lifetime, derived from a fit to IceCube high energy starting events and through-going muons. We argue that identifying a possible flux of neu...

  9. Neutrino Oscillation Results from NOvA

    CERN Document Server

    CERN. Geneva

    2016-01-01

    NOvA is an accelerator long-baseline neutrino oscillation experiment optimised to measure electron neutrino appearance in a high-purity beam of muon neutrinos from Fermilab. The exciting discovery of the theta13 neutrino mixing angle in 2012 has opened a door to making multiple new measurements of neutrinos. These include leptonic CP violation, the neutrino mass ordering and the octant of theta23. NOvA with its 810km baseline and higher energy beam has about triple the matter effect of T2K which opens a new window on the neutrino mass ordering. With about 20% of our design beam exposure and significant analysis improvements we have recently released updated results. I will present both our disappearance and appearance measurements.

  10. Constraints on SME Coefficients from Lunar Laser Ranging, Very Long Baseline Interferometry, and Asteroid Orbital Dynamics

    CERN Document Server

    Poncin-Lafitte, C Le; Hees, A; Bouquillon, S; Lambert, S; Francou, G; Angonin, M -C; Bailey, Q G; Hestroffer, D; David, P; Meynadier, F; Wolf, P

    2016-01-01

    Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both General Relativity and the Standard Model of particle physics, called the Standard-Model Extension or SME. We consider in this work only the pure gravitational sector of the minimal SME. We present new constraints on the SME coefficients obtained from lunar laser ranging, very long baseline interferometry, and planetary motions.

  11. Neutrino Astrophysics

    CERN Document Server

    Volpe, Cristina

    2016-01-01

    We summarize the progress in neutrino astrophysics and emphasize open issues in our understanding of neutrino flavor conversion in media. We discuss solar neutrinos, core-collapse supernova neutrinos and conclude with ultra-high energy neutrinos.

  12. Neutrinos and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Physics. Center for Neutrino Physics

    2016-09-16

    Scientifically, this grant supported the further development and maintenance of GLoBES, which serves as standard tool for all long-baseline oscillation experiments, including DUNE. A strong focus was on the oscillation physics in long-baseline experiments including the difficult issues of optimization and systematics as well as search for new physics. Sterile neutrinos at the eV-scale, their phenomenological implications and possibilities to test their existence represented another major topic. In particular, we have performed the to-date most accurate computation of the antineutrino spectrum resulting from fissions in a nuclear reactor. In synergy with this research area we also explored potential applications to nuclear non-proliferation safeguards.

  13. Dependence of NaI(Tl) detector intrinsic effciency on source-detector distance, energy and off-axis distance: Their implications for radioactivity measurements

    Indian Academy of Sciences (India)

    F O Ogundare; E O Oniya; F A Balogun

    2008-05-01

    In this work the dependence of intrinsic effciency of a NaI(Tl) detector of radius 3.82 cm and height 7.62 cm on source{detector distance (), source-off-axis distance (0) and -photon energy have been investigated using analytical and Monte Carlo methods. The results showed that, for a given off-axis distance, there exists a value of the ratio of source-detector distance () to detector radius () where intrinsic efficiency is minimum. This / value at which minimum e±ciency occurs approaches zero as off-axis distance increases and it is almost constant with increase in energy. In the region where / < 0:01, a criteria given by Jehouani et al [1] for good photon detection, intrinsic efficiency decreases with increasing off-axis distance. The implications of the results for radioactivity measurement and radiation protection are discussed. Chacteristics of intrinsic e±ciency in the regions / < 0:01 and / > 10 are also compared.

  14. Hydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Williams, Wyn;

    2014-01-01

    The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (<50 nm) from mixed FeCl3 / FeCl2 precursor solution at pH ~ 12 has been confirmed using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry. Off-axis electron holography allowed for visuali...

  15. Two-dimensional X-ray focusing by off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source

    Science.gov (United States)

    Grigoriev, Maxim; Fakhrtdinov, Rashid; Irzhak, Dmitry; Firsov, Alexander; Firsov, Anatoly; Svintsov, Alexander; Erko, Alexey; Roshchupkin, Dmitry

    2017-02-01

    The results of studying a two-dimensional X-ray focusing by an off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source are presented. This optics enables obtaining a focal spot of 2 μm on the laboratory X-ray source with a focusing efficiency of 30% at a high signal/noise ratio.

  16. Towards quantitative off-axis electron holographic mapping of the electric field around the tip of a sharp biased metallic needle

    DEFF Research Database (Denmark)

    Beleggia, Marco; Kasama, Takeshi; Larson, D. J.

    2014-01-01

    We apply off-axis electron holography and Lorentz microscopy in the transmission electron microscope to map the electric field generated by a sharp biased metallic tip. A combination of experimental data and modelling provides quantitative information about the potential and the field around the ...

  17. Nuclear propelled vessels and neutrino oscillation experiments.

    Science.gov (United States)

    Detwiler, J; Gratta, G; Tolich, N; Uchida, Y

    2002-11-04

    We study the effect of naval nuclear reactors on the study of neutrino oscillations. We find that the presence of naval reactors at unknown locations and times may limit the accuracy of future very long baseline reactor-based neutrino oscillation experiments. At the same time, we argue that a nuclear powered surface ship such as a large Russian icebreaker may provide an ideal source for precision experiments.

  18. Multi-Dimensional Simulations for Early Phase Spectra of Aspherical Hypernovae: SN 1998bw and Off-Axis Hypernovae

    CERN Document Server

    Tanaka, Masaomi; Mazzali, Paolo A; Nomoto, Ken'ichi

    2007-01-01

    Early phase optical spectra of aspherical jet-like supernovae (SNe) are presented. We focus on energetic core-collapse SNe, or hypernovae. Based on hydrodynamic and nucleosynthetic models, radiative transfer in SN atmosphere is solved with a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI. Since the luminosity is boosted in the jet direction, the temperature there is higher than in the equatorial plane by ~ 2,000 K. This causes anisotropic ionization in the ejecta. Emergent spectra are different depending on viewing angle, reflecting both aspherical abundance distribution and anisotropic ionization. Spectra computed with an aspherical explosion model with kinetic energy 20 x 10^{51} ergs are compatible with those of the Type Ic SN 1998bw if ~ 10-20% of the synthesized metals are mixed out to higher velocities. The simulations enable us to predict the properties of off-axis hypernovae. Even if an aspherical hypernova explosion is observed from the side, it should show hypernova-like spectra but ...

  19. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  20. Design and optimization for main support structure of a large-area off-axis three-mirror space camera.

    Science.gov (United States)

    Wei, Lei; Zhang, Lei; Gong, Xiaoxue; Ma, Dong-Mei

    2017-02-01

    To ensure excellent dynamic and static performance of large-area, off-axis three-mirror anastigmat (TMA)-space cameras, and to realize a lighter weight for the entire system, a truss support structure design is applied in this study. In contrast to traditional methods, this paper adopts topology optimization based on the solid isotropic materials with penalization method on the truss structure design. Through reasonable object function and constraint choice, optimal topology results that have concerned the effect of gravity in the X, Y, and Z axis are achieved. Subsequently, the initial truss structure is designed based on the results and manufacturing technology. Moreover, to reduce the random vibration response of the secondary mirror and fold mirror without mechanical performance decline of the whole truss, a weighted optimization of truss size is proposed and the final truss structure is achieved. Finite element analysis and experiments have confirmed the reliability of the design and optimization method. The designed truss-structure camera maintains excellent static performance with the relative optical axis angle between the primary mirror and corresponding mirrors (secondary mirror and fold mirror) being less than 5.3 in. Dynamic performances, such as random and sinusoidal vibration responses, also met the requirements that the acceleration RMS value for mount points of the fold mirror should be less than 20 g and the primary frequency reached 97.2 Hz.

  1. Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera

    Energy Technology Data Exchange (ETDEWEB)

    Vigouroux, M. P.; Delaye, V.; Bernier, N.; Lafond, D.; Audoit, G.; Bertin, F. [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des martyrs, 38054 GRENOBLE Cedex 9 (France); Cipro, R.; Baron, T.; Martin, M. [Université Grenoble Alpes, F-38000 Grenoble (France); CNRS, LTM, F-38000 Grenoble (France); Rouvière, J. L. [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC, MINATEC Campus, 17 rue des martyrs, 38054 GRENOBLE Cedex 9 (France); Chenevier, B. [Université Grenoble Alpes, F-38000 Grenoble (France); LMGP, CNRS, 3 parvis Louis Néel, 38016 GRENOBLE Cedex 1 (France)

    2014-11-10

    Precession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 × 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 × 10{sup −4} with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region.

  2. Fast In Situ Airborne Measurement of Ammonia Using a Mid-Infrared Off-Axis ICOS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Leen, J. Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S.; Hubbe, John M.; Kluzek, Celine D.; Tomlinson, Jason M.; Hubbell, Mike R.

    2013-08-23

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0–101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Finally, our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.

  3. In situ measurement of dissolved methane and carbon dioxide in freshwater ecosystems by off-axis integrated cavity output spectroscopy.

    Science.gov (United States)

    Gonzalez-Valencia, Rodrigo; Magana-Rodriguez, Felipe; Gerardo-Nieto, Oscar; Sepulveda-Jauregui, Armando; Martinez-Cruz, Karla; Anthony, Katey Walter; Baer, Doug; Thalasso, Frederic

    2014-10-07

    A novel low-cost method for the combined, real-time, and in situ determination of dissolved methane and carbon dioxide concentrations in freshwater ecosystems was designed and developed. This method is based on the continuous sampling of water from a freshwater ecosystem to a gas/liquid exchange membrane. Dissolved gas is transferred through the membrane to a continuous flow of high purity nitrogen, which is then measured by an off-axis integrated cavity output spectrometer (OA-ICOS). This method, called M-ICOS, was carefully tested in a laboratory and was subsequently applied to four lakes in Mexico and Alaska with contrasting climates, ecologies, and morphologies. The M-ICOS method allowed for the determination of dissolved methane and carbon dioxide concentrations with a frequency of 1 Hz and with a method detection limit of 2.76 × 10(-10) mol L(-1) for methane and 1.5 × 10(-7) mol L(-1) for carbon dioxide. These detection limits are below saturated concentrations with respect to the atmosphere and significantly lower than the minimum concentrations previously reported in lakes. The method is easily operable by a single person from a small boat, and the small size of the suction probe allows the determination of dissolved gases with a minimized impact on shallow freshwater ecosystems.

  4. Radiant fluxes from on- and off-axis point sources irradiating a circular disc through two different homogeneous isotropic media

    Science.gov (United States)

    Tryka, S.

    2014-07-01

    The multidomain integral equation method is used to calculate fluxes of radiation from various on- and off-axis point sources passing through two different homogeneous isotropic media and striking a surface of a circular disc perpendicular to the optical axes of these sources. This method is dedicated to radiation passing through attenuating or nonattenuating media with a Fresnel interface and is applicable for arbitrary radiation patterns of point sources. The paper presents, firstly, the generalized multidomain integral equation method, expressed by double iterated integrals, for calculating radiant fluxes from arbitrary emitting point sources. This generalized method is simplified then to the form of multidomain single integral equation method applicable for rotationally symmetrical radiation patterns with optical axes perpendicular to the disc. Next, the simplified method is used for computer simulation of radiant fluxes incident on the disc from small Lambertian and Gaussian sources represented by point source models. All numerical results obtained from this simulation have shown high accuracy and efficiency of the presented method. Selected results are illustrated graphically and validated by Optical Software for Layout and Optimization (OSLO) from Lambda Research Corporation. Potential applications of the presented method include optical sensing and metrology, optical coupling, immersion microscopes, light-extraction problems and creative lighting design.

  5. Phenomenology of neutrino oscillations at the neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian

    2011-12-19

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain {mu}{sup +} {yields} {nu}{sub e} {yields} {nu}{sub {mu}} {yields} {mu}{sup -} and the right-charge muons coming from the chain {mu}{sup +} {yields} anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} {yields} {mu}{sup -} (similar to {mu}{sup -} chains), where {nu}{sub e} {yields} {nu}{sub {mu}} and anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of {tau} decays, generated by appearance channels {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub e} {yields} {nu}{sub {tau}}, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero {theta}{sub 13}, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the

  6. Kinematic methods for analysis of neutrino interactions in calorimetric detectors

    CERN Document Server

    Starkov, N I

    2000-01-01

    Kinematic methods for selecting neutrino events accompanied by a formation and a subsequent decay of a tau -lepton against the background of charged-current neutrino reactions with light leptons in the final state are analyzed. It is shown that the efficiency of the methods under discussion can attain 20% for long-baseline neutrino beams generated by FNAL and CERN proton accelerators. (7 refs).

  7. Testing maximality in muon neutrino flavor mixing

    CERN Document Server

    Choubey, S; Choubey, Sandhya; Roy, Probir

    2003-01-01

    The small difference between the survival probabilities of muon neutrino and antineutrino beams, traveling through earth matter in a long baseline experiment such as MINOS, is shown to be an important measure of any possible deviation from maximality in the flavor mixing of those states.

  8. The NOvA Data Acquistion System: A highly distributed, synchronized, continuous readout system for a long baseline neutrino experiment

    CERN Document Server

    CERN. Geneva

    2012-01-01

    The NOvA experiment at Fermi National Accelerator Lab, has been designed and optimized to perform a suite of measurements critical to our understanding of the neutrino’s properties, their oscillations and their interactions. NOvA presents a unique set of data acquisition and computing challenges due to the immense size of the detectors, the data volumes that are generated through the continuous digitization of the frontend systems, and the need to buffer the full data stream to allow for highly asynchronous triggering and extraction of physics events. These challenges are compounded by the stringent timing and synchronization requirements that are placed on the acquisition systems by the need to precisely correlate information between the accelerator complex and the remote detector locations. The NOvA Data Acquisition system has been designed and built to meets these challenges. The system utilizes a highly modular, novel acquisition and event building scheme, which has been deployed on a large hierarch...

  9. Neutrinos from PIon Beam Line, nuPIL

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, J. B. [Imperial Coll., London; Pasternak, J. [Imperial Coll., London; Bross, A. [Fermilab; Liu, A. [Fermilab

    2016-05-05

    LBNF-DUNE (Long Baseline Neutrino Facilities - Deep Underground Neutrino Experiment) is a project based at Fermilab to study neutrino oscillations. The current baseline regarding the neutrino production considers the conventional approach: a high energy proton beam hits a target, producing pions that are collected by a horn and that decay in a decay pipe. An alternative solution, called nuPIL (neutrinos from a Pion beam Line) consists of using a beam line to guide the pions to clean the beam and to put instrumentation to monitor it. This paper presents the concept and the first preliminary results.

  10. Intermediate baseline appearance experiments and three-neutrino mixing schemes

    CERN Document Server

    Cardall, C Y; Cline, D; Cardall, Christian Y.; Fuller, George M.; Cline, David

    1997-01-01

    Three-neutrino mixing schemes suggested by Cardall \\& Fuller and Acker \\& Pakvasa are compared and contrasted. Both of these schemes seek to solve the solar and atmospheric neutrino problems {\\em and} to account for the possible neutrino oscillation signal in the LSND experiment. These neutrino oscillation schemes have different atmospheric and solar neutrino signatures that will be discriminated by Super-Kamiokande and SNO. They will also have different signatures in proposed long-baseline accelerator and reactor experiments. In particular, both of these schemes would give dramatic (and dramatically different) signals in an ``intermediate baseline'' experiment, such as the proposed ICARUS detector in the Jura mountains 17 km from CERN.

  11. DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments

    Science.gov (United States)

    Deller, A. T.; Tingay, S. J.; Bailes, M.; West, C.

    2007-03-01

    We describe the development of an FX-style correlator for very long baseline interferometry (VLBI), implemented in software and intended to run in multiprocessor computing environments, such as large clusters of commodity machines (Beowulf clusters) or computers specifically designed for high-performance computing, such as multiprocessor shared-memory machines. We outline the scientific and practical benefits for VLBI correlation, these chiefly being due to the inherent flexibility of software and the fact that the highly parallel and scalable nature of the correlation task is well suited to a multiprocessor computing environment. We suggest scientific applications where such an approach to VLBI correlation is most suited and will give the best returns. We report detailed results from the Distributed FX (DiFX) software correlator running on the Swinburne supercomputer (a Beowulf cluster of ~300 commodity processors), including measures of the performance of the system. For example, to correlate all Stokes products for a 10 antenna array with an aggregate bandwidth of 64 MHz per station, and using typical time and frequency resolution, currently requires an order of 100 desktop-class compute nodes. Due to the effect of Moore's law on commodity computing performance, the total number and cost of compute nodes required to meet a given correlation task continues to decrease rapidly with time. We show detailed comparisons between DiFX and two existing hardware-based correlators: the Australian Long Baseline Array S2 correlator and the NRAO Very Long Baseline Array correlator. In both cases, excellent agreement was found between the correlators. Finally, we describe plans for the future operation of DiFX on the Swinburne supercomputer for both astrophysical and geodetic science.

  12. A Sensor-based Long Baseline Position and Velocity Navigation Filter for Underwater Vehicles

    CERN Document Server

    Batista, Pedro; Oliveira, Paulo

    2010-01-01

    This paper presents a novel Long Baseline (LBL) position and velocity navigation filter for underwater vehicles based directly on the sensor measurements. The solution departs from previous approaches as the range measurements are explicitly embedded in the filter design, therefore avoiding inversion algorithms. Moreover, the nonlinear system dynamics are considered to their full extent and no linearizations are carried out whatsoever. The filter error dynamics are globally asymptotically stable (GAS) and it is shown, under simulation environment, that the filter achieves similar performance to the Extended Kalman Filter (EKF) and outperforms linear position and velocity filters based on algebraic estimates of the position obtained from the range measurements.

  13. Tightly coupled long baseline/ultra-short baseline integrated navigation system

    Science.gov (United States)

    Batista, Pedro; Silvestre, Carlos; Oliveira, Paulo

    2016-06-01

    This paper proposes a novel integrated navigation filter based on a combined long baseline/ultra short baseline acoustic positioning system with application to underwater vehicles. With a tightly coupled structure, the position, linear velocity, attitude, and rate gyro bias are estimated, considering the full nonlinear system dynamics without resorting to any algebraic inversion or linearisation techniques. The resulting solution ensures convergence of the estimation error to zero for all initial conditions, exponentially fast. Finally, it is shown, under simulation environment, that the filter achieves very good performance in the presence of sensor noise.

  14. The WAGASCI detector as an off-axis near detector of the T2K and Hyper-Kamiokande experiments

    CERN Document Server

    Quilain, Benjamin

    2016-01-01

    In the search for CP violation at the T2K and future Hyper-Kamiokande experiments, it is crucial to reduce the present systematic uncertainties. The current T2K near detector, ND280, reduces the uncertainties coming from the neutrino beam and cross-section models from $11.9\\%$ to $5.4\\%$ in the $\

  15. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001

    Directory of Open Access Journals (Sweden)

    Yakimova Rositza

    2011-01-01

    Full Text Available Abstract In this work, we present a nanometer resolution structural characterization of epitaxial graphene (EG layers grown on 4H-SiC (0001 8° off-axis, by annealing in inert gas ambient (Ar in a wide temperature range (Tgr from 1600 to 2000°C. For all the considered growth temperatures, few layers of graphene (FLG conformally covering the 100 to 200-nm wide terraces of the SiC surface have been observed by high-resolution cross-sectional transmission electron microscopy (HR-XTEM. Tapping mode atomic force microscopy (t-AFM showed the formation of wrinkles with approx. 1 to 2 nm height and 10 to 20 nm width in the FLG film, as a result of the release of the compressive strain, which builds up in FLG during the sample cooling due to the thermal expansion coefficients mismatch between graphene and SiC. While for EG grown on on-axis 4H-SiC an isotropic mesh-like network of wrinkles interconnected into nodes is commonly reported, in the present case of a vicinal SiC surface, wrinkles are preferentially oriented in the direction perpendicular to the step edges of the SiC terraces. For each Tgr, the number of graphene layers was determined on very small sample areas by HR-XTEM and, with high statistics and on several sample positions, by measuring the depth of selectively etched trenches in FLG by t-AFM. Both the density of wrinkles and the number of graphene layers are found to increase almost linearly as a function of the growth temperature in the considered temperature range.

  16. Performance of ionospheric maps in support of long baseline GNSS kinematic positioning at low latitudes

    Science.gov (United States)

    Park, J.; Sreeja, V.; Aquino, M.; Cesaroni, C.; Spogli, L.; Dodson, A.; De Franceschi, G.

    2016-05-01

    Ionospheric scintillation occurs mainly at high and low latitude regions of the Earth and may impose serious degradation on GNSS (Global Navigation Satellite System) functionality. The Brazilian territory sits on one of the most affected areas of the globe, where the ionosphere behaves very unpredictably, with strong scintillation frequently occurring in the local postsunset hours. The correlation between scintillation occurrence and sharp variations in the ionospheric total electron content (TEC) in Brazil is demonstrated in Spogli et al. (2013). The compounded effect of these associated ionospheric disturbances on long baseline GNSS kinematic positioning is studied in this paper, in particular when ionospheric maps are used to aid the positioning solution. The experiments have been conducted using data from GNSS reference stations in Brazil. The use of a regional TEC map generated under the CALIBRA (Countering GNSS high-Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) project, referred to as CALIBRA TEC map (CTM), was compared to the use of the Global Ionosphere Map (GIM), provided by the International GNSS Service (IGS). Results show that the use of the CTM greatly improves the kinematic positioning solution as compared with that using the GIM, especially under disturbed ionospheric conditions. Additionally, different hypotheses were tested regarding the precision of the TEC values obtained from ionospheric maps, and its effect on the long baseline kinematic solution evaluated. Finally, this study compares two interpolation methods for ionospheric maps, namely, the Inverse Distance Weight and the Natural Neighbor.

  17. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodríguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-01-01

    The T2K off-axis near detector, ND280, is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ~1 GeV as a function of electron momentum, electron scattering angle and four-momentum transfer of the interaction. The total flux-averaged $\

  18. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  19. U-Series Disequilibria From the East Pacific Rise (9N, 10N and 11N): evidence for off-axis magmatism along fast spreading ridges?

    Science.gov (United States)

    Beier, C.; Turner, S.; Niu, Y.

    2004-12-01

    Lavas erupted along Mid-Ocean Ridges provide important information on melt formation and movement beneath the oceanic lithosphere. Despite the fact that the majority of lavas are erupted along the spreading axis itself, it has been proposed that a small quantity of lavas are erupted off-axis at distances >5 km [1]. The East Pacific Rise has a fast (5.5 cm/yr) half spreading rate and so the age of lavas sampled off-axis are well constrained assuming an on-axis origin. Zou et al. [2] tested this assumption by comparing U-series disequilibria in lavas sampled away from the ridge with that observed at the present day axis. They found larger U-Th disequilibria than predicted by decay of the ridge signal in a number of lavas and interpreted this to indicate that these lavas were erupted off-axis. These are important results and so we have analysed U-Th disequilibria in lavas from three traverses along the East Pacific Rise (9°3 N, 10°4N and 11°5N) extending to a maximum distance of 31 km East and West from the ridge axis (corresponding to an age ≤550 ka), including reanalysing the critical samples analysed by Zou et al. [2]. Our analyses of four samples analysed by Zou et al. [2] confirm greater U-Th disequilibria than predicted by decay of the axis signal. However, we could not reproduce the U-excesses in two lavas. Relative to a calculated decay curve assuming an initial (230Th/238U) of 1.23 at the ridge, all of our analyses from 9°3N have greater Th excesses (2-6%) than predicted. Similarly, the lavas from the traverse at 10°4N have (230Th/238U) ratios up to 1.067 (6% Th excess) some 13 km from the ridge axis which is comparable to ratios of 1.042 (4% Th excess) 23 km distant from the ridge at 9°3N. Thus, lavas in a zone 13-30 km off- axis to both sides of the axis have greater Th excess than predicted by decay from the ridge. In contrast, we have found U excesses in lavas from the traverse at 11°5N. 226Ra data will be presented for those samples with

  20. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    1994-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  1. T2K neutrino flux prediction

    Science.gov (United States)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M.-G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Esposito, L. S.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Guzowski, P.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Holeczek, J.; Horikawa, S.; Huang, K.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jover-Manas, G. V.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Rodrigues, P. A.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Sulej, R.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wang, J.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wikström, G.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-01-01

    The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the Japan Proton Accelerator Research Complex accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector—Super-Kamiokande—located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3-based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is reweighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA61/SHINE experiment. For the first T2K analyses the uncertainties on the flux prediction are evaluated to be below 15% near the flux peak. The uncertainty on the ratio of the flux predictions at the far and near detectors is less than 2% near the flux peak.

  2. The T2K Neutrino Flux Prediction

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Albert, J B; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S S; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Beznosko, D; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Boyd, S; Bravar, A; Bronner, C; Brook-Roberge, D G; Buchanan, N; Calland, R G; Rodriguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; Day, M; de Andre, J P A M; de Perio, P; De Rosa, G; Dealtry, T; Densham, C; Di Lodovico, F; Di Luise, S; Dobson, J; Duboyski, T; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Dziomba, M; Emery, S; Ereditato, A; Escudero, L; Esposito, L S; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Guzowski, P; Hadley, D R; Haesler, A; Haigh, M D; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Holeczek, J; Horikawa, S; Huang, K; Hyndman, A; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jover-Manas, G V; Jung, C K; Kaji, H; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khanam, F; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J Y; Kim, J; Kim, S B; Kirby, B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kowalik, K; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laing, A; Laveder, M; Lawe, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marchionni, A; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matsumura, C; Matsuoka, K; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; McLachlan, T; Messina, M; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, T; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakajima, K; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nicholls, T C; Nielsen, C; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Obayashi, Y; Ohta, R; Okumura, K; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Guerra, E S Pinzon; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Rato, P N; Ravonel, M; Rayner, M A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Rodrigues, P A; Rondio, E; Rossi, B; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sanchez, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Scully, D I; Seiya, Y; Sekiguchi, T; Sekiya, H; Shibata, M; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Stamoulis, P; Steinmann, J; Still, B; Sulej, R; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Szeptycka, M; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H A; Tanaka, M; Tanaka, M M; Taylor, I; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wang, J; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wikstrom, G; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2012-01-01

    The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the J-PARC accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector -- Super-Kamiokande (SK) -- located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3 based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is re-weighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA...

  3. Thermodynamics of chemical free energy generation in off-axis hydrothermal vent systems and its consequences for compartmentalization and the emergence of life

    CERN Document Server

    Simoncini, E; Gallori, E; .,

    2010-01-01

    In this paper we demonstrate how chemical free energy can be produced by a geological process. We provide a thermodynamic framework in which to assess how life emerged at the off-axis hydrothermal vent system; the RNA - clays system has been investigated from the entropic point of view, showing that the stabilization of the system in a state further away from equilibrium state, by an inorganic heterogeneous compartmetalization phenomena, is able to produce chemical free energy useful for RNA self - replication.

  4. Computation of the off-axis effective area of the New Hard X-ray Mission modules by means of an analytical approach

    CERN Document Server

    Spiga, D

    2015-01-01

    One of the most important parameters determining the sensitivity of X-ray telescopes is their effective area as a function of the X-ray energy. The computation of the effective area of a Wolter-I mirror, with either a single layer or multilayer coating, is a very simple task for a source on-axis at astronomical distance. Indeed, when the source moves off-axis the calculation is more complicated, in particular for new hard X-ray imaging telescopes (NuSTAR, ASTRO-H, NHXM, IXO) beyond 10 keV, that will make use of multilayer coatings to extend the reflectivity band in grazing incidence. Unlike traditional single-layer coatings (in Ir or Au), graded multilayer coatings exhibit an oscillating reflectivity as a function of the incidence angle, which makes the effective area not immediately predictable for a source placed off-axis within the field of view. For this reason, the computation of the off-axis effective area has been so far demanded to ray- tracing codes, able to sample the incidence of photons onto the m...

  5. A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy

    Directory of Open Access Journals (Sweden)

    D. M. D. Hendriks

    2008-01-01

    Full Text Available A Fast Methane Analyzer (FMA is assessed for its applicability in a closed path eddy covariance field set-up in a peat meadow. The FMA uses off-axis integrated cavity output spectroscopy combined with a highly specific narrow band laser for the detection of CH4 and strongly reflective mirrors to obtain a laser path length of 2–20×103 m. Statistical testing and a calibration experiment showed high precision (7.8×10−3 ppb and accuracy (<0.30% of the instrument, while no drift was observed. The instrument response time was determined to be 0.10 s. In the field set-up, the FMA is attached to a scroll pump and combined with a 3-axis ultrasonic anemometer and an open path infrared gas analyzer for measurements of carbon dioxide and water vapour. The power-spectra and co-spectra of the instruments were satisfactory for 10 Hz sampling rates.

    Due to erroneous measurements, spikes and periods of low turbulence the data series consisted for 26% of gaps. Observed CH4 fluxes consisted mainly of emission, showed a diurnal cycle, but were rather variable over. The average CH4 emission was 29.7 nmol m−2 s−1, while the typical maximum CH4 emission was approximately 80.0 nmol m−2 s−1 and the typical minimum flux was approximately 0.0 nmol m−2 s−1. The correspondence of the measurements with flux chamber measurements in the footprint was good and the observed CH4 emission rates were comparable with eddy covariance CH4 measurements in other peat areas.

    Additionally, three measurement techniques with lower sampling frequencies were simulated, which might give the possibility to measure CH4 fluxes without an external pump and save energy. Disjunct eddy covariance appeared to be the most reliable substitute for 10 Hz eddy covariance, while relaxed eddy accumulation gave

  6. A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy

    Directory of Open Access Journals (Sweden)

    D. M. D. Hendriks

    2007-08-01

    Full Text Available A DLT-100 Fast Methane Analyser (FMA from Los Gatos Research (LGR Ltd. is assessed for its applicability in a closed path eddy covariance field set-up. The FMA uses off-axis integrated cavity output spectroscopy (ICOS combined with a highly specific narrow band laser for the detection of CH4 and strongly reflective mirrors to obtain a laser path length of 2×10³ to 20×10³ m. Statistical testing, a calibration experiment and comparison with high tower data showed high precision and very good stability of the instrument. The measurement cell response time was tested to be 0.10 s. In the field set-up, the FMA is attached to a scroll pump and combined with a Gill Windmaster Pro 3 axis Ultrasonic Anemometer and a Licor 7500 open path infrared gas analyzer. The power-spectra and co-spectra of the instrument are satisfactory for 10 Hz sampling rates. The correspondence with CH4 flux chamber measurements is good and the observed CH4 emissions are comparable with (eddy covariance CH4 measurements in other peat areas.

    CH4 emissions are rather variable over time and show a diurnal pattern. The average CH4 emission is 50±12.5 nmol m−2 s−1, while the typical maximum CH4 emission is 120±30 nmol m−2 s−1 (during daytime and the typical minimum flux is –20±2.5 nmol m−2 s−1 (uptake, during night time.

    Additionally, the set-up was tested for three measurement techniques with slower measurement rates, which could be used in the future to make the scroll pump superfluous and save energy. Both disjunct eddy covariance as well as slow 1 Hz eddy covariance showed results very similar to normal 10 Hz eddy covariance. Relaxed eddy accumulation (REA only matched with normal 10 Hz eddy covariance over an averaging period of at least several weeks.

  7. Hadron production measurements to constrain accelerator neutrino beams

    CERN Document Server

    Korzenev, Alexander

    2014-01-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the neutrino flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming x_F scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are p...

  8. The use of the Long Baseline Array in Australia for precise geodesy and absolute astrometry

    CERN Document Server

    Petrov, Leonid; Bertarini, Alessandra; Deller, Adam; Pogrebenko, Sergei; Mujunen, Ari

    2008-01-01

    We report the results of a successful 12 hour 22 GHz VLBI experiment using a heterogeneous network that includes radio telescopes of the Long Baseline Array (LBA) in Australia and several VLBI stations that regularly observe in geodetic VLBI campaigns. We have determined positions of three VLBI stations, ATCA-104, Ceduna and Mopra, with an accuracy of 3-30 mm using a novel technique of data analysis. These stations have never before participated in geodetic experiments. We observed 105 radio sources, and amongst them 5 objects which have not previously been observed with VLBI. We have determined positions of these new sources with the accuracy of 2-6 mas. We make conclusion that the LBA network is capable of conducting absolute astrometry VLBI surveys with accuracy better than 5 mas.

  9. Distributed State Machine Supervision for Long-baseline Gravitational-wave Detectors

    CERN Document Server

    Rollins, Jameson Graef

    2016-01-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely-spaced, long-baseline gravitational-wave detectors. Each LIGO detector consists of a complex optical system, isolated from the ground by multiple layers of active seismic isolation, all controlled by hundredsfast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of the Advanced LIGO detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes, organized hierarchically for full detector control. User code is written in standard Python, and the platform is designed to facilitate the fast, intense development pace associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experime...

  10. Assessing the quality of restored images in optical long-baseline interferometry

    CERN Document Server

    Gomes, Nuno; Thiébaut, Éric

    2016-01-01

    Assessing the quality of aperture synthesis maps is relevant for benchmarking image reconstruction algorithms, for the scientific exploitation of data from optical long-baseline interferometers, and for the design/upgrade of new/existing interferometric imaging facilities. Although metrics have been proposed in these contexts, no systematic study has been conducted on the selection of a robust metric for quality assessment. This article addresses the question: what is the best metric to assess the quality of a reconstructed image? It starts by considering several metrics, and selecting a few based on general properties. Then, a variety of image reconstruction cases is considered. The observational scenarios are phase closure and phase referencing at the Very Large Telescope Interferometer (VLTI), for a combination of two, three, four and six telescopes. End-to-end image reconstruction is accomplished with the MiRA software, and several merit functions are put to test. It is found that convolution by an effect...

  11. Long-baseline optical intensity interferometry: Laboratory demonstration of diffraction-limited imaging

    CERN Document Server

    Dravins, Dainis; Nuñez, Paul D

    2015-01-01

    A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Previous theoretical modeling has shown ...

  12. Evaluation of current tropospheric mapping functions by Deep Space Network very long baseline interferometry

    Science.gov (United States)

    Sovers, O. J.; Lanyi, G. E.

    1994-01-01

    To compare the validity of current algorithms that map zenith tropospheric delay to arbitrary elevation angles, 10 different tropospheric mapping functions are used to analyze the current data base of Deep Space Network Mark 3 intercontinental very long baseline interferometric (VLBI) data. This analysis serves as a stringent test because of the high proportion of low-elevation observations necessitated by the extremely long baselines. Postfit delay and delay-rate residuals are examined, as well as the scatter of baseline lengths about the time-linear model that characterizes tectonic motion. Among the functions that utilize surface meteorological data as input parameters, the Lanyi 1984 mapping shows the best performance both for residuals and baselines, through the 1985 Davis function is statistically nearly identical. The next best performance is shown by the recent function of Niell, which is based on an examination of global atmospheric characteristics as a function of season and uses no weather data at the time of the measurements. The Niell function shows a slight improvement in residuals relative to Lanyi, but also an increase in baseline scatter that is significant for the California-Spain baseline. Two variants of the Chao mapping function, as well as the Chao tables used with the interpolation algorithm employed in the Orbit Determination Program software, show substandard behavior for both VLBI residuals and baseline scatter. The length of the California-Australia baseline (10,600 km) in the VLBI solution can vary by as much as 5 to 10 cm for the 10 mapping functions.

  13. Volatile Content of the Mid-ocean Ridge Mantle Inferred from Off-axis Seamounts and Intra-transform Lavas

    Science.gov (United States)

    Shimizu, K.; Saal, A. E.; Hauri, E. H.; Nagle, A.; Forsyth, D. W.; Niu, Y.

    2011-12-01

    Off-axis seamounts and intra-transform lavas provide more direct geochemical information of the mantle than axial lavas. These smaller volumes of melts undergo lower extent of crystal fractionation and mixing compared to basalts erupting within the ridge axis due to a lack of long-lived magma chambers or along axis melt migration. Therefore, their study provide not only a more reliable approach to determine the volatile content of the intrinsic components forming the Earth's upper mantle, but also help constrain mantle convection, heterogeneity, and crustal recycling. Samples from the Quebrada-Discovery-Gofar (QDG) transform fault system (EPR 3°-5°S) and from northern EPR seamounts (5°-15° N) were collected during KN182-13 (R/V Knorr) and RAIT 02 (R/V Thomas Washington) expeditions, respectively. 159 submarine glasses were analyzed for major elements, trace elements, and volatile elements by triplicate analyses, as well as for Sr and Nd isotopes in a subset of samples. The QDG and northern EPR seamounts have similar trace element and isotopic composition that is consistent with melting of two-component mantle common to both regions. The degree of trace element enrichment (e.g. Th/La), isotopic composition, and depth of melt segregation (e.g. Sm/Yb) have a positive correlation and range from ultra depleted to relatively enriched compositions. In order to investigate the primary volatile content of submarine glasses we first considered shallow level processes, such as volatile degassing, sulfide saturation and interaction of melt with hydrothermally altered material. The vapor-melt equilibrium pressure (Dixon et al., 1995) indicates that the majority of the samples were super-saturated in CO2-H2O vapor at the pressure of eruption, which implies rapid magma ascent rate that prevented complete CO2 degassing. Samples that were sulfide saturated (Liu et al., 2007) and contaminated by seawater or seawater derived material (high Cl/K) were filtered out. F/Nd, Cl/K, and

  14. A search for sterile neutrinos in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Osiecki, Thomas Henry [Univ. of Texas, Austin, TX (United States)

    2007-01-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining Δm$2\\atop{23}$ and θ23 through the disappearance of vμ, MINOS is able to measure vμ → vsterile by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS.

  15. Overview of the LBNE Neutrino Beam

    CERN Document Server

    Moore, C D; Hurh, Patrick; Hylen, James; Lundberg, Byron; McGee, Mike; Misek, Joel; Mokhov, Nikolai V; Papadimitriou, Vaia; Plunkett, Rob; Schultz, Ryan; Velev, Gueorgui; Williams, Karlton; Zwaska, Robert Miles

    2012-01-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed at the Deep Underground Science and Engineering Laboratory (DUSEL) in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined by an amalgam of the physics goals, the Monte Carlo modeling of the facility, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW.

  16. Overview of the LBNE Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Moore, C.D.; He, Yun; Hurh, Patrick; Hylen, James; Lundberg, Byron; McGee, Mike; Misek, Joel; Mokhov, Nikolai V.; Papadimitriou, Vaia; Plunkett, Rob; Schultz, Ryan; /Fermilab

    2011-03-22

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed at the Deep Underground Science and Engineering Laboratory (DUSEL) in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined by an amalgam of the physics goals, the Monte Carlo modeling of the facility, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be {approx}700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW.

  17. Neutrino Oscillation Physics Potential of the T2K Experiment

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodr'iguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; King, S; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Riccio, C; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; S'anchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shaker, F; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-01-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle $\\theta_{13}$ have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal $\\sin^22\\theta_{23}$, the octant of $\\theta_{23}$, and the mass hierarchy, in addition to the measurements of $\\delta_{CP}$, $\\sin^2\\theta_{23}$, and $\\Delta m^2_{32}$, for various combinations of $\

  18. High Frequency Very Long Baseline Interferometry Observations of Active Galactic Nuclei

    Science.gov (United States)

    Bower, Geoffrey Copeland

    Millimeter wavelength very long baseline interferometry (VLBI) provides an excellent tool for the investigation of compact synchrotron sources. The high angular resolution and the decline in synchrotron opacity and lifetime with decreasing wavelength give unprecedented spatial and temporal resolution in active galactic nuclei. We present here a description of the implementation of millimeter VLBI with the 9-element millimeter array at Hat Creek Radio Observatory. We emphasize the technical details of array phasing, calibration and observation. The Hat Creek array was used successfully in 5 VLBI experiments between 1995 and 1997. We tested the technique of total power correction for atmospheric phase fluctuations due to water vapor with two epochs of 3mm λ VLBI observations with the Hat Creek array and with the National Radio Astronomy Observatory (NRAO) Kitt Peak 12m antenna. We reduced the root-mean-square phase by as much as a factor of two and to as low as one radian. The limiting factor was the gain stability of the receivers. We present 7mm λ VLBI observations made with the NRAO Very Long Baseline Array (VLBA) of the compact, nonthermal radio source Sgr A*. We find that the image of Sgr A* is fully consistent with the hypothesis that it is a cyclo-synchrotron source powered by accretion onto a 106Msolar black hole and obscured by a screen of thermal electrons. We find no evidence for any asymmetric structure. We also present a two year study of the gamma-ray blazar 530 with multiple epochs of VLBI imaging at 3 mm, 7 mm, 1.3 cm and 3.6 cm λ. We incorporate flux density monitoring ranging from the radio band to positive correlation over 4 years between the millimeter and gamma-ray flux densities. We also find that a bright millimeter wavelength flare in early 1995 corresponded to the creation of a new parsec-scale jet component. We study the spectra and dynamical evolution of the jet. The jet component appears to decelerate from 7.6 ± 2.2c to 0.95 ± 0.16c

  19. Neutrino Physics

    Science.gov (United States)

    Bergström, L.; Hulth, P. O.; Botner, O.; Carlson, P.; Ohlsson, T.

    2006-03-01

    J. N. Bahcall (1934-2005) -- Preface -- List of participants -- Committees -- Nobel symposium on neutrino physics - program -- The history of neutrino oscillations / S. M. Bilenky -- Super-Kamiokande results on neutrino oscillations / Y. Suzuki -- Sudbury neutrino observatory results / A. B. McDonald -- Results from KamLAND reactor neutrino detection / A. Suzuki -- New opportunities for surprise / J. Conrad -- Solar models and solar neutrinos / J. N. Bahcall -- Atmospheric neutrino fluxes / T. K. Gaisser -- The MSW effect and matter effects in neutrino oscillations / A. Yu. Smirnov -- Three-flavour effects and CP- and T-violation in neutrino oscillations / E. Kh. Akhmedov -- Global analysis of neutrino data / M. C. Gonzalez-Garcia -- Future precision neutrino oscillation experiments and theoretical implications / M. Lindner -- Experimental prospects of neutrinoless double beta decay / E. Fiorini -- Theoretical prospects of neutrinoless double beta decay / S. T. Petcov -- Supernova neutrino oscillations / G. G. Raffelt -- High-energy neutrino astronomy / F. Halzen -- Neutrino astrophysics in the cold: Amanda, Baikal and IceCube / C. Spiering -- Status of radio and acoustic detection of ultra-high energy cosmic neutrinos and a proposal on reporting results / D. Saltzberg -- Detection of neutrino-induced air showers / A. A. Watson -- Prospect for relic neutrino searches / G. B. Gelmini -- Leptogenesis in the early universe / T. Yanagida -- Neutrinos and big bang nucleosynthesis / G. Steigman -- Extra galactic sources of high energy neutrinos / E. Waxman -- Cosmological neutrino bounds for non-cosmologists / M. Tegmark -- Neutrino intrinsic properties: the neutrino-antineutrino relation / B. Kayser -- NuTeV and neutrino properties / M. H. Shaevitz -- Absolute masses of neutrinos - experimental results and future possibilities / C. Weinheimer -- Flavor theories and neutrino masses / P. Ramond -- Neutrino mass models and leptogenesis / S. F. King -- Neutrino mass and

  20. Neutrino Physics at DPF 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2013-10-25

    The field of neutrino physics was covered at DPF 2013 in 32 talks, including three on theoretical advances and the remainder on experiments that spanned at least 17 different detectors. This summary of those talks cannot do justice to the wealth of information presented, but will provide links to other material where possible. There were allso two plenary session contributions on neutrino physics at this meeting: the current status of what we know about neutrino (oscillation) physics was outlined by Huber, and the next steps in long baseline oscillation expeirments were described by Fleming. This article covers a subset of the topics discussed at the meeting, with emphasis given to those talks that showed data or new results.

  1. Letter of Intent to Construct a nuPRISM Detector in the J-PARC Neutrino Beamline

    CERN Document Server

    Bhadra, S; Bordoni, S; Bravar, A; Bronner, C; Caravaca-Rodriguez, J; Dziewiecki, M; Feusels, T; Fiorentini-Aguirre, G A; Friend, M; Haegel, L; Hartz, M; Henderson, R; Ishida, T; Ishitsuka, M; Jung, C K; Kaboth, A C; Kakuno, H; Kamano, H; Konaka, A; Kudenko, Y; Kuze, M; Lindner, T; Mahn, K; Martin, J F; Marzec, J; McFarland, K S; Nakayama, S; Nakaya, T; Nakamura, S; Nishimura, Y; Rychter, A; Sanchez, F; Sato, T; Scott, M; Sekiguchi, T; Shiozawa, M; Sumiyoshi, T; Tacik, R; Tanaka, H K; Tanaka, H A; Tobayama, S; Vagins, M; Vo, J; Wark, D; Wascko, M O; Wilking, M J; Yen, S; Yokoyama, M; Ziembicki, M

    2014-01-01

    As long-baseline neutrino experiments enter the precision era, the difficulties associated with understanding neutrino interaction cross sections on atomic nuclei are expected to limit experimental sensitivities to oscillation parameters. In particular, the ability to relate experimental observables to neutrino energy in previous experiments has relied solely on theoretical models of neutrino-nucleus interactions, which currently suffer from very large theoretical uncertainties. By observing charged current $\

  2. Cosmic Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  3. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  4. Masses of Nearby Supermassive Black Holes with Very-Long Baseline Interferometry

    CERN Document Server

    Johannsen, Tim; Gillessen, Stefan; Marrone, Daniel P; Ozel, Feryal; Doeleman, Sheperd S; Fish, Vincent L

    2012-01-01

    Dynamical mass measurements to date have allowed determinations of the mass M and the distance D of the galactic center black hole Sgr A* as well as those of other nearby supermassive black holes. In the case of Sgr A*, these measurements are limited by a degeneracy between the mass and distance scaling roughly as M ~ D^2. Future very-long baseline interferometric observations will image a bright and narrow ring surrounding the shadow of the supermassive black hole, if its accretion flow is optically thin. In this paper, we show that the combination of dynamical measurements and VLBI imaging of the ring of Sgr A* breaks the degeneracy between mass and distance. We estimate the signal to noise ratio of near-future VLBI arrays consisting of five to six stations and simulate measurements of the mass and distance of Sgr A* using the expected size of the ring image and existing data of stellar ephemerides. We demonstrate that VLBI observations at 1 mm can already improve the error on the mass by a factor of three ...

  5. Long-Baseline Interferometric Multiplicity Survey of the Sco-Cen OB Association

    CERN Document Server

    Rizzuto, A C; Robertson, J G; Kok, Y; Tuthill, P G; Warrington, B A; Haubois, X; Tango, W J; Norris, B; Brummelaar, T ten; Kraus, A L; Jacob, A; Laliberte-Houdeville, C

    2013-01-01

    We present the first multiplicity-dedicated long baseline optical interferometric survey of the Scorpius-Centaurus-Lupus-Crux association. We used the Sydney University Stellar Interferometer to undertake a survey for new companions to 58 Sco-Cen B- type stars and have detected 24 companions at separations ranging from 7-130mas, 14 of which are new detections. Furthermore, we use a Bayesian analysis and all available information in the literature to determine the multiplicity distribution of the 58 stars in our sample, showing that the companion frequency is F = 1.35 and the mass ratio distribution is best described as a power law with exponent equal to -0.46, agreeing with previous Sco-Cen high mass work and differing significantly from lower-mass stars in Tau-Aur. Based on our analysis, we estimate that among young B-type stars in moving groups, up to 23% are apparently single stars. This has strong implications for the understanding of high-mass star formation, which requires angular momentum dispersal thr...

  6. BDS/GPS relative positioning for long baseline with undifferenced observations

    Science.gov (United States)

    Wang, Min; Cai, Hongzhou; Pan, Zongpeng

    2015-01-01

    Before and after the official beginning of Beidou navigation satellite system (BDS) regional service on December 27, 2012, many applications based on BDS such as real-time kinematic (RTK) and precise point positioning (PPP) with real data have been considered in the literatures. However, lack of precise satellite antenna correction and relatively low quality of BDS orbit and clock product is an obstacle for PPP and relative positioning over long baseline using BDS observations. In this paper, the Double Station Observation Processing (DSOP) method that directly uses undifferenced data is applied to relative positioning. By estimating the satellite clock offsets on-the-fly, the satellite dependent unmodelled error can be compensated. Moreover, the direct use of undifferenced observation makes the method easy to implement and flexible to adapt observations of multiple systems. Experiment results demonstrate that relative positioning based on BDS observations can be achieved at centimeter accuracy level which is better than conventional PPP results with limited computation burden increase. These results also indicate the promising potential of BDS to develop real-time service.

  7. BDS relative static positioning over long baseline improved by GEO multipath mitigation

    Science.gov (United States)

    Wang, Min; Chai, Hongzhou; Liu, Jun; Zeng, Anmin

    2016-02-01

    Due to the satellite and constellation deployment design, the variation pattern of multipath effect in BeiDou Navigation Satellite System (BDS) code observation is different from GPS. The amplitude of systematic multipath variation (SMV) exists in multipath combination series may exceed 0.5 m for some geostationary earth orbit (GEO) satellites, which is larger than the normal noise level of GPS code observation. After characterization of the variation pattern of BDS multipath series for BDS GEO satellites, we propose to improve the performance of relative positioning over long baseline by mitigating the SMV effect of GEO satellite. The proposed method uses the SMV extracted from multipath (MP) combination series with adaptive wavelet transform as correction for current day observation in post-processing use or as following day correction in real-time use. In addition, the Double Station Observation Processing (DSOP) method that directly uses undifferenced observation is applied for relative static positioning. Experiment results show improvement in convergence speed for both BDS only and BDS/GPS combined solution.

  8. Distributed state machine supervision for long-baseline gravitational-wave detectors

    Science.gov (United States)

    Rollins, Jameson Graef

    2016-09-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitate the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.

  9. Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data

    Science.gov (United States)

    Soja, Benedikt; Nilsson, Tobias; Balidakis, Kyriakos; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald

    2016-12-01

    Terrestrial reference frames (TRF), such as the ITRF2008, are primary products of geodesy. In this paper, we present TRF solutions based on Kalman filtering of very long baseline interferometry (VLBI) data, for which we estimate steady station coordinates over more than 30 years that are updated for every single VLBI session. By applying different levels of process noise, non-linear signals, such as seasonal and seismic effects, are taken into account. The corresponding stochastic model is derived site-dependent from geophysical loading deformation time series and is adapted during periods of post-seismic deformations. Our results demonstrate that the choice of stochastic process has a much smaller impact on the coordinate time series and velocities than the overall noise level. If process noise is applied, tests with and without additionally estimating seasonal signals indicate no difference between the resulting coordinate time series for periods when observational data are available. In a comparison with epoch reference frames, the Kalman filter solutions provide better short-term stability. Furthermore, we find out that the Kalman filter solutions are of similar quality when compared to a consistent least-squares solution, however, with the enhanced attribute of being easier to update as, for instance, in a post-earthquake period.

  10. Detection of atmospheric pressure loading using very long baseline interferometry measurements

    Science.gov (United States)

    Vandam, T. M.; Herring, T. A.

    1994-01-01

    Loading of the Earth by the temporal redistribution of global atmospheric mass is likely to displace the positions of geodetic monuments by tens of millimeters both vertically and horizontally. Estimates of these displacements are determined by convolving National Meteorological Center (NMC) global values of atmospheric surface pressure with Farrell's elastic Green's functions. An analysis of the distances between radio telescopes determined by very long baseline interferometry (VLBI) between 1984 and 1992 reveals that in many of the cases studied there is a significant contribution to baseline length change due to atmospheric pressure loading. Our analysis covers intersite distances of between 1000 and 10,000 km and is restricted to those baselines measured more than 100 times. Accounting for the load effects (after first removing a best fit slope) reduces the weighted root-mean-square (WRMS) scatter of the baseline length residuals on 11 of the 22 baselines investigated. The slight degradation observed in the WRMS scatter on the remaining baselines is largely consistent with the expected statistical fluctuations when a small correction is applied to a data set having a much larger random noise. The results from all baselines are consistent with approximately 60% of the computed pressure contribution being present in the VLBI length determinations. Site dependent coefficients determined by fitting local pressure to the theoretical radial displacement are found to reproduce the deformation caused by the regional pressure to within 25% for most inland sites. The coefficients are less reliable at near coastal and island stations.

  11. Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data

    Science.gov (United States)

    Soja, Benedikt; Nilsson, Tobias; Balidakis, Kyriakos; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald

    2016-06-01

    Terrestrial reference frames (TRF), such as the ITRF2008, are primary products of geodesy. In this paper, we present TRF solutions based on Kalman filtering of very long baseline interferometry (VLBI) data, for which we estimate steady station coordinates over more than 30 years that are updated for every single VLBI session. By applying different levels of process noise, non-linear signals, such as seasonal and seismic effects, are taken into account. The corresponding stochastic model is derived site-dependent from geophysical loading deformation time series and is adapted during periods of post-seismic deformations. Our results demonstrate that the choice of stochastic process has a much smaller impact on the coordinate time series and velocities than the overall noise level. If process noise is applied, tests with and without additionally estimating seasonal signals indicate no difference between the resulting coordinate time series for periods when observational data are available. In a comparison with epoch reference frames, the Kalman filter solutions provide better short-term stability. Furthermore, we find out that the Kalman filter solutions are of similar quality when compared to a consistent least-squares solution, however, with the enhanced attribute of being easier to update as, for instance, in a post-earthquake period.

  12. Alternative approach to precision narrow-angle astrometry for Antarctic long baseline interferometry

    CERN Document Server

    Kok, Y; Rizzuto, A C; Tuthill, P G; Robertson, J G; Warrington, B A; Tango, W J

    2014-01-01

    The conventional approach to high-precision narrow-angle astrometry using a long baseline interferometer is to directly measure the fringe packet separation of a target and a nearby reference star. This is done by means of a technique known as phase-referencing which requires a network of dual beam combiners and laser metrology systems. Using an alternative approach that does not rely on phase-referencing, the narrow-angle astrometry of several closed binary stars (with separation less than 2$"$), as described in this paper, was carried out by observing the fringe packet crossing event of the binary systems. Such an event occurs twice every sidereal day when the line joining the two stars of the binary is is perpendicular to the projected baseline of the interferometer. Observation of these events is well suited for an interferometer in Antarctica. Proof of concept observations were carried out at the Sydney University Stellar Interferometer (SUSI) with targets selected according to its geographical location....

  13. VERY LONG BASELINE ARRAY ASTROMETRY OF LOW-MASS YOUNG STELLAR OBJECTS

    Directory of Open Access Journals (Sweden)

    Laurent Loinard

    2008-01-01

    Full Text Available Usando observaciones radio-interferom tricas obtenidas en multiples pocas, se puede medir el desplazamiento de objetos estelares j venes sobre la b veda celeste con un nivel de precisi onactualmente inalcanzable en cualquier otra longitud de onda. En particular, la precisi n obtenida con observaciones tomadas con el Very Long Baseline Array, usando referencia de fase, puede ser mejor que 50 micro-segundos de arco si se sigue una calibraci n cuidadosa. Eso es su ciente para medir la paralaje trigonom trica y el movimiento propio de cualquier radio-estrella joven localizada a menos de unos cientos de parsecs del Sol con una precisi n mejor que unos cuantos porcientos. Aprovechando esta situaci n, hemos empezado a desarrollar un gran proyecto cuya meta principal es medir la distancia a las regiones de formaci n estelar m s cercanas (Tauro, O uco, Cefeo, etc.. Aqu , presentamos los resultados para varias estrellas en Tauro y O uco, y mostramos c mo la precisi n alcanzada es ya un orden de magnitud mejor que la de estimaciones previas. Los movimientos propios obtenidos tambi n son interesantes, particularmente en sistemas estelares m ltiples. Para ilustrar este punto, presentamos el caso del famoso sistema T Tauri, donde los datos VLBA proveen informaci n crucial para la caracterizaci n de la rbita.

  14. Carrier-phase Two-Way Satellite Frequency Transfer over a Very Long Baseline

    CERN Document Server

    Fujieda, M; Gotoh, T; Becker, J; Aida, M; Bauch, A

    2014-01-01

    In this paper we report that carrier-phase two-way satellite time and frequency transfer (TWSTFT) was successfully demonstrated over a very long baseline of 9,000 km, established between the National Institute of Information and Communications Technology (NICT) and the Physikalisch-Technische Bundesanstalt (PTB). We verified that the carrier-phase TWSTFT (TWCP) result agreed with those obtained by conventional TWSTFT and GPS carrier-phase (GPSCP) techniques. Moreover, a much improved short-term instability for frequency transfer of $2\\times10^{-13}$ at 1 s was achieved, which is at the same level as previously confirmed over a shorter baseline within Japan. The precision achieved was so high that the effects of ionospheric delay became significant which are ignored in conventional TWSTFT even over a long link. We compensated for these effects using ionospheric delays computed from regional vertical total electron content maps. The agreement between the TWCP and GPSCP results was improved because of this compe...

  15. Distributed state machine supervision for long-baseline gravitational-wave detectors.

    Science.gov (United States)

    Rollins, Jameson Graef

    2016-09-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitate the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.

  16. Hidden photon measurements using the long-baseline cavity of laser interferometric gravitational-wave detector

    CERN Document Server

    Inoue, Yuki

    2015-01-01

    We suggest a new application for the long-baseline and high powered cavities in a laser-interferometric gravitational-wave~(GW) detector to search for WISPs (weakly interacting sub-eV particles), such as a hidden U(1) gauge boson, called the hidden-sector photon. It is based on the principle of a light shining through the wall experiment, adapted to the laser with a wavelength of 1064 or 532 nm. The transition edge sensor (TES) bolometer is assumed as a detector, which the dark rate and efficiency are assumed as $0.000001~\\mathrm{s^{-1}}$ and 0.75, respectively. The TES bolometer is sufficiently sensitive to search for the low-mass hidden-sector photons. We assume that the reconversion cavity is mounted on the reconversion region of hidden-sector photons, which number of reflection and length are assumed as 1000 and 10, 100, and 1000m. We found that the second-point-five and the second generation GW experiments, such as KAGRA and Advanced LIGO with a regeneration cavity and TES bolometers. The expected lower ...

  17. 3D Seismic Reflection Images of An Off-Axis Melt Lens And Its Associated Upper Crust Around 9°39'N, East Pacific Rise

    Science.gov (United States)

    Han, S.; Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimović, M. R.

    2011-12-01

    During the 3D multi-channel seismic (MCS) survey MGL0812 aboard the R/V Langseth, several mid-crust reflectors were discovered off axis on both flanks of the East Pacific Rise from 9°35.6-57.0'N. The reversed polarity of these off-axis reflections with respect to the seafloor and Moho reflections and the high attenuation of the crust detected beneath two of them in the north suggest that they arise from melts residing at the mid-crust level outside the axial low velocity zone (Canales et al. 2010). These off-axis melt lenses (OAML) are probable sites of off-axis volcanism and potential heat sources for localized hydrothermal circulation on the ridge flanks. We focus here on a prominent OAML discovered on the eastern flank around 9°39'N. Results from 1D travel time modeling and 2D streamer tomography of downward continued shot gathers show the presence of a thinner seismic layer 2A above the center of the OAML compared with its surrounding crust. We attribute this thinning to the effects of alteration associated with localized off-axis hydrothermal circulation driven by the OAML, where precipitation of secondary minerals infills pore space within the lower basalt section, leading to increased seismic velocities and thereby converting the lowermost seismic layer 2A into seismic layer 2B. To further constrain the respective 3D geometries of the OAML and the AMC, their spatial relations, and the spatial extent and shape of the region of altered upper crust associated with the OAML, we conduct 3D processing of a small MCS grid that encompasses most of this OAML, aimed at imaging both on- and off-axis melt lens events and the base of seismic layer 2A. This grid covers an ~4 km x 24 km area centered on the ridge crest between ˜9°37.5'-40'N and extending on both flanks, within which a third order ridge axis discontinuity and two high temperature hydrothermal vents identified during Alvin dives in 1991 and 1994 are present. The data were recorded by four 468-channel

  18. Structure and Dynamics of the Southeast Indian Ridge, 129°E to 140°E, and Off-axis Volcanism: Preliminary Results of the STORM Cruise

    Science.gov (United States)

    Briais, Anne; Barrère, Fabienne; Boulart, Cédric; Ceuleneer, Georges; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès; Merkuryev, Sergey; Park, Sung-Hyun; Révillon, Sidonie; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok

    2016-04-01

    We present observations of the South-East Indian Ridge (SEIR) collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante early 2015. The SEIR between Australia and Antarctica displays large variations of axial morphology despite an almost constant intermediate spreading rate. The Australia-Antarctic Discordance (AAD) between 120°E and 128°E is a section of the mid-ocean ridge where the magma budget is abnormally low, and which marks the boundary between Indian and Pacific mantle domains with distinct geochemical isotopic compositions. The STORM project focuses on the area east of the discordance from 128 to 140°E, where gravity highs observed on satellite-derived maps of the flanks of the SEIR reveal numerous volcanic seamounts. A major objective of the STORM cruise was to test the hypothesis of a mantle flow from the Pacific to the Indian domains. We collected multibeam bathymetry and magnetic data between 136 and 138°E to map off-axis volcanic ridges up to 10 Ma-old crust. We mapped the SEIR axis between 129 and 140°E, and the northern part of the George V transform fault. We collected rock samples on seamounts and in the transform fault, basaltic glass samples along the ridge axis, and near-bottom samples and in-situ measurements in the water column. Our observations reveal that the off-axis seamounts form near the SEIR axis, are not associated to off-axis deformation of the ocean floor, and are often located near the traces of ridge axis discontinuities. We also observe a general shallowing of the ridge axis from the AAD to the George V TF and the presence of robust axial segments near the transform fault. Our new data allow us to describe the complex evolution of the transform fault system. They also permit to locate new hydrothermal systems along the ridge axis.

  19. Reduction of electrical damage in specimens prepared using focused ion beam milling for dopant profiling using off-axis electron holography.

    Science.gov (United States)

    Cooper, David; Truche, Robert; Rouviere, Jean-Luc

    2008-04-01

    GaAs specimens containing p-n junctions have been prepared using focused ion beam (FIB) milling for examination using off-axis electron holography. By lowering the FIB operating voltage from 30 to 8 kV, we have shown a systematic reduction of the electrically 'inactive' thickness from 220 to 100 nm, resulting in a significant increase in the step in phase measured across the junctions as well as an improvement in the signal-to-noise ratio. We also show that the step in phase measured across the junctions can be influenced by the intensity of the electron beam.

  20. Reduction of electrical damage in specimens prepared using focused ion beam milling for dopant profiling using off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, David [CEA LETI-Minatec, 17 rue des Martyrs, 38054 Grenoble, Cedex 9 (France)], E-mail: david.cooper@cea.fr; Truche, Robert [CEA LETI-Minatec, 17 rue des Martyrs, 38054 Grenoble, Cedex 9 (France); Rouviere, Jean-Luc [CEA DRFMC-Minatec, 17 rue des Martyrs, 38054 Grenoble, Cedex 9 (France)

    2008-04-15

    GaAs specimens containing p-n junctions have been prepared using focused ion beam (FIB) milling for examination using off-axis electron holography. By lowering the FIB operating voltage from 30 to 8 kV, we have shown a systematic reduction of the electrically 'inactive' thickness from 220 to 100 nm, resulting in a significant increase in the step in phase measured across the junctions as well as an improvement in the signal-to-noise ratio. We also show that the step in phase measured across the junctions can be influenced by the intensity of the electron beam.

  1. Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    CERN Document Server

    Wolf, Sebastian; Alexander, Richard; Berger, Jean-Philippe; Creech-Eakman, Michelle; Duchene, Gaspard; Dutrey, Anne; Mordasini, Christophe; Pantin, Eric; Pont, Frederic; Pott, Joerg-Uwe; Tatulli, Eric; Testi, Leonardo

    2012-01-01

    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.

  2. BDS ambiguity resolution with the modified TCAR method for medium-long baseline

    Science.gov (United States)

    Tian, Yijun; Zhao, Dongqing; Chai, Hongzhou; Wang, Sai

    2017-01-01

    As the BeiDou Navigation Satellite System (BDS) attained initial regional operational status at the end of October 2012, real BDS data are available to investigate triple-frequency ambiguity resolution (AR) performance. In this contribution, analysis of the classical TCAR models and limiting factors is given. It is concluded that the residual double-differencing (DD) ionospheric delay is the key limitation to the medium and long range narrow-lane (NL) ambiguity resolution in step 3 of the classical TCAR method. To improve this algorithm, the third step of the classical TCAR method is modified accordingly. The modified TCAR comprises three major steps. Step 1 and step 2 are the same as the classical TCAR, which is the geometry-free determination of the extra-wide-lane (EWL) and wide-lane (WL) ambiguities. Then we can derive the DD first-order ionospheric delay estimated from the ambiguity-fixed EWL. As the noise term of the estimated DD ionospheric delay is very large, the smooth method is employed to correct the estimated DD ionospheric delay. In step 3, the smooth DD ionospheric delay is used to completely correct the single-epoch DD float NL ambiguity resolution. It is also noted that there exist cycle-slips which influence the process of the ionosphere-smooth method. This is followed by a procedure to repair the cycle-slip. As a result, the modified-TCAR method shows a much better performance than the classical TCAR method over medium and long baseline.

  3. Assessing the quality of restored images in optical long-baseline interferometry

    Science.gov (United States)

    Gomes, Nuno; Garcia, Paulo J. V.; Thiébaut, Éric

    2017-03-01

    Assessing the quality of aperture synthesis maps is relevant for benchmarking image reconstruction algorithms, for the scientific exploitation of data from optical long-baseline interferometers, and for the design/upgrade of new/existing interferometric imaging facilities. Although metrics have been proposed in these contexts, no systematic study has been conducted on the selection of a robust metric for quality assessment. This article addresses the question: what is the best metric to assess the quality of a reconstructed image? It starts by considering several metrics and selecting a few based on general properties. Then, a variety of image reconstruction cases are considered. The observational scenarios are phase closure and phase referencing at the Very Large Telescope Interferometer (VLTI), for a combination of two, three, four and six telescopes. End-to-end image reconstruction is accomplished with the MIRA software, and several merit functions are put to test. It is found that convolution by an effective point spread function is required for proper image quality assessment. The effective angular resolution of the images is superior to naive expectation based on the maximum frequency sampled by the array. This is due to the prior information used in the aperture synthesis algorithm and to the nature of the objects considered. The ℓ1-norm is the most robust of all considered metrics, because being linear it is less sensitive to image smoothing by high regularization levels. For the cases considered, this metric allows the implementation of automatic quality assessment of reconstructed images, with a performance similar to human selection.

  4. Application of Hamamatsu MPPC to T2K Neutrino Detectors

    CERN Document Server

    Yokoyama, M; Gomi, S; Minamino, A; Nagai, N; Nitta, K; Orme, D; Otani, M; Murakami, T; Nakadaira, T; Tanaka, M; Kudenko, Yu; Retière, F; Vacheret, A

    2008-01-01

    A special type of Hamamatsu MPPC, with a sensitive area of 1.3x1.3mm^2 containing 667 pixels with 50x50um^2 each, has been developed for the near neutrino detector in the T2K long baseline neutrino experiment. About 60 000 MPPCs will be used in total to read out the plastic scintillator detectors with wavelength shifting fibers. We report on the basic performance of MPPCs produced for T2K.

  5. Neutrino Physics

    CERN Document Server

    Gil-Botella, I

    2013-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

  6. Neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Botella, I. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)

    2011-07-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  7. Application of very high harmonic fast waves for off-axis current drive in the DIII-D and FNSF-AT tokamaks

    Science.gov (United States)

    Prater, R.; Moeller, C. P.; Pinsker, R. I.; Porkolab, M.; Meneghini, O.; Vdovin, V. L.

    2014-08-01

    Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called 'helicons' or ‘whistlers’) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behaviour of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly towards the plasma centre. The high frequency also contributes to strong damping. Modelling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta is above about 1.8%. Detailed analysis of ray behaviour shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behaviour in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n‖, so wave accessibility issues can be reduced. Use of a travelling wave antenna provides a very narrow n‖spectrum, which also helps avoid accessibility problems.

  8. Electron Traps in GaAs Grown by Molecular Beam Epitaxy on On-axis (100 and Off-axis Substrates

    Directory of Open Access Journals (Sweden)

    R. Sarmiento

    2003-06-01

    Full Text Available Deep level transient spectroscopy (DLTS was used to characterize the electron traps present in the bulkGaAs grown by molecular beam epitaxy (MBE on on-axis (100 and off-axis (4° towards the (111 Adirection substrates. Two electron traps were obtained for each sample having identical correspondingpeak locations in the DLTS spectra. The layer grown on the on-axis substrate has electron traps withactivation energies of EC–0.454 eV and EC–0.643 eV and capture cross-sections of 1.205 x 10-14 cm2 and3.88 x 10-15 cm2, respectively. The layer grown on the off-axis substrate has traps with activation energiesof EC–0.454 eV and EC–0.723 eV and capture cross-sections of 2.060 x 10-14 cm2 and 4.40 x 10-14 cm2.The electron traps are possibly the M4 (or EL3 and EL2 (or EB4 traps commonly found in GaAs layers.Due to the high trap concentrations obtained and to the non-uniform trap concentration profile, Asdesorption may be considerable during growth.

  9. Control and uniformity of 280-nm features in i-line lithography using optical proximity corrections and off-axis illumination

    Science.gov (United States)

    Watson, Pat G.; Garofalo, Joseph G.; Hansen, M.; Grodnensky, Ilya M.; Zych, Ludwik J.; Takahashi, R.; Yarbrough, Willie J.; Ehrlacher, Edward; Reim, A.; Vella, R. M.; Dunbar, A.; Colina, Albert; Herrero, B.; Castro, D.

    1997-07-01

    The feasibility of manufacturing 280 nm gates for ASIC technology using i-line lithography is examined. Off-axis illumination, sub-resolution assist features and proximity effect bias corrections were considered. The experiments were performed with a reticle designed to evaluate the effects of line pitch, bias and field uniformity on the feature dimensions. Results show that dense and isolated features were found to print at about the same linewidth under all three illumination conditions. However, deviations as large as 40 nm were found at intermediate pitches, implying that some form of optical proximity correction is needed to maintain critical dimension (CD) control for a mask pattern with varying feature densities. Sub-resolution assist lines adjacent to isolated 280 nm lines significantly improved the apparent wall angle of the features compared to true isolated features. The use of these features comes at a cost; the sub-resolution features can be printed under certain conditions and could possibly lead to device failure. Multi-dimensional matrices of CD measurements with varying dose, focus, bias and pitch, when displayed in an appropriate manner, are being used to identify the relative advantages of different illumination conditions. Off-axis illumination offers a large depth of focus for all pitches if proximity effect biasing is applied. Conventional illumination with biasing can improve exposure latitude.

  10. Calculation of focal length for off-axis TMA aerospace mapping camera%离轴三反航天测绘相机焦距的计算

    Institute of Scientific and Technical Information of China (English)

    郭疆; 孙继明; 邵明东; 胡海飞

    2012-01-01

    To calculate the focal length of an off-axis Three Mirror Anastigmat(TMA) camera precisely and to guarantee its mapping precision,this paper researches and amends the classic mapping model and related formulas. First, the intersection angle of the off-axis TMA camera is re-defined, and the classic calculating formula for the focal length is modified. Then, the effect of earth curvature on the calculating focal length is analyzed, and the formula is further corrected. Examples indicate that when GSD is set to be 2 m,and the size of CCD, orbital altitude and the off-axis angle are 8 jj.m,700 km and 7? respectively, the relative error of the focal length of a tilt-looking camera calculated by the classic formula and that calculated by the modified formula can reach to 2. 6%, which will effect significantly on the mapping precision. Therefore, it suggests that the calculating formula for focal length of tilt-looking camera should take the off-axis angle into account when a off-axis TMA camera is used in photography. Furthermore, the classic calculating formula is still applicable for the ortho-looking camera.%为了精确计算离轴三反相机的焦距以保证其测绘精度,对经典测绘模型和相关公式进行了必要的修正.首先,重新定义了离轴三反测绘相机的交会角,并对经典焦距计算公式做了修正;其次,分析了地球曲率对离轴三反测绘相机焦距计算的影响,进一步修正了焦距计算公式.实例计算表明:当要求地面像元分辨率为2 m,在CCD像元尺寸为8μm,轨道高度为700 km,离轴角为7°条件下,应用经典计算公式得出的斜视相机焦距与应用修正后的计算公式所得出的斜视相机焦距相对偏差达到2.6%,说明对测绘精度影响很大.因此,在采用离轴三反相机进行摄影测量时,斜视相机焦距的计算应考虑离轴角后对经典公式进行必要的修正,而正视相机的焦距计算可以沿用经典计算公式.

  11. The long-period eccentric orbit of the particle accelerator HD 167971 revealed by long baseline interferometry

    NARCIS (Netherlands)

    De Becker, M.; Sana, H.; Absil, O.; Le Bouquin, J.-B.; Blomme, R.

    2012-01-01

    Using optical long baseline interferometry, we resolved for the first time the two wide components of HD 167971, a candidate hierarchical triple system known to efficiently accelerate particles. Our multi-epoch Very Large Telescope Interferometer observations provide direct evidence for a gravitatio

  12. Probing pseudo-Dirac neutrino through detection of neutrino-induced muons from gamma ray burst neutrinos

    Indian Academy of Sciences (India)

    Debasish Majumdar

    2008-01-01

    The possibility to verify the pseudo-Dirac nature of neutrinos is investigated here via the detection of ultra-high energy neutrinos from distant cosmological objects like -ray bursts (GRBs). The very long baseline and the energy range from ∼TeV to ∼EeV for such neutrinos invoke the likelihood to probe very small pseudo-Dirac splittings. The expected secondary muons from such neutrinos that can be detected by a kilometer scale detector such as ICECUBE is calculated and compared with the same in the case of mass-flavour oscillations and for no oscillation cases. The calculated muon yields indicate that to probe such small pseudo-Dirac splittings one needs to look for a nearby GRB (red shift ∼ 0:03 or less) whereas for a distant GRB ( ∼ 1) the flux will be much depleted and such phenomenon cannot be distinguished. Also calculated are the muon-to-shower ratios.

  13. FFAG Beam Line for nuPIL - Neutrinos from PIon Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Fermilab; Pasternak, Jaroslaw [Rutherford; Bross, Alan [Fermilab; Liu, Ao [Fermilab; Appleby, Robert [Cockcroft Inst. Accel. Sci. Tech.; Tygier, Sam [Cockcroft Inst. Accel. Sci. Tech.

    2016-06-01

    The Long Baseline Neutrino Facilities (LBNF) program aims to deliver a neutrino beam for the Deep Underground Neutrino Experiment (DUNE). The current baseline for LBNF is a conventional magnetic horn and decay pipe system. Neutrinos from PIon beam Line (nuPIL) is a part of the optimization effort to optimize the LBNF. It consists of a pion beam line after the horn to clean the beam of high energy protons and wrong-sign pions before transporting them into a decay beam line, where instrumentation could be implemented. This paper focuses on the FFAG solution for this pion beam line. The resulting neutrino flux is also presented.

  14. Octant of $\\theta_{23}$ in danger with a light sterile neutrino

    CERN Document Server

    Agarwalla, Sanjib Kumar; Palazzo, Antonio

    2016-01-01

    Present global fits of world neutrino data hint towards non-maximal $\\theta_{23}$ with two nearly degenerate solutions, one in the lower octant ($\\theta_{23} \\pi/4$). This octant ambiguity of $\\theta_{23}$ is one of the fundamental issues in the neutrino sector, and its resolution is a crucial goal of next-generation long-baseline (LBL) experiments. In this letter, we address for the first time, the impact of a light eV-scale sterile neutrino towards such a measurement, taking the Deep Underground Neutrino Experiment (DUNE) as a case study. In the so-called 3+1 scheme involving three active and one sterile neutrino, the $\

  15. OPERA neutrino oscillation search: Status and perspectives

    Science.gov (United States)

    Gornushkin, Yu.

    2016-07-01

    OPERA is a long-baseline neutrino experiment at the Gran Sasso laboratory (LNGS) designed to search for ν_{{μ}}^{} → ν_{{τ}}^{} oscillations in a direct appearance mode on an event by event basis. OPERA took data in 2008-2012 with the CNGS neutrino beam from CERN. The data analysis is ongoing, with the goal of establishing ν_{{τ}}^{} appearance with a high significance. Complementary studies of the ν_{{μ}}^{} → ν_{{e}}^{} oscillations and atmospheric muons fluxes were performed as well. Current results of the experiment are presented and perspectives discussed.

  16. Neutrino Physics

    Science.gov (United States)

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  17. Probing Majorana Neutrino Textures at DUNE

    CERN Document Server

    Bora, Kalpana; Dutta, Debajyoti

    2016-01-01

    We study the possibility of probing different texture zero neutrino mass matrices at long baseline neutrino experiment DUNE. Assuming a diagonal charged lepton basis and Majorana nature of light neutrinos, we first classify the possible light neutrino mass matrices with one and two texture zeros and then numerically evaluate the parameter space in terms of atmospheric mixing angle $\\theta_{23}$ and Dirac CP phase $\\delta_{\\text{CP}}$ which satisfies the texture zero conditions. We then feed these parameter values into the numerical analysis in order to study the sensitivity of DUNE experiment to them. We find that the DUNE will be able to exclude some of these texture zero mass matrices which restrict the $(\\theta_{23}-\\delta_{\\text{CP}})$ to a very specific range of values.

  18. Sterile neutrinos and flavor ratios in IceCube

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Wang, Xiao-Ping

    2017-01-01

    The flavor composition of astrophysical neutrinos observed in neutrino telescopes is a powerful discriminator between different astrophysical neutrino production mechanisms and can also teach us about the particle physics properties of neutrinos. In this paper, we investigate how the possible existence of light sterile neutrinos can affect these flavor ratios. We consider two scenarios: (i) neutrino production in conventional astrophysical sources, followed by partial oscillation into sterile states; (ii) neutrinos from dark matter decay with a primary flavor composition enhanced in tau neutrinos or sterile neutrinos. Throughout the paper, we constrain the sterile neutrino mixing parameters from a full global fit to short and long baseline data. We present our results in the form of flavor triangles and, for scenario (ii), as exclusion limits on the dark matter mass and lifetime, derived from a fit to IceCube high energy starting events and through-going muons. We argue that identifying a possible flux of neutrinos from dark matter decay may require analyzing the flavor composition as a function of neutrino energy.

  19. Neutrino Masses

    CERN Document Server

    Weinheimer, Christian

    2013-01-01

    The various experiments on neutrino oscillation evidenced that neutrinos have indeed non-zero masses but cannot tell us the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double $\\beta$-decay and the direct neutrino mass search by investigating single $\\beta$-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments with different techniques are being constructed, commissioned or are even running, which aim for a sensitivity on the neutrino ...

  20. Studying the physics potential of long-baseline experiments in terms of new sensitivity parameters

    CERN Document Server

    Singh, Mandip

    2016-01-01

    We investigate physics opportunities to constraint leptonic CP-violation phase $\\delta_{CP}$ through numerical analysis of working neutrino oscillation probability parameters, in the context of long base line experiments. Numerical analysis of two parameters, the " transition probability $\\delta_{CP}$ phase sensitivity parameter ($A^M$) " and " CP-violation probability $\\delta_{CP}$ phase sensitivity parameter ($A^{CP}$) ", as function of beam energy and/or base line has been preferably carried out. It is an elegant technique to broadly analyze different experiments to constraint $\\delta_{CP}$ phase and also to investigate mass hierarchy in the leptonic sector. The positive and negative values of parameter $A^{CP}$ corresponding to either of hierarchy in the specific beam energy ranges, could be a very promising way to explore mass hierarchy and $\\delta_{CP}$ phase. The keys to more robust bounds on $\\delta_{CP}$ phase are improvements of the involved detection techniques to explore bit low energy and relativ...

  1. Report of the Solar and Atmospheric Neutrino Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-10-22

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy {sup 8}B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure {nu}{sub e}, which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of {theta}{sub 12} and, together with other solar neutrino measurements, either a measurement of {theta}{sub 13} or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the {sup 7}Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and {sup 7}Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very

  2. The next-generation liquid-scintillator neutrino observatory LENA

    CERN Document Server

    Wurm, Michael; Bezrukov, Leonid B; Bick, Daniel; Blümer, Johannes; Choubey, Sandhya; Ciemniak, Christian; D'Angelo, Davide; Dasgupta, Basudeb; Dighe, Amol; Domogatsky, Grigorij; Dye, Steve; Eliseev, Sergey; Enqvist, Timo; Erykalov, Alexey; von Feilitzsch, Franz; Fiorentini, Gianni; Fischer, Tobias; Göger-Neff, Marianne; Grabmayr, Peter; Hagner, Caren; Hellgartner, Dominikus; Hissa, Johannes; Horiuchi, Shunsaku; Janka, Hans-Thomas; Jaupart, Claude; Jochum, Josef; Kalliokoski, Tuomo; Kuusiniemi, Pasi; Lachenmaier, Tobias; Lazanu, Ionel; Learned, John G; Lewke, Timo; Lombardi, Paolo; Lorenz, Sebastian; Lubsandorzhiev, Bayarto; Ludhova, Livia; Loo, Kai; Maalampi, Jukka; Mantovani, Fabio; Marafini, Michela; Maricic, Jelena; Undagoitia, Teresa Marrodán; McDonough, William F; Miramonti, Lino; Mirizzi, Alessandro; Meindl, Quirin; Mena, Olga; Möllenberg, Randolph; Nahnhauer, Rolf; Nesterenko, Dmitry; Novikov, Yuri N; Nuijten, Guido; Oberauer, Lothar; Pakvasa, Sandip; Palomares-Ruiz, Sergio; Pallavicini, Marco; Pascoli, Silvia; Patzak, Thomas; Peltoniemi, Juha; Potzel, Walter; Räihä, Tomi; Raffelt, Georg G; Ranucci, Gioacchino; Razzaque, Soebur; Rummukainen, Kari; Sarkamo, Juho; Sinev, Valerij; Spiering, Christian; Stahl, Achim; Thorne, Felicitas; Tippmann, Marc; Tonazzo, Alessandra; Trzaska, Wladyslaw H; Vergados, John D; Wiebusch, Christopher; Winter, Jürgen

    2011-01-01

    We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENA's physics objectives comprise the observation of astrophysical and terrestrial neutrino sources as well as the investigation of neutrino oscillations. In the GeV energy range, the search for proton decay and long-baseline neutrino oscillation experiments complement the low-energy program. Based on the considerable expertise present in European and international research groups, the technical design is sufficiently mature to allow for an early start of detector realization.

  3. A study of neutrino oscillations in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Raufer, Tobias Martin [Univ. College, Oxford (United Kingdom)

    2007-01-01

    MINOS is a long-baseline neutrino oscillations experiment located at Fermi National Accelerator Laboratory (FNAL), USA. It makes use of the NuMI neutrino beamline and two functionally identical detectors located at distances of ~1km and ~735km from the neutrino production target respectively. The Near Detector measures the composition and energy spectrum of the neutrino beam with high precision while the Far Detector looks for evidence of neutrino oscillations. This thesis presents work conducted in two distinct areas of the MINOS experiment: analysis of neutral current and charged current interactions. While charged current events are only sensitive to muon neutrino disappearance, neutral current events can be used to distinguish oscillations into sterile neutrinos from those involving only active neutrino species. A complete, preliminary neutral current study is performed on simulated data. This is followed by a more detailed investigation of neutral current neutrino interactions in the MINOS Near Detector. A procedure identifying neutral current interactions and rejecting backgrounds due to reconstruction failures is developed. Two distinct event classification methods are investigated. The selected neutral current events in the Near Detector are used to extract corrections to the neutral current cross-section in the MINOS Monte Carlo simulation as a function of energy. The resulting correction factors are consistent with unity. The main MINOS charged current neutrino disappearance analysis is described. We present the Monte Carlo tuning procedure, event selection, extrapolation from Near to Far Detector and fit for neutrino oscillations. Systematic errors on this measurement are evaluated and discussed in detail. The data are consistent with neutrino oscillations with the following parameters: 2.74 $+0.44\\atop{-0.26}$ x 10-3 eV2 and sin2(2θ23) > 0.87 at 68% confidence level.

  4. Neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  5. Neutrinos: from the Workshop to the Factory

    CERN Multimedia

    2001-01-01

    Over the next 5 years much work will be done to reach a theoretical and practical description of a neutrino factory. How could this project turn out to be an interesting future option for CERN? Neutrino beams travelling from CERN to the Canary Islands? And to the Svalbard archipelago in Norway? Or even to the Pyhaesalmi Mine in Finland? Why neutrinos? And why so far? The answers provide one of CERN's next challenging options: the construction of a high-energy muon storage ring to provide neutrino beams. This project, nicknamed 'neutrino factory', now figures in CERN's middle term plan as a recognized and supported research and development project. International collaborations, with other European laboratories and also with America and Japan, are now being set up. Long baseline locations for neutrino oscillations studies at a CERN based neutrino factory. Early in its history, LEP established that there exist just three kinds of light neutrinos, those associated with the electron, muon, and tau leptons. For a...

  6. Study of Neutrino Interactions in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Richa [Panjab Univ., Chandigarh (India)

    2014-01-01

    MINOS stands for Main Injector Neutrino Oscillation Search. It is a long baseline experiment located in the USA and is composed of two detectors. The Near Detector is at Fermilab, 1 km from the source of neutrinos. The Far Detector is in Minnesota at a distance of 735 km from the source. Both detectors are steel scintillator tracking calorimeters. MINOS searches for neutrino oscillations by comparing the neutrino energy spectrum at the Far Detector with that obtained from a prediction based on the spectrum at the Near Detector. The primary aim of MINOS is to measure the atmospheric oscillation parameters Δm2 32 and θ23. CPT symmetry requires that these parameters should be same for neutrinos and antineutrinos. Di erences between neutrino and antineutrino oscillations would be an indication of new physics beyond the neutrino-Standard Model ( SM). Additionally, violation of Lorentz or CPT symmetry could also give rise to oscillations di erent from that expected from the SM predictions, such as neutrino to antineutrino transitions.

  7. The Role of Anti-Phase Domains in InSb-Based Structures Grown on On-Axis and Off-Axis Ge Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, M. C.; Mishima, T. D.; Santos, M. B. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Hossain, K.; Holland, O. W. [Amethyst Research, Inc., 1405 4th Ave NW, Ardmore, OK 73401 (United States)

    2011-12-26

    Anti-phase domains form in InSb epilayers and InSb/Al{sub 0.20}In{sub 0.80}Sb single quantum wells when grown upon on-axis (001) Ge substrates by molecular beam epitaxy. Domain formation is partially suppressed through growth on Ge substrates with surfaces that are several degrees off the (001) or (211) axis. By using off-axis Ge substrates, room-temperature electron mobilities increased to {approx}60,000 cm{sup 2}/V-s and {approx}14,000 cm{sup 2}/V-s for a 4.0-{mu}m-thick InSb epilayer and a 25-nm InSb quantum well, respectively.

  8. Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zhaofeng [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; Perea, Daniel E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Yoo, Jinkyoung [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Colby, Robert J. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Barker, Josh E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Picraux, S. T. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA; McCartney, Martha R. [Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

    2016-09-13

    Doped Si-Ge nanowire (NW) heterojunctions were grown using the vapor-liquid-solid method with AuGa and Au catalyst particles. Transmission electron microscopy and off-axis electron holography (EH) were used to characterize the nanostructure and to measure the electrostatic potential profile across the junction resulting from electrically active dopants, while atom-probe tomography (APT) was used to determine the Si, Ge and total (active and inactive) dopant concentration profiles. A comparison of the measured potential profile with simulations indicated that Ga dopants unintentionally introduced during AuGa catalyst growth were electronically inactive despite APT results that showed considerable amounts of Ga in the Si region. 10% P in Ge and 100% B in Si were estimated to be activated, which was corroborated by in situ electron-holography biasing experiments. This combination of EH, APT, in situ biasing and simulations allows a better knowledge and understanding of the electrically active dopant distributions in NWs.

  9. Thermal optical path difference analysis of off-axis lens ray trace foot-print at Cassegrain telescope correct lens assembly

    Science.gov (United States)

    Hsu, Ming-Ying; Lin, Yu-Chuan; Chan, Chia-Yen; Lin, Wei-Cheng; Chan, Shenq-Tsong; Huang, Ting-Ming

    2012-10-01

    The Cassegrain telescope system in this study, is discussion correct lens thermal OPD (Optical Path Difference) effect optical performance. The correct lens assembly are includes several components such as correct lens, lens mount, spacer, mount barrel and retainer. The heat transfer from surrounding to the correct lens barrel will causes optical system aberration. Meanwhile, the off-axis rays path of the OPD must consider lens incidence point and emergence point. The correct lens temperature distribution is calculate the lens barrel heat transfer analysis, the thermal distortion and stress are solve by FEM (Finite Element Method) software. The temperature calculation results can be weighting to each incidence ray path and calculate thermal OPD. The thermal OPD on Z-direction can be fitted by rigid body motion and Zernike polynomial. The fitting results can be used to evaluate the thermal effect on correct lens assembly in telescope system.

  10. Design Trade Study for a 4-Meter Off-Axis Primary Mirror Substrate and Mount for the Habitable-Zone Exoplanet Direct Imaging Mission

    Science.gov (United States)

    Arnold, William R.; Stahl, H. Philip

    2017-01-01

    An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study’s purpose is not to produce a final design, but rather to established a design methodology for matching the mirror’s properties (mass and stiffness) with the mission’s optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs. open-back vs. partial-back; meniscus vs. flat back vs. shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.

  11. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    Science.gov (United States)

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  12. Towards quantitative off-axis electron holographic mapping of the electric field around the tip of a sharp biased metallic needle

    Energy Technology Data Exchange (ETDEWEB)

    Beleggia, M. [Center for Electron Nanoscopy, Technical University of Denmark, Kongens Lyngby (Denmark); Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin (Germany); Kasama, T. [Center for Electron Nanoscopy, Technical University of Denmark, Kongens Lyngby (Denmark); Larson, D. J.; Kelly, T. F. [CAMECA Instruments, Inc., Madison, Wisconsin 53711 (United States); Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungzentrum Jülich, Jülich (Germany); Pozzi, G. [Department of Physics and Astronomy, University of Bologna, Bologna (Italy)

    2014-07-14

    We apply off-axis electron holography and Lorentz microscopy in the transmission electron microscope to map the electric field generated by a sharp biased metallic tip. A combination of experimental data and modelling provides quantitative information about the potential and the field around the tip. Close to the tip apex, we measure a maximum field intensity of 82 MV/m, corresponding to a field k factor of 2.5, in excellent agreement with theory. In order to verify the validity of the measurements, we use the inferred charge density distribution in the tip region to generate simulated phase maps and Fresnel (out-of-focus) images for comparison with experimental measurements. While the overall agreement is excellent, the simulations also highlight the presence of an unexpected astigmatic contribution to the intensity in a highly defocused Fresnel image, which is thought to result from the geometry of the applied field.

  13. Dopant profiling of focused ion beam milled semiconductors using off-axis electron holography; reducing artifacts, extending detection limits and reducing the effects of gallium implantation

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, David, E-mail: david.cooper@cea.fr [CEA, LETI, MINATEC, F38054 Grenoble (France); Ailliot, Cyril; Barnes, Jean-Paul; Hartmann, Jean-Michel [CEA, LETI, MINATEC, F38054 Grenoble (France); Salles, Phillipe; Benassayag, Gerard [CEMES-CNRS, nMat group, 29 rue Jean Marvig, 31055 Toulouse (France); Dunin-Borkowski, Rafal E. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2010-04-15

    Focused ion beam (FIB) milling is one of the few specimen preparation techniques that can be used to prepare parallel-sided specimens with nm-scale site specificity for examination using off-axis electron holography in the transmission electron microscope (TEM). However, FIB milling results in the implantation of Ga, the formation of amorphous surface layers and the introduction of defects deep into the specimens. Here we show that these effects can be reduced by lowering the operating voltage of the FIB and by annealing the specimens at low temperature. We also show that the electrically inactive thickness is dependent on both the operating voltage and type of ion used during FIB milling.

  14. Bisimide amine cured epoxy /IME/ resins and composites. II - Ten-degree off-axis tensile and shear properties of Celion 6000/IME composites

    Science.gov (United States)

    Scola, D. A.

    1982-01-01

    Bisimide amines (BIAs), which are presently used as curing agents in a state-of-the-art epoxy resin, are oligomeric and polymeric mixtures. A series of composites consisting of the novel BIA-cured epoxy resin reinforced with Celion 6000 graphite fibers were fabricated and evaluated, and the ten-degree, off-axis uniaxial tensile and shear properties of these composites were determined. The use of the intralaminar shear strain-to-failure was used in the calculation of resin shear strain-to-failure. Study results indicate that several of these novel composite systems exhibit shear strain properties that are superior to those of the control composite system of the present experiments, which employed a sulfone curing agent.

  15. Effect of magnetic field and soft potential barrier on off-axis donor binding energy in a nanotube with two quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jesus D. [Grupo en Teoria de la Materia Condensada, Universidad del Magdalena, Santa Marta (Colombia); Grupo de Fisica Mesoscopica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Rondano, F.J. [Grupo en Teoria de la Materia Condensada, Universidad del Magdalena, Santa Marta (Colombia); Barba-Ortega, J., E-mail: jjbarbao@unal.edu.co [Grupo de Fisica Mesoscopica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2012-12-15

    We analyze the effect of the magnetic field parallel to the axis and different potential shape on the ground-state binding energy of the off-axis donors in cylindrical nanotubes containing two GaAs/GaAlAs quantum wells (QWs) in a section of the tube layer. We express the wave function as a product of combinations of s and p subband wave functions and an envelope function that depends only on the electron-ion separation. By using the variational principle we derive a differential equation for the envelope function, which we solve numerically. Two peaks in the curves for the dependence of the ground-state binding energies on the donor distance from the axis are presented and it is shown that the increasing the magnetic field increasing the binding energy while the impurity is located in the QW1, whereas the opposite occurs when the impurity is located in the QW2.

  16. Epitaxial growth and characterization of Eu0.5Sr0.5CoO3 thin films by off-axis sputtering

    Science.gov (United States)

    Kwon, Daeyoung; Wu, Youngsu; Kim, Bongju; Kim, Bog G.; Hwang, Harold Y.

    2009-09-01

    We report the epitaxial growth and physical properties of Eu0.5Sr0.5CoO3 (ESCO) thin films deposited on (001) LaAlO3 (LAO) and (001) SrTiO3 (STO) substrates by off-axis rf sputtering. The magnetic properties of a grown film are governed by the crystallinity of the thin film and strain effects due to the substrate. The temperature-dependent resistivity of an optimized ESCO thin film on a LAO substrate shows a characteristic sudden decrease near the ferromagnetic transition temperature, indicating metallic double-exchange-like behavior, while the resistivity of ESCO on a STO substrate displays insulatinglike behavior because of substrate strain. These results suggest that optimized ESCO film on LAO is ideal as a bottom electrode for strained dielectric and ferroelectric heterostructures.

  17. Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a Zeeman-slower for cold atoms

    Science.gov (United States)

    Muniz, Sérgio R.; Bagnato, Vanderlei S.; Bhattacharya, M.

    2015-06-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution and is presented through practical examples, including a nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce themes of current modern research.

  18. Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms

    CERN Document Server

    Muniz, Sérgio R; Bagnato, Vanderlei S

    2010-01-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the non-trivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce important advancements of current modern research.

  19. Calibration of δ13C and δ18O measurements in CO2 using Off-axis Integrated Cavity Output Spectrometer (ICOS)

    Science.gov (United States)

    Joseph, Jobin; Külls, Christoph

    2014-05-01

    The δ13C and δ18O of CO2 has enormous potential as tracers to study and quantify the interaction between the water and carbon cycles. Isotope ratio mass spectrometry (IRMS) being the conventional method for stable isotopic measurements, has many limitations making it impossible for deploying them in remote areas for online or in-situ sampling. New laser based absorption spectroscopy approaches like Cavity Ring Down Spectroscopy (CRDS) and Integrated Cavity Output Spectroscopy (ICOS) have been developed for online measurements of stable isotopes at an expense of considerably less power requirement but with precision comparable to IRMS. In this research project, we introduce a new calibration system for an Off- Axis ICOS (Los Gatos Research CCIA-36d) for a wide range of varying concentrations of CO2 (800ppm - 25,000ppm), a typical CO2 flux range at the plant-soil continuum. The calibration compensates for the concentration dependency of δ13C and δ18O measurements, and was performed using various CO2 standards with known CO2 concentration and δC13 and δO18 values. A mathematical model was developed after the calibration procedure as a correction factor for the concentration dependency of δ13C and δ18O measurements. Temperature dependency of δ13C and δ18O measurements were investigated and no significant influence was found. Simultaneous calibration of δ13C and δ18O is achieved using this calibration system with an overall accuracy of (~ 0.75±0.24 ‰ for δ13C, ~ 0.81 ±0.26‰ for δ18O). This calibration procedure is found to be appropriate for making Off-Axis ICOS suitable for measuring CO2 concentration and δ13C and δ18O measurements at atmosphere-plant-soil continuum.

  20. The minimal 3+2 neutrino model versus oscillation anomalies

    CERN Document Server

    Donini, A; Lopez-Pavon, J; Maltoni, M; Schwetz, T

    2012-01-01

    We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard $3\

  1. A New Type of Accessible Environmental Influences on Neutrino Oscillation

    Institute of Scientific and Technical Information of China (English)

    CHANG Chao-Hsi; DONG Hui-Shi; FENG Tai-Fu; FENG Xi-Chen; LI Xue-Qian; MA Feng-Cai; TAO Zhi-Jian

    2001-01-01

    Considering a new type of environment influences,we use a two-energy-level (v1-v2) quantum system to investigate neutrino oscillations in medium.Besides the matter effects derived by Wolfenstein,there may exist extra terms due to a unitary evolution of the system between pure and mixed states,so the evolution equation is modified obviously.We show that the extra terms may play some role and induce observable effects in solar neutrino problem, especially,in the long baseline neutrino oscillation experiments which are under serious consideration recently,if the parameters fall into a suitable region.

  2. Neutrino Project X at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2008-07-01

    In this talk I will give a brief description of Project X and an outline of the Neutrino Physics possibilities it provides at Fermilab. Project X is the generic name given to a new intense proton source at Fermilab. This source would produce more than 2 MW of proton power at 50 to 120 GeV, using the main injector, which could be used for a variety of long baseline neutrino experiments. A new 8 GeV linac would be required with many components aligned with a possible future ILC. In addition to the beam power from the main injector there is an additional 200 kW of 8 GeV protons that could be used for kaon, muon, experiments.

  3. A combined beta-beam and electron capture neutrino experiment

    CERN Document Server

    Bernabeu, J; Orme, C; Palomares-Ruiz, S; Pascoli, S

    2009-01-01

    The next generation of long baseline neutrino experiments will aim at determining the value of the unknown mixing angle, theta_{13}, the type of neutrino mass hierarchy and the presence of CP-violation in the lepton sector. Beta-beams and electron capture experiments have been studied as viable candidates for long baseline experiments. They use a very clean electron neutrino beam from the beta-decays or electron capture decays of boosted ions. In the present article we consider an hybrid setup which combines a beta-beam with an electron capture beam by using boosted Ytterbium ions. We study the sensitivity to the CP-violating phase delta and the theta_{13} angle, the CP-discovery potential and the reach to determine the type of neutrino mass hierarchy for this type of long baseline experiment. The analysis is performed for different neutrino beam energies and baselines. Finally, we also discuss how the results would change if a better knowledge of some of the assumed parameters was achieved by the time this e...

  4. Neutrino physics

    CERN Document Server

    Hernandez, P

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  5. Checking T and CPT violation with sterile neutrino

    Directory of Open Access Journals (Sweden)

    Yogita Pant

    2016-08-01

    Full Text Available Post LSND results, sterile neutrinos have drawn attention and motivated the high energy physics, astronomy and cosmology to probe physics beyond the standard model considering minimal 3+1 (3 active and 1 sterile to 3+N neutrino schemes. The analytical equations for neutrino conversion probabilities are developed in this work for 3+1 neutrino scheme. Here, we have tried to explore the possible signals of T and CPT violations with four flavor neutrino scheme at neutrino factory. Values of sterile parameters considered in this analysis are taken from two different types of neutrino experiments viz. long baseline experiments and reactor+atmospheric experiments. In this work golden and discovery channels are selected for the investigation of T violation. While observing T violation we stipulate that neutrino factory working at 50 GeV energy has the potential to observe the signatures of T violation through discovery channel if sterile parameter values are equal to that taken from reactor+atmospheric experiments. The ability of neutrino factory for constraining CPT violation is enhanced with increase in energy for normal neutrino mass hierarchy (NH. Neutrino factory with the exposure time of 500 kt-yr will be able to capture CPT violation with δc31≥3.6×10−23 GeV at 3σ level for NH and for IH with δc31≥4×10−23 GeV at 3σ level.

  6. Exploration of possible quantum gravity effects with neutrinos II: Lorentz violation in neutrino propagation

    Science.gov (United States)

    Sakharov, Alexander; Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André

    2009-06-01

    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c = [1 ± (E/MvQG1)] or [1 ± (E/MvQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment.

  7. Identifying neutrino mass hierarchy at extremely small theta13 through earth matter effects in a supernova signal.

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro

    2008-10-24

    Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of theta_(13). Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin(2)theta_(13) < or approximately 10(-5), where long baseline neutrino experiments would be ineffectual.

  8. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  9. Neutrino Interactions

    CERN Document Server

    McFarland, Kevin

    2008-01-01

    This manuscript summarizes a series of three lectures on interactions of neutrinos . The lectures begin with a pedagogical foundation and then explore topics of interest to current and future neutrino oscillation and cross-section experiments.

  10. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Stephen James [College of William and Mary, Williamsburg, VA (United States)

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  11. Neutrino Physics

    CERN Document Server

    Xing, Zhi-Zhong

    2014-01-01

    I give a theoretical overview of some basic properties of massive neutrinos in these lectures. Particular attention is paid to the origin of neutrino masses, the pattern of lepton flavor mixing, the feature of leptonic CP violation and the electromagnetic properties of massive neutrinos. I highlight the TeV seesaw mechanisms as a possible bridge between neutrino physics and collider physics in the era characterized by the Large Hadron Collider.

  12. Neutrino Oscillations with the MINOS, MINOS+, T2K, and NOvA Experiments

    CERN Document Server

    Nakaya, Tsuyoshi

    2015-01-01

    This paper discusses recent results and near-term prospects of the long-baseline neutrino experiments MINOS, MINOS+, T2K and NOvA. The non-zero value of the third neutrino mixing angle {\\theta}13 allows experimental analysis in a manner which explicitly exhibits appearance and disappearance dependencies on additional parameters associated with mass-hierarchy, CP violation, and any non-maximal {\\theta}23. These current and near-future experiments begin the era of precision accelerator long-baseline measurements and lay the framework within which future experimental results will be interpreted.

  13. Neutrino oscillations with the MINOS, MINOS+, T2K, and NOvA experiments

    Science.gov (United States)

    Nakaya, Tsuyoshi; Plunkett, Robert K.

    2016-01-01

    This paper discusses recent results and near-term prospects of the long-baseline neutrino experiments MINOS, MINOS+, T2K and NOvA. The non-zero value of the third neutrino mixing angle θ 13 allows experimental analysis in a manner which explicitly exhibits appearance and disappearance dependencies on additional parameters associated with mass-hierarchy, CP violation, and any non-maximal θ 23. These current and near-future experiments begin the era of precision accelerator long-baseline measurements and lay the framework within which future experimental results will be interpreted.

  14. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias [Royal Inst. Tech., Stockholm; Coloma, Pilar [Fermilab; Fernandez-Martinez, Enrique [Madrid, IFT; Hernandez-Garcia, Josu [Madrid, IFT; Lopez-Pavon, Jacobo [INFN, Genoa

    2016-09-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

  15. Neutrino Physics

    CERN Document Server

    Langacker, P; Peinado, E; Langacker, Paul; Erler, Jens; Peinado, Eduardo

    2005-01-01

    The theoretical and experimental bases of neutrino mass and mixing are reviewed. A brief chronological evolution of the weak interactions, the electroweak Standard Model, and neutrinos is presented. Dirac and Majorana mass terms are explained as well as models such as the seesaw mechanism. Schemes for two, three and four neutrino mixings are presented.

  16. Neutrino Radar

    CERN Document Server

    Panigrahi, P K

    2002-01-01

    We point out that with improving our present knowledge of experimental neutrino physics it will be possible to locate nuclear powered vehicles like submarines, aircraft carriers and UFOs and detect nuclear testing. Since neutrinos cannot be shielded, it will not be possible to escape these detection. In these detectors it will also be possible to perform neutrino oscillation experiments during any nuclear testing.

  17. Los Neutrinos Los Neutrinos

    Directory of Open Access Journals (Sweden)

    Julián Félix

    2012-02-01

    Full Text Available From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and momentum at subatomic level. This proposition has evolved through the years, and from Pauli’s original idea only the basic elements remain.This article contains the tale of the hypothesis of neutrinos, its early history, its evolution up to present day, and the efforts done nowadays to study them. In summary, this is the physics of neutrinos. De todas las propuestas para entender la estructura de la materia, y la conformación del mundo natural, los neutrinos es la más enigmática, abstracta, y ajena a la experiencia inmediata; sin embargo, es la que más hondo ha ido calando a lo largo de los ya casi ochenta años de haber sido formulada por Wolfgang Pauli –en el año 1930- como una medida radical para entender el decaimiento de los nucleones, y otras partículas, sin que se violara el principio de la conservación de la energía y del momento a nivel subatómico. La propuesta ha evolucionado a lo largo de los años, y de la idea original de Pauli ya sólo lo básico permanece. En este artículo está el relato de la hipótesis de los neutrinos, su historia primera, su evolución hasta el presente, los esfuerzos que en la actualidad se realizan para estudiarlos. En breve, ésta es la física de los neutrinos.

  18. Constant matter neutrino oscillations in a parametrization-free formulation

    Science.gov (United States)

    Flores, L. J.; Miranda, O. G.

    2016-02-01

    Neutrino oscillations are now a well-established and deeply studied phenomena. Their mixing parameters, except for the C P phase, are measured with good accuracy. The three-neutrino oscillation picture in matter is currently of great interest due to the different long-baseline neutrino experiments that are already running or under construction. In this work, we reanalyze the exact expression for the neutrino probabilities (in a constant density medium) and introduce an approximate formula. Our results are shown in a formulation that is independent of the parametrization and could be useful for unitary tests of the leptonic mixing matrix. We illustrate how the approximation, besides being simple, can reproduce the neutrino probabilities with good accuracy.

  19. Constant matter neutrino oscillations in a parametrization-free formulation

    CERN Document Server

    Flores, L J

    2015-01-01

    Neutrino oscillations are now a well stablished and deeply studied phenomena. Its mixing parameters, except for the CP-phase, are measured with good accuracy. Three neutrino oscillation picture in matter is currently of great interest due to the different long baseline neutrino experiments that are already running or under construction. In this work we re-analyze the exact expression for the neutrino probabilities (in a constant density medium) and introduce an approximate formula. Our results are showed in a formulation that is independent of the parametrization and could be useful for unitary tests of the leptonic mixing matrix. We illustrate how the approximation, besides being simple, can reproduce the neutrino probabilities with good accuracy.

  20. Probing Exotic Physics With Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  1. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  2. In-situ potential mapping of space charge layer in GaN nanowires under electrical field by off-axis electron holography

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-04-01

    Full Text Available In situ potential mapping of space charge (SC layer in a single GaN nanowire (NW contacted to the Au metal electrode has been conducted using off-axis electron holography in order to study the space distribution of SC layer under electric biases. Based on the phase image reconstructed from the complex hologram the electrostatic potential at the SC layer was clearly revealed; the SC width was estimated to be about 76 nm under zero bias condition. In order to study dynamic interrelation between the SC layer and bias conditions, the variation of the electrostatic potential due to change of the SC widths respond to the different bias conditions have also been examined. The measured SC layers are found to vary between 68 nm and 91 nm, which correspond to the saturated SC layers at the GaN-Au contact under the forward and reverse bias conditions, respectively. By plotting the square widths of the SC layer against the applied voltages, donor density of GaN NWs was derived to be about 4.3*106 cm−3. Our experiments demonstrate that in-situ electron holography under electric field can be a useful method to investigate SC layers and donor density in single NW and other heterostructures.

  3. In-situ potential mapping of space charge layer in GaN nanowires under electrical field by off-axis electron holography

    Institute of Scientific and Technical Information of China (English)

    Xiao Chen; Yanguo Wang; Jie Guo; Jikang Jian; Lin Gu; Zhihua Zhang

    2016-01-01

    In situ potential mapping of space charge (SC) layer in a single GaN nanowire (NW) contacted to the Au metal electrode has been conducted using off-axis electron holography in order to study the space distribution of SC layer under electric biases. Based on the phase image reconstructed from the complex hologram the electrostatic potential at the SC layer was clearly revealed;the SC width was estimated to be about 76 nm under zero bias condition. In order to study dynamic interrelation between the SC layer and bias conditions, the variation of the electrostatic potential due to change of the SC widths respond to the different bias conditions have also been examined. The measured SC layers are found to vary between 68 nm and 91 nm, which correspond to the saturated SC layers at the GaN-Au contact under the forward and reverse bias conditions, respectively. By plotting the square widths of the SC layer against the applied voltages, donor density of GaN NWs was derived to be about 4.3*106 cm ? 3. Our experiments demon-strate that in-situ electron holography under electric field can be a useful method to investigate SC layers and donor density in single NW and other heterostructures.

  4. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    Science.gov (United States)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  5. Model-independent measurement of the charge density distribution along an Fe atom probe needle using off-axis electron holography without mean inner potential effects

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, V., E-mail: v.migunov@fz-juelich.de; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); London, A. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Farle, M. [Fakultät für Physik and Center of Nanointegration (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2015-04-07

    The one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electric field and electrostatic potential around the needle with ∼10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness.

  6. Extensive multiband study of the X-ray rich GRB 050408. A likely off-axis event with an intense energy injection

    CERN Document Server

    De Postigo, A U; Johannesson, G; Gorosabel, J; Sokolov, V V; Castro-Tirado, A J; Balega, Y Y; Spiridonova, O I; Jelinek, M; Guziy, S; Pérez-Ramírez, D; Hjorth, J; Laursen, P; Bersier, D; Pandey, S B; Bremer, M; Monfardini, A; Huang, K Y; Urata, Y; Ip, W H; Tamagawa, T; Kinoshita, D; Mizuno, T; Arai, Y; Yamagishi, H; Soyano, T; Usui, F; Tashiro, M; Abe, K; Onda, K; Aslan, Z; Khamitov, I; Ozisik, T; Kiziloglu, U; Bikmaev, I; Sakhibullin, N A; Burenin, R; Pavlinsky, M; Sunyaev, R; Bhattacharya, D; Kamble, A P; Chandra, C H I; Trushkin, S A; Balega, Yu.Yu.

    2006-01-01

    Aims. Understand the shape and implications of the multiband light curve of GRB 050408, an X-ray rich (XRR) burst. Methods. We present a multiband optical light curve, covering the time from the onset of the gamma-ray event to several months after, when we only detect the host galaxy. Together with X-ray, millimetre and radio observations we compile what, to our knowledge, is the most complete multiband coverage of an XRR burst afterglow to date. Results. The optical and X-ray light curve is characterised by an early flattening and an intense bump peaking around 6 days after the burst onset. We explain the former by an off-axis viewed jet, in agreement with the predictions made for XRR by some models, and the latter with an energy injection equivalent in intensity to the initial shock. The analysis of the spectral flux distribution reveals an extinction compatible with a low chemical enrichment surrounding the burst. Together with the detection of an underlying starburst host galaxy we can strengthen the link...

  7. FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lu Rusen; Fish, Vincent L.; Doeleman, Sheperd S.; Crew, Geoffrey; Cappallo, Roger J. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Akiyama, Kazunori; Honma, Mareki [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Algaba, Juan C.; Ho, Paul T. P.; Inoue, Makoto [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan, R.O.C. (China); Bower, Geoffrey C.; Dexter, Matt [Department of Astronomy, Radio Astronomy Laboratory, University of California Berkeley, 601 Campbell, Berkeley, CA 94720-3411 (United States); Brinkerink, Christiaan [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Chamberlin, Richard [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); Freund, Robert [Arizona Radio Observatory, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Friberg, Per [James Clerk Maxwell Telescope, Joint Astronomy Centre, 660 North A' ohoku Place, University Park, Hilo, HI 96720 (United States); Gurwell, Mark A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jorstad, Svetlana G. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Krichbaum, Thomas P. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Loinard, Laurent, E-mail: rslu@haystack.mit.edu [Centro de Radiostronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, Michoacan (Mexico); and others

    2013-07-20

    We report results from five day very long baseline interferometry observations of the well-known quasar 3C 279 at 1.3 mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California, and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of {approx}1 pc extending along the northwest-southeast direction (P.A. = 127 Degree-Sign {+-} 3 Degree-Sign ), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3 mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution Very Long Baseline Array images at 7 mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of {approx}8 Multiplication-Sign 10{sup 10} K in the 1.3 mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20-30 {mu}as (5-7 light months) resolution.

  8. The long-period eccentric orbit of the particle accelerator HD 167971 revealed by long baseline interferometry

    Science.gov (United States)

    De Becker, M.; Sana, H.; Absil, O.; Le Bouquin, J.-B.; Blomme, R.

    2012-07-01

    Using optical long baseline interferometry, we resolved for the first time the two wide components of HD 167971, a candidate hierarchical triple system known to efficiently accelerate particles. Our multi-epoch Very Large Telescope Interferometer observations provide direct evidence for a gravitational link between the O8 supergiant and the close eclipsing O + O binary. The separation varies from 8 to 15 mas over the 3-year baseline of our observations, suggesting that the components evolve on a wide and very eccentric orbit (most probably e > 0.5). These results provide evidence that the wide orbit revealed by our study is not coplanar with the orbit of the inner eclipsing binary. From our measurements of the near-infrared luminosity ratio, we constrain the spectral classification of the components in the close binary to be O6-O7, and confirm that these stars are likely main-sequence objects. Our results are discussed in the context of the bright non-thermal radio emission already reported for this system, and we provide arguments in favour of a maximum radio emission coincident with periastron passage. HD 167971 turns out to be an efficient O-type particle accelerator that constitutes a valuable target for future high angular resolution radio imaging using Very Long Baseline Interferometry facilities. Based on observations collected at the European Southern Observatory, Paranal, Chile, under the programme IDs 381.D-0095, 086.D-0586 and 087.D-0264.

  9. Medium and high-energy neutrino physics from a lunar base

    Science.gov (United States)

    Wilson, Thomas L.

    1990-01-01

    Neutrino astronomy at high energy levels conducted from the moon is treated by considering 'particle astronomy' as a part of physics and the moon as a neutrino detector. The ability to observe the Galactic center is described by means of a 1-1000 TeV 'window' related to the drop in flux of atmospheric neutrinos from the earth. The long-baseline particle physics which are described in terms of a lunar observatory are found to be possible exclusively from a lunar station. The earth's neutrinos can be eliminated for the observations of astrophysical sources, and other potential areas of investigation include neutrino oscillation and the moon's interior. Neutrino exploration of the earth-moon and antineutrino radionuclide imaging are also considered. The moon is concluded to be a significantly more effective orbital platform for the study of neutrino physics than orbiting satellites developed on earth.

  10. Viability of $\\Delta m^2\\sim$ 1 eV$^2$ sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines

    CERN Document Server

    Karagiorgi, G; Conrad, J; Shaevitz, M H; Sorel, M

    2009-01-01

    This paper examines sterile neutrino oscillation models in light of recently published results from the MiniBooNE Experiment. The new MiniBooNE data include the updated neutrino results, including the low energy region, and the first antineutrino results, as well as first results from the off-axis NuMI beam observed in the MiniBooNE detector. These new global fits also include data from LSND, KARMEN, NOMAD, Bugey, CHOOZ, CCFR84, and CDHS. Constraints from atmospheric oscillation data have been imposed.

  11. Status of the LBNE Neutrino Beamline

    CERN Document Server

    Papadimitriou, Vaia

    2011-01-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a beam of neutrinos toward a detector placed at the Homestake Mine in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector (60-120 GeV) hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined taking into account several factors including the physics goals, the Monte Carlo modeling of the facility, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. We discuss here the stat...

  12. Current status of the LBNE neutrino beam

    CERN Document Server

    Moore, Craig Damon; Crowley, Cory Francis; Hurh, Patrick; Hylen, James; Lundberg, Byron; Marchionni, Alberto; McGee, Mike; Mokhov, Nikolai V; Papadimitriou, Vaia; Plunkett, Rob; Reitzner, Sarah Diane; Stefanik, Andrew M; Velev, Gueorgui; Williams, Karlton; Zwaska, Robert Miles

    2015-01-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined by an amalgam of the physics goals, the Monte Carlo modeling of the facility, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. The LBNE Neutrino Beam has made significant changes to the initial design through consideration of numerous Value Engineering proposals and the current design is described.

  13. Neutrino Oscillations With Two Sterile Neutrinos

    Science.gov (United States)

    Kisslinger, Leonard S.

    2016-10-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  14. Neutrino Oscillations With Two Sterile Neutrinos

    CERN Document Server

    Kisslinger, Leonard S

    2016-01-01

    This work estimates the probability of $\\mu$ to $e$ neutrino oscillation with two sterile neutrinos using a 5x5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4x4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  15. Solar Neutrinos

    Science.gov (United States)

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  16. Large extra dimensions at the Deep Underground Neutrino Experiment

    Science.gov (United States)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Peres, O. L. G.; Tabrizi, Zahra

    2016-08-01

    We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unlike all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a (3 +3 N )-neutrino framework for modest values of N ; N =1 is usually a very good approximation. Nonetheless, there are no new sources of C P -invariance violation other than one C P -odd phase that can be easily mapped onto the C P -odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic (3 +1 )-neutrino model.

  17. Atmospheric Neutrinos

    CERN Document Server

    Gaisser, Thomas K

    2016-01-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  18. Atmospheric neutrinos and discovery of neutrino o