WorldWideScience

Sample records for logging while drilling

  1. Logging-while-drilling (LWD) pressure test

    Energy Technology Data Exchange (ETDEWEB)

    Thirud, Aase P.

    2003-07-01

    Statoil and Halliburton have completed a successful test of a new ground-breaking formation evaluation technology on the Norwegian shelf. An LWD formation tester, the GeoTapTM sensor, was used to quantify formation pressure during drilling operations. The inaugural job was completed by Halliburton's Sperry-Sun product service line onboard the Bideford Dolphin at the Borg Field while drilling a horizontal production well in the Vigdis Extension development. The GeoTap tool, part of Sperry-Sun's StellarTM MWD/LWT suite, was run in combination with a complete logging-while-drilling sensor package and the Geo-Pilot rotary steerable drilling system. Repeat formation pressures were taken and successfully transmitted to surface. This is the first time this type of technology has been successfully applied on the Norwegian shelf.

  2. Numerical simulation of logging-while-drilling density image by Monte-Carlo method

    International Nuclear Information System (INIS)

    Yue Aizhong; He Biao; Zhang Jianmin; Wang Lijuan

    2010-01-01

    Logging-while-drilling system is researched by Monte Carlo Method. Model of Logging-while-drilling system is built, tool response and azimuth density image are acquired, methods dealing with azimuth density data is discussed. This outcome lay foundation for optimizing tool, developing new tool and logging explanation. (authors)

  3. Influence of borehole-eccentred tools on wireline and logging-while-drilling sonic logging measurements

    KAUST Repository

    Pardo, David; Matuszyk, Paweł Jerzy; Torres-Verdí n, Carlos; Mora Cordova, Angel; Muga, Ignacio; Calo, Victor M.

    2013-01-01

    We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method

  4. A new NMR measuring instrument for logging while drilling; Ein neues Logging While Drilling Kernspinresonanz-Messgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.M.; Thern, H.F.; Kruspe, T.; Blanz, M. [Baker Hughes INTEQ GmbH, Celle (Germany); Strobel, J. [RWE Dea AG, Hamburg (Germany)

    2003-07-01

    Since 1990, commercial wireline MR measurements are carried out in boreholes. Logging while drilling is a comparatively new technique, in which a MR sensor is integrated in the drilling equipment so that the measured data are available more quickly. Problems may be caused by movement of the drilling rig. The resulting vibrations may distort the MR signal. Current development activities therefore focus on design optimization for higher vibration stability. The contribution explains vibration-induced wrong measuring signals and presents measures to reduce the effects of vibration. Further, a new LWD-MR measuring instrument is presented, the so-called MagTrak{sup TM} which combines the quality and advantages of cable MR-T{sub 2} measurements with a minimum of vibration effects, as is shown by MR data from a commercial borehole. [German] Seit 1990 werden Wireline-MR-Messungen kommerziell im Bohrloch durchgefuehrt. In den letzten Jahren wird an Messgeraeten gearbeitet, die bereits waehrend des Bohrens MR-Daten aufzeichnen (Logging While Drilling, LWD). Dazu wird ein MR-Sensor in den Bohrstrang integriert. Neben der schnelleren Verfuegbarkeit der MR-Daten besteht ein grosser Vorteil der LWD-MR-Messung darin, dass die Daten bereits kurz nach dem Bohren gemessen werden. Die Invasion von Bohrlochspuelung in die Formation dauert dann noch nicht lange an, und die MR-Messung findet im relativ unveraenderten Gestein statt. Probleme beim Einsatz von MR-Messgeraeten waehrend des Bohrens werden vor allem durch die Bewegungen des Bohrstranges verursacht. Vibrationen des MR-Sensors fuehren zu veraenderten Messbedingungen waehrend des Messvorgangs, was zu Verzerrungen im MR-Signal fuehren kann. Den Aufbau des Messgeraetes so zu optimieren, dass Vibrationen einen moeglichst kleinen Einfluss auf die Messung haben, ist ein aktuelles Ziel der heutigen LWD-MR-Entwicklung. In diesem Artikel werden vibrationsverursachte Signalfehler erklaert und Massnahmen genannt, die die

  5. Technical difficulties of logging while drilling in carbonate reservoirs and the countermeasures: A case study from the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shudong Zhang

    2015-12-01

    Full Text Available In the Sichuan Basin, carbonate reservoirs are characterized by deep burial depth and strong heterogeneity, so it is difficult to conduct structure steering, pore space reservoir tracking and trajectory control in the process of geosteering logging while drilling. In this paper, a series of corresponding techniques for structure, reservoir and formation tracking were proposed after analysis was conducted on multiple series of carbonate strata in terms of their geologic and logging response characteristics. And investigation was performed on the adaptabilities of the following logging technologies to geosteering while drilling, including gamma ray imaging while drilling, resistivity imaging while drilling, density imaging while drilling, gamma ray logging while drilling, resistivity logging while drilling, neutron logging while drilling and density logging while drilling. After while drilling information was thoroughly analyzed, the logging suites for four common types of complicated reservoirs (thin layered reservoirs, thick massive reservoirs, denuded karst reservoirs and shale gas reservoirs were optimized, and five logging combinations suitable for different formations and reservoirs were proposed, including gamma ray logging + porosity + resistivity imaging, gamma ray logging + resistivity imaging, gamma ray logging + porosity + resistivity logging, gamma ray imaging + resistivity logging, and gamma ray logging. Field application indicates that it is of great reference and application value to use this method for the first time to summarize logging while drilling combinations for different types of carbonate reservoirs.

  6. Nuclear Tools For Oilfield Logging-While-Drilling Applications

    International Nuclear Information System (INIS)

    Reijonen, Jani

    2011-01-01

    Schlumberger is an international oilfield service company with nearly 80,000 employees of 140 nationalities, operating globally in 80 countries. As a market leader in oilfield services, Schlumberger has developed a suite of technologies to assess the downhole environment, including, among others, electromagnetic, seismic, chemical, and nuclear measurements. In the past 10 years there has been a radical shift in the oilfield service industry from traditional wireline measurements to logging-while-drilling (LWD) analysis. For LWD measurements, the analysis is performed and the instruments are operated while the borehole is being drilled. The high temperature, high shock, and extreme vibration environment of LWD imposes stringent requirements for the devices used in these applications. This has a significant impact on the design of the components and subcomponents of a downhole tool. Another significant change in the past few years for nuclear-based oilwell logging tools is the desire to replace the sealed radioisotope sources with active, electronic ones. These active radiation sources provide great benefits compared to the isotopic sources, ranging from handling and safety to nonproliferation and well contamination issues. The challenge is to develop electronic generators that have a high degree of reliability for the entire lifetime of a downhole tool. LWD tool testing and operations are highlighted with particular emphasis on electronic radiation sources and nuclear detectors for the downhole environment.

  7. System for gamma-gamma formation density logging while drilling

    International Nuclear Information System (INIS)

    Paske, W.C.

    1991-01-01

    The patent relates to a system for logging subterranean formations for the determination of formation density by using gamma radiation. Gamma ray source and detection means are disposed within a housing adapted for positioning within a borehole for the emission and detection of gamma rays propagating through earth formations and borehole drilling fluid. The gamma ray detection means comprises first and second gamma radiation sensors geometrically disposed within the housing, the same longitudinal distance from the gamma ray source and diametrically opposed in a common plane. A formation matrix density output signal is produced in proportion to the output signal from each of the gamma ray sensors and in conjunction with certain constants established by the geometrical configuration of the sensors relative to the gamma ray source and the borehole diameter. Formation density is determined without regard to the radial position of the logging probe within the borehole in a measuring while drilling mode. 6 figs

  8. Generalized collar waves in acoustic logging while drilling

    International Nuclear Information System (INIS)

    Wang Xiu-Ming; He Xiao; Zhang Xiu-Mei

    2016-01-01

    Tool waves, also named collar waves, propagating along the drill collars in acoustic logging while drilling (ALWD), strongly interfere with the needed P- and S-waves of a penetrated formation, which is a key issue in picking up formation P- and S-wave velocities. Previous studies on physical insulation for the collar waves designed on the collar between the source and the receiver sections did not bring to a satisfactory solution. In this paper, we investigate the propagation features of collar waves in different models. It is confirmed that there exists an indirect collar wave in the synthetic full waves due to the coupling between the drill collar and the borehole, even there is a perfect isolator between the source and the receiver. The direct collar waves propagating all along the tool and the indirect ones produced by echoes from the borehole wall are summarized as the generalized collar waves. Further analyses show that the indirect collar waves could be relatively strong in the full wave data. This is why the collar waves cannot be eliminated with satisfactory effect in many cases by designing the physical isolators carved on the tool. (special topic)

  9. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  10. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and anaylsis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  11. Logging while drilling keeps horizontal well on small target

    International Nuclear Information System (INIS)

    Leake, J.; Shray, F.

    1991-01-01

    This paper reports that the logging-while-drilling (LWD) measurement to two resistivities of different characteristics had led to a new interpretation method for the analysis of horizontal wells. By logging deep and shallow resistivity in real-time, marker beds were identified to help maintain well bore trajectory. The resistivity measurements were split into vertical and horizontal components to provide additional information of formation evaluation. In 1945, Ark Fuel Co. discovered and began developing the Olla field on the crest of the La Salle arch in La Salle Parish, La. Oil production comes from the Wilcox formation from alluvial sand packages that range in thickness from 3 ft to 120 ft. Now operated by Oxy U.S.A. Inc., Olla field was chosen in 1990 for a horizontal well pilot project. It was hoped that a horizontal well could alleviate water coming in one of the field's more productive sand packages- the 40-ft Cruse sand

  12. A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM

    Science.gov (United States)

    Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui

    2014-12-01

    Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.

  13. Theoretical and Numerical Study of Seismoelectric Logs for Logging While Drilling (LWD

    Directory of Open Access Journals (Sweden)

    Sun Xiang-Yang

    2017-01-01

    Full Text Available When the acoustic field propagates in the porous medium, the electromagnetic wave can be induced by the seismoelectric effects which can be used in the logging. This paper studies the seismoelectric wave field and deduces the formulations of the acoustic and electromagnetic field of the liquid in the well, and gives the acoustic and electromagnetic boundary conditions between the driller collar and the log liquid, when the driller collar is added. We also do the numerical simulation of the seismoelectric wave field excited by monopole source, study the velocity dispersion characteristics of the acoustic and electromagnetic field, and investigate the detective depth of the seismoelectric logs. Through the simulation we know the seismoelectric logs can avoid the interference of drill collar wave. This paper also provides theoretical guidance for the design of receiving antenna.

  14. Permeability Estimation Directly From Logging-While-Drilling Induced Polarization Data

    DEFF Research Database (Denmark)

    Fiandaca, G.; Maurya, P.K.; Balbarini, Nicola

    2018-01-01

    In this study we present the prediction of permeability from time‐domain spectral induced polarization (IP) data, measured in boreholes on undisturbed formations using the El‐log logging‐while‐drilling technique. We collected El‐log data and hydraulic properties on unconsolidated Quaternary...... and Miocene deposits in boreholes at three locations at a field site in Denmark, characterized by different electrical water conductivity and chemistry. The high vertical resolution of the El‐log technique matches the lithological variability at the site, minimizing ambiguity in the interpretation originating...

  15. Influence of borehole-eccentred tools on wireline and logging-while-drilling sonic logging measurements

    KAUST Repository

    Pardo, David

    2013-02-13

    We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method that delivers highly accurate solutions of linear visco-elasto-acoustic problems in the frequency domain. The analysis focuses on WL instruments equipped with monopole or dipole sources and LWD instruments with monopole excitation. Analysis of the main propagation modes obtained from frequency dispersion curves indicates that the additional high-order modes arising as a result of borehole-eccentricity interfere with the main modes (i.e., Stoneley, pseudo-Rayleigh and flexural). This often modifies (decreases) the estimation of shear and compressional formation velocities, which should be corrected (increased) to account for borehole-eccentricity effects. Undesired interferences between different modes can occur at different frequencies depending upon the properties of the formation and fluid annulus size, which may difficult the estimation of the formation velocities. © 2013 European Association of Geoscientists & Engineers.

  16. Environmental corrections of a dual-induction logging while drilling tool in vertical wells

    Science.gov (United States)

    Kang, Zhengming; Ke, Shizhen; Jiang, Ming; Yin, Chengfang; Li, Anzong; Li, Junjian

    2018-04-01

    With the development of Logging While Drilling (LWD) technology, dual-induction LWD logging is not only widely applied in deviated wells and horizontal wells, but it is used commonly in vertical wells. Accordingly, it is necessary to simulate the response of LWD tools in vertical wells for logging interpretation. In this paper, the investigation characteristics, the effects of the tool structure, skin effect and drilling environment of a dual-induction LWD tool are simulated by the three-dimensional (3D) finite element method (FEM). In order to closely simulate the actual situation, real structure of the tool is taking into account. The results demonstrate that the influence of the background value of the tool structure can be eliminated. The values of deducting the background of a tool structure and analytical solution have a quantitative agreement in homogeneous formations. The effect of measurement frequency could be effectively eliminated by chart of skin effect correction. In addition, the measurement environment, borehole size, mud resistivity, shoulder bed, layer thickness and invasion, have an effect on the true resistivity. To eliminate these effects, borehole correction charts, shoulder bed correction charts and tornado charts are computed based on real tool structure. Based on correction charts, well logging data can be corrected automatically by a suitable interpolation method, which is convenient and fast. Verified with actual logging data in vertical wells, this method could obtain the true resistivity of formation.

  17. Application of a new Magnetic Resonance Logging While Drilling Tool in Offshore Nigeria

    International Nuclear Information System (INIS)

    Kamal, O.; Adindu, F.; Anselm, O.; Bacon, R.; Butt, P.; Ogbuagu, C.

    2003-01-01

    This paper describes results gained during the running of a new NMR logging-while-drilling (LWD) tool that has ben designed to run in any By combining with core and magnetic resonance data, probabilistic mineral analysis (with ECS and NGT) showed that the sands with lowest feldspars have the highest permeability. These sands with large grain sizes were deposited in the high-energy upper shore-face environment

  18. Formation evaluation using measurements recorded while drilling

    International Nuclear Information System (INIS)

    Coope, D.F.; Hendricks, W.E.

    1984-01-01

    Two of the measurements recorded while drilling (MWD), gamma ray and resistivity, are traditionally formation evaluation measurements. However, their primary user thus far has been the drilling engineer. The authors believe that MWD will have increasing importance in formation evaluation, and that a good understanding of MWD resistivity and gamma ray logs will be needed by the log analyst. MWD gamma ray and resistivity logs are similar to their wireline counterparts, but there are significant differences. The differences stem from different invasion (or lack of invasion) development for MWD as opposed to open hole wireline; drill collar influence on both the resistivity and gamma ray (GR) measurements - this influence is both positive and negative; and logging speed (drilling rate for MWD) is much slower for MWD and can vary erratically. The MWD logs presented in this paper demonstrate the value of using MWD logs. Emphasis is placed on both the qualitative and quantitative techniques available to the log analyst to help him get maximum benefit from the MWD logs

  19. Development of Induction Logging Technology for Non-Stationary Conditions While Drilling Subhorozontal Sections of Oil and Gas Wells

    Directory of Open Access Journals (Sweden)

    V. K. Teplukhin

    2017-06-01

    Full Text Available The article presents the results of development of the induction logging module designed for resistivity measurements while drilling horizontal and directional wells for oil and gas. Materials of the tool testing during the drilling of wells in the oil field in the Republic of Bashkortostan are shown. We introduce the comparative analysis of resistivity data obtained after completion of the drilling, and the results obtained with developed complex as part of the LWD telemetry system TARGET during the drilling. The technical characteristics of complex MIR are presented.

  20. Theoretical simulation of the multipole seismoelectric logging while drilling

    Science.gov (United States)

    Guan, Wei; Hu, Hengshan; Zheng, Xiaobo

    2013-11-01

    Acoustic logging-while-drilling (LWD) technology has been commercially used in the petroleum industry. However it remains a rather difficult task to invert formation compressional and shear velocities from acoustic LWD signals due to the unwanted strong collar wave, which covers or interferes with signals from the formation. In this paper, seismoelectric LWD is investigated for solving that problem. The seismoelectric field is calculated by solving a modified Poisson's equation, whose source term is the electric disturbance induced electrokinetically by the travelling seismic wave. The seismic wavefield itself is obtained by solving Biot's equations for poroelastic waves. From the simulated waveforms and the semblance plots for monopole, dipole and quadrupole sources, it is found that the electric field accompanies the collar wave as well as other wave groups of the acoustic pressure, despite the fact that seismoelectric conversion occurs only in porous formations. The collar wave in the electric field, however, is significantly weakened compared with that in the acoustic pressure, in terms of its amplitude relative to the other wave groups in the full waveforms. Thus less and shallower grooves are required to damp the collar wave if the seismoelectric LWD signals are recorded for extracting formation compressional and shear velocities.

  1. Identification and characterization of the active hydrothermal deposits in Okinawa Trough, SW Japan: Estimates from logging-while-drilling

    Science.gov (United States)

    Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.

    2015-12-01

    A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (LWD-based lithological interpretation was confirmed by the following core description. Zones A and B can be correlated to altered clay zone and sulfide zone including sphalerite, galena, chalcopyrite, and pyrite. Our results show that LWD is a powerful tool for the identification and characterization of submarine hydrothermal deposits and LWD survey enhances the successful recovery of sulfide samples.

  2. Logging-while-drilling and wireline velocities: Site NGHP-01-10, Krishna-Godavari Basin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Al-Bulushi, S.; Dewangan, P.

    is through drilling and logging. Logging is like a surface geophysical survey done in a borehole, only with very limited survey aperture due to close source and receiver spacing. There are two methods of logging. The Wireline method has been in practice... is computed as φt - φs, leaving only three independent parameters. In principle it is possible to vary the four input parameters such that VP and VSwill be independentlymatched at every depth. However, this is not the goal.We aim to adjust the input...

  3. In the zone - first rotary steerable liner-while-drilling system; Drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Statoil recently successfully tested the world's first rotary steerable liner-while-drilling system from its Brage platform in the Norwegian sector of the North Sea. This innovative technology - with applications in new and mature fields - was jointly developed by Statoil and Baker Hughes Incorporated. The concept of a rotary steerable system that gives operators the ability to accurately drill and log three-dimensional well profiles with a liner attached directly to the drillstring is entirely new. The system is designed to withstand high circulation rates and high torque loads while providing liner connect and disconnect capabilities. (Author)

  4. Deformation Analyses and Lithologic Characterization in Overpressured Basins Based on Logging While Drilling and Wireline Results from the Gulf of Mexico

    Science.gov (United States)

    Iturrino, G. J.; Pirmez, C.; Moore, J. C.; Reichow, M. K.; Dugan, B. E.; Sawyer, D. E.; Flemings, P. B.; Shipboard Scientific Party, I.

    2005-12-01

    IODP Expedition 308 drilled transects along the Brazos-Trinity IV and Ursa Basins in the western and eastern Gulf of Mexico, respectively, for examining how sedimentation, overpressure, fluid flow, and deformation are coupled in passive margin settings. A total of eight holes were logged using either logging while drilling (LWD) or wireline techniques to evaluate the controls on slope stability, understand the timing of sedimentation and slumping, establish the petrophysical properties of shallow sediments, and provide a better understanding of turbidite systems. Overall, the log responses vary for the different lithostratigraphic units and associated regional seismic reflectors. The data acquired also make bed-to-bed correlation between sites possible, which is valuable for the study of sandy turbidites and studies of regional deformation. The thick sedimentary successions drilled at these basins show records of the evolution of channel-levee systems composed of low relief channels that were incapable of confining the turbidity currents causing an overspill of sand and silt. In addition, mass transport deposits at shallow depths, and transitions between interbedded silt, sand, and mud units are common features identified in many of the downhole logging data. In the Ursa Basin sediments, resistivity-at-the-bit images show significant deformation of the overlying hemipelagic drape and distal turbidites that were drilled in these areas. Numerous dipping beds throughout these intervals with dips ranging from 5 to 55 degrees confirm core observations. Steeply deformed beds, with dips as high as 65 degrees, and folded and faulted beds suggest down slope remobilization as mass-transport deposits. Resistivity images also show evidence of these mass-transport deposits where steep dips and folds suggest the presence of overturned beds within a series of cyclic intervals that we interpret as a succession of sand-silt-mud lamina. Preliminary structural analyses suggest that

  5. Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper.

    Science.gov (United States)

    Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong

    2017-06-10

    A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.

  6. Growth in the measurement-while-drilling sector continues

    International Nuclear Information System (INIS)

    Hall, G.T.

    1991-01-01

    This book reports that the measurement while drilling (MWD) market is showing some of the most impressive growth in the oil field. Tremendous improvements in the reliability and capability of MWD tools have spurred the expansion of this market. During 1990, the worldwide MWD market expanded by 48%, rising from $250 million in 1989 to $370 million in 1990. The MWD market should expand 15-20% to exceed $430 million in 1991. Although an expansion of 15-20% is considered good, further growth will be impeded by the slowdown of drilling in the Gulf of Mexico. Total market growth should return to greater than 20% per year in 1992 and 1993. MWD technology is in the midst of a rapid adaptation phase, led by expansion of formation evaluation and other logs and by international expansion in long-reach directional and horizontal drilling. The formation evaluation-while- drilling market will have minimal impact on the size and growth of the wire line market. Customers will increasingly employ teams which include drilling and petrophysics personnel to make MWD purchase decisions. Integration of performance drilling systems including all bottom hole components will accelerate because of increases in automation and the need for cost reduction

  7. Specific features of well logging of boreholes drilled on electrical nonconducting solutions

    International Nuclear Information System (INIS)

    Ruchkin, A.F.; Fomenko, V.G.

    1978-01-01

    Methods for identification of permeable strata and determination of their porosity and oil-gas saturation using standard combination of geophysical investigations in the boreholes drilled with nonaqueous and inert drilling fluids are considered. Geophysical combination consists of the methods indications of which are independent on electrical conductivity of drilling fluids. They are all modifications of radioactivity logging (gamma logging, neutron logging, neutron-gamma logging, gamma-gamma logging, pulsed neutron logging, nuclear-magnetic logging), acoustic logging and thermal logging

  8. Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper

    Directory of Open Access Journals (Sweden)

    Yongchao Yao

    2017-06-01

    Full Text Available A logging-while-drilling (LWD caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM. The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD and metal-oxide-semiconductor field effect transistor (MOSFET is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.

  9. New roles of LWD and wireline logging in scientific ocean drilling

    Science.gov (United States)

    Sanada, Y.; Kido, Y. N.; Moe, K.; Aoike, K.

    2014-12-01

    D/V Chikyu implemented by CDEX/JAMSTEC joined IODP from 2007. Various LWD (Logging While Drilling) and wireline logging have been carried out in many expeditions and for various purposes. Significant features of logging in Chikyu expeditions are many use of LWD than wireline logging, and riser dirlling. riser selected specific tools for each scientific target, and 3) carried out various borehole experiments. LWD has been more popular than wireline logging in Chikyu expeditions, because its advantages match theirs science targets. The advantages are followings. 1) LWD has more opportunities for measurement in unstable borehole, such as in the series of Nankai trough drilling expeditions. 2) LWD realtime data allows us to make realtime interpretation and operational decision. Realtime interpretation was required to set obsevartory at the properposition. 3) LWD before coring allows us to make a strategy of spot coring.We can design coring intervals for our interest and core length to improve core recovery.Riser drilling brings us merits for logging. One is hole stability (good hole condition) and the other is the use of large diameter tools. Controled drilling mud in riser drilling system prevent mud invasion to formation and mitigates collapse of borehole wall. They reduce the risk of tool stack and improve data quality. Large diameter of riser pipe enhances variation of tool seizes. A couple of new tools were used for new measurement and improvement of the data quality. For example, SonicScanner (trademark of Schulumberger) successfully measured compressional and share velocity in very low velocities at the soft sediment, where it has been difficult to measure them with conventional DSI tool (Exp319). The stress and pore pressure in the borehole were measured with the wireline logging tool, (Schlumberger MDT). The single probe tool enable to measure temporal formation fluid pressure. The double packer tool enable to fracture test by sealing and pumping in the

  10. Drilling and logging in uranium exploration

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The report reviews drilling and logging practices in exploration of uranium ores and summarizes the papers presented in the panel meeting. Recommendations for further research and development are given

  11. Optimized Design of Spacing in Pulsed Neutron Gamma Density Logging While Drilling

    Directory of Open Access Journals (Sweden)

    ZHANG Feng;HAN Zhong-yue;WU He;HAN Fei

    2016-10-01

    Full Text Available Radioactive source, used in traditional density logging, has great impact on the environment, while the pulsed neutron source applied in the logging tool is more safety and greener. In our country, the pulsed neutron-gamma density logging technology is still in the stage of development. Optimizing the parameters of neutron-gamma density instrument is essential to improve the measuring accuracy. This paper mainly studied the effects of spacing to typical neutron-gamma density logging tool which included one D-T neutron generator and two gamma scintillation detectors. The optimization of spacing were based on measuring sensitivity and counting statistic. The short spacing from 25 to 35 cm and long spacing from 60 to 65 cm were selected as the optimal position for near and far detector respectively. The result can provide theoretical support for design and manufacture of the instrument.

  12. Characterization of Under-Building Contamination at Rocky Flats Implementing Environmental-Measurement While Drilling Process with Horizontal Directional Drilling

    International Nuclear Information System (INIS)

    WILLIAMS, CECELIA V.; LOCKWOOD, GRANT J.; NORMANN, RANDY A.; LINDSAY, THOMAS

    2001-01-01

    Characterization is required on thirty-one buildings at Rocky Flats Environmental Technology Site (RFETS or the Site) with known or suspected under building contamination. The Site has teamed with Sandia National Laboratory (SNL) to deploy Environmental Measure-While-Drilling (EMWD) in conjunction with horizontal directional drilling (HDD) to characterize under building contamination and to evaluate the performance and applicability for future characterization efforts. The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental drill bit data during drilling operations. The project investigated two locations, Building 886 and Building 123. Building 886 is currently undergoing D and D activities. Building 123 was demolished in 1998; however, the slab is present with under building process waste lines and utilities. This report presents the results of the EMWD Gamma Ray Spectrometer logging of boreholes at these two sites. No gamma emitting contamination was detected at either location.(author)

  13. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  14. Drilling, logging, and testing information from borehole UE-25 UZ number-sign 16, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Thamir, F.; Thordarson, W.; Kume, J.; Rousseau, J.; Cunningham, D.M. Jr.

    1998-01-01

    Borehole UE-25 UZ number-sign 16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includes drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994

  15. Testing compression strength of wood logs by drilling resistance

    Science.gov (United States)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  16. Theory and application of a measurement-while-drilling neutron porosity sensor

    International Nuclear Information System (INIS)

    Roesler, R.F.; Barnett, W.C.; Paske, W.C.

    1987-01-01

    The authors describe the first MWD compensated neutron porosity measurement service (CNO) which employs a dual-spaced, borehole-compensated detector system to measure neutron-capture gamma rays. CNO service, when combined with existing MWD gamma ray and resistivity services, provides the basic data necessary for calculation of water saturation from MWD logs, making it possible to replace wireline logs in many situations with resulting savings in both logging costs and associated rig time. This is particularly cost effective when drilling high angle offshore development wells and in other high cost development drilling

  17. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    Science.gov (United States)

    Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.

    2013-12-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1

  18. Application of MRIL-WD (Magnetic Resonance Imaging Logging While Drilling) for irreducible water saturation, total reservoir, free-fluid, bound-fluid porosity measurements and its value for the petrophysical analysis of RT/RM data from the Shah Deniz well

    Science.gov (United States)

    Amirov, Elnur

    2016-04-01

    Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible

  19. Novel Desorber for Online Drilling Mud Gas Logging.

    Science.gov (United States)

    Lackowski, Marcin; Tobiszewski, Marek; Namieśnik, Jacek

    2016-01-01

    This work presents the construction solution and experimental results of a novel desorber for online drilling mud gas logging. The traditional desorbers use mechanical mixing of the liquid to stimulate transfer of hydrocarbons to the gaseous phase that is further analyzed. The presented approach is based on transfer of hydrocarbons from the liquid to the gas bubbles flowing through it and further gas analysis. The desorber was checked for gas logging from four different drilling muds collected from Polish boreholes. The results of optimization studies are also presented in this study. The comparison of the novel desorber with a commercial one reveals strong advantages of the novel one. It is characterized by much better hydrocarbons recovery efficiency and allows reaching lower limits of detection of the whole analytical system. The presented desorber seems to be very attractive alternative over widely used mechanical desorbers.

  20. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  1. Novel Desorber for Online Drilling Mud Gas Logging

    Directory of Open Access Journals (Sweden)

    Marcin Lackowski

    2016-01-01

    Full Text Available This work presents the construction solution and experimental results of a novel desorber for online drilling mud gas logging. The traditional desorbers use mechanical mixing of the liquid to stimulate transfer of hydrocarbons to the gaseous phase that is further analyzed. The presented approach is based on transfer of hydrocarbons from the liquid to the gas bubbles flowing through it and further gas analysis. The desorber was checked for gas logging from four different drilling muds collected from Polish boreholes. The results of optimization studies are also presented in this study. The comparison of the novel desorber with a commercial one reveals strong advantages of the novel one. It is characterized by much better hydrocarbons recovery efficiency and allows reaching lower limits of detection of the whole analytical system. The presented desorber seems to be very attractive alternative over widely used mechanical desorbers.

  2. Geophysical well-log measurements in three drill holes at Salt Valley, Utah

    International Nuclear Information System (INIS)

    Daniels, J.J.; Hite, R.J.; Scott, J.H.

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material. The following geophysical well-log measurements were made in each of the three drill holes: (1) density, (2) neutron, (3) acoustic velocity, (4) normal resistivity, and (5) gamma ray. Widely spaced resistivity and conductivity well-log measurements were made in the deep drill hole. Each of these well-log measurements shows the division of the evaporite sequence into halite and interbed sections. At the present time the most useful well-logging measurements for determining the individual lithologies in an evaporite sequence are gamma ray, neutron, density, and acoustic velocity. The high resistivity contrast between the drilling fluid (0.5 ohm-m) and salt (10,000 ohm-m) makes it difficult to obtain quantitative measurements of electrical properties in an evaporite sequence. Tests of widely spaced electrode configurations show that the effects of the brine on the resistivity measurements can be reduced, and the depth of investigation increased, by increasing the source-receiver electrode spacing. Tests of a single-coil induction probe show good resolution of the contrasting electrical properties of the various interbed lithologies

  3. A new measurement-while-drilling gamma ray log calibrator

    International Nuclear Information System (INIS)

    Meisner, J.; Brooks, A.; Wisniewski, W.

    1985-01-01

    Many of the present methods of calibration for both wireline and MWD gamma ray detectors use a point source at a fixed distance from the detector. MWD calibration errors are introduced from scattering effects, from spectral differences, from position sensitivity and form lack of cylindrical geometry. A new method has been developed at Exploration Logging INc. (EXLOG) that eliminates these errors. The method uses a wrap-around or annular calibrator, referenced to the University of Houston gamma ray API pit. The new calibrator is designed to simulate the API pit's gamma ray emission spectrum with a finite amount of natural source material in the annular shape. Because of the thickness of steel between the MWD gamma ray detector and the formation, there is theoretical necessity for spectral matching. A simple theoretical approach was used to calibrate the new calibrator. Spectral matching allows a closer approximation to wireline logs and makes it possible to estimate the relative spectral content of a formation

  4. Activity plan: Directional drilling and environmental measurements while drilling

    International Nuclear Information System (INIS)

    Myers, D.A.

    1998-01-01

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested

  5. Activity plan: Directional drilling and environmental measurements while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  6. Methods and apparatus for safely handling radioactive sources in measuring-while-drilling tools

    International Nuclear Information System (INIS)

    Wraight, P.D.

    1989-01-01

    This patent describes a method for removing a chemical radioactive source from a MWD tool which is coupled in a drill string supported by a drilling rig while a borehole is drilled and includes logging means for measuring formation characteristics in response to irradiation of the adjacent formations by the radioactive source during the drilling operation. The steps of the method are: halting the drilling operation and then removing the drill string from the borehole for moving the MWD tool to a work station at the surface where the source is at a safe working distance from the drilling rig and will be accessible by way of one end of the MWD tool; positioning a radiation shield at a location adjacent to the one end of the MWD tool where the shield is ready for receiving the source as it is moved away from the other end of the MWD tool and then moving the source away from the other end of the MWD tool for enclosing the source within the shield; and once the source is enclosed within the shield; removing the shield together with the enclosed source from the MWD tool for transferring the enclosed source to another work station

  7. Development of computational tool to interpret real time Pd (Pressure While Drilling) data; Desenvolvimento de ferramenta computacional interpretadora de dados de PWD (Pressure While Drilling) em tempo real

    Energy Technology Data Exchange (ETDEWEB)

    Gandelman, Roni Abensur; Waldmann, Alex Tadeu de Almeida; Martins, Andre Leibsohn [Centro de Pesquisas da Petrobras (CENPES). Gerencia de Tecnologia de Engenharia de Poco (Brazil)], e-mails: roniag@petrobras.com.br, awaldmann@petrobras.com.br, aleibsohn@petrobras.com.br; Teixeira, Gleber Tacio; Aragao, Atila Fernando Lima [E and P Servicos. Gerencia de Servicos de Poco (Brazil)], e-mail: gleber@petrobras.com.br, atila_aragao@petrobras.com.br; Rezende, Mauricio Seiji; Kern, Eduardo; Maliska Junior, Clovis [Engineering Simulation and Scientific Software (ESSS), (Brazil)], e-mails: mauricio@esss.com.br, kern@esss.com.br, coi@esss.com.br

    2008-12-15

    Drilling offshore oil wells is a very expensive and complex process, in which all the efforts must be taken to keep the annular pressure between a minimum pressure (pore pressure) and a maximum pressure (fracture pressure) which define the operational window limits. Several phenomena impact the bottom hole annular pressures, such as: ineffective hole cleaning, gel breaking when circulation is resumed, drill string movement (surge and swab), trips, pills displacement, kicks, etc. The correct interpretation of pressure while drilling (PWD) data is a very powerful toll to identify and prevent these phenomena. Nowadays, an expert monitors bottom hole pressures data and identifies undesirable events. The main goal of this project is the development of a computational tool to monitor pressure (and mud logging) data in real time to identify the causes of abnormal pressure variations, helping the operators to take decisions rapidly. Besides that, the tool allows the user to handle PWD data in a flexible architecture. This flexibility allows the incorporation of new methods of events identification as they are developed. The ultimate goals is to obtain a tool which serves both for the key study of the problems and physical, specific phenomena found during drilling, both for real-time monitoring to assist professionals involved in the process. (author)

  8. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling.

    Science.gov (United States)

    Yu, Huawei; Sun, Jianmeng; Wang, Jiaxin; Gardner, Robin P

    2011-09-01

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Borehole images while drilling : real-time dip picking in the foothills

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, D. [Schlumberger Canada Ltd., Calgary, AB (Canada); Brezsnyak, F. [Talisman Energy Inc., Calgary, AB (Canada); Roth, J. [Talisman Energy Inc., Calgary, AB (Canada)

    2008-07-01

    The Alberta Foothills drilling environment is a structurally complex thrust belt with slow costly drilling and frequent plan changes after logging. The cross sections are not always accurate due to poor resolution. Therefore, the placement of the wellbore is crucial to success. This presentation showed borehole images from drilling in the Foothills. Topics that were addressed included the Foothills drilling environment; target selection; current well placement methods; and current well performance. Borehole images included resistivity images and density images. The presentation addressed why real-time images should be run. These reasons include the ability to pick dips in real-time; structural information in real time allows for better well placement; it is easier to find and stay in producing areas; reduced non-productive time and probability of sidetracks; and elimination of pipe conveys logs. Applications in the Alberta Foothills such as the commercial run for GVR4 were also offered. Among the operational issues and lessons learned, it was determined that the reservoir thickness to measurement point distance ratio is too great to avoid exiting the sweet spot and that the survey calculation error cause image offset. It was concluded that GVR is a drillers tool for well placement. figs.

  10. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  11. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Yu Huawei [College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sun Jianmeng [College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Wang Jiaxin [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Gardner, Robin P., E-mail: gardner@ncsu.edu [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-09-15

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. - Highlights: > Monte Carlo evaluation of pulsed neutron gamma-ray density tools. > Results indicate sensitivity of the tool to standoff and mudcake properties. > Accuracy of far spaced detector is better than near spaced.

  12. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling

    International Nuclear Information System (INIS)

    Yu Huawei; Sun Jianmeng; Wang Jiaxin; Gardner, Robin P.

    2011-01-01

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. - Highlights: → Monte Carlo evaluation of pulsed neutron gamma-ray density tools. → Results indicate sensitivity of the tool to standoff and mudcake properties. → Accuracy of far spaced detector is better than near spaced.

  13. Correlation between rotary drill performance parameters and borehole geophysical logging

    International Nuclear Information System (INIS)

    Scoble, M.J.; Peck, J.; Hendricks, C.

    1989-01-01

    There is a growing interest in developing performance monitoring techniques for both surface and underground mining equipment used in excavating, loading and transport systems. Research into the techniques and applications for monitoring drilling machinery including gamma and neutron logging, is reviewed. 17 refs.; 5 figs

  14. Preliminary analysis of geophysical logs from drill hole UE-25p No. 1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Muller, D.C.; Kibler, J.E.

    1984-01-01

    Geophysical logs from drill hole UE-25p No. 1 correlate well with logs through the same geologic units from other drill holes at Yucca Mountain, Nevada. The in-situ physical properties of the rocks as determined from well logs are consistent with laboratory-measured physical properties of core from other drill holes. The density, neutron and caliper logs are very spiky through most of the Topopah Spring Member. This spikiness occurs on the same logs in cored holes where the Topopah Spring Member is highly fractured and lithophysal. The uranium channel of the spectral gamma-ray log through the Topopah Spring Member correlates with uranium logs from cored holes where most of the fractures have not been healed or filled with materials that concentrate uranium. Therefore, fracture porosity and permeability of the Topopah Spring Member are expected to be high and consistent with fracture analysis from other drill holes on Yucca Mountain, and hydrologic tests from well J-13. The Paleozoic dolomites which underlie the Tertiary tuffs are intensely brecciated, and the uranium count rate is much higher than normal for dolomites because uranium has been concentrated in the recementing material. 19 references, 1 figure, 2 tables

  15. One less trip : logging with less tripping, more protection

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2005-12-15

    New logging technology by Datalog Technology Inc. was described. Logging-while-tripping (LWT) technology uses a slim petrophysical sensor package that is moved to the targeted geological formation through a drill pipe, which reduces the exposure to vibration and shock involved in logging-while-drilling (LWD). The equipment features standard components in a patented configuration and comes in 2 segments: the receiver sub and the sensor package electronics. A receiver sub is inserted into the bottomhole assembly at the end of the drill string. Drilling progresses with the LWT sub in the bottomhole assembly until the borehole approaches the logging depth. The sensor package and electronics are then lowered into the drill string. If the well is horizontal, rig pumps push the package into the drill string until it lands in the LWT sub. Drill pipes are moved across the zone of interest and logs are recorded on downhole memory contained within the LWT package. As the logging operation progresses, a depth recorder at the surface records depth information along with the downhole recorders. When logging is completed, downhole tools are retrieved, and data downloaded from the LWT onboard memory is merged with the surface depth information to generate well logs. Retrieval via the drill string greatly reduces the risk of losing the logging gear, which contains radioactive material. Federal officials now routinely insist on extensive fishing operations to retrieve lost tools. If a well gets a gas kick while logging is in progress, the operator can still pump down mud or close the blowout preventer rams if necessary, and save time in determining where to perforate shallow gas wells. Compensated neutron logs, gamma rays, spectrum gamma rays, and induction have been tested with the LWT system. It was concluded that Petro-Canada has deployed the logs recently and has achieved results that compared satisfactorily with conventional logs. 2 figs.

  16. Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4)

    Science.gov (United States)

    Konaté, Ahmed Amara; Pan, Heping; Ma, Huolin; Qin, Zhen; Traoré, Alhouseiny

    2017-08-01

    Understanding slip behavior of active fault is a fundamental problem in earthquake investigations. Well logs and cores data provide direct information of physical properties of the fault zones at depth. The geological exploration of the Wenchuan earthquake Scientific Fault drilling project (WFSD) targeted the Yingxiu-Beichuan fault and the Guanxian Anxian fault, respectively. Five boreholes (WFSD-1, WFSD-2, WFSD-3P WFSD-3 and WFSD-4) were drilled and logged with geophysical tools developed for the use in petroleum industry. WFSD-1, WFSD-2 and WFSD-3 in situ logging data have been reported and investigated by geoscientists. Here we present for the first time, the integrated core-log studies in the Northern segment of Yingxiu-Beichuan fault (WFSD-4) thereby characterizing the physical properties of the lithologies(original rocks), fault rocks and the presumed slip zone associated with the Wenchuan earthquake. We also present results from the comparison of WFSD-4 to those obtained from WFSD-1, WFSD-3 and other drilling hole in active faults. This study show that integrated core-log study would help in understanding the slip behavior of active fault.

  17. A trial of evaluation of drill-out skill of the mastoid process using navigation log

    International Nuclear Information System (INIS)

    Komune, Shizuo

    2011-01-01

    An examination was performed to see the operative skill of drill-outing the mastoid process using the temporal bone model, for the ultimate purposes of defining ''its good skill'' and of the skill assessment from the educational aspect. Comparison was made between an otological doctor who routinely conducts the operation and a medical resident having no experience of the procedure, both of whom were belonging to Kyushu University. The bone model for training the procedure was manufactured from CT-data (Ono and Co., Ltd., Tokyo), and was drilled out with drill tip of 4 mm cutting bur by the two examinees above according to the operative navigation. The navigation system had been modified for its software (3D slicer, a free software) to record the spatial tip log 6 times/sec. Sites to be preserved from the bur cutting at finishing the operation were defined to be the sigmoid sinus, short bone of anvil, lateral semicircular canal and facial nerve. The distances of the tip trace of the doctor from those sites were found 1.97 to 2.69 mm while of the resident, -5.8 to 0.58 mm, where minus meant the excessive cutting. Swinging of doctor's bur was smaller than resident's. Thus it was suggested that the skill was quantitatively evaluable by the log of the drill tip and the examination by an increased number of examinees was thought to be meaningful. (author)

  18. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    OpenAIRE

    Li, Hongtao; Meng, Yingfeng; Li, Gao; Wei, Na; Liu, Jiajie; Ma, Xiao; Duan, Mubai; Gu, Siman; Zhu, Kuanliang; Xu, Xiaofeng

    2013-01-01

    Signal attenuates while Measurement-While-Drilling (MWD) mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental dat...

  19. Analysis of geophysical well logs from the Mariano Lake-Lake Valley drilling project, San Juan Basin, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Scott, J.H.

    1986-01-01

    Geophysical well logs were obtained in eight deep holes drilled and cored by the U.S. Geological Survey to examine the geology of the Mariano Lake-Lake Valley area in the southern part of the San Juan basin, New Mexico. The logs were made to determine the petrophysical properties of the rocks penetrated by the holes, to aid in making stratigraphic correlations between the holes, and to estimate the grade of uranium enrichment in mineralized zones. The logs can be divided into six categories-nuclear, electric, sonic, magnetic, dipmeter, and borehole conditions. Examples of these logs are presented and related to lithological and petrophysical properties of the cores recovered. Gamma-ray and prompt fission neutron logs were used to estimate uranium grade in mineralized zones. Resistivity and spontaneous potential logs were used to make stratigraphic correlations between drill holes and to determine the variability of the sandstone:mudstone ratios of the major sedimentary units. In one drill hole a dipmeter log was used to estimate the direction of sediment transport of the fluvial host rock. Magnetic susceptibility logs provided supportive information for a laboratory study of magnetic mineral alteration in drill cores. This study was used to infer the geochemical and hydrologic environment associated with uranium deposition in the project area

  20. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  1. Application of Monte Carlo method in forward simulation of azimuthal gamma imaging while drilling

    International Nuclear Information System (INIS)

    Yuan Chao; Zhou Cancan; Zhang Feng; Chen Zhi

    2014-01-01

    Monte Carlo simulation is one of the most important numerical simulation methods in nuclear logging. Formation models can be conveniently built with MCNP code, which provides a simple and effective approach for fundamental study of nuclear logging. Monte Carlo method is employed to set up formation models under logging while drilling condition, and the characteristic of azimuthal gamma imaging is simulated. The results present that the azimuthal gamma imaging shows a sinusoidal curve features. The imaging can be used to accurately calculate the relative dip angle of borehole and thickness of radioactive formation. The larger relative dip angle of borehole and the thicker radioactive formation lead to the larger height of the sinusoidal curve in the imaging. The borehole size has no affect for the calculation of the relative dip angle, but largely affects the determination of formation thickness. The standoff of logging tool has great influence for the calculation of the relative dip angle and formation thickness. If the gamma ray counts meet the demand of counting statistics in nuclear logging, the effect of borehole fluid on the imaging can be ignored. (authors)

  2. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic

    Science.gov (United States)

    Amirov, Elnur

    2016-04-01

    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real

  3. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  4. Preliminary analysis of downhole logging data from ICDP Lake Junin drilling Project, Peru

    Science.gov (United States)

    Pierdominici, Simona; Kück, Jochem; Rodbell, Donald T.; Abbott, Mark B.

    2016-04-01

    The International Continental Drilling Programm (ICDP) has supported a scientific drilling campaign in Peru during the summer season 2015. The Lake Junin Drilling Project mainly aims at obtaining high-resolution paleoclimate records from lacustrine sediments to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is located at 4000 m a.s.l. in the tropical Andes of Peru, and is characterized by a thick (> 125 m) sediment package deposited at a high rate (0.2 to 1.0 mm yr-1). Lake Junín is one of the few lakes in the tropical Andes that predates the maximum extent of glaciation and is in a geomorphic position to record the waxing and waning of glaciers in nearby cordillera, hence making the lake a key site for the investigation of the Quaternary climate evolution in the inner-tropics of the Southern Hemisphere. Continous coring was performed at three sites in overall 11 boreholes on the lake with at least two overlapping boreholes per site to avoid core gaps. The depth of the boreholes varied between approx. 30 m and 110 m depending on the drill site. The core bit had a bit size of 122.6 mm and yielded a core diameter of 85 mm. Upon completion of coring operations downhole geophysical logging was performed in five of the 11 boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. The main objective was to record in-situ the physical properties of the lacustrine sediments of Lake Junin. Downhole logs provide a powerful tool to fill in information at intervals with core gaps and as depth reference for depth matching of the discontinous cores. Furthermore it will be used for the lithological reconstruction and interpretation. The OSG downhole logging comprised total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic P-wave velocity. Unstable and collapsing borehole walls made it neccessary to carry out logging in several sections instead of in one run. The

  5. Logs of wells and boreholes drilled during hydrogeologic studies at Lawrence Livermore National Laboratory Site 300, January 1, 1991--September 1, 1992

    International Nuclear Information System (INIS)

    Crow, N.B.; McConihe, W.L.

    1992-01-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 is located in the Altamont Hills between Livermore and Tracy, about 18 road miles southeast of Livermore, California. The site is used as a test facility to support national defense research carried out by LLNL. This Addendum 2 to the Logs of Wells and Boreholes Drilled During Hydrogeologic Studies at Lawrence Livermore National Laboratory Site 300 presents hydrogeologic logs for monitor wells and boreholes drilled primarily between January 1, 1991 and September 1, 1992. Some logs drilled earlier and not incorporated in earlier volumes of this document are also included here. A small number of logs drilled before September 1, 1992, are not available at the time of closing the report for publication of this volume (Addendum 2), but will be included in subsequent documents. By September 1, 1992, a total of 495 monitor wells and 285 exploratory boreholes had been drilled at Site 300 since the beginning of hydrogeologic studies in 1982. The primary purpose of these logs is to document lithologic and hydrogeologic conditions together with well completion information. For this reason, not all chemical analytical data are presented. These logs report concentrations of only the most commonly encountered volatile organic compounds, trace metals, and radionuclides detected in ground water and soil samples collected during drilling

  6. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  7. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  8. Well-logging method using well-logging tools run through a drill stem test string for determining in-situ change in formation water saturation values

    International Nuclear Information System (INIS)

    Fertl, W.H.

    1975-01-01

    A logging tool (pulsed neutron or neutron-gamma ray) whose response indicates formation water saturation value, is run through an opening extending through a portion of a drill stem test string. A sample portion of the formation fluid in the zone of interest is removed and another logging run is made. The differences between the plots of the two logging runs indicate the formation potential productivity in the zone of interest

  9. Drilling, construction, geophysical log data, and lithologic log for boreholes USGS 142 and USGS 142A, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher

    2017-07-27

    ranged in thickness from about 2 to 100 ft and varied from highly fractured to dense, and ranged from massive to diktytaxitic to scoriaceous, in texture.Geophysical logs were collected on completion of drilling at boreholes USGS 142 and USGS 142A. Geophysical logs were examined with available core material to describe basalt, sediment and sedimentary rock layers, and rhyolite. Natural gamma logs were used to confirm sediment layer thickness and location; neutron logs were used to examine basalt flow units and changes in hydrogen content; gamma-gamma density logs were used to describe general changes in rock properties; and temperature logs were used to understand hydraulic gradients for deeper sections of borehole USGS 142. Gyroscopic deviation was measured to record deviation from true vertical at all depths in boreholes USGS 142 and USGS 142A.

  10. New drilling optimization technologies make drilling more efficient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.-K. [Halliburton Energy Services, Calgary, AB (Canada). Sperry Division

    2004-07-01

    Several new technologies have been adopted by the upstream petroleum industry in the past two decades in order to optimize drilling operations and improve drilling efficiency. Since financial returns from an oil and gas investment strongly depend on drilling costs, it is important to reduce non-productive time due to stuck pipes, lost circulation, hole cleaning and well bore stability problems. The most notable new technologies are the use of computer-based instrumentation and data acquisition systems, integrated rig site systems and networks, and Measurement-While-Drilling and Logging-While-Drilling (MWD/LWD) systems. Drilling optimization should include solutions for drillstring integrity, hydraulics management and wellbore integrity. New drilling optimization methods emphasize information management and real-time decision making. A recent study for drilling in shallow water in the Gulf of Mexico demonstrates that trouble time accounts for 25 per cent of rig time. This translates to about $1.5 MM U.S. per well. A reduction in trouble time could result in significant cost savings for the industry. This paper presents a case study on vibration prevention to demonstrate how the drilling industry has benefited from new technologies. 13 refs., 10 figs.

  11. Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China

    International Nuclear Information System (INIS)

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Yue, Xuyuan; Zhou, Xinpeng; Li, Jianguo; Zhao, Bin

    2014-01-01

    The hole NLSD-2, one of the deepest scientific drilling projects in the metallic ore districts of China, is the second scientific drilling deep hole in the Nanling district. Its ultimate depth is 2012.12 m. This hole was created through the implementation of continuous coring, and the measuring of a variety of geophysical well logging methods was performed over the course of the drilling process. This paper analyzes the characteristic responses of the fracture and fractured zone by ultrasonic imaging log data, and characterizes various rules of fracture parameters which change according to drilling depth. It then discusses the denotative meaning of the log results of polymetallic mineralization layers. The formation fractures develop most readily in a depth of 100∼200 m, 600∼850 m and 1450∼1550 m of the hole NLSD-2, and high angle fractures develop most prominently. The strike direction of the fractures is mainly NW-SE, reflecting the orientation of maximum horizontal principal stress. For the polymetallic mineralization layer that occurred in the fractured zone, the characteristic response of ultrasonic imaging log is a wide dark zone, and the characteristic responses of conventional logs displayed high polarizability, high density, high acoustic velocity and low resistivity. All the main polymetallic mineralization layers are developed in fractures or fractured zones, and the fractures and fractured zones can be identified by an ultrasonic imaging log, thus the log results indirectly indicate the occurrence of polymetallic mineralization layers. Additionally, the relationship between the dip direction of fractures and the well deviation provides guidance for straightening of the drilling hole. (paper)

  12. Ellog Auger Drilling -"3-in-one" method for hydrogeological data collection

    DEFF Research Database (Denmark)

    Sørensen, Kurt; Larsen, Flemming

    1999-01-01

    The Ellog auger drilling method is an integrated approach for hydrogeological data collection during auger drilling in unconsolidated sediments. The drill stem is a continuous flight, hollow-stem auger with integrated electrical and gamma logging tools. The geophysical logging is performed...... continuously while drilling. Data processing is carried out in the field, and recorded log features are displayed as drilling advances. A slotted section in the stem, above the cutting head, allows anaerobic water and soil-gas samples to be taken at depth intervals of approximately 0.2 m. The logging, water......, and gas sampling instrumentation in the drill stem is removable; therefore, when the drill stem is pulled back, piezometers can be installed through the hollow stem. Cores of sediments can subsequently be taken continuously using a technique in which the drill bit can be reinserted after each coring...

  13. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-01-01

    Full Text Available Signal attenuates while Measurement-While-Drilling (MWD mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section. In general, the effects of variables above on speed are seen to be small in comparison.

  14. Seismic Prediction While Drilling (SPWD: Looking Ahead of the Drill Bit by Application of Phased Array Technology

    Directory of Open Access Journals (Sweden)

    Marco Groh

    2010-04-01

    Full Text Available Geophysical exploration is indispensable for planning deep drilling. Usually 2D- or 3D-seismics investigations are applied and, depending on the resulting geologic model for the underground, the drill site and drilling path are determined. In recent years the focus of exploration has shifted towards small-scale geological structures such as local layers and faults. Depending on the source frequencies and the target depth, 2D- or 3D-seismics from surface cannot always resolve such structures in particular at larger depths. In general, signal frequencies of about 30–70 Hz are typical for surface seismic methods. The deeper and smaller the sought-after structures are, the worse will be the resolution. Therefore, borehole seismic measurements like Vertical Seismic Profile (VSP or Seismic While Drilling (SWD have been developed (Fig. 1. For the VSP method geophones are normally integrated in the borehole, while the seismicsource generates seismic waves at the surface. The SWD method uses the drill bit as the seismic source. Hence, the quality of the seismic signals is highly dependent on the drilled rock and the type of drill bit, but even well-suited rock conditions and adequate drilling may not provide sufficient data quality.

  15. Identification of carbonate reservoirs based on well logging data for boreholes drilled using oil base muds

    International Nuclear Information System (INIS)

    Abdukhalikov, Ya.N; Serebrennikov, V.S.

    1979-01-01

    Experiment on carbonate reservoir identification according to well logging data for boreholes drilled using oil base muds is described. Pulse neutron-neutron logging (PNNL) was widely used at the territory of Pripyat' hole to solve the task. To evaluate volumetric clayiness of carbonate rocks the dependence of gamma-logging, that is data of gamma-logging against clayey rocks built for every hollow, is used. Quantitative estimation of clayiness of dense and clayey carbonate rocks-non-reservoirs is carried out on the basis of the data of neutron-gamma and acoustic logging. Porosity coefficient and lithological characteristic of rocks are also determined according to the data of acoustic and neutron gamma-logging

  16. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    Energy Technology Data Exchange (ETDEWEB)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  17. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  18. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Yudan Wang

    2017-04-01

    Full Text Available The drilling length is an important parameter in the process of horizontal directional drilling (HDD exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  19. Interpretation of geophysical well-log measurements in drill hole UE25a-1, Nevada Test Site, Radioactive Waste Program

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    An exploratory hole (UE25a-1) was drilled at Nevada Test Site (NTS) to determine the suitability of pyroclastic deposits as storage sites for radioactive waste. Studies have been conducted to investigate the stratigraphy, structure, mineralogy, petrology, and physical properties of the tuff units encountered in the drill hole. This report deals with the interpretation of physical properties for the tuff units from geophysical well-log measurements. The ash-flow and bedded tuff sequences at NTS comprise complex lithologies of variously welded tuffs with superimposed crystallization and altered zones. To characterize these units, resistivity, density, neutron, gamma-ray, induced polarization, and magnetic susceptibility geophysical well-log measurements were made. Although inherently subjective, a consistent interpretation of the well-log measurements was facilitated by a computer program designed to interpret well logs either individually or simultaneously. The broad features of the welded tuff units are readily distinguished by the geophysical well-log measurements. However, many details revealed by the logs indicate that more work is necessary to clarify the casual elements of well-log response in welded tuffs

  20. Linking downhole logging data and clay mineralogy analysis in the ICDP Lake Junín drilling Project, Peru

    Science.gov (United States)

    Pierdominici, S.; Schleicher, A.; Kueck, J.; Rodbell, D. T.; Abbott, M. B.

    2017-12-01

    The lake Junin drilling project, co-funded by the International Continental Drilling Program (ICDP), is located at 4000 m a.s.l. in the tropical Andes of Peru. Several boreholes were drilled with the goal to obtain both high-resolution paleoclimate records from lacustrine sediments and to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is characterized by a thick package of lacustrine sediments (> 125 m) deposited at a high rate (0.2 to 1.0 mm yr-1), and it is one of the few lakes in the tropical Andes that is hundreds of thousands of years old with a continuous sedimentation rate preserving a very long and continuous record of past ice age cycles. The boreholes reached a maximum depth of 110.08 m and continuous coring was performed at three sites with 11 boreholes. Additionally, an extensive geophysical downhole logging campaign was performed on five boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. Downhole logging measurements comprise total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic p-wave velocity. In order to fit the downhole logging depths to the composite profile depths, each borehole was depth-matched with the core data. Interpreting the downhole logging data permits to establish a complete lithological log, to characterize the in-situ physical properties of drilled lacustrine sediments, to determine sedimentary structures and to obtain evidences about palaeoclimatic conditions during up to 200 ka. Th and K values are used as a proxy for a first estimate and characterization of clay content in the sediments, which are present as montmorillonite, smectite, illite, and kaolinite in different amounts. Linking the clay minerals that occur in the core material with the downhole logging data allows assessing the geological history of the lake and the relationship to climate change processes. Additional laboratory analysis will be

  1. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    Science.gov (United States)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  2. A Probabilistic Approach for Reliability and Life Prediction of Electronics in Drilling and Evaluation Tools

    Science.gov (United States)

    2014-12-23

    while drilling (MWD) and logging while drilling ( LWD ). The OnTrak tool takes measurements like resistivity, gamma ray, pressure and vibration. (3) Bi...estimation. LVPS = Low voltage power supply LWD = Logging while drilling MaPS = Maintenance and performance system MLE = Maximum likelihood estimation...years industry experience, with prior roles in Geoscience and LWD Operations. He has a BSc in Geology from the University of South Australia, an MSc

  3. Listvenite logging on D/V CHIKYU: Hole BT1B, Oman Drilling Project

    Science.gov (United States)

    Kelemen, P. B.; Beinlich, A.; Morishita, T.; Greenberger, R. N.; Johnson, K. T. M.; Lafay, R.; Michibayashi, K.; Harris, M.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Listvenite, quartz-carbonate altered ultramafic rock containing minor fuchsite (Cr-muscovite) forms by complete carbonation of peridotite and is thus an attractive objective for carbon mitigation studies. However, reaction controls and evolution of listvenite are still enigmatic. Here we present the first results of Phase 1 of the ICDP (International Continental Drilling Program) Oman Drilling Project and subsequent core logging using the analytical facilities on board the research vessel D/V CHIKYU. Hole BT1B contains 300 m of continuous drill core intersecting alluvium, listvenite-altered serpentinite, serpentinite, ophicarbonate and the underlying metamorphic sole of the Semail ophiolite, Oman. The drill core has been systematically investigated by visual core description, thin section petrography, X-ray fluorescence core logging, X-ray diffractometry, visible-shortwave infrared imaging spectroscopy and X-ray Computer Tomography. Our observations show that listvenite is highly variable in texture and color on the mm to m scale. Listvenite was visually categorized into 5 principal color groups: the dominant dark red (47 %), light red (19 %), orange (14 %), pale (2 %) and green (16 %). The presence of hematite/goethite results in dark reddish, red and orange hues. Light grey or pale colored listvenite lacks hematite and/or goethite veins and may represent the `true' listvenite. Green listvenite is characterized by the presence of cm-sized quartz-fuchsite intergrowths. Five zones of serpentinite, which vary in thickness between several tens of cm and 4 m, are intercalated within the massive listvenite of Hole BT1B. Gradational listvenite-serpentinite transition zones contain the ophicarbonate assemblage (magnesite + serpentine) and sometimes additional talc, representing intermediate carbonation reaction progress. Preservation of the former mesh texture and bastite after orthopyroxene in the listvenite suggest that the listvenite precursor had already been

  4. Research on Rapid Identification and Evaluation Technology for Gas Formation during Underbalanced Drilling

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2017-01-01

    Full Text Available The underbalanced drilling (UBD technology has been widely implemented due to its advantages in drilling efficiency improvement and cost reduction. However, this advanced technology requires very special equipment and operational mechanism, which raises multiple challenges to traditional well logging techniques. In this study, a real-time logging system (MWD/LWD and mud logging was developed and utilized during underbalanced drilling, to quickly identify and evaluate gas formation. This advanced system enables fast detection of gas formation and determining the formation type while drilling, by monitoring the changes in gas production. This real-time logging system provides a powerful technical support to the gas reservoir drilling and development. A case study has clearly shown that the interpretation and evaluation results based on the real-time logging data agree well with the results of conventional well logging. Therefore, this advanced real-time logging technique can be utilized as an effective guidance for field operation.

  5. Development of a high-temperature diagnostics-while-drilling tool.

    Energy Technology Data Exchange (ETDEWEB)

    Chavira, David J.; Huey, David (Stress Engineering Services, Inc.); Hetmaniak, Chris (Stress Engineering Services, Inc.); Polsky, Yarom; King, Dennis K.; Jacobson, Ronald David; Blankenship, Douglas Alan; Knudsen, Steven Dell; Henfling, Joseph Anthony; Mansure, Arthur James

    2009-01-01

    The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picture of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has

  6. A novel method for quantitative geosteering using azimuthal gamma-ray logging

    International Nuclear Information System (INIS)

    Yuan, Chao; Zhou, Cancan; Zhang, Feng; Hu, Song; Li, Chaoliu

    2015-01-01

    A novel method for quantitative geosteering by using azimuthal gamma-ray logging is proposed. Real-time up and bottom gamma-ray logs when a logging tool travels through a boundary surface with different relative dip angles are simulated with the Monte Carlo method. Study results show that response points of up and bottom gamma-ray logs when the logging tool moves towards a highly radioactive formation can be used to predict the relative dip angle, and then the distance from the drilling bit to the boundary surface is calculated. - Highlights: • A new method is proposed for geosteering by using azimuthal gamma-ray logging. • The new method can quantitatively determine the distance from the drilling bit to the boundary surface while the traditional geosteering method can only qualitatively guide the drilling bit in reservoirs. • The response points of real-time upper and lower gamma line when the logging tool meets high radioactive formation are used to predict the relative dip angles, and then the distance from the drilling bit to the boundary surface is calculated

  7. The interpretation of geochemical logs from the oceanic basement: mineral modelling in Ocean Drilling Program (ODP) Hole 735B

    International Nuclear Information System (INIS)

    Harvey, P.K.; Lovell, M.A.; Bristow, J.F.

    1991-01-01

    Leg 118 of the Ocean Drilling Program was carried out in the vicinity of the Southwest Indian Ridge. Of the boreholes drilled, by far the most important and scientifically spectacular is Hole 735B which was located on a shallow platform adjacent to the Atlantis II Transform. This hole penetrates some 500 m of gabbroic rocks representing Layer 3 of the oceanic crust. The recovered gabbros show considerable variation both in mineralogy and in the degree of deformation. Core recovery averages 87% and there is excellent control and correlation between the core and the wide range of logs obtained. Mineralogy logs are derived and presented using both core sample data and downhole geochemical logs for Hole 735B. The problems of transforming these data for the particular mineralogy encountered are discussed. (Author)

  8. Drilling and geophysical logs of the tophole at an oil-and-gas well site, Central Venango County, Pennsylvania

    Science.gov (United States)

    Williams, John H.; Bird, Philip H.; Conger, Randall W.; Anderson, J. Alton

    2014-01-01

    In a study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, drilling and geophysical logs were used to characterize the geohydrologic framework and the freshwater and saline-water zones penetrated by the tophole at an oil-and-gas well site in central Venango County, Pennsylvania. The geohydrologic setting of the well site is typical of the dissected Appalachian Plateau underlain by Pennsylvanian and Mississippian sandstone and shale. The drilling, gamma, and acoustic-televiewer logs collected from the 575-foot deep tophole define the penetrated Pennsylvanian and Mississippian stratigraphic units and their lithology. The caliper, video, and acoustic-televiewer logs delineate multiple bedding-related and high-angle fractures in the lower Pottsville Group and Shenango Formation from 22 to 249 feet below land surface. The caliper and acoustic-televiewer logs indicate a sparsity of fractures below 249 feet below land surface in the lowermost Shenango Formation, Cuyahoga Group, Corry Sandstone, “Drake Well” formation, and upper Riceville Formation.

  9. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    Science.gov (United States)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  10. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  11. Estimation grade of uranium from drill hole gamma logs

    International Nuclear Information System (INIS)

    Juliao, B.

    1986-01-01

    Radiometric grade of uranium deposits can be determined from drill hole gamma logs. The calculation of uranium oxide content can be obtained with good precision when the uranium ore is in radioactive equilibrium, containing only a small amount of thorium and no interference of potassium. This is the case of uranium ore from the Lagoa Real Uranium Province presented in this paper. The radioactive disequilibrium study in this province were made working over nine hundred samples analised with this special purpose in the CDTN-NUCLEBRAS laboratories. The data obtained indicated that the uranium in the ore is in perfect equilibrium with their daughter gamma emitters. Futhermore, the amount of Th and K is of no significance, so that the gamma counting represents exactly the uranium content of the ore. (author) [pt

  12. Benefits of obtaining log data in horizontal wells in the WCSB

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, D. [Reeves Wireline Technologies Ltd., Calgary, AB (Canada)

    2001-11-01

    A Compact Memory Logging (CML) system developed by Reeves Wireline Technologies was presented. It can be used to obtain log data from horizontal wells to get a better understanding of how to enhance production or completion techniques. The methods that are commonly used to obtain data from horizontal wells include measurement while drilling (MWD), logging while drilling (LWD), wet connect pipe conveyed wireline logging and CML. Each method has its unique benefits that range from information on lithology, rock parameters and fluid interfaces. Reeves has been using wireless pipe conveyed CML over the past two years. The log data includes array induction, dual spaced neutron and photo density porosity, Pe, gamma ray, compensated sonic and hose size caliper. Reeves CML is smaller, easily conveyed and has an unprecedented capability to bend and is considered to be well suited for both newly and previously drilled horizontal wells that require remedial assessment. The tool can be used to determine reservoir quality and boundaries, establish zone structures, or identify fluid interfaces for strategic planning of completions and stimulations. This paper presented examples of logs on some horizontal wells that indicate the value of obtaining log data. Reeves CML is considered to be economically and operationally ideal, particularly since data from the CML includes depth of investigation. 5 figs.

  13. Simulation of Logging-while-drilling Tool Response Using Integral Equation Fast Fourier Transform

    Directory of Open Access Journals (Sweden)

    Sun Xiang-Yang

    2017-01-01

    Full Text Available We rely on the volume integral equation (VIE method for the simulation of loggingwhile- drilling (LWG tool response using the integral equation fast Fourier transform (IE-FFT algorithm to accelerate the computation of the matrix-vector product in the iterative solver. Depending on the virtue of the Toeplitz structure of the interpolation of the Green’s function on the uniform Cartesian grids, this method uses FFT to calculate the matrix-vector multiplication. At the same time, this method reduce the memory requirement and CPU time. In this paper, IEFFT method is first used in the simulation of LWG. Numerical results are presented to demonstrate the accuracy and efficiency of this method. Compared with the Moment of Method (MOM and other fast algorithms, IE-FFT have distinct advantages in the fact of memory requirement and CPU time. In addition, this paper study the truncation, mesh elements, the size of the interpolation grids of IE-FFT and dip formation, and give some conclusion with wide applicability.

  14. Environmental Measurement-While-Drilling system for real-time field screening of contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Bishop, L.B.; Floran, R.J.; Williams, C.V.

    1995-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ''steer'' the drill bit in or out hazardous zones. During measurement-while-drilling, down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented

  15. Encyclopedia of well logging

    International Nuclear Information System (INIS)

    Desbrandes, R.

    1985-01-01

    The 16 chapters of this book aim to provide students, trainees and engineers with a manual covering all well-logging measurements ranging from drilling to productions, from oil to minerals going by way of geothermal energy. Each chapter is a summary but a bibliography is given at the end of each chapter. Well-logging during drilling, wireline logging equipment and techniques, petroleum logging, data processing of borehole data, interpretation of well-logging, sampling tools, completion and production logging, logging in relief wells to kill off uncontrolled blowouts, techniques for high temperature geothermal energy, small-scale mining and hydrology, logging with oil-base mud and finally recommended logging programs are all topics covered. There is one chapter on nuclear well-logging which is indexed separately. (UK)

  16. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  17. Development of a system to provide diagnostics-while-drilling.

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Jack LeRoy; Jacobson, Ronald David; Finger, John Travis; Mansure, Arthur James; Knudsen, Steven Dell

    2003-06-01

    This report describes development of a system that provides high-speed, real-time downhole data while drilling. Background of the project, its benefits, major technical challenges, test planning, and test results are covered by relatively brief descriptions in the body of the report, with some topics presented in more detail in the attached appendices.

  18. Development of a High-Temperature Diagnostics-While-Drilling Tool

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chavira, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henfling, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hetmaniak, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huey, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jacobson, Ron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); King, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudsen, Steve [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mansure, A. J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Polsky, Yarom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2009-01-01

    This report documents work performed in the second phase of the Diagnostics While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided.

  19. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  20. Application of Bayesian Inversion for Multilayer Reservoir Mapping while Drilling Measurements

    Science.gov (United States)

    Wang, J.; Chen, H.; Wang, X.

    2017-12-01

    Real-time geosteering technology plays a key role in horizontal well development, which keeps the wellbore trajectories within target zones to maximize reservoir contact. The new generation logging while drilling (LWD) resistivity tools have longer spacing and deeper investigation depth, but meanwhile bring a new challenge to inversion of logging data that is formation model not be restricted to few possible numbers of layer such as typical three layers model. If the inappropriate starting models of deterministic and gradient-based methods are adopted may mislead geophysicists in interpretation of subsurface structure. For this purpose, to take advantage of richness of the measurements and deep depth of investigation across multiple formation boundaries, a trans-dimensional Markov chain Monte Carlo(MCMC) inversion algorithm has been developed that combines phase and attenuation measurements at various frequencies and spacings. Unlike conventional gradient-based inversion approaches, MCMC algorithm does not introduce bias from prior information and require any subjective choice of regularization parameter. A synthetic three layers model example demonstrates how the algorithm can be used to image the subsurface using the LWD data. When the tool is far from top boundary, the inversion clearly resolves the boundary position; that is where the boundary histogram shows a large peak. But the measurements cannot resolve the bottom boundary; the large spread between quantiles reflects the uncertainty associated with the bed resolution. As the tool moves closer to the top boundary, the middle layer and bottom layer are resolved and retained models are more similar, the uncertainty associated with these two beds decreases. From the spread observed between models, we can evaluate actual depth of investigation, uncertainty, and sensitivity, which is more useful then just a single best model.

  1. Determination of In-situ Rock Thermal Properties from Geophysical Log Data of SK-2 East Borehole, Continental Scientific Drilling Project of Songliao Basin, NE China

    Science.gov (United States)

    Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.

    2017-12-01

    Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China

  2. The art of drilling; L'art de forer

    Energy Technology Data Exchange (ETDEWEB)

    Charlez, Ph. [Total, La Defense 6, Exploration-Production, Recherche et Developpement, 92 - Courbevoie (France)

    2003-06-01

    Since about 15 years, the well drilling techniques have undergone an unprecedented technological revolution. A few deviated or horizontal wells only are needed today to reach oil resources 10 km away while many vertical wells were needed in the past for the same operation. These techniques multiply the possibilities of reaching oil reservoirs in complex geological areas but they also have to adapt to more and more severe conditions (high water depths, high pressures and temperatures) which raise new problems. This article treats of the new geometries of wells with multi-drains and of the data acquisition and treatment tools for the control of the drilling progression (measurement while drilling (MWD), logging while drilling (LWD), seismic while drilling (SWD)) and for the real-time visualisation of the well profile inside the geologic formations (3-D imaging). Intelligent completion systems with remote controlled valves are used to selectively control the production of the different branches of the well in the case of a multi-layer reservoir. (J.S.)

  3. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    Science.gov (United States)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  4. Best of the lot : engineered measurement-while-drilling tool improves efficiency of operations

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.

    2010-10-15

    NuEra Oilfield Services Inc. combines various technologies, including advanced bearing assemblies and compact wireless decoders that interface with downhole directional tools, to engineer unique, purpose-built measurement-while-drilling (MWD) tool string packages. The 9-metre-long MWD tool string is lowered into the drill pipe from the surface. The directional module monitors the position of the drill bit, which the driller can monitor using an electronic drilling recorder at the surface. The directional drillstring uses a mud motor with adjustable bent housing to correct the direction of the well, as the system cannot steer while drilling. At bottomhole, mud circulation continues after the rotation of the drillstring has been stopped, driving the mud motor, which in turn drives the drill bit, permitting a new direction to be taken even though the drillstring is not turning. The operator points the bent housing in a new direction and slides the bit along before restarting the rotation of the drillstring. The NuEra drillstring uses a new bearing pack that makes the mud motor more robust and longer-lived, preventing costly down time for operators. The bearing pack is designed to distribute the load geometrically so that only one-third of the weight-on-bit is on the bearings at any point in time, which extends bearing life and reduces repair costs. The custom selection and mating of superior components made by different tool manufacturers has resulted in the MWD tool string that is reliable and able to pump more and carry more weight. 1 ref., 2 figs.

  5. Development of controlled drilling technology and measurement method in the borehole. Phase 2. Upgrading of drilling and measurement system and its application to the fault

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Ohtsu, Masashi

    2009-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Since 2000, CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Based on the results of phase 1(2000-2004), CRIEPI has been developing the drilling and logging/measurement technologies for fault zone during phase 2 (2005-2007). The drilling technology such as drilling for fault zone, horizontal drilling, long hole drilling, coring and locality detection was developed and these applicability was confirmed while drilling. The permeability/water-sampling/imaging tool was revised to apply wider borehole and longer measuring section. The WL-LWD was improved to be tougher in the hole. The borehole pressure meter and stress measurement tools were unified. Each tools necessary for the monitoring system is manufactured. The applicability of these tools and systems were verified in the borehole. After conducting surveys for the Omagari fault distributing at the Kami-horonobe area, the drilling site and borehole trace was decided in 2005. Considering the planned trace, the bore hole was drilled to the 683.5m long and its core recovery was 99.8%. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  6. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windowstrademark-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide

  7. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  8. Logs of wells and boreholes drilled during hydrogeologic studies at Lawrence Livermore National Laboratory Site 300, January 1, 1982--June 30, 1988: January 1, 1982 through June 30, 1988

    International Nuclear Information System (INIS)

    Toney, K.C.; Crow, N.B.

    1988-01-01

    We present the hydrogeologic well logs for monitor wells and exploratory boreholes drilled at Lawrence Livermore National Laboratory (LLNL) Site 300 between the beginning of environmental investigations in June 1982 and the end of June 1988. These wells and boreholes were drilled as part of studies made to determine the horizontal and vertical distribution of volatile organic compounds (VOCs), high explosive (HE) compounds, and tritium in soil, rock, and ground water at Site 300. The well logs for 293 installations comprise the bulk of this report. We have prepared summaries of Site 300 geology and project history that provide a context for the well logs. Many of the logs in this report have also been published in previous topical reports, but they are nevertheless included in order to make this report a complete record of the wells and boreholes drilled prior to July 1988. A commercially available computer program, LOGGER has been used since late 1985 to generate these logs. This report presents details of the software programs and the hardware used. We are presently completing a project to devise a computer-aided design (CAD) system to produce hydrogeologic cross sections and fence diagrams, utilizing the digitized form of these logs. We find that our system produces publication-quality well and exploratory borehole logs at a lower cost than that of logs drafted by traditional methods

  9. Well drilling by rotary percussive drill above ground

    International Nuclear Information System (INIS)

    Sabatier, G.

    1987-01-01

    Originally, the Well Drilling Section of Cogema used only the diamond core drilling technique. The appearance of independent rotation for compressed air rock drills has led to the use and to the development of this drilling system, as a drill core is not indispensable, when the material of the search is radioactive. During the last few years, hydraulic drills have replaced the compressed air drills and have resulted in a very marked improvement: - of the penetration rates; - of the depth achieved. The Well Drilling Section of Cogema has to drill about 400 km per year with rock drills above ground and holds also the record for depth achieved with this technique, i.e. 400 m in granite. In France, the costs of these types of drilling are for the same depth of the order of one-quarter of the core drilling and half of the drilling with a down-the-hole drill. Cogema has greatly developed the types of well logging which now permits the extension of this type of drilling to the search for other materials than uranium [fr

  10. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling.

    Science.gov (United States)

    Zhang, Chunxi; Lin, Tie

    2016-07-28

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method.

  11. Synthetic-based fluid replacement: excellent drilling efficiency and imaging evaluation achieved with inhibitive water-based fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Ricardo; Fernandez, Jovan Andrade [PETROBRAS, Rio de Janeiro, RJ (Brazil); Anderson, Tom; Loureiro, Mario; Pereira, Alex; Shah, Fayyaz [Halliburton Baroid, Aracaju, SE (Brazil)

    2004-07-01

    The highly reactive Calumbi shale is encountered in wells drilled by PETROBRAS in the Sergipe area. Normally an invert emulsion fluid would be used. However, the ability to run high resolution imaging logs was crucial to determining the potential of the offshore Sergipe fields, and these tools work best in water-based fluids. PETROBRAS selected a new high performance water-based fluid (WBF) to drill the Poco 3-GA-73-SES well. The fluid selection was based on the results of X-ray diffraction, dispersion/erosion and linear swell meter testing of Calumbi formation samples. The new WBF incorporates a unique polymer chemistry that can provide shale inhibition very similar to that achieved with an invert emulsion fluid, without sacrificing drilling performance. The polymeric additives can effectively flocculate and encapsulate colloidal drill solids so that they can be easily removed mechanically. The polymers also help prevent hole erosion and bit balling. After the high-performance WBF was used, the following results were obtained on the Poco 3- GA-73-SES well: 805 m drilled in 65 hr (12.65 m/hr) in a single bit run; trips completed with minimal use of the pumps or back reaming, considered exceptional for a WBF while drilling the Calumbi shale; imaging logs run successfully with no delays or obstructions while tripping or logging; the average hole diameter was 8.63-in. per the caliper log for the 8 1/2-in. section; no accretion on the bit or drill string observed; no flow line plugging or shaker screen blinding. (author)

  12. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  13. Geologic investigations of drill hole sloughing problems, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Davies, W.J.; Gonzales, J.L.; Hawkins, W.L.

    1983-01-01

    Severe sloughing zones encountered while drilling large diameter emplacement holes in Yucca Flat, Nevada Test Site, have been identified, correlated and predicted through detailed geologic investigations. In central and southeastern Area 7 and in northern Area 3, the unstable zones are a very fine-grained, well-sorted, unconsolidated sand deposit, probably eolian in origin, which will readily flow into large diameter drill holes. Other areas exhibit hole erosion related to poor induration or extensive zeolitization of the Tertiary tuff units which are very friable and porous. By examining drill hole samples, geophysical logs, caliper logs and drilling histories, these problem zones can be characterized, correlated and then projected into nearby sites. Maps have been generated to show the depth, thickness and areal extent of these strata. In some cases, they are local and have a lenticular geometry, while in others they are quite extensive. The ability to predict such features can enhance the quality of the hole construction and completion operations to avoid costly delays and the loss of valuable testing real estate. The control of hole enlargements will also eliminate related containment concerns, such as stemming uncertainties

  14. Mapping the lithotypes using the in-situ measurement of time domain induced polarization: El-log

    DEFF Research Database (Denmark)

    Auken, Esben; Fiandaca, Gianluca; Christiansen, Anders Vest

    This study presents a novel application of the El-log-drilling technique for measurement while drilling of the DC, time domain IP and gamma log. In addition pore water samples can be taken at arbitrary levels. The technique itself is developed in Denmark and has been widely used in the field...... of ground water and environmental studies. The El-log drilling method yields detailed information on small changes in lithology, sediment chemistry and water quality and with data comparable to what can be obtained in the laboratory. . We collected the data at a landfill site located near Grindsted...... in the southern part of Denmark. The purpose of the study was 1) to obtain a direct correlation between the undisturbed geophysical logs and surface measurements, 2) correlation of IP parameters to lithology and grain size distribution and 3) to investigate any correlation with effluent and IP parameters. We...

  15. An Overview on Measurement-While-Drilling Technique and its Scope in Excavation Industry

    Science.gov (United States)

    Rai, P.; Schunesson, H.; Lindqvist, P.-A.; Kumar, U.

    2015-04-01

    Measurement-while-drilling (MWD) aims at collecting accurate, speedy and high resolution information from the production blast hole drills with a target of characterization of highly variable rock masses encountered in sub-surface excavations. The essence of the technique rests on combining the physical drill variables in a manner to yield a fairly accurate description of the sub-surface rock mass much ahead of following downstream operations. In this light, the current paper presents an overview of the MWD by explaining the technique and its set-up, the existing drill-rock mass relationships and numerous on-going researches highlighting the real-time applications. Although the paper acknowledges the importance of concepts of specific energy, rock quality index and a couple of other indices and techniques for rock mass characterization, it must be distinctly borne in mind that the technique of MWD is highly site-specific, which entails derivation of site-specific calibration with utmost care.

  16. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  17. Interactive Drilling Using Real-time LWD A Chevron Nigeria Ltd And Schlumberger Experience

    International Nuclear Information System (INIS)

    Parvez, B.; Ingham, S.; Raginal, O.; Osman, K.

    2002-01-01

    CNL's experience is that the most effective means of GeoSteering horizontal wells is to co-locate the GeoSteering and multi-disciplinary Asset teams in Central location and not at the well site. Real-Time Logging-While-Drilling and reliable data transmissions are both key to successful interactive drilling from a remote location. The accuracy and quality of LWD Real-Time measurements and their use for true geological and GeoSteering evaluation are presented in this paper.Customization of data frames and samples time to acquire a real-time log suite suitable for a specific geological problem will be discussed first then the effects of the drilling environments on sensor response, the relationship of specified sensor accuracy to logging speeds and data transmission rates. The paper then proceeds to the different sources of noise on real-time data and quality control procedures like filter mechanism, spectral analysis and recapturing of the LWD data on the rig.After a brief description of data transmission systems the paper will end with discussion on use of while drilling data for true geological and GeoSteering evaluation and implementation of some new evaluation concepts, decision trees and best practices.Examples will illustrate the customization of data frames. Effects of rate of penetration, tool rotation, sample time on real-time data. Real-time log interpretation like effects of approaching bed boundary, anisotropy and invasion and of hole enlargement

  18. 75 FR 75995 - Request for Comments on Helium-3 Use in the Oil and Natural Gas Well Logging Industry

    Science.gov (United States)

    2010-12-07

    ... manufacture neutron detectors used by the well logging industry or wireline or Logging-While-Drilling tools... DEPARTMENT OF ENERGY Request for Comments on Helium-3 Use in the Oil and Natural Gas Well Logging... of Helium-3 by the oil and gas well logging industry. DATES: Written comments and information are...

  19. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori

    2013-01-01

    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  20. The effect of barite mud on the division of the detector energy window in density logging while drilling

    International Nuclear Information System (INIS)

    Zhang Li; Sun Jianmeng; Yu Huawei; Jiang Dong; Zhang Jing

    2012-01-01

    In the litho-density logging, formation density and lithology were acquired by calculating the total counts in certain energy window. Therefore, the division of the energy window directly affects the evaluation of density and lithology value. In the process of the energy window division, mud type affects the determination of the range of energy window. In this work, Monte Carlo simulation method was applied to study the range of energy window regarding to water mud and barite mud, respectively. The results show that the range of the energy window with barite mud is less than that of the water mud, and lithology identification will have greater' error in the barite mud. It is important to analyze influencing factors and improve the measurement accuracy of the litho-density logging. (authors)

  1. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    International Nuclear Information System (INIS)

    Staller, George E.; Whitlow, Gary

    1999-01-01

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  2. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    Science.gov (United States)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  3. Metre by metre: Advances in drilling technology are unlocking the doors to stubborn reserves

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2004-03-01

    Advances in drilling technology such as horizontal drilling, controlled pressure drilling, underbalanced or reduced overbalanced drilling, steam assisted cavity drainage, the modified magnetic ranging system and a growing arsenal of on-line controls such as measurement-while drilling (MWD) and logging-while-drilling (LWD) are constantly enlarging the sites to which operators can go, the range of the pay zone that they can conquer, and to design increasingly site-specific approaches to deal with the change of formation characteristics from location to location. This article provides an overview of recent advances, focusing on underbalanced, balanced and reduced overbalanced drilling, and latest versions of data acquisition systems such as MWD and LWD which are capable of operating at twice the speed of conventional systems and provide accurate data even under the extremely difficult conditions found in hostile offshore environment.

  4. Drilling a better pair : new technologies in SAGD directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, C.; Richter, D. [Statoil Canada Ltd., Calgary, AB (Canada); Person, J.; Tilley, J.; Bittar, M. [Halliburton Energy Services, Calgary, AB (Canada)

    2010-07-01

    The Leismer Demonstration Project (LDP) is the first of 8 proposed major steam assisted gravity drainage (SAGD) projects for Statoil's Kai Kos Dehseh (KKD) asset in the Athabasca oil sands deposit. The bitumen resources are expected to produce approximately 2.2 billion barrels of oil over approximately 35 years with a peak production of 220,000 bbl/day. To date, 23 well pairs have been drilled on 4 drilling pads. The precise placement of well pairs is among the most important factors in a successful SAGD drilling program. The producer well must be placed in relation to the reservoir boundaries. It must also be accurately twinned with the injector well. A strong focus on technological innovation is needed in order to deliver on these high expectations in unconsolidated formations, such as the McMurray oil sands. Lateral SAGD pairs are often drilled with conventional steerable mud motors and logging-while-drilling (LWD) resistivity measurements, but this combination imposes certain limitations in terms of wellbore quality and placement. Several industry firsts were successfully implemented at the Statoil LDP, including a combination of the newest and most cutting-edge directional, measurement, and LWD technology. The keystone of these industry firsts was the use of a soft formation modified, point-the-bit rotary steerable system (RSS), used on 20 horizontal wells. The RRS was combined with an ultra deep azimuthal resistivity sensor to provide precise geosteering along the bottom bed boundary in the producer wells, resulting in improved reservoir capture and reservoir characterization. This paper described the new drilling system and its impact on the progressive future of directional drilling in SAGD. 8 refs., 1 tab., 22 figs.

  5. An economic alternative to conventional open hole logging in horizontal wells; Eine oekonomische Alternative zu konventionellen Bohrlochmessungen in Horizontalbohrungen

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, G.P.; Kater, H.; Ball, S.; Preiss, F. [Precision Drilling-Computalog, Edemissen (Germany)

    2003-04-01

    Horizontal drilling has become a routine method of field development over the past several years as a means to maximise recoverable reserves. As such, horizontal drilling has impacted the way that petrophysical data is obtained in order to evaluate the reservoir during and after drilling. In horizontal wells, conventional open hole logging methods must be combined with either pipe conveyed logging techniques or coiled tubing conveyed techniques. In many cases, these procedures are time consuming and cost prohibitive based on the economics of the project. Additionally, formation evaluation data may be obtained in horizontal wells by using Logging While Drilling (LWD) technology, but this may also be cost prohibitive in many areas. In the Girkaliai and Nausodis Fields in Lithuania, two wells were drilled to reach oil producing reservoir sandstones at depths of over 1,800 m TVD with horizontal sections of approximately 270 m and 385 m. Based on an economic and petrophysical analysis, neither open hole pipe conveyed logging nor LSW were considered since neither were regarded as cost effective to obtain the petrophysical data required to evaluate the reservoir. An alternative method to obtain critical formation evaluation data was employed utilizing a cased hole pulsed neutron decay logging tool run in the open hole. In one case this was done immediately after drilling. The pulsed neutron decay logging tool was conveyed to TD by a specially modified wireline tractor system. The obtained logs provided critical information to evaluate the reservoir including determining density porosity, neutron porosity, sigma (formation capture cross section) and gamma ray. The data was used to calculate required petrophysical information including lithology, water saturation, and bulk volumes. (orig.)

  6. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  7. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.

    Science.gov (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu

    2017-10-17

    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  8. Drilling history of core hole DB-15

    International Nuclear Information System (INIS)

    Diediker, L.D.; Ledgerwood, R.K.

    1980-09-01

    This core hole was drilled to obtain hydrologic and chemical data on the permeable zones of the Saddle Mountains and Wanapum Formations. These data were obtained by testing the zones that were penetrated during drilling. This testing-as-drilled method reduced the potential problems of interflow and water contamination. This report summarizes the drilling and coring operations; geologic logging, hydrologic testing, and geophysical logging activities; and cementing operations of DB-15 during drilling. The successful completion of DB-15 demonstrated that hydrologic testing can be conducted during core drilling operations. More reliable head measurements and uncontaminated representative water samples from isolated permeable zones, which have not been exposed to potential open borehole cross-flow and head equilibration problems, were benefits derived from the testing-as-drilled method. Disadvantages of the technique were a longer time to complete the borehole caused by time required for testing and increased drilling costs due to rig standby time during testing. Extension of the testing-as-drilled method to the drilling of future core holes is recommended. An evaluation should be made of the required hydrologic data and expected borehole stratigraphy before and during drilling to allow uninterrupted drilling in zones of low permeability that can be tested after drilling is complete

  9. Safety Requirement for Nuclear Logging in Logging While Drilling as an Application of Nuclear Energy in Industrial Facilities; an Overview for the Improvement of Nuclear Energy Regulating Process in Indonesia

    International Nuclear Information System (INIS)

    Setianingsih, Lilis Susanti; Choi, Kwang Sik

    2012-01-01

    Data transmission processes in LWD are basically performed in two ways: data transmission within the downhole assembly and data transmission to surface. Tools readings can either be stored in downhole memory or transmitted to surface using mud pulse telemetry. Whenever required the two methods can be combined by storing some data in memory and transmitting some in real time. Yet in the case of data supply exceeding data transmission capacity, only key data is transmitted uphole whilst the rest of some sensors output shall be stored downhole. Another way of transmitting data for real time reading is by taking a limited data sample, for example one in every four readings to be sent uphole. The remaining of data readings will be stored to be downloaded to computer once the memory-pack within the tool is brought to surface. In general, analog data from LWD are converted to binary form downhole. Data are transmitted by using a flow-restricting mechanism in the drilling-fluid flow stream and produce positive or negative pressure pulses which are then transmitted through the mud column inside the drill pipe, read at the surface by pressure sensors and later on recorded and processed. Data transmission can also be performed by using rotary valve pressure-pulse generators, which alternately restrict and and open the drilling-fluid flow, causing varying pressure waves generated in the drilling-fluid at carrier frequency which is proportional to the rate of interruption. Downhole sensor-response data are transmitted to the surface by modulating this acoustic carrier frequency

  10. Safety Requirement for Nuclear Logging in Logging While Drilling as an Application of Nuclear Energy in Industrial Facilities; an Overview for the Improvement of Nuclear Energy Regulating Process in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Setianingsih, Lilis Susanti [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Kwang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    Data transmission processes in LWD are basically performed in two ways: data transmission within the downhole assembly and data transmission to surface. Tools readings can either be stored in downhole memory or transmitted to surface using mud pulse telemetry. Whenever required the two methods can be combined by storing some data in memory and transmitting some in real time. Yet in the case of data supply exceeding data transmission capacity, only key data is transmitted uphole whilst the rest of some sensors output shall be stored downhole. Another way of transmitting data for real time reading is by taking a limited data sample, for example one in every four readings to be sent uphole. The remaining of data readings will be stored to be downloaded to computer once the memory-pack within the tool is brought to surface. In general, analog data from LWD are converted to binary form downhole. Data are transmitted by using a flow-restricting mechanism in the drilling-fluid flow stream and produce positive or negative pressure pulses which are then transmitted through the mud column inside the drill pipe, read at the surface by pressure sensors and later on recorded and processed. Data transmission can also be performed by using rotary valve pressure-pulse generators, which alternately restrict and and open the drilling-fluid flow, causing varying pressure waves generated in the drilling-fluid at carrier frequency which is proportional to the rate of interruption. Downhole sensor-response data are transmitted to the surface by modulating this acoustic carrier frequency

  11. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  12. The tunnel project. Drill hole logging and structural geologic studies in the Grualia, the Lunner county

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Braathen, Alvar; Roenning, Jan S.; Nordgulen, Oeystein

    2001-01-01

    confirmed and characterised. The testing of the geophysical techniques has so far shown promising results. The 2D resistivity measurements on the ground with subsequent drilling, drill hole logging, pumping and flow measurements would give a good characterisation of the ground where the rock construction is planned. With a good geological foundation (structural mapping) the above techniques would contribute with valuable information concerning what may be expected in front of the hand specimen in tunnel work

  13. Core-logs of the vertical borehole V2

    International Nuclear Information System (INIS)

    Carlsson, L.; Egerth, T.; Westlund, B.; Olsson, T.

    1982-08-01

    In the hydrogeological programme of the Stripa Project, borehole V2 was prolonged to a final depth of 822 m. The previous core from 0-471.4 m was relogged. The drill core was logged with regard to rock characteristics, fracture frequency, dipping and filling. The results are presented as core-logs and fracture diagrams. Borehole V2 shows similar characteristics as found in other drillings in the Stripa Mine. It penetrates Stripa granite to its full depth. recorded fractures shows a clear predominance of medium-steep fractures, while flat-lying fractures are more sparsly occuring, a fact which is even more pronounced below 400 m depth. Due to the vertical direction of the borehole, steeply dipping fractures are underestimated in the core. The mean fracture frequency, related to the total length of the core, is 2.1 fractures/m. Chlorite, calcite and epidote are the dominating coating minerals in the fractures, each making up about 25-30 percent of all coated fractures. (Authors)

  14. The final frontier: Tesco takes evolution of casing drilling system offshore

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.

    2000-04-01

    Tesco Corporation is complementing its smaller 4 1/2-inch casing-while-drilling (CWD) tools by designing a series of 13 3/8-inch and a 9 5/8-inch underreamers and cutters to accommodate the larger diameter holes typical of offshore drilling. Tesco is building its own rig; it is a single rated to 3,000 metres that can be moved in seven loads with an overall 100 ton load rating. The unit features dimensional drilling capability in addition to features such as logging-while-drilling, and measurement-while-drilling. A conventional coring unit is employed via wireline. To date, Tesco has successfully overcome two of the main challenges in developing the new drilling process, i. e. to guarantee that casing can be run in high compression loads without damage to connections, and to develop an underreamer cutting structure to destroy rock at a rate comparable to conventional rotary drilling. The wireline retrieval system, which is 100 per cent reliable in running mode, but only 70 per cent successful in the retrieval mode, is the next challenge to be overcome. Tesco claims a 40 per cent reduction in overall 'spud to release' time, however, the main advantage claimed for the system is that the casing system protects the integrity of the hole as it is being drilled.

  15. Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core

    Science.gov (United States)

    Jeppson, T.; Tobin, H. J.

    2013-12-01

    SAFOD drilling, we use the ultrasonic velocities of SAFOD core and analogous outcrop samples to determine if the velocity reduction is due to lithologic variations or the presence of deformational fabrics and alteration in the fault zone. Preliminary analysis indicates that while the decrease in velocity across the broad fault zone is heavily influenced by fractures, the extremely low velocities associated with the actively deforming zones are more likely caused by the development of scaly fabric with clay coatings on the fracture surfaces. Analysis of thin sections and well logs are used to support this interpretation.

  16. Geophysical well logging operations and log analysis in Geothermal Well Desert Peak No. B-23-1

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, D.K.; Fertl, W.H.

    1980-03-01

    Geothermal Well Desert Peak No. B-23-1 was logged by Dresser Atlas during April/May 1979 to a total depth of 2939 m (9642 ft). A temperature of 209/sup 0/C (408/sup 0/F) was observed on the maximum thermometer run with one of the logging tools. Borehole tools rated to a maximum temperature of 204.4/sup 0/C (400/sup 0/F) were utilized for logging except for the Densilog tool, which was from the other set of borehole instruments, rated to a still higher temperature, i.e., 260/sup 0/C (500/sup 0/F). The quality of the logs recorded and the environmental effects on the log response have been considered. The log response in the unusual lithologies of igneous and metamorphic formations encountered in this well could be correlated with the drill cutting data. An empirical, statistical log interpretation approach has made it possible to obtain meaningful information on the rocks penetrated. Various crossplots/histograms of the corrected log data have been generated on the computer. These are found to provide good resolution between the lithological units in the rock sequence. The crossplotting techniques and the statistical approach were combined with the drill cutting descriptions in order to arrive at the lithological characteristics. The results of log analysis and recommendations for logging of future wells have been included.

  17. Investigation of the Processing Parameters Impact on the Flexural Tool Vibrations While Drilling

    Directory of Open Access Journals (Sweden)

    I. I. Ivanov

    2015-01-01

    Full Text Available The paper considers an approach to analyze a dynamic stability of the drilling process in terms of tool flexibility. The proposed technique takes into consideration a regenerative effect leading to time delay in the dynamic system. This regenerative delay is the main source of arising dynamically unstable machining conditions. The paper describes a principle of emerging self-vibrations while cutting. It mentions the undesirable nature of transverse bending selfvibrations of tool, which cause a decreasing quality of the processed hole surface.The suggested approach consists in building a diagram of the drilling process stability for a tool model allowing only its flexural vibrations. The feature of the study is to describe tool dynamics using a finite element model based on the quadratic approximation of displacements for tool dynamics modeling. The assumption of an axial symmetry of drill geometry was discarded. The reduced model of tool was built taking into account two eigenvectors corresponding to tool bending. This model contains 2 degrees of freedom (DOF, which are, essentially, rotations of a drill tip. The technology of rigid multi-point constraints was used to connect those DOFs with solid finite element nodes. The system of delayed differential equations describing the reduced tool model dynamics was derived to estimate a dynamic stability of the drilling process. The Floquet theory is applied to build a stability diagram as a maximum multiplicator value versus a drill rotation rate. The presented diagram allows us to draw a conclusion that in the wide range of rotation frequencies transverse bending self- vibrations can be excited. The results obtained and the calculation technique may be used to choose the operation modes free from undesirable flexural self-vibrations of tool.The reported study was supported by RFBR within the framework of the research project ” mol_a”№ 14-08-31603 “Development of methods and algorithms for

  18. Rock characterization while drilling and application of roof bolter drilling data for evaluation of ground conditions

    Directory of Open Access Journals (Sweden)

    Jamal Rostami

    2015-06-01

    Full Text Available Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground support requires good and reliable ground characterization. While many geophysical methods have been developed for ground characterizations, their accuracy is insufficient for customized ground support design of underground workings. The actual measurements on the samples of the roof and wall strata from the exploration boring are reliable but the related holes are far apart, thus unsuitable for design purposes. The best source of information could be the geological back mapping of the roof and walls, but this is disruptive to mining operations, and provided information is only from rock surface. Interpretation of the data obtained from roof bolt drilling can offer a good and reliable source of information that can be used for ground characterization and ground support design and evaluations. This paper offers a brief review of the mine roof characterization methods, followed by introduction and discussion of the roof characterization methods by instrumented roof bolters. A brief overview of the results of the preliminary study and initial testing on an instrumented drill and summary of the suggested improvements are also discussed.

  19. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  20. Trial to active seismic while drilling; Jinko shingen wo mochiita SWD eno kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, T; Kozawa, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    This paper describes the development of a more stable SWD system with larger energy by adding an artificial seismic source near the bit. SWD is a technique by which the seismic wave generated while drilling of rocks by bit can be observed on the ground surface and the records equivalent to the reverse VSP can be obtained. For this system, a shell with a vibrator was fixed immediately on the bit as a sub-generator, and total energy of usual impact by the bit and vibration by the vibrator was used as a seismic source for SWD. For the seismic wave generation mechanism of this vibrator, the shell was resonated by the magnetostrictive element, and vibration was given to the bit and drilling pipe. When this seismic source is used, only single frequency is obtained for each vibration due to the utilization of resonance of shell. Therefore, the generation patterns should be made, by which wide band energy can be obtained after the interaction. Since the survey was conducted using this bottom hole seismic source at the drilling depth more than 3,000 m, it was necessary to enhance the vibration energy. 2 refs., 2 figs.

  1. Mud Logging; Control geologico en perforaciones petroliferas (Mud Logging)

    Energy Technology Data Exchange (ETDEWEB)

    Pumarega Lafuente, J.C.

    1994-12-31

    Mud Logging is an important activity in the oil field and it is a key job in drilling operations, our duties are the acquisition, collection and interpretation of the geological and engineering data at the wellsite, also inform the client immediately of any significant changes in the well. (Author)

  2. Hydrocarbon type identification with MWD neutron porosity logging

    International Nuclear Information System (INIS)

    Simms, G.J.; Koopersmith, C.A.

    1991-01-01

    This paper reports on measurement-while-drilling (MWD) information which accurately defined gas, oil, and water in an offshore field. Basic MWD and wireline formation evaluation data compare favorably. A cost saving of $120,000 was realized when MWD information was used instead of wireline data on one well. In the future, MWD logs may serve as the primary evaluation data on routine development wells in similar fields

  3. Mud Gas Logging In A Deep Borehole: IODP Site C0002, Nankai Trough Accretionary Prism

    Science.gov (United States)

    Toczko, S.; Hammerschmidt, S.; Maeda, L.

    2014-12-01

    Mud logging, a tool in riser drilling, makes use of the essentially "closed-circuit" drilling mud flow between the drilling platform downhole to the bit and then back to the platform for analyses of gas from the formation in the drilling mud, cuttings from downhole, and a range of safety and operational parameters to monitor downhole drilling conditions. Scientific riser drilling, with coincident control over drilling mud, downhole pressure, and returning drilling mud analyses, has now been in use aboard the scientific riser drilling vessel Chikyu since 2009. International Ocean Discovery Program (IODP) Expedition 348, as part of the goal of reaching the plate boundary fault system near ~5000 mbsf, has now extended the deep riser hole (Hole C0002 N & P) to 3058.5 mbsf. The mud gas data discussed here are from two approximately parallel boreholes, one a kick-off from the other; 860-2329 mbsf (Hole C0002N) and 2163-3058 mbsf (Hole C0002P). An approximate overlap of 166 m between the holes allows for some slight depth comparison between the two holes. An additional 55 m overlap at the top of Hole C0002P exists where a 10-5/8-inch hole was cored, and then opened to 12-1/4-inch with logging while drilling (LWD) tools (Fig. 1). There are several fault zones revealed by LWD data, confirmed in one instance by coring. One of the defining formation characteristics of Holes C0002 N/P are the strongly dipping bedding planes, typically exceeding 60º. These fault zones and bedding planes can influence the methane/ethane concentrations found in the returning drilling mud. A focused comparison of free gas in drilling mud between one interval in Hole C0002 P, drilled first with a 10 5/8-inch coring bit and again with an 12 ¼-inch logging while drilling (LWD) bit is shown. Hole C0002N above this was cased all the way from the sea floor to the kick-off section. A fault interval (in pink) was identified from the recovered core section and from LWD resistivity and gamma. The plot of

  4. Understanding how the placement of an asymmetric vibration damping tool within drilling while underreaming can influence performance and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Kabbara, Alan; McCarthy, John; Burnett, Timm; Forster, Ian [National Oilwell Varco Downhole Ltd. (NOV), Houston, TX (United States)

    2012-07-01

    This paper describes the work, on test rigs and full-scale drilling rigs, carried out with respect to placement of an Asymmetric Vibration Damping Tool (AVDT) within drilling while under reaming operations. An AVDT, by virtue of the forward synchronous motion imposed on the drill string, offers benefits in minimizing down hole vibration-related tool failures and therefore maximizing rate of penetration (ROP). Of interest in using the AVDT is the tendency to minimize stick slip by means of the parasitic torque it generates. This is of particular importance during under reaming operations. While under reaming, stick slip can result in low (ROP) and potentially an increased incidence of down hole tool failures. The use of an AVDT in these operations has been shown to significantly reduce stick slip. However, due to the forward synchronous motion caused by the AVDT, there is the potential to cause eccentric wear to the Bottom Hole Assembly (BHA) components in the vicinity of the AVDT. If allowed to progress, this eccentric wear can cause a reduction in down hole tool life and drilling performance. Eliminating eccentric wear would be beneficial in reducing repair costs, extending component life and further improving drilling performance. To minimize eccentric wear and maximize drilling performance, the placement of the AVDT within the BHA is critical. This paper describes how the placement of intermediate stabilizers between the AVDT and the under reamer can minimize eccentric wear to the under reamer and the adjacent drill string due to the forward synchronous whirl induced by the AVDT. This approach allows the full benefits of the AVDT to be recognized while reducing the potentially damaging effects of eccentric wear to other BHA components. The work has drawn upon small-scale rig testing, full-scale testing at the Ullrigg test facility in Norway and from real-world drilling and under reaming operations in the USA. (author)

  5. 30 CFR 250.414 - What must my drilling prognosis include?

    Science.gov (United States)

    2010-07-01

    ...) Projected plans for logging; (c) Planned safe drilling margin between proposed drilling fluid weights and... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my drilling prognosis include? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...

  6. Development of controlled drilling technology and measurement method in the borehole (Phase 1)

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Suzuki, Koichi; Miyakawa, Kimio; Okada, Tetsuji; Masuhara, Yasunobu; Igeta, Noriyuki; Kobayakawa, Hiroaki; Yamamoto, Shinya

    2006-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. The key technologies of the project were defined as follows; (1) Drilling technology to bent the hole as intend. (2) Locality detection technology of the drill bit (MWD). (3) Core sampling technology to obtain the undisturbed rock core. (4) Logging and measurement technology during drilling. The drilling system and measuring system were integrated and systemized after each apparatus was manufactured and its performance was checked. The performance of the drilling system was checked to drill the artificial rock mass to the depth of 80 m before conducting in-situ drilling. The performance of the drilling and measurement systems were investigated to drill the mudstone of the Neogene Tertiary to the length of 547 m and to conduct the downhole measurement and logging in its borehole at the Horonobe site. Considering these performance testing, the flow diagram of the controlled drilling and measurement system was established. (author)

  7. Final report of the environmental measurement-while-drilling-gamma ray spectrometer system technology demonstration at the Savannah River Site F-Area Retention Basin

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1997-08-01

    The environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes passed near previously sampled vertical borehole locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRs system during drilling are compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  8. Final report of the environmental measurement-while-drilling-gamma ray spectrometer system technology demonstration at the Savannah River Site F-Area Retention Basin

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1997-08-01

    The environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes passed near previously sampled vertical borehole locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRs system during drilling are compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples

  9. Development of controlled drilling system

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Miyakawa, Kimio; Suzuki, Koichi; Sunaga, Takayuki

    2008-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for the High Level Radioactive Waste (HLW) disposal. Especially, the soft sedimentary rock at the offshore, region is thought to be one of the best candidates, since there is no driving force of the underground water. The measurement and logging in the bore hole in order to check the hydro-geological and geomechanical conditions of the host rock is a very important way to examine the potentially of the disposal candidates. The CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project about the controlled drilling technology and the measurement and logging technologies in its borehole. In 2000, as the beginning year of the project, we made the conceptual design of the drilling and measuring systems, and made key tools concerning each technology on an experimental basis. We have been developing sub tools constructing drilling and measuring systems since 2000, and applying these systems to the Horonobe site recent 5 years. We will briefly report the outline of the system and the results of drilling and measurement that were carried out at the Horonobe site. (author)

  10. Practical borehole logging procedures for mineral exploration, with emphasis on uranium

    International Nuclear Information System (INIS)

    1986-01-01

    Borehole logging is a basic tool in the exploration for and delineation of uranium deposits. This manual describes recommended procedures for carrying out borehole logging, concentrating on practical aspects of the operation of interest to those actually involved in day-to-day field work. The book begins with a discussion of boreholes and then deals with gamma ray logging as the main method of interest. Information is also provided on other techniques including resistance, spontaneous potential, density and neutron logging. Field procedures are described, and examples of logs and interpretations are given. The appendices provide information on calibration procedures and correction factors, a glossary of useful terms and some relevant basic data regarding drill holes and drilling

  11. Radiation transport methods for nuclear log assessment - an overview

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1996-01-01

    Methods of radiation transport have been applied to well-logging problems with nuclear sources since the early 1960s. Nuclear sondes are used in identifying rock compositions and fluid properties in reservoirs to predict the porosity and oil saturation. Early computational effort in nuclear logging used diffusion techniques. As computers became more powerful, deterministic transport methods and, finally, Monte Carlo methods were applied to solve these problems in three dimensions. Recently, the application has been extended to problems with a new generation of devices, including spectroscopic sondes that measure such quantities as the carbon/oxygen ratio to predict oil saturation and logging-while-drilling (LWD) sondes that take neutron and gamma measurements as they rotate in the borehole. These measurements present conditions that will be difficult to calibrate in the laboratory

  12. Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling

    Science.gov (United States)

    Roush, Ted L.; Colaprete, Anthony; Elphic, Richard C.; Forgione, Joshua; White, Bruce; McMurray, Robert; Cook, Amanda M.; Bielawski, Richard; Fritzler, Erin L.; Thompson, Sarah J.; hide

    2016-01-01

    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method.

  13. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  14. Design of the Acoustic Signal Receiving Unit of Acoustic Telemetry While Drilling

    Directory of Open Access Journals (Sweden)

    Li Zhigang

    2016-01-01

    Full Text Available Signal receiving unit is one of the core units of the acoustic telemetry system. A new type of acoustic signal receiving unit is designed to solve problems of the existing devices. The unit is a short joint in whole. It not only can receive all the acoustic signals transmitted along the drill string, without losing any signal, but will not bring additional vibration and interference. In addition, the structure of the amplitude transformer is designed, which can amplify the signal amplitude and improve the receiving efficiency. The design of the wireless communication module makes the whole device can be used in normal drilling process when the drill string is rotating. So, it does not interfere with the normal drilling operation.

  15. Geophysical logging for groundwater investigations in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Phongpiyah Klinmanee

    2012-09-01

    Full Text Available In Thailand the Department of Groundwater Resources is drilling to find vital aquifers. Sometimes groundwater formations cannot be identified clearly during drilling; therefore, geophysical logging was applied after drilling and before casing.The tool used here is measuring nine parameters in one run, natural gamma ray, spontaneous potential, single point resistance, normal resistivity (AM 8’’, 16’’, 32’’, and 64’’, mud temperature and resistivity. Cutting was used to support the geophysical interpretations. In many cases the groundwater bearing zones could be clearly identified. The combination of andthe possibility choosing from nine parameters measured provided the necessary data base to identify groundwater bearingzones in different environments. It has been demonstrated that in different wells different tools are favorable than others.Based on the conclusions of this study geophysical logging in groundwater exploration is recommended as a normalstandard technique that should be applied in every new well drilled.

  16. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  17. Integration and evaluation of a position sensor with continuous read-out for use with the Environmental Measurement-While-Drilling Gamma Ray Spectrometer system

    International Nuclear Information System (INIS)

    Normann, R.A.; Lockwood, G.J.; Williams, C.V.; Selph, M.M.

    1998-02-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site (SRS) F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled waste retention basin. These boreholes passed near previously sampled locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRS system during drilling were compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples. The results show general agreement between the soil sampling and EMWD-GRS techniques for Cs-137. The EMWD-GRS system has been improved by the integration of an orientation sensor package for position sensing (PS) (EMWD-GRS/PS). This added feature gives the capability of calculating position, which is tied directly to EMWD-GRS sensor data obtained while drilling. The EMWD-GRS/PS system is described and the results of the field tests are presented

  18. Borehole logging in uranium exploration

    International Nuclear Information System (INIS)

    Kulkarni, N.H.

    1992-01-01

    The ultimate objective of exploration by drilling as far as Atomic Minerals Division is concerned is to locate the ore zone in the subsurface, draw samples and analyze them for their metal content. The presence of the ore zone is also indicated by gamma-ray logging of the borehole. A gamma-ray detector is lowered in the borehole and precise depth and grade of the ore zone is established. This helps the geologist in correlating the ore horizon with the surface outcrop or the ore zone intercepted in adjoining boreholes and in deciding about further drilling and location of boreholes. Most commonly, total gamma measurements are made although some units capable of measuring the gamma-ray spectrum are also in use. It is possible to know if the mineralization is due to uranium without waiting for the laboratory results. The present write up gives a brief account of the principles, equipment and methods of borehole gamma-ray logging including density and self-potential logging. (author). 8 refs., 5 figs

  19. The development of and experiments on electromagnetic measurement while a drilling system is used for deep exploration

    Science.gov (United States)

    Lu, Chunhua; Jiang, Guosheng; Wang, Ziqi; Wang, Jiahao; Wang, Chenli

    2016-10-01

    An electromagnetic measurement while drilling system (EM-MWD) can transfer well track state parameters to the ground in real time, which makes it an indispensable technology for deep-hole drilling. This paper introduces the development of and experiments on an EM-MWD system used for deep exploration in the People’s Republic of China. The designed EM-MWD system is composed of a downhole instrument and a ground instrument, and we elaborate on the structural design of the downhole instrument, the design of the transmission and control circuits and the signal modulation. This work also covers the software and hardware design of the ground instrument and signal demodulation technologies. Finally, some indoor signal decoding experiments and some in-hole signal transmission experiments are performed. This study indicates that the designed EM-MWD system can measure information for downhole drilling parameters and send it to the ground effectively, while the ground receiver can decode the signal accurately and reliably, and the desired signal can be obtained. Furthermore, the strength of the received signal is not affected by the polar distance within a certain polar distance.

  20. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  1. Advanced Drilling through Diagnostics-White-Drilling

    International Nuclear Information System (INIS)

    FINGER, JOHN T.; GLOWKA, DAVID ANTHONY; LIVESAY, BILLY JOE; MANSURE, ARTHUR J.; PRAIRIE, MICHAEL R.

    1999-01-01

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  2. Anomalous self potential (sp) log signatures observed in a water ...

    African Journals Online (AJOL)

    Geophysical logging was done after drilling had been completed in a water well at Okwudor, South Eastern Nigeria. Three electric logs were run viz: Self Potential (SP), Resistivity N16″ and N64″ logs. An anomaly was observed in the SP log. The SP results from this well show some deviation from the standard norm.

  3. Systematic logging utilizing a log sheet designed for drill core descriptions. An example in uranium exploration activities

    International Nuclear Information System (INIS)

    Sasao, Eiji; Tsuruta, Tadahiko; Iida, Yoshimasa

    2000-01-01

    We describe the log sheets used during uranium exploration activities for unconformity-related uranium deposits by JNC. The purpose of using the logging sheets is to standardize the objects which all geologists must observe and for data quality assurance. The log sheets are a three-part set describing basement lithology, sandstone lithology and geotechnics. We devised our own log sheets to describe both the sandstone and the underlying basement rock when we started exploration in Athabasca Basin, Canada. We modified the sheets to gain a better understanding of the geological features related to uranium mineralization, and made final improvements to satisfy required quality based on the criteria of descriptive objects and accuracy. Use of the log sheets resulted in effective performance of core logging and improvement in the display of data. (author)

  4. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  5. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    International Nuclear Information System (INIS)

    Gustafsson, Jaana; Gustafsson, Christer

    2010-01-01

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  6. New-technology MWD and LWD Systems designed for ultra-deepwater drilling

    Energy Technology Data Exchange (ETDEWEB)

    Radzinski, P.; Mack, S.; Cheatham, C. [Computalog Drilling Services, Houston, TX (United States); Brady, K. [Precision Drilling, Houston, TX (United States)

    2003-06-01

    This paper discusses the development of two completely new measurement-while-drilling systems. The first system is the Hostile Environment Logging (HEL) MWD system that comprises directional and gamma ray tools, with options for downhole pressure, vibration and temperature sensors. The second system is the Precision LWD system that all components of the HEL MWD system, but adds resistivity, neutron, and density tools to the tool string. Combining the two systems provides a triple combo logging suite of gamma ray, resistivity, and neutron/density sensors. The primary focus of this paper is the Precision LWD triple combo. (orig.)

  7. Method for monitoring drilling materials for gamma ray activity

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.; Schultz, W.E.

    1985-01-01

    In the preferred and illustrated embodiment taught herein, method steps for monitoring of raw materials to be used in drilling mud are disclosed. The materials are monitored for radioactivity. Procedures for taking such measurements are disclosed, and the extent of gamma radioactivity in the raw materials used in drilling mud is, determined. This is correlated to the increased radiation attributable to mud made from these materials and the effect the mud would have on gamma ray measuring logs. An alternate procedure for testing drilling mud, typically at the well site, is also disclosed. The method detects mud radioactivity from any additives including barite, potassium chloride, well cuttings or others. Excessive background levels due to mud gamma radioactivity in a well may very well mask the data obtained by various logging procedures dependent on gamma radiation. Procedures are also described for either rejecting mud which is too radioactive or correcting the log measurements for mud effects

  8. DOE-Grand Junction logging model data synopsis

    International Nuclear Information System (INIS)

    Mathews, M.A.; Koizumi, C.J.; Evans, H.B.

    1978-05-01

    This synopsis provides the available data concerning the logging models at the DoE-Grand Junction facility, to date (1976). Because gamma-ray logs are used in uranium exploration to estimate the grade (percent U 3 O 8 ) and the thickness of uranium ore zones in exploration drill holes, logging models are required to calibrate the gamma-ray logging equipment in order to obtain accuracy, uniformity, standardization, and repeatability during logging. This quality control is essential for accurate ore reserve calculations and for estimates of ore potential. The logging models at the DoE-Grand Junction facility are available for use by private industry in calibrating their gamma-ray logging equipment. 21 figures, 26 tables

  9. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Science.gov (United States)

    2010-07-01

    ... monitor the drilling fluid returns. The indicator may be located in the drilling fluid-logging compartment... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What equipment is required to monitor drilling... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...

  10. California-Nevada uranium logging. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    The purpose of this project was to obtain geophysical logs of industry drill holes to assess the uranium resource potential of geologic formations of interest. The work was part of the US Department of Energy's National Uranium Resource Evaluation (NURE) Program. The principal objective of the logging program was to determine radioelement grade of formations through natural gamma ray detectors. Supplementary information was obtained from resistivity (R), self-potential (SP), point resistance (RE), and neutron density (NN) logs for formation interpretation. Additional data for log interpretation was obtained from caliper logs, casing schedules, and downhole temperature. This data was obtained from well operators when available, with new logs obtained where not formerly available. This report contains a summary of the project and data obtained to date

  11. Building of the system for managing and analyzing the hyperspectral data of drilling core

    International Nuclear Information System (INIS)

    Huang Yanju; Zhang Jielin; Wang Junhu

    2010-01-01

    Drilling core logging is very important for geological exploration, hyperspectral detection provides a totally new method for drilling core logging. To use and analyze the drilling core data more easily, and especially store them permanently, a system is built for analyzing and managing the hyperspectral data. The system provides a convenient way to sort the core data, and extract the spectral characteristics, which is the basis for the following mineral identification. (authors)

  12. Life cycle performances of log wood applied for soil bioengineering constructions

    Science.gov (United States)

    Kalny, Gerda; Strauss-Sieberth, Alexandra; Strauss, Alfred; Rauch, Hans Peter

    2016-04-01

    Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. Soil bioengineering is a construction technique that uses biological components for hydraulic and civil engineering solutions. Soil bioengineering solutions are based on the application of living plants and other auxiliary materials including among others log wood. This kind of construction material supports the soil bioengineering system as long as the plants as living construction material overtake the stability function. Therefore it is important to know about the durability and the degradation process of the wooden logs to retain the integral performance of a soil bio engineering system. These aspects will be considered within the framework of the interdisciplinary research project „ELWIRA Plants, wood, steel and concrete - life cycle performances as construction materials". Therefore field investigations on soil bioengineering construction material, specifically European Larch wood logs, of different soil bioengineering structures at the river Wien have been conducted. The drilling resistance as a parameter for particular material characteristics of selected logs was measured and analysed. The drilling resistance was measured with a Rinntech Resistograph instrument at different positions of the wooden logs, all surrounded with three different backfills: Fully surrounded with air, with earth contact on one side and near the water surface in wet-dry conditions. The age of the used logs ranges from one year old up to 20 year old. Results show progress of the drilling resistance throughout the whole cross section as an indicator to assess soil bioengineering construction material. Logs surrounded by air showed a higher drilling resistance than logs with earth contact and the ones exposed to wet-dry conditions. Hence the functional capability of wooden logs were analysed and discussed in terms of different levels of degradation

  13. Pulsed neutron logging - a modern approach to petroleum exploration

    International Nuclear Information System (INIS)

    Navalkar, M.P.

    1978-01-01

    As hydrocarbons have strikingly different properties for neutrons as compared with rocks, neutronic methods are useful to prepare logs of bore holes drilled for petroleum exploration. The earlier neutron logs were based on steady neutron sources, but the superior logs, namely, neutron life time log and neutron induced spectral log are based on pulsed neutron sources. The methods of obtaining these logs, their limitations and the field equipment required are described briefly. As the two logs are complementary, a plea has been made to develop field equipment which can obtain two logs in a single run. (M.G.B.)

  14. Cause of depth error of borehole logging and its correction

    International Nuclear Information System (INIS)

    Iida, Yoshimasa; Ikeda, Koki; Tsuruta, Tadahiko; Ito, Hiroaki; Goto, Junichi.

    1996-01-01

    Data by borehole logging can be used for detailed analysis of geological structures. Depths measured by portable borehole loggers commonly shift a few meters on the level of 400 to 500 meters deep. Therefore, the cause of depth error has to be recognized to make proper corrections for detailed structural analysis. Correlation between depths of drill core and in-rod radiometric logging has been performed in detail on exploration drill holes in the Athabasca basin, Canada. As a result, a common tendency of logging depth shift has been recognized, and an empirical formula (quadratic equation) for this has been obtained. The physical meaning of the formula and the cause of the depth error has been considered. (author)

  15. Core drilling of drillhole ONK-PVA8 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in July 2010. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The identification number of the hole is ONK-PVA8, and the length of the drillhole is 17.74 m. The drillhole is 75.7 mm by diameter. The drillhole was drilled in a niche of the access tunnel at chainage 2935. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core ONK-PVA8 is 1.7 pcs / m and the average RQD value 96.0 %. (orig.)

  16. Geophysical logging of the Harwell boreholes

    International Nuclear Information System (INIS)

    Brightman, M.A.

    1983-08-01

    A comprehensive geophysical borehole logging survey was carried out on each of three deep boreholes drilled at the Harwell research site. KOALA and PETRA computer programs were used to analyse and interpret the logs to obtain continuous quantitative estimates of the geological and hydrogeological properties of the sequences penetrated at the Harwell site. Quantitative estimates of the mineral composition and porosity of the cores samples were made. (UK)

  17. Log-based identification of sweet spots for effective fracs in shale reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hashmy, K.; Barnett, C.; Jonkers, J. [Weatherford (United States); Abueita, S. [Anadarko Petroleum (United States)

    2011-07-01

    Shale reservoir exploitation requires horizontal hydro-fracturing, often in a multi-stage configuration. Fracture stages are usually evenly spaced along the horizontal well, regardless of reservoir characteristics, even though wireline logs or logging-while-drilling (LWD) methods could be used to determine sweet spots for more cost-effective fracturing locations. This paper aims to show how failure to take into consideration a reservoir's geological properties can lead to less effective exploitation, and then goes on to describe logging techniques, LWD and wireline logs combined, and their usefulness in effectively placing fracturing stages on a reservoir's sweet spots. By studying logs from different LWD and wireline log techniques, such as gamma ray, resistivity, X-ray fluorescence or shockwave sonic measurements for different existing wells, the study shows how sweet spots, where kerogen concentration is higher, with higher porosity, can be determined. These logging techniques, requiring low investments, offer a variety of methods for identifying sweet spots in shale reservoirs, and fracturing only these spots will avoid unnecessary expenditure on frac stages in zones with poor reservoir characteristics.

  18. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, O [VBB VIAK AB, Malmoe (Sweden)

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs.

  19. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  20. Core drilling of drillhole ONK-PVA11 in ONKALO at Olkiluoto 2014

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Drillcon SMOY, Espoo (Finland)

    2014-12-15

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in 2014. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA11 was drilled in February 2014. The length of the drillhole is 30.05 metres. The drillhole is 75.7 mm by diameter. The drillhole ONK-PVA11 was drilled in the left wall of the ONK-TT-4399 (tunnel chainage 50) between the demonstration tunnel ONK-TDT-4399-44 and 56 openings. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillhole was measured with EMS deviation survey tool. In addition to drilling the drillcore was logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcore are veined gneiss, diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core is 2.3 pcs/m and the average RQD value 95.2 %. (orig.)

  1. Core drilling of drillhole ONK-PVA11 in ONKALO at Olkiluoto 2014

    International Nuclear Information System (INIS)

    Toropainen, V.

    2014-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in 2014. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA11 was drilled in February 2014. The length of the drillhole is 30.05 metres. The drillhole is 75.7 mm by diameter. The drillhole ONK-PVA11 was drilled in the left wall of the ONK-TT-4399 (tunnel chainage 50) between the demonstration tunnel ONK-TDT-4399-44 and 56 openings. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillhole was measured with EMS deviation survey tool. In addition to drilling the drillcore was logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcore are veined gneiss, diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core is 2.3 pcs/m and the average RQD value 95.2 %. (orig.)

  2. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, Riccardo [FastCAP Systems Corporation, Boston, MA (United States); Cooley, John [FastCAP Systems Corporation, Boston, MA (United States)

    2015-10-14

    of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated

  3. Geophysical Well-Log Measurements in Three Drill Holes at Salt Valley, Utah

    OpenAIRE

    Daniels, Jeffrey J.; Hite, Robert J.; Scott, James H.; U.S. Geological Survey

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material.

  4. Field implementation of geological steering techniques optimizes drilling in highly-deviated and horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, C. E.; Illfelder, H. M. J.; Pineda, G.

    1998-12-31

    Field implementation of an integrated wellsite geological steering service is described. The service provides timely, useful feedback from real-time logging-while-drilling (LWD) measurements for making immediate course corrections. Interactive multi-dimensional displays of both the geological and petrophysical properties of the formation being penetrated by the wellbore are a prominent feature of the service; the optimization of the drilling is the result of the visualization afforded by the displays. The paper reviews forward modelling techniques, provides a detailed explanation of the principles underlying this new application, and illustrates the application by examples from the field. 5 refs., 1 tab., 8 figs.

  5. Enhancing cuttings removal with gas blasts while drilling on Mars

    Science.gov (United States)

    Zacny, K. A.; Quayle, M. C.; Cooper, G. A.

    2005-04-01

    Future missions to Mars envision use of drills for subsurface exploration. Since the Martian atmosphere precludes the use of liquids for cuttings removal, proposed drilling machines utilize mechanical cuttings removal systems such as augers. However, an auger can substantially contribute to the total power requirements, and in the worst scenario it can choke. A number of experiments conducted under Martian pressures showed that intermittent blasts of gas at low differential pressures can effectively lift the cuttings out of the hole. A gas flushing system could be incorporated into the drill assembly for assistance in clearing the holes of rock cuttings or for redundancy in case of auger jamming. A number of variables such as the particle size distribution of the rock powder, the type of gas used, the bit and auger side clearances, the initial mass of cuttings, and the ambient pressure were investigated and found to affect the efficiency. In all tests the initial volume of gas was close to 1 L and the differential pressure was varied to achieve desired clearing efficiencies. Particles were being lifted out of the hole at a maximum speed of 6 m/s at a differential pressure of 25 torr and ambient pressure of 5 torr. Flushing tests lasted on average for 2 s. The power required to compress the thin Martian atmosphere to achieve a sufficient gas blast every minute or so at 10% efficiency was calculated to be of the order of a few watts.

  6. A comparison between elemental logs and core data

    International Nuclear Information System (INIS)

    Kerr, S.A.; Grau, J.A.; Schweitzer, J.S.

    1992-01-01

    Neutron-induced gamma-ray spectroscopy, of prompt capture and delayed activation, together with natural gamma-ray measurements, provides a borehole elemental analysis to characterize rock matrix composition. This study involved extensive core and log data in two wells. One well was drilled with a barite-weighted oil-based mud through a shallow marine sand. The other was drilled with fresh water-based mud through a channel sand, mudstone sequence overlying limestone. The results illustrate the importance of a suitable core sampling strategy and the problems associated with matching core to log data. Possible inaccuracies from the modelling of Ca-, Fe- and S-bearing minerals have been determined. A method for correcting the total measured aluminium concentration for that due to the borehole mud has been successfully tested against aluminium concentrations measured in the cleaned core samples. Estimates of the overall accuracy and precision of the elemental logging concentrations are obtained by comparing the log results with those obtained from the laboratory core analysis. A comprehensive core elemental analysis can also provide useful insight into the way other logs, such as the photoelectric factor or formation thermal neutron macroscopic absorption cross section, are influenced by minor and trace elements. Differences between calculated values from elemental logs and measured macroscopic parameters provide additional data for a more detailed understanding of the rock properties. (Author)

  7. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    Energy Technology Data Exchange (ETDEWEB)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  8. Modern Shale Gas Horizontal Drilling: Review of Best Practices for Exploration Phase Planning and Execution

    Institute of Scientific and Technical Information of China (English)

    Nathaniel Harding; Stephen Smith; John Shelton; Mike D. Bumaman

    2009-01-01

    The challenging characteristics of shale formations often require horizontal drilling to economically develop their potential. While every shale gas play is unique, there are several best practices for the proper planning and execution of a horizontal well. In planning a horizontal well, the optimal method and technology for building inclination and extending the lateral section must be determined. Properly specified logging-while-drilling tools are essential to keep the wellbore within the target formation. Planning must also focus on casing design. Doing so will help ensure stability and enable reliable and productive completions. Shales pose a challenge for these elements of well planning due to their thin strata and potentially low mechanical competence when foreign fluids are introduced. Once a plan is developed, executing it is even more important to prove a viable exploration program. Fast, efficient drilling with wellbore control and minimal torque and drag should be the priority. This may be achieved by focusing on fluid hydraulics and rheology and bottom hole assembly. Managed pressure drilling (MPD) will help fast drilling, well control and stability. If MPD can be combined with new generation rotary steerable systems that allow the drill string to maintain rotation, impressive efficiencies are possible. Modern drilling parameter analysis represents the newest opportunity for executing shale gas horizontal wells. A method for ROP analysis to improve operational parameters and equipment selection is also proposed.

  9. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    Science.gov (United States)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  10. Drilling and associated drillhole measurements of the pilot hole ONK-PH11

    International Nuclear Information System (INIS)

    Karttunen, P.; Mancini, P.; Pekkanen, J.; Poellaenen, J.; Tarvainen, A.-M.; Toropainen, V.; Pere, T.

    2011-01-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH11 was drilled from chainage 3922 to chainage 4053 in October 2009. The length of the hole is 131.21 metres. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Hydraulic conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. During flow measurements also electric conductivity and temperature were measured. In flow logging test sections of 0.5 m and increments of 0.1 m were used. The water loss measurements were performed after drilling was completed by the drilling company. Logging of the core samples included the following parameters: lithology, foliation, fracturing, RQD, fractured zones, weathering and possible intersections. The rock mechanical logging was based on Q-classification. The rock strength and deformation were determined with Rock Tester -equipment. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. The groundwater samples were collected from the open hole without any packers. The collected groundwater samples were

  11. The Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin, NE China: Organic-rich source rock evaluation with geophysical logs from Borehole SK-2

    Science.gov (United States)

    Zhang, X.; Zou, C.

    2017-12-01

    The Cretaceous strata have been recognized as an important target of oil or gas exploration in the Songliao Basin, northeast China. The second borehole (SK-2) of the Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin (CCSD-SK) is the first one to drill through the Cretaceous continental strata in the frame of ICDP. It was designed not only to solve multiple scientific problems (including the Cretaceous paleoenvironment and paleoclimate, as well as deep resources exploration of the Songliao Basin), but also to expect to achieve new breakthroughs in oil and gas exploration. Based on the project, various geophysical log data (including gamma, sonic, resistivity, density etc.) and core samples have been collected from Borehole SK-2. We do research on organic-rich source rocks estimation using various geophysical log data. Firstly, we comprehensively analyzed organic-rich source rocks' geophysical log response characteristics. Then, source rock's identification methods were constructed to identify organic-rich source rocks with geophysical logs. The main identification methods include cross-plot, multiple overlap and Decision Tree method. Finally, the technique and the CARBOLOG method were applied to evaluate total organic carbon (TOC) content from geophysical logs which provide continuous vertical profile estimations (Passey, 1990; Carpentier et al., 1991). The results show that source rocks are widely distributed in Borehole SK-2, over a large depth strata (985 5700m), including Nenjiang, Qingshankou, Denglouku, Yingcheng, Shahezi Formations. The organic-rich source rocks with higher TOC content occur in the Qingshankou (1647 1650m), Denglouku (2534 2887m) and Shahezi (3367 5697m) Formations. The highest TOC content in these formations can reach 10.31%, 6.58%, 12.79% respectively. The bed thickness of organic-rich source rocks in the these formations are totally up to 7.88m, 74.34m, 276.60m respectively. These organic-rich rocks in the

  12. Application of element logging to lithologic identification of key horizons in Sichuan–Chongqing gas provinces

    Directory of Open Access Journals (Sweden)

    Ping Yin

    2018-03-01

    Full Text Available With the popularization and application of fast drilling technology in Sichuan–Chongqing gas provinces, the returned cuttings are fine and even powdered, so the traditional cutting lithology identification methods are not applicable any longer. In this paper, qualitative lithology identification and quantitative interpretation based on element logging were conducted on the key oil and gas bearing layers in this area according to the principle of elemental geochemistry. The study results show that: (1 different lithologies can be identified easily because of their different element logging characteristics. For example, basalts have the element characteristics of 0.35 0.55. (2 Clastic rocks, carbonate rocks, sulphate and transition rocks in the category of sedimentary rocks can be identified based on the element combination of (Al + Si + Fe and (Ca + Mg + S. Among them, clastic rocks have (Al + Si + Fe >31%, carbonate rocks have (Al + Si + Fe 36%. (3 Then, based on the element combination of (Si + K + Ca+Si/Al and (Al + Si + Fe + K+(Ca + S/Mg, sandstone, mudstone (shale, gypsum, dolomite, limestone and transition rocks can be identified. Finally, a qualitative identification chart and a set of quantitative interpretation software of element logging on key horizons in Sichuan–Chongqing gas provinces were developed to make this method convenient for field application. This method was applied on site in ten wells (such as Well MX207 in Sichuan–Chongqing gas provinces. It is indicated that the coincidence rate of lithology identification is in the range of 88.75–95.22% (averaging 92.42%. Obviously, it can satisfy the requirements of fast lithology identification while drilling of key oil and gas horizons in Sichuan–Chongqing gas provinces. Keywords: Sichuan–Chongqing gas provinces, Key horizon, Element logging, Lithologic identification while drilling, Quantitative lithologic interpretation, Qualitative

  13. Core drilling of drillholes OL-PP66-69 at Olkiluoto 2008

    International Nuclear Information System (INIS)

    Kuusirati, J.; Tarvainen, A.-M.

    2009-04-01

    Suomen Malmi Oy (Smoy) core drilled four 24.88 - 25.39 m long investigation drillholes at Olkiluoto in June 2008. The identification numbers of the holes are OL-PP66, OL-PP67, OL-PP68 and OL-PP69. The drillholes are 75.7 mm by diameter. Drillholes were core drilled with the diamond drill rig Diamec 1000. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The labelled drilling water was driven to the drilling places in a tank. In addition to drilling the drill cores were logged and reported by geologist. During geological investigation the following parameters were logged: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic and veined gneisses and pegmatitic granite. The average fracture frequency in holes varied from 3.9 pcs/m to 5.8 pcs/m. The average RQD values varied from 84 % to 93 %. In the drillhole OL-PP66 two fractured zones were penetrated and in OL-PP69 one fractured zone. The drill cores OL-PP67 and OL-PP68 showed no fractured zones. Smoy also carried out optical imaging of the drillholes. The assignment included the field work and the data processing. This report describes the field operation, the equipment as well as the processing procedures and shows the obtained results and their quality. The raw and processed data are delivered digitally in WellCAD and PDF format. (orig.)

  14. Computalog's LWD system designed for deepwater drilling environments

    Energy Technology Data Exchange (ETDEWEB)

    Brady, K. [Precision Drilling Corporation, (Canada)

    2002-08-01

    To keep up with the ever changing requirements of drilling engineers for MWD and LWD (measuring -while-drilling and logging-while- drilling) equipment capable to withstand bore pressures of 20,000 to 25,000 psi and flow rates above industry average, is part of Computalog's ongoing effort to provide innovative technology for the industry's evolving drilling requirements. This paper describes the new PrecisionLWD'TM' system which is rated at 30,000 psi and is designed with the extra margin of reliability and performance needed for hostile deepwater environments. The system is made up of a series of high temperature tools and sensors. The entire system and all its individual tools are rated to 30,000 psi and have flow ratings of 400 gallons/minute, 1,000 gallons/minute, and 1,800 gallons/minute respectively, depending on tool size. The tools are manufactured at Houston, TX, at a facility that is equipped with testing equipment to simulate all aspects of extreme drilling conditions, including thermal cycling, vibration and pressure testing. The facility also features a 6,000-ft flow-loop for erosion and lost circulation testing and a computer array with the power equivalent of several Cray mainframes. The finished tools are calibrated and tested to a number of known standards and hole sizes, including aluminum and magnesium blocks, and a variety of formation types. Research and development efforts are also underway to make these tools compatible with the Precision Impulse'TM' Electromagnetic MWD system.

  15. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Gruebel, R.D.

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples

  16. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  17. Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen

    1999-07-01

    Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.

  18. Development and Manufacture of Cost-Effective Composite Drill Pipe

    Energy Technology Data Exchange (ETDEWEB)

    James C. Leslie

    2008-12-31

    fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  19. Accuracy improvements of gyro-based measurement-while-drilling surveying instruments by a laser testing method

    Science.gov (United States)

    Li, Rong; Zhao, Jianhui; Li, Fan

    2009-07-01

    Gyroscope used as surveying sensor in the oil industry has been proposed as a good technique for measurement-whiledrilling (MWD) to provide real-time monitoring of the position and the orientation of the bottom hole assembly (BHA).However, drifts in the measurements provided by gyroscope might be prohibitive for the long-term utilization of the sensor. Some usual methods such as zero velocity update procedure (ZUPT) introduced to limit these drifts seem to be time-consuming and with limited effect. This study explored an in-drilling dynamic -alignment (IDA) method for MWD which utilizes gyroscope. During a directional drilling process, there are some minutes in the rotary drilling mode when the drill bit combined with drill pipe are rotated about the spin axis in a certain speed. This speed can be measured and used to determine and limit some drifts of the gyroscope which pay great effort to the deterioration in the long-term performance. A novel laser assembly is designed on the wellhead to count the rotating cycles of the drill pipe. With this provided angular velocity of the drill pipe, drifts of gyroscope measurements are translated into another form that can be easy tested and compensated. That allows better and faster alignment and limited drifts during the navigation process both of which can reduce long-term navigation errors, thus improving the overall accuracy in INS-based MWD system. This article concretely explores the novel device on the wellhead designed to test the rotation of the drill pipe. It is based on laser testing which is simple and not expensive by adding a laser emitter to the existing drilling equipment. Theoretical simulations and analytical approximations exploring the IDA idea have shown improvement in the accuracy of overall navigation and reduction in the time required to achieve convergence. Gyroscope accuracy along the axis is mainly improved. It is suggested to use the IDA idea in the rotary mode for alignment. Several other

  20. Lithologic log and interpretation of instrument logs NURE project, Carson Sink, Nevada, borehole

    International Nuclear Information System (INIS)

    Horton, R.C.

    1978-04-01

    No uranium mineralization was penetrated by the drilling. The uranium content of the rock units are within the usual range for unmineralized rocks of the types penetrated. Although the instrument logs indicated ample porosity in the sedimentary section, drill-stem tests in the intervals 699 to 722 ft, 3,692 to 3,734 ft, and 3,920 to 3,995 ft failed to recover any formation fluid. The instrument logs generally indicated low porosity and permeability in the volcanic rocks. The low permeability may have prohibited the circulation of ground water and possible supergene enrichment. The Carson Sink is a closed basin and all water is lost by evaporation, although there may be minor subsurface interbasin transfer. As the basin subsided dense connate water (brines) may have been trapped within the sediments making circulation of less dense water impossible. At present, nonsaline water is found only at shallow depths and is underlain by saline water. The hydrologic regime of the basin is complex and general assumptions should be made with care. Detailed analysis of hydrologic data may reveal zones of deep circulation. Reducing conditions, as evidenced by thin beds of organic rich material and pyrite, are present at depth. However, the unconsolidated sediments are young (Pleistocene to Recent) and perhaps too youthful for substantial mineralization to have occurred. No further deep drilling is recommended until the complex prehistoric hydrologic regime is studied. The study should include the geologic structural history of the basin and influence of Pleistocene and earlier pluvial cycles

  1. Bentonite buffer pre-test. Core drilling of drillholes ONK-PP264...267 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for bentonite buffer pre-test in ONKALO at Eurajoki, Olkiluoto in July 2010. The identification numbers of the holes are ONK-PP264..267, and the lengths of the drillholes are approximately 4.30 metres each. The drillholes are 75.7 mm by diameter. The drillholes were drilled in a niche at access tunnel chainage 1475. The hydraulic DE 130 drilling rig was used for the work. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling, the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock type in the drillholes is pegmatitic granite. The average fracture frequency in the drill cores is 4.0 pcs / m and the average RQD value 94.2 %. (orig.)

  2. Nuclear logging apparatus and MWD-equipment for formation evaluation

    International Nuclear Information System (INIS)

    Perry, C.A.; Daigle, G.A.; Rountree, S.P.; Talmadge, G.; Grunbeck, J.; Wassell, M

    1998-01-01

    An apparatus for nuclear logging is presented. In accordance with the present invention, nuclear detectors and electronic components are all mounted in chambers within the sub wall with covers being removably attached to the chambers. A single bus for delivering both power and signals extends through the sub wall between either end of the tool. This bus terminates at a modular ring connector positioned on each tool end. This tool construction (including sub wall mounted sensors and electronics, single power and signal bus, and ring connectors) is also well suited for other formation evaluation tools used in measurement-while-drilling applications. 28 refs

  3. Drilling and associated drillhole measurements of the pilot hole ONK-PH9

    International Nuclear Information System (INIS)

    Karttunen, P.; Pekkanen, J.; Poellaenen, J.; Tarvainen, A.-M.; Toropainen, V.; Lamminmaeki, T.; Kosunen, P.

    2010-01-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH9 was drilled from chainage 3263 to chainage 3413.27 in November 2008. The length of the hole is 150.3 metres. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Hydraulic conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also electric conductivity, grounding resistance and temperature were measured. In flow logging test sections of 0.5 m and increments of 0.1 m were used. The water loss measurements were performed after drilling was completed by the drilling company. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The rock strength and deformation were determined with Rock Tester equipment. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. One of the objectives of the geochemical study

  4. Petroleum possibilities of the James Bay Lowland area: Drilling in the James Bay Lowland

    Energy Technology Data Exchange (ETDEWEB)

    Martison, N W

    1954-12-31

    Interest in the possible occurrence of petroleum and natural gas in the James Bay lowland arises from the presence there of Palaeozoic sedimentary formations resembling those in south-western Ontario. The first part of this report reviews earlier geologic surveys conducted in the lowland and reports results of field work and drill core studies 1946-51. It describes the area`s topography, climate, stratigraphy and palaeontology (Ordovician to Lower Cretaceous, plus Pleistocene and recent glacial deposits), structural geology, and evidence of petroleum. Lists of fossils and correlations are included. The appendices include a list of fossil locations and drill logs. The second part details the drilling programs carried out in the lowland by the Ontario Dept. of Mines, including detailed logs, as well as drilling carried out by some other organisations.

  5. Core drilling of REPRO drillholes in ONKALO at Olkiluoto 2010-2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-05-01

    Suomen Malmi Oy (Smoy) core drilled ten drillholes for the Posiva's Experiments to investigate Rock Matrix Retention Properties (REPRO) in ONKALO at Eurajoki, 2010 - 2011. The drillholes are used for geological characterization, hydrological and geophysical studies and instrumenting in research for retention of radionuclides to rock matrix. The drillhole ONK-PP240 was drilled in March 2010 and the drillholes ONKPP318... 324 and ONK-PP326...327 in October - December 2011. The lengths of the drillholes range from 4.90 to 21.65 metres. The drillholes are 56.5 mm by diameter. The drillhole ONK-PP240 was drilled for pretesting in the investigation niche 4 at access tunnel chainage 3747 and the rest of the drillholes in the investigation niche 5 at access tunnel chainage 4219. The hydraulic DE 130 drilling rig was used. The starting directions of the close spaced drillholes were controlled with an aligner assembly to be as parallel as possible. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss, pegmatitic granite and quartz gneiss (skarn rock). The average fracture frequency in drill cores is 1.2 pcs/m and the average RQD value 98.6 %. (orig.)

  6. Core drilling of REPRO drillholes in ONKALO at Olkiluoto 2010-2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-05-15

    Suomen Malmi Oy (Smoy) core drilled ten drillholes for the Posiva's Experiments to investigate Rock Matrix Retention Properties (REPRO) in ONKALO at Eurajoki, 2010 - 2011. The drillholes are used for geological characterization, hydrological and geophysical studies and instrumenting in research for retention of radionuclides to rock matrix. The drillhole ONK-PP240 was drilled in March 2010 and the drillholes ONKPP318... 324 and ONK-PP326...327 in October - December 2011. The lengths of the drillholes range from 4.90 to 21.65 metres. The drillholes are 56.5 mm by diameter. The drillhole ONK-PP240 was drilled for pretesting in the investigation niche 4 at access tunnel chainage 3747 and the rest of the drillholes in the investigation niche 5 at access tunnel chainage 4219. The hydraulic DE 130 drilling rig was used. The starting directions of the close spaced drillholes were controlled with an aligner assembly to be as parallel as possible. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss, pegmatitic granite and quartz gneiss (skarn rock). The average fracture frequency in drill cores is 1.2 pcs/m and the average RQD value 98.6 %. (orig.)

  7. Results and prospects of development of geologic-process studies during drilling

    International Nuclear Information System (INIS)

    Brodskij, P.A.; Pomerants, L.I.; Luk'yanov, Eh.E.; Chekalin, L.M.; Orlov, L.I.; Shakirov, A.F.

    1987-01-01

    A wide range of researches was conducted to study geological sections of a borehole under drilling. The complex comprises gas and mechanical logging, measurements of slime and some other geophysical investigations including nuclear-physical methods. At present a subsystem for logging with measurement of natural gamma-radiation intensity during drilling is used for this purpose. The ''Zaboj'' subsystem with a well device measuring gamma-radiation intensity and other physical parameters is being developed and is planning for production. Geological cabins equipped with instrumentation for element analysis of slime and core are developed using nuclear-physical methods

  8. Integration and Evaluation of a Position Sensor with Continuous Read-Out for use with the Environmental Measurement-While-Drilling Gamma Ray Spectrometer System

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Selph, M.M.; Williams, C.V.

    1999-01-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site (SRS) F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled waste retention basin. These boreholes passed near previously sampled locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRS system during drilling were compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples. The demonstration of the EMWD-GRS was a complete success. The results show general agreement between the soil sampling and EMWD-GRS techniques for CS-137. It was recognized that the EMWD-GRS tool would better satisfy our customers' needs if the instrument location could be continuously monitored. During the demonstration at SRS, an electromagnetic beacon with a walkover monitor (Subsitereg s ign) was used to measure bit location at depth. To use a beacon locator drilling must be stopped, thus it is normally only used when a new section of pipe was added. The location of contamination could only be estimated based on the position of the EMED-GRS package and the distance between locator beacon readings. A continuous location system that would allow us to know the location of each spectrum as it is obtained is needed

  9. Well-log based prediction of thermal conductivity

    DEFF Research Database (Denmark)

    Fuchs, Sven; Förster, Andrea

    Rock thermal conductivity (TC) is paramount for the determination of heat flow and the calculation of temperature profiles. Due to the scarcity of drill cores compared to the availability of petrophysical well logs, methods are desired to indirectly predict TC in sedimentary basins. Most...

  10. Optimisation of borehole logs in highly inclined natural gas boreholes in the new red sandstone strata of northern Germany - examples of the use of modern LWD technology; Optimierung von Bohrlochmessungen in hochgeneigten Erdgasbohrungen des norddeutschen Rotliegend - Beispiele zum Einsatz moderner LWD Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Tappe, G.; Riepe, L. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    2001-07-01

    Data acquisition and interpretation of LWD logs (''logging while drilling'') in highly inclined boreholes in new red sandstone have proved this to be a reliable alternative to conventional wireline measurements in assessing porosity and saturation. The contribution presents the results of the first measurements made in Germany using this method, which are compared with conventional wireline logs and drill core data. The LWD technology is superior in difficult boreholes and less costly if no conventional logs are made. Another advantage is the fact that the deposit is analyzed in the ''virgin'' state, i.e. before deep invasion by drilling, flushing and other invasive operations. [German] Die Datenakquisition und Interpretation von LWD (''logging while drilling'')-Messungen in hochgeneigten Rotliegend-Bohrungen haben gezeigt, dass es sich hierbei um eine zuverlaessige Alternative zu konventionellen Wireline-Messungen hinsichtlich der Porositaets- und Saettigungsbestimmung handelt. In diesem Beitrag werden insbesondere die Ergebnisse der ersten in Deutschland erfolgreich durchgefuehrten Messungen mit dem Sonic-LWD in tiefen 5 7/8{sup ''} Bohrloechern dargestellt und mit konventionellen Wireline-Logs und Kerndaten verglichen. Die operationellen Vorteile des LWD gerade in bohrtechnisch schwierigen Bohrungen wurden in der Praxis bestaetigt; Kostenvorteile sind vor allem dann gegeben, wenn auf konventionelles Loggen verzichtet wird. Ein weiterer Vorteil der echten ''Real Time''-LWD-Messungen ist zudem die Erfassung der petrophysikalischen Messungen im nahezu ''jungfraeulichen'' Zustand der Lagerstaette, d.h. bevor durch tiefe Invasion von Bohrspuelung und andere Traegerschaedigungen die Ergebnisse verfaelscht werden koennen. (orig.)

  11. Stratigraphy, climate and downhole logging data - an example from the ICDP Dead Sea deep drilling project

    Science.gov (United States)

    Coianiz, Lisa; Ben-Avraham, Zvi; Lazar, Michael

    2017-04-01

    During the late Quaternary a series of lakes occupied the Dead Sea tectonic basin. The sediments that accumulated within these lakes preserved the environmental history (tectonic and climatic) of the basin and its vicinity. Most of the information on these lakes was deduced from exposures along the marginal terraces of the modern Dead Sea, e.g. the exposures of the last glacial Lake Lisan and Holocene Dead Sea. The International Continental Drilling Program (ICDP) project conducted in the Dead Sea during 2010-2011 recovered several cores that were drilled in the deep depocenter of the lake (water depth of 300 m) and at the margin (depth of 3 m offshore Ein Gedi spa). New high resolution logging data combined with a detailed lithological description and published age models for the deep 5017-1-A borehole were used to establish a sequence stratigraphic framework for the Lakes Amora, Samra, Lisan and Zeelim strata. This study presents a stratigraphic timescale for reconstructing the last ca 225 ka. It provides a context within which the timing of key sequence surfaces identified in the distal part of the basin can be mapped on a regional and stratigraphic time frame. In addition, it permitted the examination of depositional system tracts and related driving mechanisms controlling their formation. The sequence stratigraphic model developed for the Northern Dead Sea Basin is based on the identification of sequence bounding surfaces including: sequence boundary (SB), transgressive surface (TS) and maximum flooding surface (MFS). They enabled the division of depositional sequences into a Lowstand systems tracts (LST), Transgressive systems tracts (TST) and Highstand systems tracts (HST), which can be interpreted in terms of relative lake level changes. The analysis presented here show that system tract stacking patterns defined for the distal 5017-1-A borehole can be correlated to the proximal part of the basin, and widely support the claim that changes in relative lake

  12. New trends in measuring technology during drilling. State of the art - new technologies; Neue Entwicklungen im Bereich der Messtechnik waehrend des Bohrens. Stand der Technik - Ausblick auf neue Technologien

    Energy Technology Data Exchange (ETDEWEB)

    Picksak, A. [Bohrmeisterschule Celle, Celle (Germany)

    2008-07-01

    This paper summarizes the state of the art technology for measurement while drilling (MWD) and logging while drilling (LWD) tools briefly. New - partly still ongoing - developments for the data transmission line from downhole to surface and vice versa are described. The data transmission rate is estimated for the future applications. The different LWD tools are company spanning open presented as far as the service has been implemented or is still in the prototype phase. Also the operating conditions/environment is discussed. (orig.)

  13. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-03-01

    Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  14. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    Science.gov (United States)

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  15. Characterizing structures on borehole images and logging data of the Nankai trough accretionary prism: new insights

    Science.gov (United States)

    Jurado, Maria Jose

    2016-04-01

    IODP has extensively used the D/V Chikyu to drill the Kumano portion of the Nankai Trough, including two well sites within the Kumano Basin. IODP Expeditions 338 and 348 drilled deep into the inner accretionary prism south of the Kii Peninsula collecting a suite of LWD data, including natural gamma ray, electrical resistivity logs and borehole images, suitable to characterize structures (fractures and faults) inside the accretionary prism. Structural interpretation and analysis of logging-while-drilling data in the deep inner prism revealed intense deformation of a generally homogenous lithology characterized by bedding that dips steeply (60-90°) to the NW, intersected by faults and fractures. Multiple phases of deformation are characterized. IODP Expedition borehole images and LWD data acquired in the last decade in previous and results of NantroSEIZE IODP Expeditions (314, 319) were also analyzed to investigate the internal geometries and structures of the Nankai Trough accretionary prism. This study focused mainly on the characterization of the different types of structures and their specific position within the accretionary prism structures. New structural constraints and methodologies as well as a new approach to the characterization of study of active structures inside the prism will be presented.

  16. A novel method for quantitative geosteering using azimuthal gamma-ray logging.

    Science.gov (United States)

    Yuan, Chao; Zhou, Cancan; Zhang, Feng; Hu, Song; Li, Chaoliu

    2015-02-01

    A novel method for quantitative geosteering by using azimuthal gamma-ray logging is proposed. Real-time up and bottom gamma-ray logs when a logging tool travels through a boundary surface with different relative dip angles are simulated with the Monte Carlo method. Study results show that response points of up and bottom gamma-ray logs when the logging tool moves towards a highly radioactive formation can be used to predict the relative dip angle, and then the distance from the drilling bit to the boundary surface is calculated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A drilling mud for drilling wells in collapsing rocks

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, G P; Anderson, B A; Minkhayrov, K A; Sharipov, A U

    1982-01-01

    In a known drilling mud for drilling wells in collapsing rocks, which contains clay, sodium silicate and polyacrylamide (PAA), in order to increase its specific electrical resistance and to increase the strengthening properties, a silicoorganic liquid is additionally introduced into its composition with the following component ratio (percent): clay, 5 to 7; sodium silicate, 5 to 7; polyacrylamide, 0.3 to 0.5; silicoorganic liquid, GKZh-94, 0.5 to 1.5 and water, the remainder. The GKZh-94 is a chemical compound based on alkylphenylchlorsilanes and substituted ethers of orthosilicic acid, used for waterproofing fabrics and soils. The addition of GKZh-94 provides the required values of the specific electric resistance of the mud and does not distort the gas logging indications. The proposed mud has low water production (4 to 6 cubic centimeters), optimal viscosity (25 to 31 seconds) and high structural and mechanical properties. Its strengthening properties are substantially above those of the known mud.

  18. SMART MONITORING AND DECISION MAKING FOR REGULATING ANNULUS BOTTOM HOLE PRESSURE WHILE DRILLING OIL WELLS

    Directory of Open Access Journals (Sweden)

    M. P. Vega

    Full Text Available Abstract Real time measurements and development of sensor technology are research issues associated with robustness and safety during oil well drilling operations, making feasible the diagnosis of problems and the development of a regulatory strategy. The major objective of this paper is to use an experimental plant and also field data, collected from a basin operation, offshore Brazil, for implementing smart monitoring and decision making, in order to assure drilling inside operational window, despite the commonly observed disturbances that produce fluctuations in the well annulus bottom hole pressure. Using real time measurements, the performance of a continuous automated drilling unit is analyzed under a scenario of varying levels of rate of penetration; aiming pressure set point tracking (inside the operational drilling window and also rejecting kick, a phenomenon that occurs when the annulus bottom hole pressure is inferior to the porous pressure, producing the migration of reservoir fluids into the annulus region. Finally, an empirical model was built, using real experimental data from offshore Brazil basins, enabling diagnosing and regulating a real drilling site by employing classic and advanced control strategies.

  19. Inspection of drilled well at the Borgen school in Asker community, Akershus

    International Nuclear Information System (INIS)

    Elvebakk, Harald

    2001-01-01

    A drill hole inspection is carried out with an optical telemetric reviewer at logged temperatures, electric conductivity and natural gamma radiation in a 165 m deep drilled well at the Borgen school. The aim of the logging was to obtain data for evaluating the geothermal potential of the well. The optical logging shows that the rock (shale, siltstone and noduled lime) generally is only slightly cracked.. The temperature log shows only slight temperature increment, 0.56 o C/100 m, down to about a depth of 100 m. From 100 m the temperature gradient increases to 0.98 o C/100 m and the temperature is about 6.8 o C at a depth of 160 m. A marked increase from 160 m may indicate a water flux at this depth. An observed crack in the optical log at the same depth confirm that this may be the case. The conductivity is constant and low, about 225 microsec/cm, along the entire drill hole except for the top 6 m of the hole where it is lower. The natural gamma radiation is at a low level, about 75 cps, along the entire hole. A marked decrease between 60 and 70 m indicates another rock type, chalk enriched sandstone, which probably has somewhat lower potassium content than the rest of the hole. The deviation measurement shows that the hole turns towards north west with a horizontal deviation of 21 m at the bottom

  20. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.; Schimschal, U.

    1993-01-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone)

  1. Core drilling of hydco drillholes ONK-PP262 and ONK-PP274 in ONKALO at Olkiluoto 2010

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for HYDCO-program in ONKALO at Eurajoki, Olkiluoto in 2010. The drillhole ONK-PP262 was drilled in May 2010 and the drillhole ONK-PP274 in December 2010. The lengths of the drillholes are 25.02 and 23.88 m respectively. The drillholes are 75.7 mm by diameter. The drillholes were drilled in the investigation niche 4 at the access tunnel chainage 3747. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in both drill cores are 1.4 pcs/m. The average RQD values in the drillcores are 97.2 % (ONK-PP262) and 98.6 % (ONK-PP274). (orig.)

  2. Core drilling of hydco drillholes ONK-PP262 and ONK-PP274 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2011-10-01

    Suomen Malmi Oy (Smoy) core drilled two drillholes for HYDCO-program in ONKALO at Eurajoki, Olkiluoto in 2010. The drillhole ONK-PP262 was drilled in May 2010 and the drillhole ONK-PP274 in December 2010. The lengths of the drillholes are 25.02 and 23.88 m respectively. The drillholes are 75.7 mm by diameter. The drillholes were drilled in the investigation niche 4 at the access tunnel chainage 3747. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in both drill cores are 1.4 pcs/m. The average RQD values in the drillcores are 97.2 % (ONK-PP262) and 98.6 % (ONK-PP274). (orig.)

  3. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  4. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    Science.gov (United States)

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  5. Basaltic litho-stratigraphy of Ocean Drilling Program Hole 504B

    International Nuclear Information System (INIS)

    Harvey, P.K.; Lovell, M.A.

    1989-01-01

    Hole 504B is located in 5.9 Ma old crust to the south of the Costa Rica Rift. It has been drilled and cored successively on three occasions to a total depth of 1562.1 m below the sea floor and penetrates both basaltic pillows and dykes. Appraisal of the drilled section is difficult because of the low proportion of recovered material (average 20%). In September 1986 a suite of downhole nuclear logs were run. Part of this sequence, the interval 4200-4600 m below sea level, which covers the pillow-dyke transition zone, has been used in this study. The log derived geochemical estimates may be explained in terms of the basaltic mineralogy with the superimposed effects of alteration. Poor correlation between laboratory-measured and log-derived geochemical estimates are due to this alteration, problems of sampling and the absence of a boron sleeve when the tools were run. Alteration and sampling account for the much greater observed variations in the log data and the bias in SiO 2 and CaO abundances. Statistical analysis allows the logs to be presented in the form of a ''geochemical stratigraphy'' which correlates well with the known sequence within the interval studied. (author)

  6. Drillings at Kivetty in Konginkangas

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-05-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Kivetty, Konginkangas the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1019 m) and 4 about 500 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 65 shotholes were drilled for VSP-, tubewave and seismic measurements

  7. Drillings at Syyry in Sievi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-10-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Syyry, Sievi the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1022 m) and 4 about 500-700 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 35 vertical holes were core drilled down to the depth of 10-20 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 85 shotholes were drilled for VSP-, tubewave and seismic measurements

  8. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    Science.gov (United States)

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  9. Drilling and associated drillhole measurements of the pilot hole ONK-PH10

    International Nuclear Information System (INIS)

    Mancini, P.; Karttunen, P.; Lokkila, M.; Pekkanen, J.; Poellaenen, J.; Tarvainen, A.-M.; Toropainen, V.; Kosunen, P.; Pere, T.

    2010-08-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH10 was drilled from chainage 3459 to chainage 3639 in March 2009. The length of the hole is 180.00 metres. The drilling was done as orientated core drilling. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The test to determine rock strength and deformation were made with Rock Tester -equipment. Water conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also grounding resistance electric conductivity and temperature were measured. In flow logging test, sections of 0.5 m with increments of 0.1 m were used. Water loss measurements were conducted in the hole section 3.70-180.00 m dhd. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. One of the objectives of the geochemical study was to get information of the composition of

  10. Drilling and the associated drillhole measurements of the pilot hole ONK-PH7

    International Nuclear Information System (INIS)

    Oehberg, A.; Kemppainen, K.; Lampinen, H.; Niemonen, J.; Poelloenen, J.; Rouhiainen, P.; Rautio, T.; Tarvainen, A.-M.

    2007-12-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH7 was drilled from chainage 1880 to chainage 1980.31 in February 2007. The length of the hole is 100.31 m. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the drillhole. The overlapping i.e. the detailed flow logging mode was used. Besides flow logging Single Point Resistance (SPR), Electric Conductivity (EC) and temperature of the drillhole water were also measured. The flow logging was performed with 0.5 m section length and with 0.1 m depth increment. Water loss measurements were conducted between the hole depth of 1.18 m and the hole bottom. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as

  11. You say you want a revolution: casing drilling targets 30 per cent well-cost saving

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.; Marsters, S.

    1999-10-01

    Casing drilling is a new method of drilling that eliminates drill strings by using standard casing to simultaneously drill and case wells. Tesco Corporation of Calgary acquired patent rights to casing drilling technology in 1995. The company now offers a conversion kit for existing drill rigs as well a new compact casing drilling rig for shallow markets. The single derrick will be rated at 1,500 meters, but initially it will be used to drill 700-800 meter gas wells in southeast Alberta. Some cost savings will be realized at these shallow depths, but the real cost saving advantages will be realized on deep holes. In the meantime, improvements are planned to the cutting structures of the under-rimming bit to increase safety and withstand higher torque loads. It will be also necessary to adapt techniques such as directional drilling and logging to the casing drilling conveyance mechanism which has been only partially successful thus far, especially in the retrieving mode. Another challenge already met, involved ensuring that casing could be run in high-compression loads without damage to connections. Despite these problems, the system attracted considerable attention with several international companies placing orders for immediate delivery. Another system, this one developed by Sperry-Sun Drilling Services and known as a 'casing while drilling' (CWD) system, is strictly a downhole assembly and is targeted for offshore use and deeper vertical holes. This system is currently being tested in two commercial operations in offshore Indonesia for Unocal Corporation. Despite numerous problems to fill casing with fluid during connections, penetration rates of 300-400 feet per hour were achieved.

  12. GRED STUDIES AND DRILLING OF AMERICULTURE STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, James

    2006-08-01

    This report summarizes the GRED drilling operations in the AmeriCulture State 2 well with an overview of the preliminary geologic and geothermal findings, from drill cuttings, core, geophysical logs and water geochemical sampling.

  13. Posiva microseismic network. Core drilling of drillholes ONK-PP348...351 in ONKALO at Olkiluoto 2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2014-04-15

    Suomen Malmi Oy (Smoy) core drilled four drillholes for the Posiva's ONKALO microseismic network in ONKALO at Eurajoki, 2012. The drillholes are used for geophone instrumentation and geological characterization. The drillholes ONKPP348... 351 were core drilled in February 2012. All the drillholes are ∼ 9.40 m by length. The drillholes are 56.5 mm by diameter. The drillholes were drilled in deep angles to the floors of the access tunnel and three niches near each other at access tunnel chainages 3019 - 3080. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcores are diatexitic gneiss and pegmatitic granite. The average fracture frequency of the drillcores range from 1.2 to 2.4 pc/m and the average RQD value from 96.6 % to 98.6 %. Two fractured zones were intersected. (orig.)

  14. Posiva microseismic network. Core drilling of drillholes ONK-PP348...351 in ONKALO at Olkiluoto 2012

    International Nuclear Information System (INIS)

    Toropainen, V.

    2014-04-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for the Posiva's ONKALO microseismic network in ONKALO at Eurajoki, 2012. The drillholes are used for geophone instrumentation and geological characterization. The drillholes ONKPP348... 351 were core drilled in February 2012. All the drillholes are ∼ 9.40 m by length. The drillholes are 56.5 mm by diameter. The drillholes were drilled in deep angles to the floors of the access tunnel and three niches near each other at access tunnel chainages 3019 - 3080. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcores are diatexitic gneiss and pegmatitic granite. The average fracture frequency of the drillcores range from 1.2 to 2.4 pc/m and the average RQD value from 96.6 % to 98.6 %. Two fractured zones were intersected. (orig.)

  15. Drillings at Veitsivaara in Hyrynsalmi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-04-01

    According to Governmen's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Veitsivaara, Hyrynsalmi the investigation program was started in April 1987. During years 1987-1988 a deep borehole (1002 m) and 4 and 500 m deep additional boreholes were core drilled in the area. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisso's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. About 75 m deep hole was percussion drilled near the borehole KR1. The spreading of the flushing water in the upper part of bedrock and the quality off the ground of the groundwater were studied by taking watersamples from the hole. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition

  16. Drilling and geohydrologic data for test hole USW UZ-1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.; Thordarson, W.; Hammermeister, D.P.; Warner, J.B.

    1990-01-01

    This report presents data collected to determine the hydrologic characteristics of tuffaceous rocks penetrated in test hole USW UZ-1. The borehole is the first of two deep, large-diameter, unsaturated-zone test holes dry drilled using the vacuum/reverse-air-circulation method. This test hole was drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Yucca Mountain Project (formerly the Nevada Nuclear Waste Storage Investigations) to identify a potentially suitable site for the storage of high-level radioactive wastes. Data are presented for bit and casing configurations, coring methods, sample collection, drilling rate, borehole deviation, and out-of-gage borehole. Geologic data for this borehole include geophysical logs, a lithologic log of drill-bit cuttings, and strike and distribution of fractures. Hydrologic data include water-content and water-potential measurements of drill-bit cuttings, water-level measurements, and physical and chemical analyses of water. Laboratory measurements of moisture content and matric properties from the larger drill-bit cutting fragments were considered to be representative of in-situ conditions. 3 refs., 5 figs., 10 tabs

  17. Local regularity analysis of strata heterogeneities from sonic logs

    Directory of Open Access Journals (Sweden)

    S. Gaci

    2010-09-01

    Full Text Available Borehole logs provide geological information about the rocks crossed by the wells. Several properties of rocks can be interpreted in terms of lithology, type and quantity of the fluid filling the pores and fractures.

    Here, the logs are assumed to be nonhomogeneous Brownian motions (nhBms which are generalized fractional Brownian motions (fBms indexed by depth-dependent Hurst parameters H(z. Three techniques, the local wavelet approach (LWA, the average-local wavelet approach (ALWA, and Peltier Algorithm (PA, are suggested to estimate the Hurst functions (or the regularity profiles from the logs.

    First, two synthetic sonic logs with different parameters, shaped by the successive random additions (SRA algorithm, are used to demonstrate the potential of the proposed methods. The obtained Hurst functions are close to the theoretical Hurst functions. Besides, the transitions between the modeled layers are marked by Hurst values discontinuities. It is also shown that PA leads to the best Hurst value estimations.

    Second, we investigate the multifractional property of sonic logs data recorded at two scientific deep boreholes: the pilot hole VB and the ultra deep main hole HB, drilled for the German Continental Deep Drilling Program (KTB. All the regularity profiles independently obtained for the logs provide a clear correlation with lithology, and from each regularity profile, we derive a similar segmentation in terms of lithological units. The lithological discontinuities (strata' bounds and faults contacts are located at the local extrema of the Hurst functions. Moreover, the regularity profiles are compared with the KTB estimated porosity logs, showing a significant relation between the local extrema of the Hurst functions and the fluid-filled fractures. The Hurst function may then constitute a tool to characterize underground heterogeneities.

  18. Dome-shaped PDC cutters drill harder rock effectively

    International Nuclear Information System (INIS)

    Moran, D.P.

    1992-01-01

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 μsec/ft, compared to the standard cutoff of 75 μsec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 μsec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance

  19. Core drilling of drillholes ONK-PVA9 and ONK-PVA10 in ONKALO at Olkiluoto 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for groundwater monitoring stations in ONKALO at Eurajoki, Olkiluoto in 2011. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA9 was drilled in March 2011 and the drillhole ONK-PVA10 in June 2011. The lengths of the drillholes are 15.95 and 20.10 m respectively. The drillholes are 75.7 mm by diameter. The drillhole ONK-PVA9 was drilled in a niche of the access tunnel at chainage 4366 and the ONK-PVA10 in the access tunnel wall at chainage 3851. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in drill cores are 2.9 pcs/m (ONK-PVA9) and 2.3 pcs/m (ONK-PVA10) and the average RQD values 81.6 % and 96.2 % respectively. (orig.)

  20. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)

    Science.gov (United States)

    Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun

    2013-01-01

    As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

  1. Individual Drilling Bit Design and Optimization in Mahu Area

    Directory of Open Access Journals (Sweden)

    Zhang Wenbo

    2017-01-01

    Full Text Available There are three sets of gravels in Mahu region. The gravels formation is characterized by high heterogeneity, high abrasiveness and poor drillability. It is so difficult to optimize bit that restrict seriously the overall exploration and development process. The compressive strength, internal friction angle, and drillability of the formation are tested to check the rock mechanical characteristic profile established by logging data. The individual bit design is carried out by the 3D simulation technology. A new PDC bit type is designed to form the drill bit series for Mahu area. Single PDC bit increases 90% of the drilling footage. The trip average footage is improved 3.45 times, the horizontal section average penetration increased 34.8%. The technical achievements have greatly improved economic development benefits of Mahu region by improving drilling speed and saving drilling costs.

  2. Drilling and associated drillhole measurements of the pilot hole ONK-PH12

    International Nuclear Information System (INIS)

    Toropainen, V.; Tarvainen, A.-M.; Poellaenen, J.; Pekkanen, J.; Pere, T.; Kaepyaho, E.; Lahti, M.

    2011-01-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH12 was drilled from ONKALO chainage 4092 to chainage 4215 in January 2010. The length of the hole is 123.96 metres. The drilling method was orientated core drilling. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The test to determine rock strength and deformation were made with Rock Tester -equipment. Water conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also grounding resistance electric conductivity and temperature were measured. In flow logging test, sections of 0.5 m with increments of 0.1 m were used. Water loss measurements were conducted in the drillhole section 5.0-123.85 m dhd. Geophysical logging as well as optical and acoustic imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. Groundwater sampling was not applicable because no

  3. Control and particles distribution in drilling fluids while drilling; Controle e distribuicao de particulas em fluidos de perfuracao enquanto perfurando

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luiz Augusto dos [PETROBRAS, XX (Brazil). Dept. de Perfuracao. Div. de Fluidos de Perfuracao

    1988-12-31

    Factors contributing both directly and indirectly to formation damage are discussed, including plugging by solids disseminated in drilling fluids, filtrations, spurt loss, and cake deposition. (author) 6 refs., 12 figs., 4 tabs.

  4. Exploration Drilling and Technology Demonstration At Fort Bliss

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ben; Moore, Joe [EGI; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before

  5. Defining Lithological Units by Cuttings, Core and Logging Data at Site C0009A in the Nankai Trough, Japan: IODP Expedition 319

    Science.gov (United States)

    Efimenko, N.; Schleicher, A. M.; Buchs, D. M.; Buret, C.; Kawabata, K.; Boutt, D. F.; Underwood, M.; Araki, E.; Byrne, T. B.; McNeill, L. C.; Saffer, D. M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.; Scientists, E.

    2009-12-01

    The use of cuttings as an alternative or addition to core material is broadly debated in on-shore and off-shore drilling expeditions. Expedition 319 is the first IODP based Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) project using the riser-drilling method to collect cutting and core samples for scientific studies. One major scientific objective for this site was to characterise the lithology and deformation history of the Kumano forearc basin sediments and its underlying units through comparison of (i) cuttings, (ii) core, (iii) measurements while drilling, and (iv) wireline logging data. Cuttings were retrieved from each 5 m intervals from 703.9 to 1604 m, and cores were recovered from 1509.7 to 1593.9 m below sea floor. As core availability was limited, the study of cuttings was a crucial step in improving our understanding of their potential and limits for lithostratigraphical interpretations compared to core. Mineralogical and chemical analysis of cuttings and core, wireline logging data, and gamma ray data from MWD were available to define four lithostratigraphic units. These units are composed of mud and mudstone with coarser silty and sandy interbeds, and volcanic ash/tuff. Consistency between unit boundaries determined from cuttings and those determined from log data is good in terms of depth, with typical mismatches of less than 10m. Three significant problems affecting the preservation of cuttings were (1) mixing of cuttings as they travel from the drill face to the surface, (2) alteration of natural mineral and structure signatures, and (3) possible contamination from natural clay minerals with the polymer/bentonite drill mud. These difficulties can be overcome in part through the analysis of cuttings of similar sizes (1-4 mm), guided by the analyses of bulk cuttings. A more accurate quantitative characterisation of cuttings through the use of digital imaging might improve the description of lithofacies. Although the quality of cuttings is

  6. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.

    Science.gov (United States)

    Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim

    2014-01-01

    Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due

  7. Downhole logs of natural gamma radiation and magnetic susceptibility and their use in interpreting lithostratigraphy in AND-1B, Antarctica

    Science.gov (United States)

    Williams, T.; Morin, R. H.; Jarrard, R. D.; Jackolski, C. L.; Henrys, S. A.; Niessen, F.; Magens, D.; Kuhn, G.; Monien, D.; Powell, R. D.

    2010-12-01

    The ANDRILL McMurdo Ice Shelf (MIS) project drilled 1285 metres of sediment representing the last 14 million years of glacial history. Downhole geophysical logs were acquired to a depth of 1018 metres, and are complementary to data acquired from the core itself. We describe here the natural gamma radiation (NGR) and magnetic susceptibility logs, and their application to understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND-1B. Natural gamma radiation logs cover the whole interval from the sea floor to 1018 metres, and magnetic susceptibility and other logs covered the open-hole intervals between 692-1018 and 237-342 metres. NGR logs were stacked and corrected for signal attenuation through the drill pipe, and magnetic susceptibility logs were corrected for drift. In the upper part of AND-1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamict (containing K-bearing clays, K-feldspar, and heavy minerals). In the lower open-hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamicts (relatively high in magnetite), while sandstones generally have high resistivity log values at AND-1B. On the basis of these three downhole logs, three sets of facies can be predicted correctly for 74% of the 692-1018m interval. The logs were then used to predict facies for the 7% of this interval that was unrecovered by coring. Similarly, the NGR log provides the best information on the lithology of the poorly recovered top 25m of AND-1B. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties, and help refine parts of the lithostratigraphy (for example, the varying terrigenous content of diatomites).

  8. Testing sequence stratigraphic models by drilling Miocene foresets on the New Jersey shallow shelf

    DEFF Research Database (Denmark)

    Miller, Kenneth G.; Mountain, Gregory S.; Browning, James V.

    2013-01-01

    continental shelf (Integrated Ocean Drilling Program Expedition 313, Sites M27-M29). We recognize stratal surfaces and systems tracts by integrating seismic stratigraphy, litho-facies successions, gamma logs, and foraminiferal paleodepth trends. Our interpretations of systems tracts, particularly......) and coarsening- and shallowing-upward highstand systems tracts (HST). Drilling through the foresets yields thin (

  9. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  10. Lithostratigraphy from downhole logs in Hole AND-1B, Antarctica

    Science.gov (United States)

    Williams, Trevor; Morin, Roger H.; Jarrard, Richard D.; Jackolski, Chris L.; Henrys, Stuart A.; Niessen, Frank; Magens, Diana; Kuhn, Gerhard; Monien, Donata; Powell, Ross D.

    2012-01-01

    The ANDRILL (Antarctic Drilling Project) McMurdo Ice Shelf (MIS) project drilled 1285 m of sediment in Hole AND–1B, representing the past 12 m.y. of glacial history. Downhole geophysical logs were acquired to a depth of 1018 mbsf (meters below seafloor), and are complementary to data acquired from the core. The natural gamma radiation (NGR) and magnetic susceptibility logs are particularly useful for understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND–1B. NGR logs cover the entire interval from the seafloor to 1018 mbsf, and magnetic susceptibility and other logs covered the open hole intervals between 692 and 1018 and 237–342 mbsf. In the upper part of AND–1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamictite (containing K-bearing clays, K-feldspar, mica, and heavy minerals). In the lower open hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamictites (relatively high in magnetite). Sandstones can be distinguished by their high resistivity values in AND–1B. On the basis of these three downhole logs, diamictite, claystones, and sandstones can be predicted correctly for 74% of the 692–1018 mbsf interval. The logs were then used to predict facies for the 6% of this interval that was unrecovered by coring. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties and help refine parts of the lithostratigraphy, for example, the varying terrigenous content of diatomites and the transitions from subice diamictite to open-water diatomite.

  11. Dual detector neutron lifetime log: theory and practical applications

    International Nuclear Information System (INIS)

    Serpas, C.J.; Wichmann, P.A.; Fertl, W.H.; DeVries, M.R.; Rndall, R.R.

    1977-01-01

    The Neutron Lifetime Log instrumentation has continued to evolve and now is equipped with dual detectors for increased ease in gas detection and also a ratio response for a simultaneous porosity determination. A good deal of experimentation was involved to minimize both lithology and salinity effects on the porosity indication. This paper contains a discussion of the theory and concepts related to the application of the Dual Detector Neutron Lifetime Log (DNLL). It is important to note that with these advances the recording of thermal neutron capture cross section (Σ) remains consistent with the past measurements of earlier generations of instruments as the most accurate determination of this parameter. A number of field examples of the newly logged results are shown. These field cases include Dual Detector NLL's run thru the drill strings of highly deviated holes when difficulties were encountered in getting conventional open hole logs to bottom, logs thru open perforations and hot radioactive zones, comparisons of the large and small diameter instruments, logs with anomalous fluids in the annulus, logs thru multiple casing strings, and a number of other examples

  12. Engineering report on drilling in the western Prescott and Williams Quadrangles, Arizona

    International Nuclear Information System (INIS)

    McCaslin, J.L.

    1980-04-01

    This report presents engineering details, statistics, and individual borehole histories of the 18 holes drilled for this project. Charts showing daily drilling progress are included in Appendix A, and geophysical logs, on microfiche, are included. This project consisted of 18 drill holes ranging in depth from 1,341 ft (408.7m) to 5,491 ft (1,673.7m). A total of 63,520 feet (19,360.9m) was drilled during the project. The objective of the project was to obtain subsurface data that would permit a more accurate estimate to be made of the uranium potential in the Tertiary basins within the project area. This project began on June 22, 1979. All drilling was completed on October 30, 1979, and final site restoration continued through November and December

  13. LWD lithostratigraphy, physical properties and correlations across tectonic domains at the NanTroSEIZE drilling transect, Nankai Trough subduction zone, Japan

    Science.gov (United States)

    Tudge, J.; Webb, S. I.; Tobin, H. J.

    2013-12-01

    Since 2007 the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) has drilled a total of 15 sites across the Nankai Trough subduction zone, including two sites on the incoming sediments of the Philippine Sea plate (PSP). Logging-while-drilling (LWD) data was acquired at 11 of these sites encompassing the forearc Kumano Basin, upper accretionary prism, toe region and input sites. Each of these tectonic domains is investigated for changes in physical properties and LWD characteristics, and this work fully integrates a large data set acquired over multiple years and IODP expeditions, most recently Expedition 338. Using the available logging-while-drilling data, primarily consisting of gamma ray, resistivity and sonic velocity, a log-based lithostratigraphy is developed at each site and integrated with the core, across the entire NanTroSEIZE transect. In addition to simple LWD characterization, the use of Iterative Non-hierarchical Cluster Analysis (INCA) on the sites with the full suite of LWD data clearly differentiates the unaltered forearc and slope basin sediments from the deformed sediments of the accretionary prism, suggesting the LWD is susceptible to the subtle changes in the physical properties between the tectonic domains. This differentiation is used to guide the development of tectonic-domain specific physical properties relationships. One of the most important physical property relationships between is the p-wave velocity and porosity. To fully characterize the character and properties of each tectonic domain we develop new velocity-porosity relationships for each domain found across the NanTroSEIZE transect. This allows the porosity of each domain to be characterized on the seismic scale and the resulting implications for porosity and pore pressure estimates across the plate interface fault zone.

  14. Modeling Tools for Drilling, Reservoir Navigation, and Formation Evaluation

    Directory of Open Access Journals (Sweden)

    Sushant Dutta

    2012-06-01

    Full Text Available The oil and gas industry routinely uses borehole tools for measuring or logging rock and fluid properties of geologic formations to locate hydrocarbons and maximize their production. Pore fluids in formations of interest are usually hydrocarbons or water. Resistivity logging is based on the fact that oil and gas have a substantially higher resistivity than water. The first resistivity log was acquired in 1927, and resistivity logging is still the foremost measurement used for drilling and evaluation. However, the acquisition and interpretation of resistivity logging data has grown in complexity over the years. Resistivity logging tools operate in a wide range of frequencies (from DC to GHz and encounter extremely high (several orders of magnitude conductivity contrast between the metal mandrel of the tool and the geologic formation. Typical challenges include arbitrary angles of tool inclination, full tensor electric and magnetic field measurements, and interpretation of complicated anisotropic formation properties. These challenges combine to form some of the most intractable computational electromagnetic problems in the world. Reliable, fast, and convenient numerical modeling of logging tool responses is critical for tool design, sensor optimization, virtual prototyping, and log data inversion. This spectrum of applications necessitates both depth and breadth of modeling software—from blazing fast one-dimensional (1-D modeling codes to advanced threedimensional (3-D modeling software, and from in-house developed codes to commercial modeling packages. In this paper, with the help of several examples, we demonstrate our approach for using different modeling software to address different drilling and evaluation applications. In one example, fast 1-D modeling provides proactive geosteering information from a deep-reading azimuthal propagation resistivity measurement. In the second example, a 3-D model with multiple vertical resistive fractures

  15. A new approach to development drilling in Trinidad-Tesoro

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1972-01-01

    A detailed correlation of the Upper Cruse by means of electric logs from wells in Central Palo Seco field in S. Trinidad was done in an attempt to trace sands which have yielded very high oil productions, but which shaled out completely, very rapidly, in seemingly random directions. A new approach was attempted, namely, using the S.P. shapes from the logs to identify depositional environments of the sands, with a view to determining the paleogeography of the area. This study has revealed a meander belt channel running from west to east and ending in a delta, with several distributary chanels. It has also been possible to distinguish areas of lagoonal or pro-deltaic deposition. On the basis of this study, one well P.S. 816, was drilled but found only part of the channel. Another location has been recommended, but has not yet been drilled. If this well finds the main channel, a dipmeter will be run to help in the siting of new locations.

  16. Results from exploratory drill hole UE2ce, Northwest Yucca Flat, Nevada Test Site, near the NASH Event

    International Nuclear Information System (INIS)

    Pawloski, G.A.

    1982-01-01

    Exploratory drill hole UE2ce was drilled in January 1977 to determine geologic and geophysical characteristics of this site. This report presents geophysical logs, lithology, geologic structure, water table measurements, and physical properties for this drill hole. The data are then extrapolated to the NASH site, an event in U2ce, 55.6 m due north of UE2ce

  17. Natural gas in 1951: Petroleum in 1951: Logs of wells for 1951. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1954-12-31

    The first part of this report summarises natural gas exploration activity, well drilling, infrastructure changes and improvements, production, distribution, consumption, and leakage during transmission or distribution of natural gas in Ontario. Includes lists of operators licensed to lease, prospect, drill or bore for, produce, and distribute natural gas in the province. The second part summarises oil industry activities, oil production, well drilling, petroleum and refined products imports, and petroleum refining operations. Relevant statistics are provided throughout both parts of the report. Also includes drillers` logs for oil and gas wells completed during the year.

  18. Wellsite computers--their increasing role in drilling operations

    International Nuclear Information System (INIS)

    Keenan, P.G.; Dyson, P.M.

    1981-01-01

    The increasing expense and complexity of exploration drilling, coupled with rapid advances in computer and microprocessor technology, have led to the development of computer-assisted wellsite logging units from their humble beginnings as simple hot wire gas detectors. The main applications of this technology can be recognized in the following areas: (a) Safety of wellsite personnel, rig and downhole equipment. (b) Increased drilling efficiency with the resultant time and cost savings. (c) Simulation of possible events allowing comparisons between actual and expected data to assist decision making at the wellsite. (d) Storage of data on tape/disk to allow rapid retrieval of data for postwell analysis and report production. 6 refs

  19. Fracture Modes and Identification of Fault Zones in Wenchuan Earthquake Fault Scientific Drilling Boreholes

    Science.gov (United States)

    Deng, C.; Pan, H.; Zhao, P.; Qin, R.; Peng, L.

    2017-12-01

    After suffering from the disaster of Wenchuan earthquake on May 12th, 2008, scientists are eager to figure out the structure of formation, the geodynamic processes of faults and the mechanism of earthquake in Wenchuan by drilling five holes into the Yingxiu-Beichuan fault zone and Anxian-Guanxian fault zone. Fractures identification and in-situ stress determination can provide abundant information for formation evaluation and earthquake study. This study describe all the fracture modes in the five boreholes on the basis of cores and image logs, and summarize the response characteristics of fractures in conventional logs. The results indicate that the WFSD boreholes encounter enormous fractures, including natural fractures and induced fractures, and high dip-angle conductive fractures are the most common fractures. The maximum horizontal stress trends along the borehole are deduced as NWW-SEE according to orientations of borehole breakouts and drilling-induced fractures, which is nearly parallel to the strikes of the younger natural fracture sets. Minor positive deviations of AC (acoustic log) and negative deviation of DEN (density log) demonstrate their responses to fracture, followed by CNL (neutron log), resistivity logs and GR (gamma ray log) at different extent of intensity. Besides, considering the fact that the reliable methods for identifying fracture zone, like seismic, core recovery and image logs, can often be hampered by their high cost and limited application, this study propose a method by using conventional logs, which are low-cost and available in even old wells. We employ wavelet decomposition to extract the high frequency information of conventional logs and reconstruction a new log in special format of enhance fracture responses and eliminate nonfracture influence. Results reveal that the new log shows obvious deviations in fault zones, which confirm the potential of conventional logs in fracture zone identification.

  20. Drilling and associated Drillhole measurements of the Pilot Hole ONK-PH14

    International Nuclear Information System (INIS)

    Aalto, P.; Toropainen, V.; Tarvainen, A.-M.; Pekkanen, J.; Poellaenen, J.; Lamminmaeki, T.

    2011-09-01

    The construction of ONKALO access tunnel started in September 2004 at Olkiluoto. During the construction, investigations serving both research and construction purposes need to be done. Investigations can be done for example in so called pilot holes. Pilot holes are cored drillholes to be drilled to the tunnel profile. The length of the holes varies from some tens of metres to some hundreds of metres. The purpose of the holes is to confirm the quality of the rock mass for tunnel construction, especially to identify water conductive fractures/fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH14 was drilled in June 2010. Drilling was started in chainage 4313.6. The length of the hole was 150.80 metres. The deviation of the drillhole was measured during and after the drilling. Additionally, oriented core samples were collected from the drill core and the electric conductivity of returning water was measured. Logging of the core samples included following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The strength and deformation properties of the rock were defined by using Rock-Tester equipment. Hydraulic measurements were made by using the PFL DIFF (Posiva Flow log, Difference Flow Method). PFL DIFF measurements were performed with a 0.5 m section length and with 0.1 m length increments. With PFL DIFF tool the locations of transmissive fractures were detected. Simultaneously, the electric conductivity (EC) of the drillhole water and fracture specific water, temperature of the drillhole water, single point resistance (SPR) of the drillhole wall and the prevailing water pressure were measured. Water loss measurements were done after the drilling by the tool developed by Posiva. The tool was in test use during the measurements. The groundwater sample was

  1. Drilling and associated Drillhole measurements of the Pilot Hole ONK-PH14

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, P. (ed.); Lahti, M.; Kosunen, P.; Pere, T. [Posiva Oy, Helsinki (Finland); Toropainen, V.; Tarvainen, A.-M. [Suomen Malmi Oy, Espoo (Finland); Pekkanen, J.; Poellaenen, J. [Poeyry Finland Oy, Espoo (Finland); Lamminmaeki, T. [Teollisuuden Voima Oyj, Helsinki (Finland)

    2011-08-15

    The construction of ONKALO access tunnel started in September 2004 at Olkiluoto. During the construction, investigations serving both research and construction purposes need to be done. Investigations can be done for example in so called pilot holes. Pilot holes are cored drillholes to be drilled to the tunnel profile. The length of the holes varies from some tens of metres to some hundreds of metres. The purpose of the holes is to confirm the quality of the rock mass for tunnel construction, especially to identify water conductive fractures/fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH14 was drilled in June 2010. Drilling was started in chainage 4313.6. The length of the hole was 150.80 metres. The deviation of the drillhole was measured during and after the drilling. Additionally, oriented core samples were collected from the drill core and the electric conductivity of returning water was measured. Logging of the core samples included following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The strength and deformation properties of the rock were defined by using Rock-Tester equipment. Hydraulic measurements were made by using the PFL DIFF (Posiva Flow log, Difference Flow Method). PFL DIFF measurements were performed with a 0.5 m section length and with 0.1 m length increments. With PFL DIFF tool the locations of transmissive fractures were detected. Simultaneously, the electric conductivity (EC) of the drillhole water and fracture specific water, temperature of the drillhole water, single point resistance (SPR) of the drillhole wall and the prevailing water pressure were measured. Water loss measurements were done after the drilling by the tool developed by Posiva. The tool was in test use during the measurements. The groundwater sample was

  2. Report on televiewer log and stress measurements in core hole USW G-2, Nevada Test Site, October-November, 1982

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.

    1984-01-01

    Hydraulic fracturing stress measurements and a borehole televiewer log were obtained in hole USW G-2 at Yucca Mountain, Nevada, to depths of 1200 m. Results indicate that at the depths tested, the minimum ad maximum horizontal stresses are less than the vertical stress, corresponding to a normal faulting stress regime. Drilling-induced hydrofractures seen in the televiewer log imply a least horizontal principal stress direction of N 60 0 W to N 65 0 W. For reasonable values of the coefficient of friction, the magnitude of the least horizontal stress is close to the value at which slip would occur on preexisting faults of optimal orientation (strike N 25 0 E to N 30 0 E and dipping 60 0 to 67 0 ). The prominent drilling-induced fractures seen in the televiewer log are believed to have been caused by excess downhole pressures applied during drilling the hole. Many throughgoing fractures are also seen in the televiewer log; most of these are high angle, stringing N 10 0 E to N 40 0 E. These fractures show a general decrease in angle of dip with depth. Stress-induced wellbore breakouts are seen at depths below 1050 m. The average N 60 0 W azimuth of these breakouts agrees very closely with the N 60 0 W to N 65 0 W direction of least horizontal principal stress inferred from the drilling-induced hydrofracs. 19 references, 13 figures, 3 tables

  3. Pulsed neutron generator for logging

    International Nuclear Information System (INIS)

    Thibideau, F.D.

    1977-01-01

    A pulsed neutron generator for uranium logging is described. This generator is one component of a prototype uranium logging probe which is being developed by SLA to detect, and assay, uranium by borehole logging. The logging method is based on the measurement of epithermal neutrons resulting from the prompt fissioning of uranium from a pulsed source of 17.6 MeV neutrons. An objective of the prototype probe was that its diameter not exceed 2.75 inches, which would allow its use in conventional rotary drill holes of 4.75-inch diameter. This restriction limited the generator to a maximum 2.375-inch diameter. The performance requirements for the neutron generator specified that it operate with a nominal output of 5 x 10 6 neutrons/pulse at up to 100 pulses/second for a one-hour period. The development of a neutron generator meeting the preliminary design goals was completed and two prototype models were delivered to SLA. These two generators have been used by SLA to log a number of boreholes in field evaluation of the probe. The results of the field evaluations have led to the recommendation of several changes to improve the probe's operation. Some of these changes will require additional development effort on the neutron generator. It is expected that this work will be performed during 1977. The design and operation of the first prototype neutron generators is described

  4. Drilling and the associated borehole measurements of the pilot hole ONK-PH2

    International Nuclear Information System (INIS)

    Oehberg, A.; Aaltonen, I.; Kemppainen, K.; Mattila, J.; Heikkinen, E.; Lahti, M.; Pussinen, V.; Niemonen, J.; Paaso, N.; Rouhiainen, P.

    2005-11-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are boreholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes will mostly aim to confirm the quality of the rock mass for tunnel construction, and in particular at identifying water conductive fractured zones and at providing information that could result in modifications of the existing construction plans. The pilot hole ONK-PH2 was drilled in December 2004. The length of the borehole is about 122 metres. The aim during the drilling work was to orientate core samples as much as possible. The deviation of the borehole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity and hydraulic head in fractures and fractured zones in the borehole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increments. Geophysical borehole logging and optical imaging surveys of the pilot hole PH2 included the field work of all the surveys, the integration of the data as well as interpretation of the acoustic and borehole radar data. One of the objectives of the geochemical study was to get information of composition of ONKALO's groundwater before the construction will

  5. Drilling and the associated drillhole measurements of the pilot hole ONK-PH4

    International Nuclear Information System (INIS)

    Oehberg, A.; Heikkinen, E.; Hirvonen, H.; Kemppainen, K.; Majapuro, J.; Niemonen, J.; Poellaenen, J.; Rouhiainen, P.; Rautio, T.

    2006-09-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are mostly aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH4 was drilled in October 2005. The length of the hole is 96.01 metres. During the drilling work core samples were oriented as much as possible. The deviation of the hole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Geological logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the hole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increment. Water loss tests (Lugeon tests) were used to give background information for the grouting design. Geophysical logging and optical imaging of the pilot hole PH4 included the field work of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. One of the objectives of the geochemical study was to get information of composition of ONKALO

  6. Drilling and the associated borehole measurements of the pilot hole ONK-PH3

    International Nuclear Information System (INIS)

    Oehberg, A.; Heikkinen, E.; Hirvonen, H.; Kemppainen, K.; Majapuro, J.; Niemonen, J.; Poellaenen, J.; Rouhiainen, P.

    2006-03-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are boreholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes will mostly aim to confirm the quality of the rock mass for tunnel construction, and in particular at identifying water conductive fractured zones and at providing information that could result in modifications of the existing construction plans. The pilot hole ONK-PH3 was drilled in September 2005. The length of the borehole is 145.04 metres. The aim during the drilling work was to orientate core samples as much as possible. The deviation of the borehole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the borehole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increments. Water loss tests (Lugeon tests) and a pressure build-up test were used to give background information for the grouting design. Geophysical borehole logging and optical imaging surveys of the pilot hole PH3 included the field work of all the surveys, the integration of the data as well as interpretation of the acoustic and borehole radar data. One of the objectives of the

  7. Drilling and the associated drillhole measurements of the pilot hole ONK-PH8

    International Nuclear Information System (INIS)

    Karttunen, P.; Poellaenen, J.; Rautio, T.; Tarvainen, A.-M.; Lamminmaeki, T.; Kemppainen, K.; Kosunen, P.; Lampinen, H.

    2009-02-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH8 was drilled from chainage 3116 to chainage 3266.29 in June- July 2008. The length of the hole is 150.29 metres. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Water conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also grounding resistance, electric conductivity and temperature were measured. In flow logging test sections of 0.5 m and increments of 0.1 m were used. The water loss measurements failed. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The test to determine rock strength and deformation were made with Rock Tester-equipment. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. One of the objectives of the geochemical study was to get information of the composition of ONKALO

  8. Drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Galiopa, A A; Yegorov, E K

    1981-01-04

    A drilling rig is proposed which contains a tower, lifter in the form of n infinite chain, and mobile rotator with holding device connected to the chain, and pipe holder. In order to accelerate the auxiliary operations to move the drilling string and unloaded rotator, the rotator is equipped with a clamp with means for transverse connection of it to both branches of the chain, while the pipe holders equipped with a clamp with means of connecting it to one of the branches of the chain.

  9. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  10. Operational Review of the First Wireline In Situ Stress Test in Scientific Ocean Drilling

    Directory of Open Access Journals (Sweden)

    Casey Moore

    2012-04-01

    Full Text Available Scientific ocean drilling’s first in situ stress measurement was made at Site C0009A during Integrated Ocean Drilling Program (IODP Expedition 319 as part of Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE Stage 2. The Modular Formation Dynamics Tester (MDT, Schlumbergerwireline logging tool was deployed in riser Hole C0009A to measure in situ formation pore pressure, formation permeability (often reported as mobility=permeability/viscosity, and the least principal stress (S3 at several isolated depths (Saffer et al., 2009; Expedition 319 Scientists, 2010. The importance of in situ stress measurements is not only for scientific interests in active tectonic drilling, but also for geomechanical and well bore stability analyses. Certain in situ tools were not previously available for scientific ocean drilling due to the borehole diameter and open hole limits of riserless drilling. The riser-capable drillship, D/V Chikyu,now in service for IODP expeditions, allows all of the techniques available to estimate the magnitudes and orientations of 3-D stresses to be used. These techniques include downhole density logging for vertical stress, breakout and caliper log analyses for maximum horizontal stress, core-based anelastic strain recovery (ASR, used in the NanTroSEIZE expeditions in 2007–2008, and leak-off test (Lin et al., 2008 and minifrac/hydraulic fracturing (NanTroSEIZE Expedition319 in 2009. In this report, the whole operational planning process related to in situ measurements is reviewed, and lessons learned from Expedition 319 are summarized for efficient planning and testing in the future.

  11. An experimental investigation on thermal exposure during bone drilling.

    Science.gov (United States)

    Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed

    2012-12-01

    This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  13. Core Drilling of shallow drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-05-15

    Suomen Malmi Oy (Smoy) core drilled eighteen drillholes to survey the ground and bedrock conditions in the encapsulation plant building site at Olkiluoto, Eurajoki 2011. Soil quality, bedrock depth and quality of near surface bedrock were investigated in this project. The drillholes were drilled between 19th of October and 8th of November 2011. The lengths of the drillholes are mostly between 7 to 9 metres, except for the drillhole OL-PP79, which is 15 metres by length. The drillholes are 76 mm by diameter, and the core diameter is 60.2 mm. The lightweight GM75 drilling rig with rubber tracks was used. The drilling water was taken from the ONKALO area research building freshwater pipeline and sodium fluorescein was added as a label agent in the drilling water. The drillholes were not left open. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The average natural fracture frequencies of the drillcores range from 2.5 pc/m (OL-PP77) to 11.8 pc/m (OL-PP86). The average RQD ranges from 55.1 % (OL-PP86) to 96.4 % (OL-PP77). The penetrated soils are mostly ground fill (blast rock), but some clays and sands are lying below the fill layer. (orig.)

  14. Core Drilling of shallow drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-05-01

    Suomen Malmi Oy (Smoy) core drilled eighteen drillholes to survey the ground and bedrock conditions in the encapsulation plant building site at Olkiluoto, Eurajoki 2011. Soil quality, bedrock depth and quality of near surface bedrock were investigated in this project. The drillholes were drilled between 19th of October and 8th of November 2011. The lengths of the drillholes are mostly between 7 to 9 metres, except for the drillhole OL-PP79, which is 15 metres by length. The drillholes are 76 mm by diameter, and the core diameter is 60.2 mm. The lightweight GM75 drilling rig with rubber tracks was used. The drilling water was taken from the ONKALO area research building freshwater pipeline and sodium fluorescein was added as a label agent in the drilling water. The drillholes were not left open. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The average natural fracture frequencies of the drillcores range from 2.5 pc/m (OL-PP77) to 11.8 pc/m (OL-PP86). The average RQD ranges from 55.1 % (OL-PP86) to 96.4 % (OL-PP77). The penetrated soils are mostly ground fill (blast rock), but some clays and sands are lying below the fill layer. (orig.)

  15. Results from Testing of Two Rotary Percussive Drilling Systems

    Science.gov (United States)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  16. Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments

    Science.gov (United States)

    Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf

    2017-04-01

    Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e

  17. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.

    1992-01-01

    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  18. The Meaning of Logs

    NARCIS (Netherlands)

    Etalle, Sandro; Massacci, Fabio; Yautsiukhin, Artsiom

    2007-01-01

    While logging events is becoming increasingly common in computing, in communication and in collaborative work, log systems need to satisfy increasingly challenging (if not conflicting) requirements.Despite the growing pervasiveness of log systems, to date there is no high-level framework which

  19. The Meaning of Logs

    NARCIS (Netherlands)

    Etalle, Sandro; Massacci, Fabio; Yautsiukhin, Artsiom; Lambrinoudakis, Costas; Pernul, Günther; Tjoa, A Min

    While logging events is becoming increasingly common in computing, in communication and in collaborative environments, log systems need to satisfy increasingly challenging (if not conflicting) requirements. In this paper we propose a high-level framework for modeling log systems, and reasoning about

  20. Drilling history core hole DC-6 Hanford, Washington

    International Nuclear Information System (INIS)

    1978-06-01

    Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored

  1. An analysis of relative costs in drilling deep wells

    International Nuclear Information System (INIS)

    Anderson, E.E.; Cooper, G.A.; Maurer, W.C.; Westcott, P.A.

    1991-01-01

    The search for new sources of oil, and particularly gas, is leading the industry to drill ever deeper wells. A depth of 15,000 ft was first passed in 1938, 20,000 ft was reached in 1939, followed by 25,000 ft in 1958, and 30,000 ft in 1972. The current US record depth is 31,441 ft. As the total depth increases, not only does the rock to be drilled become stronger, but increasing pressure and temperature induce plasticity and chip hold-down effects that make it more difficult to remove cuttings from the workfront. In addition to the reduction in rate of the drilling process itself, other activities become more complex and time-consuming, for example, tripping, running and cementing casing, and logging and coring activities. This paper analyzes the different tasks involved in drilling deep wells, in order to identify those activities that contribute most to the overall cost. These are therefore expected to be the activities where future efforts in research and development should provide the greatest reductions in total cost

  2. Natural gas in 1950: Petroleum in 1950: Logs of wells in 1950. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1953-12-31

    Part III of this annual report consists of three separate reports on natural gas; petroleum; and logs of wells. The natural gas report discusses production and distribution, changes and improvements; consumption and rates; and gas wells and their production. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations. The logs of wells are presented alphabetically by counties, townships, and owners, respectively.

  3. Natural gas in 1952: Petroleum in 1952: Logs of wells for 1952. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1955-12-31

    Part III of this annual report consists of three separate reports on natural gas; petroleum; and logs of wells. The natural gas report discusses production and distribution, changes and improvements; consumption and rates; and gas wells and their production. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations. The logs of wells are presented alphabetically by counties, townships, and owners, respectively.

  4. Elemental logging in the KTB Pilot Hole. Pt. 1

    International Nuclear Information System (INIS)

    Grau, J.A.; Schweitzer, J.S.; Draxler, J.K.; Gatto, H.; Lauterjung, J.

    1993-01-01

    Neutron-induced γ-ray spectrometry, of prompt capture and delayed activation, together with natural γ-ray measurements, provide a borehole elemental analysis to characterize rock matrix composition. Elemental concentrations from the prompt capture measurements are derived through the use of a closure model that was developed from data on rocks in a sedimentary environment. This set of spectrometers was used to log the 4000 m of the German Continental Deep Drilling Project (KTB) Pilot Hole. The model was tested, with a minor change, for suitability to the crystalline rock environment. Good overall agreement was found between the logging measurements and laboratory analyses performed on cuttings and cores. (Author)

  5. Drilling history core hole DC-8

    International Nuclear Information System (INIS)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  6. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  7. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Spengler, R.W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five falt zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members restricted log coverage to the lower half of the drill hole

  8. Preliminary geologic and geophysical data of the UE25a-3 exploratory drill hole, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Muller, D.C.; Morrison, J.N.

    1979-09-01

    The UE25a-3 drill hole, located in the Calico Hills area, was drilled as part of an effort to evaluate the Calico Hills area as a possible nuclear waste repository site. The purpose of the drill hole was to verify the existence of an intrusive crystalline body in the subsurface and to determine the stratigraphy, structure, and nature of fractures of the cored rocks. Cored samples were obtained for mineral, chemical, and material property analyses. Numerous high-angle faults and brecciated zones were intersected by the drill hole. The units cored were intensely fractured with fracture analysis of the core consisting of frequency of fractures, dips of fractures, open and closed (sealed) fractures and types of fracture sealing or coating material. Twenty-four hundred and thirty fractures, representing approximately 30 percent of the fractures present, indicate an average fracture frequency of 13.2 fractures per meter, predominantly high-angle dips with 66 percent of the fractures closed. Fractures in the argillite interval are sealed or coated predominantly with kaolinite, nacrite, and dickite. Calcite, chlorite, and magnetite are present in fractures in the altered argillite interval. Fractures in the marble interval are sealed or coated with calcite, dolomite, and ferruginous clay. The core index indicates that the lower half of the drilled interval is more competent than the upper half. Borehole geophysical logs were run by the Birdwell Division of Seismograph Service Corporation for geologic correlations and lithologic characterizations. The logs include: caliper, density, resistivity, spontaneous potential, Vibroseis, 3-D velocity, neutron, and gamma-ray logs

  9. Drilling and associated drillhole measurements of the pilot hole ONK-PH13

    International Nuclear Information System (INIS)

    Tarvainen, A.-M.; Toropainen, V.; Pekkanen, J.; Poellaenen, J.; Kosunen, P.; Lahti, M.; Pere, T.; Aalto, P.

    2011-04-01

    The construction of ONKALO access tunnel started in September 2004 at Olkiluoto. During the construction, investigations serving both research and construction purposes need to be done. Investigations can be done for example in so called pilot holes. Pilot holes are cored drillholes to be drilled to the tunnel profile. The length of the holes varies from some tens of meters to some hundreds of meters. The purpose of the holes is to confirm the quality of the rock mass for tunnel construction, especially to identify water conductive fractures/fracture zones and provide information that could result in modifications of the existing construction plans. The pilot hole ONK-KR13 was drilled in March 2010. Drilling was started from chainage 4201. The final length of the hole was 140.05 meters. The deviation of the drillhole was measured during and after the drilling. Additionally, oriented core samples were collected and electric conductivity of returning water from the drill hole was measured. Logging of the core samples included following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The strength and deformation properties of the rock were defined by using Rock-Tester equipment. Hydraulic measurements were made by using the PFL DIFF (Posiva Flow Log, Difference Flow method). PFL DIFF measurements were performed with a 0.5 m section length and with 0.1 m length increments. With PFL DIFF tool the locations of flowing fractures and their transmissivities were detected. Simultaneously, the electric conductivity (EC) of the drillhole water and fracture-specific water, temperature of the drillhole water, single point resistance (SPR) of the drillhole wall and the prevailing water pressure profile were measured. Water loss measurements were done after the drilling by the tool developed by Posiva. The equipment was in test use during the measurements

  10. Drilling and the associated drillhole measurements of the pilot hole ONK-PH6

    International Nuclear Information System (INIS)

    Oehberg, A.; Hirvonen, H.; Kemppainen, K.; Niemonen, J.; Nordbaeck, N.; Poellaenen, J.; Rouhiainen, P.; Rautio, T.; Tarvainen, A.-M.

    2007-08-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH6 was drilled from chainage 1404 to chainage 1559 in September 2006. The length of the hole is 155.04 m. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. One steering operation by wedging was made at the hole depth of 94.05 metres (top of the wedge). Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the drillhole. The overlapping i.e. the detailed flow logging mode was used. Besides flow logging Single Point Resistance (SPR), Electric Conductivity (EC) and temperature of the drillhole water were also measured. The flow logging was performed with 0.5 m section length and with 0.1 m depth increment. Water loss tests were conducted in the hole excluding the section 89.04 - 101.04 metres due to the wedge. Geophysical logging

  11. Nuclear logging apparatus and MWD-equipment for formation evaluation; Nukleart loggeapparat og MWD-verktoey til formasjonsevaluering

    Energy Technology Data Exchange (ETDEWEB)

    Perry, C.A.; Daigle, G.A.; Rountree, S.P.; Talmadge, G.; Grunbeck, J.; Wassell, M

    1998-10-12

    An apparatus for nuclear logging is presented. In accordance with the present invention, nuclear detectors and electronic components are all mounted in chambers within the sub wall with covers being removably attached to the chambers. A single bus for delivering both power and signals extends through the sub wall between either end of the tool. This bus terminates at a modular ring connector positioned on each tool end. This tool construction (including sub wall mounted sensors and electronics, single power and signal bus, and ring connectors) is also well suited for other formation evaluation tools used in measurement-while-drilling applications. 28 refs.

  12. Optimizing drilling performance using a selected drilling fluid

    Science.gov (United States)

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  13. Drilling and the associated drillhole measurements of the pilot hole ONK-PH5

    International Nuclear Information System (INIS)

    Oehberg, A.; Hirvonen, H.; Jurvanen, T.; Kemppainen, K.; Mustonen, A.; Niemonen, J.; Poellaenen, J.; Rouhiainen, P.; Rautio, T.

    2006-09-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH5 was drilled from chainage 991.4 to chainage 1194 in January 2006. The length of the hole is 202.64 m and the vertical depth of the hole from zero level is about 88.2-107.5 m. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. One steering operation by wedging was made at the hole depth of 128.58 metres. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Due to high inflow (c. 200 L/min) mainly from the depth section 56-58 metres no geophysical surveys were carried out in the hole. Flow logging was carried out only from 58 metres to the bottom of the hole. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the drillhole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increment. Flow

  14. Site characterization and validation - geophysical single hole logging

    International Nuclear Information System (INIS)

    Andersson, Per

    1989-05-01

    A total of 15 boreholes have been drilled for preliminary characterization of a previously unexplored site at the 360 and 385 m level in the Stripa mine. To adequately described the rock mass in the vicinity of these boreholes, a comprehensive program utilizing a large number of geophysical borehole methods has been carried out in 10 of these boreholes. The specific geophysical character of the rock mass and the major deformed units distinguished in the vicinity of the boreholes are recognized, and in certain cases also correlated between the boreholes. A general conclusion based on the geophysical logging results, made in this report, is that the preliminary predictions made in stage 2, of the site characterization and validation project (Olsson et.al, 1988), are adequate. The results from the geophysical logging can support the four predicted fracture/ fracture zones GHa, GHb, GA and GB whereas the predicted zones GC and GI are hard to confirm from the logging results. (author)

  15. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    Science.gov (United States)

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  16. IODP Expedition 319, NanTroSEIZE Stage 2: First IODP Riser Drilling Operations and Observatory Installation Towards Understanding Subduction Zone Seismogenesis

    Directory of Open Access Journals (Sweden)

    Sean Toczko

    2010-09-01

    Full Text Available The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE is a major drilling project designed to investigate fault mechanics and the seismogenic behavior of subduction zone plate boundaries. Expedition 319 is the first riser drilling operation within scientific ocean drilling. Operations included riser drilling at Site C0009 in the forearc basin above the plate boundary fault, non-riser drilling at Site C0010 across the shallow part of the megasplay faultsystem—which may slip during plate boundary earthquakes—and initial drilling at Site C0011 (incoming oceanic plate for Expedition 322. At Site C0009, new methods were tested, including analysis of drill mud cuttings and gas, and in situ measurements of stress, pore pressure, and permeability. These results, in conjunction with earlier drilling, will provide a the history of forearc basin development (including links to growth of the megasplay fault system and modern prism, b the first in situ hydrological measurements of the plate boundary hanging wall, and c integration of in situ stress measurements (orientation and magnitude across the forearc and with depth. A vertical seismic profile (VSP experiment provides improved constraints on the deeper structure of the subduction zone. At Site C0010, logging-while-drilling measurements indicate significantchanges in fault zone and hanging wall properties over short (<5 km along-strike distances, suggesting different burial and/or uplift history. The first borehole observatory instruments were installed at Site C0010 to monitor pressure and temperature within the megasplay fault zone, and methods of deployment of more complex observatoryinstruments were tested for future operations.

  17. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log

    Science.gov (United States)

    Zhang, Jie; Nie, Xin; Xiao, Suyun; Zhang, Chong; Zhang, Chaomo; Zhang, Zhansong

    2018-03-01

    Imaging logging tools can provide us the borehole wall image. The micro-resistivity imaging logging has been used to obtain borehole porosity spectrum. However, the resistivity imaging logging cannot cover the whole borehole wall. In this paper, we propose a method to calculate the porosity spectrum using ultrasonic imaging logging data. Based on the amplitude attenuation equation, we analyze the factors affecting the propagation of wave in drilling fluid and formation and based on the bulk-volume rock model, Wyllie equation and Raymer equation, we establish various conversion models between the reflection coefficient β and porosity ϕ. Then we use the ultrasonic imaging logging and conventional wireline logging data to calculate the near-borehole formation porosity distribution spectrum. The porosity spectrum result obtained from ultrasonic imaging data is compared with the one from the micro-resistivity imaging data, and they turn out to be similar, but with discrepancy, which is caused by the borehole coverage and data input difference. We separate the porosity types by performing threshold value segmentation and generate porosity-depth distribution curves by counting with equal depth spacing on the porosity image. The practice result is good and reveals the efficiency of our method.

  18. Casing drilling - first experience in Brazil; Casing drilling - primeira experiencia no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao Carlos Ribeiro; Medeiros, Fernando; Lucena, Humberto; Medeiros, Joao Carlos Martins de; Costa, Vicente Abel Soares Rosa da; Silva, Paulo Roberto Correa da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Alves, Renato J.M. [Tesco, London (United Kingdom)

    2004-07-01

    This paper describes the 'Casing Drilling' technology and its first experience in Brazil. This new process of casing while drilling was first developed to reduce costs. This system integrates the drilling process and casing running in one operation, promoting a more efficient well construction system, reducing trip time and costs of drill pipes and their transportation. Besides, this methodology intends to eliminate hole problems related to trouble zones with abnormal pressure with loss circulation, to overcome zones with wellbore instabilities, and to facilitate well control. Two companies have been identified using this technology: Tesco and Weatherford. However, there are differences between the techniques used by these companies, which are described in this paper. In the first experience in Brazil, it was decided to field test the technology developed by Tesco. This paper describes the preparation, the operation and the results of this first test. (author)

  19. Core-logs of borehole VI down to 505 m

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.; Stejskal, V.

    1981-01-01

    In the hydrogeological program of the Stripa project the vertical borehole V1 has been drilled 505.5 m. The drillcore has been logged with regard to rock characteristic, fracture frequency, dipping and filling. The results presented as cumulative fracture diagram have formed the base for subdivision of the borehole according to fracture frequency. The variation in the fracture dipping was also taken into account. Chlorite is the most common of the infilling material in the fractures. For the borehole 0-466 m the average fracture frequency is 1.46 fractures/m. Below 466 m the core is highly fractured and crushed indicating that the borehole has entered a crushed zone. Because of this the drilling is temporarily stopped. (Auth.)

  20. PROMESS 1: Past Global Changes Investigated by Drilling Mediterranean Continental Margins

    Science.gov (United States)

    Berne, S.

    2004-12-01

    Between June, 24th and July, 22nd, 2004, a team of European scientists embarked from Brindisi (Italy) to Barcelona (Spain) onboard the Russian vessel "Bavenit", operated by the Dutch geotechnical company FUGRO, for a drilling expedition in the Adriatic Sea and the NW Mediterranean Sea. The purpose of this cruise was to collect long sediment sections and in situ measurements from two deltaic margins where the history of global changes during the last ca. 400 kyr is particularly well preserved. In the Adriatic, two boreholes were drilled at site PRAD1 (water depth 184 m), where the objective was to study the record of the last 4 glacial cycles. A pilot hole was first drilled for assessing the risk of shallow gases, a downhole logging was carried out in this borehole. A second site allowed continuous coring to the targeted depth (71m below sea-floor) with excellent recovery (better than 95%). Very preliminary interpretation indicates that seismic sequences previously identified correspond to 100 kyr glacial cycles. Downhole logging and physical properties of cores allow to identify magnetic events, and tephras. Site PRAD2 was devoted to the study of the recent most sediments (last 12,000 yrs) near the coastline, at a water depth of 56m. The targeted depth was 32 m below sea floor, sufficient to obtain a good record for the last ca 12,000 years. All together, six boreholes were drilled at PRAD2, including a pilot hole, one for continuous sediment recovery, and additional holes for in situ geotechnical tests and sampling. One of the objectives of these tests is to determine whether the wavy features shaping the sedimentary sequences are caused by near-bottom currents or result from liquefaction of unstable sediments triggered by earthquakes or storms. Site PRGL1 in the Gulf of Lion is at 298 m water depth, and the targeted depth below sea floor was 300 m, allowing to reach an expected age of about 430 kyr BP. A pilot hole was drilled down to 310 mbsf, and logged. Two

  1. Infrared Spectroscopy for Rapid Characterization of Drill Core and Cutting Mineralogy

    Science.gov (United States)

    Calvin, W. M.; Kratt, C.; Kruse, F. A.

    2009-12-01

    Water geochemistry can vary with depth and location within a geothermal reservoir, owing to natural factors such as changing rock type, gas content, fluid source and temperature. The interaction of these variable fluids with the host rock will cause well known changes in alteration mineral assemblages that are commonly factored into the exploration of hydrothermal systems for economic metals, but are less utilized with regard to mapping borehole geology for geothermal energy production. Chemistry of geothermal fluids and rock alteration products can impact production factors such as pipeline corrosion and scaling and early studies explored the use of both silica and chlorites as geothermometers. Infrared spectroscopy is particularly good at identifying a wide variety of alteration minerals, especially in discrimination among clay minerals, with no sample preparation. The technique has been extensively used in the remote identification of materials, but is not commonly used on drill core or chips. We have performed several promising pilot studies that suggest the power of the technique to sample continuously and provide mineral logs akin to geophysical ones. We have surveyed a variety of samples, including drill chip boards, boxed core, and drill cuttings from envelopes, sample bottles and chip trays. This work has demonstrated that core and drill chips can be rapidly surveyed, acquiring spectra every few to tens of cm of section, or the vertical resolution of the chip tray (typically 10 feet). Depending on the sample type we can acquire spectral data over thousands of feet depth at high vertical resolution in a fraction of the time that is needed for traditional analytical methods such as XRD or TEM with better accuracy than traditional geologic drill or chip logging that uses visual inspection alone. We have successfully identified layered silicates such as illite, kaolinite, montmorillonite chlorite and prehnite, zeolites, opal, calcite, jarosite and iron oxides

  2. Handbook of Best Practices for Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Finger, John Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  3. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    Energy Technology Data Exchange (ETDEWEB)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  4. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  5. Environmental assessment: Uranium Geologic Drilling Project, Winnemucca Dry Lake, Pershing, Nevada

    International Nuclear Information System (INIS)

    This environmental assessment has been prepared to provide the environmental input into the DOE decision to drill and log ten (10) holes of under 7-in. diameters to depths of 100 to 1500 feet in the northern margin of Winnemucca Dry Lake, Pershing County, Nevada, to obtain subsurface information related to uranium favorability

  6. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  7. Semantic Approaches Applied to Scientific Ocean Drilling Data

    Science.gov (United States)

    Fils, D.; Jenkins, C. J.; Arko, R. A.

    2012-12-01

    The application of Linked Open Data methods to 40 years of data from scientific ocean drilling is providing users with several new methods for rich-content data search and discovery. Data from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have been translated and placed in RDF triple stores to provide access via SPARQL, linked open data patterns, and by embedded structured data through schema.org / RDFa. Existing search services have been re-encoded in this environment which allows the new and established architectures to be contrasted. Vocabularies including computed semantic relations between concepts, allow separate but related data sets to be connected on their concepts and resources even when they are expressed somewhat differently. Scientific ocean drilling produces a wide range of data types and data sets: borehole logging file-based data, images, measurements, visual observations and the physical sample data. The steps involved in connecting these data to concepts using vocabularies will be presented, including the connection of data sets through Vocabulary of Interlinked Datasets (VoID) and open entity collections such as Freebase and dbPedia. Demonstrated examples will include: (i) using RDF Schema for inferencing and in federated searches across NGDC and IODP data, (ii) using structured data in the data.oceandrilling.org web site, (iii) association through semantic methods of age models and depth recorded data to facilitate age based searches for data recorded by depth only.

  8. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Seyed Moosavi

    2018-02-01

    Full Text Available The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  9. Use of spectral gamma ray as a lithology guide for fault rocks: A case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4).

    Science.gov (United States)

    Amara Konaté, Ahmed; Pan, Heping; Ma, Huolin; Qin, Zhen; Guo, Bo; Yevenyo Ziggah, Yao; Kounga, Claude Ernest Moussounda; Khan, Nasir; Tounkara, Fodé

    2017-10-01

    The main purpose of the Wenchuan Earthquake Fault Scientific drilling project (WFSD) was to produce an in-depth borehole into the Yingxiu-Beichuan (YBF) and Anxian-Guanxian faults in order to gain a much better understanding of the physical and chemical properties as well as the mechanical faulting involved. Five boreholes, namely WFSD-1, WFSD-2, WFSD-3P, WFSD-3 and WFSD-4, were drilled during the project entirety. This study, therefore, presents first-hand WFSD-4 data on the lithology (original rocks) and fault rocks that have been obtained from the WFSD project. In an attempt to determine the physical properties and the clay minerals of the lithology and fault rocks, this study analyzed the spectral gamma ray logs (Total gamma ray, Potassium, Thorium and Uranium) recorded in WFSD-4 borehole on the Northern segment of the YBF. The obtained results are presented as cross-plots and statistical multi log analysis. Both lithology and fault rocks show a variability of spectral gamma ray (SGR) logs responses and clay minerals. This study has shown the capabilities of the SGR logs for well-logging of earthquake faults and proves that SGR logs together with others logs in combination with drill hole core description is a useful method of lithology and fault rocks characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Geophysical borehole logging. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Rouhiainen, P.

    1984-01-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 meters in the year 1984. The report deals with geophysical borehole logging methods, which could be used for the studies. The aim of geophysical borehole logging methods is to descripe specially hydrogeological and structural features. Only the most essential methods are dealt with in this report. Attention is paid to the information produced with the methods, derscription of the methods, interpretation and limitations. The feasibility and possibilities for the aims are evaluated. The evaluations are based mainly on the results from Sweden, England, Canada and USA as well as experiencies gained in Finland

  11. Test plan for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    The objective of this testing is to determine if ignition occurs while core drilling in a flammable gas environment. Drilling parameters are chosen so as to provide bounding conditions for the core sampling environment. If ignition does not occur under the conditions set forth in this test, then a satisfactory level of confidence will be obtained which would allow field operations under the normal drilling conditions

  12. Experimental evaluation on the damages of different drilling modes to tight sandstone reservoirs

    Directory of Open Access Journals (Sweden)

    Gao Li

    2017-07-01

    Full Text Available The damages of different drilling modes to reservoirs are different in types and degrees. In this paper, the geologic characteristics and types of such damages were analyzed. Then, based on the relationship between reservoir pressure and bottom hole flowing pressure corresponding to different drilling modes, the experimental procedures on reservoir damages in three drilling modes (e.g. gas drilling, liquid-based underbalanced drilling and overbalanced drilling were designed. Finally, damage simulation experiments were conducted on the tight sandstone reservoir cores of the Jurassic Ahe Fm in the Tarim Basin and Triassic Xujiahe Fm in the central Sichuan Basin. It is shown that the underbalanced drilling is beneficial to reservoir protection because of its less damage on reservoir permeability, but it is, to some extent, sensitive to the stress and the empirical formula of stress sensitivity coefficient is obtained; and that the overbalanced drilling has more reservoir damages due to the invasion of solid and liquid phases. After the water saturation of cores rises to the irreducible water saturation, the decline of gas logging permeability speeds up and the damage degree of water lock increases. It is concluded that the laboratory experiment results of reservoir damage are accordant with the reservoir damage characteristics in actual drilling conditions. Therefore, this method reflects accurately the reservoir damage characteristics and can be used as a new experimental evaluation method on reservoir damage in different drilling modes.

  13. Core sample descriptions and summary logs of six wells within the Hanford Reservation

    International Nuclear Information System (INIS)

    Summers, W.K.; Hanson, R.T.

    1977-01-01

    From February through May, 1976, selected sites on the Hanford Reservation were core drilled. These six holes provide a loose network of observation holes traversing the reservation in an east--west direction between the Columbia River and State Highway 240. This program represents the first attempt to recover cores from the glaciofluviatile material and Ringold Formation beneath the Hanford Reservation. This contains three parts: an introductory text describing the method of inspection and format for written description; summary logs that illustrate in condensed form the rocks penetrated by the wells drilled; and the detailed written descriptions of core samples. 3 figures, 7 tables

  14. Lithologic and geophysical logs of drill holes Felderhoff Federal 5-1 and 25-1, Amargosa Desert, Nye County, Nevada

    International Nuclear Information System (INIS)

    Carr, W.J.; Grow, J.A.; Keller, S.M.

    1995-01-01

    Two wildcat oil and gas exploration holes drilled in 1991 on the northern edge of the Amargosa Desert penetrated Tertiary and Quaternary sedimentary rocks, alluvium, and basalt, possible Tertiary volcanic or volcaniclastic rocks, and Tertiary (?) and Paleozoic carbonate rocks. The easternmost of the two holes, Felderhoff-Federal 5-1, encountered about 200 feet of alluvium, underlain by 305 feet of basalt breccia and basalt, about 345 feet of probable Tertiary tuffaceous sedimentary rocks, and 616 feet of dense limestone and dolomite of uncertain age. Drill hole 25-1 penetrated 240 feet of alluvium and marl (?), and 250 feet of basalt breccia (?) and basalt, 270 feet of tuff (?) and/or tuffaceous sedimentary rocks, 360 feet of slide blocks (?) and large boulders of Paleozoic carbonate rocks, and 2,800 feet of Paleozoic limestone and dolomite. The two drill holes are located within a northerly trending fault zone defined largely by geophysical data; this fault zone lies along the east side of a major rift containing many small basalt eruptive centers and, farther north, several caldera complexes. Drill hole 25-1 penetrated an inverted paleozoic rock sequence; drill hole 5-1 encountered two large cavities 24-inches wide or more in dense carbonate rock of uncertain, but probable Paleozoic age. These openings may be tectonic and controlled by a regional system of northeast-striking faults

  15. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)

    2001-07-01

    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  16. The effect of drilling parameters for surface roughness in drilling of AA7075 alloy

    Directory of Open Access Journals (Sweden)

    Yaşar Nafiz

    2017-01-01

    Full Text Available AA7075 aluminum alloy has been very popular significantly interest in the production of structural components in automotive and aviation applications due to its high strength, low density, good plasticity and better machinability comparable to many metals. Particularly, final products must have uniformly high quality to ensure essential safety standards in the aircraft industry. The optimization of hole quality which can variable according to tool geometry and drilling parameters is important in spite of high machinability rate of AA7075 alloy. In this study, the effects of drilling parameters on average surface roughness (Ra has been investigated in drilling of AA7075 with tungsten carbide drills. Machining experiments were performed with three different drill point angles and three different levels of cutting parameters (feed rate, cutting speed. The effects of drilling parameters on thrust force has been determined with ANOVA in %95 confidence level. Feed rate was determined as the most important factor on Ra according to ANOVA results. Moreover, it was shown that increasing feed rate leads to increase of Ra while increasing drill point angle leads to decrease of Ra. The optimum surface roughness was obtained with point angle of 130°, cutting speed of 40 m/min and feed rate of 0.1 mm/rev, thereby the validity of optimization was confirmed with Taguchi method.

  17. CFPL installs products pipeline with directional drilling

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland number-sign 70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line

  18. Logging Student Learning via a Puerto Rico-based Geologic Mapping Game on the Google Earth Virtual Globe

    Science.gov (United States)

    Gobert, J.; Toto, E.; Wild, S. C.; Dordevic, M. M.; De Paor, D. G.

    2013-12-01

    A hindrance to migrating undergraduate geoscience courses online is the challenge of giving students a quasi-authentic field experience. As part of an NSF TUES Type 2 project (# NSF-DUE 1022755), we addressed this challenge by designing a Google Earth (GE) mapping game centered on Puerto Rico, a place we chose in order to connect with underrepresented minorities but also because its simple geologic divisions minimized map complexity. The game invites student groups to explore the island and draw a geological map with these divisions: Rugged Volcanic Terrain, Limestone Karst Topography, and Surficial Sands & Gravels. Students, represented as avatars via COLLADA models and the GE browser plugin, can move about, text fellow students, and click a 'drill here' button that tells them what lies underground. They need to learn to read the topography because the number of holes they can drill is limited to 30. Then using the GE Polygon tool, they create a map, aided by a custom 'snapping' algorithm that stitches adjacent contacts, preventing gaps and overlaps, and they submit this map for evaluation by their instructor, an evaluation we purposefully did not automate. Initially we assigned students to groups of 4 and gave each group a field vehicle avatar with a designated driver, however students hated the experience unless they were the designated driver, so we revised the game to allow all students to roam independently, however we retained the mutual texting feature amongst students in groups. We implemented the activity with undergraduates from a university in South East USA. All student movements and actions on the GE terrain were logged. We wrote algorithms to evaluate student learning processes via log files, including, but not limited to, number of places drilled and their locations. Pre-post gains were examined, as well as correlations between data from log files and pre-post data. There was a small but statistically significant post-pre gain including a positive

  19. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-09-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) that we utilize at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For sometime, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and re drilled and then logged. The cements have a known water content and can be used as an in situ calibration check. I found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  20. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills.

    Science.gov (United States)

    Mishra, Sunil Kumar; Chowdhary, Ramesh

    2014-06-01

    Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

  1. Estimated method of permeability in the granitic rocks by geophysical loggings; Butsuri kenso shuho ni yoru kakoganchu no tosuisei ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, K; Hashimoto, N. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)]Ogata, N. [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1997-10-22

    Water permeability in granite is estimated by performing geophysical investigation using a 500m-deep test hole drilled in granitic rocks in the vicinity of a Tono mine. The investigation consists of flowmeter logging and geophysical logging. In flowmeter logging, a probe is moved up and down in the hole at a constant speed by use of a cable, and the cable speed and impeller revolution are used to workout the relative speed of the fluid in the hole. In the geophysical logging, a probe attached to the leading end of a logging cable is replaced with other probes so as to acquire different geophysical data. In a hole drilled in a crack-abundant rockbed such as a granitic rockbed, the inflow and outflow of ground water is governed mainly by water-permeable crack zones, and the result of the flowmeter logging show that this hole has three highly water-permeable zones. Using the results of the loggings, a correlative equation is worked out between changes in flow speed and changes in permeability index obtained by hydraulics tests. Among the various results achieved by the geophysical logging, a fine correlationship is found between an equation relative to permeability obtained using electricity and density and water-permeability indexes obtained by hydraulic tests conducted in situ. 4 refs., 8 figs., 1 tab.

  2. Correlating hydrogeostratification with geostratification from nuclear logging and geoelectric sounding in water impregnated traps

    International Nuclear Information System (INIS)

    Bardhan, M.

    1977-01-01

    Subsurface boundary conditions obtained through nuclear logging and geoelectric sounding were compared with the driller's log recorded in a number of boreholes drilled by employing modern down-the-hole hammer rig, to diagnose the relative merits of the methods and to portray the actual subsurface stratigraphic succession as well as hydrophysical conditions in saturated trap formations. It was observed that nuclear logging and resistivity sounding do not furnish the actual geostratigraphy due to lack of sufficient contrast in the relevant physical properties between successive lava flows, but reflects on the prevailing hydrostratigraphy. However, the informations thrown up by them are of immense technical value in guiding ground water development programme through sinking of wells in trappean terrians. It is shown that the horizontal correlation value of nuclear logging can be augmented by combining it with geoelectric sounding. This aids in enhancing the practical utility of nuclear logs in geohydrologic investigations. (author)

  3. Well successfully drilled with high performance water-based fluid: Santos Basins, offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fornasier, Frank C.; Luzardo, Juan P. [Halliburton Company, Houston, TX (United States); Bishnoi, M.L. [Oil and Natural Gas Corporation Ltda. (ONGC), Dehradun (India)

    2012-07-01

    takes into consideration four quadrants aspects: technical, logistical, economical, and environmental considerations. In addition, it was used to successfully drill the 8-1/2 inch interval with no NPT during horizontal drilling operations, tripping, running casing and cementing. No bit balling was observed, and it allowed excellent performance as demonstrated by wellbore conditions while tripping. The drilling fluid was left in hole for around 4 months. Only circulating and minimum treatments, like alkalinity agents and biocides, were applied. Throughout this period, the drilling fluids properties remained stable, and the caliper log presented excellent quality. (author)

  4. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  5. The application of radiation logs to groundwater hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Scott Keys, W [United States Geological Survey, Denver, CO (United States)

    1967-05-15

    The drilling of exploratory holes to determine the availability of groundwater and to plan the most economical methods of water development is expensive. The only technique available at present for obtaining geological and hydrological information through the casing of pre-existing water wells and other boreholes is by radiation logging. Up to now these logging techniques have been little used in groundwater hydrology. This report describes inexpensive portable radiation logging equipment that is available or has been developed for groundwater studies in connection with a general research project on the application of borehole geophysics in groundwater hydrology. It is possible to obtain data on the following: the source, velocity, and chemical quality of groundwater; the location, extent, geometry, bulk density, porosity, permeability, and specific yield of aquifers and associated strata; and the position of casings, casing collars, leaks, perforations, and cement. The radiation logs employed include natural gamma, gamma-gamma, neutron-gamma. neutron epithermal-neutron. and radioactive tracer. The following radioisotopes are utilized: cobalt-60, plutonium-239, americium-241, and iodine-131. Typical radiation logs obtained by the various techniques are described and examples are given of practical applications of radiation logging to groundwater investigations. The applications cited are studies of perched water in basaltic rocks and associated sedimentary strata; the porosity, moisture content, and position of zones into which water was injected in volcanic tuff; the position of the interface between brine and fresh water in fine-grained carbonate rocks and associated fine clastic rocks; the interpretation of porosity from a neutron log; and the location by means of a radioactive tracer of the more permeable fracture zones in a well penetrating crystalline rock. (author)

  6. Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

    1981-05-01

    This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites

  7. Physical properties of uranium host rocks and experimental drilling at Long Park, Montrose County, Colorado. Final report

    International Nuclear Information System (INIS)

    Manger, G.E.; Gates, G.L.; Cadigan, R.A.

    1975-01-01

    A core-drilling study in uranium host rocks of the Jurassic Morrison Formation in southwestern Colorado attempted to obtain samples of host rock in its natural state. Three holes were drilled, holes and core were logged for radioactivity and electrical properties. Samples were analyzed for physical and chemical properties. Drilling results suggest that drilling with dried air yields core with least contamination at least cost. Drilling with oil results in maximum core recovery but also maximum cost and significant core contamination. Drilling with water results in contamination and loss of original pore water. A factor group of variables present are: Those positively related to uranium mineralization are poor sorting, percent by weight clay, percent of pore space containing water; negatively related variables are median grain size (mm), electrical resistivity, permeability. Optimum depth to locate ore seems to be at the top of the pore water capillary circulation zone, below the dehydrated no-capillary-circulation zone

  8. From deep water to deep rock: MWD/LWD technology advancing

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2004-01-01

    Measurement-while-drilling (MWD) and logging-while-drilling (LWD) tools that help operators learn about the geological formations they drill while drilling them, are discussed. New MWD and LWD systems are quickly being developed for both offshore and onshore applications, even though both services are relatively expensive. For the offshore market a new seismic-while-drilling LWD tool has just been introduced by Schlumberger. The seismicVision tool acquires and transmits traditional borehole seismic data without interrupting drilling operations. Similarly, Baker-Atlas also introduced a new LWD system for onshore applications that uses advanced downhole sensing technology in a shorter, lighter, reliable instrument package to carry out well logging with accuracy and precision at up to twice the speed of conventional technology. Precision Drilling Inc. also has a new MWD system out, called HEL (hostile environment logging) which is designed to address shortcomings of currently available deepwater MWD systems. The HEL MWD is rated to operate at downhole pressures of up to 30,000 psi and temperatures of up to 180 degrees C. The entire system, including telemetry tools, environmental severity measurement sensors, and other sophisticated measuring tools are housed in one drill collar. photos.

  9. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.

    1999-01-01

    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  10. Drilling history core hole DC-4

    International Nuclear Information System (INIS)

    1978-12-01

    Core hole DC-4 was completed at a depth of 3998 feet in December, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Sicsson, Inc. furnished the engineering, daily supervision of the cable tool and core drilling activities, and geological core logging for DC-4. Core hole DC-4 is located on the Hanford Site about 3 miles east of the Yakima Barricade and approximately 103 feet southwest of rotary hole DC-5, which was completed to 3990 feet in February, 1978. Hanford Site coordinates reported for hole DC-4 are north 49,385.62 feet and west 85,207.63 feet, and Washington State coordinates are north 454,468.73 feet and east 2,209,990.87 feet. No elevation survey is available for hole DC-4, but it is approximately 745 feet above mean sea level based upon the survey of hole DC-5, which has a reported elevation of 745.16 feet on the top of the 3-inch flange. The purpose of core hole DC-4 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing, cross-hole seismic shear, and pressure wave velocity studies with rotary hole DC-5. Hole DC-4 was drilled through the overburden into basalt bedrock by cable tool methods (0-623 feet) and continuously cored through the final interval (623 to 3998 feet).Core recovery was 95.8 percent of the total footage cored

  11. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  12. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes

  13. The Wunstorf Drilling Project: Coring a Global Stratigraphic Reference Section of the Oceanic Anoxic Event 2

    Directory of Open Access Journals (Sweden)

    Markus Wilmsen

    2007-03-01

    Full Text Available The Wunstorf drilling project aims at establishing a high resolution stable isotope record for the black shale succession (OAE 2 of the CTBI and developing this into a globally applicable high resolutionbio- and chemostratigraphic reference section. Disciplines involved include micropaleontology (calcareous nannofossils, planktonic foraminifera, macropaleontology (ammonites, inoceramids, stable isotopes and cyclostratigraphy mainly based on borehole logging, multisensor core logging, and x-ray flflfluorescence (XRF scanning data. The combination of geochemical, paleontological, and logging data will allow high resolution chemo- and biostratigraphy for the CTBI which may in the future serve as an international standard.

  14. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  15. Origin and in situ concentrations of hydrocarbons in the Kumano forearc basin from drilling mud gas monitoring during IODP NanTroSEIZE Exp. 319

    International Nuclear Information System (INIS)

    Wiersberg, Thomas; Schleicher, Anja M.; Horiguchi, Keika; Doan, Mai-Linh; Eguchi, Nobuhisa; Erzinger, Jörg

    2015-01-01

    Highlights: • Exp. 319 of IODP was the first cruise in the history of scientific ocean drilling with drilling mud gas monitoring. • Hydrocarbons were the only formation-derived gases identified in drilling mud. • Chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. • Absolute CH 4 concentrations in the formation reaching up to 24 L gas /L sediment . - Abstract: NanTroSEIZE Exp. 319 of the Integrated Ocean Drilling Program (IODP) was the first cruise in the history of scientific ocean drilling with drilling mud circulation through a riser. Drilling mud was pumped through the drill string and returned to the drill ship through the riser pipe during drilling of hole C0009A from 703 to 1604 mbsf (meter below sea floor) and hole enlargement from 703 to 1569 mbsf. During riser drilling, gas from returning drilling mud was continuously extracted, sampled and analyzed in real time to reveal information on the gas composition and gas concentrations at depth. Hydrocarbons were the only formation-derived gases identified in drilling mud and reached up to 14 vol.% of methane and 48 ppmv of ethane. The chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. Hydrocarbons released from drilling mud and cuttings correlate with visible allochthonous material (wood, lignite) in drilling cuttings. At greater depth, addition of small but increasing amounts of hydrocarbons probably from low-temperature thermal degradation of organic matter is indicated. The methane content is also tightly correlated with several intervals of low Poisson’s ratio from Vp/Vs observed in sonic velocity logs, suggesting that the gas is situated in the pore space of the rock as free gas. The gas concentrations in the formation, determined from drilling mud gas monitoring, reaching up to 24 L gas /L sediment for methane in hole C0009A, in line with gas concentrations from interpreted downhole sonic logs

  16. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  17. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    Science.gov (United States)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  18. Borehole Logging for Uranium by Gamma-Ray Spectrometry

    DEFF Research Database (Denmark)

    Løvborg, Leif; Nyegaard, P.; Christiansen, E. M.

    1980-01-01

    The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium-iodide, and the photo......The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium...... of the spectrometer system were determined by calculating the average number of U and thorium (Th) counts per meter of borehole and comparing these with the U-Th concentrations in 1-m sections of analyzed drill core. The sensitivity and the background count rate in the uranium window varied appreciably from one hole...

  19. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    Science.gov (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  20. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  1. Test report for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing

  2. Recommended well drilling and testing program

    International Nuclear Information System (INIS)

    Long, J.; Wilson, C.

    1978-07-01

    A well drilling and testing program is recommended by Lawrence Berkeley Laboratory to identify the hydrology of deep basalts in the Pasco Basin. The ultimate objective of this program is to assist in determining the feasibility of locating a nuclear waste repository on the Hanford Reservation. The recommended program has been staged for maximum effectiveness. In the first stage, six wells have been identified for drilling and testing which, when coupled with existing wells, will provide sufficient data for a preliminary overview of basin hydrology and a preliminary determination of the hydrologic suitability of the deep basalt for a repository site. The rate at which the first stage wells are drilled and tested will depend upon the date at which a preliminary determination of site suitability is required. It was assumed that a preliminary determination of suitability would be required in 1980, in which case all six first stage wells would be drilled in FY 1979. If the results of the first stage analysis are favorable for repository siting, tentative repository sites can be identified and a second stage hydrology program can be implemented to provide the necessary details of the flow system. To accomplish this stage, a number of deep wells would be required at locations both inside and outside the basin, with specific sites to be identified as the work progresses to obtain maximum utility of existing data. A program is recommended for testing in each new well and for completion of testing in each existing well. Recommended tests include borehole geophysics, pressure and permeability testing, geochemical sampling, tracer testing, hydrofracturing and borehole fracture logging. The entire data collection program is oriented toward providing the information required to establish and verify an accurate numerical model of the Pasco Basin

  3. Installation of groundwater observation tubes OL-PVP39 - 40 and drilling of shallow drillhole OL-PP90 at Olkiluoto in Eurajoki 2013

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2013-11-15

    In order to extend the groundwater monitoring network at Olkiluoto, Posiva Oy contracted Suomen Malmi Oy (Smoy) to install new groundwater observation tubes to two locations and to drill one shallow drillhole with a standpipe. The identification numbers of the groundwater observation tubes are OL-PVP39, OL-PVP40A and 40B, and the shallow drillhole is named OL-PP90. The observation tubes were installed and the shallow hole drilled between July 29th and August 6th in 2013. The drilling rig used in the installation work was a GM-200 rig. Drilling equipment consisted of casing tubes (v 90/77 mm) with drilling bit, 55 mm geo rods and 64 mm drilling bits and T76-equipment for drilling the shallow hole. Monitoring pipes (PVC, v 60/52 mm) were lowered into the holes inside the casings. The monitoring pipes consist of a lower section of riser pipe, a middle section of screen pipe and an upper section of riser pipe. The screen pipe slot size is 0.3 mm and the length of the screen section is two or three metres. Protective stainless steel covers with lock-up caps were installed around the monitoring tubes and the shallow drillholes. In addition to the installation of the tubes, the work included water level measurements after installation. The core samples of the shallow drillhole were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. (orig.)

  4. LHCb Online Log Analysis and Maintenance System

    CERN Document Server

    Garnier, J-C

    2011-01-01

    History has shown, many times computer logs are the only information an administrator may have for an incident, which could be caused either by a malfunction or an attack. Due to the huge amount of logs that are produced from large-scale IT infrastructures, such as LHCb Online, critical information may be overlooked or simply be drowned in a sea of other messages. This clearly demonstrates the need for an automatic system for long-term maintenance and real time analysis of the logs. We have constructed a low cost, fault tolerant centralized logging system which is able to do in-depth analysis and cross-correlation of every log. This system is capable of handling O(10000) different log sources and numerous formats, while trying to keep the overhead as low as possible. It provides log gathering and management, Offline analysis and online analysis. We call Offline analysis the procedure of analyzing old logs for critical information, while Online analysis refer to the procedure of early alerting and reacting. ...

  5. Importance of drill string assembly swivel in horizontal drilling

    Directory of Open Access Journals (Sweden)

    Edmund Tasak

    2006-10-01

    Full Text Available A part of the drill string – the swivel (rotational connector – accomplishes an important task in the horizontal drilling. Its malfunctioning makes it impossible to draw in ( install large diameter and length pipelines. The causes of the connector break-down during the horizontal drilling are investigated in the paper. The drilling has been made for twenty inches gas pipeline installation during reaming operations. A trouble was encountered making good work conditions of a system consisting of the drilling machine drill string reamer swivel tube shield of Cardan joint and the gas pipeline 500 m long. In this case, the swivel brokes down and the planned operation was not finished. The assessment of improper drilling conditions, selection of operation system components, and drilling parameters and the insufficient technological supervising have created an excessive risk of failure. A proper application of technical analysis would considerably decrease the hazard of failure which cause large costs, delays and decrease of confidence to the drilling contractor and pipeline installation.

  6. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been...... achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of 'warm ice' under high pressure. After excellent progress...... at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few...

  7. Estimation of geothermal gradients from single temperature log-field cases

    International Nuclear Information System (INIS)

    Kutasov, I M; Eppelbaum, L V

    2009-01-01

    A geothermal gradient is one of the most frequently used parameters in logging geophysics. However, the drilling process greatly disturbs the temperature of the formations around the wellbore. For this reason, in order to determine with the required accuracy the formation temperatures and geothermal gradients, a certain length of shut-in time is required. It was shown earlier (Kutasov 1968 Freiberger Forshungshefte C 238 55–61, 1987 Geothermics 16 467–72) that at least two transient temperature surveys are needed to determine the geothermal gradient with adequate accuracy. However, in many cases only one temperature log is conducted in a shut-in borehole. For these cases, we propose an approximate method for the estimation of the geothermal gradient. The utilization of this method is demonstrated on four field examples

  8. Head impact exposure measured in a single youth football team during practice drills.

    Science.gov (United States)

    Kelley, Mireille E; Kane, Joeline M; Espeland, Mark A; Miller, Logan E; Powers, Alexander K; Stitzel, Joel D; Urban, Jillian E

    2017-11-01

    OBJECTIVE This study evaluated the frequency, magnitude, and location of head impacts in practice drills within a youth football team to determine how head impact exposure varies among different types of drills. METHODS On-field head impact data were collected from athletes participating in a youth football team for a single season. Each athlete wore a helmet instrumented with a Head Impact Telemetry (HIT) System head acceleration measurement device during all preseason, regular season, and playoff practices. Video was recorded for all practices, and video analysis was performed to verify head impacts and assign each head impact to a specific drill. Eleven drills were identified: dummy/sled tackling, install, special teams, Oklahoma, one-on-one, open-field tackling, passing, position skill work, multiplayer tackle, scrimmage, and tackling drill stations. Generalized linear models were fitted to log-transformed data, and Wald tests were used to assess differences in head accelerations and impact rates. RESULTS A total of 2125 impacts were measured during 30 contact practices in 9 athletes (mean age 11.1 ± 0.6 years, mean mass 44.9 ± 4.1 kg). Open-field tackling had the highest median and 95th percentile linear accelerations (24.7 g and 97.8 g, respectively) and resulted in significantly higher mean head accelerations than several other drills. The multiplayer tackle drill resulted in the highest head impact frequency, with an average of 0.59 impacts per minute per athlete, but the lowest 95th percentile linear accelerations of all drills. The front of the head was the most common impact location for all drills except dummy/sled tackling. CONCLUSIONS Head impact exposure varies significantly in youth football practice drills, with several drills exposing athletes to high-magnitude and/or high-frequency head impacts. These data suggest that further study of practice drills is an important step in developing evidence-based recommendations for modifying or eliminating

  9. Development of vertical drilling apparatus (Terra-Drill); Entwicklung eines Vertikal-Bohrgeraets (Terra-Drill) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D.

    2009-05-15

    This well-illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the development of a vertical drilling apparatus named Terra-Drill. The various stages of the development of the apparatus, which is based on earlier designs, is discussed. New norms issued in Germany for the size of boreholes for buried vertical heat-exchangers and the appropriate linings to be used are discussed. The new Terra Drill 4407 V drilling apparatus and its testing are discussed. The drill is quoted as being particularly suitable for cramped locations. Technical details are presented and a comprehensive collection of photographs is included. Various preliminary reports and development documentation are included.

  10. Magnetic insights on seismogenic processes from scientific drilling of fault

    Science.gov (United States)

    Ferre, E. C.; Chou, Y. M.; Aubourg, C. T.; Li, H.; Doan, M. L.; Townend, J.; Sutherland, R.; Toy, V.

    2017-12-01

    Modern investigations through scientific drilling of recently seismogenic faults have provided remarkable insights on the physics of rupture processes. Following devastating earthquakes, several drilling programs focused since 1995 on the Nojima, Chelungpu, San Andreas, Wenchuan, Nankai Trough, Japan Trench and New Zealand Alpine faults. While these efforts were all crowned with success largely due to the multidisciplinarity of investigations, valuable insights were gained from rock magnetism and paleomagnetism and deserve to be highlighted. Continuous logging of magnetic properties allows detection of mineralogical and chemical changes in the host rock and fault zone particularly in slip zones, whether these are caused by frictional melting, elevation of temperature, ultracataclasis, or post-seismic fluid rock interaction. Further magnetic experiments on discrete samples including magnetic susceptibility, natural remanent magnetization, hysteresis properties, isothermal remanent magnetization acquisition and first order reversal curves, provide additional constrains on the nature, concentration and grain size of magnetic carriers. These experiments typically also inform on magnetization processes by thermal, chemical, or electrical mechanisms. Magnetic fabrics are generally not investigated on fault rocks from drill cores primarily in an effort to conserve the recovered core. However, recent methodological developments now would allow chemically non-destructive anisotropy of magnetic susceptibility (AMS) measurements to be performed on small 3.5 mm cubes. The mini-AMS method could provide crucial information on the kinematics of frictional melts produced during recent or ancient earthquakes and therefore would constrain the corresponding focal mechanisms. Finally, demagnetization experiments of the natural remanent magnetization (NRM) are one of the most powerful items in the magnetic toolkit because they provide chronological constrains on magnetization processes

  11. Drilling bits for deep drilling and process for their manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, H.; Juergens, R.; Feenstra, R.; Busking, B.E.

    1978-11-30

    The invention concerns a drilling head or a drilling bit for use in deep drilling in underground formations and particularly concerns a drilling bit with a drilling bit body, which has a shank and a hollow space, which is connected with a duct extending through the shank. The drilling bit body has several separate cutting elements for removing material from the floor of a borehole and hydraulic devices for cooling and/or cleaning the cutting elements are provided.

  12. Drilling series. 4. ; Planning geothermal drilling (rotary type). Kussaku series. 4. ; Chinetsusei no kussaku keikaku (shutoshite rotary gata)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T. (S.K. Engineering Co. Ltd., Tokyo (Japan))

    1994-01-31

    The present report explained how to plan the drilling of geothermal well, and select the easing, drilling mud water and drilling rig in order to obtain the steam and hot water. The geothermal wells can be generally classified into exploration wells, production wells and reduction wells. The exploration well is a well to survey the underground strata, geological structure, and existence of steam and hot water, while the production well is a well to produce the steam and hot water. The reduction well is a well to condense the hot water produced by the production well and steam having passed through the power-generating turbine, and return them as condensate underground. The geothermal well is characterized by its high temperature, mud leakage, corrosive matter and scale, all of which make its drilling difficult and its management troublesome for the production and reduction. To plan the drilling, the order of processing are distinct conditioning of drilling differently by type of well, collection of geological survey data, programing for the casing and selection of drilling rig. The present report also gave the stress to affect the casing and standard of steel pipes to be used for the casing. 3 figs., 4 tabs.

  13. Interpretation of wireline geophysical logs. ERDA No. 9 stratigraphic test borehole, DOE WIPP Site, Eddy County, New Mexico

    International Nuclear Information System (INIS)

    Griswold, G.B.; McWhirter, V.C.

    1981-02-01

    A stratigraphic core hole known as ERDA No. 9 was drilled at the approximate center of the Waste Isolation Pilot Plant (WIPP) site located east of Carlsbad, New Mexico. The hole was continuously cored from 1090 to 2887 feet, the total depth of the hole. A suite of 20 wireline geophysical logs were made under open hole conditions over the cored interval. Recording in the field was by analog strip charts. The records were subsequently digitized at 0.5 foot intervals with the data placed on magnetic tape. A simple computer program was devised to interpret rock type and calculate elastic properties based on the digital data. All of the data is available in convenient digital form, and additional computer-assisted analysis is now possible to describe the detailed stratigraphy of the evaporites penetrated in ERDA No. 9. The analysis performed thus far is in excellent agreement with physical examination of the core. The main advantage of correlating the wireline geophysical logs with core is to provide a better basis for using wireline logs to describe rock conditions either in future holes drilled by the simpler rotary method or where core has been lost in cored holes

  14. Geology of the UE12t No. 3 vertical drill hole, area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    Terry, S.S.

    1975-11-01

    The UE12t No. 3 vertical drill hole, located near the north end of Rainier Mesa, was drilled to a total depth of 663 m (2,176 ft). The UE12t No. 3 vertical hole was drilled to further evaluate the subsurface stratigraphy northwest of the t-tunnel complex area in preparation for mining of the U12t.03 (Husky Pup) drift. The drill hole is collared in the Rainier Mesa Member of the Timber Mountain Tuff and penetrates down the stratigraphic section through the Paintbrush Tuff, the welded Grouse Canyon Member of the Belted Range Tuff, tunnel beds 5-3, the Tub Spring Member of the Belted Range Tuff, tunnel bed 2, Crater Flat Tuff, tunnel bed 1, Redrock Valley Tuff, and bottoms in older Tertiary tuffaceous and Paleozoic quartzite rubble having a partially argillized, tuffaceous, soillike matrix. The tuff of Dead Horse Flat and the bedded and ash-flow tuffs of Area 20 were not differentiated in the logging of this drill hole. Stratigraphy, structure, engineering geology, and physical properties and their relation to tunneling are discussed

  15. 46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...

  16. Log4J

    CERN Document Server

    Perry, Steven

    2009-01-01

    Log4j has been around for a while now, and it seems like so many applications use it. I've used it in my applications for years now, and I'll bet you have too. But every time I need to do something with log4j I've never done before I find myself searching for examples of how to do whatever that is, and I don't usually have much luck. I believe the reason for this is that there is a not a great deal of useful information about log4j, either in print or on the Internet. The information is too simple to be of real-world use, too complicated to be distilled quickly (which is what most developers

  17. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L.

    2007-05-01

    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected

  18. SDSS Log Viewer: visual exploratory analysis of large-volume SQL log data

    Science.gov (United States)

    Zhang, Jian; Chen, Chaomei; Vogeley, Michael S.; Pan, Danny; Thakar, Ani; Raddick, Jordan

    2012-01-01

    User-generated Structured Query Language (SQL) queries are a rich source of information for database analysts, information scientists, and the end users of databases. In this study a group of scientists in astronomy and computer and information scientists work together to analyze a large volume of SQL log data generated by users of the Sloan Digital Sky Survey (SDSS) data archive in order to better understand users' data seeking behavior. While statistical analysis of such logs is useful at aggregated levels, efficiently exploring specific patterns of queries is often a challenging task due to the typically large volume of the data, multivariate features, and data requirements specified in SQL queries. To enable and facilitate effective and efficient exploration of the SDSS log data, we designed an interactive visualization tool, called the SDSS Log Viewer, which integrates time series visualization, text visualization, and dynamic query techniques. We describe two analysis scenarios of visual exploration of SDSS log data, including understanding unusually high daily query traffic and modeling the types of data seeking behaviors of massive query generators. The two scenarios demonstrate that the SDSS Log Viewer provides a novel and potentially valuable approach to support these targeted tasks.

  19. U.S. drilling contractors could face stiff challenges

    International Nuclear Information System (INIS)

    Simmons, M.R.

    1993-01-01

    Although the outlook for most segments of the contract drilling business is now more optimistic than in the past decade, the increased activity has brought several problems: the availability of fully trained crews, the need for new capital, and the limited number of quality drillstrings. These problems will grow in importance if natural gas deliverability begins to decline visibly and once the scramble to correct this decline begins. As the drilling recovery unfolds, the most important lesson to remember, based on worldwide activity in the past year, is how rapidly conditions can change and how quickly excess capacity can turn into chronic shortages. The various segments of the world wide contract drilling industry's prospects have changed dramatically during the past 12 months, and oddly, some market sectors have improved while others have become worse. These quick changes highlight the unpredictable and volatile nature of the markets for contract drilling and other services needed to drill and complete oil and gas wells. The paper describes the business of well drilling onshore and offshore in the US, drilling activities in Canada, international markets, capacity, the supplies of natural gas, Gulf of Mexico activities, drill pipe shortages, manpower shortages, and challenges offshore

  20. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

    2002-07-24

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

  1. Logs and completion data for water and mass balance wells in Mortandad and Ten Site Canyons

    International Nuclear Information System (INIS)

    McLin, S.G.; Koch, R.J.

    1997-10-01

    Twenty-four monitoring wells were drilled and completed in December 1994 as part of a water and mass balance study for the shallow perched aquifer in the Mortandad Canyon alluvium and in the lower part of Ten-Site Canyon. The wells penetrated the alluvium containing the aquifer and were completed into the top of the weathered tuff. Twelve of these wells encountered the Tshirege Member (Cooing Unit 1 g) of the Bandelier Tuff below the canyon alluvium, while ten wells made contact with the Cerro Toledo interval, which lies between the Tshirege and Otowi Members of the Bandelier Tuff. The remaining two wells were completed into the alluvium above the weathered tuff contact. These wells provide access for continuous water level measurement and water sampling. Data from these new wells will be used to determine changes in alluvial aquifer water storage, water quality sampling, and estimation of seepage into the unsaturated Bandelier Tuff below the alluvium. This report documents drilling activities and well completion logs for the water and mass balance study. These wells also provide critical new data for fourteen north-south vertical cross-sections constructed for the canyon alluvium

  2. A comparison of the moisture gauge and the neutron log in air-filled holes at NTS

    International Nuclear Information System (INIS)

    Hearst, J.R.; Carlson, R.C.

    1993-08-01

    Two methods are commonly used to measure water content of geologic materials by neutron diffusion, the moisture gauge and the neutron log. Both are used at NTS, the moisture gauge in tunnels, the neutron log in vertical drilled holes. In this work, the moisture gauge and the neutron log are compared for use in air-filled holes NTS. The measurement instruments have evolved with very different operational characteristics and one important physics difference, the source to detector spacing. The moisture gauge has a very short, 0--6 cm spacing, with little internal shielding, and count increases with water. The neutron log has a long spacing, 30--50 cm, substantial internal shielding, and exhibits decreasing count with increasing water. The moisture gauge gives better bed resolution than the neutron log. Because its count increases with water, the moisture gauge is more strongly affected by water in the borehole, especially in dry formations. In these conditions the neutron log is the method of choice. In air-filled holes, if source size or logging time is not a constraint, the relative sensitivity of the two tools to water is determined by the relative strengths of borehole effects as fluid, holesize, or tool-wall gap. If source size is a constraint for safety reasons, the short spacing provides higher countrates for a given detector efficiency and thus better relative precision in determining the true count. If source size is limited because of detector or electronics saturation, the short spacing will be better at high water content, while the long spacing will be better at low water content. The short spacing may have an advantage because it can make better contact with the hole wall and can be more easily corrected for gap. The long spacing tool is currently used in vertical holes at NTS because that is the only tool available from logging contractors. Since they are most concerned with high water contents, the short spacing tool could prove to be better

  3. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  4. Subsurface Rock Physical Properties by Downhole Loggings - Case Studies of Continental Deep Drilling in Kanto Distinct, Japan

    Science.gov (United States)

    Omura, K.

    2014-12-01

    In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity

  5. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    microspine toes that independently find holes and ledges on a rock to create an anchor. Once the system is anchored, a linear translation mechanism moves the drill axially into the surface while maintaining the proper WOB. The linear translation mechanism is composed of a ball screw and stepper motor that can translate a carriage with high precision and applied load. The carriage slides along rails using self-aligning linear bearings that correct any axial misalignment caused by bending and torsion. The carriage then compresses a series of springs that simultaneously transmit the load to the drill along the bit axis and act as a suspension that compensates for the vibration caused by percussive drilling. The drill is a compacted, modified version of an off-the-shelf rotary percussive drill, which uses a custom carbide-tipped coring bit. By using rotary percussive drilling, the drill time is greatly reduced. The percussive action fractures the rock debris, which is removed during rotation. The final result is a 0.75-in. (.1.9- cm) diameter hole and a preserved 0.5- in. (.1.3-cm) diameter rock core. This work extends microspine technology, making it applicable to astronaut missions to asteroids and a host of robotic sampling concepts. At the time of this reporting, it is the first instrument to be demonstrated using microspine anchors, and is the first self-contained drill/anchor system to be demonstrated that is capable of drilling in inverted configurations and would be capable of drilling in microgravity.

  6. On the influence of infiltration of radioactive beds by flushing fluid on γ-ray logging results obtained from uranium deposit No. 387

    International Nuclear Information System (INIS)

    Ren Bingxiang; Zhang Yuechun; Ai Shuyi.

    1985-01-01

    A large number of field logging data obtained during the course of exploration on uranium deposit No. 387 show when the radioactive beds are encountered by drill holes and the drilling continues the γ-ray intensity decreases. It is considered that the escape of emanation does not considerably influence the logging results. Therefore, based upon the experiment of immerseing ores in fluid and geological and hydrogeological data of the deposit, the hypotheses that the γ-ray intensity in drill hole is closely related with the infiltration of flushing fluid is suggested. The ore bodies are strictly controlled by faults. Most of the uranium and thorium are absorbed by pelitic-carbonaceous cements or fill the porous spaces in structural breccia and cataclasite. They are easy to dissolve in water. Moreover, the ore-bearing structures are the unique water aquifers which is under pressure. As the level of flushing fluid is higher than the pressure head so it continuously pours into the ore-bearing beds, resulting in the infiltration of U and Ra. Consequently, the radioactivity detected is low

  7. Drilling the leading edge of the mantle wedge and the underlying metamorphic sole of the Samail Ophiolite: Hole BT1B, Oman Drilling Project

    Science.gov (United States)

    Morishita, T.; Kelemen, P. B.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.; Takazawa, E.; Teagle, D. A. H.

    2017-12-01

    Hole BT1B (23°21.861' N, 58°10.957' E) was drilled by the Oman Drilling Project (OmDP) on the north side of Wadi Mansah in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole BT1B was cored from 6 to 23 March 2017, to a depth of 300.05 m. The outer surfaces of the cores were imaged and described onsite before being curated, boxed and shipped to the IODP drill ship Chikyu. Hole BT1B sampled carbonated peridotite (listvenite), 2 carbonate-veined serpentinite bands at 80-100 and 180-185 m depth, a few cm of ultracataclasite and 70 cm of fault gouge at 197 m depth, followed by 103 m metamorphic sole. Onboard Chikyu, BT1B underwent X-ray computed tomography (CT) and multi-sensor logging, imaging and spectroscopy, macroscopic and thin section observations, physical properties measurements, and XRF, XRD and ICP-MS analyses. 1st authors of abstracts reporting initial results are Beinlich (matrix characteristics), de Obeso (modeling mass transfer), Godard (XRF and ICP-MS whole rock data), Greenberger (infrared spectroscopy), Johnson (XRF core scanner), Kelemen (overall petrology), Manning (veins), and Michibayashi (X-ray CT). Listvenite is composed of carbonate + quartz + Fe-oxyhydroxides, + minor relict spinel ± chromian mica (fuchsite). The mineralogy suggests formation at < 150°C. The bulk rock density is similar to that of gabbro but the P-wave velocity is generally higher. Rock textures suggest viscous deformation, while additional brittle deformation is recorded by older veins and younger breccias and faults. The metamorphic sole consists of fine-grained to microcrystalline

  8. Joint Inversion of Geochemical Data and Geophysical Logs for Lithology Identification in CCSD Main Hole

    Science.gov (United States)

    Deng, Chengxiang; Pan, Heping; Luo, Miao

    2017-12-01

    The Chinese Continental Scientific Drilling (CCSD) main hole is located in the Sulu ultrahigh-pressure metamorphic (UHPM) belt, providing significant opportunities for studying the metamorphic strata structure, kinetics process and tectonic evolution. Lithology identification is the primary and crucial stage for above geoscientific researches. To release the burden of log analyst and improve the efficiency of lithology interpretation, many algorithms have been developed to automate the process of lithology prediction. While traditional statistical techniques, such as discriminant analysis and K-nearest neighbors classifier, are incompetent in extracting nonlinear features of metamorphic rocks from complex geophysical log data; artificial intelligence algorithms are capable of solving nonlinear problems, but most of the algorithms suffer from tuning parameters to be global optimum to establish model rather than local optimum, and also encounter challenges in making the balance between training accuracy and generalization ability. Optimization methods have been applied extensively in the inversion of reservoir parameters of sedimentary formations using well logs. However, it is difficult to obtain accurate solution from the logging response equations of optimization method because of the strong overlapping of nonstationary log signals when applied in metamorphic formations. As oxide contents of each kinds of metamorphic rocks are relatively less overlapping, this study explores an approach, set in a metamorphic formation model and using the Broyden Fletcher Goldfarb Shanno (BFGS) optimization algorithm to identify lithology from oxide data. We first incorporate 11 geophysical logs and lab-collected geochemical data of 47 core samples to construct oxide profile of CCSD main hole by using backwards stepwise multiple regression method, which eliminates irrelevant input logs step by step for higher statistical significance and accuracy. Then we establish oxide response

  9. Scientific Results of Conduit Drilling in the Unzen Scientific Drilling Project (USDP

    Directory of Open Access Journals (Sweden)

    Kozo Uto

    2005-09-01

    Full Text Available Abstract Directional drilling at Unzen Volcano in Japan duringmid of 2004 penetrated the magma conduit and successfullyrecovered samples of the lava dike that is believed to havefed the 1991–1995 eruption. The dike was sampled about1.3 km below the volcano’s summit vent and is intrudedinto a broader conduit zone that is 0.5 km wide. This zoneconsists of multiple older lava dikes and pyroclastic veinsand has cooled to less than 200˚C. The lava dike sample wasunexpectedly altered, suggesting that circulation of hydrothermalfluids rapidly cools the conduit region of even veryactive volcanoes. It is likely that seismic signals monitoredprior to emergence of the lava dome reflected fracturing ofthe country rocks, caused by veining as volatiles escapedpredominantly upward, not outward, from the rising magma.Geophysical and geological investigation of cuttings andcore samples from the conduit and of bore-hole logging datacontinues.

  10. Processing and display of nuclear magnetism logging signals: application to residual oil determination

    International Nuclear Information System (INIS)

    Brown, R.J.S.; Neuman, C.H.

    1980-01-01

    A presentation is made of a series of computations and signal displays which help to show the nature of NML signals in general as well as to show the response to particular formation, hole, and tool conditions. Such processing of digitally recorded signals enables improved accuracy and bed resolution over that presented with the raw log. The treatment of drilling mud filtrate to eliminate NML signal from the brine phase in the invaded zone is described. Logs are shown as recorded before and after invasion of treated mud filtrate. This treatment causes the NML signal to correspond to residual oil only, enabling accurate and relatively inexpensive measurement of residual oil. 24 refs

  11. New LWD tools are just in time to probe for baby elephants

    Energy Technology Data Exchange (ETDEWEB)

    Ghiselin, D.

    1997-04-01

    Development of sophisticated formation evaluation instrumentation for use while drilling has led to a stratification of while-drilling services. Measurements while drilling (MWD) comprises measurements of mechanical parameters like weight-on-bit, mud pressures, torque, vibration, hole angle and direction. Logging while drilling (LWD) describes resistivity, sonic, and radiation logging which rival wireline measurements in accuracy. A critical feature of LWD is the rate that data can be telemetered to the surface. Early tools could only transmit 3 bits per second one way. In the last decade, the data rate has more than tripled. Despite these improvements, LWD tools have the ability to make many more measurements than can be telemetered in real-time. The paper discusses the development of this technology and its applications.

  12. Superhard nanophase materials for rock drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadangi, R.K.; Voronov, O.A.; Tompa, G.S. [Diamond Materials Inc., Pisctaway, NJ (United States); Kear, B.H. [Rutgers Univ., Piscataway, NJ (United States)

    1997-12-31

    Diamond Materials Incorporated is developing new class of superhard materials for rock drilling applications. In this paper, we will describe two types of superhard materials, (a) binderless polycrystalline diamond compacts (BPCD), and (b) functionally graded triphasic nanocomposite materials (FGTNC). BPCDs are true polycrystalline diamond ceramic with < 0.5 wt% binders and have demonstrated to maintain their wear properties in a granite-log test even after 700{degrees}C thermal treatment. FGTNCs are functionally-graded triphasic superhard material, comprising a nanophase WC/Co core and a diamond-enriched surface, that combine high strength and toughness with superior wear resistance, making FGTNC an attractive material for use as roller cone stud inserts.

  13. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques; SEMIANNUAL

    International Nuclear Information System (INIS)

    Wray, Laura L.; Eby, David E.; Chidsey, Jr. Thomas C.

    2002-01-01

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells

  14. Design and results of the Mariano Lake-Lake Valley drilling project, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Kirk, A.R.; Huffman, A.C. Jr.; Zech, R.S.

    1986-01-01

    This drilling project included 12 holes along a north-south-trending line from Mariano Lake to Lake Valley, New Mexico, near the southern margin of the San Juan basin. Of a total 33,075 ft (10,088m) drilled, 4,550 ft (1,388m) were cored in the stratigraphic interval that included the basal part of the Dakota Sandstone, the Brushy Basin and Westwater Canyon Members of the Morrison Formation, and the upper part of the Recapture Member of the Morrison Formation. The project objectives were (1) to provide cores and geophysical logs for study of the sedimentology, petrography, geochemistry, and mineralization in the uranium-bearing Westwater Canyon Member; (2) to provide control for a detailed seismic study of Morrison stratigraphy and basement structures; (3) to define and correlate the stratigraphy of Cretaceous coal-bearing units; (4) to supply background data for studies of ground-water flow pattern and ground-water quality; and (5) to provide data to aid resource assessment or uranium and coal. The project design included selection of (1) drill-hole locations to cross known ore and depositional trends in the Morrison Formation; (2) a coring interval to include the uranium-bearing unit and adjacent units; geophysical logs for lithologic correlations, quantitative evaluation of uranium mineralization, qualitative detection of coal beds, preparation of synthetic seismograms, and magnetic susceptibility studies of alteration in the Morrison; and (3) a high-salinity mud program to enhance core recovery

  15. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  16. Drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Umanchik, N P; Demin, A V; Khrustalev, N N; Linnik, G N; Lovchev, S V; Rozin, M M; Sidorov, R V; Sokolov, S I; Tsaregradskiy, Yu P

    1981-01-01

    A drilling unit is proposed which includes a hydraulic lifter, hydraulic multiple-cylinder pump with valve distribution and sectional drilling pump with separators of the working and flushing fluid. In order to reduce metal consumption and the overall dimensions of the drilling unit, the working cavity of each cylinder of the hydraulic multiple-cylinder pump is equipped with suction and injection valves and is hydraulically connected to the working cavity by one of the sections of the drilling pump.

  17. Installation of groundwater observation tubes OL-PVP36-38 and drilling of shallow drillholes OL-PP70-71 at Olkiluoto in Eurajoki 2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-05-01

    In order to widen the groundwater monitoring network at Olkiluoto, Posiva Oy contracted Suomen Malmi Oy (Smoy) to install new groundwater observation tubes to three locations and to drill two shallow drillholes with standpipes. The identification numbers of the groundwater observation tubes are OL-PVP36, OL-PVP37A, 37B, 37C, OL-PVP38A, 38B, 38C and 38D, and the shallow drillholes are named OL-PP70 and OL-PP71. The observation tubes were installed and the shallow holes drilled between September 22nd and October 12th in 2011. The drilling rig used in the installation work was a GM-200 rig. Drilling equipment consisted of casing tubes (90/77 mm) with drilling bit, 55 mm geo rods and 64 mm drilling bits and T76-equipment for drilling the shallow holes. Monitoring pipes (PVC, 60/52 mm) were lowered into the holes inside the casings. The monitoring pipes consist of a lower section of riser pipe, a middle section of screen pipe and an upper section of riser pipe. The screen pipe slot size is 0.3 mm and the length of the screen section is two metres. Protective stainless steel covers with lock-up caps were installed around the monitoring tubes and the shallow drillholes. In addition to the installation of the tubes, the work included water level measurements after installation. The core samples of the shallow drillholes were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. (orig.)

  18. Installation of groundwater observation tubes OL-PVP36-38 and drilling of shallow drillholes OL-PP70-71 at Olkiluoto in Eurajoki 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-05-15

    In order to widen the groundwater monitoring network at Olkiluoto, Posiva Oy contracted Suomen Malmi Oy (Smoy) to install new groundwater observation tubes to three locations and to drill two shallow drillholes with standpipes. The identification numbers of the groundwater observation tubes are OL-PVP36, OL-PVP37A, 37B, 37C, OL-PVP38A, 38B, 38C and 38D, and the shallow drillholes are named OL-PP70 and OL-PP71. The observation tubes were installed and the shallow holes drilled between September 22nd and October 12th in 2011. The drilling rig used in the installation work was a GM-200 rig. Drilling equipment consisted of casing tubes (90/77 mm) with drilling bit, 55 mm geo rods and 64 mm drilling bits and T76-equipment for drilling the shallow holes. Monitoring pipes (PVC, 60/52 mm) were lowered into the holes inside the casings. The monitoring pipes consist of a lower section of riser pipe, a middle section of screen pipe and an upper section of riser pipe. The screen pipe slot size is 0.3 mm and the length of the screen section is two metres. Protective stainless steel covers with lock-up caps were installed around the monitoring tubes and the shallow drillholes. In addition to the installation of the tubes, the work included water level measurements after installation. The core samples of the shallow drillholes were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. (orig.)

  19. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  20. Real-Time Pore Pressure Detection: Indicators and Improved Methods

    Directory of Open Access Journals (Sweden)

    Jincai Zhang

    2017-01-01

    Full Text Available High uncertainties may exist in the predrill pore pressure prediction in new prospects and deepwater subsalt wells; therefore, real-time pore pressure detection is highly needed to reduce drilling risks. The methods for pore pressure detection (the resistivity, sonic, and corrected d-exponent methods are improved using the depth-dependent normal compaction equations to adapt to the requirements of the real-time monitoring. A new method is proposed to calculate pore pressure from the connection gas or elevated background gas, which can be used for real-time pore pressure detection. The pore pressure detection using the logging-while-drilling, measurement-while-drilling, and mud logging data is also implemented and evaluated. Abnormal pore pressure indicators from the well logs, mud logs, and wellbore instability events are identified and analyzed to interpret abnormal pore pressures for guiding real-time drilling decisions. The principles for identifying abnormal pressure indicators are proposed to improve real-time pore pressure monitoring.

  1. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  2. A new drilling method-Earthworm-like vibration drilling.

    Science.gov (United States)

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  3. Drilling reorganizes

    Science.gov (United States)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  4. Tangafric: a software for the estimation of textural and hydraulic properties in shallow aquifers from well logs in Senegal and Guinea

    Science.gov (United States)

    Fussi, Fabio; Bonomi, Tullia; Fava, Francesco; Hamidou, Barry; Hamidou Khane, Cheikh; Faye, Gayane; Wade, Souleye; Colombo, Roberto

    2014-05-01

    Background In order to increase access to drinking water in Africa there is more and more interest in the promotion of manual drilling techniques, without need of expensive drilling equipment, but they can be applied only in those areas with suitable hydrogeological conditions: thick layers of unconsolidated sediments and shallow groundwater level. Mapping of suitable zones for manual drilling at national level in Africa is a crucial activity and local institutions and UNICEF are implementing specific programs for its promotion, but the limitation in available data concerning shallow hydrogeological aquifers are limited. The research has been developed in the project "Use of remote sensing and terrain modeling to identify suitable zones for manual drilling in Africa and support low cost water supply", within the scientific cooperation between the University of Milano-Bicocca, Universite' Cheick Anta Diop (Dakar Senegal) , SNAPE - Service Nationale de Points d'Eau (Conakry Guinea), UNICEF Senegal and UNICEF Guinea. The project is funded by NERC (National Environmental Research Council, UK). Objective of the research: The presented work is only the starting point of the project aiming to elaborate an automatic procedures to manage and improve the existing database of borehole logs in Senegal and Guinea for the interpretation of shallow hydrogeological conditions and identification of suitable zones for manual drilling, in two pilot areas: Louga (Northwestern Senegal) and Faranah/Kankan (Eastern Guinea). Within the objective of the project is also considered the integration of Remote Sensing to support hydrogeological interpretation, especially where borehole logs are not present. Methodology Focus is to create a hydrogeological database, TANGAFRIC, to organize, codify and elaborate hydrogeological data. The metodology derives from the software TANGRAM (www.tangram.samit.unimib.it) produced by the University of Milano Bicocca, with innovative aspect of stratigraphic

  5. Investigating Created Properties of Nanoparticles Based Drilling Mud

    Science.gov (United States)

    Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar

    2018-05-01

    The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.

  6. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  7. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    Science.gov (United States)

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P drilling protocol proposed herein may represent a safe approach for implant site preparation.

  8. Advantages and limitations of remotely operated sea floor drill rigs

    Science.gov (United States)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.

  9. Application of just-in-time manufacturing techniques in radioactive source in well logging industry

    Directory of Open Access Journals (Sweden)

    Atma Yudha Prawira

    2017-03-01

    Full Text Available Nuclear logging is one of major areas of logging development. This paper presents an empirical investigation to bring the drilling and completion of wells from an ill-defined art to a refined sci-ence by using radioactive source to “look and measure” such as formation type, formation dip, porosity, fluid type and numerous other important factors. The initial nuclear logging tools rec-ords the radiation emitted by formation as they were crossed by boreholes. Gamma radiation is used in well logging as it is powerful enough to penetrate the formation and steel casing. The ra-dioactive source is reusable so that after engineer finished the job the radioactive source is sent back to bunker. In this case inventory level of radioactive source is relatively high compared with monthly movement and the company must spend large amount of cost just for inventory. After calculating and averaging the monthly movement in 2014 and 2015, we detected a big pos-sibility to cut the inventory level to reduce the inventory cost.

  10. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  11. Radiation incident in oil well logging

    International Nuclear Information System (INIS)

    Lozada, J.A.

    1998-01-01

    On June 4th 1997 equipment failure and violation of approved procedures by a crew of workers initiated a series of events that resulted in the unnecessary exposure to neutron and gamma radiation, from a 666 GBq Am 241 Be source, of forty two workers from a well logging company in Venezuela. Due to the presence of dry mud or drilling fluids inside the logging tool, the nosepiece was screwed off the rest of the source holder; this piece was mistaken for the entire source holder thus leaving the source inside the tool. The tool was labelled for maintenance and electronic laboratory personal worked near the source for seven hours before they identify its presence. As soon as the incident was detected a contingency plan was implemented and the source could be retrieved from the tool and placed in its shipping container. The TLD badges indicate doses well below the annual limit of 20 mSv, and none of the workers involved in the incident seem to show serious health consequences from it. After the incident, in order to avoid the occurrence of similar situations, a better source and tool maintenance program was implemented, all the workers were re-trained, and area monitors were installed in all operations bases. (author)

  12. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    Science.gov (United States)

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  13. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.

    2007-01-01

    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  14. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

  15. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  16. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time to accomplish the implant bed preparation with a single-drill protocol in type IV bone is influenced by the drilling speed and not by the drill design. As the speed decreases, then

  17. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  18. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  19. Emplacement hole drill evaluation and specification study. Volume I

    International Nuclear Information System (INIS)

    1977-01-01

    Results of a conceptual design program are presented for mine floor drilling in preparation for radioactive waste disposal. Two classes of drills can be used to drill emplacement holes in salt. Both are sufficiently rugged and reliable. Raise borers have a higher capital cost and require more modifications, but are more flexible in other applications and require less labor. The life cycle cost for the raise borers and for the auger rigs are about the same, while the life cycle costs of bucket drills are much higher. As long as the hole is 36 inches in diameter or less and 40 feet deep or less in salt, then the auger rig is recommended because of the lower capital cost and lower operating cost. This recommended system represents what is thought to be the best combination of available drill components assembled into a drill rig which will provide at least adequate performance. Furthermore, this drill system can be procured from at least three manufacturers. If the facility criteria change significantly, however, then the drill rig recommendations will have to be reassessed on the merits of the changes. The drill rig manufacturers can be quite flexible in combining components provided the buyer is willing to accept components with which the manufacturer has had experience. If this condition can be met, then most drill rig manufacturers will include the associated design cost as part of the drill cost. If special components are required, however, then the number of manufacturers willing to participate in a procurement may be severely reduced

  20. The First D/V Chikyu IODP Operations: Successful Logging and Coring During NanTroSEIZE Stage 1 Expeditions

    Directory of Open Access Journals (Sweden)

    Moe Kyaw Thu

    2008-07-01

    Full Text Available The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE is a multi-expedition IODP drilling project aimed at drilling, coring, logging, and instrumenting the seismogenic zone of an active subduction margin , in a region thought to generate megathrust earthquakes of magnitude >8.0 on the moment-magnitude scale (Tobin and Kinoshita, 2006. The Nankai Trough, offshore of the Kii Peninsula, Honshu, Japan (Fig. 1 was chosen as the location for thisproject based on a number of scientific drilling proposals to IODP. These reviewed existing drilling data in the region, the long-term historical and recent record of great earthquakes, the social and societal relevance of the area, and the accessibility of the seismogenic zone to present drilling technology. The first stage of this multi-stage project was intended to accomplish a broad characterization of the shallow geology, geophysics, physical properties, heat flow, and fluid flow in a transect across the downgoing Philippine Sea Plate, the toe of the Nankai accretionary prism, the megasplay fault zone region on the continental slope, and the Kumano Basin that lies between the accretionary prism and the KiiPeninsula, on the continental shelf (Fig. 2.

  1. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  2. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    International Nuclear Information System (INIS)

    Fecht, K.R.; Lillie, J.T.

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area

  3. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  4. Impact assessment of radionuclide dispersion due to stuck of sources used in well logging

    International Nuclear Information System (INIS)

    Amado, V. A.; Alvarez, D.E.; Lee Gonzáles, H.

    2015-01-01

    The well logging allows to characterize and to predict the hydrocarbon potential of an area. For this, tools that may contain one or more radioactive sources are used. Eventually, they may be stuck at a certain depth, without viable technical alternatives for recovery. In this case, it is necessary to implement actions that minimize the risk of release of radioactive material into the groundwater, because of the natural degradation of shielding or by the accidental destruction by the unexpected collision with another tool, in a possible future drilling. In this paper, a simplified assessment of the doses associated with the natural degradation and the breakdown of shielding radioactive sources is presented. For this purpose two main pathways of exposure; incorporation by ingestion of contaminated water from the aquifer and external irradiation because of the drilling mud that rise to the surface and distributed over it, are considered. Each of these pathways corresponds to a different scenario. In the first scenario, the evaluation was performed by applying the Dispersion of Radionuclides in Aquifers model that take in account pollutants dispersion in the aquifer unto extraction well water. This model solves the equation of solute transport in porous media in three dimensions, considering soil retention and radioactive decay. In the second scenario the contaminated mud rises from the well to the surface, due to actions taken to retrieve stuck sources or because of new drillings are assumed. The aim of this work is to present a simple and conservative method to estimate doses involved in the natural degradation of shielding or by accidental destruction of sources used in well logging. (authors) [es

  5. A comparison of the moisture gauge and the neutron log in air-filled holes at NTS

    International Nuclear Information System (INIS)

    Hearst, J.R.; Carlson, R.C.

    1993-01-01

    Two methods are commonly used to measure water content of geologic materials by neutron diffusion. One is used mostly in agricultural, mining and civil engineering areas and is called a moisture gauge. The other is used principally in petroleum and mineral exploration, and is called a neutron log. Both are used at NTS, the moisture gauge principally in tunnels, the neutron log in vertical drilled holes. There is little communication between the two industrial groups, and the measurement instruments have evolved with very different operational characteristics, and one important physics difference, the source to detector spacing. The moisture gauge has a very short, 0-6 cm, spacing, with little internal shielding, and count increases with water. In contrast, the neutron log has a long spacing, 30-50 cm, substantial internal shielding, and exhibits decreasing count with increasing water. Because of its short spacing the moisture gauge gives better bed resolution than the neutron log. Because its count increases with water, the moisture gauge is more strongly affected by water in the borehole, especially in dry formations. In these conditions the neutron log is the method of choice. In air-filled holes, if source size or logging time is not a constraint, the relative sensitivity of the two tools to water is determined by the relative strengths of borehole effects as fluid, holesize, or tool-wall gap. If source size is a constraint for safety reasons, the short spacing provides higher countrates for a given detector efficiency and thus better relative precision in determining the true count. If source size is limited because of detector or electronics saturation, the short spacing will be better at high water content, while the long spacing will be better at low water content. In any case the short spacing may have an advantage because it can make better contact with the hole wall and it can be more easily corrected for gap

  6. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  7. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    Science.gov (United States)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Scientific drilling projects imply numerous aspects that are difficult to handle for individual research groups. Therefore, about three years ago a joint effort was launched in the Swedish geoscientific community to establish a national program for scientific drilling, the Swedish Deep Drilling Program (SDDP). Soon afterwards, several working groups established drilling proposals with Nordic and, also, international participation. With this serious interest in scientific drilling SDDP was able to successfully promote the Swedish membership in ICDP which commenced in 2008. Two SDDP projects achieved workshop grants from the International Continental Scientific Drilling Program (ICDP) in 2009. In the same year the Swedish Research Council decided to support an application for a truck-mounted drill rig - a big success for the SDDP working group. Scientific Drilling infrastructure: SDDP envisages a mobile platform that is capable of core drilling to at least 2500 m depth. The procurement will be made during 2010 and first operations are planned for 2011. This drill rig is primarily intended for use in the SDDP drilling projects, but will be rented out to other scientific drilling projects or even commercial enterprises in the remaining time to cover maintenance and future upgrade costs. SDDP's drill rig will be unique in Europe and complementary to the deep drilling InnovaRig of the GFZ German Research Centre for Geosciences. Until now, drilling to 2000 - 3000 m implied the use of a full-sized drill rig like the InnovaRig or the mobilization of a core drill rig from another continent. This gap will now be filled by Sweden's upcoming scientific drilling infrastructure. Drilling projects and proposals: Presently, SDDP serves six projects: "Collisional Orogeny in the Scandinavian Caledonides" (COSC; ICDP workshop spring 2010), the "Postglacial Fault Drilling Project" (PFDP; ICDP workshop autumn 2010), a "Deep Rock Laboratory" (DRL), "Palaeoproterozoic Mineralized Volcanic

  8. Geologic implications of large-scale trends in well-log response, northern Green River Basin, Wyoming

    International Nuclear Information System (INIS)

    Prensky, S.E.

    1986-01-01

    Well-log response in lower Tertiary and Upper Cretaceous rocks in the northern Green River basin, Wyoming, is examined. Digitally recorded well-log data for selected wells located throughout the basin were processed by computer and displayed as highly compressed depth-scale plots for examining large-scale geologic trends. Stratigraphic units, formed under similar depositional conditions, are distinguishable by differing patterns on these plots. In particular, a strong lithologic contrast between Tertiary and underlying Upper Cretaceous non-marine clastic rocks is revealed and correlated through the study area. Laboratory analysis combined with gamma-ray spectrometry log data show that potassium feldspars in the arkosic Tertiary sandstones cause the contrast. The nature and extent of overpressuring has been examined. Data shift on shale conductivity and shale acoustic transit-time plots, previously ascribed to changes in pore pressure, correspond to stratigraphic changes and not necessarily with changes in pore pressure as indicated by drilling-mud weights. Gulf Coast well-log techniques for detecting overpressuring are unreliable and ineffectual in this basin, which has experienced significantly different geologic depositional and tectonic conditions

  9. Drilling cost analysis

    International Nuclear Information System (INIS)

    Anand, A.B.

    1992-01-01

    Drilling assumes greater importance in present day uranium exploration which emphasizes to explore more areas on the basis of conceptual model than merely on surface anomalies. But drilling is as costly as it is important and consumes a major share (50% to 60%) of the exploration budget. As such the cost of drilling has great bearing on the exploration strategy as well as on the overall cost of the project. Therefore, understanding the cost analysis is very much important when planning or intensifying an exploration programme. This not only helps in controlling the current operations but also in planning the budgetary provisions for future operations. Also, if the work is entrusted to a private party, knowledge of in-house cost analysis helps in fixing the rates of drilling in different formations and areas to be drilled. Under this topic, various factors that contribute to the cost of drilling per meter as well as ways to minimize the drilling cost for better economic evaluation of mineral deposits are discussed. (author)

  10. Influence of the motion of drill-pipestring and drilling mud on the pressure in the well

    Energy Technology Data Exchange (ETDEWEB)

    Lucki, Z

    1965-10-01

    While running drill stem into a well, the pressure in the borehole is not constant. Its variation depends on the piston-cylinder action of the pipe and the borehole. It has been shown (by mathematical analyses) that the magnitude of hydrodynamic pressure does not depend on whether or not the drill stem column has a check valve. Equations are deduced to calculate the hydrodynamic pressure in the borehole from the studies of displacement of a cylindrical body in a plastic dispersal system. The factors which most influence the hydrodynamic pressure are the properties of the drilling mud. Since variations in the hydrostatic pressure are governed by the hydrodynamic pressure, in order to avoid any difficulty in the borehole, the operation has to be carried out in such a way that the pressure varies between 2 limits; the lower one being defined by the formation pressure, and the upper one by the fracturing pressure.

  11. Classifying zones of suitability for manual drilling using textural and hydraulic parameters of shallow aquifers: a case study in northwestern Senegal

    Science.gov (United States)

    Fussi, F. Fabio; Fumagalli, Letizia; Fava, Francesco; Di Mauro, Biagio; Kane, Cheik Hamidou; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto; Bonomi, Tullia

    2017-12-01

    A method is proposed that uses analysis of borehole stratigraphic logs for the characterization of shallow aquifers and for the assessment of areas suitable for manual drilling. The model is based on available borehole-log parameters: depth to hard rock, depth to water, thickness of laterite and hydraulic transmissivity of the shallow aquifer. The model is applied to a study area in northwestern Senegal. A dataset of boreholes logs has been processed using a software package (TANGAFRIC) developed during the research. After a manual procedure to assign a standard category describing the lithological characteristics, the next step is the automated extraction of different textural parameters and the estimation of hydraulic conductivity using reference values available in the literature. The hydraulic conductivity values estimated from stratigraphic data have been partially validated, by comparing them with measured values from a series of pumping tests carried out in large-diameter wells. The results show that this method is able to produce a reliable interpretation of the shallow hydrogeological context using information generally available in the region. The research contributes to improving the identification of areas where conditions are suitable for manual drilling. This is achieved by applying the described method, based on a structured and semi-quantitative approach, to classify the zones of suitability for given manual drilling techniques using data available in most African countries. Ultimately, this work will support proposed international programs aimed at promoting low-cost water supply in Africa and enhancing access to safe drinking water for the population.

  12. Results of exploratory drill hole UE7nS East-Central Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Wagoner, J.L.; Ramspott, L.D.

    1981-01-01

    Exploratory hole UE7nS was drilled to a depth of 672.1 m in East-Central Yucca Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA). The purpose of the program is to determine the geologic and geophysical characteristics of selected locations that have demonstrated anomalous seismic signals. The purpose for drilling UE7nS was to provide the aforementioned data for emplacement site U7n. This report presents lithologic and stratigraphic descriptions, geophysical logs, physical properties, and water table measurements. An analysis of these data has been made and a set of recommended values is presented

  13. Results of exploratory drill hole UE7nS East-Central Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.L.; Ramspott, L.D.

    1981-03-02

    Exploratory hole UE7nS was drilled to a depth of 672.1 m in East-Central Yucca Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA). The purpose of the program is to determine the geologic and geophysical characteristics of selected locations that have demonstrated anomalous seismic signals. The purpose for drilling UE7nS was to provide the aforementioned data for emplacement site U7n. This report presents lithologic and stratigraphic descriptions, geophysical logs, physical properties, and water table measurements. An analysis of these data has been made and a set of recommended values is presented.

  14. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  15. Waste minimization for land-based drilling operations

    International Nuclear Information System (INIS)

    Thurber, N.E.

    1992-01-01

    This paper discusses engineering variables that should be addressed to minimize waste-toxicity and generation while drilling land-based wells. Proper balance of these variables provides both operational and environmental benefits

  16. Drilling trends in the nineties

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on various aspects of well drilling in the 1990s, papers were presented on drilling waste management, well completion and workovers, drilling fluids, drilling rig equipment and design, drilling mechanics, drill stem testing and materials, cementing, business management, health and safety, environmental issues, and directional drilling technology. Separate abstracts have been prepared for 46 papers from this conference

  17. Scientific Drilling with the Sea Floor Drill Rig MeBo

    Directory of Open Access Journals (Sweden)

    Gerold Wefer

    2007-09-01

    Full Text Available In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gapbetween conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea withoutrelying on the services of expensive drilling vessels.

  18. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.

    1997-01-01

    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  19. Lithology and mineralogy recognition from geochemical logging tool data using multivariate statistical analysis.

    Science.gov (United States)

    Konaté, Ahmed Amara; Ma, Huolin; Pan, Heping; Qin, Zhen; Ahmed, Hafizullah Abba; Dembele, N'dji Dit Jacques

    2017-10-01

    The availability of a deep well that penetrates deep into the Ultra High Pressure (UHP) metamorphic rocks is unusual and consequently offers a unique chance to study the metamorphic rocks. One such borehole is located in the southern part of Donghai County in the Sulu UHP metamorphic belt of Eastern China, from the Chinese Continental Scientific Drilling Main hole. This study reports the results obtained from the analysis of oxide log data. A geochemical logging tool provides in situ, gamma ray spectroscopy measurements of major and trace elements in the borehole. Dry weight percent oxide concentration logs obtained for this study were SiO 2 , K 2 O, TiO 2 , H 2 O, CO 2 , Na 2 O, Fe 2 O 3 , FeO, CaO, MnO, MgO, P 2 O 5 and Al 2 O 3 . Cross plot and Principal Component Analysis methods were applied for lithology characterization and mineralogy description respectively. Cross plot analysis allows lithological variations to be characterized. Principal Component Analysis shows that the oxide logs can be summarized by two components related to the feldspar and hydrous minerals. This study has shown that geochemical logging tool data is accurate and adequate to be tremendously useful in UHP metamorphic rocks analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Geophysical log analysis of selected test and residential wells at the Shenandoah Road National Superfund Site, East Fishkill, Dutchess County, New York

    Science.gov (United States)

    Reynolds, Richard J.; Anderson, J. Alton; Williams, John H.

    2015-01-01

    The U.S. Geological Survey collected and analyzed geophysical logs from 20 test wells and 23 residential wells at the Shenandoah Road National Superfund Site in East Fishkill, New York, from 2006 through 2010 as part of an Interagency Agreement to provide hydrogeologic technical support to the U.S. Environmental Protection Agency, Region 2. The geophysical logs collected include caliper, gamma, acoustic and optical televiewer, deviation, electromagnetic-induction, magnetic-susceptibility, fluid-property, and flow under ambient and pumped conditions. The geophysical logs were analyzed along with single-well aquifer test data and drilling logs to characterize the lithology, fabric, fractures, and flow zones penetrated by the wells. The results of the geophysical log analysis were used as part of the hydrogeologic characterization of the site and in the design of discrete-zone monitoring installations in the test wells and selected residential wells.

  1. South African drilling

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    According to the president of the South African Drilling Association, the drilling industry is meeting head-on the challenges created by the worldwide recession. The paper is a synopsis of several of the papers presented at the SADA symposium and a look at several mining-related drilling projects in South Africa. These papers include grouting techniques, the use of impregnated bits in hard rock drilling, tunnel boring for mines, surveying improvement methods and the use of explosives to increase groundwater yield

  2. Log evaluation of sub-bituminous coals in Magallanes, Chile

    International Nuclear Information System (INIS)

    Weltz, L.S.

    1976-01-01

    In coal exploration a drilling program is normally used for coal inquest through core analysis, with a high cost and operating time. However, in many cases, there is poor cores recovery due to operating procedures and/or formation conditions which leads to the determination of parameters non-representative of the coal seam. The cost and operating time can be minimized through the use of logs which also represent a continuous and in situ sampling. In the case of sub-bituminous coals, the analysis through logs is more complex due to the high content of clay, which masks the presence of water. This paper describes the analysis of sub-bituminous coals in Magallanes-Chile. The main coal seam components are: coal, clay, secondary quartz and water. An interpretation system using the density log, gamma ray, sonic and microlog, based on rho/sub B/-GR and rho/sub B/--Δ/sub T/ cross plots, permits to know the weight percentages of the following elements: total carbon, ash, moisture, which form the main local coal parameters. Empirical relationships permit us to obtain also the heating value and an estimate strength index to elastic-dynamic forces. The results obtained agree within 3 percent with the Laboratory cores analysis. The method is processed through a sequence of simple computer programs for IBM-360

  3. Polymer Drilling Fluid with Micron-Grade Cenosphere for Deep Coal Seam

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-01-01

    Full Text Available Traditional shallow coal seam uses clean water, solid-free system, and foam system as drilling fluid, while they are not suitable for deep coal seam drilling due to mismatching density, insufficient bearing capacity, and poor reservoir protection effect. According to the existing problems of drilling fluid, micron-grade cenosphere with high bearing capacity and ultralow true density is selected as density regulator; it, together with polymer “XC + CMC” and some other auxiliary agents, is jointly used to build micron-grade polymer drilling fluid with cenosphere which is suitable for deep coal seam. Basic performance test shows that the drilling fluid has good rheological property, low filtration loss, good density adjustability, shear thinning, and thixotropy; besides, drilling fluid flow is in line with the power law rheological model. Compared with traditional drilling fluid, dispersion stability basically does not change within 26 h; settlement stability evaluated with two methods only shows a small amount of change; permeability recovery rate evaluated with Qinshui Basin deep coal seam core exceeds 80%. Polymer drilling fluid with cenosphere provides a new thought to solve the problem of drilling fluid density and pressure for deep coal seam drilling and also effectively improves the performance of reservoir protection ability.

  4. A new drilling method—Earthworm-like vibration drilling

    Science.gov (United States)

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  5. Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.

    1985-01-01

    A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs

  6. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  7. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    Science.gov (United States)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  8. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task...... of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995....... The 5.0 m long Hans Tausen (HT) drill was a prototype for the ~11 m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4 m long ice cores after some design improvements...

  9. Drilling contracts and incentives

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Sorenes, Terje; Toft, Anders

    2008-01-01

    Shortages of rigs and personnel have encouraged discussion of designing incentive contracts in the drilling sector. However, for the drilling contracts, there are not a large variety of contract types in use. This article describes and analyses incentives for drilling contractors. These are directly represented by the compensation formats utilised in the present and in the consecutive drilling contracts. Indirectly, incentives are also provided by the evaluation criteria that oil companies use for awarding drilling assignments. Changes in contract format pose a number of relevant questions relating to resource management, and the article takes an in-depth look at some of these. Do evaluation criteria for awarding drilling assignments encourage the development of new technology and solutions? How will a stronger focus on drilling efficiency influence reservoir utilisation?

  10. Analysis on the nitrogen drilling accident of Well Qionglai 1 (II: Restoration of the accident process and lessons learned

    Directory of Open Access Journals (Sweden)

    Yingfeng Meng

    2015-12-01

    Full Text Available All the important events of the accident of nitrogen drilling of Well Qionglai 1 have been speculated and analyzed in the paper I. In this paper II, based on the investigating information, the well log data and some calculating and simulating results, according to the analysis method of the fault tree of safe engineering, the every possible compositions, their possibilities and time schedule of the events of the accident of Well Qionglai 1 have been analyzed, the implications of the logging data have been revealed, the process of the accident of Well Qionglai 1 has been restored. Some important understandings have been obtained: the objective causes of the accident is the rock burst and the induced events form rock burst, the subjective cause of the accident is that the blooie pipe could not bear the flow burden of the clasts from rock burst and was blocked by the clasts. The blocking of blooie pipe caused high pressure in wellhead, the high pressure made the blooie pipe burst, natural gas came out and flared fire. This paper also thinks that the rock burst in gas drilling in fractured tight sandstone gas zone is objective and not avoidable, but the accidents induced from rock burst can be avoidable by improving the performance of the blooie pipe, wellhead assemblies and drilling tool accessories aiming at the downhole rock burst.

  11. A Measuring System for Well Logging Attitude and a Method of Sensor Calibration

    Directory of Open Access Journals (Sweden)

    Yong Ren

    2014-05-01

    Full Text Available This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  12. A measuring system for well logging attitude and a method of sensor calibration.

    Science.gov (United States)

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-05-23

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  13. Formation evaluation of a horizontal well

    International Nuclear Information System (INIS)

    Najia, W.K.; Habib, K.H.; Asada, J.

    1991-01-01

    In Upper Zakum Field, the interest in horizontal drilling has continued. A second horizontal well was drilled during the second half of 1989. This necessitated running logging tools for well control and to evaluate the reservoir characteristics. The logging tool selected for this well is that of Sperry-Sun. Tools configuration and tolerance were found to fulfil SADCO's requirements and specifications. This paper reports on the services produced which included Measurement While Drilling (MWD) directional services and RLL (Recorded Lithology Logging). The RLL services cover Dual Gamma Ray (DGR), Electromagnetic Wave Resistivity (EWR) and Compensated Neutron Porosity (CN porosity). All the RLL tools were an integrated part of the Bottom Hole Drilling Assembly. Data acquired while surveying was recorded in a recording sub down-hole and retrieved when the tools were up at the surface. A PC assisted quick look interpretation was carried out using Archie's equation in shale free limestone to calculate: Effective porosity, Water Saturation and, Bulk water volume

  14. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  15. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Lee, Myung W.; Collett, Timothy S.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171–175 m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175–180 mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.

  16. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  17. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    Science.gov (United States)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  18. Drillings and associated drillhole measurements of the investigation holes in the EDZ tunnel at Chainage 3620

    International Nuclear Information System (INIS)

    Sacklen, N.; Hurmerinta, E.; Pekkanen, J.; Tarvainen, A.-M.; Toropainen, V.; Kosunen, P.

    2010-05-01

    for repeat investigations after excavation to recognise the excavation induced changes in the parameters measured. In addition to the two pilot holes, seven shorter, 5 - 8 m long investigation drillholes (ONK-PP202 -PP205 and ONK-PP207 -PP209) were drilled for the purpose of defining hydrological baseline conditions under the tunnel floor before excavation inside the EDZ tunnel. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. Core logging follows the normal Posiva's core logging procedures. Hydraulic conductivity of the fractures or fractured zones was measured with Posiva Flow Log / Difference flow method in drillholes ONK-PP200, ONK-PP204, ONK-PP205 and ONK-PP207 - PP209. The measurements were done in three phases. During flow measurements also electric conductivity, the single point resistance and temperature were measured. The drillholes were measured with a 0.5 m section length using a 0.1 m and/or 0.02 m point interval. The measured drillholes were open. The surrounding drillholes were open or in overpressure by using packers. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. (orig.)

  19. An innovative OSCE clinical log station: a quantitative study of its influence on Log use by medical students

    Directory of Open Access Journals (Sweden)

    Hudson Judith N

    2012-11-01

    Full Text Available Abstract Background A Clinical Log was introduced as part of a medical student learning portfolio, aiming to develop a habit of critical reflection while learning was taking place, and provide feedback to students and the institution on learning progress. It was designed as a longitudinal self-directed structured record of student learning events, with reflection on these for personal and professional development, and actions planned or taken for learning. As incentive was needed to encourage student engagement, an innovative Clinical Log station was introduced in the OSCE, an assessment format with established acceptance at the School. This study questions: How does an OSCE Clinical Log station influence Log use by students? Methods The Log station was introduced into the formative, and subsequent summative, OSCEs with careful attention to student and assessor training, marking rubrics and the standard setting procedure. The scoring process sought evidence of educational use of the log, and an ability to present and reflect on key learning issues in a concise and coherent manner. Results Analysis of the first cohort’s Log use over the four-year course (quantified as number of patient visits entered by all students revealed limited initial use. Usage was stimulated after introduction of the Log station early in third year, with some improvement during the subsequent year-long integrated community-based clerkship. Student reflection, quantified by the mean number of characters in the ‘reflection’ fields per entry, peaked just prior to the final OSCE (mid-Year 4. Following this, very few students continued to enter and reflect on clinical experience using the Log. Conclusion While the current study suggested that we can’t assume students will self-reflect unless such an activity is included in an assessment, ongoing work has focused on building learner and faculty confidence in the value of self-reflection as part of being a competent

  20. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  1. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs

    Science.gov (United States)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

    2010-12-01

    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  2. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  3. Diagnostic System of Drill Condition in Laminated Chipboard Drilling Process

    Directory of Open Access Journals (Sweden)

    Swiderski Bartosz

    2017-01-01

    Full Text Available The paper presents an on-line automatic system for recognition of the drill condition in a laminated chipboard drilling process. Two states of the drill are considered: the sharp enough (still able to drill holes acceptable for processing quality and worn out (excessive drill wear, not satisfactory from the quality point of view of the process. The automatic system requires defining the diagnostic features, which are used as the input attributes to the classifier. The features have been generated from 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. The statistical parameters defined on the basis of the auto regression model of these signals have been used as the diagnostic features. The sequential step-wise feature selection is applied for choosing the most discriminative set of features. The final step of recognition is done by support vector machine classifier working in leave one out mode. The results of numerical experiments have confirmed good quality of the proposed diagnostic system.

  4. Supply of Rubber Wood Log in Malaysia

    OpenAIRE

    Noraida, A. W.; Abdul-Rahim, A. S.

    2014-01-01

    Issue on shortage of raw material for wood processing solved by discovery of rubber wood log as one of the substitutes the natural log. This paper examines the supply of rubber wood log in Malaysia. We employ ARDL Bound Approach Test and time series data from 1980 to 2010 which represented the whole Malaysia are used to achieve the established objectives. The result shown, in the long run harvested area and wages have 1% and 10% significant level respectively. While in the short run, there wa...

  5. Tradeoffs and interdependence in the Alaska cant and log markets.

    Science.gov (United States)

    Donald Flora; Una Woller; Michael. Neergaard

    1990-01-01

    During the 1980s, log exports from Alaska have risen while cant (lumber) exports have declined. Eight explanations for the difference between cant and log market behavior are explored. It seems that declining demand for wood products in Japan and a surge of private-sector log harvests in Alaska are enough to account for the apparent substitution of logs for cants. It...

  6. Securing a robust electrical discharge drilling process by means of flow rate control

    Science.gov (United States)

    Risto, Matthias; Munz, Markus; Haas, Ruediger; Abdolahi, Ali

    2017-10-01

    This paper deals with the increase of the process robustness while drilling cemented carbide using electrical discharge machining (EDM). A demand for high efficiency in the resulting diameter is equivalent with a high robustness of the EDM drilling process. Analysis were done to investigate the process robustness (standard deviation of the borehole diameter) when drilling cemented carbide. The investigation has shown that the dielectric flow rate changes over the drilling process. In this case the flow rate decreased with a shorter tool electrode due to an uneven wear of the tool electrode's cross section. Using a controlled flow rate during the drilling process has led to a reduced standard deviation of the borehole diameter, thus to a higher process robustness when drilling cemented carbide.

  7. Alteration in the IRDP drill hole compared with other drill holes in Iceland

    Science.gov (United States)

    Kristmannsdóttir, Hrefna

    1982-08-01

    The overall alteration pattern in the drill hole at Reydarfjördur is very similar to alteration patterns observed in Icelandic geothermal areas and in low-grade metamorphosed basalts in deep crustal sections elsewhere in Iceland. However more detail is obtained by the study of the IRDP drill core than by study of drill cuttings sampled in previous drill holes in Iceland. A comparatively high fossil thermal gradient is obtained at Reydarfjördur by a combination of mineral stability data and the observed occurence of secondary minerals. This high gradient is consistent with the measured dike dilation at the drill site and the location of the drill site adjacent to a central volcano.

  8. A comparison of petrophysical data inputs for establishing time-depth relationships: a guide for future drilling expeditions

    Science.gov (United States)

    Boaga, J.; Sauermilch, I.; Mateo, Z. R. P.

    2017-12-01

    Time-depth relationships (TDR) are crucial in correlating drillhole and core information to seismic reflection profiles, for accurate resource estimation, scientific interpretation and to guide drilling operations. Conventional seismic time-depth domain conversion utilizes downhole sonic logs (DSI), calibrated using available checkshot data, which are local travel times from the surface to a particular depth. Scientific drilling programs (ODP and IODP) also measure P-wave velocity (PWL or C) on recovered core samples. Only three percent of all ODP and IODP sites record all three velocity measurements, however this information can be instructive as sometimes these data input show dissimilar TDR. These representative sites provide us with an opportunity to perform a comparative analysis highlighting the differences and similarities of TDRs derived from checkshot, downhole, and laboratory measurements. We then discuss the impact of lithology, stratigraphy, water column and other petrophysical properties in the predictive accuracy of TDR calculations, in an effort to provide guidance for future drilling and coring expeditions.

  9. Usefulness of temporal bone prototype for drilling training: A prospective study.

    Science.gov (United States)

    Aussedat, C; Venail, F; Nguyen, Y; Lescanne, E; Marx, M; Bakhos, D

    2017-12-01

    Dissection of cadaveric temporal bones (TBs) is considered the gold standard for surgical training in otology. For many reasons, access to the anatomical laboratory and cadaveric TBs is difficult for some facilities. The aim of this prospective and comparative study was to evaluate the usefulness of a physical TB prototype for drilling training in residency. Prospective study. Tertiary referral centre. Thirty-four residents were included. Seventeen residents (mean age 26.7±1.6) drilled on only cadaveric TBs ("traditional" group), in the traditional training method, while seventeen residents (mean age 26.5±1.7) drilled first on a prototype and then on a cadaveric TB ("prototype" group). Drilling performance was assessed using a validated scale. Residents completed a mastoid image before and after each drilling to enable evaluation of mental representations of the mastoidectomy. No differences were observed between the groups with respect to age, drilling experience and level of residency. Regarding drilling performance, we found a significant difference across the groups, with a better score in the prototype group (P=.0007). For mental representation, the score was statistically improved (P=.0003) after drilling in both groups, suggesting that TB drilling improves the mental representation of the mastoidectomy whether prototype or cadaveric TB is used. The TB prototype improves the drilling performance and mental representation of the mastoidectomy in the young resident population. A drilling simulation with virtual or physical systems seems to be a beneficial tool to improve TB drilling. © 2017 John Wiley & Sons Ltd.

  10. Comparison of peri-implant bone loss between conventional drilling with irrigation versus low-speed drilling without irrigation.

    Science.gov (United States)

    Pellicer-Chover, H; Peñarrocha-Oltra, D; Aloy-Prosper, A; Sanchis-Gonzalez, J-C; Peñarrocha-Diago, M-A; Peñarrocha-Diago, M

    2017-11-01

    To compare the technique of high speed drilling with irrigation and low speed drilling without irrigation in order to evaluate the success rate and peri-implant bone loss at 12 months of follow-up. A randomized, controlled, parallel-group clinical trial was carried out in patients requiring dental implants to rehabilitate their unitary edentulism. Patients were recruited from the Oral Surgery Unit of the University of Valencia (Spain) between September 2014 and August 2015. Patients who met the inclusion criteria were randomized to two groups: group A (high-speed drilling with irrigation) and group B (low-speed drilling without irrigation). The success rate and peri-implant bone loss were recorded at 12 months of follow-up. Twenty-five patients (9 men and 16 women) with 30 implants were enrolled in the study: 15 implants in group A and 15 implants in group B. The mean bone loss of the implants in group A and group B was 0.83 ± 0.73 mm and 0.62 ± 0.70 mm, respectively (p> 0.05). In the maxilla, the bone loss was 1.04 ± 0.63 mm in group A and 0.71 ± 0.36 mm in group B (p> 0.05), while bone loss in the mandible was 0.59 ± 0.80 mm in group A and 0.69 ± 0.77 mm in group B (p> 0.05). The implant success rate at 12 months was 93.3% in group A and 100% in group B. Within the limitations of the study, the low-speed drilling technique presented peri-implant bone loss outcomes similar to those of the conventional drilling technique at 12 months of follow-up.

  11. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  12. Development of a probe by neutron activation for chemical analysis in drillings

    International Nuclear Information System (INIS)

    Baron, J.P.; Carriou, J.; Alexandre, J.; Pinault, J.L.; Dumas, A.; Huet, D.; Collins, V.

    1983-01-01

    Laboratory studies on simulated drillings have been made and compared to calculations on mathematical models. A probe design has been developed with the Laboratory of Ponts et Chaussees. The probe has been tested in-situ on polymetallic sulfide mineralization. The study of the activation gamma allowed to log copper, iron, silicon and potassium. A very feasibility of neutronic activation has been proved during these three years. At the end of this optimization phase, the mining operators will have a device able to give them in real time informations necessary to control their operations [fr

  13. Quantitative calculation of GOR of complex oil-gas-water systems with logging data: A case study of the Yingdong Oil/Gas Field in the Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Sima Liqiang

    2014-12-01

    Full Text Available In the Yingdong Oil/Gas Field of the Qaidam Basin, multiple suites of oil-gas-water systems overlie each other vertically, making it difficult to accurately identify oil layers from gas layers and calculate gas-oil ratio (GOR. Therefore, formation testing and production data, together with conventional logging, NMR and mud logging data were integrated to quantitatively calculate GOR. To tell oil layers from gas layers, conventional logging makes use of the excavation effect of compensated neutron log, NMR makes use of the different relaxation mechanisms of light oil and natural gas in large pores, while mud logging makes use of star chart of gas components established based on available charts and mathematical statistics. In terms of the quantitative calculation of GOR, the area ratio of the star chart of gas components was first used in GOR calculation. The study shows that: (1 conventional logging data has a modest performance in distinguishing oil layers from gas layers due to the impacts of formation pressure, hydrogen index (HI, shale content, borehole conditions and invasion of drilling mud; (2 NMR is quite effective in telling oil layers from gas layers, but cannot be widely used due to its high cost; (3 by contrast, the star chart of gas components is the most effective in differentiating oil layers from gas layers; and (4 the GOR calculated by using the area ratio of star chart has been verified by various data such as formation testing data, production data and liquid production profile.

  14. Recommendations of the workshop on advanced geothermal drilling systems

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1997-12-01

    At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

  15. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  16. Practical application of failure criteria in determining safe mud weight windows in drilling operations

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2014-02-01

    Full Text Available Wellbore instability is reported frequently as one of the most significant incidents during drilling operations. Analysis of wellbore instability includes estimation of formation mechanical properties and the state of in situ stresses. In this analysis, the only controllable parameter during drilling operation is the mud weight. If the mud weight is larger than anticipated, the mud will invade into the formation, causing tensile failure of the formation. On the other hand, a lower mud weight can result in shear failures of rock, which is known as borehole breakouts. To predict the potential for failures around the wellbore during drilling, one should use a failure criterion to compare the rock strength against induced tangential stresses around the wellbore at a given mud pressure. The Mohr–Coulomb failure criterion is one of the commonly accepted criteria for estimation of rock strength at a given state of stress. However, the use of other criteria has been debated in the literature. In this paper, Mohr–Coulomb, Hoek–Brown and Mogi–Coulomb failure criteria were used to estimate the potential rock failure around a wellbore located in an onshore field of Iran. The log based analysis was used to estimate rock mechanical properties of formations and state of stresses. The results indicated that amongst different failure criteria, the Mohr–Coulomb criterion underestimates the highest mud pressure required to avoid breakouts around the wellbore. It also predicts a lower fracture gradient pressure. In addition, it was found that the results obtained from Mogi–Coulomb criterion yield a better comparison with breakouts observed from the caliper logs than that of Hoek–Brown criterion. It was concluded that the Mogi–Coulomb criterion is a better failure criterion as it considers the effect of the intermediate principal stress component in the failure analysis.

  17. Application of Fast Dynamic Allan Variance for the Characterization of FOGs-Based Measurement While Drilling.

    Science.gov (United States)

    Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu

    2016-12-07

    The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.

  18. Application of Fast Dynamic Allan Variance for the Characterization of FOGs-Based Measurement While Drilling

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2016-12-01

    Full Text Available The stability of a fiber optic gyroscope (FOG in measurement while drilling (MWD could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples, the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.

  19. Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

    1995-01-01

    Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation

  20. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    Science.gov (United States)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  1. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  2. Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.

    Science.gov (United States)

    Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.

  3. Modeling and Adhesive Tool Wear in Dry Drilling of Aluminum Alloys

    International Nuclear Information System (INIS)

    Girot, F.; Gutierrez-Orrantia, M. E.; Calamaz, M.; Coupard, D.

    2011-01-01

    One of the challenges in aeronautic drilling operations is the elimination of cutting fluids while maintaining the quality of drilled parts. This paper therefore aims to increase the tool life and process quality by working on relationships existing between drilling parameters (cutting speed and feed rate), coatings and tool geometry. In dry drilling, the phenomenon of Built-Up Layer is the predominant damage mechanism. A model fitting the axial force with the cutting parameters and the damage has been developed. The burr thickness and its dispersion decrease with the feed rate. The current diamond coatings which exhibit a strong adhesion to the carbide substrate can limit this adhesive layer phenomenon. A relatively smooth nano-structured coating strongly limits the development of this layer.

  4. The development of Canadian leadership in horizontal drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, J R

    1989-01-01

    Horizontal wells are of increasing interest in the oil and gas industry, as is evident from the increase in the numbers of such wells being drilled. Horizontal well technology is used to improve production rates, notably in low permeability formations; to capture reserves if a reservoir is not economic using non-horizontal wells; to manage breakthrough of sweep fluids and increase sweep efficiency; and to extend the areal reach from a single surface location, especially in offshore production. The types of horizontal wells, differentiated on the basis of how quickly the well becomes horizontal, are briefly outlined and a short history of horizontal wells is presented. Canadian accomplishments in this field are then described, including steerable drilling systems, measurement-while-drilling systems, management of hole drag and torque, and well completion techniques. About 25 horizontal wells are forecast to be drilled in Canada in 1989, indicating the favorable future of this technology. 2 figs., 5 tabs.

  5. Acoustic Log Prediction on the Basis of Kernel Extreme Learning Machine for Wells in GJH Survey, Erdos Basin

    Directory of Open Access Journals (Sweden)

    Jianhua Cao

    2017-01-01

    Full Text Available In petroleum exploration, the acoustic log (DT is popularly used as an estimator to calculate formation porosity, to carry out petrophysical studies, or to participate in geological analysis and research (e.g., to map abnormal pore-fluid pressure. But sometime it does not exist in those old wells drilled 20 years ago, either because of data loss or because of just being not recorded at that time. Thus synthesizing the DT log becomes the necessary task for the researchers. In this paper we propose using kernel extreme learning machine (KELM to predict missing sonic (DT logs when only common logs (e.g., natural gamma ray: GR, deep resistivity: REID, and bulk density: DEN are available. The common logs are set as predictors and the DT log is the target. By using KELM, a prediction model is firstly created based on the experimental data and then confirmed and validated by blind-testing the results in wells containing both the predictors and the target (DT values used in the supervised training. Finally the optimal model is set up as a predictor. A case study for wells in GJH survey from the Erdos Basin, about velocity inversion using the KELM-estimated DT values, is presented. The results are promising and encouraging.

  6. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    Energy Technology Data Exchange (ETDEWEB)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  7. LogScope

    Science.gov (United States)

    Havelund, Klaus; Smith, Margaret H.; Barringer, Howard; Groce, Alex

    2012-01-01

    LogScope is a software package for analyzing log files. The intended use is for offline post-processing of such logs, after the execution of the system under test. LogScope can, however, in principle, also be used to monitor systems online during their execution. Logs are checked against requirements formulated as monitors expressed in a rule-based specification language. This language has similarities to a state machine language, but is more expressive, for example, in its handling of data parameters. The specification language is user friendly, simple, and yet expressive enough for many practical scenarios. The LogScope software was initially developed to specifically assist in testing JPL s Mars Science Laboratory (MSL) flight software, but it is very generic in nature and can be applied to any application that produces some form of logging information (which almost any software does).

  8. Carbon-oxygen log applications in complex reservoir evaluation by neutron interactions from (D,T) accelerators

    International Nuclear Information System (INIS)

    Lochmann, M.J.; Berg, L.O.; Ivey, R.C.

    1983-01-01

    Granite Wash reservoirs in Oklahoma, Texas, Colorado and New Mexico have proven to be effective commercial producers of hydrocarbons. Substantial drilling activity continues to penetrate this formation either as a primary or secondary objective. A new technique to provide additional lithologic data to engineers and geologists will yield significant benefits in the evaluation and treatment of these reservoirs. This information can be obtained by data available from spectrum analysis through the use of tools such as the Carbon/Oxygen Log, Spectralog and NGS

  9. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  10. To drill or not to drill? An econometric analysis of US public opinion

    International Nuclear Information System (INIS)

    Mukherjee, Deep; Rahman, Mohammad Arshad

    2016-01-01

    Offshore drilling in the United States (US) has been the subject of public and political discourse due to multiple reasons which include economic impact, energy security, and environmental hazard. Consequently, several polls have been conducted over time to gauge public attitude towards offshore drilling. Nevertheless, the economic literature on this issue is sparse. This paper contributes to the literature and analyzes support for offshore drilling based on demographic, economic, social, belief, and shock (e.g. spill) factors. The data is taken from ten nationwide surveys conducted before, during and after the British Petroleum (BP) oil spill and analyzed within the framework of discrete choice model. The results from an ordinal probit model demonstrate that age, annual household income, affiliation to Republican Party, and residence in oil-rich states positively affect the probability of strong support and reduce the probability of strong opposition for offshore drilling. In contrast, the female gender, higher education, association to Democratic Party, and environmental concern affect opinion in opposite direction. Marginal effects show that belief about environmental consequences of drilling has the highest impact on opinion. Binary probit model also yields a similar result and suggests that BP oil disaster resulted in a transient decrease in support for offshore drilling. - Highlights: •US public opinion on offshore drilling is analyzed based on ten national polls. •Ordinal and binary probit models are utilized to identify the underlying factors that shape public opinion. •Belief about environmental cost of drilling and educational attainment have the highest negative impact on opinion. •Age, income, affiliation to Republican party and oil-rich states positively affect support for drilling. •BP oil spill resulted in a transient decrease in support for offshore drilling.

  11. In-process and post-process measurements of drill wear for control of the drilling process

    Science.gov (United States)

    Liu, Tien-I.; Liu, George; Gao, Zhiyu

    2011-12-01

    Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.

  12. Report of the 8th International Symposium on the Observation of the Continental Crust Through Drilling; Dai 8 kai tairiku kagaku kussaku kokusai symposium ni sankashite

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K. [Super Deep Core Drilling Study Group, Japan, Tokyo (Japan)

    1996-11-29

    This report relates to the 8th International Symposium on the Observation of the Continental Crust Through Drilling, convened at Agency of Industrial Science and Technology, Tsukuba City, on February 26, 1996. The symposium was represented by approximately 200 people from the U.S., Canada, Britain, Germany, France, Russia, China, and some others, who discussed active faults, drilling and logging, transfer of fluids and heat in the crust, history of the earth and climate, ICDP (International Continental Scientific Drilling Program) and international cooperation under this program in the future, etc. In reference to ultradeep drilling in the world, drillings by Germany`s KTB (Kontinentales Tiefbohrprogramm)(9,101m deep) and Russia at Kola Peninsula (l2,261m) were reviewed. Concerning the efforts of U.S. Continental Scientific Drilling Program during the previous 11-year period, it was reported that it had cost a total of $84,000,000; that investigations had been made into volcanos and geotherm, fault tectonics, sedimentary basins, holes due to meteorites, and metal ore deposits; and that 61 holes (total length: 31,310m and maximum depth: 3,510m) had been drilled and investigated. 6 figs., 3 tabs.

  13. Dynamic Planar Convex Hull with Optimal Query Time and O(log n · log log n ) Update Time

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jakob, Riko

    2000-01-01

    The dynamic maintenance of the convex hull of a set of points in the plane is one of the most important problems in computational geometry. We present a data structure supporting point insertions in amortized O(log n · log log log n) time, point deletions in amortized O(log n · log log n) time......, and various queries about the convex hull in optimal O(log n) worst-case time. The data structure requires O(n) space. Applications of the new dynamic convex hull data structure are improved deterministic algorithms for the k-level problem and the red-blue segment intersection problem where all red and all...

  14. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  15. Use of pulsed neutron logging to evaluate perforation washing

    International Nuclear Information System (INIS)

    Dimon, C.A.

    1986-01-01

    This invention relates to the use of pulsed neutron logging techniques before and after perforation washing operations are performed to evaluate the degree of success of the perforation washing operations. Well logging operations of a type designed to respond to the difference between a formation immediately behind the well sheath and voids in the formation are performed both before and after the perforation washing operation. differences between the two resulting logs are then indicative of voids created by perforation washing. In a preferred embodiment, pulsed neutron logging is used as the logging technique, while a weighted brine having a high absorption cross section to pulsed neutrons is used as the perforation washing fluid

  16. An approach to derive some simple empirical equations to calibrate nuclear and acoustic well logging tools.

    Science.gov (United States)

    Mohammad Al Alfy, Ibrahim

    2018-01-01

    A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Drilling for scientific purpose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi

    1987-09-01

    Drilling for scientific purpose is a process of conducting geophysical exploration at deep underground and drilling for collecting crust samples directly. This is because earth science has advanced to get a good understanding about the top of the crust and has shifted its main interest to the lower layer of the crust in land regions. The on-land drilling plan in Japan has just started, and the planned drilling spots are areas around the Minami River, Hidaka Mts., kinds of the Mesozoic and Cenozoic granite in outside zone, the extension of Japan Sea, Ogasawara Is., Minami-Tori Is., and active volcanos. The paper also outlines the present situation of on-land drilling in the world, focusing on the SG-3rd super-deep well SG-3 on the Kola Peninsula, USSR, Satori SG-1st well SG-1 in Azerbaidzhan S.S.R, V.S.S.R, Sweden's wells, Cyprus' wells, Bayearn well Plan in West Germany, and Salton Sea Scientific Drilling Program in the U.S. At its end, the paper explains the present situation and the future theme of the Japanese drilling technique and points out the necessity of developing equipment, and techniques. (14 figs, 5 tabs, 26 refs)

  18. Petrophysical characterization of the lacustrine sediment succession drilled in Lake El'gygytgyn, Far East Russian Arctic

    Directory of Open Access Journals (Sweden)

    A. C. Gebhardt

    2013-08-01

    Full Text Available Seismic profiles of Far East Russian Lake El'gygytgyn, formed by a meteorite impact some 3.6 million years ago, show a stratified sediment succession that can be separated into subunits Ia and Ib at approximately 167 m below lake floor (=~3.17 Ma. The upper (Ia is well-stratified, while the lower is acoustically more massive and discontinuous. The sediments are intercalated with frequent mass movement deposits mainly in the proximal areas, while the distal region is almost free of such deposits at least in the upper part. In spring 2009, a long core drilled in the lake center within the framework of the International Continental Scientific Drilling Program (ICDP penetrated the entire lacustrine sediment succession down to ~320 m below lake floor and about 200 m farther into the meteorite-impact-related bedrock. Downhole logging data down to 390 m below lake floor show that the bedrock and the lacustrine part differ significantly in their petrophysical characteristics. The contact between the bedrock and the lacustrine sediments is not abrupt, but rather transitional with a variable mixture of impact-altered bedrock clasts in a lacustrine matrix. Physical and chemical proxies measured on the cores can be used to divide the lacustrine part into five different statistical clusters. These can be plotted in a redox-condition vs. input-type diagram, with total organic carbon content and magnetic susceptibility values indicating anoxic or oxic conditions and with the Si / Ti ratio representing more clastic or more biogenic input. Plotting the clusters in this diagram allows identifying clusters that represent glacial phases (cluster I, super interglacials (cluster II, and interglacial phases (clusters III and IV.

  19. Isotropic, anisotropic, and borehole washout analyses in Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, Alaminos Canyon well 21-A

    Science.gov (United States)

    Lee, Myung W.

    2012-01-01

    Through the use of three-dimensional seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon area of the Gulf of Mexico. Two of the prospects were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Program Leg II in May 2009, and a suite of logging-while-drilling logs was acquired at each well site. Logging-while-drilling logs at the Alaminos Canyon 21–A site indicate that resistivities of approximately 2 ohm-meter and P-wave velocities of approximately 1.9 kilometers per second were measured in a possible gas-hydrate-bearing target sand interval between 540 and 632 feet below the sea floor. These values are slightly elevated relative to those measured in the hydrate-free sediment surrounding the sands. The initial well log analysis is inconclusive in determining the presence of gas hydrate in the logged sand interval, mainly because large washouts in the target interval degraded well log measurements. To assess gas-hydrate saturations, a method of compensating for the effect of washouts on the resistivity and acoustic velocities is required. To meet this need, a method is presented that models the washed-out portion of the borehole as a vertical layer filled with seawater (drilling fluid). Owing to the anisotropic nature of this geometry, the apparent anisotropic resistivities and velocities caused by the vertical layer are used to correct measured log values. By incorporating the conventional marine seismic data into the well log analysis of the washout-corrected well logs, the gas-hydrate saturation at well site AC21–A was estimated to be in the range of 13 percent. Because gas hydrates in the vertical fractures were observed, anisotropic rock physics models were also applied to estimate gas-hydrate saturations.

  20. Salvage logging following fires can minimize boreal caribou habitat loss while maintaining forest quotas: An example of compensatory cumulative effects.

    Science.gov (United States)

    Beguin, Julien; McIntire, Eliot J B; Raulier, Frédéric

    2015-11-01

    Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  2. Application of air hammer drilling technology in igneous rocks of Junggar basin

    Science.gov (United States)

    Zhao, Hongshan; Feng, Guangtong; Yu, Haiye

    2018-03-01

    There were many technical problems such as serious well deviation, low penetration rate and long drilling cycle in igneous rocks because of its hardness, strong abrasive and poor drillability, which severely influenced the exploration and development process of Junggar basin. Through analyzing the difficulties of gas drilling with roller bits in Well HS 2, conducting the mechanics experiments about igneous rock, and deeply describing the rock-breaking mechanism of air hammer drilling and its adaptability in igneous rocks, air hammer drilling can realize deviation control and fast drilling in igneous rocks of piedmont zone and avoid the wear and fatigue fracture of drilling strings due to its characteristics of low WOB, low RPM and high frequency impact. Through firstly used in igneous rocks of Well HS 201, compared with gas drilling with cone bit, the average penetration rate and one-trip footage of air hammer drilling respectively increased by more than 2.45 times and 6.42 times while the well deviation was always controlled less than 2 degrees. Two records for Block HS were set up such as the fastest penetration rate of 14.29m/h in Φ444.5mm well hole and the highest one-trip footage of 470.62m in Φ311.2mm well hole. So air hammer drilling was an effective way to realize optimal and fast drilling in the igneous rock formation of Junggar basin.

  3. 30 CFR 57.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  4. Forward modelling of multi-component induction logging tools in layered anisotropic dipping formations

    International Nuclear Information System (INIS)

    Gao, Jie; Xu, Chenhao; Xiao, Jiaqi

    2013-01-01

    Multi-component induction logging provides great assistance in the exploration of thinly laminated reservoirs. The 1D parametric inversion following an adaptive borehole correction is the key step in the data processing of multi-component induction logging responses. To make the inversion process reasonably fast, an efficient forward modelling method is necessary. In this paper, a modelling method has been developed to simulate the multi-component induction tools in deviated wells drilled in layered anisotropic formations. With the introduction of generalized reflection coefficients, the analytic expressions of magnetic field in the form of a Sommerfeld integral were derived. The fast numerical computation of the integral has been completed by using the fast Fourier–Hankel transform and fast Hankel transform methods. The latter is so time efficient that it is competent enough for real-time multi-parameter inversion. In this paper, some simulated results have been presented and they are in excellent agreement with the finite difference method code's solution. (paper)

  5. A cadaveric study of bone tissue temperature during pin site drilling utilizing fluoroptic thermography.

    Science.gov (United States)

    Muffly, Matthew; Winegar, Corbett; Miller, Mark Carl; Altman, Gregory

    2018-05-03

    Using fluoroptic thermography, temperature was measured during pin site drilling of intact cortical human cadaver bone with a combination of one-step drilling, graduated drilling, and one-step drilling with irrigation of 5.0 mm Schanz pins. A 1440 rpm constant force drilling was used to on tibial diaphyses while a sensor probe placed 0.5 mm adjacent to the drill hole measured temperature. Four drilling techniques on each of the tibial segments were performed: 3.5mm drill bit, 5.0mm Schanz pin, 5.0 mm Schanz pin in 3.5 mm pre-drilled entry site, 5.0 mm Schanz pin utilizing irrigation. One-step drilling using a 5.0 mm Schanz pin without irrigation produced a temperature that exceeded the threshold temperature for heat-induced injury in 5 of the 8 trials. With the other three drilling techniques, only one in24 trials produced a temperature that would result in thermal injury. This difference was found to be statistically significant (p = 0.003). The use of irrigation significantly reduced the maximum bone tissue temperature in one-step drilling of a 5.0 mm Schanz pin (p = 0.02). One-step drilling with a 3.5 mm drill bit achieved maximum temperature significantly faster than graduated drilling and drilling with irrigation using a 5.0 mm Schanz pin (p drilling with a 5.0 mm Schanz pin into cortical bone can produce temperatures that can lead to heat-induced injury. Irrigation alone can reduce the temperatures sufficiently to avoid damage. Pre-drilling can increase temperatures significantly but the extent of any injury should be small.

  6. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  7. 30 CFR 56.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  8. Hardwood log grades and lumber grade yields for factory lumber logs

    Science.gov (United States)

    Leland F. Hanks; Glenn L. Gammon; Robert L. Brisbin; Everette D. Rast

    1980-01-01

    The USDA Forest Service Standard Grades for Hardwood Factory Lumber Logs are described, and lumber grade yields for 16 species and 2 species groups are presented by log grade and log diameter. The grades enable foresters, log buyers, and log sellers to select and grade those log suitable for conversion into standard factory grade lumber. By using the apropriate lumber...

  9. Characterization of shallow unconsolidated aquifers in West Africa using different hydrogeological data sources as a contribution to the promotion of manual drilling and low cost techniques for groundwater exploration

    Science.gov (United States)

    Fussi, Fabio; Fumagalli, Letizia; Bonomi, Tullia; Kane, Cheikh H.; Fava, Francesco; Di Mauro, Biagio; Hamidou, Barry; Niang, Magatte; Wade, Souleye; Colombo, Roberto

    2016-04-01

    in large diameter wells. K values obtained from these tests provide direct information on hydraulic parameters of shallow porous aquifers (while pump tests data obtained from deep mechanized boreholes, exploiting fractured aquifers, cannot be considered representative for the target shallow aquifer of manual drilling). The third method is based on the interpretation of stratigraphic logs and simplified pump test from manual drilled wells carried out since 2012 in Guinea. In this country a standard and systematic procedure to collect hydrogeological data from these wells (therefore indicating properties of shallow aquifer) has been put in place in 2011; it is considered one of the best example worldwide about technical data collection and systematization from manual drilling activities, but its development has been stopped because of the outbreak of Ebola in this country. The integration of these 3 methods allow to estimate geometry and hydraulic behavior of shallow unconsolidated aquifer, identifying those areas where manual drilling is feasible and estimating potential yield that can be extracted. In the mean time this research provides relevant indications concerning the use of data obtained from low cost open hand dug or manually drilled wells (rarely used in hydrogeological research) for groundwater exploration of shallow aquifers.

  10. Multilateral wells drilling technology implementation in the Castilla Field - Colombia, to improve Guadalupe reservoirs drainage: Castilla 32, 33, and 34 ML wells cases study

    Energy Technology Data Exchange (ETDEWEB)

    Florez, Alberto; Mercado, Orlando; Rodriguez, Sandra; Rojas, Ricardo; Naranjo, Carlos A. [ECOPETROL, Bogota (Colombia); Velez, Jorge [Halliburton Latin-America, Santa Fe de Bogota (Colombia)

    2008-07-01

    options for the horizontal section were evaluated. Intelligent completion designs were analyzed for several multilateral well configurations, and the best alternative was selected to accomplish the production optimization goals. During the operation phase the G and G and drilling teams worked together to put into practice a dynamic, real-time optimization process to control positioning of the horizontal wellbores using geo-steering techniques. The pay zone completion was based on the quality of rock found while drilling the horizontal sections using real-time information from the LWD (Logging While Drilling) tools. In addition to multilaterals, the introduction of rotary steer-able tools and LWD tools were important new technologies for the Castilla Field. The effect of these tools on the total well cost is presented, because rate of penetration (ROP) optimization was yet another important milestone achieved with this project. Results for the three TAML Level 4 multilateral wells are summarized, explaining the impressive learning curve achieved in terms of drilling time, drilling and completion cost, effective pay zone drilled, and production results. Based on those results, ECOPETROL is currently drilling several single horizontal wells instead of conventional directional wells where the area permits it, and the savings in drilling time and cost are presented. In general, the results achieved during the implementation of the multilateral well project shows that this technology adds significant value for the Guadalupe reservoir development strategy, and that these new techniques applied during the drilling phase provided enormous value in terms of the amount of lessons learned. (author)

  11. ROP MATHEMATICAL MODEL OF ROTARY-ULTRASONIC CORE DRILLING OF BRITTLE MATERIAL

    Directory of Open Access Journals (Sweden)

    Mera Fayez Horne

    2017-03-01

    Full Text Available The results from the Phoenix mission led scientists to believe it is possible that primitive life exists below the Martian surface. Therefore, drilling in Martian soil in search for organisms is the next logical step. Drilling on Mars is a major engineering challenge due to the drilling depth requirement and extreme environment condition. Mars lacks a thick atmosphere and a continuous magnetic field that shield the planet’s surface from solar radiation and solar flares. As a result, the Martian surface is sterile and if life ever existed, it must be found below the surface. NASA’s Mars Exploration Payload Advisory Group proposed that drilling should be considered as a priority investigation on Mars in an effort of finding evidence of extinct or extant life. The results from the Curiosity mission suggested drilling six meters deep in the red planet in search for life. Excavation tools deployed to Mars so far have been able to drill to a maximum depth of 6.5 cm. Thus, the drilling capabilities need to be increased by a factor of approximately 100 to achieve the goal of drilling six meters deep. This requirement puts a demand on developing new and more effective technologies to reach this goal. Previous research shows evidence of a promising drilling mechanism in rotary-ultrasonic for what it offers in terms of high surface quality, faster rate of penetration and higher material removal rate. This research addresses the need to understand the mechanics of the drill bit tip and rock interface in rotary-ultrasonic drilling performance of one drill bit at a time drilling in three types of rocks that vary in strength. A mathematical model identifying all contributing independent parameters, such as drill bit design parameters, drilling process parameters, ultrasonic wave amplitude and rocks’ material properties, that have effect on rate of penetration is developed. Analytical and experimental results under ambient condition are presented to show

  12. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  13. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    Energy Technology Data Exchange (ETDEWEB)

    Benka-Coker, M.O.; Olumagin, A. [Benin Univ. (Nigeria). Dept. of Microbiology

    1995-12-31

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  14. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    International Nuclear Information System (INIS)

    Benka-Coker, M.O.; Olumagin, A.

    1995-01-01

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  15. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon

    OpenAIRE

    Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin

    2014-01-01

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US?Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3%...

  16. Economic environmental management of drilling operations

    International Nuclear Information System (INIS)

    Longwell, H.J.; Akers, T.J.

    1992-01-01

    This paper presents significant environmental and regulatory initiatives developed by Exxon's New Orleans Drilling Organization. Specifically, the paper will cover drilling waste minimization techniques and disposal options, recycling of drilling waste streams, and environmentally managed drilling location design considerations. The implementation of some of these initiatives at Exxon's Chalkley field land locations have resulted in a fifty percent reduction in drilling location waste management costs. Some of these same initiatives have been successfully applied to Exxon's barge drilling locations. For operations at the environmentally sensitive Mobile Bay, Exxon contracted with a local company and assisted in the development of an economically and environmentally superior drilling waste disposal and treatment system. In summary, it is possible for drilling operators to pro-actively manage escalating environmental and regulatory challenges through the implementation of economic and practical initiatives

  17. Descriptions of wells penetrating the Wanapum Basalt Formation in the Pasco Basin area, Washington. Volume 1. Well records and driller's logs for wells in Townships 7 north through 12 north

    International Nuclear Information System (INIS)

    Summers, W.K.; Weber, P.A.

    1978-04-01

    About 7000 wells have been drilled in the Pasco Basin, of which about 4000 are on the Hanford Reservation. Information on these wells ranges from depth of the well to a complete driller's log and casing record. This report presents the data available on 268 wells that were drilled into basalts deeper than the Mabton Interbed, or its equivalent. Thus, these are the wells which are open in basalt flows that are at least 15 million years old. 3 figures, 2 tables

  18. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  19. Control procedure for well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, J C

    1988-09-09

    A control procedure of rotary drilling operations is proposed. It uses the Drill off test. The drill-off test permits to determine the rock drill speed variation as a function of the wright applied on the top of the pipe. We can deduce from that a rock drill wear parameter. The method permits to prevent a rupture and its grave economic consequences.

  20. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.