WorldWideScience

Sample records for localizing microelectrode trajectories

  1. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    Directory of Open Access Journals (Sweden)

    Jerome eBabauta

    2014-01-01

    Full Text Available Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode with tip size ~20 µm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  2. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat.

    Science.gov (United States)

    Babauta, Jerome T; Atci, Erhan; Ha, Phuc T; Lindemann, Stephen R; Ewing, Timothy; Call, Douglas R; Fredrickson, James K; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  3. APT: Action localization Proposals from dense Trajectories

    NARCIS (Netherlands)

    van Gemert, J.C.; Jain, M.; Gati, E.; Snoek, C.G.M.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    This paper is on action localization in video with the aid of spatio-temporal proposals. To alleviate the computational expensive video segmentation step of existing proposals, we propose bypassing the segmentations completely by generating proposals directly from the dense trajectories used to

  4. An iridium oxide microelectrode for monitoring acute local pH changes of endothelial cells.

    Science.gov (United States)

    Ng, Shu Rui; O'Hare, Danny

    2015-06-21

    pH sensors were fabricated by anodically electrodepositing iridium oxide films (AEIROFs) onto microelectrodes on chips and coated with poly(ethyleneimine) (PEI) for mechanical stability. These demonstrate super-Nernstian response to pH from pH 4.0 to 7.7 in chloride-free phosphate buffer. The surface of the chip was coated with fibronectin for the attachment of porcine aortic endothelial cells (PAECs). The working capability of the pH sensor for monitoring acute local pH changes was investigated by stimulating the PAECs with thrombin. Our results show that thrombin induced acute extracellular acidification of PAECs and dissolution of fibronectin, causing the local pH to decrease. The use of PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, reduced extracellular acidification and an increase in local pH was observed. This study shows that our pH sensors can facilitate the investigation of acute cellular responses to stimulation by monitoring the real-time, local pH changes of cells attached to the sensors.

  5. Updating Road Networks by Local Renewal from GPS Trajectories

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2016-09-01

    Full Text Available The long production cycle and huge cost of collecting road network data often leave the data lagging behind the latest real conditions. However, this situation is rapidly changing as the positioning techniques ubiquitously used in mobile devices are gradually being implemented in road network research and applications. Currently, the predominant approaches infer road networks from mobile location information (e.g., GPS trajectory data directly using various extracting algorithms, which leads to expensive consumption of computational resources in the case of large-scale areas. For this reason, we propose an alternative that renews road networks with a novel spiral strategy, including a hidden Markov model (HMM for detecting potential problems in existing road network data and a method to update the data, on the local scale, by generating new road segments from trajectory data. The proposed approach reduces computation costs on roads with completed or updated information by updating problem road segments in the minimum range of the road network. We evaluated the performance of our proposals using GPS traces collected from taxies and OpenStreetMap (OSM road networks covering urban areas of Wuhan City.

  6. Trajectory-Based Visual Localization in Underwater Surveying Missions

    Directory of Open Access Journals (Sweden)

    Antoni Burguera

    2015-01-01

    Full Text Available We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF, which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF. Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.

  7. Trajectory-Based Visual Localization in Underwater Surveying Missions

    Science.gov (United States)

    Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel

    2015-01-01

    We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates. PMID:25594602

  8. Simulation to Support Local Search in Trajectory Optimization Planning

    Science.gov (United States)

    Morris, Robert A.; Venable, K. Brent; Lindsey, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence coupled with simulation and field tests to design low-noise flight profiles which can be tested in simulation or through field tests. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints directly into the problem formulation that addresses passenger safety and comfort.

  9. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials

    Science.gov (United States)

    Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia

    2016-03-01

    Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.

  10. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials

    International Nuclear Information System (INIS)

    Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia

    2016-01-01

    Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology. (paper)

  11. Localization of calcium in the cyanobiont and gonidial zone of Cycas revoluta Thunb. by microelectrodes, chlorotetracycline, electron spectroscopic imaging and electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Caiola, M.G.; Canini, A.; Brandizzi, F.

    1994-01-01

    Ionic calcium concentration was measured in the gonidial zone of fresh coralloid roots by means of calcium microelectrodes. It was 10 -6 M in the apical segments of coralloid roots and increased to 10 -5 M in the gonidial zones of median and basal segments. Loosely membrane-bound calcium was evidenced by using chloro-tetracycline (CTC) or ethylene glycol-bis-(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and CTC, in cell walls of columnar cells of Cycas and in the cytoplasm of cyanobiont. Sub-cellular localization of calcium was obtained by electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) analyses applied at transmission electron microscopy on thin, unstained sections of gonidial zone of coralloid roots. By means of these techniques, bound-calcium was detected inside the mucilage of apical and median segments whereas, in the basal segments, it was completely absent. In the heterocysts of apical segments of coralloid, calcium was localized on the envelope, cell walls, thylakoids and cyanophycin granules. In the gonidial zone of the basal segments, dead or degenerating heterocysts completely lacked calcium. Therefore, the high ionic calcium amounts detected in the gonidial zone of median and basal segments could represent a minor calcium uptake by the cells or release by lysed ones. The decreases in nitrogenase activity recorded in the median and basal segments of the coralloid roots paralleled the decrease in calcium amount in heterocyst envelope. (authors)

  12. Biofunctionalization of diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reitinger, Andreas Adam; Lud, Simon Quartus; Stutzmann, Martin; Garrido, Jose Antonio [Walter Schottky Institut, TU Muenchen (Germany); Hutter, Naima Aurelia; Richter, Gerhard; Jordan, Rainer [WACKER-Chair of Macromolecular Chemistry, TU Muenchen (Germany)

    2010-07-01

    In this work we present two main routes for the biofunctionalization of nanocrystalline diamond films, aiming at the application of diamond microelectrodes as amperometric biosensors. We report on direct covalent grafting of biomolecules on nanocrystalline diamond films via diazonium monophenyls and biphenyls as well as other linker molecules, forming self-assembled monolayers on the diamond surface. Monolayers with different functional head groups have been characterized. Patterning of the available functional groups using electron beam-induced chemical lithography allows the selective preparation of well-localized docking sites for the immobilization of biomolecules. Furthermore, polymer brushes are expected to enable novel paths for designing more advanced biosensing schemes, incorporating multifunctional groups and a higher loading capacity for biomolecules. Here, we focus on the preparation of polymer grafts by self-initiated photografting and photopolymerization. Further chemical modification of the grafted polymer brushes results in the introduction of additional functional molecules, paving the way for the incorporation of more complex molecular structures such as proteins. In a comparative study we investigate the advantages and disadvantages of both approaches.

  13. Determining if pretreatment PSA doubling time predicts PSA trajectories after radiation therapy for localized prostate cancer

    International Nuclear Information System (INIS)

    Soto, Daniel E.; Andridge, Rebecca R.; Pan, Charlie C.; Williams, Scott G.; Taylor, Jeremy M.G.; Sandler, Howard M.

    2009-01-01

    Introduction: To determine if pretreatment PSA doubling time (PSA-DT) can predict post-radiation therapy (RT) PSA trajectories for localized prostate cancer. Materials and methods: Three hundred and seventy-five prostate cancer patients treated with external beam RT without androgen deprivation therapy (ADT) were identified with an adequate number of PSA values. We utilized a linear mixed model (LMM) analysis to model longitudinal PSA data sets after definitive treatment. Post-treatment PSA trajectories were allowed to depend on the pre-RT PSA-DT, pre-RT PSA (iPSA), Gleason score (GS), and T-stage. Results: Pre-RT PSA-DT had a borderline impact on predicting the rate of PSA rise after nadir (p = 0.08). For a typical low risk patient (T1, GS ≤ 6, iPSA 10), the predicted PSA-DT post-nadir was 21% shorter for pre-RT PSA-DT 24 month (19 month vs. 24 month). Additional significant predictors of post-RT PSA rate of rise included GS (p < 0.0001), iPSA (p < 0.0001), and T-stage (p = 0.02). Conclusions: We observed a trend between rapidly rising pre-RT PSA and the post-RT post-nadir PSA rise. This effect appeared to be independent of iPSA, GS, or T-stage. The results presented suggest that pretreatment PSA-DT may help predict post-RT PSA trajectories

  14. Quantum theory of single events: Localized de Broglie-wavelets, Schroedinger waves and classical trajectories

    International Nuclear Information System (INIS)

    Barut, A.O.

    1990-06-01

    For an arbitrary potential V with classical trajectories x-vector=g-vector(t) we construct localized oscillating three-dimensional wave lumps ψ(x-vector,t,g-vector) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbit g-vector(t) slightly modified due to potential V and ψ(x-vector,t;g-vector) satisfies the Schroedinger equation. The field energy, momentum and angular momentum calculated as integrals over all space are equal to particle energy, momentum and angular momentum. The relation to coherent states and to Schroedinger waves are also discussed. (author). 6 refs

  15. Computation of quantum electron transport with local current conservation using quantum trajectories

    International Nuclear Information System (INIS)

    Alarcón, A; Oriols, X

    2009-01-01

    A recent proposal for modeling time-dependent quantum electron transport with Coulomb and exchange correlations using quantum (Bohm) trajectories (Oriols 2007 Phys. Rev. Lett. 98 066803) is extended towards the computation of the total (particle plus displacement) current in mesoscopic devices. In particular, two different methods for the practical computation of the total current are compared. The first method computes the particle and the displacement currents from the rate of Bohm particles crossing a particular surface and the time-dependent variations of the electric field there. The second method uses the Ramo–Shockley theorem to compute the total current on that surface from the knowledge of the Bohm particle dynamics in a 3D volume and the time-dependent variations of the electric field on the boundaries of that volume. From a computational point of view, it is shown that both methods achieve local current conservation, but the second is preferred because it is free from 'spurious' peaks. A numerical example, a Bohm trajectory crossing a double-barrier tunneling structure, is presented, supporting the conclusions

  16. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates

    NARCIS (Netherlands)

    Beer, de D.; Heuvel, van den J.C.; Ottengraf, S.P.P.

    1993-01-01

    Microelectrodes for ammonium, oxygen, nitrate, and pH were used to study nitrifying aggregates grown in a fluidized-bed reactor. Local reactant fluxes and distribution of microbial activity could be detd. from the microprofiles. The interfacial fluxes of the reactants closely reflected the

  17. Trajectories of childhood weight gain: the relative importance of local environment versus individual social and early life factors.

    Directory of Open Access Journals (Sweden)

    Megan A Carter

    Full Text Available To determine the association between local environmental factors with child weight status in a longitudinal study, using a semi-parametric, group-based method, while also considering social and early life factors.Standardized, directly measured BMI from 4-10 y of age, and group-based trajectory modeling (PROC TRAJ were used to estimate developmental trajectories of weight change in a Québec birth cohort (n = 1,566. Associations between the weight trajectories and living location, social cohesion, disorder, and material and social deprivation were estimated after controlling for social and early life factors.FOUR WEIGHT TRAJECTORY GROUPS WERE ESTIMATED: low-increasing (9.7%; low-medium, accelerating (36.2%; medium-high, increasing (43.0%; and high-stable (11.1%. In the low-increasing and medium-high trajectory groups, living in a semi-urban area was inversely related to weight, while living in a rural area was positively related to weight in the high-stable group. Disorder was inversely related to weight in the low-increasing group only. Other important risk factors for high-stable weight included obesity status of the mother, smoking during pregnancy, and overeating behaviors.In this study, associations between local environment factors and weight differed by trajectory group. Early life factors appear to play a more consistent role in weight status. Further work is needed to determine the influence of place on child weight.

  18. Local pursuit strategy-inspired cooperative trajectory planning algorithm for a class of nonlinear constrained dynamical systems

    Science.gov (United States)

    Xu, Yunjun; Remeikas, Charles; Pham, Khanh

    2014-03-01

    Cooperative trajectory planning is crucial for networked vehicles to respond rapidly in cluttered environments and has a significant impact on many applications such as air traffic or border security monitoring and assessment. One of the challenges in cooperative planning is to find a computationally efficient algorithm that can accommodate both the complexity of the environment and real hardware and configuration constraints of vehicles in the formation. Inspired by a local pursuit strategy observed in foraging ants, feasible and optimal trajectory planning algorithms are proposed in this paper for a class of nonlinear constrained cooperative vehicles in environments with densely populated obstacles. In an iterative hierarchical approach, the local behaviours, such as the formation stability, obstacle avoidance, and individual vehicle's constraints, are considered in each vehicle's (i.e. follower's) decentralised optimisation. The cooperative-level behaviours, such as the inter-vehicle collision avoidance, are considered in the virtual leader's centralised optimisation. Early termination conditions are derived to reduce the computational cost by not wasting time in the local-level optimisation if the virtual leader trajectory does not satisfy those conditions. The expected advantages of the proposed algorithms are (1) the formation can be globally asymptotically maintained in a decentralised manner; (2) each vehicle decides its local trajectory using only the virtual leader and its own information; (3) the formation convergence speed is controlled by one single parameter, which makes it attractive for many practical applications; (4) nonlinear dynamics and many realistic constraints, such as the speed limitation and obstacle avoidance, can be easily considered; (5) inter-vehicle collision avoidance can be guaranteed in both the formation transient stage and the formation steady stage; and (6) the computational cost in finding both the feasible and optimal

  19. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  20. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  1. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    This work presents the fabrication and characterization of suspended three-dimensional (3D) pyrolytic carbon microelectrodes for electrochemical applications. For this purpose, an optimized process with multiple steps of UV photolithography with the negative tone photoresist SU-8 followed...... by pyrolysis at 900ºC for 1h was developed. With this process, microelectrode chips with a three electrode configuration were fabricated and characterized with cyclic voltammetry (CV) using a 10mM potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. The 3D pyrolytic...... carbon microelectrodes displayed twice the higher peak current compared to 2D....

  2. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  3. Chronic in vivo stability assessment of carbon fiber microelectrode arrays

    Science.gov (United States)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-12-01

    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  4. Band-type microelectrodes for amperometric immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ga-Yeon; Chang, Young Wook; Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kang, Min-Jung [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2016-07-20

    A band-type microelectrode was made using a parylene-N film as a passivation layer. A circular-type, mm-scale electrode with the same diameter as the band-type microelectrode was also made with an electrode area that was 5000 times larger than the band-type microelectrode. By comparing the amperometric signals of 3,5,3′,5′-tetramethylbenzidine (TMB) samples at different optical density (OD) values, the band-type microelectrode was determined to be 9 times more sensitive than the circular-type electrode. The properties of the circular-type and the band-type electrodes (e.g., the shape of their cyclic voltammograms, the type of diffusion layer used, and the diffusion layer thickness per unit electrode area) were characterized according to their electrode area using the COMSOL Multiphysics software. From these simulations, the band-type electrode was estimated to have the conventional microelectrode properties, even when the electrode area was 100 times larger than a conventional circular-type electrode. These results show that both the geometry and the area of an electrode can influence the properties of the electrode. Finally, amperometric analysis based on a band-type electrode was applied to commercial ELISA kits to analyze human hepatitis B surface antigen (hHBsAg) and human immunodeficiency virus (HIV) antibodies. - Highlights: • A band-type microelectrode was made using a parylene-N film as a passivation layer. • The band-type microelectrode was 14-times more sensitive than circular-type electrode. • The influence of geometry on microelectrode properties was simulated using COMSOL. • The band-type electrode was applied to ELISA kits for hHBsAg and hHIV-antibodies.

  5. Failure Mechanisms of a Gold Microelectrode in Bioelectronics Applications

    Directory of Open Access Journals (Sweden)

    Jonghun Kim

    2015-01-01

    Full Text Available The generation, growth, and collapse of tiny bubbles are inevitable for a microelectrode working in aqueous environment, thus resulting in physical damages on the microelectrode. The failure mechanisms of a microelectrode induced by tiny bubble collapsing are investigated by generating tiny hydrogen bubbles on a gold microelectrode through deionized water electrolysis. The surface of the microelectrode is modified with a thiol-functionalized arginine-glycine-aspartic acid peptide to generate perfectly spherical bubbles in proximity of the surface. The failure of an Au microelectrode is governed by two damage mechanisms, depending on the thickness of the microelectrode: a water-hammer pressure due to the violent collapse of a single large bubble, formed through merging of small bubbles, for ultrathin Au microelectrodes of 40–60 nm in thickness, and an energy accumulation resulting from the repetitive collapse of tiny bubbles for thick Au microelectrodes of 100–120 nm.

  6. Local negotiation and alignment of expectations and transfer of lessons in niche development trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Raven, R.P.J.M. [ECN Policy Studies, Petten (Netherlands); Heiskanen, E. [National Consumer Research Centre, Helsinki (Finland); Lovio, R. [Helsinki School of Economics, Helsinki (Finland); Hodson, M. [Centre for Sustainable Urban and Regional Futures, Manchester (United Kingdom)

    2007-09-15

    This paper examines the tension between the need to maintain diversity and the need to support path creation in the promotion of emerging sustainable technologies. The analysis is framed within the niche development literature and in particular the dynamics of socio-cognitive technology evolution as elaborated elsewhere. This literature offers a framework for analyzing the relation between individual projects in local contexts and the transfer of local experiences into generally applicable rules on the 'global niche level'. We address this question by examining two case studies drawn from a meta-analysis of 22 new energy projects throughout Europe. These two case studies, both pertaining to biogas projects for local municipalities, illustrate the diversity of applications introduced into a generic technology through processes of local variation and selection. We examine the diversity of expectations, and the negotiation and alignment of these expectations, underlying the diversity of local solutions. Moreover, we identify the types of generally applicable rules that the projects produced for the 'global niche level', and suggest that the transfer of lessons from individual local experiments can follow different pathways, but always requires due attention to the social and cultural limits to the transferability of solutions.

  7. Brain machine interfaces combining microelectrode arrays with nanostructured optical biochemical sensors

    Science.gov (United States)

    Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafer-Zadeh, Ebrahim; Chodavarapu, Vamsy; Musallam, Sam; Andrews, Mark

    2009-02-01

    Neural microelectrodes are an important component of neural prosthetic systems which assist paralyzed patients by allowing them to operate computers or robots using their neural activity. These microelectrodes are also used in clinical settings to localize the locus of seizure initiation in epilepsy or to stimulate sub-cortical structures in patients with Parkinson's disease. In neural prosthetic systems, implanted microelectrodes record the electrical potential generated by specific thoughts and relay the signals to algorithms trained to interpret these thoughts. In this paper, we describe novel elongated multi-site neural electrodes that can record electrical signals and specific neural biomarkers and that can reach depths greater than 8mm in the sulcus of non-human primates (monkeys). We hypothesize that additional signals recorded by the multimodal probes will increase the information yield when compared to standard probes that record just electropotentials. We describe integration of optical biochemical sensors with neural microelectrodes. The sensors are made using sol-gel derived xerogel thin films that encapsulate specific biomarker responsive luminophores in their nanostructured pores. The desired neural biomarkers are O2, pH, K+, and Na+ ions. As a prototype, we demonstrate direct-write patterning to create oxygen-responsive xerogel waveguide structures on the neural microelectrodes. The recording of neural biomarkers along with electrical activity could help the development of intelligent and more userfriendly neural prosthesis/brain machine interfaces as well as aid in providing answers to complex brain diseases and disorders.

  8. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    be done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...... is not only mechanically stable but also electrical conducting. This method could be used to fabricate nanoelectromechanical systems based on suspended double clamped CNTs depending only on photolithography and standard Cleanroom processes....

  9. Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites Using Radon-222 and Back Trajectories

    Science.gov (United States)

    Chambers, S. D.; Choi, T.; Park, S.-J.; Williams, A. G.; Hong, S.-B.; Tositti, L.; Griffiths, A. D.; Crawford, J.; Pereira, E.

    2017-12-01

    We report on the first summer of high-sensitivity radon measurements from a two-filter detector at Jang Bogo Station (Terra Nova Bay) and contrast them with simultaneous observations at King Sejong Station (King George Island). King Sejong radon concentrations were characteristic of a marine baseline station (0.02-0.3 Bq m-3), whereas Jang Bogo values were highly variable (0.06-5.2 Bq m-3), mainly due to emissions from exposed coastal ground (estimated mean flux 0.09-0.11 atoms cm-2 s-1) and shallow atmospheric mixing depths. For wind speeds of ≤3.5 m s-1 the influence of local radon emissions became increasingly more prominent at both sites. A cluster analysis of back trajectories from King Sejong (62°S) revealed a fairly even distribution between air masses that had passed recently over South America, the Southern Ocean, and Antarctica, whereas at Jang Bogo (75°S) 80% of events had recently passed over the Ross Ice Shelf and West Antarctica, 12% were synoptically forced over Cape Adare, and 8% were associated with subsidence over the Antarctic interior and katabatic flow to the station. When cross-checked against radon concentrations, only half of the back trajectories ending at Jang Bogo that had indicated distant contact with nonpolar southern hemisphere continents within the past 10 days showed actual signs of terrestrial influence. A simple-to-implement technique based on high-pass filtered absolute humidity is developed to distinguish between predominantly katabatic, oceanic, and near-coastal air masses for characterization of trace gas and aerosol measurements at coastal East Antarctic sites.

  10. Teaching Trajectories and Students' Understanding of Difficult Concepts in Biology in Obio/Akpor Local Government Area in Rivers State

    Science.gov (United States)

    Mumuni, Abosede Anthonia Olufemi; Dike, John Worlu; Uzoma-Nwogu, Azibaolanari

    2017-01-01

    This study investigated the effects of teaching trajectories on students' understanding of difficult concepts in Biology. Two research questions and two null hypotheses guided the study which was carried out in Obio/Akpor Local Government Area of Rivers State. Two public coeducational schools out of thirteen drawn through purposive sampling…

  11. Online Detection of Anomalous Sub-trajectories: A Sliding Window Approach Based on Conformal Anomaly Detection and Local Outlier Factor

    OpenAIRE

    Laxhammar , Rikard; Falkman , Göran

    2012-01-01

    Part 4: First Conformal Prediction and Its Applications Workshop (COPA 2012); International audience; Automated detection of anomalous trajectories is an important problem in the surveillance domain. Various algorithms based on learning of normal trajectory patterns have been proposed for this problem. Yet, these algorithms suffer from one or more of the following limitations: First, they are essentially designed for offline anomaly detection in databases. Second, they are insensitive to loca...

  12. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes

    Science.gov (United States)

    Potter-Baker, Kelsey A.; Stewart, Wade G.; Tomaszewski, William H.; Wong, Chun T.; Meador, William D.; Ziats, Nicholas P.; Capadona, Jeffrey R.

    2015-08-01

    Objective. Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. Approach. Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg-1. The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. Main results. Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. Significance. Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.

  13. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    Science.gov (United States)

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  14. Fabrication of three-dimensional carbon microelectrodes for electrochemical sensing

    DEFF Research Database (Denmark)

    Hemanth, Suhith

    Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. The aim of the research work carried out in this thesis was to develop three-dimensional (3D) carbon microelectrodes for electrochemical applications. Three different fabrica...

  15. Electric potential microelectrode for studies of electrobiogeophysics

    DEFF Research Database (Denmark)

    Damgaard, Lars Riis; Risgaard-Petersen, Nils; Nielsen, Lars Peter

    2014-01-01

    were needle-shaped, shielded Ag/AgCl half-cells that were rendered insensitive to redox-active species in the environment. Tip diameters of 40 to 100 μm and signal resolution of approximately 10 μV were achieved. A test in marine sediments with active cable bacteria showed an electric potential......Spatially separated electron donors and acceptors in sediment can be exploited by the so-called “cable bacteria.” Electric potential microelectrodes (EPMs) were constructed to measure the electric fields that should appear when cable bacteria conduct electrons over centimeter distances. The EPMs...

  16. Screening metal nanoparticles using boron-doped diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Rangkuti, Prasmita K. [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University (Japan); JST ACCEL, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2016-04-19

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrode produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.

  17. Screening metal nanoparticles using boron-doped diamond microelectrodes

    International Nuclear Information System (INIS)

    Ivandini, Tribidasari A.; Rangkuti, Prasmita K.; Einaga, Yasuaki

    2016-01-01

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrode produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.

  18. Nanostructured gold microelectrodes for extracellular recording

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, Dorothea; Wolfrum, Bernhard; Maybeck, Vanessa; Offenhaeusser, Andreas [CNI Center of Nanoelectronic Systems for Information Technology and Institute of Bio- and Nanosystems 2, Forschungszentrum Juelich (Germany)

    2010-07-01

    Electrophysiological activity of electrogenic cells is currently recorded with planar bioelectronic interfaces such as microelectrode arrays (MEAs). In this work, a novel concept of biocompatible nanostructured gold MEAs for extracellular signal recording is presented. MEAs were fabricated using clean room technologies, e.g. photolithography and metallization. Subsequently, they were modified with gold nanopillars of approximately 300 to 400 nm in height and 60 nm width. The nanostructuring process was carried out with a template-assisted approach using nanoporous aluminium oxide. Impedance spectroscopy of the resulting nanostructures showed higher capacitances compared to planar gold. This confirmed the expected increase of the surface area via nanostructuring. We used the nanostructured microelectrodes to record extracellular potentials from heart muscle cells (HL1), which were plated onto the chips. Good coupling between the HL1 cells and the nanostructured electrodes was observed. The resulting signal-to-noise ratio of nanopillar-MEAs was increased by a factor of 2 compared to planar MEAs. In future applications this nanopillar concept can be adopted for distinct interface materials and coupling to cellular and molecular sensing components.

  19. Estimation of neural energy in microelectrode signals

    Science.gov (United States)

    Gaumond, R. P.; Clement, R.; Silva, R.; Sander, D.

    2004-09-01

    We considered the problem of determining the neural contribution to the signal recorded by an intracortical electrode. We developed a linear least-squares approach to determine the energy fraction of a signal attributable to an arbitrary number of autocorrelation-defined signals buried in noise. Application of the method requires estimation of autocorrelation functions Rap(tgr) characterizing the action potential (AP) waveforms and Rn(tgr) characterizing background noise. This method was applied to the analysis of chronically implanted microelectrode signals from motor cortex of rat. We found that neural (AP) energy consisted of a large-signal component which grows linearly with the number of threshold-detected neural events and a small-signal component unrelated to the count of threshold-detected AP signals. The addition of pseudorandom noise to electrode signals demonstrated the algorithm's effectiveness for a wide range of noise-to-signal energy ratios (0.08 to 39). We suggest, therefore, that the method could be of use in providing a measure of neural response in situations where clearly identified spike waveforms cannot be isolated, or in providing an additional 'background' measure of microelectrode neural activity to supplement the traditional AP spike count.

  20. A novel combinational pH-PCO2 microelectrode.

    Science.gov (United States)

    Rao, X; Ma, Y

    1993-07-01

    A novel combinational pH-PCO2 microelectrode based on a neutral carrier hydrogen ion exchanger is described. It is easy to fabricate and allows pH and PCO2 to be measured simultaneously. The microelectrode has a 5-microns tip. The PCO2 microelectrode exhibits a linear response in the range 1.75 x 10(-5)-10(-2) mol/liter with a Nernstian slope of 57.0 mV/decade at 25 degrees C. The detection limit is 10(-5) mol/liter. The pH microelectrode exhibits a linear response in the range pH 4-12 with a Nernstian slope of 60.0 mV/decade at 25 degrees C. The 95% steady-state response time of the PCO2 microelectrode is about 2 min, while it is about 10 s for pH microelectrode. The electromotive force drift is 4.3 mV/h (PCO2) and 2.6 mV/h (pH), respectively. The lifetime is 3 to 4 days. The microelectrode can measure pH and PCO2 in body fluids simultaneously with satisfactory results. It is also a good basic electrode for enzyme microelectrolysis.

  1. Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means

    Science.gov (United States)

    Feldstein, C.; Crawford, D. W.; Kanabus, E. W. (Inventor)

    1979-01-01

    An arrangement for and method of inserting a glass microelectrode having a tip in the micron range into body tissue is presented. The arrangement includes a microelectrode. The top of the microelectrode is attached to the diaphragm center of a first speaker. The microelectrode tip is brought into contact with the tissue by controlling a micromanipulator. Thereafter, an audio signal is applied to the speaker to cause the microelectrode to vibrate and thereby pierce the tissue surface without breaking the microelectrode tip. Thereafter, the tip is inserted into the tissue to the desired depth by operating the micromanipulator with the microelectrode in a vibratory or non-vibratory state.

  2. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed...... carbon [2]. This process enables fabrication of 2D and 3D electrodes with possibility for tailoring ad-hoc designs and unique sensitivities for specific applications. Due to this, pyrolysed carbon is becoming increasingly attractive for numerous applications, such as novel sensors and scaffolds for cell...

  3. Carbon fiber on polyimide ultra-microelectrodes

    Science.gov (United States)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  4. Local Politics and a Self-assessment of Political Practice. Perspective of a Neighbourhood Leader in Mexico City on their Political Trajectory

    Directory of Open Access Journals (Sweden)

    Hélène Combes

    2018-01-01

    Full Text Available This article analyses politics at the local level through the perspective of a neighbourhood leader in Mexico City. Drawing on the comprehensive sociology approach and the study of a specific career trajectory, it analyses how a neighbourhood leader works to construct beneficiaries for neighbourhood level social programs and broker resources that would not be leveraged without their work. The analysis presents an alternative vision to other analysts who have emphasized the capture of public funds for electoral purposes by neighbourhood leaders. The objective is to invite researchers to rethink the role of the local political ‘broker’ or intermediary and to consider the complexity of this role. The moral and political dilemmas that condition the behaviour of such leaders are also considered. From here, without making a moral judgement, we consider how political brokerage and the activities that it involves combine instrumental considerations with moral and ideological dimensions.

  5. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest

    2017-01-01

    with cyclic voltammetry (CV) and impedance spectroscopy (EIS) using potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. Different 3D pyrolytic carbon microelectrodes were compared and the optimal design displayed twice the peak current and half the charge transfer......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...... for electrochemical applications. A 3D polymer template in epoxy based photoresist (SU-8) was fabricated with multiple steps of UV photolithography and pyrolysed at 900 °C to obtain 3D carbon microelectrodes. The pyrolytic carbon microstructures were characterized by SEM, Raman spectroscopy and XPS to determine...

  6. Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms

    Directory of Open Access Journals (Sweden)

    Stuart D. Collyer

    2010-05-01

    Full Text Available The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm–2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes.

  7. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.

    Science.gov (United States)

    Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan

    2015-06-17

    In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.

  8. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses

    Directory of Open Access Journals (Sweden)

    Sangmin Lee

    2015-06-01

    Full Text Available In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.

  9. Towards on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes

    Directory of Open Access Journals (Sweden)

    Anna eFendyur

    2012-08-01

    Full Text Available Cardiological research greatly rely on the use of cultured primary cardiomyocytes (CM. The prime methodology to assess CM network electrophysiology is based on the use of extracellular recordings by substrate-integrated planar Micro-Electrode Arrays (MEAs. Whereas this methodology permits simultaneous, long-term monitoring of the CM electrical activity, it limits the information to extracellular field potentials (FP. The alternative method of intracellular action potentials (AP recordings by sharp- or patch-microelectrodes is limited to a single cell at a time. Here, we began to merge the advantages of planar MEA and intracellular microelectrodes. To that end we cultured rat CM on micrometer size protruding gold mushroom-shaped microelectrode (gMµE arrays. Cultured CMs engulf the gMµE permitting FPs recordings from individual cells. Local electroporation of a CM converts the extracellular recording configuration to attenuated intracellular APs with shape and duration similar to those recorded intracellularly. The procedure enables to simultaneously record APs from an unlimited number of CMs. The electroporated membrane spontaneously recovers. This allows for repeated recordings from the same CM a number of times (>8 for over 10 days. The further development of CM-gMµE configuration opens up new venues for basic and applied biomedical research.

  10. Investigating brain functional evolution and plasticity using microelectrode array technology.

    Science.gov (United States)

    Napoli, Alessandro; Obeid, Iyad

    2015-10-01

    The aim of this work was to investigate long and short-term plasticity responsible for memory formation in dissociated neuronal networks. In order to address this issue, a set of experiments was designed and implemented in which the microelectrode array electrode grid was divided into four quadrants, two of which were chronically stimulated, every two days for one hour with a stimulation paradigm that varied over time. Overall network and quadrant responses were then analyzed to quantify what level of plasticity took place in the network and how this was due to the stimulation interruption. The results demonstrate that there were no spatial differences in the stimulus-evoked activity within quadrants. Furthermore, the implemented stimulation protocol induced depression effects in the neuronal networks as demonstrated by the consistently lower network activity following stimulation sessions. Finally, the analysis demonstrated that the inhibitory effects of the stimulation decreased over time, thus suggesting a habituation phenomenon. These findings are sufficient to conclude that electrical stimulation is an important tool to interact with dissociated neuronal cultures, but localized stimuli are not enough to drive spatial synaptic potentiation or depression. On the contrary, the ability to modulate synaptic temporal plasticity was a feasible task to achieve by chronic network stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The impacts of local farming system development trajectories on greenhouse gas emissions in the northern mountains of Vietnam

    DEFF Research Database (Denmark)

    Leisz, S.J.; Rasmussen, Kjeld; Olesen, J.E.

    2007-01-01

    fields, paddy, fruit trees and animal husbandry. Discussion in the policy debate and literature focuses on the impacts these changes have on local people's livelihoods. There have been no attempts to evaluate the impact of these changes on greenhouse gas (GHG) emissions. This paper examines the realities...

  12. Modeling and Simulation of Microelectrode-Retina Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M

    2002-11-30

    The goal of the retinal prosthesis project is the development of an implantable microelectrode array that can be used to supply visually-driven electrical input to cells in the retina, bypassing nonfunctional rod and cone cells, thereby restoring vision to blind individuals. This goal will be achieved through the study of the fundamentals of electrical engineering, vision research, and biomedical engineering with the aim of acquiring the knowledge needed to engineer a high-density microelectrode-tissue hybrid sensor that will restore vision to millions of blind persons. The modeling and simulation task within this project is intended to address the question how best to stimulate, and communicate with, cells in the retina using implanted microelectrodes.

  13. Glass pipette-carbon fiber microelectrodes for evoked potential recordings

    Directory of Open Access Journals (Sweden)

    Moraes M.F.D.

    1997-01-01

    Full Text Available Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials

  14. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...... with the microelectrode measurements. It was established, that even with a high molecular weight, non-diffusible substrate, degradation took place in the depths of the biofilm. Intrinsic enzymatic hydrolysis was not limiting and the volumetric removal rate of oxygen was zero order....

  15. Microelectrodes as novel research tools for environmental biofilm studies

    International Nuclear Information System (INIS)

    Yu, T.; Lu, R.; Bishop, L.

    2002-01-01

    Biofilm processes are widely utilized in environmental engineering for biodegradation of contaminated waters, gases and soils. It is important to understand the structure and functions of biofilms. Microelectrodes are novel experimental tools for environmental biofilm studies. The authors reviewed the techniques of oxygen, sulfide, redox potential and pH microelectrode. These microelectrodes have tip diameters of 3 to 20 μm, resulting a high spatial resolution. They enable us directly measure the chemical conditions as results of microbial activities in biofilms. The authors also reported the laboratory and field studies of wastewater biofilms using microelectrode techniques. The results of these studies provided experimental evidence on the stratification of microbial processes and the associated redox potential change in wastewater biofilms: (1) The oxygen penetration depth was only a fraction of the biofilm thickness. This observation, first made under laboratory conditions, has been confirmed under field conditions. (2) The biofilms with both aerobic oxidation and sulfate reduction had a clearly stratified structure. This was evidenced by a sharp decrease of redox potential near the interface between the aerobic zone and the sulfate reduction zone within the biofilm. In this type of biofilms, aerobic oxidation took place only in a shallow layer near the biofilm surface and sulfate reduction occurred in the deeper anoxic zone. (3) The redox potential changed with the shift of primary microbial process in biofilms, indicating that it is possible to use redox potential to help illustrate the structure and functions of biofilms. (author)

  16. Integration of Polymer Micro-Electrodes for Bio-Sensing

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Larsen, Simon Tylsgaard; Tanzi, Simone

    We present the fabrication of PEDOT and pyrolyzed micro-electrodes for the detection of neurotransmitter exocytosis from single cells. The patterns of the electrodes are defined with photolithography. The micro-electro-fluidic-chips were fabricated by bonding two injection molded TOPAS parts. Pol...

  17. Multi-microelectrode devices for intrafascicular use in peripheral nerve

    NARCIS (Netherlands)

    Rutten, Wim

    1996-01-01

    This minisymposium paper gives an overview of experimental, modeling, design and microfabrication steps which lead towards the University of Twente three-dimensional 128-fold silicon microelectrode device. The device is meant for implantation in peripheral nerve for neuromuscular control purposes

  18. A Platform for Manufacturable Stretchable Micro-electrode Arrays

    NARCIS (Netherlands)

    Khoshfetrat Pakazad, S.; Savov, A.; Braam, S.R.; Dekker, R.

    2012-01-01

    A platform for the batch fabrication of pneumatically actuated Stretchable Micro-Electrode Arrays (SMEAs) by using state-of-the-art micro-fabrication techniques and materials is demonstrated. The proposed fabrication process avoids the problems normally associated with processing of thin film

  19. AFM cantilever with in situ renewable mercury microelectrode

    NARCIS (Netherlands)

    Schön, Peter Manfred; Geerlings, J.; Tas, Niels Roelof; Sarajlic, Edin

    2013-01-01

    We report here first results obtained on a novel, in situ renewable mercury microelectrode integrated into an atomic force microscopy (AFM) cantilever. Our approach is based on a fountain pen probe with appropriate dimensions enabling reversible filling with(nonwetting) mercury under changing the

  20. Lability criteria for metal complexes in micro-electrode voltammetry

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Pinheiro, J.P.

    1999-01-01

    Theoretical expressions are derived for the voltammetric lability criteria of metal complexes in the micro-electrode regime. The treatment includes three limiting situations: (i) the macro-electrode limit, where both the diffusion layer and the dissociation reaction layer are linear; (ii) an

  1. The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia.

    Science.gov (United States)

    Kinfe, Thomas M; Vesper, Jan

    2013-01-01

    Deep brain stimulation (DBS) of the basal ganglia (Ncl. subthalamicus, Ncl. ventralis intermedius thalami, globus pallidus internus) has become an evidence-based and well-established treatment option in otherwise refractory movement disorders. The Ncl. subthalamicus (STN) is the target of choice in Parkinson's disease.However, a considerable discussion is currently ongoing with regard to the necessity for micro-electrode recording (MER) in DBS surgery.The present review provides an overview on deep brain stimulation and (MER) of the STN in patients with Parkinson's disease. Detailed description is given concerning the multichannel MER systems nowadays available for DBS of the basal ganglia, especially of the STN, as a useful tool for target refinement. Furthermore, an overview is given of the historical aspects, spatial mapping of the STN by MER, and its impact for accuracy and precision in current functional stereotactic neurosurgery.The pros concerning target refinement by MER means on the one hand, and cons including increased bleeding risk, increased operation time, local or general anesthesia, and single versus multichannel microelectrode recording are discussed in detail. Finally, the authors favor the use of MER with intraoperative testing combined with imaging to achieve a more precise electrode placement, aiming to ameliorate clinical outcome in therapy-resistant movement disorders.

  2. Effect of island shape on dielectrophoretic assembly of metal nanoparticle chains in a conductive-island-based microelectrode system

    International Nuclear Information System (INIS)

    Ding, Haitao; Shao, Jinyou; Ding, Yucheng; Liu, Weiyu; Li, Xiangming; Tian, Hongmiao; Zhou, Yaopei

    2015-01-01

    Highlights: • Conductive island shape influences the dynamic process occurring in DEP assembly of 10 nm gold nanoparticles in a conductive-island-based microelectrode system. • The DEP-assembled nanoparticle wires form a straighter conduction path with the increase in the geometric angle of conductive island tip. • The different island shapes distort the DEP force distribution and increase the local electrothermally induced fluid flow to different extents, which is important for the morphology and electrical conductance quality of the DEP-assembled metal nanoparticle chains. - Abstract: The electrical conduction quality of an electric circuit connection formed by dielectrophoretic (DEP)-assembled metal nanoparticle wires between small conductive elements plays a significant role in electronic devices. One of the major challenges for improving the electrical conductance of nanowires is optimizing their geometric morphology. So far, the electrical conduction quality has been enhanced by optimizing the AC frequency and conductivity of nanoparticle suspensions. Herein, the effect of the conductive island shapes on the dynamic process occurring in a DEP assembly of 10 nm gold nanoparticles was investigated in a conductive-island-based microelectrode system. The nanoparticle wires between the microelectrodes were assembled in situ from colloidal suspensions. The wires were grown in a much straighter route by increasing the geometric angle of the conductive-island tip. To validate the experiments, the effects of mutual DEP interactions and electrothermally induced fluid flow on the dynamic behavior of particle motion for different island geometric configurations in the conductive-island-based microelectrode system were determined by numerical simulations. The simulation results are consistent with those of experiments. This indicates that different conductive island shapes change the distribution of DEP force and increase the electrothermally induced fluid flow to

  3. Electrochemical measurements on a droplet using gold microelectrodes

    Science.gov (United States)

    Jenabi, Amin; Souri, Asma; Rastkhadiv, Ali

    2016-03-01

    Facile methods of ion recognition are important for the fabrication of electronic tongue systems. In this work, we demonstrate performing pulsed conductometry on microliter electrolyte droplets dropped on gold microelectrodes vapor deposited on soda lime glass slides. A droplet is dropped between two microelectrodes when a voltage waveform from a preprogramed power supply is applied on them. The temporal variation of the electric current passing through the droplet is recorded, digitized and stored. The obtained data are compared with the database formed out of the previous experiences for the classification of the sample electrolytes. It is shown that the shape of the voltage waveform is the important parameter of the process. We devised a method for the optimization of the voltage waveform profile for obtaining the maximum of discriminating information from the recorded current variations.

  4. Electrochemical measurements on a droplet using gold microelectrodes

    International Nuclear Information System (INIS)

    Jenabi, Amin; Souri, Asma; Rastkhadiv, Ali

    2016-01-01

    Facile methods of ion recognition are important for the fabrication of electronic tongue systems. In this work, we demonstrate performing pulsed conductometry on microliter electrolyte droplets dropped on gold microelectrodes vapor deposited on soda lime glass slides. A droplet is dropped between two microelectrodes when a voltage waveform from a preprogramed power supply is applied on them. The temporal variation of the electric current passing through the droplet is recorded, digitized and stored. The obtained data are compared with the database formed out of the previous experiences for the classification of the sample electrolytes. It is shown that the shape of the voltage waveform is the important parameter of the process. We devised a method for the optimization of the voltage waveform profile for obtaining the maximum of discriminating information from the recorded current variations. (paper)

  5. Stretchable microelectrode array using room-temperature liquid alloy interconnects

    International Nuclear Information System (INIS)

    Wei, P; Ziaie, B; Taylor, R; Chung, C; Higgs, G; Pruitt, B L; Ding, Z; Abilez, O J

    2011-01-01

    In this paper, we present a stretchable microelectrode array for studying cell behavior under mechanical strain. The electrode array consists of gold-plated nail-head pins (250 µm tip diameter) or tungsten micro-wires (25.4 µm in diameter) inserted into a polydimethylsiloxane (PDMS) platform (25.4 × 25.4 mm 2 ). Stretchable interconnects to the outside were provided by fusible indium-alloy-filled microchannels. The alloy is liquid at room temperature, thus providing the necessary stretchability and electrical conductivity. The electrode platform can withstand strains of up to 40% and repeated (100 times) strains of up to 35% did not cause any failure in the electrodes or the PDMS substrate. We confirmed biocompatibility of short-term culture, and using the gold pin device, we demonstrated electric field pacing of adult murine heart cells. Further, using the tungsten microelectrode device, we successfully measured depolarizations of differentiated murine heart cells from embryoid body clusters

  6. Comparison of microelectrode sensing configurations for impedimetric cell monitoring

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Heiskanen, Arto; Andresen, Thomas Lars

    2012-01-01

    interdigitated microelectrodes using a versatile custom-made monitoring platform including a 24-channel miniaturized potentiostat. As expected, characterization of bare microelectrodes in buffer and tracking experiments with HeLa cells over 16 hours demonstrate that the coplanar configuration provides a higher......A theoretical and experimental comparison between vertical and coplanar interdigitated sensing configurations for impedimetric cell growth tracking is presented. For the first time, these widely-adopted approaches are quantitatively compared on the same cell populations and on the same 10μm...... sensitivity to cell adhesion and spreading (Cell Index = 1.6 vs. 0.4) albeit at a higher frequency of maximum sensitivity (100kHz vs. 24 kHz)....

  7. Pencil lead microelectrode and the application on cell dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bo-Chuan; Cheng, Tzong-Jih; Shih, Syuan-He [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 136 Chou-Shan Rd., Taipei City 106, Taiwan (China); Chen, Richie L.C., E-mail: rlcchen@ntu.edu.tw [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 136 Chou-Shan Rd., Taipei City 106, Taiwan (China)

    2011-11-30

    A microelectrode was fabricated by electrochemical etching of a pencil lead (0.5 mm in diameter) in 1.0 M NaOH aqueous solution. The pencil lead was dipped into the solution and then an ac voltage (3.0 V{sub rms} for 10 min) was imposed against a stainless plate under mild stirring (450 rpm). The electrochemically sharpened pencil tip was about 10 {mu}m in diameter (12 {+-} 3 {mu}m, n = 5), and the lateral part was insulated within a polypropylene micro-pipette tip (2-200 {mu}L volume range). The cyclic voltammograms conducted in 2.0 mM ferricyanide/ferrocyanide buffer solution (pH 7.0) are with low capacitive current and a typical sigmoidal signal of micro-sized electrodes. The microelectrode was used to perform dielectrophoresis of polystyrene latex microbeads (nominal diameter of 3 {mu}m) and human red blood cells. A conducting glass (indium tin oxide coated glass, 40 mm x 40 mm x 1 mm) served as the counter electrode (0.5 mm beneath the microelectrode) to generate the asymmetrical electric field and also as the window for microscopic observation. With the sinusoidal bias voltage (30 V{sub rms}) ranged from 20 Hz to 2 MHz, positive and negative dielectrophoretic phenomena were identified.

  8. Au pair trajectories

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...

  9. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    Science.gov (United States)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  10. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.

    Directory of Open Access Journals (Sweden)

    Gergely Márton

    Full Text Available Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.

  11. Nanoporous gold microelectrode prepared from potential modulated electrochemical alloying–dealloying in ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Junhua; Wang, Xinying; Zhang, Lei

    2013-01-01

    Highlights: • A green chemistry method for producing nanoporous gold microelectrode was studied. • An ionic liquid plating bath was utilized for electrochemical alloying–dealloying. • Nanostructures of gold surface layers can be tuned by modulating potential. • Nanoporous gold microelectrode has high surface area and merit of a microelectrode. • Nitrite oxidation and reduction on nanoporous gold microelectrode were studied. -- Abstract: Nanoporous gold (NPG) microelectrodes with high surface area and open pore network were successfully prepared by applying modulated potential to a polycrystalline Au-disk microelectrode in ionic liquid electrolyte containing ZnCl 2 at elevated temperature. During cathodic process, Zn is electrodeposited and interacted with Au microdisk substrate to form a AuZn alloy phase. During subsequent anodic process, Zn is selectively dissolved from the alloy phase, leading to the formation of a NPG layer which can grow with repetitive potential modulation. Scanning-electron microscope and energy dispersive X-ray microscope measurements show that the NPG microelectrodes possessing nanoporous structures can be tuned via potential modulation, and chemically contain a small amount of Zn whose presence has no obvious influence on electrochemical responses of the electrodes. Steady-state and cyclic voltammetric studies suggest that the NPG microelectrodes have high surface area and keep diffusional properties of a microelectrode. Electrochemical nitrite reduction and oxidation are studied as model reactions to demonstrate potential applications of the NPG microelectrodes in electrocatalysis and electroanalysis. These facts suggest that the potential-modulated electrochemical alloying/dealloying in ionic liquid electrolyte offers a convenient green-chemistry method for the preparation of nanoporous microelectrodes

  12. Access, Coping and Relevance of Education at Local Level: A Case Study. A life course approach to the analysis of young people’s educational trajectories

    Directory of Open Access Journals (Sweden)

    Silvia Demozzi

    2016-07-01

    Full Text Available The present paper introduces the objectives and the design of the project “Governance of Educational Trajectories in Europe” (GOETE and it presents some findings emerging from a case study conducted in one of the cities involved in the project, Bologna. GOETE project analyzed how educational trajectories of children and young people between the end of primary education and the beginning of post-compulsory routes are regulated in eight different EU-member states: Finland, France, Germany, Italy, Netherlands, Poland, Slovenia and the UK. The research assesses the outcomes of education, taking into account the effects of social inequalities, changes in the governance of education in terms of lifelong learning, knowledge societies and transnational educational spaces. “Life course” perspective provides an interactive understanding of educational processes and addresses the interplay between the institutionalization of individual lives and subjective biographies.

  13. Depth-time interpolation of feature trends extracted from mobile microelectrode data with kernel functions.

    Science.gov (United States)

    Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F

    2012-01-01

    Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.

  14. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses

    Science.gov (United States)

    Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.

    2009-04-01

    Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.

  15. Long-term neural recordings using MEMS based moveable microelectrodes in the brain

    Directory of Open Access Journals (Sweden)

    Nathan Jackson

    2010-06-01

    Full Text Available One of the critical requirements of the emerging class of neural prosthetic devices is to maintain good quality neural recordings over long time periods. We report here a novel (Micro-ElectroMechanical Systems based technology that can move microelectrodes in the event of deterioration in neural signal to sample a new set of neurons. Microscale electro-thermal actuators are used to controllably move microelectrodes post-implantation in steps of approximately 9 µm. In this study, a total of 12 moveable microelectrode chips were individually implanted in adult rats. Two of the 12 moveable microelectrode chips were not moved over a period of 3 weeks and were treated as control experiments. During the first three weeks of implantation, moving the microelectrodes led to an improvement in the average SNR from 14.61 ± 5.21 dB before movement to 18.13 ± 4.99 dB after movement across all microelectrodes and all days. However, the average RMS values of noise amplitudes were similar at 2.98 ± 1.22 µV and 3.01 ± 1.16 µV before and after microelectrode movement. Beyond three weeks, the primary observed failure mode was biological rejection of the PMMA (dental cement based skull mount resulting in the device loosening and eventually falling from the skull. Additionally, the average SNR for functioning devices beyond three weeks was 11.88 ± 2.02 dB before microelectrode movement and was significantly different (p<0.01 from the average SNR of 13.34 ± 0.919 dB after movement. The results of this study demonstrate that MEMS based technologies can move microelectrodes in rodent brains in long-term experiments resulting in improvements in signal quality. Further improvements in packaging and surgical techniques will potentially enable movable microelectrodes to record cortical neuronal activity in chronic experiments.

  16. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhaeusser, A, E-mail: a.offenhaeusser@fz-juelich.de [Institute of Complex Systems and Peter Gruenberg Institute: Bioelectronics (ICS8/PGI8), Forschungszentrum Juelich GmbH, Leo-Brandt-Strasse, 52428 Juelich (Germany); Juelich-Aachen Research Alliance-Fundamental of Future Information Technology (JARA-FIT) (Germany)

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  17. A Single Platinum Microelectrode for Identifying Soft Drink Samples

    Directory of Open Access Journals (Sweden)

    Lígia Bueno

    2012-01-01

    Full Text Available Cyclic voltammograms recorded with a single platinum microelectrode were used along with a non-supervised pattern recognition, namely, Principal Component Analysis, to conduct a qualitative analysis of sixteen different brands of carbonated soft drinks (Kuat, Soda Antarctica, H2OH!, Sprite 2.0, Guarana Antarctica, Guarana Antarctica Zero, Coca-Cola, Coca-Cola Zero, Coca-Cola Plus, Pepsi, Pepsi Light, Pepsi Twist, Pepsi Twist Light, Pepsi Twist 3, Schin Cola, and Classic Dillar’s. In this analysis, soft drink samples were not subjected to pre-treatment. Good differentiation among all the analysed soft drinks was achieved using the voltammetric data. An analysis of the loading plots shows that the potentials of −0.65 V, −0.4 V, 0.4 V, and 0.750 V facilitated the discrimination process. The electrochemical processes related to this potential are the reduction of hydrogen ions and inhibition of the platinum oxidation by the caffeine adsorption on the electrode surface. Additionally, the single platinum microelectrode was useful for the quality control of the soft drink samples, as it helped to identify the time at which the beverage was opened.

  18. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.

    Science.gov (United States)

    Brüggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhäusser, A

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  19. Experiments on pumping of liquids using arrays of microelectrodes subjected to travelling wave potentials

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, P; Ramos, A [Dpto. de Electronica y Electromagnetismo, Universidad de Sevilla, 41012 Sevilla (Spain); Green, Nicolas G; Morgan, H [School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton (United Kingdom)], E-mail: pablogarcia@us.es

    2008-12-01

    Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.

  20. Experiments on pumping of liquids using arrays of microelectrodes subjected to travelling wave potentials

    International Nuclear Information System (INIS)

    Garcia-Sanchez, P; Ramos, A; Green, Nicolas G; Morgan, H

    2008-01-01

    Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.

  1. Management by Trajectory: Trajectory Management Study Report

    Science.gov (United States)

    Leiden, Kenneth; Atkins, Stephen; Fernandes, Alicia D.; Kaler, Curt; Bell, Alan; Kilbourne, Todd; Evans, Mark

    2017-01-01

    In order to realize the full potential of the Next Generation Air Transportation System (NextGen), improved management along planned trajectories between air navigation service providers (ANSPs) and system users (e.g., pilots and airline dispatchers) is needed. Future automation improvements and increased data communications between aircraft and ground automation would make the concept of Management by Trajectory (MBT) possible.

  2. Micro-fabrication of three dimensional pyrolysed carbon microelectrodes

    DEFF Research Database (Denmark)

    2017-01-01

    ; soft baking the photoresist layer; performing a full depth exposure with UV light through a first mask; performing a partial depth exposure with UV light through a second mask; wherein the full depth exposure and the partial depth exposure are aligned to ensure that the first and second latent images...... are connected to each other; post-exposure baking the photoresist layer; and developing the microscale patterned resist template as a free-standing structure of cross-linked resist with lateral hanging structures that are supported by vertical support structures at a free height above the substrate. The method...... is characterized by a soft baking temperature below 70 °C. Repetitive coating and partial depth exposure allows for the fabrication of multiple level laterally interconnected structures. Carbonization of the resist template provides truly three-dimensional carbon microelectrode structures....

  3. Thin film microelectrodes for electrochemical detection of neurotransmitters

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard

    An important signaling process in the nervous system is the release of chemical messengers called neurotransmitters from neurons. In this thesis alternative thin film electrode materials for applications targeting electrochemical detection of neurotransmitters in chip devices were evaluated...... and conductive polymer microelectrodes made of Pedot:Pss were also fabricated and used successfully to measure transmitter release from cells. The use of different thin film electrodes for low-noise amperometric measurements of single events of transmitter release from neuronal cells was studied....... For this application a very low current noise is needed together with a large temporal resolution. It was shown, that resistive and capacitive properties of thin film electrode materials are determining their usefulness in low-noise amperometric measurements. An analytical expression for the noise was derived...

  4. A 3-D Microelectrode System for Dielectrophoretic Manipulation of Microparticles

    International Nuclear Information System (INIS)

    Chen, D F; Du, H; Gong, H Q; Li, W H

    2006-01-01

    This paper presents a microfluidic system for manipulation and separation of micron-sized particles based on the combined use of negative dielectrophoresis (DEP) and hydrodynamic forces. A 3-D microelectrode structure (so called paired electrode array) are constructed face to face on the top and bottom sides of the microchannel and driven with highfrequency AC voltage to generate dielectrophoretic gates. Depending on the relative strengths of the two forces, particles such as polystyrene beads or cells carrying by a laminar flow can either penetrate the gate or settle there. This gives rise to certain applications including selectively concentrating particles from the flow, separating particles depending on their sizes or dielectric properties, and automatically positioning particles to selective locations. For this purpose, a microfluidic device consisting of the paired electrode array sitting on the channel has been fabricated using microfabrication techniques. Polystyrene beads were used to study the performance of the device. Experimental results including the concentration and separation of particles are presented

  5. Adaptive Trajectory Design

    Data.gov (United States)

    National Aeronautics and Space Administration — Adaptive Trajectory Design (ATD) is an original concept for quick and efficient end-to-end trajectory designs using proven piece-wise dynamical methods. With ongoing...

  6. Comparisons of Ballistic Trajectory Simulations Using Artillery Meteorological Messages Derived from Local Balloon Data and Battlescale Forecast Model Data for the 1998 SADARM IOT&E Firings

    National Research Council Canada - National Science Library

    Jameson, Terry C; Luces, Saba A; Knapp, Dave

    2001-01-01

    .... Due to the complex terrain and local wind conditions encountered in the test area during the IOT AND E, the Met study was proposed as a way to evaluate current and future artillery Met forecasting...

  7. Computing with spatial trajectories

    CERN Document Server

    2011-01-01

    Covers the fundamentals and the state-of-the-art research inspired by the spatial trajectory data Readers are provided with tutorial-style chapters, case studies and references to other relevant research work This is the first book that presents the foundation dealing with spatial trajectories and state-of-the-art research and practices enabled by trajectories

  8. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    Science.gov (United States)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  9. Low Frequency Activity of Cortical Networks on Microelectrode Arrays is Differentially Altered by Bicuculline and Carbaryl

    Science.gov (United States)

    Thousands of chemicals need to be characterized for their neurotoxicity potential. Neurons grown on microelectrode arrays (MEAs) are an in vitro model used to screen chemicals for functional effects on neuronal networks. Typically, after removal of low frequency components, effec...

  10. Conductive Polymer Microelectrodes for on-chip measurement of transmitter release from living cells

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Matteucci, Marco; Taboryski, Rafael J.

    2012-01-01

    driven cell trapping inside closed chip devices. Conductive polymer microelectrodes were used to measure transmitter release using electrochemical methods such as cyclic voltammetry and constant potential amperometry. By measuring the oxidation current at a cyclic voltammogram, the concentration...

  11. A microfluidic cell culture device with integrated microelectrodes for barrier studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Dufva, Martin; Kutter, Jörg P.

    We present an eight cell culture microfluidic device fabricated using thiol-ene ‘click’ chemistry with embedded microelectrodes for evaluating barrier properties of human intestinal epithelial cells. The capability of the microelectrodes for trans-epithelial electrical resistance (TEER) measureme......) measurements was demonstrated by using confluent human colorectal epithelial cells (Caco-2) and rat fibroblast (CT 26) cells cultured in the microfluidic device....

  12. Carbon-Ring Microelectrode Arrays for Electrochemical Imaging of Single Cell Exocytosis: Fabrication and Characterization

    Science.gov (United States)

    Lin, Yuqing; Trouillon, Raphaël; Svensson, Maria I.; Keighron, Jacqueline D.; Cans, Ann-Sofie; Ewing, Andrew G.

    2012-01-01

    Fabrication of carbon microelectrode arrays, with up to 15 electrodes in total tips as small as 10 to 50 μm, is presented. The support structures of microelectrodes were obtained by pulling multiple quartz capillaries together to form hollow capillary arrays before carbon deposition. Carbon ring microelectrodes were deposited by pyrolysis of acetylene in the lumen of these quartz capillary arrays. Each carbon deposited array tip was filled with epoxy, followed by beveling of the tip of the array to form a deposited carbon-ring microelectrode array (CRMA). Both the number of the microelectrodes in the array and the tip size are independently tunable. These CRMAs have been characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and electrogenerated chemiluminescence. Additionally, the electrochemical properties were investigated with steady-state voltammetry. In order to demonstrate the utility of these fabricated microelectrodes in neurochemistry, CRMAs containing eight microring electrodes were used for electrochemical monitoring of exocytotic events from single PC12 cells. Subcellular temporal heterogeneities in exocytosis (ie. cold spots vs. hot spots) were successfully detected with the CRMAs. PMID:22339586

  13. Modulation of cultured neural networks using neurotrophin release from hydrogel-coated microelectrode arrays

    Science.gov (United States)

    Jun, Sang Beom; Hynd, Matthew R.; Dowell-Mesfin, Natalie M.; Al-Kofahi, Yousef; Roysam, Badrinath; Shain, William; Kim, Sung June

    2008-06-01

    Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affect bioactivity, alkaline phosphatase was incorporated into hydrogels and a released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver a brain-derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEAs). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. An increased spontaneous activity as a response to the released BDNF was recorded from the neurons cultured on the top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules.

  14. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    Science.gov (United States)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  15. Complex trajectories in a classical periodic potential

    International Nuclear Information System (INIS)

    Anderson, Alexander G; Bender, Carl M

    2012-01-01

    This paper examines the complex trajectories of a classical particle in the potential V(x) = −cos (x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there are two special classes of trajectories x(t) determined only by the energy of the particle and not by the initial position of the particle. The first class consists of periodic trajectories; that is, trajectories that return to their initial position x(0) after some real time T. The second class consists of trajectories for which there exists a real time T such that x(t + T) = x(t) ± 2π. These two classes of classical trajectories are analogous to valence and conduction bands in quantum mechanics, where the quantum particle either remains localized or else tunnels resonantly (conducts) through a crystal lattice. These two special types of trajectories are associated with sets of energies of measure 0. For other energies, it is shown that for long times the average velocity of the particle becomes a fractal-like function of energy. (paper)

  16. Complex trajectories in a classical periodic potential

    Science.gov (United States)

    Anderson, Alexander G.; Bender, Carl M.

    2012-11-01

    This paper examines the complex trajectories of a classical particle in the potential V(x) = -cos (x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there are two special classes of trajectories x(t) determined only by the energy of the particle and not by the initial position of the particle. The first class consists of periodic trajectories; that is, trajectories that return to their initial position x(0) after some real time T. The second class consists of trajectories for which there exists a real time T such that x(t + T) = x(t) ± 2π. These two classes of classical trajectories are analogous to valence and conduction bands in quantum mechanics, where the quantum particle either remains localized or else tunnels resonantly (conducts) through a crystal lattice. These two special types of trajectories are associated with sets of energies of measure 0. For other energies, it is shown that for long times the average velocity of the particle becomes a fractal-like function of energy.

  17. local

    Directory of Open Access Journals (Sweden)

    Abílio Amiguinho

    2005-01-01

    Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

  18. Path integrals and geometry of trajectories

    International Nuclear Information System (INIS)

    Blau, M.; Keski-Vakkuri, E.; Niemi, A.J.

    1990-01-01

    A geometrical interpretation of path integrals is developed in the space of trajectories. This yields a supersymmetric formulation of a generic path integral, with the supersymmetry resembling the BRST supersymmetry of a first class constrained system. If the classical equation of motion is a Killing vector field in the space of trajectories, the supersymmetry localizes the path integral to classical trajectories and the WKB approximation becomes exact. This can be viewed as a path integral generalization of the Duistermaat-Heckman theorem, which states the conditions for the exactness of the WKB approximation for integrals in a compact phase space. (orig.)

  19. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    Directory of Open Access Journals (Sweden)

    Donna H. Wang

    2011-08-01

    Full Text Available Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM. The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA, due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  20. Discovery of Undescribed Brain Tissue Changes Around Implanted Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Himanshi Desai

    2012-01-01

    Full Text Available Brain-implantable microelectrode arrays are devicesdesigned to record or electrically stimulate the activity ofneurons in the brain. These devices hold the potential tohelp treat epilepsy, paralysis, blindness, and deafness, andalso provide researchers with insights into a varietyof neural processes, such as memory formation.While these devices have a very promising future,researchers are discovering that their long-termfunctionality is greatly limited by the brain’s naturalimmune response to foreign objects. To improve thefunctional lifetime of these devices, one solution lies infully characterizing and understanding this tissue response.Roles for microglia and astrocytes in this biologicalresponse have been characterized. However, changesto oligodendrocytes, cells that myelinate axons, remainpoorly understood. These cells provide insulationto the axons, which is required for proper neuralfunctioning. Here we report on the changes that occurwith oligodendrocyte processes in tissue aroundmicroelectrode implants in the brain.Six rats were surgically implanted with microelectrodearrays and allowed to recover for 1, 2, or 4 weeks.Subjects were then sacrificed and the brain tissue wasprocessed using our recently developed method, Device-Capture Histology. Immunohistochemistry and confocalmicroscopy was employed to assess the responsearound the device. Results indicated a decrease inoligodendrocyte density and a loss in typical directionalorientation of oligodendrocyte processes in tissue near thedevice. These results suggest alterations in the underlyingneuronal networks around these devices, which maygreatly impact the current functional utility of thesepromising devices.

  1. Study of the Behavior of the Mercury on Diverse Microelectrodes with Cell of Continuous Flow

    International Nuclear Information System (INIS)

    Cruz Valldeperas, F

    2001-01-01

    A comparative study of six types of microelectrodes in two different support electrolytes was developed using a new analytic technique for analysis of mercury in liquid samples in the ambit of parts by million. For it, a new system of cell of continuous flow and platinum microelectrodes and of platinum with gold film was implemented using volt-amperemetry of anodized spoil with square wave. In a preliminary study, some parameters that characterize the analysis with this new cell were optimized, for example the sample's speed flow and the time of electrodeposition. The calibration curves were made for the different types of microelectrode that were used in an ambit of concentrations of 1-10 ppm. According to the obtained results, the microelectrode that better works is the platinum disk for possessing bigger superficial area exposed to the dissolution, which increases the analite's currents of pick. And as a support electrolyte, potassium tiocianato is recommended because of its effectiveness to solve the analytic sign of the mercury. Studies of answer of the current of mercury regarding the quantity of the placed sample and studies of interferences of the analysis with this type of microelectrode were also carried out. With regard to the study of the quantity of sample, it was obtained that the electrochemical answer of the cell is directly proportional to the concentration of the analite placed in it. In the study of interference, it was found that the copper, lead, and zinc ions affect the analysis of mercury in concentrations of 0.1 ppm and on in the case of the microelectrode of platinum disk. And in case that the same microelectrode is used recovered with gold, it only affects the copper in concentrations over 5 ppm, for what is necessary to take into account a previous treatment of the sample in the event of containing some of the interfering ions [es

  2. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghane-Motlagh, Bahareh, E-mail: bahar.ghane@gmail.com [Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, QC H3C 3A7 (Canada); Javanbakht, Taraneh; Shoghi, Fatemeh; Wilkinson, Kevin J.; Martel, Richard [Department of Chemistry, University of Montreal, QC H3C 3J7 (Canada); Sawan, Mohamad [Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, QC H3C 3A7 (Canada)

    2016-11-01

    Silicon micromachined neural electrode arrays, which act as an interface between bioelectronic devices and neural tissues, play an important role in chronic implants, in vivo. The biological compatibility of chronic microelectrode arrays (MEA) is an essential factor that must be taken into account in their design and fabrication. In order to improve biocompatibility of the MEAs, the surface of the electrodes was coated with polyethylene glycol (PEG) and parylene-C, which are biocompatible polymers. An in vitro study was performed to test the capacity of poly-D-lysine (PDL) to improve neural-cell adhesion and proliferation. Increased proliferation of the neuroblast cells on the microelectrodes was observed in the presence of the PDL. The presence of the peptide on the electrode surface was confirmed using Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). The impedance of the electrodes was not changed significantly before and after PDL deposition. Mouse neuroblast cells were seeded and cultured on the PDL coated and uncoated neural MEAs with different tip-coatings such as platinum, molybdenum, gold, sputtered iridium oxide, and carbon nanotubes. The neuroblast cells grew preferentially on and around peptide coated-microelectrode tips, as compared to the uncoated microelectrodes. - Highlights: • A novel high-density microelectrode array (MEA) for intracortical 3D recording and stimulation was designed and fabricated. • In order to improve neural-cell adhesion and proliferation, the surface of the electrodes was coated with poly-D-lysine (PDL). • An in vitro study was performed to test the capacity of PDL to improve cell adhesion and proliferation. • The neuroblast cells grew preferentially on peptide-coated microelectrode tips compared to the uncoated microelectrodes.

  3. Trajectories of martian habitability.

    Science.gov (United States)

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.

  4. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  5. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    International Nuclear Information System (INIS)

    Ozel, Rifat Emrah; Wallace, Kenneth N.; Andreescu, Silvana

    2011-01-01

    Graphical abstract: Chitosan coated fiber electrodes are sensitive to serotonin detection while rejecting physiological levels of ascorbic acid interferences. - Abstract: We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/μM, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n = 6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.

  6. Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects

    Directory of Open Access Journals (Sweden)

    Eduardo eFernandez

    2014-07-01

    Full Text Available The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of penetrating microelectrode arrays are providing unprecedented access to the neurons of the CNS. These microelectrodes have active tip dimensions that are similar in size to neurons and because they penetrate the nervous system, they provide selective access to these cells (within a few microns. However, the very long-term viability of chronically implanted microelectrodes and the capability of recording the same spiking activity over long time periods still remain to be established and confirmed in human studies. Here we review the main responses to acute implantation of microelectrode arrays, and emphasize that it will become essential to control the neural tissue damage induced by these intracortical microelectrodes in order to achieve the high clinical potentials accompanying this technology.

  7. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Rifat Emrah [Department of Chemistry and Biomolecular Science, 8 Clarkson Ave, Potsdam, NY 136995810 (United States); Wallace, Kenneth N. [Department of Biology, Clarkson University, Potsdam, NY 136995810 (United States); Andreescu, Silvana, E-mail: eandrees@clarkson.edu [Department of Chemistry and Biomolecular Science, 8 Clarkson Ave, Potsdam, NY 136995810 (United States)

    2011-06-10

    Graphical abstract: Chitosan coated fiber electrodes are sensitive to serotonin detection while rejecting physiological levels of ascorbic acid interferences. - Abstract: We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/{mu}M, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n = 6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.

  8. Multivariate regression methods for estimating velocity of ictal discharges from human microelectrode recordings

    Science.gov (United States)

    Liou, Jyun-you; Smith, Elliot H.; Bateman, Lisa M.; McKhann, Guy M., II; Goodman, Robert R.; Greger, Bradley; Davis, Tyler S.; Kellis, Spencer S.; House, Paul A.; Schevon, Catherine A.

    2017-08-01

    Objective. Epileptiform discharges, an electrophysiological hallmark of seizures, can propagate across cortical tissue in a manner similar to traveling waves. Recent work has focused attention on the origination and propagation patterns of these discharges, yielding important clues to their source location and mechanism of travel. However, systematic studies of methods for measuring propagation are lacking. Approach. We analyzed epileptiform discharges in microelectrode array recordings of human seizures. The array records multiunit activity and local field potentials at 400 micron spatial resolution, from a small cortical site free of obstructions. We evaluated several computationally efficient statistical methods for calculating traveling wave velocity, benchmarking them to analyses of associated neuronal burst firing. Main results. Over 90% of discharges met statistical criteria for propagation across the sampled cortical territory. Detection rate, direction and speed estimates derived from a multiunit estimator were compared to four field potential-based estimators: negative peak, maximum descent, high gamma power, and cross-correlation. Interestingly, the methods that were computationally simplest and most efficient (negative peak and maximal descent) offer non-inferior results in predicting neuronal traveling wave velocities compared to the other two, more complex methods. Moreover, the negative peak and maximal descent methods proved to be more robust against reduced spatial sampling challenges. Using least absolute deviation in place of least squares error minimized the impact of outliers, and reduced the discrepancies between local field potential-based and multiunit estimators. Significance. Our findings suggest that ictal epileptiform discharges typically take the form of exceptionally strong, rapidly traveling waves, with propagation detectable across millimeter distances. The sequential activation of neurons in space can be inferred from clinically

  9. PANTHER. Trajectory Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wilson, Andrew T. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kegelmeyer, W. Philip [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newton, Benjamin D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Czuchlewski, Kristina Rodriguez [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.

  10. Preparation of metal nanoband microelectrode on poly(dimethylsiloxane) for chip-based amperometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shaopeng; Wu Jian; Yu Xiaodong [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2010-04-30

    We proposed herein a novel approach for fabricating nanoband microelectrodes for electrochemical detection on an electrophoresis microchip. The metal films were first obtained via region-selective electroless deposition of gold or copper films on PDMS substrates by selective region plasma oxidation through shadow masking. Both metal films show uniform surfaces with the thickness at the level of 100 nm. By casting another PDMS layer on the metal films, the cross section of the sandwich structures can be used as nanoband microelectrodes, which can be renewed just by cutting. These nanoband microelectrodes are successfully used as electrochemical detectors in microchip electrophoresis for the detection of amino acids, proteins and neurotransmitter molecules. Moreover, integrating an Au-Cu double-metal detector with a double-channel electrophoresis system, we can easily distinguish electroactive amino acids from that of non-electroactive amino acids.

  11. A novel method for the fabrication of a high-density carbon nanotube microelectrode array

    Directory of Open Access Journals (Sweden)

    Adam Khalifa

    2015-09-01

    Full Text Available We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA chip. Vertically aligned carbon nanotubes (VACNTs were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip. In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources. Keywords: Microelectrode array, Neural implant, Carbon nanotubes, Through-silicon via interconnects, Microfabrication

  12. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode.

    Science.gov (United States)

    Howard, M A; Volkov, I O; Noh, M D; Granner, M A; Mirsky, R; Garell, P C

    1997-01-01

    Neurosurgeons have unique access to in vivo human brain tissue, and in the course of clinical treatment important scientific advances have been made that further our understanding of normal brain physiology. In the modern era, microelectrode recordings have been used to systematically investigate the cellular properties of lateral temporal cerebral cortex. The current report describes a hybrid depth electrode (HDE) recording technique that was developed to enable neurosurgeons to simultaneously investigate normal cellular physiology during chronic intracranial EEG recordings. The HDE combines microelectrode and EEG recordings sites on a single shaft. Multiple microelectrode recordings are obtained from MRI defined brain sites and single-unit activity is discriminated from these data. To date, over 60 HDEs have been placed in 20 epilepsy surgery patients. Unique physiologic data have been gathered from neurons in numerous brain regions, including amygdala, hippocampus, frontal lobe, insula and Heschl's gyrus. Functional activation studies were carried out without risking patient safety or comfort.

  13. Action Recognition Using Discriminative Structured Trajectory Groups

    KAUST Repository

    Atmosukarto, Indriyati

    2015-01-06

    In this paper, we develop a novel framework for action recognition in videos. The framework is based on automatically learning the discriminative trajectory groups that are relevant to an action. Different from previous approaches, our method does not require complex computation for graph matching or complex latent models to localize the parts. We model a video as a structured bag of trajectory groups with latent class variables. We model action recognition problem in a weakly supervised setting and learn discriminative trajectory groups by employing multiple instance learning (MIL) based Support Vector Machine (SVM) using pre-computed kernels. The kernels depend on the spatio-temporal relationship between the extracted trajectory groups and their associated features. We demonstrate both quantitatively and qualitatively that the classification performance of our proposed method is superior to baselines and several state-of-the-art approaches on three challenging standard benchmark datasets.

  14. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    Science.gov (United States)

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ˜80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  15. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation

    International Nuclear Information System (INIS)

    Gutruf, Philipp; Walia, Sumeet; Nur Ali, Md; Sriram, Sharath; Bhaskaran, Madhu

    2014-01-01

    The functionality of flexible electronics relies on stable performance of thin film micro-electrodes. This letter investigates the behavior of gold thin films on polyimide, a prevalent combination in flexible devices. The dynamic behavior of gold micro-electrodes has been studied by subjecting them to stress while monitoring their resistance in situ. The shape of the electrodes was systematically varied to examine resistive strain sensitivity, while an additional encapsulation was applied to characterize multilayer behavior. The realized designs show remarkable tolerance to repetitive strain, demonstrating that curvature and encapsulation are excellent approaches for minimizing resistive strain sensitivity to enable durable flexible electronics

  16. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Hyun; Choi, Yang-Kyu [Nano-Oriented Bio-Electronics Lab, Department of Electrical Engineering, College of Information Science and Technology, KAIST, Daejeon 305-701 (Korea, Republic of); Kang, Gyumin; Nam, Yoonkey, E-mail: ynam@kaist.ac.kr, E-mail: ykchoi@ee.kaist.ac.kr [Department of Bio and Brain Engineering, KAIST, KAIST Institute for Nano-Century, Daejeon 305-701 (Korea, Republic of)

    2010-02-26

    A novel microelectrode modification method is reported for neural electrode engineering with a flake nanostructure (nanoflake). The nanoflake-modified electrodes are fabricated by combining conventional lithography and electrochemical deposition to implement a microelectrode array (MEA) on a glass substrate. The unique geometrical properties of nanoflake sharp tips and valleys are studied by optical, electrochemical and electrical methods in order to verify the advantages of using nanoflakes for neural recording devices. The in vitro recording and stimulation of cultured hippocampal neurons are demonstrated on the nanoflake-modified MEA and the clear action potentials are observed due to the nanoflake impedance reduction effect.

  17. Fast prototyping of conducting polymer microelectrodes using resistance-controlled high precision drilling

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Geschke, Oliver; Skaarup, Steen

    2011-01-01

    We present a straightforward method for fast prototyping of microelectrode arrays in the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Microelectrode arrays were produced by electrical resistance-controlled microdrilling through an insulating polymer layer (TOPAS® 5013...... approach the steady state currents predicted from modeling, but at a much slower rate than expected. This is shown to be caused by the use of electroactive PEDOT electrodes. Subtraction of the latter contribution gives approach to steady state currents within a few seconds, which is in very good agreement...

  18. Microelectrode for energy and current control of nanotip field electron emitters

    International Nuclear Information System (INIS)

    Lüneburg, S.; Müller, M.; Paarmann, A.; Ernstorfer, R.

    2013-01-01

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations

  19. Trajectory Browser Website

    Science.gov (United States)

    Foster, Cyrus; Jaroux, Belgacem A.

    2012-01-01

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center to be used for the preliminary assessment of trajectories to small-bodies and planets and for providing relevant launch date, time-of-flight and V requirements. The site hosts a database of transfer trajectories from Earth to asteroids and planets for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and delta V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release as soon as development is complete.

  20. Long range trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. W.; Jessup, E. A.; White, R. E. [Air Resources Field Research Office, Las Vegas, Nevada (United States)

    1967-07-01

    A single air molecule can have a trajectory that can be described with a line, but most meteorologists use single lines to represent the trajectories of air parcels. A single line trajectory has the disadvantage that it is a categorical description of position. Like categorized forecasts it provides no qualification, and no provision for dispersion in case the parcel contains two or more molecules which may take vastly different paths. Diffusion technology has amply demonstrated that an initial aerosol cloud or volume of gas in the atmosphere not only grows larger, but sometimes divides into puffs, each having a different path or swath. Yet, the average meteorologist, faced with the problem of predicting the future motion of a cloud, usually falls back on the line trajectory approach with the explanation that he had no better tool for long range application. In his more rational moments, he may use some arbitrary device to spread his cloud with distance. One such technique has been to separate the trajectory into two or more trajectories, spaced about the endpoint of the original trajectory after a short period of travel, repeating this every so often like a chain reaction. This has the obvious disadvantage of involving a large amount of labor without much assurance of improved accuracy. Another approach is to draw a circle about the trajectory endpoint, to represent either diffusion or error. The problem then is to know what radius to give the circle and also whether to call it diffusion or error. Meteorologists at the Nevada Test Site (NTS) are asked frequently to provide advice which involves trajectory technology, such as prediction of an aerosol cloud path, reconstruction of the motion of a volume of air, indication of the dilution, and the possible trajectory prediction error over great distances. Therefore, we set out, nearly three years ago, to provide some statistical knowledge about the status of our trajectory technology. This report contains some of the

  1. Shrinking villages – trajectories for local development

    DEFF Research Database (Denmark)

    Nørgaard, Helle

    The New Rural Paradigm was introduced in 2006 as a policy emphasising investments rather than subsidies and aimed at integrating different sectoral policies in order to improve the coherence and effectiveness of public expenditure. The new rural paradigm also stresses a place-based approach...... and services e.g. schools as well as investment. Rural municipalities are challenged due to shrinking villages but by focussing on place bound resources there is a risk of reinforcing disparities between ‘weak’ and ‘strong’ communities as placed bound resources are unevenly distributed. This paper will address...

  2. Automated Cooperative Trajectories

    Science.gov (United States)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  3. Branching trajectory continual integral

    International Nuclear Information System (INIS)

    Maslov, V.P.; Chebotarev, A.M.

    1980-01-01

    Heuristic definition of the Feynman continual integral over branching trajectories is suggested which makes it possible to obtain in the closed form the solution of the Cauchy problem for the model Hartree equation. A number of properties of the solution is derived from an integral representation. In particular, the quasiclassical asymptotics, exact solution in the gaussian case and perturbation theory series are described. The existence theorem for the simpliest continual integral over branching trajectories is proved [ru

  4. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors.

    Science.gov (United States)

    Kim, Sung-Kon; Koo, Hyung-Jun; Lee, Aeri; Braun, Paul V

    2014-08-13

    Selective wetting-induced micro-electrode patterning is used to fabricate flexible micro-supercapacitors (mSCs). The resulting mSCs exhibit high performance, mechanical stability, stable cycle life, and hold great promise for facile integration into flexible devices requiring on-chip energy storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Intraneural stimulation using wire-microelectrode arrays: analysis of force steps in recruitment curves

    NARCIS (Netherlands)

    Smit, J.P.A.; Rutten, Wim; Boom, H.B.K.

    1996-01-01

    In acute experiments on six Wistar rats, a wire-microelectrode array was inserted into the common peroneal nerve. A 5-channel array and a 24-channel array were available. Each electrode in the array was used to generate a twitch contraction force recruitment curve for the extensor digitorum longus

  6. Piezoelectric translator. A simple and inexpensive device to move microelectrodes and micropipettes small distances rapidly.

    Science.gov (United States)

    Lederer, W J

    1983-09-01

    A device is described that is capable of rapidly moving microelectrodes and micropipettes over distances up to 15 mu. This piezoelectric transLator uses the diaphragm from virtually any available piezoelectric buzzer in combination with simple physical support and drive electronics. All of the necessary details for the construction of this small device are presented. Each finished unit is about 2 cm long with a diameter of 2 cm and can be readily adapted to existing manipulators. The translator has been found useful in aiding the independent penetration by one or more microelectrodes of single cells or of more complicated multicellular preparations (including those that lie behind a connective tissue layer). This new device offers fine control of microelectrode motion that cannot be obtained by the other methods used to aid microelectrode and micropipette penetration of cell membranes (e.g. capacitance overcompensation--"ringing in"' or "tickling"--or tapping the manipulator base). Finally, the device described in this paper is extremely simple and inexpensive to build.

  7. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    DEFF Research Database (Denmark)

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène

    2014-01-01

    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels on t...

  8. All-diamond functional surface micro-electrode arrays for brain-slice neural analysis

    Czech Academy of Sciences Publication Activity Database

    Vahidpour, F.; Curley, L.; Biró, I.; McDonald, M.; Croux, D.; Pobedinskas, P.; Haenen, K.; Giugliano, M.; Vlčková Živcová, Zuzana; Kavan, Ladislav; Nesládek, M.

    2017-01-01

    Roč. 214, č. 2 (2017), č. článku 1532347. ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : impedance spectroscopy * microelectrode arrays * surface termination Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.775, year: 2016

  9. Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes

    DEFF Research Database (Denmark)

    Dimaki, Maria; Bøggild, Peter

    2008-01-01

    Networks of single-walled carbon nanotubes were assembled onto microelectrodes by dielectrophoresis. The dependence of the obtained networks on several assembly parameters such as bias voltage, field application time, frequency, electrode geometry and the nanotube solvent were investigated both s...

  10. A nanoporous alumina microelectrode array for functional cell–chip coupling

    International Nuclear Information System (INIS)

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-01-01

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell–surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues. (paper)

  11. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  12. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  13. In Situ Identification and Stratification of Monochloramine Inhibition Effects on Nitrifying Biofilms as Determined by the Use of Microelectrodes

    Science.gov (United States)

    The nitrifying biofilm grown in an annular biofilm reactor and the microbial deactivation achieved after monochloramine treatment were investigated using microelectrodes. The nitrifying biofilm ammonium microprofile was measured and the effect of monochloramine on nitrifying bio...

  14. Robot Trajectories Comparison: A Statistical Approach

    Directory of Open Access Journals (Sweden)

    A. Ansuategui

    2014-01-01

    Full Text Available The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot. Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an example, to compare two different motion planners, FM2 and WaveFront, using different environments, robots, and local planners.

  15. Robot Trajectories Comparison: A Statistical Approach

    Science.gov (United States)

    Ansuategui, A.; Arruti, A.; Susperregi, L.; Yurramendi, Y.; Jauregi, E.; Lazkano, E.; Sierra, B.

    2014-01-01

    The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot. Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an example, to compare two different motion planners, FM2 and WaveFront, using different environments, robots, and local planners. PMID:25525618

  16. Interpreting Early Career Trajectories

    Science.gov (United States)

    Barnatt, Joan; Gahlsdorf Terrell, Dianna; D'Souza, Lisa Andries; Jong, Cindy; Cochran-Smith, Marilyn; Viesca, Kara Mitchell; Gleeson, Ann Marie; McQuillan, Patrick; Shakman, Karen

    2017-01-01

    Career decisions of four teachers are explored through the concept of figured worlds in this qualitative, longitudinal case study. Participants were purposefully chosen for similarity at entry, with a range of career trajectories over time. Teacher career paths included remaining in one school, repeated changes in schools, attrition after…

  17. Trajectory structures and transport

    International Nuclear Information System (INIS)

    Vlad, Madalina; Spineanu, Florin

    2004-01-01

    The special problem of transport in two-dimensional divergence-free stochastic velocity fields is studied by developing a statistical approach, the nested subensemble method. The nonlinear process of trapping determined by such fields generates trajectory structures whose statistical characteristics are determined. These structures strongly influence the transport

  18. Trajectory grouping structure

    Directory of Open Access Journals (Sweden)

    Maike Buchin

    2015-03-01

    Full Text Available The collective motion of a set of moving entities like people, birds, or other animals, is characterized by groups arising, merging, splitting, and ending. Given the trajectories of these entities, we define and model a structure that captures all of such changes using the Reeb graph, a concept from topology. The trajectory grouping structure has three natural parameters that allow more global views of the data in group size, group duration, and entity inter-distance. We prove complexity bounds on the maximum number of maximal groups that can be present, and give algorithms to compute the grouping structure efficiently. We also study how the trajectory grouping structure can be made robust, that is, how brief interruptions of groups can be disregarded in the global structure, adding a notion of persistence to the structure. Furthermore, we showcase the results of experiments using data generated by the NetLogo flocking model and from the Starkey project. The Starkey data describe the movement of elk, deer, and cattle. Although there is no ground truth for the grouping structure in this data, the experiments show that the trajectory grouping structure is plausible and has the desired effects when changing the essential parameters. Our research provides the first complete study of trajectory group evolvement, including combinatorial,algorithmic, and experimental results.

  19. Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo.

    Science.gov (United States)

    Xiang, Ling; Yu, Ping; Hao, Jie; Zhang, Meining; Zhu, Lin; Dai, Liming; Mao, Lanqun

    2014-04-15

    Using as-synthesized vertically aligned carbon nanotube-sheathed carbon fibers (VACNT-CFs) as microelectrodes without any postsynthesis functionalization, we have developed in this study a new method for in vivo monitoring of ascorbate with high selectivity and reproducibility. The VACNT-CFs are formed via pyrolysis of iron phthalocyanine (FePc) on the carbon fiber support. After electrochemical pretreatment in 1.0 M NaOH solution, the pristine VACNT-CF microelectrodes exhibit typical microelectrode behavior with fast electron transfer kinetics for electrochemical oxidation of ascorbate and are useful for selective ascorbate monitoring even with other electroactive species (e.g., dopamine, uric acid, and 5-hydroxytryptamine) coexisting in rat brain. Pristine VACNT-CFs are further demonstrated to be a reliable and stable microelectrode for in vivo recording of the dynamic increase of ascorbate evoked by intracerebral infusion of glutamate. Use of a pristine VACNT-CF microelectrode can effectively avoid any manual electrode modification and is free from person-to-person and/or electrode-to-electrode deviations intrinsically associated with conventional CF electrode fabrication, which often involves electrode surface modification with randomly distributed CNTs or other pretreatments, and hence allows easy fabrication of highly selective, reproducible, and stable microelectrodes even by nonelectrochemists. Thus, this study offers a new and reliable platform for in vivo monitoring of neurochemicals (e.g., ascorbate) to largely facilitate future studies on the neurochemical processes involved in various physiological events.

  20. Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution.

    Science.gov (United States)

    Ordeig, Olga; Banks, Craig E; Davies, Trevor J; del Campo, F Javier; Muñoz, Francesc Xavier; Compton, Richard G

    2006-05-01

    Gold ultra-microelectrode arrays are used to explore the electrochemical oxidation of hydroxide ions and are shown to be analytical useful. Two types of ultra-microelectrode arrays are used; the first consist of 256 individual electrodes of 5 microm in radius, 170 of which are electrochemically active in a cubic arrangement which are separated from their nearest neighbour by a distance of 100 microm. The second array compromises 2597 electrodes of 2.5 microm in radius and of which 1550 of which are electrochemically active in a hexagonal arrangement separated by the nearest neighbour by 55 microm. Well defined voltammetric waves are found with peak currents proportional to the concentration of hydroxide ions in the range 50 microM to 1 mM. Detection limits of 20 microM using the 170 ultra-microelectrode and 10 microM with the 1550 ultra-microelectrode array are shown to be possible but with a higher sensitivity of 4 mA M(-1) observed using the 1550 ultra-microelectrode array compared to 1.2 mA M(-1) with the 170 ultra-microelectrode array.

  1. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    Directory of Open Access Journals (Sweden)

    Mark D. Parker

    2013-01-01

    Full Text Available Determining the effective concentration (i.e., activity of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.

  2. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    Science.gov (United States)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  3. Theoretical and experimental comparison of microelectrode sensing configurations for impedimetric cell monitoring

    DEFF Research Database (Denmark)

    Carminati, M.; Caviglia, Claudia; Heiskanen, Arto

    2013-01-01

    microelectrodes using a versatile custom-made monitoring platform including a 24-channel miniaturized potentiostat. The characterization of bare microelectrodes in buffer and tracking experiments with HeLa cells over 16 hours demonstrate that the coplanar configuration provides a higher sensitivity to cell......A theoretical and experimental comparison between vertical and coplanar interdigitated sensing configurations for impedimetric cell growth tracking is presented. These widely-adopted approaches are quantitatively compared on the same cell populations and on the same 10 μm interdigitated...... adhesion and spreading (Cell Index = 1.6 vs. 0.4) albeit at a higher frequency of maximum sensitivity (100 kHz vs. 24 kHz) shifting over time. © 2014 Taylor & Francis Group....

  4. Mobility, Education and Life Trajectories

    DEFF Research Database (Denmark)

    Olwig, Karen Fog; Valentin, Karen

    2015-01-01

    Travel for educational purposes, once the privilege of the upper class, has become a global mass phenomenon in recent years. This special issue examines, within different cultural and historical contexts, the close relationship between migration, education and social mobility. Adopting...... the perspective that education includes a broad range of formative experiences, the articles explore different educational trajectories and the local, regional and transnational relations in which they are embedded. Three key issues emerge from the analyses: firstly, the central role of temporality in terms...... of both the overall historical conditions and the specific biographical circumstances shaping educational opportunities; secondly, the complex agendas informing individuals’ migration and the adjustment of these agendas in the light of the vagaries of migrant life; and thirdly, the importance of migrants...

  5. Nanowire-templated microelectrodes for high-sensitivity pH detection

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, Adrian; Mátéfi-Tempfli, Mária

    2009-01-01

    A highly sensitive pH capacitive sensor has been designed by confined growth of vertically aligned nanowire arrays on interdigited microelectrodes. The active surface of the device has been functionalized with an electrochemical pH transducer (polyaniline). We easily tune the device features...... by combining lithographic techniques with electrochemical synthesis. The reported electrical LC resonance measurements show considerable sensitivity enhancement compared to conventional capacitive pH sensors realized with microfabricated interdigited electrodes. The sensitivity can be easily improved...

  6. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    Science.gov (United States)

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  7. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@cea.fr [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Warnking, Jan; Depaulis, Antoine [INSERM, U836, Grenoble Institut des Neurosciences, Grenoble (France); Garçon, Laurie Amandine [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); CEA/INAC/SPrAM/CREAB, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Mermoux, Michel [Université Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Eon, David [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Mailley, Pascal [CEA-LETI-DTBS Minatec, 17 rue des Martyres, 38054 Grenoble (France); Omnès, Franck [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France)

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. - Highlights: • Microfabrication of all-diamond microelectrode array • Evaluation of as-grown nanocrystalline boron-doped diamond for electrical neural interfacing • MRI compatibility of nanocrystalline boron-doped diamond.

  8. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  9. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.

    Science.gov (United States)

    Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi

    2014-09-01

    The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.

  10. Novel microelectrode-based online system for monitoring N2O gas emissions during wastewater treatment.

    Science.gov (United States)

    Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite

    2014-11-04

    Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.

  11. Semantic Enrichment of GPS Trajectories

    NARCIS (Netherlands)

    de Graaff, V.; van Keulen, Maurice; de By, R.A.

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a

  12. A Multi-Functional Microelectrode Array Featuring 59760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement and Neurotransmitter Detection Channels.

    Science.gov (United States)

    Dragas, Jelena; Viswam, Vijay; Shadmani, Amir; Chen, Yihui; Bounik, Raziyeh; Stettler, Alexander; Radivojevic, Milos; Geissler, Sydney; Obien, Marie; Müller, Jan; Hierlemann, Andreas

    2017-06-01

    Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48×2.43 mm 2 ) to accommodate 59,760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5 μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2,048 action-potential (AP, bandwidth: 300 Hz to 10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz to 300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.

  13. Electron trajectory program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1979-11-01

    The SLAC Electron Trajectory Program is described and instructions and examples for users are given. The program is specifically written to compute trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes. Either rectangular or cylindrically symmetric geometry may be used. Magntic fields may be specified using arbitrary configurations of coils, or the output of a magnet program such as Poisson or by an externally calculated array of the axial fields. The program is available in IBM FORTRAN but can be easily converted for use on other brands of hardware. The program is intended to be used with a plotter whose interface the user must provide

  14. Electron trajectory program

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B.

    1979-11-01

    The SLAC Electron Trajectory Program is described and instructions and examples for users are given. The program is specifically written to compute trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes. Either rectangular or cylindrically symmetric geometry may be used. Magntic fields may be specified using arbitrary configurations of coils, or the output of a magnet program such as Poisson or by an externally calculated array of the axial fields. The program is available in IBM FORTRAN but can be easily converted for use on other brands of hardware. The program is intended to be used with a plotter whose interface the user must provide.

  15. Posterolateral Trajectories Favor a Longer Motor Domain in Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease.

    Science.gov (United States)

    Tamir, Idit; Marmor-Levin, Odeya; Eitan, Renana; Bergman, Hagai; Israel, Zvi

    2017-10-01

    The clinical outcome of patients with Parkinson disease (PD) who undergo subthalamic nucleus (STN) deep brain stimulation (DBS) is, in part, determined by the length of the electrode trajectory through the motor STN domain, the dorsolateral oscillatory region (DLOR). Trajectory length has been found to correlate with the stimulation-related improvement in patients' motor function (estimated by part III of the United Parkinson's Disease Rating Scale [UPDRS]). Therefore, it seems that ideally trajectories should have maximal DLOR length. We retrospectively studied the influence of various anatomic aspects of the brains of patients with PD and the geometry of trajectories planned on the length of the DLOR and STN recorded during DBS surgery. We examined 212 trajectories and 424 microelectrode recording tracks in 115 patients operated on in our center between 2010 and 2015. We found a strong correlation between the length of the recorded DLOR and STN. Trajectories that were more lateral and/or posterior in orientation had a longer STN and DLOR pass, although the DLOR/STN fraction length remained constant. The STN target was more lateral when the third ventricle was wider, and the latter correlated with older age and male gender. Trajectory angles correlate with the recorded STN and DLOR lengths, and should be altered toward a more posterolateral angle in older patients and atrophied brains to compensate for the changes in STN location and geometry. These fine adjustments should yield a longer motor domain pass, thereby improving the patient's predicted outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Entanglement evolution for quantum trajectories

    International Nuclear Information System (INIS)

    Vogelsberger, S; Spehner, D

    2011-01-01

    Entanglement is a key resource in quantum information. It can be destroyed or sometimes created by interactions with a reservoir. In recent years, much attention has been devoted to the phenomena of entanglement sudden death and sudden birth, i.e., the sudden disappearance or revival of entanglement at finite times resulting from a coupling of the quantum system to its environment. We investigate the evolution of the entanglement of noninteracting qubits coupled to reservoirs under monitoring of the reservoirs by means of continuous measurements. Because of these measurements, the qubits remain at all times in a pure state, which evolves randomly. To each measurement result (or 'realization') corresponds a quantum trajectory in the Hilbert space of the qubits. We show that for two qubits coupled to independent baths subjected to local measurements, the average of the qubits' concurrence over all quantum trajectories is either constant or decays exponentially. The corresponding decay rate depends on the measurement scheme only. This result contrasts with the entanglement sudden death phenomenon exhibited by the qubits' density matrix in the absence of measurements. Our analysis applies to arbitrary quantum jump dynamics (photon counting) as well as to quantum state diffusion (homodyne or heterodyne detections) in the Markov limit. We discuss the best measurement schemes to protect the entanglement of the qubits. We also analyze the case of two qubits coupled to a common bath. Then, the average concurrence can vanish at discrete times and may coincide with the concurrence of the density matrix. The results explained in this article have been presented during the 'Fifth International Workshop DICE2010' by the first author and have been the subject of a prior publication.

  17. Complexity Science Applications to Dynamic Trajectory Management: Research Strategies

    Science.gov (United States)

    Sawhill, Bruce; Herriot, James; Holmes, Bruce J.; Alexandrov, Natalia

    2009-01-01

    The promise of the Next Generation Air Transportation System (NextGen) is strongly tied to the concept of trajectory-based operations in the national airspace system. Existing efforts to develop trajectory management concepts are largely focused on individual trajectories, optimized independently, then de-conflicted among each other, and individually re-optimized, as possible. The benefits in capacity, fuel, and time are valuable, though perhaps could be greater through alternative strategies. The concept of agent-based trajectories offers a strategy for automation of simultaneous multiple trajectory management. The anticipated result of the strategy would be dynamic management of multiple trajectories with interacting and interdependent outcomes that satisfy multiple, conflicting constraints. These constraints would include the business case for operators, the capacity case for the Air Navigation Service Provider (ANSP), and the environmental case for noise and emissions. The benefits in capacity, fuel, and time might be improved over those possible under individual trajectory management approaches. The proposed approach relies on computational agent-based modeling (ABM), combinatorial mathematics, as well as application of "traffic physics" concepts to the challenge, and modeling and simulation capabilities. The proposed strategy could support transforming air traffic control from managing individual aircraft behaviors to managing systemic behavior of air traffic in the NAS. A system built on the approach could provide the ability to know when regions of airspace approach being "full," that is, having non-viable local solution space for optimizing trajectories in advance.

  18. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance

    Science.gov (United States)

    Hermann, John K.; Ravikumar, Madhumitha; Shoffstall, Andrew J.; Ereifej, Evon S.; Kovach, Kyle M.; Chang, Jeremy; Soffer, Arielle; Wong, Chun; Srivastava, Vishnupriya; Smith, Patrick; Protasiewicz, Grace; Jiang, Jingle; Selkirk, Stephen M.; Miller, Robert H.; Sidik, Steven; Ziats, Nicholas P.; Taylor, Dawn M.; Capadona, Jeffrey R.

    2018-04-01

    Objective. Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. Approach. Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. Main results. The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. Significance. Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.

  19. Evolution of Quantum Phase Space Distribution: a Trajectory-Density Approach

    International Nuclear Information System (INIS)

    Xue-Feng, Zhang; Yu-Jun, Zheng

    2009-01-01

    The trajectory-density method of a quantum system is developed by using local Koopman and Frobenius–Perron operators. We propose a new scheme of approximation from two sets of trajectory-density mixed equations. By examining the local generation and termination of trajectories, we show how they can be adopted to the propagation of negative values of the Wigner function even if it starts off positive everywhere

  20. Moyal dynamics and trajectories

    Science.gov (United States)

    Braunss, G.

    2010-01-01

    We give first an approximation of the operator δh: f → δhf := h*planckf - f*planckh in terms of planck2n, n >= 0, where h\\equiv h(p,q), (p,q)\\in {\\mathbb R}^{2 n} , is a Hamilton function and *planck denotes the star product. The operator, which is the generator of time translations in a *planck-algebra, can be considered as a canonical extension of the Liouville operator Lh: f → Lhf := {h, f}Poisson. Using this operator we investigate the dynamics and trajectories of some examples with a scheme that extends the Hamilton-Jacobi method for classical dynamics to Moyal dynamics. The examples we have chosen are Hamiltonians with a one-dimensional quartic potential and two-dimensional radially symmetric nonrelativistic and relativistic Coulomb potentials, and the Hamiltonian for a Schwarzschild metric. We further state a conjecture concerning an extension of the Bohr-Sommerfeld formula for the calculation of the exact eigenvalues for systems with classically periodic trajectories.

  1. Repetitive Rockfall Trajectory Testing

    Directory of Open Access Journals (Sweden)

    Axel Volkwein

    2018-03-01

    Full Text Available Numerical simulations of rockfall trajectories are a standard procedure for evaluating rockfall hazards. For these simulations, corresponding software codes must be calibrated and evaluated based on field data. This study addresses methods of repeatable rockfall tests, and investigates whether it is possible to produce traceable and statistically analysable data. A testing series is described extensively covering how to conduct rockfall experiments and how certain elements of rockfall trajectories can be measured. The tests use acceleration and rotation sensors inside test blocks, a system to determine block positions over time, surveying measurements, and video recordings. All systems are evaluated regarding their usability in the field and for analyses. The highly detailed description of testing methods is the basis for sound understanding and reproducibility of the tests. This article serves as a reference for future publications and other rockfall field tests, both as a guide and as a basis for comparisons. First analyses deliver information on runout with a shadow angle ranging between 21 and 45 degrees for a slope consisting of homogeneous soft soil. A digital elevation model of the test site as well as point clouds of the used test blocks are part of this publication.

  2. Canonical transformations of Kepler trajectories

    International Nuclear Information System (INIS)

    Mostowski, Jan

    2010-01-01

    In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these transformations change the eccentricity of the orbit. A method of obtaining elliptic trajectories from the circular ones with the help of canonical trajectories is discussed.

  3. Low-loss microelectrodes fabricated using reverse-side exposure for a tunable ferroelectric capacitor application

    Science.gov (United States)

    Yoon, Yong-Kyu; Stevenson Kenney, J.; Hunt, Andrew T.; Allen, Mark G.

    2006-02-01

    Narrowly spaced thick microelectrodes are fabricated using a self-aligned multiple reverse-side exposure scheme for an improved quality-factor tunable ferroelectric capacitor. The microelectrodes are fabricated on a functional substrate—a thin film ferroelectric (barium strontium titanate, BST; BaxSr1-xTiO3) coated sapphire substrate, which has an electric-field-dependent dielectric property providing tuning functionality, as well as UV transparency permitting an additional degree of freedom in photolithography steps. The microelectrode process has been applied to interdigitated capacitor fabrication, where a critical challenge is maintaining narrow gaps between electrodes for high tunability, while simultaneously forming thick electrodes to minimize conductor loss. A single mask, self-aligned reverse-side exposure through the transparent substrate achieves both these goals. A single-finger test capacitor with an electrode gap of 1.2 µm and an electrode thickness of 2.2 µm is fabricated and characterized. Tunability (T = 100 × (C0 - Cbias)/C0) of 33% at 10 V has been achieved at 100 kHz. The 2.2 µm thick structure shows improvement of Q-factor compared to that of a 0.1 µm thick structure. To demonstrate the scalability of this process, a 102-finger interdigitated capacitor is fabricated and characterized at 100 kHz and 1 GHz. The structure is embedded in a 25 µm thick epoxy resin SU-8 for passivation. A quality factor decrease of 15-25%, tunability decrease of 2-3% and capacitance increase of 6% are observed due to the expoxy resin after passivation. High frequency performance of the capacitor has been measured to be 15.9 pF of capacitance, 28.1% tunability at 10 V and a quality factor of 16 (at a 10 V dc bias) at 1 GHz.

  4. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.

    Science.gov (United States)

    Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E

    2017-03-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue

  5. DNA-barcode directed capture and electrochemical metabolic analysis of single mammalian cells on a microelectrode array.

    Science.gov (United States)

    Douglas, Erik S; Hsiao, Sonny C; Onoe, Hiroaki; Bertozzi, Carolyn R; Francis, Matthew B; Mathies, Richard A

    2009-07-21

    A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min(-1), while primary T cells exhibited only 2 milli-pH min(-1). This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties.

  6. Electrohydrodynamic actuation of co-flowing liquids by means of microelectrode arrays

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Pablo; Ferney, Mathieu; Ramos, Antonio

    2011-01-01

    Electric fields induce forces at the interface between liquids with different electrical properties (conductivity and/or permittivity). We explore how to use these forces for manipulating two coflowing streams of liquids in a microchannel. A microelectrode array is fabricated at the bottom of the channel and one of the two liquids is labelled with a fluorescent dye for observing the phenomenon. The diffuse interface between the two liquids is deflected depending on the ac signal and conductivity (or permittivity) ratio between the liquids. Only a few volts are needed for observing the interface destabilization, in contrast with other electrode configurations where hundreds of volts are applied.

  7. Electrohydrodynamic actuation of co-flowing liquids by means of microelectrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Pablo; Ferney, Mathieu; Ramos, Antonio, E-mail: pablogarcia@us.es [Depto. de Electronica y Electromagnetismo, University of Sevilla (Spain)

    2011-06-23

    Electric fields induce forces at the interface between liquids with different electrical properties (conductivity and/or permittivity). We explore how to use these forces for manipulating two coflowing streams of liquids in a microchannel. A microelectrode array is fabricated at the bottom of the channel and one of the two liquids is labelled with a fluorescent dye for observing the phenomenon. The diffuse interface between the two liquids is deflected depending on the ac signal and conductivity (or permittivity) ratio between the liquids. Only a few volts are needed for observing the interface destabilization, in contrast with other electrode configurations where hundreds of volts are applied.

  8. Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex.

    Directory of Open Access Journals (Sweden)

    Yasuhiko Nakanishi

    Full Text Available Brain-machine interface techniques have been applied in a number of studies to control neuromotor prostheses and for neurorehabilitation in the hopes of providing a means to restore lost motor function. Electrocorticography (ECoG has seen recent use in this regard because it offers a higher spatiotemporal resolution than non-invasive EEG and is less invasive than intracortical microelectrodes. Although several studies have already succeeded in the inference of computer cursor trajectories and finger flexions using human ECoG signals, precise three-dimensional (3D trajectory reconstruction for a human limb from ECoG has not yet been achieved. In this study, we predicted 3D arm trajectories in time series from ECoG signals in humans using a novel preprocessing method and a sparse linear regression. Average Pearson's correlation coefficients and normalized root-mean-square errors between predicted and actual trajectories were 0.44~0.73 and 0.18~0.42, respectively, confirming the feasibility of predicting 3D arm trajectories from ECoG. We foresee this method contributing to future advancements in neuroprosthesis and neurorehabilitation technology.

  9. Trajectory Based Traffic Analysis

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2013-01-01

    We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point-and-click a......We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point......-and-click analysis, due to a novel and efficient indexing structure. With the web-site daisy.aau.dk/its/spqdemo/we will demonstrate several analyses, using a very large real-world data set consisting of 1.9 billion GPS records (1.5 million trajectories) recorded from more than 13000 vehicles, and touching most...

  10. Urban water trajectories

    CERN Document Server

    Allen, Adriana; Hofmann, Pascale; Teh, Tse-Hui

    2017-01-01

    Water is an essential element in the future of cities. It shapes cities’ locations, form, ecology, prosperity and health. The changing nature of urbanisation, climate change, water scarcity, environmental values, globalisation and social justice mean that the models of provision of water services and infrastructure that have dominated for the past two centuries are increasingly infeasible. Conventional arrangements for understanding and managing water in cities are being subverted by a range of natural, technological, political, economic and social changes. The prognosis for water in cities remains unclear, and multiple visions and discourses are emerging to fill the space left by the certainty of nineteenth century urban water planning and engineering. This book documents a sample of those different trajectories, in terms of water transformations, option, services and politics. Water is a key element shaping urban form, economies and lifestyles, part of the ongoing transformation of cities. Cities are face...

  11. Segmenting Trajectories by Movement States

    NARCIS (Netherlands)

    Buchin, M.; Kruckenberg, H.; Kölzsch, A.; Timpf, S.; Laube, P.

    2013-01-01

    Dividing movement trajectories according to different movement states of animals has become a challenge in movement ecology, as well as in algorithm development. In this study, we revisit and extend a framework for trajectory segmentation based on spatio-temporal criteria for this purpose. We adapt

  12. Geometric Algorithms for Trajectory Analysis

    NARCIS (Netherlands)

    Staals, Frank

    2015-01-01

    Technology such as the Global Positing System (GPS) has made tracking moving entities easy and cheap. As a result there is a large amount of trajectory data available, and an increasing demand on tools and techniques to analyze such data. We consider several analysis tasks for trajectory data,

  13. Bio-electrochemical microelectrode arrays for glutamate and electrophysiology detection in hippocampus of temporal lobe epileptic rats.

    Science.gov (United States)

    Li, Ziyue; Song, Yilin; Xiao, Guihua; Gao, Fei; Xu, Shengwei; Wang, Mixia; Zhang, Yu; Guo, Fengru; Liu, Jie; Xia, Yang; Cai, Xinxia

    2018-06-01

    Temporal Lobe Epilepsy (TLE) is a chronic neurological disorder, characterized by sudden, repeated and transient central nervous system dysfunction. For better understanding of TLE, bio-nanomodified microelectrode arrays (MEA) are designed, for the achievement of high-quality simultaneous detection of glutamate signals (Glu) and multi-channel electrophysiological signals including action potentials (spikes) and local field potentials (LFPs). The MEA was fabricated by Micro-Electro-Mechanical System fabrication technology and all recording sites were modified with platinum black nano-particles, the average impedance decreased by nearly 90 times. Additionally, glutamate oxidase was also modified for the detection of Glu. The average sensitivity of the electrode in Glu solution was 1.999 ± 0.032 × 10 -2 pA/μM·μm 2 (n = 3) and linearity was R = 0.9986, with a good selectivity of 97.82% for glutamate and effective blocking of other interferents. In the in-vivo experiments, the MEA was subjected in hippocampus to electrophysiology and Glu concentration detection. During seizures, the fire rate of spikes increases, and the interspike interval is concentrated within 30 ms. The amplitude of LFPs increases by 3 times and the power increases. The Glu level (4.22 μM, n = 4) was obviously higher than normal rats (2.24 μM, n = 4). The MEA probe provides an advanced tool for the detection of dual-mode signals in the research of neurological diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Lunar Cube Transfer Trajectory Options

    Science.gov (United States)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  15. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    International Nuclear Information System (INIS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-01-01

    We report the nanofabrication of a sulfur dioxide (SO 2 ) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO 2 , CO, H 2 , SO 2 and O 2 . Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <∼0.5 ppm for SO 2 . More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature. (paper)

  16. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, F. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Neto, M.M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal) and Departamento de Quimica Agricola e Ambiental, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon (Portugal)]. E-mail: mm.neto@netcabo.pt; Rocha, M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Fonseca, I.T.E. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal)

    2006-10-10

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode.

  17. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.

    Science.gov (United States)

    Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L

    2010-06-15

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.

  18. Impedance Immunsensor Based on Interdigitated Array Microelectrode and its Experiment Parameter Optimization

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-05-01

    Full Text Available This article accounts for a novel impedance immunosensor based on the specificity reaction of the antigen-antibody and the sensitivity of the interdigitated array microelectrode (IDAM for the determination of chlorpyrifos residues. The basic knowledge of immunoassay was in relation to its IDAM electrode surface modification, antibody immobilization, bovine serum albumin (BSA blocking and sample detection. The SPA was dropped onto the surface of IDAM electrode, used for binding antibody Fc fragments. Next, antibody was immobilized on the SPA modified electrode. Finally, BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. Target chlorpyrifos was then captured by the immobilized antibody, resulting in a change in the impedance of the IDAM microelectrode surface. The fabrication procedure of the immunosensor and the sample detection were characterized by electrochemical impedance spectroscopy (EIS. The influences of the experiment parameters were investigated. Under optimized conditions, an excellent biosensor was fabricated. Many of the antibodies, enzymes and other reagents integral to immunoassays were very expensive, often hundreds of dollars per milligram, therefore miniaturization reduces reagent costs drastically. In this article the volume of the reagents was micro upgrade, the antibodies, SPA and BSA were 30 mL, the chlorpyrifos sample and detection solution were 50mL. The advantages of the immunosensor were exhibited in its better specificity, stability, selectivity and regeneration. The proposed method was proven to be a feasible quantitative method for chlorpyrifos analysis in vegetables and fruits.

  19. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.

    Science.gov (United States)

    Hébert, Clément; Warnking, Jan; Depaulis, Antoine; Garçon, Laurie Amandine; Mermoux, Michel; Eon, David; Mailley, Pascal; Omnès, Franck

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates

    International Nuclear Information System (INIS)

    Du, Jiangang; Masmanidis, Sotiris C; Roukes, Michael L

    2009-01-01

    A method for fabricating planar implantable microelectrode arrays was demonstrated using a process that relied on ultra-thin silicon substrates, which ranged in thickness from 25 to 50 µm. The challenge of handling these fragile materials was met via a temporary substrate support mechanism. In order to compensate for putative electrical shielding of extracellular neuronal fields, separately addressable electrode arrays were defined on each side of the silicon device. Deep reactive ion etching was employed to create sharp implantable shafts with lengths of up to 5 mm. The devices were flip-chip bonded onto printed circuit boards (PCBs) by means of an anisotropic conductive adhesive film. This scalable assembly technique enabled three-dimensional (3D) integration through formation of stacks of multiple silicon and PCB layers. Simulations and measurements of microelectrode noise appear to suggest that low impedance surfaces, which could be formed by electrodeposition of gold or other materials, are required to ensure an optimal signal-to-noise ratio as well a low level of interchannel crosstalk

  1. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    International Nuclear Information System (INIS)

    Ribeiro, F.; Neto, M.M.M.; Rocha, M.M.; Fonseca, I.T.E.

    2006-01-01

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode

  2. A Method of Trajectory Design for Manned Asteroids Exploration

    Science.gov (United States)

    Gan, Q. B.; Zhang, Y.; Zhu, Z. F.; Han, W. H.; Dong, X.

    2014-11-01

    A trajectory optimization method of the nuclear propulsion manned asteroids exploration is presented. In the case of launching between 2035 and 2065, based on the Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory in the feasible regions is selected by pruning the flight sequences. Setting the nuclear propulsion flight plan as propel-coast-propel, and taking the minimal mass of aircraft departure as the index, the nuclear propulsion flight trajectory is separately optimized using a hybrid method. With the initial value of the optimized local parameters of each three phases, the global parameters are jointedly optimized. At last, the minimal departure mass trajectory design result is given.

  3. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor

    Directory of Open Access Journals (Sweden)

    Feifei Tong

    2016-12-01

    Full Text Available Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  4. Further Evaluation of DNT Hazard Screening using Neural Networks from Rat Cortical Neurons on Multi-well Microelectrode Arrays

    Science.gov (United States)

    Thousands of chemicals have not been characterized for their DNT potential. Due to the need for DNT hazard identification, efforts to develop screening assays for DNT potential is a high priority. Multi-well microelectrode arrays (MEA) measure the spontaneous activity of electr...

  5. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor.

    Science.gov (United States)

    Tong, Feifei; Lian, Yan; Han, Junliang

    2016-12-18

    Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  6. Evaluation of the Neuroactivity of ToxCast Compounds Using Multi-well Microelectrode Array Recordings in Primary Cortical Neurons

    Science.gov (United States)

    Evaluation of the Neuroactivity of ToxCast Compounds Using Multi-well Microelectrode Array Recordings in Primary Cortical Neurons P Valdivia1, M Martin2, WR LeFew3, D Hall3, J Ross1, K Houck2 and TJ Shafer3 1Axion Biosystems, Atlanta GA and 2NCCT, 3ISTD, NHEERL, ORD, US EPA, RT...

  7. Generic trajectory representation and trajectory following for wheeled robots

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2014-01-01

    will drive. Safe: Avoid fatal collisions. Based on a survey of existing methods and algorithms the article presents a generic way to represent constraints for different types of robots, a generic way to represent trajectories using Bëzier curves, a method to convert the trajectory so it can be driven...... in a smooth motion, a method to create a safe velocity profile for the robot, and a path following controller....

  8. Low Thrust Trajectory Design for GSFC Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The Evolutionary Mission Trajectory Generator (EMTG) is a global trajectory optimization tool. EMTG is intended for use in designing interplanetary missions which...

  9. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  10. A direct method for trajectory optimization of rigid bodies through contact

    OpenAIRE

    Posa, Michael Antonio; Cantu, Cecilia; Tedrake, Russell Louis

    2013-01-01

    Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Many critical tasks, such as locomotion and manipulation, often involve impacting the ground or objects in the environment. Most state-of-the-art techniques treat the discontinuous dynamics that result from impacts as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning...

  11. Galileo's Trajectory with Mild Resistance

    Science.gov (United States)

    Groetsch, C. W.

    2012-01-01

    An aspect of Galileo's classical trajectory that persists in a simple resistance model is noted. The resistive model provides a case study for the classroom analysis of limiting behaviour of an implicitly defined function. (Contains 1 note.)

  12. Flight test trajectory control analysis

    Science.gov (United States)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  13. Visual Trajectory Based SLAM

    NARCIS (Netherlands)

    Esteban, I.

    2008-01-01

    SLAMstands for Simultaneous Localization AndMapping. It is a fundamental topic in Autonomous Systems and Robotics as it represents one of the most basic skills that any robot requires in order to be truly autonomous. This skill will allow a robot placed in an unknown environment at an unknown

  14. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  15. Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy

    Science.gov (United States)

    Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun

    2018-04-01

    We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.

  16. Microelectrode generator-collector systems for electrolytic titration: theoretical and practical considerations.

    Science.gov (United States)

    Bell, Christopher G; Seelanan, Parinya; O'Hare, Danny

    2017-10-23

    Electochemical generator-collector systems, where one electrode is used to generate a reagent, have a potentially large field of application in sensing and measurement. We present a new theoretical description for coplanar microelectrode disc-disc systems where the collector is passive (such as a potentiometric sensor) and the generator is operating at constant flux. This solution is then used to develop a leading order solution for such a system where the reagent reacts reversibly in solution, such as in acid-base titration, where a hydrogen ion flux is generated by electrolysis of water. The principal novel result of the theory is that such devices are constrained by a maximum reagent flux. The hydrogen ion concentration at the collector will only reflect the buffer capacity of the bulk solution if this constraint is met. Both mathematical solutions are evaluated with several microfabricated devices and reasonable agreement with theory is demonstrated.

  17. Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Vreeland, Richard F.; Heien, Michael L.

    2012-01-01

    applications such as capillary electrophoresis, high-performance liquid chromatography, and constant potential amperometry at living cells. Band electrodes with widths down to 3 μm were fabricated on polymer substrates using UV lithographic methods. The electrodes are electrochemically stable in a range......In this paper we investigate the physical and electrochemical properties of micropatterned poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:tosylate) microelectrodes for neurochemical detection. PEDOT:tosylate is a promising conductive polymer electrode material for chip-based bioanalytical...... between −200 mV and 700 mV vs. Ag/AgCl and show a relatively low resistance. A wide range of transmitters is shown to oxidize readily on the electrodes. Kinetic rate constants and half wave potentials are reported. The capacitance per area was found to be high (1670 ± 130 μF cm−2) compared to other thin...

  18. Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air

    Science.gov (United States)

    Liu, Wenzheng; Zhao, Shuai; Niu, Jiangqi; Chai, Maolin

    2017-09-01

    During the process of discharge, appropriately changing the paths corresponding to electric field lines and the field strength distribution along these paths, as well as increasing the number of initial electrons, can effectively enhance the uniformity of discharge and inhibit the formation of filamentary discharge. A method is proposed that uses a microelectrode to initiate the macroscopic discharge phenomenon. An asymmetric structure was designed comprising a single electrode of carbon fiber; this electrode structure is of helical-contact type. Benefitting from the special electric field distribution and the microdischarge process, a three-dimensional atmospheric pressure glow discharge was achieved in air, characterized by low discharge voltage, low energy consumption, good diffusion performance, and less ozone generation. The plasma studied is uniform and stable with good diffusion characteristics and low levels of contaminants and hence has potential applications in the field of air purification.

  19. Doped Overoxidized Polypyrrole Microelectrodes as Sensors for the Detection of Dopamine Released from Cell Populations

    DEFF Research Database (Denmark)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco

    2013-01-01

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an 10 aqueous pyrrole solution onto...... electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter ions in the monomer solution. Several counter ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity...... to amperometrically detect dopamine released by populations of cells upon triggering cellular exocytosis with an elevated K+ concentration. A comparison between the generated current on bare gold electrodes and gold electrodes modified with overoxidized doped PPy illustrates the clear advantage of the modification...

  20. Hydrogen Peroxide Impedimetric Detection on Poly-Ortho-Phenylenediamine Modified Platinum Disk Microelectrode

    International Nuclear Information System (INIS)

    Zainiharyati Mohd Zain; Norazreen Zakaria

    2014-01-01

    This work describes the development of hydrogen peroxide detection based on Poly-ortho-phenylenediamine modified Platinum disk microelectrode (50 μm in diameter). The electrochemical performances of H 2 O 2 detection were studied using Chronoamperometry, Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques in Phosphate Buffer Solution (PBS) pH 7.4. Effect of potential, electrode size, and various concentrations of H 2 O 2 , among others, were investigated by tracking the impedance changes at a specific perturbation frequency. To obtain the Charge transfer resistance (R ct ) values, a modified Randles Equivalent Circuit was modelled and fitted to Nyquist Plot. Then, this sensor was further applied in the detection of H 2 O 2 in antiseptic mouthwash with percent recovery of 97 % ± 0.14 (x10 3 kΩ). (author)

  1. Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings

    Directory of Open Access Journals (Sweden)

    Sakshi Uppal

    2014-09-01

    Full Text Available PEG-modified diblock copolymer surfaces have been examined for their compatibility with microelectrode array based analytical methods. The use of PEG-modified polymer surfaces on the arrays was initially problematic because the redox couples used in the experiments were adsorbed by the polymer. This led the current measured by cyclic voltammetry for the redox couple to be unstable and increase with time. However, two key findings allow the experiments to be successful. First, after multiple cyclic voltammograms the current associated with the redox couple does stabilize so that a good baseline current can be established. Second, the rate at which the current stabilizes is consistent every time a particular coated array is used. Hence, multiple analytical experiments can be conducted on an array coated with a PEG-modified diblock copolymer and the data obtained is comparable as long as the data for each experiment is collected at a consistent time point.

  2. Purification of carbon nanotubes through an electric field near the arranged microelectrodes

    International Nuclear Information System (INIS)

    Shim, Hyung Cheoul; Lee, Hyung Woo; Yeom, Sujin; Kwak, Yoon Keun; Lee, Seung S; Kim, Soo Hyun

    2007-01-01

    In this work, we attempt to purify multi-walled carbon nanotubes (MWNTs) using electrophoresis induced by the application of an AC electric field to a set of microelectrodes in a microliquid channel. This purifying method is different from conventional methods based on chemical processes. It was observed that most of the MWNTs could pass along the microliquid channel without attaching to the electrode under specific conditions of 1 kHz, at 0.2 V rms μm -1 . On the other hand, the majority of the carbon impurities attached to the electrodes under identical conditions. Field emission scanning electron microscopy (FESEM) images and Raman spectra confirm that this condition is beneficial for removing carbon impurities. The proposed approach has potential applicability in the development of microdevices that can simultaneously perform the purification and fabrication of MWNTs

  3. Addressing of LnCaP Cell Using Magnetic Particles Assisted Impedimetric Microelectrode.

    Science.gov (United States)

    Nguyen, Dung Thi Xuan; Tran, Trong Binh; Nguyen, Phuong-Diem; Min, Junhong

    2016-03-01

    In this study, we provide a facile, effective technique for a simple isolation and enrichment of low metastatic prostate tumor cell LNCaP using biocompatible, magnetic particles asissted impedimetric sensing system. Hydrophobic cell membrane anchors (BAM) were generated onto magnetic particles which diameters vary from 50 nm to 5 μm and were used to capture LNCaP cells from the suspension. Finally, magnetic particle-LNCaP complex were addressed onto the surface of the interdigitated microelectrode (IDM). Cell viability was monitored by our laboratory developed-technique Electrical Cell Substrate Impedance Sensing (ECIS). The results reavealed that 50 nm-magnetic particles showed best performance in terms of cell separation and cell viability. This technique provides a simple and efficient method for the direct addressing of LNCaP cell on the surface and enhances better understanding of cell behavior for cancer management in the near future.

  4. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.

    Science.gov (United States)

    Leibig, Christian; Wachtler, Thomas; Zeck, Günther

    2016-09-15

    Unsupervised identification of action potentials in multi-channel extracellular recordings, in particular from high-density microelectrode arrays with thousands of sensors, is an unresolved problem. While independent component analysis (ICA) achieves rapid unsupervised sorting, it ignores the convolutive structure of extracellular data, thus limiting the unmixing to a subset of neurons. Here we present a spike sorting algorithm based on convolutive ICA (cICA) to retrieve a larger number of accurately sorted neurons than with instantaneous ICA while accounting for signal overlaps. Spike sorting was applied to datasets with varying signal-to-noise ratios (SNR: 3-12) and 27% spike overlaps, sampled at either 11.5 or 23kHz on 4365 electrodes. We demonstrate how the instantaneity assumption in ICA-based algorithms has to be relaxed in order to improve the spike sorting performance for high-density microelectrode array recordings. Reformulating the convolutive mixture as an instantaneous mixture by modeling several delayed samples jointly is necessary to increase signal-to-noise ratio. Our results emphasize that different cICA algorithms are not equivalent. Spike sorting performance was assessed with ground-truth data generated from experimentally derived templates. The presented spike sorter was able to extract ≈90% of the true spike trains with an error rate below 2%. It was superior to two alternative (c)ICA methods (≈80% accurately sorted neurons) and comparable to a supervised sorting. Our new algorithm represents a fast solution to overcome the current bottleneck in spike sorting of large datasets generated by simultaneous recording with thousands of electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection

    International Nuclear Information System (INIS)

    Hnaien, M.; Bourigua, S.; Bessueille, F.; Bausells, J.; Errachid, A.; Lagarde, F.; Jaffrezic-Renault, N.

    2011-01-01

    Highlights: ► We propose an impedimetric microbial biosensor for trichloroethylene detection. ► A new transducer modified with carbon nanotubes and Pseudomonas putida is evaluated. ► Functionalization steps are controlled by impedance spectroscopy and AFM. ► The biosensor offers good sensitivity, selectivity, linear range and stability. ► The biosensor is successfully applied to spiked natural water samples. - Abstract: Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently linked to anti-Pseudomonas antibodies. The different steps of microelectrodes functionalization were characterized by electrochemical impedance and atomic force spectroscopies, and analytical performances of the developed microbial biosensor were determined. The impedimetric biosensor response was linear with TCE concentration up to 150 μg L −1 and a low limit of detection (20 μg L −1 ) was achieved. No significant loss of signal was observed after 4 weeks of storage at 4 °C in phosphate buffer saline pH 7 (three to four measurements a week). After 5 weeks, 90% of the initial value still remained. cis-1,2-Dichloroethylene and vinylchloride, the main TCE degradation products, did not significantly interfere with TCE. The microbial sensor was finally applied to the determination of TCE in natural water samples spiked at the 30, 50 and 75 μg L −1 levels. Recoveries were very good, ranging from 100 to 103%.

  6. Relative camera localisation in non-overlapping camera networks using multiple trajectories

    NARCIS (Netherlands)

    John, V.; Englebienne, G.; Kröse, B.J.A.

    2012-01-01

    In this article we present an automatic camera calibration algorithm using multiple trajectories in a multiple camera network with non-overlapping field-of-views (FOV). Visible trajectories within a camera FOV are assumed to be measured with respect to the camera local co-ordinate system.

  7. A Novel Microdialysis Glucose Sensor System Based on Co-immobilizing on AU Micro-Electrode by SOL-GEL Technique

    National Research Council Canada - National Science Library

    Yu, Ping

    2001-01-01

    .... The sensor is based on co_immobilizing glucose oxidase (COD) with the catalase by sol-gel technique on the surface of the silicon bases with two pattern of An microelectrodes. A graduated ("sandwich...

  8. Fluctuation theorems and atypical trajectories

    International Nuclear Information System (INIS)

    Sahoo, M; Lahiri, S; Jayannavar, A M

    2011-01-01

    In this work, we have studied simple models that can be solved analytically to illustrate various fluctuation theorems. These fluctuation theorems provide symmetries individually to the distributions of physical quantities such as the classical work (W c ), thermodynamic work (W), total entropy (Δs tot ) and dissipated heat (Q), when the system is driven arbitrarily out of equilibrium. All these quantities can be defined for individual trajectories. We have studied the number of trajectories which exhibit behaviour unexpected at the macroscopic level. As the time of observation increases, the fraction of such atypical trajectories decreases, as expected at the macroscale. The distributions for the thermodynamic work and entropy production in nonlinear models may exhibit a peak (most probable value) in the atypical regime without violating the expected average behaviour. However, dissipated heat and classical work exhibit a peak in the regime of typical behaviour only.

  9. Wave trajectory and electron cyclotron heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Tanaka, S.; Maekawa, T.; Terumichi, Y.; Hamada, Y.

    1980-01-01

    Wave trajectories in high density tokamak plasmas are studied numerically. Results show that the ordinary wave injected at an appropriate incident angle can propagate into the dense plasmas and is mode-converted to the extraordinary wave at the plasma cutoff, is further converted to the electron Bernstein wave during passing a loop or a folded curve near the upper hybrid resonance layer, and is cyclotron damped away, resulting in local electron heating before arriving at the cyclotron resonance layer. Similar trajectory and damping are obtained when a microwave in a form of extraordinary wave is injected quasi-perpendicularly in the direction of decreasing toroidal field

  10. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    Science.gov (United States)

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  11. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis

    OpenAIRE

    Fierro, St?phane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-01-01

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the result...

  12. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells

    OpenAIRE

    Gao, Yuanfang; Chen, Xiaohui; Gupta, Sanju; Gillis, Kevin D.; Gangopadhyay, Shubhra

    2008-01-01

    Carbon electrodes are widely used in electrochemistry due to their low cost, wide potential window, and low and stable background noise. Carbon-fiber electrodes (CFE) are commonly used to electrochemically measure “quantal” catecholamine release via exocytosis from individual cells, but it is difficult to integrate CFEs into lab-on-a-chip devices. Here we report the development of nitrogen doped diamond-like carbon (DLC:N) microelectrodes on a chip to monitor quantal release of catecholamines...

  13. Dimensional reduction and BRST approach to the description of a Regge trajectory

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Tsulaya, M.M.

    1997-01-01

    The local free field theory for Regge trajectory is described in the framework of the BRST-quantization method. The corresponding BRST-charge is constructed with the help of the method of dimensional reduction

  14. ATM4E: A concept for environmentally-optimized aircraft trajectories

    NARCIS (Netherlands)

    Matthes, S; Grewe, V.; Lee, D; Linke, F.; Shine, Keith; Stromatas, Stavros

    2016-01-01

    Trajectory optimisation is one option to reduce air traffic impact on environment. A multidimensional environmental assessment framework is needed to optimize impact on climate, local air quality and noise simultaneously. An interface between flight planning and environmental impact information can

  15. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    Science.gov (United States)

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  16. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque

    Science.gov (United States)

    Davis, T. S.; Parker, R. A.; House, P. A.; Bagley, E.; Wendelken, S.; Normann, R. A.; Greger, B.

    2012-12-01

    Objective. It has been hypothesized that a vision prosthesis capable of evoking useful visual percepts can be based upon electrically stimulating the primary visual cortex (V1) of a blind human subject via penetrating microelectrode arrays. As a continuation of earlier work, we examined several spatial and temporal characteristics of V1 microstimulation. Approach. An array of 100 penetrating microelectrodes was chronically implanted in V1 of a behaving macaque monkey. Microstimulation thresholds were measured using a two-alternative forced choice detection task. Relative locations of electrically-evoked percepts were measured using a memory saccade-to-target task. Main results. The principal finding was that two years after implantation we were able to evoke behavioural responses to electric stimulation across the spatial extent of the array using groups of contiguous electrodes. Consistent responses to stimulation were evoked at an average threshold current per electrode of 204 ± 49 µA (mean ± std) for groups of four electrodes and 91 ± 25 µA for groups of nine electrodes. Saccades to electrically-evoked percepts using groups of nine electrodes showed that the animal could discriminate spatially distinct percepts with groups having an average separation of 1.6 ± 0.3 mm (mean ± std) in cortex and 1.0° ± 0.2° in visual space. Significance. These results demonstrate chronic perceptual functionality and provide evidence for the feasibility of a cortically-based vision prosthesis for the blind using penetrating microelectrodes.

  17. Influence of droplet coverage on the electrochemical response of planar microelectrodes and potential solving strategies based on nesting concept

    Directory of Open Access Journals (Sweden)

    Yue Yu

    2016-08-01

    Full Text Available Recently, biosensors have been widely used for the detection of bacteria, viruses and other toxins. Electrodes, as commonly used transducers, are a vital part of electrochemical biosensors. The coverage of the droplets can change significantly based on the hydrophobicity of the microelectrode surface materials. In the present research, screen-printed interdigitated microelectrodes (SPIMs, as one type of planar microelectrode, were applied to investigate the influence of droplet coverage on electrochemical response. Furthermore, three dimensional (3D printing technology was employed to print smart devices with different diameters based on the nesting concept. Theoretical explanations were proposed to elucidate the influence of the droplet coverage on the electrochemical response. 3D-printed ring devices were used to incubate the SPIMs and the analytical performances of the SPIMs were tested. According to the results obtained, our device successfully improved the stability of the signal responses and eliminated irregular signal changes to a large extent. Our proposed method based on the nesting concept provides a promising method for the fabrication of stable electrochemical biosensors. We also introduced two types of electrode bases to improve the signal stability.

  18. Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating

    Science.gov (United States)

    Zong, Xianli; Zhu, Rong; Guo, Xiaoliang

    2015-01-01

    In this paper, a fine gold nanostructure synthesized on selective planar microelectrodes in micro-chip is realized by using an advanced hybrid fabrication approach incorporating growth of nanorods (NRs) with gold electroplating. By this developed nanostructure, integration of in-situ surface-enhanced Raman spectroscopy (SERS) detection with electrochemical impedance spectroscopy (EIS) measurement for label-free, nondestructive, real-time and rapid monitoring on a single cell has been achieved. Moreover, parameters of Au nanostructures such as size of nanoholes/nanogaps can be controllably adjusted in the fabrication. We have demonstrated a SERS enhancement factor of up to ~2.24 × 106 and double-layer impedance decrease ratio of 90% ~ 95% at low frequency range below 200 kHz by using nanostructured microelectrodes. SERS detection and in-situ EIS measurement of a trapped single cell by using planar microelectrodes are realized to demonstrate the compatibility, multi-functions, high-sensitivity and simplicity of the micro-chip system. This dual function platform integrating SERS and EIS is of great significance in biological, biochemical and biomedical applications. PMID:26558325

  19. The Polypyrrole/Multiwalled Carbon Nanotube Modified Au Microelectrode for Sensitive Electrochemical Detection of Trace Levels of Pb2+

    Directory of Open Access Journals (Sweden)

    Xuxing Zhu

    2017-03-01

    Full Text Available The sensitive detection of trace levels of heavy metal ions such as Pb2+ is of significant importance due to the health hazard they pose. In this paper, we present a polypyrrole (PPy/multiwalled carbon nanotube (MWCNT-modified Au microelectrode. The PPy/MWCNT composite film was electrochemically deposited on the microelectrode by cyclic voltammetry (CV. The composite film was investigated by scanning electron microscope (SEM, CV, and electrochemical impedance spectroscopy (EIS, and the results show that this film presents a uniformly distributed and web-like entangled structure and good conductivity. Differential pulse stripping voltammetry (DPSV was applied to determine trace levels of Pb2+. Experimental conditions including accumulation time and deposition potential were optimized. In optimal conditions, the PPy/MWCNT-modified microelectrode performed sensitive detection of Pb2+ within a concentration range from 1 to 100 μg·L−1, and the limit of detection was 0.65 μg·L−1 at the signal-to-noise ratio of three.

  20. A geometry calibration method for rotation translation trajectory

    International Nuclear Information System (INIS)

    Zhang Jun; Yan Bin; Li Lei; Lu Lizhong; Zhang Feng

    2013-01-01

    In cone-beam CT imaging system, it is difficult to directly measure the geometry parameters. In this paper, a geometry calibration method for rotation translation trajectory is proposed. Intrinsic parameters are solved from the relationship built on geometry parameter of the system and projection trajectory of calibration object. Parameters of rotation axis are extrapolated from the unified intrinsic parameter, and geometry parameters of the idle trajectory are acquired too. The calibration geometry can be analytically determined using explicit formulae, it can avoid getting into local optimum in iterative way. Simulation experiments are carried out on misaligned geometry, experiment results indicate that geometry artifacts due to misaligned geometry are effectively depressed by the proposed method, and the image quality is enhanced. (authors)

  1. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    Science.gov (United States)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and

  2. Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam Nader [Univ. of California, Davis, CA (United States)

    2003-06-10

    Millions of people suffering from diseases such as retinitis pigmentosa and macular degeneration are legally blind due to the loss of photoreceptor function. Fortunately a large percentage of the neural cells connected to the photoreceptors remain viable, and electrical stimulation of these cells has been shown to result in visual perception. These findings have generated worldwide efforts to develop a retinal prosthesis device, with the hope of restoring vision. Advances in microfabrication, integrated circuits, and wireless technologies provide the means to reach this challenging goal. This dissertation describes the development of innovative silicone-based microfabrication techniques for producing an implantable microelectrode array. The microelectrode array is a component of an epiretinal prosthesis being developed by a multi-laboratory consortium. This array will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces. Because the array is intended as a long-term implant, vital biological and physical design requirements must be met. A retinal implant poses difficult engineering challenges due to the size of the intraocular cavity and the delicate retina. Not only does it have to be biocompatible in terms of cytotoxicity and degradation, but it also has to be structurally biocompatible, with regard to smooth edges and high conformability; basically mimicking the biological tissue. This is vital to minimize stress and prevent physical damage to the retina. Also, the device must be robust to withstand the forces imposed on it during fabrication and implantation. In order to meet these biocompatibility needs, the use of non-conventional microfabrication materials such as silicone is required. This mandates the enhancement of currently available polymer-based fabrication techniques and the development of new microfabrication methods. Through an iterative process, devices

  3. Magnesium microelectrode corrosion product transport modelling in relation to chloride induced pitting

    International Nuclear Information System (INIS)

    Burrows, R.; Cook, A.; Stevens, N.P.C.

    2012-09-01

    The high magnesium alloy Magnox is used as a fuel clad for the UK gas cooled, graphite moderated reactors of the same name. The fuel is metallic uranium (typically natural enrichment), so a low neutron absorption cross-section clad is required. Following discharge from reactor, spent fuel is stored in water, which acts as an effective heat transfer medium and biological shield. The chemistry of these ponds is carefully controlled to ensure that the Magnox clad remains in a passive state. This is primarily through the maintenance of a high pH and very low anion concentration. Of particular concern is the presence of chloride ions as even very low levels may allow localised corrosion to initiate. Although extensive work has been undertaken historically considering the behaviour of Magnox clad and the acceptable storage envelopes, the challenges of ageing plant and aspirations for accelerated decommissioning give value to further understanding of the corrosion mechanisms of this material. Recently, electrochemical techniques have been employed to characterise performance in a variety of chemistries and microelectrodes have been produced which have shown characteristics of salt film corrosion at moderate chloride concentrations under polarisation. A characteristic of the electrochemical response observed during the mass transport limited (potential independent) salt film regime has been periodic transients which correspond to emission of microscopic hydrogen bubbles from the microelectrode cavity. A simple finite element multi-physics model has been employed to assist in understanding the dominant processes of corrosion product transport away from a magnesium electrode surface which is dissolving under a salt film and this shows that characteristic transients observed in electrochemical tests may be simulated with reasonable agreement by consideration of convection from laminar flow around hydrogen micro-bubbles in the pit cavity combined with aqueous diffusion in the

  4. Classical models for Regge trajectories

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Van Dam, H.; Marmo, G.; Morandi, G.; Mukunda, N.; Samuel, J.; Sudarshan, E.C.G.

    1987-01-01

    Two classical models for particles with internal structure and which describe Regge trajectories are developed. The remarkable geometric and other properties of the two internal spaces are highlighted. It is shown that the conditions of positive time-like four-velocity and energy momentum for the classical system imply strong and physically reasonable conditions on the Regge mass-spin relationship

  5. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  6. Visiting Vehicle Ground Trajectory Tool

    Science.gov (United States)

    Hamm, Dustin

    2013-01-01

    The International Space Station (ISS) Visiting Vehicle Group needed a targeting tool for vehicles that rendezvous with the ISS. The Visiting Vehicle Ground Trajectory targeting tool provides the ability to perform both realtime and planning operations for the Visiting Vehicle Group. This tool provides a highly reconfigurable base, which allows the Visiting Vehicle Group to perform their work. The application is composed of a telemetry processing function, a relative motion function, a targeting function, a vector view, and 2D/3D world map type graphics. The software tool provides the ability to plan a rendezvous trajectory for vehicles that visit the ISS. It models these relative trajectories using planned and realtime data from the vehicle. The tool monitors ongoing rendezvous trajectory relative motion, and ensures visiting vehicles stay within agreed corridors. The software provides the ability to update or re-plan a rendezvous to support contingency operations. Adding new parameters and incorporating them into the system was previously not available on-the-fly. If an unanticipated capability wasn't discovered until the vehicle was flying, there was no way to update things.

  7. Experimental nonlocal steering of Bohmian trajectories.

    Science.gov (United States)

    Xiao, Ya; Kedem, Yaron; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2017-06-26

    Interpretations of quantum mechanics (QM), or proposals for underlying theories, that attempt to present a definite realist picture, such as Bohmian mechanics, require strong non-local effects. Naively, these effects would violate causality and contradict special relativity. However if the theory agrees with QM the violation cannot be observed directly. Here, we demonstrate experimentally such an effect: we steer the velocity and trajectory of a Bohmian particle using a remote measurement. We use a pair of photons and entangle the spatial transverse position of one with the polarization of the other. The first photon is sent to a double-slit-like apparatus, where its trajectory is measured using the technique of Weak Measurements. The other photon is projected to a linear polarization state. The choice of polarization state, and the result, steer the first photon in the most intuitive sense of the word. The effect is indeed shown to be dramatic, while being easy to visualize. We discuss its strength and what are the conditions for it to occur.

  8. Localisation of the subthalamic nucleus in Parkinson's disease with neural beta and gamma activity of local field potentials

    NARCIS (Netherlands)

    Verhagen, R.; Zwartjes - de Klerk, D.G.M; Heida, Tjitske; Contarino, M.F.; de Bie, R.M.A.; van den Munckhof, P; Schuurman, P.R.; Martens, H.C.F.; Veltink, Petrus H.; Bour, L.J.

    2013-01-01

    To evaluate the nature of oscillatory activity in the subthalamic nucleus (STN) by means of intraoperative local field potential (LFP) recordings, its relationship with microelectrode recordings (MER) and its potential use to locate the STN and its sensorimotor sub-area in patients with Parkinson’s

  9. Grasping trajectories in a virtual environment adhere to Weber's law.

    Science.gov (United States)

    Ozana, Aviad; Berman, Sigal; Ganel, Tzvi

    2018-06-01

    Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.

  10. Trajectory Design Considerations for Exploration Mission 1

    Science.gov (United States)

    Dawn, Timothy F.; Gutkowski, Jeffrey P.; Batcha, Amelia L.; Williams, Jacob; Pedrotty, Samuel M.

    2018-01-01

    Exploration Mission 1 (EM-1) will be the first mission to send an uncrewed Orion Multi-Purpose Crew Vehicle (MPCV) to cislunar space in the fall of 2019. EM-1 was originally conceived as a lunar free-return mission, but was later changed to a Distant Retrograde Orbit (DRO) mission as a precursor to the Asteroid Redirect Mission. To understand the required mission performance (i.e., propellant requirement), a series of trajectory optimization runs was conducted using JSC's Copernicus spacecraft trajectory optimization tool. In order for the runs to be done in a timely manner, it was necessary to employ a parallelization approach on a computing cluster using a new trajectory scan tool written in Python. Details of the scan tool are provided and how it is used to perform the scans and post-process the results. Initially, a scan of daily due east launched EM-1 DRO missions in 2018 was made. Valid mission opportunities are ones that do not exceed the useable propellant available to perform the required burns. The initial scan data showed the propellant and delta-V performance patterns for each launch period. As questions were raised from different subsystems (e.g., power, thermal, communications, flight operations, etc.), the mission parameters or data that were of interest to them were added to the scan output data file. The additional data includes: (1) local launch and landing times in relation to sunrise and sunset, (2) length of eclipse periods during the in-space portion of the mission, (3) Earth line of sight from cislunar space, (4) Deep Space Network field of view looking towards cislunar space, and (5) variation of the downrange distance from Earth entry interface to splashdown. Mission design trades can also be performed based on the information that the additional data shows. For example, if the landing is in darkness, but the recovery operations team desires a landing in daylight, then an analysis is performed to determine how to change the mission design

  11. Microelectrode array-induced neuronal alignment directs neurite outgrowth: analysis using a fast Fourier transform (FFT).

    Science.gov (United States)

    Radotić, Viktorija; Braeken, Dries; Kovačić, Damir

    2017-12-01

    Many studies have shown that the topography of the substrate on which neurons are cultured can promote neuronal adhesion and guide neurite outgrowth in the same direction as the underlying topography. To investigate this effect, isotropic substrate-complementary metal-oxide-semiconductor (CMOS) chips were used as one example of microelectrode arrays (MEAs) for directing neurite growth of spiral ganglion neurons. Neurons were isolated from 5 to 7-day-old rat pups, cultured 1 day in vitro (DIV) and 4 DIV, and then fixed with 4% paraformaldehyde. For analysis of neurite alignment and orientation, fast Fourier transformation (FFT) was used. Results revealed that on the micro-patterned surface of a CMOS chip, neurons orient their neurites along three directional axes at 30, 90, and 150° and that neurites aligned in straight lines between adjacent pillars and mostly followed a single direction while occasionally branching perpendicularly. We conclude that the CMOS substrate guides neurites towards electrodes by means of their structured pillar organization and can produce electrical stimulation of aligned neurons as well as monitoring their neural activities once neurites are in the vicinity of electrodes. These findings are of particular interest for neural tissue engineering with the ultimate goal of developing a new generation of MEA essential for improved electrical stimulation of auditory neurons.

  12. A wideband wireless neural stimulation platform for high-density microelectrode arrays.

    Science.gov (United States)

    Myers, Frank B; Simpson, Jim A; Ghovanloo, Maysam

    2006-01-01

    We describe a system that allows researchers to control an implantable neural microstimulator from a PC via a USB 2.0 interface and a novel dual-carrier wireless link, which provides separate data and power transmission. Our wireless stimulator, Interestim-2B (IS-2B), is a modular device capable of generating controlled-current stimulation pulse trains across 32 sites per module with support for a variety of stimulation schemes (biphasic/monophasic, bipolar/monopolar). We have developed software to generate multi-site stimulation commands for the IS-2B based on streaming data from artificial sensory devices such as cameras and microphones. For PC interfacing, we have developed a USB 2.0 microcontroller-based interface. Data is transmitted using frequency-shift keying (FSK) at 6/12 MHz to achieve a data rate of 3 Mb/s via a pair of rectangular coils. Power is generated using a class-E power amplifier operating at 1 MHz and transmitted via a separate pair of spiral planar coils which are oriented perpendicular to the data coils to minimize cross-coupling. We have successfully demonstrated the operation of the system by applying it as a visual prosthesis. Pulse-frequency modulated stimuli are generated in real-time based on a grayscale image from a webcam. These pulses are projected onto an 11x11 LED matrix that represents a 2D microelectrode array.

  13. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    International Nuclear Information System (INIS)

    Kim, G; Morgan, M; Hahm, B K; Bhunia, A; Mun, J H; Om, A S

    2008-01-01

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 10 3 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens

  14. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.

    Science.gov (United States)

    Gómez-González, J F; Destexhe, A; Bal, T

    2014-10-01

    Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.

  15. Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial.

    Science.gov (United States)

    Huang, Ting; Wang, Zhonghai; Wei, Lina; Kindy, Mark; Zheng, Yufeng; Xi, Tingfei; Gao, Bruce Z

    2016-01-01

    Magnesium (Mg)-based biomaterials have shown great potential in clinical applications. However, the cytotoxic effects of excessive Mg 2+ and the corrosion products from Mg-based biomaterials, particularly their effects on neurons, have been little studied. Although viability tests are most commonly used, a functional evaluation is critically needed. Here, both methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to test the effect of Mg 2+ and Mg-extract solution on neuronal viability. Microelectrode arrays (MEAs), which provide long-term, real-time recording of extracellular electrophysiological signals of in vitro neuronal networks, were used to test for toxic effects. The minimum effective concentrations (EC min ) of Mg 2+ from the MTT and LDH assays were 3 mmol/L and 100 mmol/L, respectively, while the EC min obtained from the MEA assay was 0.1 mmol/L. MEA data revealed significant loss of neuronal network activity when the culture was exposed to 25% Mg-extract solution, a concentration that did not affect neuronal viability. For evaluating the biocompatibility of Mg-based biomaterials with neurons, MEA electrophysiological testing is a more precise method than basic cell-viability testing.

  16. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    Science.gov (United States)

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  17. Rapid Detection Technology for Pesticides Residues Based on Microelectrodes Impedance Immunosensor

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-09-01

    Full Text Available Compared with conventional methods, electrochemical immunosensors have many advantages, such as low cost, high sensitivity, and rapid detection, and has certain prospects for realizing real-time-monitoring. In this paper, a design of portable pesticide residues detection instrument was presented based on an electrochemical impedance immunosensor. Firstly, we studied on an impedance immunosensor based on interdigitated array microelectrode (IDAM coupled with magnetic nanobeads-antibody conjugates (MNAC for the pesticide detection. Magnetic nanobeads (diameter 150 nm coated with anti-carbofuran antibodies were used for further amplification of the binding reaction between antibody and hapten (carbofuran. Secondly, in order to develop a portable pesticide residue apparatus, we designed the impedance detection electric circuit. Main work included designing and constructing of the system circuit, designing and debugging of the system software and so on. Thirdly, the apparatus was used for the standard pesticides solutions testing combined with immunosensor to test the reliability and stability. The pesticide added standard recovery was more than 70 % and the impedance test error was less than 5 %. The results showed that the proposed instrument had a good consistence compared with the traditional analytical methods. Thus, it would be a promising rapid detection instrument for pesticide residues in agricultural products.

  18. Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    2015-06-01

    Full Text Available A brain-computer interface (BCI system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  19. ZnO crystal growth on microelectrode by electrochemical deposition method

    International Nuclear Information System (INIS)

    Kondo, Y; Ashida, A; Nouzu, N; Fujimura, N

    2011-01-01

    Zinc Oxide crystals were grown by constant potential electrochemical deposition method on the substrate with the Pt working electrode which consists of Pt film with large area and μm-sized line and space structured area. In case of depositions with cathodic potential of -0.3V, ZnO crystal is not observed on the micro electrode, but observed on the electrode with large area (0.2 cm 2 ). By using electrolyte with higher pH, ZnO crystal grows on both areas. In case of lower pH, ZnO crystal does not grow on either. From these results, the pH range for growth of ZnO on the microelectrode seems to be higher than that on the electrode with large area. And, it is expected that the pH just on the surface of μm-sized electrode is lower than that in the bulk of electrolyte. Based on these results, it can be concluded that control of the pH in vicinity of the surface is very important to ECD method for micro- and nano-scaled devices.

  20. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    Science.gov (United States)

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  1. A microelectrode array electrodeposited with reduced graphene oxide and Pt nanoparticles for norepinephrine and electrophysiological recordings

    Science.gov (United States)

    Wang, Li; Song, Yilin; Zhang, Yu; Xu, Shengwei; Xu, Huiren; Wang, Mixia; Wang, Yang; Cai, Xinxia

    2017-11-01

    Norepinephrine (NE), a common neurotransmitter released by locus coeruleus neurons, plays an essential role in the communication mechanism of the mammalian nervous system. In this work, a microelectrode array (MEA) was fabricated by micro-electromechanical system (MEMS) technology to provide a rapid, sensitive and reliable method for the direct determination in NE dynamic secretion. To improve the electrical performance, the MEA was electrodeposited with the reduced graphene oxide and Pt nanoparticles (rGOPNps). rGOPNps-MEA was investigated using scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy, differential pulse voltammetry exhibited remarkably electrocatalytic properties towards NE. Calibration results showed a sensitivity of 1.03 nA µM-1 to NE with a detection limit of 0.08 µM. In Particular, the MEA was successfully used for measuring dynamic extracellular NE secretion from the locus coeruleus brain slice, as well as monitoring spike firing from the hippocampal brain slice. This fabricated device has potential in studies of spatially resolved delivery of trace neurochemicals and electrophysiological activities of a variety of biological tissues in vitro.

  2. Outcomes of Interventional-MRI Versus Microelectrode Recording-Guided Subthalamic Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Philip S. Lee

    2018-04-01

    Full Text Available In deep brain stimulation (DBS of the subthalamic nucleus (STN for Parkinson’s disease (PD, there is debate concerning the use of neuroimaging alone to confirm correct anatomic placement of the DBS lead into the STN, versus the use of microelectrode recording (MER to confirm functional placement. We performed a retrospective study of a contemporaneous cohort of 45 consecutive patients who underwent either interventional-MRI (iMRI or MER-guided DBS lead implantation. We compared radial lead error, motor and sensory side effect, and clinical benefit programming thresholds, and pre- and post-operative unified PD rating scale scores, and levodopa equivalent dosages. MER-guided surgery was associated with greater radial error compared to the intended target. In general, side effect thresholds during initial programming were slightly lower in the MER group, but clinical benefit thresholds were similar. No significant difference in the reduction of clinical symptoms or medication dosage was observed. In summary, iMRI lead implantation occurred with greater anatomic accuracy, in locations demonstrated to be the appropriate functional region of the STN, based on the observation of similar programming side effect and benefit thresholds obtained with MER. The production of equivalent clinical outcomes suggests that surgeon and patient preference can be used to guide the decision of whether to recommend iMRI or MER-guided DBS lead implantation to appropriate patients with PD.

  3. Amperometric Self-Referencing Ceramic Based Microelectrode Arrays for D-Serine Detection.

    Science.gov (United States)

    Campos-Beltrán, Diana; Konradsson-Geuken, Åsa; Quintero, Jorge E; Marshall, Lisa

    2018-03-06

    D-serine is the major D-amino acid in the mammalian central nervous system. As the dominant co-agonist of the endogenous synaptic NMDA receptor, D-serine plays a role in synaptic plasticity, learning, and memory. Alterations in D-serine are linked to neuropsychiatric disorders including schizophrenia. Thus, it is of increasing interest to monitor the concentration of D-serine in vivo as a relevant player in dynamic neuron-glia network activity. Here we present a procedure for amperometric detection of D-serine with self-referencing ceramic-based microelectrode arrays (MEAs) coated with D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). We demonstrate in vitro D-serine recordings with a mean sensitivity of 8.61 ± 0.83 pA/µM to D-serine, a limit of detection (LOD) of 0.17 ± 0.01 µM, and a selectivity ratio of 80:1 or greater for D-serine over ascorbic acid (mean ± SEM; n = 12) that can be used for freely moving studies.

  4. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.

    Science.gov (United States)

    Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas

    2014-02-01

    The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Umeda, Minoru; Kokubo, Mitsuhiro; Mohamedi, Mohamed; Uchida, Isamu

    2003-01-01

    We have developed a porous-microelectrode (PME) to investigate the electroactivity of catalyst particles for proton exchange membrane fuel cells. The cavity at the tip of the PME was filled with Pt/C catalysts prepared by impregnation method. Cyclic voltammograms (CVs) recorded in 1 N H 2 SO 4 aqueous solution revealed that the active area of the stacked catalysts exist not only at the surface but also inside of the stack. For methanol electrooxidation, 30 wt.% Pt/C exhibited the highest electroactivity, whereas the 50 wt.% Pt/C showed extremely small current. The small current is considered as a result of a small active-surface area. Methanol oxidation peak potential shifted toward cathodic direction as Pt-loading decreased, which agrees well with the Pt-oxide formation potential. The activation energy for methanol oxidation was assessed to be 44±3 kJ mol -1 for all Pt/C catalysts and Pt-disc electrode

  6. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation

    International Nuclear Information System (INIS)

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-01-01

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO 3 2− ) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl 6 2− ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m 2 g −1 ), good catalytic activity (1.2 A mg −1 ), high current density (20.0 mA cm −2 ), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells. (paper)

  7. Wearable Multi-Channel Microelectrode Membranes for Elucidating Electrophysiological Phenotypes of Injured Myocardium

    Science.gov (United States)

    Cao, Hung; Yu, Fei; Zhao, Yu; Zhang, Xiaoxiao; Tai, Joyce; Lee, Juhyun; Darehzereshki, Ali; Bersohn, Malcolm; Lien, Ching-Ling; Chi, Neil C.; Tai, Yu-Chong; Hsiai, Tzung K.

    2014-01-01

    Understanding the regenerative capacity of small vertebrate models has provided new insights into the plasticity of injured myocardium. Here, we demonstrated the application of flexible microelectrode arrays (MEAs) in elucidating electrophysiological phenotypes of zebrafish and neonatal mouse models of heart regeneration. The 4-electrode MEA membranes were designed to detect electrical signals in the aquatic environment. They were micro-fabricated to adhere to the non-planar body surface of zebrafish and neonatal mice. The acquired signals were processed to display electrocardiogram (ECG) with high signal-to-noise-ratios, and were validated via the use of conventional micro-needle electrodes. The 4-channel MEA provided signal stability and spatial resolution, revealing the site-specific electrical injury currents such as ST-depression in response to ventricular cryo-injury. Thus, our polymer-based and wearable MEA membranes provided electrophysiological insights in long-term conduction phenotypes for small vertebral models of heart injury and regeneration with a translational implication for monitoring cardiac patients. PMID:24945366

  8. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G [National Institute of Agricultural Engineering, 249 Seodun-dong, Suwon, Republic of Korea, 441-100 (Korea, Republic of); Morgan, M; Hahm, B K; Bhunia, A [Department of Food Science, Purdue University, West Lafayette, IN 47907 (United States); Mun, J H; Om, A S [Department of Food and Nutrient, Hanyang University, 17 Haengdang-dong, Seoul, Republic of Korea, 133-791 (Korea, Republic of)], E-mail: giyoungkim@rda.go.kr

    2008-03-15

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 {mu}m, 5 {mu}m, 10 {mu}m) were fabricated and tested. The impedimetric biosensor could detect 10{sup 3} CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.

  9. Highly sensitive three-dimensional interdigitated microelectrode for microparticle detection using electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Chang, Fu-Yu; Chen, Ming-Kun; Jang, Ling-Sheng; Wang, Min-Haw

    2016-01-01

    Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, a highly sensitive three-dimensional (3D) interdigitated microelectrode (IME) with a high aspect ratio on a polyimide (PI) flexible substrate was fabricated for microparticle detection (e.g. cell quantity detection) using electroforming and lithography technology. 3D finite element simulations were performed to compare the performance of the 3D IME (in terms of sensitivity and signal-to-noise ratio) to that of a planar IME for particles in the sensing area. Various quantities of particles were captured in Dulbecco’s modified Eagle medium and their impedances were measured. With the 3D IME, the particles were arranged in the gap, not on the electrode, avoiding the noise due to particle position. For the maximum particle quantities, the results show that the 3D IME has at least 5-fold higher sensitivity than that of the planar IME. The trends of impedance magnitude and phase due to particle quantity were verified using the equivalent circuit model. The impedance (1269 Ω) of 69 particles was used to estimate the particle quantity (68 particles) with 98.6% accuracy using a parabolic regression curve at 500 kHz. (paper)

  10. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    Science.gov (United States)

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Trajectories of delinquency and parenting styles

    NARCIS (Netherlands)

    Hoeve, M.; van Blokland, A.; Dubas, J.S.; Loeber, R; Gerris, J.R.M.; van der Laan, P.H.

    2008-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering

  12. Trajectories of Delinquency and Parenting Styles

    NARCIS (Netherlands)

    Hoeve, M.; Blokland, A.A.J.; Dubas, J.S.; Loeber, R.; Gerris, J.R.M.; Laan, P.H. van der

    2008-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering

  13. User Oriented Trajectory Search for Trip Recommendation

    KAUST Repository

    Ding, Ruogu

    2012-01-01

    Trajectory sharing and searching have received significant attention in recent years. In this thesis, we propose and investigate the methods to find and recommend the best trajectory to the traveler, and mainly focus on a novel technique named User

  14. Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program

    Science.gov (United States)

    Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony

    2017-01-01

    The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.

  15. Human action recognition using trajectory-based representation

    Directory of Open Access Journals (Sweden)

    Haiam A. Abdul-Azim

    2015-07-01

    Full Text Available Recognizing human actions in video sequences has been a challenging problem in the last few years due to its real-world applications. A lot of action representation approaches have been proposed to improve the action recognition performance. Despite the popularity of local features-based approaches together with “Bag-of-Words” model for action representation, it fails to capture adequate spatial or temporal relationships. In an attempt to overcome this problem, a trajectory-based local representation approaches have been proposed to capture the temporal information. This paper introduces an improvement of trajectory-based human action recognition approaches to capture discriminative temporal relationships. In our approach, we extract trajectories by tracking the detected spatio-temporal interest points named “cuboid features” with matching its SIFT descriptors over the consecutive frames. We, also, propose a linking and exploring method to obtain efficient trajectories for motion representation in realistic conditions. Then the volumes around the trajectories’ points are described to represent human actions based on the Bag-of-Words (BOW model. Finally, a support vector machine is used to classify human actions. The effectiveness of the proposed approach was evaluated on three popular datasets (KTH, Weizmann and UCF sports. Experimental results showed that the proposed approach yields considerable performance improvement over the state-of-the-art approaches.

  16. Aircraft 4D trajectories planning under uncertainties

    OpenAIRE

    Chaimatanan , Supatcha; Delahaye , Daniel; Mongeau , Marcel

    2015-01-01

    International audience; To sustain the rapidly increasing air traffic demand, the future air traffic management system will rely on a concept, called Trajectory-Based Operations (TBO), that will require aircraft to follow an assigned 4D trajectory (time-constrained trajectory) with high precision. TBO involves separating aircraft via strategic (long-term) trajectory deconfliction rather than the currently-practicing tactical (short-term) conflict resolution. In this context, this paper presen...

  17. Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    Fedorov, Roman G; Mandler, Daniel

    2013-02-28

    We demonstrate localized electrodeposition of anisotropic metal nanoobjects, namely Au nanorods (GNR), on indium tin oxide (ITO) using scanning electrochemical microscopy (SECM). A gold microelectrode was the source of the gold ions whereby double pulse chronoamperometry was employed to generate initially Au seeds which were further grown under controlled conditions. The distance between the microelectrode and the ITO surface as well as the different experimental parameters (electrodeposition regime, solution composition and temperature) were optimized to produce faceted gold seeds with the required characteristics (size and distribution). Colloidal chemical synthesis was successfully exploited for better understanding the role of the surfactant and different additives in breaking the crystallographic symmetry and anisotropic growth of GNR. Experiments performed in a conventional three-electrode cell revealed the most appropriate electrochemical conditions allowing high yield synthesis of nanorods with well-defined shape as well as nanocubes and bipyramids.

  18. Towards Efficient Search for Activity Trajectories

    DEFF Research Database (Denmark)

    Zheng, Kai; Shang, Shuo; Yuan, Jing

    2013-01-01

    , recent proliferation in location-based web applications (e.g., Foursquare, Facebook) has given rise to large amounts of trajectories associated with activity information, called activity trajectory. In this paper, we study the problem of efficient similarity search on activity trajectory database. Given...

  19. Methods for control over learning individual trajectory

    Science.gov (United States)

    Mitsel, A. A.; Cherniaeva, N. V.

    2015-09-01

    The article discusses models, methods and algorithms of determining student's optimal individual educational trajectory. A new method of controlling the learning trajectory has been developed as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects.

  20. Trajectories of low back pain

    DEFF Research Database (Denmark)

    Axén, Iben; Leboeuf-Yde, Charlotte

    2013-01-01

    Low back pain is not a self-limiting problem, but rather a recurrent and sometimes persistent disorder. To understand the course over time, detailed investigation, preferably using repeated measurements over extended periods of time, is needed. New knowledge concerning short-term trajectories...... indicates that the low back pain 'episode' is short lived, at least in the primary care setting, with most patients improving. Nevertheless, in the long term, low back pain often runs a persistent course with around two-thirds of patients estimated to be in pain after 12 months. Some individuals never have...... low back pain, but most have it on and off or persistently. Thus, the low back pain 'condition' is usually a lifelong experience. However, subgroups of patients with different back pain trajectories have been identified and linked to clinical parameters. Further investigation is warranted...

  1. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  2. Interference, reduced action, and trajectories

    OpenAIRE

    Floyd, Edward R.

    2006-01-01

    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichroma...

  3. Identification of digitized particle trajectories

    CERN Document Server

    Grote, H; Lassalle, J C; Zanella, P

    1973-01-01

    High-energy Physics Laboratories make increasing use of particle detectors which directly produce digital measurements of trajectories at very high rates. Data collected in vast amounts during experiments are then analysed by computer programs whose first task is the recognition of tracks and reconstruction of the interesting events. This paper discusses the applicability of various Pattern Recognition approaches. Examples are given of the problems and the practical achievements in this field.

  4. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Bryan J. Black

    2017-09-01

    Full Text Available Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A. These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.

  5. Cell culture chamber with gas supply for prolonged recording of human neuronal cells on microelectrode array.

    Science.gov (United States)

    Kreutzer, Joose; Ylä-Outinen, Laura; Mäki, Antti-Juhana; Ristola, Mervi; Narkilahti, Susanna; Kallio, Pasi

    2017-03-15

    Typically, live cell analyses are performed outside an incubator in an ambient air, where the lack of sufficient CO 2 supply results in a fast change of pH and the high evaporation causes concentration drifts in the culture medium. That limits the experiment time for tens of minutes. In many applications, e.g. in neurotoxicity studies, a prolonged measurement of extracellular activity is, however, essential. We demonstrate a simple cell culture chamber that enables stable culture conditions during prolonged extracellular recordings on a microelectrode array (MEA) outside an incubator. The proposed chamber consists of a gas permeable silicone structure that enables gas transfer into the chamber. We show that the culture chamber supports the growth of the human embryonic stem cell (hESC)-derived neurons both inside and outside an incubator. The structure provides very low evaporation, stable pH and osmolarity, and maintains strong signaling of hESC-derived neuronal networks over three-day MEA experiments. Existing systems are typically complex including continuous perfusion of medium or relatively large amount of gas to supply. The proposed chamber requires only a supply of very low flow rate (1.5ml/min) of non-humidified 5% CO 2 gas. Utilizing dry gas supply makes the proposed chamber simple to use. Using the proposed culture structure on top of MEA, we can maintain hESC-derived neural networks over three days outside an incubator. Technically, the structure requires very low flow rate of dry gas supporting, however, low evaporation and maintaining the pH of the culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Embedded harmonic control for dynamic trajectory planning on FPGA

    OpenAIRE

    Girau , Bernard; Boumaza , Amine

    2007-01-01

    International audience; This paper presents a parallel hardware implementation of a well-known navigation control method on reconfigurable digital circuits. Trajectories are estimated after an iterated computation of the harmonic functions, given the goal and obstacle positions of the navigation problem. The proposed massively distributed implementation locally computes the direction to choose to get to the goal position at any point of the environment. Changes in this environment may be imme...

  7. Wave trajectory and electron cyclotron heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, S.; Terumichi, Y.; Hamada, Y.

    1977-12-01

    Wave trajectories propagating obliquely to magnetic field in toroidal plasmas are studied theoretically. Results show that the ordinary wave at appropriate incident angle is mode-converted to the extraordinary wave at first turning point and is further converted to the electron Bernstein wave during passing a loop or a hooked nail curve near second turning point and is cyclotron-damped away, resulting in local electron heating, before arriving at cyclotron resonance layer. (auth.)

  8. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions

    Science.gov (United States)

    Guo, Rui; Liu, Jing

    2017-10-01

    With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.

  9. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions

    International Nuclear Information System (INIS)

    Guo, Rui; Liu, Jing

    2017-01-01

    With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µ m in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1–1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time. (paper)

  10. Resistive and reactive changes to the impedance of intracortical microelectrodes can be mitigated with polyethylene glycol under acute in vitro and in vivo settings

    Directory of Open Access Journals (Sweden)

    Salah eSommakia

    2014-08-01

    Full Text Available The reactive response of brain tissue to implantable intracortical microelectrodes is thought to negatively affect their recordable signal quality and impedance, resulting in unreliable longitudinal performance. The relationship between the progression of the reactive tissue into a glial scar and the decline in device performance is unclear. We show that exposure to a model protein solution in vitro and acute implantation result in both resistive and capacitive changes to electrode impedance, rather than purely resistive changes. We also show that applying 4000 MW polyethylene glycol (PEG prevents impedance increases in vitro, and reduces the percent change in impedance in vivo following implantation. Our results highlight the importance of considering the contributions of non-cellular components to the decline in neural microelectrode performance, and present a proof of concept for using a simple dip-coated PEG film to modulate changes in microelectrode impedance.

  11. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release

    DEFF Research Database (Denmark)

    Bortz, D M; Mikkelsen, J D; Bruno, J P

    2013-01-01

    The ability of local infusions of the alpha 7 nicotinic acetycholine receptor (α7 nAChR) partial agonist SSR180711 to evoke glutamate release in prefrontal cortex was determined in awake rats using a microelectrode array. Infusions of SSR180711 produced dose-dependent increases in glutamate levels...

  12. Data-based control trajectory planning for nonlinear systems

    International Nuclear Information System (INIS)

    Rhodes, C.; Morari, M.; Tsimring, L.S.; Rulkov, N.F.

    1997-01-01

    An open-loop trajectory planning algorithm is presented for computing an input sequence that drives an input-output system such that a reference trajectory is tracked. The algorithm utilizes only input-output data from the system to determine the proper control sequence, and does not require a mathematical or identified description of the system dynamics. From the input-output data, the controlled input trajectory is calculated in a open-quotes one-step-aheadclose quotes fashion using local modeling. Since the algorithm is calculated in this fashion, the output trajectories to be tracked can be nonperiodic. The algorithm is applied to a driven Lorenz system, and an experimental electrical circuit and the results are analyzed. Issues of stability associated with the implementation of this open-loop scheme are also examined using an analytic example of a driven Hacute enon map, problems associated with inverse controllers are illustrated, and solutions to these problems are proposed. copyright 1997 The American Physical Society

  13. Optimal trajectories of aircraft and spacecraft

    Science.gov (United States)

    Miele, A.

    1990-01-01

    Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful

  14. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    Science.gov (United States)

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  15. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    Science.gov (United States)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  16. Ray trajectories for Alcubierre spacetime

    International Nuclear Information System (INIS)

    Anderson, Tom H; Mackay, Tom G; Lakhtakia, Akhlesh

    2011-01-01

    The Alcubierre spacetime was simulated by means of a Tamm medium which is asymptotically identical to vacuum and has constitutive parameters which are continuous functions of the spatial coordinates. Accordingly, the Tamm medium is amenable to physical realization as a micro- or nanostructured metamaterial. A comprehensive characterization of ray trajectories in the Tamm medium was undertaken, within the geometric-optics regime. Propagation directions corresponding to evanescent waves were identified: these occur in the region of the Tamm medium which corresponds to the warp bubble of the Alcubierre spacetime, especially for directions perpendicular to the velocity of the warp bubble at high speeds of that bubble. Ray trajectories are acutely sensitive to the magnitude and direction of the warp bubble's velocity, but rather less sensitive to the thickness of the transition zone between the warp bubble and its background. In particular, for rays which travel in the same direction as the warp bubble, the latter acts as a focusing lens, most notably at high speeds

  17. Stochastic and fractal analysis of fracture trajectories

    Science.gov (United States)

    Bessendorf, Michael H.

    1987-01-01

    Analyses of fracture trajectories are used to investigate structures that fall between 'micro' and 'macro' scales. It was shown that fracture trajectories belong to the class of nonstationary processes. It was also found that correlation distance, which may be related to a characteristic size of a fracture process, increases with crack length. An assemblage of crack trajectory processes may be considered as a diffusive process. Chudnovsky (1981-1985) introduced a 'crack diffusion coefficient' d which reflects the ability of the material to deviate the crack trajectory from the most energetically efficient path and thus links the material toughness to its structure. For the set of fracture trajectories in AISI 304 steel, d was found to be equal to 1.04 microns. The fractal dimension D for the same set of trajectories was found to be 1.133.

  18. Camera Trajectory fromWide Baseline Images

    Science.gov (United States)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the

  19. Distinguished trajectories in time dependent vector fields

    OpenAIRE

    Madrid, J. A. Jimenez; Mancho, Ana M.

    2008-01-01

    We introduce a new definition of distinguished trajectory that generalizes the concepts of fixed point and periodic orbit to aperiodic dynamical systems. This new definition is valid for identifying distinguished trajectories with hyperbolic and nonhyperbolic types of stability. The definition is implemented numerically and the procedure consists of determining a path of limit coordinates. It has been successfully applied to known examples of distinguished trajectories. In the context of high...

  20. Trajectories of Delinquency and Parenting Styles

    OpenAIRE

    Hoeve, Machteld; Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R. M.; van der Laan, Peter H.

    2007-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10?19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persist...

  1. Decentralized flight trajectory planning of multiple aircraft

    OpenAIRE

    Yokoyama, Nobuhiro; 横山 信宏

    2008-01-01

    Conventional decentralized algorithms for optimal trajectory planning tend to require prohibitive computational time as the number of aircraft increases. To overcome this drawback, this paper proposes a novel decentralized trajectory planning algorithm adopting a constraints decoupling approach for parallel optimization. The constraints decoupling approach is formulated as the path constraints of the real-time trajectory optimization problem based on nonlinear programming. Due to the parallel...

  2. Importance of Thickness in Human Cardiomyocyte Network for Effective Electrophysiological Stimulation Using On-Chip Extracellular Microelectrodes

    Science.gov (United States)

    Hamada, Tomoyo; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-06-01

    We have developed a three-dimensionally controlled in vitro human cardiomyocyte network assay for the measurements of drug-induced conductivity changes and the appearance of fatal arrhythmia such as ventricular tachycardia/fibrillation for more precise in vitro predictive cardiotoxicity. To construct an artificial conductance propagation model of a human cardiomyocyte network, first, we examined the cell concentration dependence of the cell network heights and found the existence of a height limit of cell networks, which was double-layer height, whereas the cardiomyocytes were effectively and homogeneously cultivated within the microchamber maintaining their spatial distribution constant and their electrophysiological conductance and propagation were successfully recorded using a microelectrode array set on the bottom of the microchamber. The pacing ability of a cardiomyocyte's electrophysiological response has been evaluated using microelectrode extracellular stimulation, and the stimulation for pacing also successfully regulated the beating frequencies of two-layered cardiomyocyte networks, whereas monolayered cardiomyocyte networks were hardly stimulated by the external electrodes using the two-layered cardiomyocyte stimulation condition. The stability of the lined-up shape of human cardiomyocytes within the rectangularly arranged agarose microchambers was limited for a two-layered cardiomyocyte network because their stronger force generation shrunk those cells after peeling off the substrate. The results indicate the importance of fabrication technology of thickness control of cellular networks for effective extracellular stimulation and the potential concerning thick cardiomyocyte networks for long-term cultivation.

  3. A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes.

    Science.gov (United States)

    Ojovan, Silviya M; Rabieh, Noha; Shmoel, Nava; Erez, Hadas; Maydan, Eilon; Cohen, Ariel; Spira, Micha E

    2015-09-14

    The development of multi-electrode array platforms for large scale recording of neurons is at the forefront of neuro-engineering research efforts. Recently we demonstrated, at the proof-of-concept level, a breakthrough neuron-microelectrode interface in which cultured Aplysia neurons tightly engulf gold mushroom-shaped microelectrodes (gMμEs). While maintaining their extracellular position, the gMμEs record synaptic- and action-potentials with characteristic features of intracellular recordings. Here we examined the feasibility of using gMμEs for intracellular recordings from mammalian neurons. To that end we experimentally examined the innate size limits of cultured rat hippocampal neurons to engulf gMμEs and measured the width of the "extracellular" cleft formed between the neurons and the gold surface. Using the experimental results we next analyzed the expected range of gMμEs-neuron electrical coupling coefficients. We estimated that sufficient electrical coupling levels to record attenuated synaptic- and action-potentials can be reached using the gMμE-neuron configuration. The definition of the engulfment limits of the gMμEs caps diameter at ≤2-2.5 μm and the estimated electrical coupling coefficients from the simulations pave the way for rational development and application of the gMμE based concept for in-cell recordings from mammalian neurons.

  4. In situ 2D maps of pH shifts across brass–lead galvanic joints using microelectrodes

    International Nuclear Information System (INIS)

    Ma, Xiangmeng; Lee, Woo Hyoung; Lytle, Darren A

    2017-01-01

    Galvanic corrosion in drinking water distribution systems, such as conditions following partial lead service line replacement, can be a significant source of lead in tap water. The objective of this work was to measure the pH directly near metal surfaces using a novel experimental tool in order to understand the water chemistry at a lead-containing galvanic couple in drinking water. Specifically, pH microprofiles in the proximity of corroding metal surfaces were measured using a microelectrode to construct detailed in situ 2D spatial maps of the pH across a galvanic couple at 100 µ m above the metal’s surface under flowing and stagnation conditions. The opposite pH trend was directly observed across the galvanic couple under flow and stagnation conditions. Water stagnation resulted in a pH at the anode (leaded solder) of 1.5 pH units lower than the bulk water pH (9.0) and as much as 2.5 pH units lower than the cathode (brass). These conditions can enhance lead release at the anode, which reflects different anodic–cathodic relationships of coupled metals primarily controlled by water flow. Most importantly, this work has demonstrated the ability to make real pH measurement at the surface of corroding metals using a novel microelectrode approach. (paper)

  5. Compact microelectrode array system: tool for in situ monitoring of drug effects on neurotransmitter release from neural cells.

    Science.gov (United States)

    Chen, Yu; Guo, Chunxian; Lim, Layhar; Cheong, Serchoong; Zhang, Qingxin; Tang, Kumcheong; Reboud, Julien

    2008-02-15

    This paper presents a compact microelectrode array (MEA) system, to study potassium ion-induced dopamine release from PC12 neural cells, without relying on a micromanipulator and a microscope. The MEA chip was integrated with a custom-made "test jig", which provides a robust electrical interfacing tool between the microchip and the macroenvironment, together with a potentiostat and a microfluidic syringe pump. This integrated system significantly simplifies the operation procedures, enhances sensing performance, and reduces fabrication costs. The achieved detection limit for dopamine is 3.8 x 10-2 muM (signal/noise, S/N = 3) and the dopamine linear calibration range is up to 7.39 +/- 0.06 muM (mean +/- SE). The effects of the extracelluar matrix collagen coating of the microelectrodes on dopamine sensing behaviors, as well as the influences of K+ and l-3,4-digydroxyphenylalanine concentrations and incubation times on dopamine release, were extensively studied. The results show that our system is well suited for biologists to study chemical release from living cells as well as drug effects on secreting cells. The current system also shows a potential for further improvements toward a multichip array system for drug screening applications.

  6. Creation of defined single cell resolution neuronal circuits on microelectrode arrays

    Science.gov (United States)

    Pirlo, Russell Kirk

    2009-12-01

    The way cell-cell organization of neuronal networks influences activity and facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing cell patterning technologies have enabled access to and control of in vitro neuronal networks spawning much new research in neuroscience and neuroengineering. We propose that small, simple networks of neurons with defined circuitry may serve as valuable research models where every connection can be analyzed, controlled and manipulated. Towards the goal of creating such neuronal networks we have applied microfabricated elastomeric membranes, surface modification and our unique laser cell patterning system to create defined neuronal circuits with single-cell precision on MEAs. Definition of synaptic connectivity was imposed by the 3D physical constraints of polydimethylsiloxane elastomeric membranes. The membranes had 20mum clear-through holes and 2-3mum deep channels which when applied to the surface of the MEA formed microwells to confine neurons to electrodes connected via shallow tunnels to direct neurite outgrowth. Tapering and turning of channels was used to influence neurite polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma treatment and heated pressure. The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell patterning the outer edge of culture area was seeded with 5x10 5 cells per cm and incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then patterned into the microwells and onto the electrodes using our laser cell patterning system. Patterned neurons successfully attached to and were confined to the electrodes. Neurites extended through the interconnecting channels and connected with adjacent neurons. These results demonstrate that neuronal circuits can be

  7. Neurotoxicity screening of (illicit) drugs using novel methods for analysis of microelectrode array (MEA) recordings.

    Science.gov (United States)

    Hondebrink, L; Verboven, A H A; Drega, W S; Schmeink, S; de Groot, M W G D M; van Kleef, R G D M; Wijnolts, F M J; de Groot, A; Meulenbelt, J; Westerink, R H S

    2016-07-01

    Annual prevalence of the use of common illicit drugs and new psychoactive substances (NPS) is high, despite the often limited knowledge on the health risks of these substances. Recently, cortical cultures grown on multi-well microelectrode arrays (mwMEAs) have been used for neurotoxicity screening of chemicals, pharmaceuticals, and toxins with a high sensitivity and specificity. However, the use of mwMEAs to investigate the effects of illicit drugs on neuronal activity is largely unexplored. We therefore first characterised the cortical cultures using immunocytochemistry and show the presence of astrocytes, glutamatergic and GABAergic neurons. Neuronal activity is concentration-dependently affected following exposure to six neurotransmitters (glutamate, GABA, serotonin, dopamine, acetylcholine and nicotine). Most neurotransmitters inhibit neuronal activity, although glutamate and acetylcholine transiently increase activity at specific concentrations. These transient effects are not detected when activity is determined during the entire 30min exposure window, potentially resulting in false-negative results. As expected, exposure to the GABAA-receptor antagonist bicuculline increases neuronal activity. Exposure to a positive allosteric modulator of the GABAA-receptor (diazepam) or to glutamate receptor antagonists (CNQX and MK-801) reduces neuronal activity. Further, we demonstrate that exposure to common drugs (3,4-methylenedioxymethamphetamine (MDMA) and amphetamine) and NPS (1-(3-chlorophenyl)piperazine (mCPP), 4-fluoroamphetamine (4-FA) and methoxetamine (MXE)) decreases neuronal activity. MXE most potently inhibits neuronal activity with an IC50 of 0.5μM, whereas 4-FA is least potent with an IC50 of 113μM. Our data demonstrate the importance of analysing neuronal activity within different time windows during exposure to prevent false-negative results. We also show that cortical cultures grown on mwMEAs can successfully be applied to investigate the effects of

  8. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates

    Science.gov (United States)

    Barrese, James C.; Aceros, Juan; Donoghue, John P.

    2016-04-01

    Objective. Signal attenuation is a major problem facing intracortical sensors for chronic neuroprosthetic applications. Many studies suggest that failure is due to gliosis around the electrode tips, however, mechanical and material causes of failure are often overlooked. The purpose of this study was to investigate the factors contributing to progressive signal decline by using scanning electron microscopy (SEM) to visualize structural changes in chronically implanted arrays and histology to examine the tissue response at corresponding implant sites. Approach. We examined eight chronically implanted intracortical microelectrode arrays (MEAs) explanted from non-human primates at times ranging from 37 to 1051 days post-implant. We used SEM, in vivo neural recordings, and histology (GFAP, Iba-1, NeuN). Three MEAs that were never implanted were also imaged as controls. Main results. SEM revealed progressive corrosion of the platinum electrode tips and changes to the underlying silicon. The parylene insulation was prone to cracking and delamination, and in some instances the silicone elastomer also delaminated from the edges of the MEA. Substantial tissue encapsulation was observed and was often seen growing into defects in the platinum and parylene. These material defects became more common as the time in vivo increased. Histology at 37 and 1051 days post-implant showed gliosis, disruption of normal cortical architecture with minimal neuronal loss, and high Iba-1 reactivity, especially within the arachnoid and dura. Electrode tracts were either absent or barely visible in the cortex at 1051 days, but were seen in the fibrotic encapsulation material suggesting that the MEAs were lifted out of the brain. Neural recordings showed a progressive drop in impedance, signal amplitude, and viable channels over time. Significance. These results provide evidence that signal loss in MEAs is truly multifactorial. Gliosis occurs in the first few months after implantation but does

  9. Trajectory similarity join in spatial networks

    KAUST Repository

    Shang, Shuo

    2017-09-07

    The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider the case of trajectory similarity join (TS-Join), where the objects are trajectories of vehicles moving in road networks. Thus, given two sets of trajectories and a threshold θ, the TS-Join returns all pairs of trajectories from the two sets with similarity above θ. This join targets applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide a purposeful definition of similarity. To enable efficient TS-Join processing on large sets of trajectories, we develop search space pruning techniques and take into account the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer algorithm. For each trajectory, the algorithm first finds similar trajectories. Then it merges the results to achieve a final result. The algorithm exploits an upper bound on the spatiotemporal similarity and a heuristic scheduling strategy for search space pruning. The algorithm\\'s per-trajectory searches are independent of each other and can be performed in parallel, and the merging has constant cost. An empirical study with real data offers insight in the performance of the algorithm and demonstrates that is capable of outperforming a well-designed baseline algorithm by an order of magnitude.

  10. Statistical Measures to Quantify Similarity between Molecular Dynamics Simulation Trajectories

    Directory of Open Access Journals (Sweden)

    Jenny Farmer

    2017-11-01

    Full Text Available Molecular dynamics simulation is commonly employed to explore protein dynamics. Despite the disparate timescales between functional mechanisms and molecular dynamics (MD trajectories, functional differences are often inferred from differences in conformational ensembles between two proteins in structure-function studies that investigate the effect of mutations. A common measure to quantify differences in dynamics is the root mean square fluctuation (RMSF about the average position of residues defined by C α -atoms. Using six MD trajectories describing three native/mutant pairs of beta-lactamase, we make comparisons with additional measures that include Jensen-Shannon, modifications of Kullback-Leibler divergence, and local p-values from 1-sample Kolmogorov-Smirnov tests. These additional measures require knowing a probability density function, which we estimate by using a nonparametric maximum entropy method that quantifies rare events well. The same measures are applied to distance fluctuations between C α -atom pairs. Results from several implementations for quantitative comparison of a pair of MD trajectories are made based on fluctuations for on-residue and residue-residue local dynamics. We conclude that there is almost always a statistically significant difference between pairs of 100 ns all-atom simulations on moderate-sized proteins as evident from extraordinarily low p-values.

  11. Privacy-Preserving Trajectory Collection

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Xuegang, Huang; Pedersen, Torben Bach

    2008-01-01

    In order to provide context--aware Location--Based Services, real location data of mobile users must be collected and analyzed by spatio--temporal data mining methods. However, the data mining methods need precise location data, while the mobile users want to protect their location privacy....... To remedy this situation, this paper first formally defines novel location privacy requirements. Then, it briefly presents a system for privacy--preserving trajectory collection that meets these requirements. The system is composed of an untrusted server and clients communicating in a P2P network. Location...... data is anonymized in the system using data cloaking and data swapping techniques. Finally, the paper empirically demonstrates that the proposed system is effective and feasible....

  12. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  13. Technical description of the RIVM trajectory model

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, E.S.; Van Pul, W.A.J.

    1995-12-01

    The RIVM trajectory model, described in this report, enables calculation of a backward or forward trajectory. These trajectories are used to `follow` previous released air pollution in a backward mode or to `find` the origin of air pollution in a forward mode. The trajectories are used in the smog forecasting and in the TREND model for the distribution of materials in Europe. Presently 6-hourly ECMWF wind fields at 1000 and 850 hPa, with 3 deg x 3 deg latitude-longitude resolution are used. Wind fields with a different resolution in latitude-longitude can also be used after simple adjustments. An iterative method, described elsewhere, is applied to calculate the trajectories. Within limits, the user is free to choose the time step (1, 2 or 6-hour), transport height, length, starting or arrival date and starting or arrival position of the trajectory. The differences between the trajectories calculated with time steps of 1, 2 and 6 h were small. For the 96-hour trajectories at 1000 and 850 hPa the deviations were generally within 1 deg latitude and longitude, i.e. 100-200 km. The trajectory calculated with the 6-hour time step could be used without a great loss in accuracy compared to the calculations with the 1-hour time step. A typical error in the trajectory path at 1000 and 850 hPa was 500 km, which is about 30% of a typical travel distance. However, close to quickly changing weather systems, such as cyclones, the error can be as large as the travel distance and makes the calculations unreliable. The error in the forecasted trajectory was found to be larger than the above error estimation due to larger uncertainties in the forecasted compared to the analyzed wind fields. A manual on how to run the model is also given. 5 figs., 3 tabs., 5 refs., 6 appendices

  14. Parallel trajectory similarity joins in spatial networks

    KAUST Repository

    Shang, Shuo

    2018-04-04

    The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider two cases of trajectory similarity joins (TS-Joins), including a threshold-based join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join), where the objects are trajectories of vehicles moving in road networks. Given two sets of trajectories and a threshold θ, the Tb-TS-Join returns all pairs of trajectories from the two sets with similarity above θ. In contrast, the k-TS-Join does not take a threshold as a parameter, and it returns the top-k most similar trajectory pairs from the two sets. The TS-Joins target diverse applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide purposeful definitions of similarity. To enable efficient processing of the TS-Joins on large sets of trajectories, we develop search space pruning techniques and enable use of the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer search framework that lays the foundation for the algorithms for the Tb-TS-Join and the k-TS-Join that rely on different pruning techniques to achieve efficiency. For each trajectory, the algorithms first find similar trajectories. Then they merge the results to obtain the final result. The algorithms for the two joins exploit different upper and lower bounds on the spatiotemporal trajectory similarity and different heuristic scheduling strategies for search space pruning. Their per-trajectory searches are independent of each other and can be performed in parallel, and the mergings have constant cost. An empirical study with real data offers insight in the performance of the algorithms and demonstrates that they are capable of outperforming well-designed baseline algorithms by an order of magnitude.

  15. Parallel trajectory similarity joins in spatial networks

    KAUST Repository

    Shang, Shuo; Chen, Lisi; Wei, Zhewei; Jensen, Christian S.; Zheng, Kai; Kalnis, Panos

    2018-01-01

    The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider two cases of trajectory similarity joins (TS-Joins), including a threshold-based join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join), where the objects are trajectories of vehicles moving in road networks. Given two sets of trajectories and a threshold θ, the Tb-TS-Join returns all pairs of trajectories from the two sets with similarity above θ. In contrast, the k-TS-Join does not take a threshold as a parameter, and it returns the top-k most similar trajectory pairs from the two sets. The TS-Joins target diverse applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide purposeful definitions of similarity. To enable efficient processing of the TS-Joins on large sets of trajectories, we develop search space pruning techniques and enable use of the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer search framework that lays the foundation for the algorithms for the Tb-TS-Join and the k-TS-Join that rely on different pruning techniques to achieve efficiency. For each trajectory, the algorithms first find similar trajectories. Then they merge the results to obtain the final result. The algorithms for the two joins exploit different upper and lower bounds on the spatiotemporal trajectory similarity and different heuristic scheduling strategies for search space pruning. Their per-trajectory searches are independent of each other and can be performed in parallel, and the mergings have constant cost. An empirical study with real data offers insight in the performance of the algorithms and demonstrates that they are capable of outperforming well-designed baseline algorithms by an order of magnitude.

  16. Trajectories of Intimate Partner Violence Victimization

    Directory of Open Access Journals (Sweden)

    Kevin M. Swartout

    2012-08-01

    Full Text Available Introduction: The purposes of this study were to assess the extent to which latent trajectories of female intimate partner violence (IPV victimization exist; and, if so, use negative childhood experiences to predict trajectory membership.Methods: We collected data from 1,575 women at 5 time-points regarding experiences during adolescence and their 4 years of college. We used latent class growth analysis to fit a series of personcentered, longitudinal models ranging from 1 to 5 trajectories. Once the best-fitting model was selected, we used negative childhood experience variables—sexual abuse, physical abuse, and witnessing domestic violence—to predict most-likely trajectory membership via multinomial logistic regression.Results: A 5-trajectory model best fit the data both statistically and in terms of interpretability. The trajectories across time were interpreted as low or no IPV, low to moderate IPV, moderate to low IPV, high to moderate IPV, and high and increasing IPV, respectively. Negative childhood experiences differentiated trajectory membership, somewhat, with childhood sexual abuse as a consistent predictor of membership in elevated IPV trajectories.Conclusion: Our analyses show how IPV risk changes over time and in different ways. These differential patterns of IPV suggest the need for prevention strategies tailored for women that consider victimization experiences in childhood and early adulthood. [West J Emerg Med. 2012;13(3:272–277.

  17. From the trajectory to the density memory

    International Nuclear Information System (INIS)

    Cakir, Rasit; Krokhin, Arkadii; Grigolini, Paolo

    2007-01-01

    In this paper we discuss the connection between trajectory and density memory. The first form of memory is a property of a stochastic trajectory, whose stationary correlation function shows that the fluctuation at a given time depends on the earlier fluctuations. The density memory is a property of a collection of trajectories, whose density time evolution is described by a time convoluted equation showing that the density time evolution depends on its past history. We show that the trajectory memory does not necessarily yields density memory, and that density memory might be compatible with the existence of abrupt jumps resetting to zero the system's memory. We focus our attention on a time-convoluted diffusion equation, when the memory kernel is an inverse power law with (i) negative and (ii) positive tail. In case (i) there exist both renewal trajectories and trajectories with memory, compatible with this equation. Case (ii), which has eluded so far a convincing interpretation in terms of trajectories, is shown to be compatible only with trajectory memory

  18. User oriented trajectory search for trip recommendation

    KAUST Repository

    Shang, Shuo; Ding, Ruogu; Yuan, Bo; Xie, Kexin; Zheng, Kai; Kalnis, Panos

    2012-01-01

    trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input contains a set of intended places given by the traveler and a set of textual attributes

  19. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  20. Trajectories entropy in dynamical graphs with memory

    Directory of Open Access Journals (Sweden)

    Francesco eCaravelli

    2016-04-01

    Full Text Available In this paper we investigate the application of non-local graph entropy to evolving and dynamical graphs. The measure is based upon the notion of Markov diffusion on a graph, and relies on the entropy applied to trajectories originating at a specific node. In particular, we study the model of reinforcement-decay graph dynamics, which leads to scale free graphs. We find that the node entropy characterizes the structure of the network in the two parameter phase-space describing the dynamical evolution of the weighted graph. We then apply an adapted version of the entropy measure to purely memristive circuits. We provide evidence that meanwhile in the case of DC voltage the entropy based on the forward probability is enough to characterize the graph properties, in the case of AC voltage generators one needs to consider both forward and backward based transition probabilities. We provide also evidence that the entropy highlights the self-organizing properties of memristive circuits, which re-organizes itself to satisfy the symmetries of the underlying graph.

  1. The power of a single trajectory

    Science.gov (United States)

    Schnellbächer, Nikolas D.; Schwarz, Ulrich S.

    2018-03-01

    Random walks are often evaluated in terms of their mean squared displacements, either for a large number of trajectories or for one very long trajectory. An alternative evaluation is based on the power spectral density, but here it is less clear which information can be extracted from a single trajectory. For continuous-time Brownian motion, Krapf et al now have mathematically proven that the one property that can be reliably extracted from a single trajectory is the frequency dependence of the ensemble-averaged power spectral density (Krapf et al 2018 New J. Phys. 20 023029). Their mathematical analysis also identifies the appropriate frequency window for this procedure and shows that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The authors have verified their analytical results both by computer simulations and experiments.

  2. Picking Robot Arm Trajectory Planning Method

    Directory of Open Access Journals (Sweden)

    Zhang Zhiyong

    2014-01-01

    Full Text Available The picking robot arm is scheduled to complete picking tasks in the working space, to overcome the shaking vibration to improve the picking stability, its movement should follow specific consistence trajectory points. Usually we should give definite multiple feature picking points, map their inverse kinematics to the joint space, establish motion equation for the corresponding point in the joint space, then follow these equations motion for the interpolation on the joint so that we can meet the movement requirements. Trajectory planning is decisive significance for accuracy and stability of controlling robot arm. The key issue that picking arm complete picking task will be come true by trajectory planning, namely, robot arm track the desired trajectory. which based on kinematics and statics picking analysis in a joint space according to the requirements of picking tasks, and obtain the position and orientation for picking robot arm, study and calculate the theory of trajectory parameters timely.

  3. Trajectories of delinquency and parenting styles.

    Science.gov (United States)

    Hoeve, Machteld; Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R M; van der Laan, Peter H

    2008-02-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10-19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persisting, and serious desisting trajectory. More serious delinquents tended to more frequently engage in delinquency, and to report a higher proportion of theft. Proportionally, serious persistent delinquents were the most violent of all trajectory groups. Using cluster analysis we identified three parenting styles: authoritative, authoritarian (moderately supportive), and neglectful (punishing). Controlling for demographic characteristics and childhood delinquency, neglectful parenting was more frequent in moderate desisters, serious persisters, and serious desisters, suggesting that parenting styles differentiate non- or minor delinquents from more serious delinquents.

  4. Path-based Queries on Trajectory Data

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis

    2014-01-01

    In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path...... a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set...

  5. Potential for thermal damage to the blood–brain barrier during craniotomy: implications for intracortical recording microelectrodes

    Science.gov (United States)

    Shoffstall, Andrew J.; Paiz, Jen E.; Miller, David M.; Rial, Griffin M.; Willis, Mitchell T.; Menendez, Dhariyat M.; Hostler, Stephen R.; Capadona, Jeffrey R.

    2018-06-01

    Objective. Our objective was to determine how readily disruption of the blood–brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. Approach. We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. Main results. Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from  +3 °C to  +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. Significance. Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during ‘off’ periods. While

  6. A Microelectrode Array with Reproducible Performance Shows Loss of Consistency Following Functionalization with a Self-Assembled 6-Mercapto-1-hexanol Layer

    Directory of Open Access Journals (Sweden)

    Damion K. Corrigan

    2018-06-01

    Full Text Available For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses. To achieve this, a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc microelectrodes was designed in an integrated 3-electrode system configuration and then fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for initial electrochemical characterization of the individual working electrodes. These confirmed the expected consistency of performance with a high degree of measurement reproducibility for each microelectrode across the array. With the aim of assessing the potential for production of an enhanced multi-electrode sensor for biomedical use, the working electrodes were then functionalized with 6-mercapto-1-hexanol (MCH. This is a well-known and commonly employed surface modification process, which involves the same principles of thiol attachment chemistry and self-assembled monolayer (SAM formation commonly employed in the functionalization of electrodes and the formation of biosensors. Following this SAM formation, the reproducibility of the observed electrochemical signal between electrodes was seen to decrease markedly, compromising the ability to achieve consistent analytical measurements from the sensor array following this relatively simple and well-established surface modification. To successfully and consistently functionalize the sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore demonstrates in a high throughput manner irreproducibility in the SAM formation process at the higher concentration, even though these electrodes are apparently functionalized simultaneously in the same film

  7. Task Decomposition Module For Telerobot Trajectory Generation

    Science.gov (United States)

    Wavering, Albert J.; Lumia, Ron

    1988-10-01

    A major consideration in the design of trajectory generation software for a Flight Telerobotic Servicer (FTS) is that the FTS will be called upon to perform tasks which require a diverse range of manipulator behaviors and capabilities. In a hierarchical control system where tasks are decomposed into simpler and simpler subtasks, the task decomposition module which performs trajectory planning and execution should therefore be able to accommodate a wide range of algorithms. In some cases, it will be desirable to plan a trajectory for an entire motion before manipulator motion commences, as when optimizing over the entire trajectory. Many FTS motions, however, will be highly sensory-interactive, such as moving to attain a desired position relative to a non-stationary object whose position is periodically updated by a vision system. In this case, the time-varying nature of the trajectory may be handled either by frequent replanning using updated sensor information, or by using an algorithm which creates a less specific state-dependent plan that determines the manipulator path as the trajectory is executed (rather than a priori). This paper discusses a number of trajectory generation techniques from these categories and how they may be implemented in a task decompo-sition module of a hierarchical control system. The structure, function, and interfaces of the proposed trajectory gener-ation module are briefly described, followed by several examples of how different algorithms may be performed by the module. The proposed task decomposition module provides a logical structure for trajectory planning and execution, and supports a large number of published trajectory generation techniques.

  8. Personalized trajectory matching in spatial networks

    KAUST Repository

    Shang, Shuo

    2013-07-31

    With the increasing availability of moving-object tracking data, trajectory search and matching is increasingly important. We propose and investigate a novel problem called personalized trajectory matching (PTM). In contrast to conventional trajectory similarity search by spatial distance only, PTM takes into account the significance of each sample point in a query trajectory. A PTM query takes a trajectory with user-specified weights for each sample point in the trajectory as its argument. It returns the trajectory in an argument data set with the highest similarity to the query trajectory. We believe that this type of query may bring significant benefits to users in many popular applications such as route planning, carpooling, friend recommendation, traffic analysis, urban computing, and location-based services in general. PTM query processing faces two challenges: how to prune the search space during the query processing and how to schedule multiple so-called expansion centers effectively. To address these challenges, a novel two-phase search algorithm is proposed that carefully selects a set of expansion centers from the query trajectory and exploits upper and lower bounds to prune the search space in the spatial and temporal domains. An efficiency study reveals that the algorithm explores the minimum search space in both domains. Second, a heuristic search strategy based on priority ranking is developed to schedule the multiple expansion centers, which can further prune the search space and enhance the query efficiency. The performance of the PTM query is studied in extensive experiments based on real and synthetic trajectory data sets. © 2013 Springer-Verlag Berlin Heidelberg.

  9. Quantum trajectories in complex space: One-dimensional stationary scattering problems

    International Nuclear Information System (INIS)

    Chou, C.-C.; Wyatt, Robert E.

    2008-01-01

    One-dimensional time-independent scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. The equation for the local approximate quantum trajectories near the stagnation point of the quantum momentum function is derived, and the first derivative of the quantum momentum function is related to the local structure of quantum trajectories. Exact complex quantum trajectories are determined for two examples by numerically integrating the equations of motion. For the soft potential step, some particles penetrate into the nonclassical region, and then turn back to the reflection region. For the barrier scattering problem, quantum trajectories may spiral into the attractors or from the repellers in the barrier region. Although the classical potentials extended to complex space show different pole structures for each problem, the quantum potentials present the same second-order pole structure in the reflection region. This paper not only analyzes complex quantum trajectories and the total potentials for these examples but also demonstrates general properties and similar structures of the complex quantum trajectories and the quantum potentials for one-dimensional time-independent scattering problems

  10. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis

    Science.gov (United States)

    Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-11-01

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.

  11. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides

    KAUST Repository

    Ordoñ ez, Natalia Maria; Shabala, Lana; Gehring, Christoph A; Shabala, Sergey Nikolayevich

    2013-01-01

    Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular. © Springer Science+Business Media New York 2013.

  12. Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array

    International Nuclear Information System (INIS)

    Cui, Haochen; Wu, Jayne; Eda, Shigetoshi; Chen, Jiangang; Chen, Wei; Zheng, Lei

    2015-01-01

    A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL −1 ) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples. (author)

  13. Multiple single-unit long-term tracking on organotypic hippocampal slices using high-density microelectrode arrays

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2016-11-01

    Full Text Available A novel system to cultivate and record from organotypic brain slices directly on high-density microelectrode arrays (HD-MEA was developed. This system allows for continuous recording of electrical activity of specific individual neurons at high spatial resolution while monitoring at the same time, neuronal network activity. For the first time, the electrical activity patterns of single neurons and the corresponding neuronal network in an organotypic hippocampal slice culture were studied during several consecutive weeks at daily intervals. An unsupervised iterative spike-sorting algorithm, based on PCA and k-means clustering, was developed to assign the activities to the single units. Spike-triggered average extracellular waveforms of an action potential recorded across neighboring electrodes, termed ‘footprints’ of single-units were generated and tracked over weeks. The developed system offers the potential to study chronic impacts of drugs or genetic modifications on individual neurons in slice preparations over extended times.

  14. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides

    KAUST Repository

    Ordoñez, Natalia Maria

    2013-09-03

    Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular. © Springer Science+Business Media New York 2013.

  15. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings

    DEFF Research Database (Denmark)

    Bader, Benjamin M; Steder, Anne; Klein, Anders Bue

    2017-01-01

    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal...... of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons....... cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels...

  16. Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis

    International Nuclear Information System (INIS)

    ToczyIowska, Renata; Pokrop, RafaI; Dybko, Artur; Wroblewski, Wojciech

    2005-01-01

    Back-side contact Au and Ag microelectrodes were used as transducers to construct planar all-solid-state electrodes suitable for flow-through analysis. The microsensors were based on plasticized PVC potassium-selective membranes containing ion-electron conducting polymer-polypyrrole doped with di(2-ethylhexyl) sulfosuccinate. The proposed technique allowed simple construction of microsensors in one step, by membrane solution casting directly on the surface of the planar metallic transducers. The performance of the microsensors based on Au and Ag transducers were determined and compared with planar sensors based on internal electrolyte immobilized in polyHEMA. The addition of the polypyrrole to the membrane composition did not influence on the selectivity, reproducibility and long-term stability of the microsensors but improved their standard potential stability in time in comparison with coated-wire type sensors. Moreover, all-solid-state microsensors based on Au transducers exhibited better signal stability than Ag based sensors

  17. Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes

    International Nuclear Information System (INIS)

    Hou, Jun; Miao, Lingzhan; Wang, Chao; Wang, Peifang; Ao, Yanhui; Qian, Jin; Dai, Shanshan

    2014-01-01

    Highlights: • Temporal and spatial inhibitory effects of ZnO NPs on biofilms were investigated. • 50 mg/L nano-ZnO inhibited the microbial activities only in biofilm outer layer. • Adsorbed ZnO NPs had no adverse effects on the cell membrane integrity of biofilms. • Dissolution of ZnO NPs to toxic zinc ions was the main mechanism of toxicity. - Abstract: The presence of ZnO NPs in waste streams can negatively affect the efficiency of biological nutrient removal from wastewater. However, details of the toxic effects of ZnO NPs on microbial activities of wastewater biofilms have not yet been reported. In this study, the temporal and spatial inhibitory effects of ZnO NPs on the O 2 respiration activities of aerobic wastewater biofilms were investigated using an O 2 microelectrode. The resulting time–course microelectrode measurements demonstrated that ZnO NPs inhibited O 2 respiration within 2 h. The spatial distributions of net specific O 2 respiration were determined in biofilms with and without treatment of 5 or 50 mg/L ZnO NPs. The results showed that 50 mg/L of nano-ZnO inhibited the microbial activities only in the outer layer (∼200 μm) of the biofilms, and bacteria present in the deeper parts of the biofilms became even more active. Scanning electron microscopy (SEM) analysis showed that the ZnO NPs were adsorbed onto the biofilm, but these NPs had no adverse effects on the cell membrane integrity of the biofilms. It was found that the inhibition of O 2 respiration induced by higher concentrations of ZnO NPs (50 mg/L) was mainly due to the release of zinc ions by dissolution of the ZnO NPs

  18. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants.

    Science.gov (United States)

    De Faveri, Sara; Maggiolini, Emma; Miele, Ermanno; De Angelis, Francesco; Cesca, Fabrizia; Benfenati, Fabio; Fadiga, Luciano

    2014-01-01

    The use of implants that allow chronic electrical stimulation and recording in the brain of human patients is currently limited by a series of events that cause the deterioration over time of both the electrode surface and the surrounding tissue. The main reason of failure is the tissue inflammatory reaction that eventually causes neuronal loss and glial encapsulation, resulting in a progressive increase of the electrode-electrolyte impedance. Here, we describe a new method to create bio-inspired electrodes to mimic the mechanical properties and biological composition of the host tissue. This combination has a great potential to increase the implant lifetime by reducing tissue reaction and improving electrical coupling. Our method implies coating the electrode with reprogrammed neural or glial cells encapsulated within a hydrogel layer. We chose fibrin as a hydrogel and primary hippocampal neurons or astrocytes from rat brain as cellular layer. We demonstrate that fibrin coating is highly biocompatible, forms uniform coatings of controllable thickness, does not alter the electrochemical properties of the microelectrode and allows good quality recordings. Moreover, it reduces the amount of host reactive astrocytes - over time - compared to a bare wire and is fully reabsorbed by the surrounding tissue within 7 days after implantation, avoiding the common problem of hydrogels swelling. Both astrocytes and neurons could be successfully grown onto the electrode surface within the fibrin hydrogel without altering the electrochemical properties of the microelectrode. This bio-hybrid device has therefore a good potential to improve the electrical integration at the neuron-electrode interface and support the long-term success of neural prostheses.

  19. Bio-inspired hybrid microelectrodes. A hybrid solution to improve long-term performance of chronic intracortical implants.

    Directory of Open Access Journals (Sweden)

    Sara eDe Faveri

    2014-04-01

    Full Text Available The use of implants that allow chronic electrical stimulation and recording in the brain of human patients is currently limited by a series of events that cause the deterioration over time of both the electrode surface and the surrounding tissue. The main reason of failure is the tissue inflammatory reaction that eventually causes neuronal loss and glial encapsulation, resulting in a progressive increase of the electrode-electrolyte impedance. Here, we describe a new method to create bio-inspired electrodes to mimic the mechanical properties and biological composition of the host tissue. This combination has a great potential to increase the implant lifetime by reducing tissue reaction and improving electrical coupling. Our method implies coating the electrode with reprogrammed neural or glial cells encapsulated within a hydrogel layer. We chose fibrin as a hydrogel and primary hippocampal neurons or astrocytes from rat brain as cellular layer. We demonstrate that fibrin coating is highly biocompatible, forms uniform coatings of controllable thickness, does not alter the electrochemical properties of the microelectrode and allows good quality recordings. Moreover, it reduces the amount of host reactive astrocytes - over time - compared to a bare wire and is fully reabsorbed by the surrounding tissue within 7 days after implantation, avoiding the common problem of hydrogels swelling. Both astrocytes and neurons could be successfully grown onto the electrode surface within the fibrin hydrogel without altering the electrochemical properties of the microelectrode. This bio-hybrid device has therefore a good potential to improve the electrical integration at the neuron-electrode interface and support the long-term success of neural prostheses.

  20. Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jun [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Miao, Lingzhan, E-mail: mlz1988@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Chao, E-mail: hhuhjy973@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Peifang; Ao, Yanhui; Qian, Jin; Dai, Shanshan [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2014-07-15

    Highlights: • Temporal and spatial inhibitory effects of ZnO NPs on biofilms were investigated. • 50 mg/L nano-ZnO inhibited the microbial activities only in biofilm outer layer. • Adsorbed ZnO NPs had no adverse effects on the cell membrane integrity of biofilms. • Dissolution of ZnO NPs to toxic zinc ions was the main mechanism of toxicity. - Abstract: The presence of ZnO NPs in waste streams can negatively affect the efficiency of biological nutrient removal from wastewater. However, details of the toxic effects of ZnO NPs on microbial activities of wastewater biofilms have not yet been reported. In this study, the temporal and spatial inhibitory effects of ZnO NPs on the O{sub 2} respiration activities of aerobic wastewater biofilms were investigated using an O{sub 2} microelectrode. The resulting time–course microelectrode measurements demonstrated that ZnO NPs inhibited O{sub 2} respiration within 2 h. The spatial distributions of net specific O{sub 2} respiration were determined in biofilms with and without treatment of 5 or 50 mg/L ZnO NPs. The results showed that 50 mg/L of nano-ZnO inhibited the microbial activities only in the outer layer (∼200 μm) of the biofilms, and bacteria present in the deeper parts of the biofilms became even more active. Scanning electron microscopy (SEM) analysis showed that the ZnO NPs were adsorbed onto the biofilm, but these NPs had no adverse effects on the cell membrane integrity of the biofilms. It was found that the inhibition of O{sub 2} respiration induced by higher concentrations of ZnO NPs (50 mg/L) was mainly due to the release of zinc ions by dissolution of the ZnO NPs.

  1. Electrostatic Spray Deposition-Based Manganese Oxide Films-From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands.

    Science.gov (United States)

    Agrawal, Richa; Adelowo, Ebenezer; Baboukani, Amin Rabiei; Villegas, Michael Franc; Henriques, Alexandra; Wang, Chunlei

    2017-07-26

    In this study, porous manganese oxide (MnO x ) thin films were synthesized via electrostatic spray deposition (ESD) and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g -1 to 225 F∙g -1 , with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn₃O₄ to the conducting layered birnessite MnO₂. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS) for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnO x /C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm -2 and stack capacitances as high as 7.4 F·cm -3 , with maximal stack energy and power densities of 0.51 mWh·cm -3 and 28.3 mW·cm -3 , respectively. The excellent areal capacitance of the MnO x -MEs is attributed to the pseudocapacitive MnO x as well as the three-dimensional architectural framework provided by the carbon micro-pillars.

  2. Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands

    Directory of Open Access Journals (Sweden)

    Richa Agrawal

    2017-07-01

    Full Text Available In this study, porous manganese oxide (MnOx thin films were synthesized via electrostatic spray deposition (ESD and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g−1 to 225 F∙g−1, with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn3O4 to the conducting layered birnessite MnO2. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnOx/C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm−2 and stack capacitances as high as 7.4 F·cm−3, with maximal stack energy and power densities of 0.51 mWh·cm−3 and 28.3 mW·cm−3, respectively. The excellent areal capacitance of the MnOx-MEs is attributed to the pseudocapacitive MnOx as well as the three-dimensional architectural framework provided by the carbon micro-pillars.

  3. Tracers vs. trajectories in a coastal region

    Science.gov (United States)

    Engqvist, A.; Döös, K.

    2008-12-01

    Two different methods of estimating the water exchange through a Baltic coastal region have been used, consisting of particle trajectories and passive tracers. Water is traced from and to a small discharge region near the coast. The discharge material in this region is treated as zero dimensional particles or tracers with neutral buoyancy. The real discharge material could be a leakage of radio-nuclides through the sea floor from an underground repository of nuclear waste. Water exchange rates between the discharge region and the model domain are estimated using both forward and backward trajectories as well as passive tracers. The Lagrangian trajectories can account for the time evolution of the water exchange while the tracers give one average age per model grid box. Water exchange times such as residence time, age and transient times have been calculated with trajectories but only the average age (AvA) for tracers. The trajectory calculations provide a more detailed time evolution than the tracers. On the other hand the tracers are integrated "on-line" simultaneously in the sea circulation model with the same time step while the Lagrangian trajectories are integrated "off-line" from the stored model velocities with its inherent temporal resolution, presently one hour. The sub-grid turbulence is parameterised as a Laplacian diffusion for the passive tracers and with an extra stochastic velocity for trajectories. The importance of the parameterised sub-grid turbulence for the trajectories is estimated to give an extra diffusion of the same order as the Laplacian diffusion by comparing the Lagrangian dispersions with and without parameterisation. The results of the different methods are similar but depend on the chosen diffusivity coefficient with a slightly higher correlation between trajectories and tracers when integrated with a lower diffusivity coefficient.

  4. TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Frisch, Priscilla C.; Müller, Hans-Reinhard; Heerikhuisen, Jacob; Pogorelov, Nikolai V.; Reach, William T.; Zank, Gary

    2012-01-01

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a gr ∼ gr ∼> 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

  5. An Examination of "The Martian" Trajectory

    Science.gov (United States)

    Burke, Laura

    2015-01-01

    This analysis was performed to support a request to examine the trajectory of the Hermes vehicle in the novel "The Martian" by Andy Weir. Weir developed his own tool to perform the analysis necessary to provide proper trajectory information for the novel. The Hermes vehicle is the interplanetary spacecraft that shuttles the crew to and from Mars. It is notionally a Nuclear powered vehicle utilizing VASIMR engines for propulsion. The intent of this analysis was the determine whether the trajectory as it was outlined in the novel is consistent with the rules of orbital mechanics.

  6. Soccer ball lift coefficients via trajectory analysis

    International Nuclear Information System (INIS)

    Goff, John Eric; Carre, Matt J

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  7. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  8. Helicopter trajectory planning using optimal control theory

    Science.gov (United States)

    Menon, P. K. A.; Cheng, V. H. L.; Kim, E.

    1988-01-01

    A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.

  9. Photon trajectories, anomalous velocities and weak measurements: a classical interpretation

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Kofman, Abraham G; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    Recently, Kocsis et al (2011 Science 332 1170) reported the observation of ‘average trajectories of single photons’ in a two-slit interference experiment. This was possible by using the quantum weak-measurement method, which implies averaging over many events, i.e. in fact, a multi-photon limit of classical linear optics. We give a classical-optics interpretation of this experiment and other related problems. It appears that weak measurements of the local momentum of photons made by Kocsis et al represent measurements of the Poynting vector in an optical field. We consider both the real and imaginary parts of the local momentum and show that their measurements have been realized in classical optics using small-probe particles. We also examine the appearance of ‘anomalous’ values of the local momentum: either negative (backflow) or exceeding the wavenumber (superluminal propagation). These features appear to be closely related to vortices and evanescent waves. Finally, we revisit a number of older works and find examples of photon trajectories and anomalous-momentum measurements in various optical experiments. (paper)

  10. Active Transportation Demand Management (ATDM) Trajectory Level Validation

    Data.gov (United States)

    Department of Transportation — The ATDM Trajectory Validation project developed a validation framework and a trajectory computational engine to compare and validate simulated and observed vehicle...

  11. Low Thrust Trajectory Design for GSFC Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Evolutionary Mission Trajectory Generator (EMTG) is a global trajectory optimization tool. EMTG is intended for use in designing interplanetary missions which...

  12. Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields.

    Science.gov (United States)

    Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2013-09-01

    It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.

  13. Leveraging Chaos in Continuous Thrust Trajectory Design

    Data.gov (United States)

    National Aeronautics and Space Administration — A trajectory design tool is sought to leverage chaos and nonlinear dynamics present in multi-body gravitational fields to design ultra-low energy transfer...

  14. Age trajectories of stroke case fatality

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Andersen, Zorana Jovanovic; Andersen, Klaus Kaae

    2011-01-01

    Mortality rates level off at older ages. Age trajectories of stroke case-fatality rates were studied with the aim of investigating prevalence of this phenomenon, specifically in case-fatality rates at older ages....

  15. Highly Accurate Measurement of Projectile Trajectories

    National Research Council Canada - National Science Library

    Leathem, J

    1997-01-01

    .... The method has been extensively used for free flight testing of weapon models. This report describes the on board instrumentation, the range instrumentation and the experimental procedure used to carry out the trajectory measurements...

  16. Analytical Ballistic Trajectories with Approximately Linear Drag

    Directory of Open Access Journals (Sweden)

    Giliam J. P. de Carpentier

    2014-01-01

    Full Text Available This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories. Although the trajectories are only approximate, they still capture many of the characteristics of a real projectile in free fall under the influence of an invariant wind, gravitational pull, and terminal velocity, while the required math for these trajectories and planners is still simple enough to efficiently run on almost all modern hardware devices. Together, these properties make the proposed approach particularly useful for real-time applications where accuracy and performance need to be carefully balanced, such as in computer games.

  17. Trajectory Clustering with Applications to Airspace Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Trajectories that constitute typical operations are determined and...

  18. Trajectory behaviour at different phonemic context sizes

    CSIR Research Space (South Africa)

    Badenhorst, J

    2011-11-01

    Full Text Available The authors propose a piecewise-linear model for the temporal trajectories of Mel Frequency Cepstral Coefficients during phone transitions. As with conventional Hidden Markov Models, the parameters of the model can be estimated for different...

  19. Trajectory tracking control for underactuated stratospheric airship

    Science.gov (United States)

    Zheng, Zewei; Huo, Wei; Wu, Zhe

    2012-10-01

    Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.

  20. The existence of trajectories joining critical points

    International Nuclear Information System (INIS)

    Yu Shuxiang.

    1985-01-01

    In this paper, using the notion of an isolating block and the concept of canonical regions, three existence criteria of trajectories connecting a pair of critical points of planar differential equations are given. (author)

  1. Trajectory phases of a quantum dot model

    International Nuclear Information System (INIS)

    Genway, Sam; Hickey, James M; Garrahan, Juan P; Armour, Andrew D

    2014-01-01

    We present a thermodynamic formalism to study the trajectories of charge transport through a quantum dot coupled to two leads in the resonant-level model. We show that a close analogue of equilibrium phase transitions exists for the statistics of transferred charge; by tuning an appropriate ‘counting field’, crossovers to different trajectory phases are possible. Our description reveals a mapping between the statistics of a given device and current measurements over a range of devices with different dot–lead coupling strengths. Furthermore insight into features of the trajectory phases are found by studying the occupation of the dot conditioned on the transported charge between the leads; this is calculated from first principles using a trajectory biased two-point projective measurement scheme. (paper)

  2. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-01-01

    to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic

  3. Quantum dynamics modeled by interacting trajectories

    Science.gov (United States)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  4. Study of particle swarm optimization particle trajectories

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available . These theoretical studies concentrate mainly on simplified PSO systems. This paper overviews current theoretical studies, and extend these studies to investigate particle trajectories for general swarms to include the influence of the inertia term. The paper also...

  5. DIRECTIONAL WELL TRAJECTORY DESIGN: THE THEORITICAL ...

    African Journals Online (AJOL)

    user

    2016-10-04

    Oct 4, 2016 ... record presentation of a desired complex directional well trajectory, also from which the overall angle change. (dogleg) is observed not to ... example; 23oNE means 23 degrees East from North, .... Azimuth Angles Selection.

  6. Trajectory similarity join in spatial networks

    KAUST Repository

    Shang, Shuo; Chen, Lisi; Wei, Zhewei; Jensen, Christian S.; Zheng, Kai; Kalnis, Panos

    2017-01-01

    With these applications in mind, we provide a purposeful definition of similarity. To enable efficient TS-Join processing on large sets of trajectories, we develop search space pruning techniques and take into account the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer algorithm. For each trajectory, the algorithm first finds similar trajectories. Then it merges the results to achieve a final result. The algorithm exploits an upper bound on the spatiotemporal similarity and a heuristic scheduling strategy for search space pruning. The algorithm's per-trajectory searches are independent of each other and can be performed in parallel, and the merging has constant cost. An empirical study with real data offers insight in the performance of the algorithm and demonstrates that is capable of outperforming a well-designed baseline algorithm by an order of magnitude.

  7. Biocompatibility and characterisation of a candidate microelectrode material for biosensor applications

    International Nuclear Information System (INIS)

    Cyster, L.A.

    2001-10-01

    Recent advances in microcircuit technology have enabled the fabrication of Multiple Microelectrode Arrays (MEAs) for investigating the characteristics of networks of neuronal cells either in vivo or in vitro. When producing a MEA materials used must be corrosion resistant, have low electrical impedance and the materials must be biocompatible. Existing MEA's have limited life spans, relatively high impedance values and limited uses. Thus creating a requirement for new MEA technology. TiN thin films have become increasingly useful in a wide variety of applications, due to their nature, which includes chemical stability, high hardness, excellent wear and electrical properties and also biocompatibility. The favourable electrical and biocompatibility characteristics of thin films of TiN make them a possible candidate for use in a MEA. TiN thin films can be deposited by a number of methods including evaporation, ion plating and sputtering. The method of deposition, along with process parameters used can have a marked effect on the characteristics of TiN films, including changes in preferred orientation, hardness and wear and also biocompatibility. TiN thin films were deposited onto glass substrates by pulsed DC reactive sputtering of a Ti target, with Argon and nitrogen gas mixtures and labelled Type I TiN films. Also industrial TIN films deposited by Arc Ion plating were carefully selected for comparison and labelled Type II TiN films. The microstructure, composition, surface chemistry, surface topography and roughness were studied using X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy (AFM) and Profilometry. Type I TIN films showed a surface topography similar to Zone I and Type II TiN films showed a surface topography similar to Zone 2 of the Movchan and Dernchishin structure zone model for sputtered films. XPS showed that the surface composition of all TiN films was predominantly TiO 2 , TiN and TiN x O y . Significant

  8. Kinematic evaluation of virtual walking trajectories.

    Science.gov (United States)

    Cirio, Gabriel; Olivier, Anne-Hélène; Marchal, Maud; Pettré, Julien

    2013-04-01

    Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.

  9. User Oriented Trajectory Search for Trip Recommendation

    KAUST Repository

    Ding, Ruogu

    2012-07-08

    Trajectory sharing and searching have received significant attention in recent years. In this thesis, we propose and investigate the methods to find and recommend the best trajectory to the traveler, and mainly focus on a novel technique named User Oriented Trajectory Search (UOTS) query processing. In contrast to conventional trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input contains a set of intended places given by the traveler and a set of textual attributes describing the traveler’s preference. If a trajectory is connecting/close to the specified query locations, and the textual attributes of the trajectory are similar to the traveler’s preference, it will be recommended to the traveler. This type of queries can enable many popular applications such as trip planning and recommendation. There are two challenges in UOTS query processing, (i) how to constrain the searching range in two domains and (ii) how to schedule multiple query sources effectively. To overcome the challenges and answer the UOTS query efficiently, a novel collaborative searching approach is developed. Conceptually, the UOTS query processing is conducted in the spatial and textual domains alternately. A pair of upper and lower bounds are devised to constrain the searching range in two domains. In the meantime, a heuristic searching strategy based on priority ranking is adopted for scheduling the multiple query sources, which can further reduce the searching range and enhance the query efficiency notably. Furthermore, the devised collaborative searching approach can be extended to situations where the query locations are ordered. Extensive experiments are conducted on both real and synthetic trajectory data in road networks. Our approach is verified to be effective in reducing both CPU time and disk I/O time.

  10. Mobility Modelling through Trajectory Decomposition and Prediction

    OpenAIRE

    Faghihi, Farbod

    2017-01-01

    The ubiquity of mobile devices with positioning sensors make it possible to derive user's location at any time. However, constantly sensing the position in order to track the user's movement is not feasible, either due to the unavailability of sensors, or computational and storage burdens. In this thesis, we present and evaluate a novel approach for efficiently tracking user's movement trajectories using decomposition and prediction of trajectories. We facilitate tracking by taking advantage ...

  11. Trajectory Stability in the Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Sergio Sánchez

    2018-01-01

    Full Text Available Two generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank distributions and rank dynamics and give evidence that the shortest and longest trajectories are more predictable and robust to change, that is, more stable.

  12. Optimizing interplanetary trajectories with deep space maneuvers

    Science.gov (United States)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  13. Searching Trajectories by Regions of Interest

    KAUST Repository

    Shang, Shuo

    2017-03-22

    With the increasing availability of moving-object tracking data, trajectory search is increasingly important. We propose and investigate a novel query type named trajectory search by regions of interest (TSR query). Given an argument set of trajectories, a TSR query takes a set of regions of interest as a parameter and returns the trajectory in the argument set with the highest spatial-density correlation to the query regions. This type of query is useful in many popular applications such as trip planning and recommendation, and location based services in general. TSR query processing faces three challenges: how to model the spatial-density correlation between query regions and data trajectories, how to effectively prune the search space, and how to effectively schedule multiple so-called query sources. To tackle these challenges, a series of new metrics are defined to model spatial-density correlations. An efficient trajectory search algorithm is developed that exploits upper and lower bounds to prune the search space and that adopts a query-source selection strategy, as well as integrates a heuristic search strategy based on priority ranking to schedule multiple query sources. The performance of TSR query processing is studied in extensive experiments based on real and synthetic spatial data.

  14. Searching Trajectories by Regions of Interest

    KAUST Repository

    Shang, Shuo; chen, Lisi; Jensen, Christian S.; Wen, Ji-Rong; Kalnis, Panos

    2017-01-01

    With the increasing availability of moving-object tracking data, trajectory search is increasingly important. We propose and investigate a novel query type named trajectory search by regions of interest (TSR query). Given an argument set of trajectories, a TSR query takes a set of regions of interest as a parameter and returns the trajectory in the argument set with the highest spatial-density correlation to the query regions. This type of query is useful in many popular applications such as trip planning and recommendation, and location based services in general. TSR query processing faces three challenges: how to model the spatial-density correlation between query regions and data trajectories, how to effectively prune the search space, and how to effectively schedule multiple so-called query sources. To tackle these challenges, a series of new metrics are defined to model spatial-density correlations. An efficient trajectory search algorithm is developed that exploits upper and lower bounds to prune the search space and that adopts a query-source selection strategy, as well as integrates a heuristic search strategy based on priority ranking to schedule multiple query sources. The performance of TSR query processing is studied in extensive experiments based on real and synthetic spatial data.

  15. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  16. A Trajectory Generation Method Based on Edge Detection for Auto-Sealant Cartesian Robot

    Directory of Open Access Journals (Sweden)

    Eka Samsul Maarif

    2014-07-01

    Full Text Available This paper presents algorithm ingenerating trajectory for sealant process using captured image. Cartesian robot as auto-sealant in manufacturing process has increased productivity, reduces human error and saves time. But, different sealant path in many engine models means not only different trajectory but also different program. Therefore robot with detection ability to generate its own trajectory is needed. This paper describes best lighting technique in capturing image and applies edge detection in trajectory generation as the solution. The algorithm comprises image capturing, Canny edge detection, integral projection in localizing outer most edge, scanning coordinates, and generating vector direction codes. The experiment results show that the best technique is diffuse lighting at 10 Cd. The developed method gives connected point to point trajectory which forms sealant path with a point to next point distance is equal to 90° motor rotation. Directional movement for point to point trajectory is controlled by generated codes which are ready to be sent by serial communication to robot controller as instruction for motors which actuate axes X and Y directions.

  17. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.

    Science.gov (United States)

    Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong

    2017-06-02

    Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.

  18. Preparation of high purity nickel film from industrial effluent by the distribution of charge over microelectrodes using newly designed free electrolytic diffusion approach

    International Nuclear Information System (INIS)

    Ahmed, Sheikh Asrar; Qadir, Muhammad Abdul; Zafar, Muhammad Nadeem; Hussain, Ishtiaq; Tufail, Shahid; Rashid, Saima; Shah, Hamid Ali

    2008-01-01

    The present work deals with the development of a newly designed free electrolytic diffusion approach (the distribution of charge over microelectrodes) for the purification of metals and was successfully applied for the purification of nickel from the industrial effluent containing high proportion of nickel. Atomic absorption spectrophotometer (AAS) analyzed the purified nickel deposited on working microelectrodes. The results obtained show that the purity of nickel was enhanced from 95% to 99.9% with traces of copper etc. It was concluded that distribution of charge over the microcathodes at a rate of 50 cycles per second (cps) shows better results for the production of high purity (HP) nickel as compared to 25 cycles per second (cps)

  19. Preparation of high purity nickel film from industrial effluent by the distribution of charge over microelectrodes using newly designed free electrolytic diffusion approach

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sheikh Asrar; Qadir, Muhammad Abdul [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan); Zafar, Muhammad Nadeem [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan)], E-mail: znadeempk@yahoo.com; Hussain, Ishtiaq [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan); Tufail, Shahid [PCSIR Laboratories Complex, Feroz pur Road, Lahore (Pakistan); Rashid, Saima; Shah, Hamid Ali [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan)

    2008-09-15

    The present work deals with the development of a newly designed free electrolytic diffusion approach (the distribution of charge over microelectrodes) for the purification of metals and was successfully applied for the purification of nickel from the industrial effluent containing high proportion of nickel. Atomic absorption spectrophotometer (AAS) analyzed the purified nickel deposited on working microelectrodes. The results obtained show that the purity of nickel was enhanced from 95% to 99.9% with traces of copper etc. It was concluded that distribution of charge over the microcathodes at a rate of 50 cycles per second (cps) shows better results for the production of high purity (HP) nickel as compared to 25 cycles per second (cps)

  20. Using Arrays of Microelectrodes Implanted in Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis

    Science.gov (United States)

    2015-10-01

    extended that work by investigating multiple aspects important for developing future bidirectional neural prostheses based on high-count microelectrode...Fan J M, Kao J C, Stavisky S D, Ryu S and Shenoy K 2012 A recurrent neural network for closed-loop intracortical brain-machine interface decoders J...Peripheral Nerve Interface, Prosthetic Hand, Neural Prosthesis, Sensory Feedback, Micro-stimulation, Electrophysiology, Action Potentials, Micro

  1. Functional Trajectories, Cognition, and Subclinical Cerebrovascular Disease.

    Science.gov (United States)

    Dhamoon, Mandip S; Cheung, Ying-Kuen; Gutierrez, Jose; Moon, Yeseon P; Sacco, Ralph L; Elkind, Mitchell S V; Wright, Clinton B

    2018-03-01

    Cognition and education influence functional trajectories, but whether associations differ with subclinical brain infarcts (SBI) or white matter hyperintensity volume (WMHV) is unknown. We hypothesized that SBI and WMHV moderated relationships between cognitive performance and education and functional trajectories. A total of 1290 stroke-free individuals underwent brain magnetic resonance imaging and were followed for 7.3 years (mean) with annual functional assessments with the Barthel index (range, 0-100). Magnetic resonance imaging measurements included pathology-informed SBI (PI-SBI) and WMHV (% total cranial volume). Generalized estimating equation models tested associations between magnetic resonance imaging variables and baseline Barthel index and change in Barthel index, adjusting for demographic, vascular, cognitive, and social risk factors, and stroke and myocardial infarction during follow-up. We tested interactions among education level, baseline cognitive performance (Mini-Mental State score), and functional trajectories and ran models stratified by levels of magnetic resonance imaging variables. Mean age was 70.6 (SD, 9.0) years; 19% had PI-SBI, and mean WMHV was 0.68%. Education did not modify associations between cognition and functional trajectories. PI-SBI modified associations between cognition and functional trajectories ( P =0.04) with a significant protective effect of better cognition on functional decline seen only in those without PI-SBI. There was no significant interaction for WMHV ( P =0.8). PI-SBI, and greater WMHV, were associated with 2- to 3-fold steeper functional decline, holding cognition constant. PI-SBI moderated the association between cognition and functional trajectories, with 3-fold greater decline among those with PI-SBI (compared with no PI-SBI) and normal baseline cognition. This highlights the strong and independent association between subclinical markers and patient-centered trajectories over time. © 2018 American Heart

  2. User oriented trajectory search for trip recommendation

    KAUST Repository

    Shang, Shuo

    2012-01-01

    Trajectory sharing and searching have received significant attentions in recent years. In this paper, we propose and investigate a novel problem called User Oriented Trajectory Search (UOTS) for trip recommendation. In contrast to conventional trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input contains a set of intended places given by the traveler and a set of textual attributes describing the traveler\\'s preference. If a trajectory is connecting/close to the specified query locations, and the textual attributes of the trajectory are similar to the traveler\\'e preference, it will be recommended to the traveler for reference. This type of queries can bring significant benefits to travelers in many popular applications such as trip planning and recommendation. There are two challenges in the UOTS problem, (i) how to constrain the searching range in two domains and (ii) how to schedule multiple query sources effectively. To overcome the challenges and answer the UOTS query efficiently, a novel collaborative searching approach is developed. Conceptually, the UOTS query processing is conducted in the spatial and textual domains alternately. A pair of upper and lower bounds are devised to constrain the searching range in two domains. In the meantime, a heuristic searching strategy based on priority ranking is adopted for scheduling the multiple query sources, which can further reduce the searching range and enhance the query efficiency notably. Furthermore, the devised collaborative searching approach can be extended to situations where the query locations are ordered. The performance of the proposed UOTS query is verified by extensive experiments based on real and synthetic trajectory data in road networks. © 2012 ACM.

  3. Learning and Inferring "Dark Matter" and Predicting Human Intents and Trajectories in Videos.

    Science.gov (United States)

    Xie, Dan; Shu, Tianmin; Todorovic, Sinisa; Zhu, Song-Chun

    2018-07-01

    This paper presents a method for localizing functional objects and predicting human intents and trajectories in surveillance videos of public spaces, under no supervision in training. People in public spaces are expected to intentionally take shortest paths (subject to obstacles) toward certain objects (e.g., vending machine, picnic table, dumpster etc.) where they can satisfy certain needs (e.g., quench thirst). Since these objects are typically very small or heavily occluded, they cannot be inferred by their visual appearance but indirectly by their influence on people's trajectories. Therefore, we call them "dark matter", by analogy to cosmology, since their presence can only be observed as attractive or repulsive "fields" in the public space. A person in the scene is modeled as an intelligent agent engaged in one of the "fields" selected depending his/her intent. An agent's trajectory is derived from an Agent-based Lagrangian Mechanics. The agents can change their intents in the middle of motion and thus alter the trajectory. For evaluation, we compiled and annotated a new dataset. The results demonstrate our effectiveness in predicting human intent behaviors and trajectories, and localizing and discovering distinct types of "dark matter" in wide public spaces.

  4. Shadowing of physical trajectories in chaotic dynamics: Containment and refinement

    International Nuclear Information System (INIS)

    Grebogi, C.; Hammel, S.M.; Yorke, J.A.; Sauer, T.

    1990-01-01

    For a chaotic system, a noisy trajectory diverges rapidly from the true trajectory with the same initial condition. To understand in what sense the noisy trajectory reflects the true dynamics of the actual system, we developed a rigorous procedure to show that some true trajectories remain close to the noisy one for long times. The procedure involves a combination of containment, which establishes the existence of an uncountable number of true trajectories close to the noisy one, and refinement, which produces a less noisy trajectory. Our procedure is applied to noisy chaotic trajectories of the standard map and the driven pendulum

  5. A Trajectory Regression Clustering Technique Combining a Novel Fuzzy C-Means Clustering Algorithm with the Least Squares Method

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2018-04-01

    Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.

  6. Development of Li+ Selective Microelectrode Using PPy [3,3'-Co(1,2-C2B9H112] as a Solid Contact

    Directory of Open Access Journals (Sweden)

    Safae MERZOUK

    2014-05-01

    Full Text Available Planar all solid-contact ion-selective microelectrodes (ASC-µISEs with a conducting polymer (polypyrrole doped with cobaltabis(dicarbollide anion [3,3'-Co(1,2-C2B9H112] as a solid contact layer between the polymeric membrane sensitive to lithium (Li and the gold (Au substrate were prepared and investigated. The N,N-dicyclohexyl-N',N'-diisobutylyl-cis-cyclohexane-1,2- dicarboxamide (ETH 1810 was used as ionophore for Li recognition. The developed microelectrodes show a linear response for Li+ concentration between 6´10-5 M and 1´10-1 M with slope of 53±1 mV per decade and exhibits remarkably enhanced selectivity for Li over other cations. The calibration plots using artificial serum containing three different levels of sodium chloride (NaCl (135, 145 and 155 mM as a background electrolyte were shown a linear response with a slope of 50 mV per decade in the clinical range of interest (0.7-1.5´10-3 M Li+. The developed microelectrodes will be used to determine Li+ concentrations in serum samples of manic-depressive patients under Li treatment.

  7. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve

    Science.gov (United States)

    Caravaca, A. S.; Tsaava, T.; Goldman, L.; Silverman, H.; Riggott, G.; Chavan, S. S.; Bouton, C.; Tracey, K. J.; Desimone, R.; Boyden, E. S.; Sohal, H. S.; Olofsson, P. S.

    2017-12-01

    Objective. Neural reflexes regulate immune responses and homeostasis. Advances in bioelectronic medicine indicate that electrical stimulation of the vagus nerve can be used to treat inflammatory disease, yet the understanding of neural signals that regulate inflammation is incomplete. Current interfaces with the vagus nerve do not permit effective chronic stimulation or recording in mouse models, which is vital to studying the molecular and neurophysiological mechanisms that control inflammation homeostasis in health and disease. We developed an implantable, dual purpose, multi-channel, flexible ‘microelectrode’ array, for recording and stimulation of the mouse vagus nerve. Approach. The array was microfabricated on an 8 µm layer of highly biocompatible parylene configured with 16 sites. The microelectrode was evaluated by studying the recording and stimulation performance. Mice were chronically implanted with devices for up to 12 weeks. Main results. Using the microelectrode in vivo, high fidelity signals were recorded during physiological challenges (e.g potassium chloride and interleukin-1β), and electrical stimulation of the vagus nerve produced the expected significant reduction of blood levels of tumor necrosis factor (TNF) in endotoxemia. Inflammatory cell infiltration at the microelectrode 12 weeks of implantation was limited according to radial distribution analysis of inflammatory cells. Significance. This novel device provides an important step towards a viable chronic interface for cervical vagus nerve stimulation and recording in mice.

  8. Trajectory planning and trajectory tracking for a small-scale helicopter in autorotation

    NARCIS (Netherlands)

    Taamallah, Skander; Bombois, Xavier; Van den Hof, Paul M.J.

    2017-01-01

    The design of a high-performance guidance and control system for a small-scale helicopterUnmanned Aerial Vehicle (UAV), with an engine OFF flight condition (i.e. autorotation), is known to be a challenging task. It is the purpose of this paper to present a Trajectory Planning (TP) and Trajectory

  9. PRESS: A Novel Framework of Trajectory Compression in Road Networks

    OpenAIRE

    Song, Renchu; Sun, Weiwei; Zheng, Baihua; Zheng, Yu

    2014-01-01

    Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS (Paralleled Road-Network-Based Trajectory Compression), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm ...

  10. Signatures of unstable semiclassical trajectories in tunneling

    International Nuclear Information System (INIS)

    Levkov, D G; Panin, A G; Sibiryakov, S M

    2009-01-01

    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is a substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using a modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the 'phase transition' between the cases of stable and unstable trajectories across certain 'critical' values of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory

  11. Trajectory attractors of equations of mathematical physics

    International Nuclear Information System (INIS)

    Vishik, Marko I; Chepyzhov, Vladimir V

    2011-01-01

    In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.

  12. The trajectory control in the SLC linac

    International Nuclear Information System (INIS)

    Hsu, I.C.; Adolphsen, C.E.; Himel, T.M.; Seeman, J.T.

    1991-05-01

    Due to wake field effects, the trajectories of accelerated beams in the Linac should be well maintained to avoid severe beam breakup. In order to maintain a small emittance at the end of the Linac, the tolerance on the trajectory deviations become tighter when the beam intensities increase. The existing two beam trajectory correction method works well when the theoretical model agrees with the real machine lattice. Unknown energy deviations along the linac as well as wake field effects can cause the real lattice to deviate from the model. This makes the trajectory correction difficult. Several automated procedures have been developed to solve these problems. They are: an automated procedure to frequently steer the whole Linac by dividing the Linac into several small regions; an automated procedure to empirically correct the model to fit the real lattice and eight trajectory correcting feedback loops along the linac and steering through the collimator region with restricted corrector strengths and a restricted number of correctors. 6 refs., 2 figs

  13. Spatiotemporal Interpolation Methods for Solar Event Trajectories

    Science.gov (United States)

    Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe

    2018-05-01

    This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.

  14. Handling Trajectory Uncertainties for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  15. Electrostatic imaging of particle trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Charpak, G.; Bouclier, R.; Breskin, A.; Chechik, R. (European Organization for Nuclear Research, Geneva (Switzerland)); Lewiner, J. (Ecole Superieure de Physique et Chimie Industrielles, 75 - Paris (France))

    1982-02-01

    The ions liberated in a high-pressure gas or in some liquids can be collected, by electric fields, on the surface of insulators and can be accurately localized. In a simulation of this method at atmospheric pressure, we applied it to ..cap alpha.. particles, with the additional amplification from a parallel grid gap. By directly measuring the static electric charges collected on mylar foils, we observe tracks of 1 mm fwhm and charge densities as low as 10/sup 4/ electrons/mm/sup 2/. The combination of multistep gated avalanche chambers with this read-out method should permit high-accuracy measurements of minimum ionizing particles. The limits of the method and some conditions for detection by liquid toners are discussed.

  16. Fast batch injection analysis of H{sub 2}O{sub 2} using an array of Pt-modified gold microelectrodes obtained from split electronic chips

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Bruno D.; Valerio, Jaqueline [Centro de Ciencias e Humanidades - Universidade Presbiteriana Mackenzie, Rua da Consolacao, 896, 01302-907 Sao Paulo, SP (Brazil); Angnes, Lucio [Departamento de Quimica Fundamental, Instituto de Quimica da USP, Av. Prof. Lineu Prestes, 748, 05508-000 Cidade Universitaria, Sao Paulo, SP (Brazil); Pedrotti, Jairo J., E-mail: jpedrotti@mackenzie.br [Centro de Ciencias e Humanidades - Universidade Presbiteriana Mackenzie, Rua da Consolacao, 896, 01302-907 Sao Paulo, SP (Brazil)

    2011-06-24

    Graphical abstract: Highlights: > An array of gold microelectrodes modified with Pt was used for batch injection analysis of H{sub 2}O{sub 2} in rainwater. > The microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology. > The analytical frequency of the method can attain 300 determinations per hour. > The volume-weighted mean concentration of H{sub 2}O{sub 2} in rainwater investigated (n = 25) was 14.2 {mu}mol L{sup -1}. - Abstract: A fast and robust analytical method for amperometric determination of hydrogen peroxide (H{sub 2}O{sub 2}) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H{sub 2}O{sub 2} amperometric determination in the concentration range from 0.8 {mu}mol L{sup -1} to 100 {mu}mol L{sup -1}. The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 {mu}mol L{sup -1} (3{sigma}). The anodic current peaks obtained after a series of 23 successive injections of 50 {mu}L of 25 {mu}mol L{sup -1} H{sub 2}O{sub 2} showed an RSD < 0.9%. To ensure the good selectivity to detect H{sub 2}O{sub 2}, its determination was performed in a differential mode, with selective destruction of the H{sub 2}O{sub 2} with catalase in 10 mmol L{sup -1} phosphate buffer solution. Practical application of the analytical procedure involved H{sub 2}O{sub 2} determination in rainwater of Sao Paulo City. A comparison of the results obtained by the proposed amperometric method with another one which

  17. Effective Online Group Discovery in Trajectory Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    GPS-enabled devices are pervasive nowadays. Finding movement patterns in trajectory data stream is gaining in importance. We propose a group discovery framework that aims to efficiently support the online discovery of moving objects that travel together. The framework adopts a sampling-independen......GPS-enabled devices are pervasive nowadays. Finding movement patterns in trajectory data stream is gaining in importance. We propose a group discovery framework that aims to efficiently support the online discovery of moving objects that travel together. The framework adopts a sampling......-independent approach that makes no assumptions about when positions are sampled, gives no special importance to sampling points, and naturally supports the use of approximate trajectories. The framework's algorithms exploit state-of-the-art, density-based clustering (DBScan) to identify groups. The groups are scored...

  18. Dual unitarization scheme with several trajectories

    International Nuclear Information System (INIS)

    Chaichiam, M.; Hayashi, M.

    1977-12-01

    Consequences of bootstrap with several input Regge trajectories are investigated. We find that in a formal treatment of bootstrap the consistency requires the intercept of output Pomeron pole in the one-dimensional case to be larger than one: αsub(B)(0) > 1, a situation reminiscent of the one in the Reggeon field theory. Symmetry breakings of the Pomeron couplings are derived. These couplings coincide with those of the f-dominated Pomeron model of Carlitz-Green-Zee in the approximation, when in the unitarity loops only highest Regge trajectories are included. The case when all possible trajectories are exchanged is also discussed. Predictions of dual unitary model for the slopes of differential cross section for diffractive scattering are made which differ from the ones of the CGZ model. Comparison with the experimentally available data is done. (author)

  19. Classical trajectories and quantum field theory

    International Nuclear Information System (INIS)

    Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno

    2005-01-01

    The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)

  20. A new trajectory correction technique for linacs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Ruth, R.D.

    1990-06-01

    In this paper, we describe a new trajectory correction technique for high energy linear accelerators. Current correction techniques force the beam trajectory to follow misalignments of the Beam Position Monitors. Since the particle bunch has a finite energy spread and particles with different energies are deflected differently, this causes ''chromatic'' dilution of the transverse beam emittance. The algorithm, which we describe in this paper, reduces the chromatic error by minimizing the energy dependence of the trajectory. To test the method we compare the effectiveness of our algorithm with a standard correction technique in simulations on a design linac for a Next Linear Collider. The simulations indicate that chromatic dilution would be debilitating in a future linear collider because of the very small beam sizes required to achieve the necessary luminosity. Thus, we feel that this technique will prove essential for future linear colliders. 3 refs., 6 figs., 2 tabs

  1. Romantic attraction and adolescent smoking trajectories.

    Science.gov (United States)

    Pollard, Michael S; Tucker, Joan S; Green, Harold D; Kennedy, David P; Go, Myong-Hyun

    2011-12-01

    Research on sexual orientation and substance use has established that lesbian, gay, and bisexual (LGB) individuals are more likely to smoke than heterosexuals. This analysis furthers the examination of smoking behaviors across sexual orientation groups by describing how same- and opposite-sex romantic attraction, and changes in romantic attraction, are associated with distinct six-year developmental trajectories of smoking. The National Longitudinal Study of Adolescent Health dataset is used to test our hypotheses. Multinomial logistic regressions predicting smoking trajectory membership as a function of romantic attraction were separately estimated for men and women. Romantic attraction effects were found only for women. The change from self-reported heterosexual attraction to lesbian or bisexual attraction was more predictive of higher smoking trajectories than was a consistent lesbian or bisexual attraction, with potentially important differences between the smoking patterns of these two groups. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Quantum trajectory phase transitions in the micromaser.

    Science.gov (United States)

    Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor

    2011-08-01

    We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.

  3. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    Science.gov (United States)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum

  4. Developmental trajectories of bullying and associated factors.

    Science.gov (United States)

    Pepler, Debra; Jiang, Depeng; Craig, Wendy; Connolly, Jennifer

    2008-01-01

    Trajectories in bullying through adolescence were studied along with individual, family, and peer relationship factors. At the outset, participants' ages ranged from 10 to 14; 74% identified as European Canadian with the remainder from diverse backgrounds. With 8 waves of data over 7 years, 871 students (466 girls and 405 boys) were studied to reveal 4 trajectories: 9.9% reported consistently high levels of bullying, 13.4% reported early moderate levels desisting to almost no bullying at the end of high school, 35.1% reported consistently moderate levels, and 41.6% almost never reported bullying. Students who bullied had elevated risks in individual, parent, and peer relationship domains. Risk profiles and trajectories provide direction for interventions to curtail the development of power and aggression in relationships.

  5. The life trajectories modality of oral history

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Gonçalves

    2007-05-01

    Full Text Available This article seeks to explore the potential of qualitative research. It presents the life trajectory modality of the oral history method, to discuss the possibility of its utilization in scientific research in the Social Work profession. The epistemological foundations of oral history are discussed to establish its scientific character. The life trajectories modality is presented as a historic and social construction that utilizes different interview techniques to give voice to previously invisible subjects, indicating the principal phases of the methodological procedures used in this approach. The conclusions highlight the importance of the construction of this model and its projection as a research proposal that implies a process of understanding and analyzing the social universes that are contextualized and interconnected, considering the realities of the life trajectories of the subjects studied.

  6. Evaluating Trajectory Queries over Imprecise Location Data

    DEFF Research Database (Denmark)

    Xie, Scott, Xike; Cheng, Reynold; Yiu, Man Lung

    2012-01-01

    Trajectory queries, which retrieve nearby objects for every point of a given route, can be used to identify alerts of potential threats along a vessel route, or monitor the adjacent rescuers to a travel path. However, the locations of these objects (e.g., threats, succours) may not be precisely...... obtained due to hardware limitations of measuring devices, as well as the constantly-changing nature of the external environment. Ignoring data uncertainty can render low query quality, and cause undesirable consequences such as missing alerts of threats and poor response time in rescue operations. Also......, the query is quite time-consuming, since all the points on the trajectory are considered. In this paper, we study how to efficiently evaluate trajectory queries over imprecise location data, by proposing a new concept called the u-bisector. In general, the u-bisector is an extension of bisector to handle...

  7. A high-throughput electrochemical impedance spectroscopy evaluation of bioresponsibility of the titanium microelectrode array integrated with hydroxyapatite and silver

    International Nuclear Information System (INIS)

    Zhang Fan; Lin Longxiang; Wang Guowei; Hu Ren; Lin Changjian; Chen Yong

    2012-01-01

    Highlights: ► The EIS of living MG63 cells on the Ti MEA chip with Ag, HA, and Ag–HA was monitored. ► The R cell can be related to the bioresponsibility of the coatings. ► The bioactivity order was evaluated as follows: Ti–Ag–HA > Ti–HA ≈ Ti–Ag > Ti. - Abstract: This paper reports a transparent Ti microelectrode array (MEA) system for a high-throughput evaluation of bioresponsibility using electrochemical impedance spectroscopy (EIS). The MEA chip integrated with hydroxyapatite (HA) and Ag coatings was selectively prepared by electrochemical deposition based on a novel procedure of multichannel current control. The EIS measurement of living MG63 osteosarcoma cells in the integrated MEA chip was conducted, and the result was analyzed using an equivalent circuit corresponding to a titanium oxide film, protein adsorption layer, cell adhesion layer, and medium. It is shown that the bioresponsibility of Ti–Ag–HA on the MEA chip can be improved, compared with the Ti, Ti–HA, and Ti–Ag coatings. The system was further used for real-time EIS monitoring during continuous cell culture for a long period (12 days). The effect of the long-term cell proliferation on the EIS behavior was discussed. This integrated system is valuable to significantly simplify the operation procedures and quickly evaluate the bioresponsibility of biomaterials.

  8. Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates

    International Nuclear Information System (INIS)

    Molina-Lopez, F.; Briand, D.; Rooij, N. F. de; Kinkeldei, T.; Tröster, G.

    2013-01-01

    Interdigitated electrodes are common structures in the fields of microelectronics and MEMS. Recent developments in flexible electronics compel an understanding of such structures under bending constraints. In this work, the behavior of interdigitated micro-electrodes when subjected to circular bending has been theoretically and experimentally studied through changes in capacitance. An analytical model has been developed to calculate the expected variation in capacitance of such structures while undergoing outward and inward bending along the direction perpendicular to the electrodes. The model combines conformal mapping techniques to account for the electric field redistribution and fundamental aspects of solid mechanics in order to define the geometrical deformation of the electrodes while bending. To experimentally verify our theoretical predictions, several interdigitated electrode structures with different geometries were fabricated on polymeric substrates by means of photolithography. The samples, placed in a customized bending setup, were bent to controlled radii of curvature while measuring their capacitance. A maximum variation in capacitance of less than 3% was observed at a minimum radius of curvature of 2.5 mm for all the devices tested with very thin electrodes whereas changes of up to 7% were found on stiffer, plated electrodes. Larger or smaller variations would be possible, in theory, by adjusting the geometry of the device. This work establishes a useful predictive tool for the design and evaluation of truly flexible/bendable electronics consisting of interdigitated structures, allowing one to tune the bending influence on the capacitance value through geometrical design

  9. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  10. Analysis of the nitrifying bacterial community in BioCube sponge media using fluorescent in situ hybridization (FISH) and microelectrodes.

    Science.gov (United States)

    Chae, Kyu-Jung; Rameshwar, T; Jang, Am; Kim, Sung H; Kim, In S

    2008-09-01

    There is growing interest in the development of more cost-effective and retrofit technologies for the upgrade and expansion of existing wastewater treatment plants with extreme space constraints. A free-floating sponge media (BioCube) process, using a 24 L lab scale reactor, was operated to study the nitrification profiles and microbial community. The COD removal efficiencies were maintained, at an average of 95%, with the mixed liquor suspended solids (MLSS) inside the BioCube sponge media maintained at 12,688 mg/L. The nitrification removal efficiencies were between 92% and 100%, with an average value of 99%. From the results of microelectrode measurements, the ammonium ion concentration was found to rapidly decrease from the surface of the BioCube sponge media to a depth of 2mm due to chemical reactions carried out by ammonia oxidizing bacteria (AOB) species. Multi-fluorescence in situ hybridization (FISH) has been used to investigate the spatial distributions of various microbial activities within reactors. Microbial communities were targeted using different oligonucleotide probes specific to AOB and nitrite oxidizing bacteria (NOB). There were a large number of AOB populations, but these were not uniformly distributed in the biofilm compared to the NOB populations.

  11. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.

    Science.gov (United States)

    Napoli, Alessandro; Obeid, Iyad

    2016-03-01

    Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.

  12. Bohmian trajectories for an evaporating blackhole

    Energy Technology Data Exchange (ETDEWEB)

    Acacio de Barros, J. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: acacio@fisica.ufjf.br; Oliveira-Neto, G. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: gilneto@fisica.ufjf.br; Vale, T.B. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: tiberio@fisica.ufjf.br

    2005-03-14

    In this work we apply Bohm's interpretation to the quantized spherically-symmetric blackhole coupled to a massless scalar field. We show that the quantum trajectories for linear combinations of eigenstates of the Wheeler-DeWitt equation form a large set of different curves that cannot be predicted by the standard interpretation of quantum mechanics. Some of them are consistent with the expected value of the time derivative of the mass, whereas other trajectories are not, because they represent blackholes that switch from absorbing to emitting regimes.

  13. Optimization approaches for robot trajectory planning

    Directory of Open Access Journals (Sweden)

    Carlos Llopis-Albert

    2018-03-01

    Full Text Available The development of optimal trajectory planning algorithms for autonomous robots is a key issue in order to efficiently perform the robot tasks. This problem is hampered by the complex environment regarding the kinematics and dynamics of robots with several arms and/or degrees of freedom (dof, the design of collision-free trajectories and the physical limitations of the robots. This paper presents a review about the existing robot motion planning techniques and discusses their pros and cons regarding completeness, optimality, efficiency, accuracy, smoothness, stability, safety and scalability.

  14. On Discovery of Gathering Patterns from Trajectories

    DEFF Research Database (Denmark)

    Zheng, Kai; Zheng, Yu; Yuan, Jing

    2013-01-01

    The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications. In this li......The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications...

  15. DESTINY+ Trajectory Design to (3200) Phaethon

    Science.gov (United States)

    Sarli, Bruno Victorino; Horikawa, Makoto; Yam, Chit Hong; Kawakatsu, Yasuhiro; Yamamoto, Takayuki

    2018-03-01

    This work explores the target selection and trajectory design of the mission candidate for ISAS/JAXA's small science satellite series, DESTINY PLUS or DESTINY+. This mission combines unique aspects of the latest satellite technology and exploration of transition bodies to fill a technical and scientific gap in the Japanese space science program. The spacecraft is targeted to study the comet-asteroid transition body (3200) Phaethon through a combination of low-thrust propulsion and Earth Gravity Assist. The trajectory design concept is presented in details together with the launch window and flyby date analysis. Alternative targets for a possible mission extension scenario are also explored.

  16. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  17. Local electric stimulation causes conducted calcium response in rat interlobular arteries

    DEFF Research Database (Denmark)

    Salomonsson, Max; Gustafsson, Finn; Andreasen, Ditte

    2002-01-01

    microscope. Local electrical pulse stimulation (200 ms, 100 V) was administered by means of an NaCl-filled microelectrode (0.7-1 M(Omega)) juxtaposed to one end of the vessel. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured with an image system at a site approximately 500 microm from......The purpose of the present study was to investigate the conducted Ca(2+) response to local electrical stimulation in isolated rat interlobular arteries. Interlobular arteries were isolated from young Sprague-Dawley rats, loaded with fura 2, and attached to pipettes in a chamber on an inverted...

  18. TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D. [Harvard-Smithsonian Center for Astrophysics, MS 83, 60 Garden Street, Cambridge, MA 02138 (United States); Frisch, Priscilla C. [Department of Astronomy and Astrophysics, University of Chicago, 5460 S. Ellis Avenue, Chicago, IL 60637 (United States); Mueller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Heerikhuisen, Jacob; Pogorelov, Nikolai V. [Department of Physics and Center for Space Physics and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States); Reach, William T. [Universities Space Research Association, MS 211-3, Moffett Field, CA 94035 (United States); Zank, Gary [Department of Physics and Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35805 (United States)

    2012-11-20

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a {sub gr} {approx}< 0.01 {mu}m are completely excluded from the inner heliosphere. Large grains, a {sub gr} {approx}> 1.0 {mu}m, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

  19. Punctuated continuity: The technological trajectory of advanced biomass gasifiers

    International Nuclear Information System (INIS)

    Kirkels, Arjan F.

    2014-01-01

    Recent interest in biofuels and bio-refineries has been building upon the technology of biomass gasification. This technology developed since the 1980s in three periods, but failed to break through. We try to explain this by studying the technological development from a quasi-evolutionary perspective, drawing upon the concepts of technological paradigms and technological trajectories. We show that the socio-economic context was most important, as it both offered windows of opportunity as well as provided direction to developments. Changes in this context resulted in paradigm shifts, characterized by a change in considered end-products and technologies, as well as a change in companies involved. Other influences on the technological trajectory were firm specific differences, like the focus on a specific feedstock, scale and more recently biofuels to be produced. These were strengthened by the national focus of supporting policies, as well as specific attention for multiple technologies in policies of the USA and European Commission. Over each period we see strong variation that likely benefitted the long term development of the technology. Despite policy efforts that included variation and institutionalization, our case shows that the large changes in socio-economic context and the technological challenges were hard to overcome. - Highlights: • Advanced biomass gasification, as important enabling technology for biofuels and the bio-based economy, has been lacking success despite decades of research and development. • We try to explain this by reconstructing its technological trajectory. • We focus on processes of variation and selection, and interaction between local demonstration projects and the upcoming technological field. • The development of the technology over each period shows strong variation. • Long RD and D times in combination with major changes in the socio-economic context have resulted in discontinuities that even affected premium

  20. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    Science.gov (United States)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  1. Trajectories of Identification Across Social Spaces: Intersections Between Home, School and Everyday Spaces

    Science.gov (United States)

    Fields, Deborah Anne

    This is a theory-building study taking a wide-angled perspective on youths' development of trajectories of identification across social settings of their everyday lives. I investigated the relationships within and between trajectories of identification across the everyday lives of four youth, studying the conflicts, cohesion, and gaps in their trajectories of identification as they moved across and participated in multiple social settings. I asked how trajectories of identification were built across social settings (i.e. relationships within a trajectory of identification); what kinds of relationships existed between youths' trajectories of identification; and what facilitated the building of trajectories of identification across social settings. To study these questions, I argued for three interrelated lenses on identity: local acting and positioning in practice, the ways one thinks of oneself (self-narratives), and the ways that others think of one (others'-narratives). Using these lenses I shaped a connective ethnography studying four 11-12 year old youth across everyday settings including school, home, hobbies like sports and music, community organizations, and peer groups, following two youth for six months and two youth for one year. I analyzed findings across the four youth. The cases presented in this thesis demonstrate the ways that youth form identities through their travel and not just in a single setting. First, I found that youth build trajectories of identification across social settings and not just in a single setting. As learning is not just within a single mind, so is identity developed beyond a single space. Second, I demonstrated how multiple interacting trajectories of identification within a youth's life may shape each other in inclusive and exclusive ways. Third, throughout the cases I highlighted how traveling artifacts can support building trajectories of identification across social settings, including boundary objects, artifacts created

  2. Criminal Trajectories of White-collar Offenders

    NARCIS (Netherlands)

    van Onna, J.; van der Geest, V.R.; Huisman, W.; Denkers, A.J.M.

    2014-01-01

    Objectives:This article analyzes the criminal development and sociodemographic and criminal profile of a sample of prosecuted white-collar offenders. It identifies trajectory groups and describes their profiles based on crime, sociodemographic, and selection offence characteristics.Methods:The

  3. Graphical Method for Determining Projectile Trajectory

    Science.gov (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  4. Propositional Optimal Trajectory Programming for Improving Stability ...

    African Journals Online (AJOL)

    Propositional Optimal Trajectory Programming for Improving Stability of Hermite Definite Control System. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) ... Knowledge of systems operation subjected to heat diffusion constraints is required of systems analysts. In an instance that ...

  5. FEL Trajectory Analysis for the VISA Experiment

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    1998-01-01

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment

  6. Academic Trajectories of Newcomer Immigrant Youth

    Science.gov (United States)

    Suarez-Orozco, Carola; Gaytan, Francisco X.; Bang, Hee Jin; Pakes, Juliana; O'Connor, Erin; Rhodes, Jean

    2010-01-01

    Immigration to the United States presents both challenges and opportunities that affect students' academic achievement. Using a 5-year longitudinal, mixed-methods approach, we identified varying academic trajectories of newcomer immigrant students from Central America, China, the Dominican Republic, Haiti, and Mexico. Latent class growth curve…

  7. Developmental Trajectories of Early Communication Skills

    Science.gov (United States)

    Maatta, Sira; Laakso, Marja-Leena; Tolvanen, Asko; Ahonen, Timo; Aro, Tuija

    2012-01-01

    Purpose: This study focused on developmental trajectories of prelinguistic communication skills and their connections to later parent-reported language difficulties. Method: The participants represent a subset of a community-based sample of 508 children. Data include parent reports of prelinguistic communication skills at 12, 15, 18, and 21 months…

  8. Logarithmic spiral trajectories generated by Solar sails

    Science.gov (United States)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  9. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    Science.gov (United States)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  10. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  11. Classical trajectory methods in molecular collisions

    International Nuclear Information System (INIS)

    Porter, R.N.; Raff, L.M.

    1976-01-01

    The discussion of classical trajectory methods in molecular collisions includes classical dynamics, Hamiltonian mechanics, classical scattering cross sections and rate coefficients, statistical averaging, the selection of initial states, integration of equations of motion, analysis of final states, consecutive collisions, and the prognosis for classical molecular scattering calculations. 61 references

  12. Improved transition models for cepstral trajectories

    CSIR Research Space (South Africa)

    Badenhorst, J

    2012-11-01

    Full Text Available We improve on a piece-wise linear model of the trajectories of Mel Frequency Cepstral Coefficients, which are commonly used as features in Automatic Speech Recognition. For this purpose, we have created a very clean single-speaker corpus, which...

  13. Trajectory Optimization for Differential Flat Systems

    OpenAIRE

    Kahina Louadj; Benjamas Panomruttanarug; Alexandre Carlos Brandao Ramos; Felix Mora-Camino

    2016-01-01

    International audience; The purpose of this communication is to investigate the applicability of Variational Calculus to the optimization of the operation of differentially flat systems. After introducingcharacteristic properties of differentially flat systems, the applicability of variational calculus to the optimization of flat output trajectories is displayed. Two illustrative examples are also presented.

  14. Landscape and Heritage: trajectories and consequences

    DEFF Research Database (Denmark)

    Harvey, David

    2015-01-01

    supporting and often parallel endeavour of academic, policy and popular inquiry that explores the significance of landscape and heritage as meaningful categories of an emergent and processual nature. Despite such a parallel trajectory, however, the actual practices of landscape and heritage studies still...

  15. A STUDY OF SHUTTLECOCK'S TRAJECTORY IN BADMINTON

    Directory of Open Access Journals (Sweden)

    Yung-Jen Chen

    2009-12-01

    Full Text Available The main purpose of this study was to construct and validate a motion equation for the flight of the badminton and to find the relationship between the air resistance force and a shuttlecock's speed. This research method was based on motion laws of aerodynamics. It applied aerodynamic theories to construct motion equation of a shuttlecock's flying trajectory under the effects of gravitational force and air resistance force. The result showed that the motion equation of a shuttlecock's flight trajectory could be constructed by determining the terminal velocity. The predicted shuttlecock trajectory fitted the measured data fairly well. The results also revealed that the drag force was proportional to the square of a shuttlecock velocity. Furthermore, the angle and strength of a stroke could influence trajectory. Finally, this study suggested that we could use a scientific approach to measure a shuttlecock's velocity objectively when testing the quality of shuttlecocks. And could be used to replace the traditional subjective method of the Badminton World Federation based on players' striking shuttlecocks, as well as applying research findings to improve professional knowledge of badminton player training

  16. The emergence of an electric mobility trajectory

    NARCIS (Netherlands)

    Dijk, M.; Orsato, R.J.; Kemp, R.P.M.

    2013-01-01

    In this paper, we analyse the emergence of a trajectory of electric mobility. We describe developments in electric vehicles before and after 2005. The central thesis of the paper is that electric mobility has crossed a critical threshold and is benefiting from various developments whose influence

  17. The influence of work-family conflict trajectories on self-rated health trajectories in Switzerland: a life course approach.

    Science.gov (United States)

    Cullati, Stéphane

    2014-07-01

    Self-rated health (SRH) trajectories tend to decline over a lifetime. Moreover, the Cumulative Advantage and Disadvantage (CAD) model indicates that SRH trajectories are known to consistently diverge along socioeconomic positions (SEP) over the life course. However, studies of working adults to consider the influence of work and family conflict (WFC) on SRH trajectories are scarce. We test the CAD model and hypothesise that SRH trajectories diverge over time according to socioeconomic positions and WFC trajectories accentuate this divergence. Using longitudinal data from the Swiss Household Panel (N = 2327 working respondents surveyed from 2004 to 2010), we first examine trajectories of SRH and potential divergence over time across age, gender, SEP and family status using latent growth curve analysis. Second, we assess changes in SRH trajectories in relation to changes in WFC trajectories and divergence in SRH trajectories according to gender, SEP and family status using parallel latent growth curve analysis. Three measures of WFC are used: exhaustion after work, difficulty disconnecting from work, and work interference in private family obligations. The results show that SRH trajectories slowly decline over time and that the rate of change is not influenced by age, gender or SEP, a result which does not support the CAD model. SRH trajectories are significantly correlated with exhaustion after work trajectories but not the other two WFC measures. When exhaustion after work trajectories are taken into account, SRH trajectories of higher educated people decline slower compared to less educated people, supporting the CAD hypothesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Automated Design of Noise-Minimal, Safe Rotorcraft Trajectories

    Science.gov (United States)

    Morris, Robert A.; Venable, K. Brent; Lindsay, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and aircraft such as a 40-passenger civil tilt rotors. Rotorcraft have a number of advantages over fixed wing aircraft, primarily in not requiring direct access to the primary fixed wing runways. As such they can operate at an airport without directly interfering with major air carrier and commuter aircraft operations. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. In this paper we propose to address the rotorcraft noise problem by exploiting powerful search techniques coming from artificial intelligence, coupled with simulation and field tests, to design trajectories that are expected to improve on the amount of ground noise generated. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints into the problem formulation that addresses passenger safety and comfort.

  19. Identification of individual coherent sets associated with flow trajectories using Coherent Structure Coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy; Dabiri, John

    2017-11-01

    In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  20. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    Science.gov (United States)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  1. Paracas dust storms: Sources, trajectories and associated meteorological conditions

    Science.gov (United States)

    Briceño-Zuluaga, F.; Castagna, A.; Rutllant, J. A.; Flores-Aqueveque, V.; Caquineau, S.; Sifeddine, A.; Velazco, F.; Gutierrez, D.; Cardich, J.

    2017-09-01

    Dust storms that develop along the Pisco-Ica desert in Southern Peru, locally known as ;Paracas; winds have ecological, health and economic repercussions. Here we identify dust sources through MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and analyze HYSPLIT (Hybrid Single Particles Lagrangian Integrated Trajectory) model trajectories and dispersion patterns, along with concomitant synoptic-scale meteorological conditions from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis (NCEP/NCAR). Additionally, surface pressure data from the hourly METeorological Aerodrome Report (METAR) at Arica (18.5°S, 70.3°W) and Pisco (13.7°S, 76.2°W) were used to calculate Alongshore (sea-level) Pressure Gradient (APG) anomalies during Paracas dust storms, their duration and associated wind-speeds and wind directions. This study provides a review on the occurrence and strength of the Paracas dust storms as reported in the Pisco airfield for five-year period and their correspondence with MODIS true-color imagery in terms of dust-emission source areas. Our results show that most of the particle fluxes moving into the Ica-Pisco desert area during Paracas wind events originate over the coastal zone, where strong winds forced by steep APGs develop as the axis of a deep mid-troposphere trough sets in along north-central Chile. Direct relationships between Paracas wind intensity, number of active dust-emission sources and APGs are also documented, although the scarcity of simultaneous METAR/MODIS data for clearly observed MODIS dust plumes prevents any significant statistical inference. Synoptic-scale meteorological composites from NCEP/NCAR reanalysis data show that Paracas wind events (steep APGs) are mostly associated with the strengthening of anticyclonic conditions in northern Chile, that can be attributed to cold air advection associated with the incoming trough. Compared to the MODIS images, HYSPLIT outputs were able

  2. A comparison of electrochemically pre-treated and spark-platinized carbon fiber microelectrode. Measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in human urine and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, Z.; Riman, D. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Halouzka, V. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 275, CZ-76001 Zlin (Czech Republic); Vostalova, J.; Simanek, V. [Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, CZ-775 15 Olomouc (Czech Republic); Hrbac, J., E-mail: jhrbac@atlas.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Jirovsky, D., E-mail: david.jirovsky@upol.cz [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic)

    2016-09-07

    A novel method of carbon fiber microelectrode activation using spark discharge was demonstrated and compared to conventional electrochemical pretreatment by potential cycling. The spark discharge was performed at 800 V between the microelectrode connected to positive pole of the power supply and platinum counter electrode. Spark discharge led both to trimming of the fiber tip into conical shape and to the modification of carbon fiber microelectrode with platinum, as proven by scanning electron microscopy and electron dispersive X-ray spectroscopy. After the characterization of electrochemical properties using ferricyanide voltammetry, the activated electrodes were used for electrochemical analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine, an oxidative stress marker. Subnanomolar detection limits (0.55 nmol L{sup −1}) in high-performance liquid chromatography were achieved for spark platinized electrodes incorporated into the flow detection cell. - Highlights: • Novel method of carbon fiber microelectrode activation and platinization using spark discharge. • The activation procedure is efficient, fast and solvent-free. • Modification of the surface and the shape of the carbon fiber microelectrode during the process. • The spark-etched platinized carbon fiber sensors are highly sensitive. • The sensor was successfully applied to HPLC analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine in plasma and urine.

  3. Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase

    International Nuclear Information System (INIS)

    Wen, H.; Nallathambi, V.; Chakraborty, D.; Barton, S.C.

    2011-01-01

    Carboxylated carbon nanotubes were coated onto carbon microfiber electrodes to create a micron-scale bioelectrode. This material has a high surface area and can serve as a support for immobilization of enzymes such as glucose oxidase. A typical carbon nanotube loading of 13 μg cm -1 yields a coating thickness of 17 μm and a 2000-fold increase in surface capacitance. The modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, glucose oxidase, and a crosslinker to create a glucose bioelectrode. The current density on oxidation of glucose is 16.6 mA cm-2 at 0.5 V (vs. Ag/AgCl) in oxygen-free glucose solution. We consider this approach to be useful for designing and characterizing surface treatments for carbon mats and papers by mimicking their local microenvironment. (author)

  4. MILP-Based 4D Trajectory Planning for Tactical Trajectory Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to develop specialized algorithms and software decision-aiding tools for four-dimensional (4D) vehicle-centric, tactical trajectory...

  5. Trajectory Design to Benefit Trajectory-Based Surface Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trajectory-based operations constitute a key mechanism considered by the Joint Planning and Development Office (JPDO) for managing traffic in high-density or...

  6. Trajectory Design to Benefit Trajectory-Based Surface Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Trajectory-based operations constitute a key mechanism considered by the Joint Planning and Development Office (JPDO) for managing traffic in high-density or...

  7. High-throughput cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using microelectrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gilchrist, Kristin H., E-mail: kgilchrist@rti.org; Lewis, Gregory F.; Gay, Elaine A.; Sellgren, Katelyn L.; Grego, Sonia

    2015-10-15

    Microelectrode arrays (MEAs) recording extracellular field potentials of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) provide a rich data set for functional assessment of drug response. The aim of this work is the development of a method for a systematic analysis of arrhythmia using MEAs, with emphasis on the development of six parameters accounting for different types of cardiomyocyte signal irregularities. We describe a software approach to carry out such analysis automatically including generation of a heat map that enables quick visualization of arrhythmic liability of compounds. We also implemented signal processing techniques for reliable extraction of the repolarization peak for field potential duration (FPD) measurement even from recordings with low signal to noise ratios. We measured hiPS-CM's on a 48 well MEA system with 5 minute recordings at multiple time points (0.5, 1, 2 and 4 h) after drug exposure. We evaluated concentration responses for seven compounds with a combination of hERG, QT and clinical proarrhythmia properties: Verapamil, Ranolazine, Flecainide, Amiodarone, Ouabain, Cisapride, and Terfenadine. The predictive utility of MEA parameters as surrogates of these clinical effects were examined. The beat rate and FPD results exhibited good correlations with previous MEA studies in stem cell derived cardiomyocytes and clinical data. The six-parameter arrhythmia assessment exhibited excellent predictive agreement with the known arrhythmogenic potential of the tested compounds, and holds promise as a new method to predict arrhythmic liability. - Highlights: • Six parameters describing arrhythmia were defined and measured for known compounds. • Software for efficient parameter extraction from large MEA data sets was developed. • The proposed cellular parameter set is predictive of clinical drug proarrhythmia.

  8. Interfacing 3D Engineered Neuronal Cultures to Micro-Electrode Arrays: An Innovative In Vitro Experimental Model

    Science.gov (United States)

    Tedesco, Mariateresa; Frega, Monica; Martinoia, Sergio; Pesce, Mattia; Massobrio, Paolo

    2015-01-01

    Currently, large-scale networks derived from dissociated neurons growing and developing in vitro on extracellular micro-transducer devices are the gold-standard experimental model to study basic neurophysiological mechanisms involved in the formation and maintenance of neuronal cell assemblies. However, in vitro studies have been limited to the recording of the electrophysiological activity generated by bi-dimensional (2D) neural networks. Nonetheless, given the intricate relationship between structure and dynamics, a significant improvement is necessary to investigate the formation and the developing dynamics of three-dimensional (3D) networks. In this work, a novel experimental platform in which 3D hippocampal or cortical networks are coupled to planar Micro-Electrode Arrays (MEAs) is presented. 3D networks are realized by seeding neurons in a scaffold constituted of glass microbeads (30-40 µm in diameter) on which neurons are able to grow and form complex interconnected 3D assemblies. In this way, it is possible to design engineered 3D networks made up of 5-8 layers with an expected final cell density. The increasing complexity in the morphological organization of the 3D assembly induces an enhancement of the electrophysiological patterns displayed by this type of networks. Compared with the standard 2D networks, where highly stereotyped bursting activity emerges, the 3D structure alters the bursting activity in terms of duration and frequency, as well as it allows observation of more random spiking activity. In this sense, the developed 3D model more closely resembles in vivo neural networks. PMID:26554533

  9. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.

    Science.gov (United States)

    Zhang, Xiaojian; Liu, Huan; Wang, Jinrong; Ren, Guangyuan; Xie, Beizhen; Liu, Hong; Zhu, Ying; Jiang, Lei

    2015-11-28

    Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency remains one of the major bottlenecks for its practical application. We report firstly that the microbial current generated by Shewanella loihica PV-4 (S. loihica PV-4) could be greatly improved that is up to ca. 115 fold, by adding antimony-doped tin oxide (ATO) nanoparticles in the electrochemical reactor. The results demonstrate that the biocompatible, electrically conductive ATO nanoparticles acted as active microelectrodes could facilitate the formation of a cells/ATO composite biofilm and the reduction of the outer membrane c-type cytochromes (OM c-Cyts) that are beneficial for the electron transfer from cells to electrode. Meanwhile, a synergistic effect between the participation of OM c-Cyts and the accelerated EET mediated by cell-secreted flavins may play an important role for the enhanced current generation in the presence of ATO nanoparticles. Moreover, it is worth noting that the TCA cycle in S. loihica PV-4 cells is activated by adding ATO nanoparticles, even if the potential is poised at +0.2 V, thereby also improving the EET process. The results presented here may provide a simple and effective strategy to boost the EET of S. loihica PV-4 cells, which is conducive to providing potential applications in bioelectrochemical systems.

  10. QSpike Tools: a Generic Framework for Parallel Batch Preprocessing of Extracellular Neuronal Signals Recorded by Substrate Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Mufti eMahmud

    2014-03-01

    Full Text Available Micro-Electrode Arrays (MEAs have emerged as a mature technique to investigate brain (dysfunctions in vivo and in in vitro animal models. Often referred to as smart Petri dishes, MEAs has demonstrated a great potential particularly for medium-throughput studies in vitro, both in academic and pharmaceutical industrial contexts. Enabling rapid comparison of ionic/pharmacological/genetic manipulations with control conditions, MEAs are often employed to screen compounds by monitoring non-invasively the spontaneous and evoked neuronal electrical activity in longitudinal studies, with relatively inexpensive equipment. However, in order to acquire sufficient statistical significance, recordings last up to tens of minutes and generate large amount of raw data (e.g., 60 channels/MEA, 16 bits A/D conversion, 20kHz sampling rate: ~8GB/MEA,h uncompressed. Thus, when the experimental conditions to be tested are numerous, the availability of fast, standardized, and automated signal preprocessing becomes pivotal for any subsequent analysis and data archiving. To this aim, we developed an in-house cloud-computing system, named QSpike Tools, where CPU-intensive operations, required for preprocessing of each recorded channel (e.g., filtering, multi-unit activity detection, spike-sorting, etc., are decomposed and batch-queued to a multi-core architecture or to computer cluster. With the commercial availability of new and inexpensive high-density MEAs, we believe that disseminating QSpike Tools might facilitate its wide adoption and customization, and possibly inspire the creation of community-supported cloud-computing facilities for MEAs users.

  11. QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays.

    Science.gov (United States)

    Mahmud, Mufti; Pulizzi, Rocco; Vasilaki, Eleni; Giugliano, Michele

    2014-01-01

    Micro-Electrode Arrays (MEAs) have emerged as a mature technique to investigate brain (dys)functions in vivo and in in vitro animal models. Often referred to as "smart" Petri dishes, MEAs have demonstrated a great potential particularly for medium-throughput studies in vitro, both in academic and pharmaceutical industrial contexts. Enabling rapid comparison of ionic/pharmacological/genetic manipulations with control conditions, MEAs are employed to screen compounds by monitoring non-invasively the spontaneous and evoked neuronal electrical activity in longitudinal studies, with relatively inexpensive equipment. However, in order to acquire sufficient statistical significance, recordings last up to tens of minutes and generate large amount of raw data (e.g., 60 channels/MEA, 16 bits A/D conversion, 20 kHz sampling rate: approximately 8 GB/MEA,h uncompressed). Thus, when the experimental conditions to be tested are numerous, the availability of fast, standardized, and automated signal preprocessing becomes pivotal for any subsequent analysis and data archiving. To this aim, we developed an in-house cloud-computing system, named QSpike Tools, where CPU-intensive operations, required for preprocessing of each recorded channel (e.g., filtering, multi-unit activity detection, spike-sorting, etc.), are decomposed and batch-queued to a multi-core architecture or to a computers cluster. With the commercial availability of new and inexpensive high-density MEAs, we believe that disseminating QSpike Tools might facilitate its wide adoption and customization, and inspire the creation of community-supported cloud-computing facilities for MEAs users.

  12. Selective comparison of gelling agents as neural cell culture matrices for long-term microelectrode array electrophysiology

    Directory of Open Access Journals (Sweden)

    Wilk Nicolai

    2016-01-01

    Full Text Available In classic monolayer cell culture, the world is flat. In contrast, tissue-embedded cells experience a three-dimensional context to interact with. We assessed a selection of natural gelling agents of non-animal origin (ι- and κ-carrageenan, gellan gum, guar gum, locust bean gum, sodium alginate, tragacanth and xanthan gum in serum-free medium at 1–4% (w/v concentration for their suitability as a more natural 3D culture environment for brain-derived cells. Their biophysical properties (viscosity, texture, transparency, gelling propensity resemble those of the extracellular matrix (ECM. Gels provide the neurons with a 3D scaffold to interact with and allow for an increase of the overall cell density compared to classical monolayer 2D culture. They not only protect neurons in cell culture from shear forces and medium evaporation, but stabilize the microenvironment around them for efficient glial proliferation, tissue-analog neural differentiation and neural communication. We report on their properties (viscosity, transparency, their ease of handling in a cell culture context and their possible use modalities (cell embedment, as a cell cover or as a cell culture substrate. Among the selected gels, guar gum and locust bean gum with intercalated laminin allowed for cortical cell embedment. Neurons plated on and migrating into gellan gum survived and differentiated even without the addition of laminin. Sodium alginate with laminin was a suitable cell cover. Finally, we exemplarily demonstrate how guar gum supported the functional survival of a cortical culture over a period of 79 days in a proof-of-concept long-term microelectrode array (MEA electrophysiology study.

  13. Trajectories of personal control in cancer patients receiving psychological care

    NARCIS (Netherlands)

    Zhu, Lei; Schroevers, Maya J.; van der Lee, Marije; Garssen, Bert; Stewart, Roy E.; Sanderman, Robbert; Ranchor, Adelita V.

    Objective: This study aimed to (1) identify subgroups of cancer patients with distinct personal control trajectories during psychological care, (2) examine whether socio-demographic, clinical, and psychological care characteristics could distinguish trajectories, and (3) examine differential

  14. Trajectories of personal control in cancer patients receiving psychological care

    NARCIS (Netherlands)

    Zhu, Lei; Schroevers, Maya J.; van der Lee, Marije; Garssen, Bert; Stewart, Roy E.; Sanderman, Robbert; Ranchor, A.V.

    2015-01-01

    Objective This study aimed to (1) identify subgroups of cancer patients with distinct personal control trajectories during psychological care, (2) examine whether socio-demographic, clinical, and psychological care characteristics could distinguish trajectories, and (3) examine differential patterns

  15. Making Sense of Trajectory Data in Indoor Spaces

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Thom, Andreas; Blunck, Henrik

    2015-01-01

    The increasing prevalence of positioning and tracking systems has helped simplify tracking large amounts of, e.g., people moving through buildings or cars traveling on roads, over long periods of time. However, technical limitations of positioning algorithms and traditional sensing infrastructures......-specific analysis tools. Additionally, it allows to predict the locally occurring expected positioning error biases. This in turn allows improved positioning, e.g., for real-time navigation assistance scenarios. We evaluate the proposed methods using trajectory data from employees at a large hospital complex...... which route was taken in a particular travel instance or whether two travel instances followed the same route. In this paper, we present a bootstrapping approach and several algorithms to mitigate error biases and related phenomena, focusing on indoor scenarios. In particular, we are able to estimate...

  16. A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode.

    Science.gov (United States)

    Chen, Qi; Lin, Jianhan; Gan, Chengqi; Wang, Yuhe; Wang, Dan; Xiong, Yonghua; Lai, Weihua; Li, Yuntao; Wang, Maohua

    2015-12-15

    In this study, we described a novel impedance biosensor combining immunomagnetic separation with urease catalysis for sensitive detection of foodborne bacteria using Listeria monocytogenes as model and an immobilization-free microelectrode as detector. The monoclonal antibodies (MAbs) were immobilized on the surface of the magnetic nanoparticles (MNPs) with the diameter of 180 nm by biotin-streptavidin system for specifically and efficiently separating Listeria cells from sample background. The polyclonal antibodies (PAbs) and the urease were modified onto the surface of the gold nanoparticles (AuNPs) with the diameter of 20 nm and the modified AuNPs were used to react with Listera to form the MNP-MAb-Listeria-PAb-AuNP-urease sandwich complexes. The urease in the complexes could catalyze the hydrolysis of the urea into ammonium carbonate and this led to an increase in the ionic strength of the media, which could be detected by the microelectrode. The magnetic separation efficiencies for L. monocytogenes at the concentrations ranging from 3.0×10(1) to 3.0×10(4) CFU/mL were over 95% for the pure cultures and over 85% for the spiked lettuce samples. The lower detection limit of this biosensor for L. monocytogenes was found to be 300 CFU/mL in both the pure cultures and the spiked lettuce samples. The microelectrode was demonstrated to be reusable for over 50 times with thorough cleaning by deionized water. This biosensor showed its potential to provide a simple, low-cost and sensitive method for rapid screening of foodborne pathogens and could be extended for detection of other biological or chemical targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

    Science.gov (United States)

    Zhang, Yan; Xiao, Jian; Sun, Yimin; Wang, Lu; Dong, Xulin; Ren, Jinghua; He, Wenshan; Xiao, Fei

    2018-02-15

    The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H 2 O 2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H 2 O 2 , the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm -2 mM -1 . These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H 2 O 2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Eight-Year Latent Class Trajectories of Academic and Social Functioning in Children with Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    DuPaul, George J; Morgan, Paul L; Farkas, George; Hillemeier, Marianne M; Maczuga, Steve

    2017-09-15

    We examined trajectories of academic and social functioning in children with attention-deficit/hyperactivity disorder (ADHD) to identify those who might be at risk for especially severe levels of academic and social impairment over time. We estimated a series of growth mixture models using data from two subsamples of children participating in the NIMH Collaborative Multisite Multimodal Treatment Study of Children with ADHD (MTA) including those with at least baseline and 96-month data for reading and mathematics achievement (n = 392; 77.3% male; M age = 7.7; SD = 0.8) or social skills ratings from teachers (n = 259; 74.9% male; M age = 7.6; SD = 0.8). We compared latent trajectories for children with ADHD to mean observed trajectories obtained from a local normative (i.e., non-ADHD) comparison group (n = 289; 80.6% male; M age = 9.9; SD = 1.1). Results indicated six latent trajectory classes for reading and mathematics and four classes for teacher social skills ratings. There was not only a relationship between trajectories of inattention symptoms and academic impairment, but also a similarly strong association between trajectory classes of hyperactive-impulsive symptoms and achievement. Trajectory class membership correlated with socio-demographic and diagnostic characteristics, inattention and hyperactive-impulsive symptom trajectories, externalizing behavior in school, and treatment receipt and dosage. Although children with ADHD display substantial heterogeneity in their reading, math, and social skills growth trajectories, those with behavioral and socio-demographic disadvantages are especially likely to display severe levels of academic and social impairment over time. Evidence-based early screening and intervention that directly address academic and social impairments in elementary school-aged children with ADHD are warranted. The ClinicalTrials.gov identifier is NCT00000388.

  19. Theory of the paraxial ion trajectory in the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan

    2000-01-01

    This paper presents the analytical and numerical theory of the paraxial ion trajectory through the spiral inflector. Analytical expressions for the equations which describe the paraxial ion trajectory are derived. The analytical derivations of the electric field expansion around the central ion trajectory has also been studied

  20. Pneumatic motor speed control by trajectory tracking fuzzy logic

    Indian Academy of Sciences (India)

    In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is defined to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to find the TTFLC boundary values of membership functions ...

  1. Developmental Trajectories of Childhood Obesity and Risk Behaviors in Adolescence

    Science.gov (United States)

    Huang, David Y. C.; Lanza, H. Isabella; Wright-Volel, Kynna; Anglin, M. Douglas

    2013-01-01

    Using group-based trajectory modeling, this study examined 5156 adolescents from the child sample of the 1979 National Longitudinal Survey of Youth to identify developmental trajectories of obesity from ages 6-18 and evaluate associations of such trajectories with risk behaviors and psychosocial health in adolescence. Four distinctive obesity…

  2. Localization of hidden Chua's attractors

    International Nuclear Information System (INIS)

    Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I.

    2011-01-01

    The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. In the present Letter for localization of hidden attractors of Chua's circuit it is suggested to use a special analytical-numerical algorithm. -- Highlights: → There are hidden attractors: basin doesn't contain neighborhoods of equilibria. → Hidden attractors cannot be reached by trajectory from neighborhoods of equilibria. → We suggested special procedure for localization of hidden attractors. → We discovered hidden attractor in Chua's system, L. Chua in his work didn't expect this.

  3. Development of an Integrated Intelligent Multi -Objective Framework for UAV Trajectory Generation

    Science.gov (United States)

    Wilburn, Jennifer Nicole

    . Finally, to increase the effectiveness and autonomy of these pose-based trajectory generation methodologies, an immunity-based evolutionary optimization algorithm is developed to select a viable and locally-optimal trajectory through an environment while observing desired points of interest and minimizing threat exposure, path length, and estimated fuel consumption. The algorithm is effective for both 2D and 3D routes, as well as combinations thereof. A brief demonstration is provided for this algorithm. Due to the calculation time requirements, this algorithm is recommended for offline use.

  4. Monotone viable trajectories for functional differential inclusions

    Science.gov (United States)

    Haddad, Georges

    This paper is a study on functional differential inclusions with memory which represent the multivalued version of retarded functional differential equations. The main result gives a necessary and sufficient equations. The main result gives a necessary and sufficient condition ensuring the existence of viable trajectories; that means trajectories remaining in a given nonempty closed convex set defined by given constraints the system must satisfy to be viable. Some motivations for this paper can be found in control theory where F( t, φ) = { f( t, φ, u)} uɛU is the set of possible velocities of the system at time t, depending on the past history represented by the function φ and on a control u ranging over a set U of controls. Other motivations can be found in planning procedures in microeconomics and in biological evolutions where problems with memory do effectively appear in a multivalued version. All these models require viability constraints represented by a closed convex set.

  5. Pregnancy Anxiety and Prenatal Cortisol Trajectories

    Science.gov (United States)

    Kane, Heidi S.; Schetter, Christine Dunkel; Glynn, Laura M.; Hobel, Calvin J.; Sandman, Curt A.

    2014-01-01

    Pregnancy anxiety is a potent predictor of adverse birth and infant outcomes. The goal of the current study was to examine one potential mechanism whereby these effects may occur by testing associations between pregnancy anxiety and maternal salivary cortisol on 4 occasions during pregnancy in a sample of 448 women. Higher mean levels of pregnancy anxiety over the course of pregnancy predicted steeper increases in cortisol trajectories compared to lower pregnancy anxiety. Significant differences between cortisol trajectories emerged between 30 to 31 weeks of gestation. Results remained significant when adjusted for state anxiety and perceived stress. Neither changes in pregnancy anxiety over gestation, nor pregnancy anxiety specific to only a particular time in pregnancy predicted cortisol. These findings provide support for one way in which pregnancy anxiety may influence maternal physiology and contribute to a growing literature on the complex biological pathways linking pregnancy anxiety to birth and infant outcomes. PMID:24769094

  6. Trajectories for Novel and Detailed Traffic Information

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Torp, Kristian

    2012-01-01

    the central metric free-flow speed from trajectories, instead of using point-based measurements such as induction-loops. This free-flow speed is widely used to compute and monitor the congestion level. The paper argues that the actual travel-time is a more accurate metric. The paper suggests a novel approach...... are correctly coordinated, and navigational device manufacturers to advice drivers in real-time on expected behavior of signalized intersections. The main conclusion is that trajectories can provide novel insight into the actual traffic situation that is not possible using existing approaches. Further...... to analyzing individual intersections that enables traffic analysts to compute queue lengths and estimated time to pass an intersection. Finally, the paper uses associative rule mining for evaluating green waves on road stretches. Such information can be used to verify that signalized intersections...

  7. Sequence trajectory generation for garment handling systems

    OpenAIRE

    Liu, Honghai; Lin, Hua

    2008-01-01

    This paper presents a novel generic approach to the planning strategy of garment handling systems. An assumption is proposed to separate the components of such systems into a component for intelligent gripper techniques and a component for handling planning strategies. Researchers can concentrate on one of the two components first, then merge the two problems together. An algorithm is addressed to generate the trajectory position and a clothes handling sequence of clothes partitions, which ar...

  8. Training trajectories by continuous recurrent multilayer networks.

    Science.gov (United States)

    Leistritz, L; Galicki, M; Witte, H; Kochs, E

    2002-01-01

    This paper addresses the problem of training trajectories by means of continuous recurrent neural networks whose feedforward parts are multilayer perceptrons. Such networks can approximate a general nonlinear dynamic system with arbitrary accuracy. The learning process is transformed into an optimal control framework where the weights are the controls to be determined. A training algorithm based upon a variational formulation of Pontryagin's maximum principle is proposed for such networks. Computer examples demonstrating the efficiency of the given approach are also presented.

  9. Decomposition of gene expression state space trajectories.

    Directory of Open Access Journals (Sweden)

    Jessica C Mar

    2009-12-01

    Full Text Available Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe. The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005 which follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-trans retinoic acid. Huang et al. (2005 build on the work of Kauffman (2004 who raised the attractor hypothesis, stating that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are two types of processes participating in these cell fate transitions-core processes that include the specific differentiation pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their core and transient components we provide a validation of our hypothesis using the Huang et al. (2005 dataset.

  10. Controlling particle trajectories using oscillating microbubbles

    Science.gov (United States)

    Jalikop, Shreyas; Wang, Cheng; Hilgenfeldt, Sascha

    2010-11-01

    In many applications of microfluidics and biotechnology, such as cytometry and drug delivery, it is vital to manipulate the trajectories of microparticles such as vesicles or cells. On this small scale, inertial or gravitational effects are often too weak to exploit. We propose a mechanism to selectively trap and direct particles based on their size in creeping transport flows (Re1). We employ Rayleigh-Nyborg-Westervelt (RNW) streaming generated by an oscillating microbubble, which in turn generates a streaming flow component around the mobile particles. The result is an attractive interaction that draws the particle closer to the bubble. The impenetrability of the bubble interface destroys time-reversal symmetry and forces the particles onto either narrow trajectory bundles or well-defined closed trajectories, where they are trapped. The effect is dependent on particle size and thus allows for the passive focusing and sorting of selected sizes, on scales much smaller than the geometry of the microfluidic device. The device could eliminate the need for complicated microchannel designs with external magnetic or electric fields in applications such as particle focusing and size-based sorting.

  11. Academic trajectories of newcomer immigrant youth.

    Science.gov (United States)

    Suárez-Orozco, Carola; Gaytán, Francisco X; Bang, Hee Jin; Pakes, Juliana; O'Connor, Erin; Rhodes, Jean

    2010-05-01

    Immigration to the United States presents both challenges and opportunities that affect students' academic achievement. Using a 5-year longitudinal, mixed-methods approach, we identified varying academic trajectories of newcomer immigrant students from Central America, China, the Dominican Republic, Haiti, and Mexico. Latent class growth curve analysis revealed that although some newcomer students performed at high or improving levels over time, others showed diminishing performance. Multinomial logistic regressions identified significant group differences in academic trajectories, particularly between the high-achieving youth and the other groups. In keeping with ecological-developmental and stage-environment fit theories, School Characteristics (school segregation rate, school poverty rate, and student perceptions of school violence), Family Characteristics (maternal education, parental employment, and household structure), and Individual Characteristics (academic English proficiency, academic engagement, psychological symptoms, gender, and 2 age-related risk factors, number of school transitions and being overaged for grade placement) were associated with different trajectories of academic performance. A series of case studies triangulate many of the quantitative findings as well as illuminate patterns that were not detected in the quantitative data. Thus, the mixed-methods approach sheds light on the cumulative developmental challenges that immigrant students face as they adjust to their new educational settings. 2010 APA, all rights reserved

  12. Control system design for UAV trajectory tracking

    Science.gov (United States)

    Wang, Haitao; Gao, Jinyuan

    2006-11-01

    In recent years, because of the emerging requirements for increasing autonomy, the controller of uninhabited air vehicles must be augmented with a very sophisticated autopilot design which is capable of tracking complex and agile maneuvering trajectory. This paper provides a simplified control system framework to solve UAV maneuvering trajectory tracking problem. The flight control system is divided into three subsystems including command generation, transformation and allocation. According to the kinematics equations of the aircraft, flight path angle commands can be generated by desired 3D position from path planning. These commands are transformed to body angular rates through direct nonlinear mapping, which is simpler than common multi-loop method based on time scale separation assumption. Then, by using weighted pseudo-inverse method, the control surface deflections are allocated to follow body angular rates from the previous step. In order to improve the robustness, a nonlinear disturbance observer-based approach is used to compensate the uncertainty of system. A 6DOF nonlinear UAV model is controlled to demonstrate the performance of the trajectory tracking control system. Simulation results show that the control strategy is easy to be realized and the precision of tracking is satisfying.

  13. Simulations of High Speed Fragment Trajectories

    Science.gov (United States)

    Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis

    2017-11-01

    Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.

  14. Periodic trajectories for two-dimensional nonintegrable Hamiltonians

    International Nuclear Information System (INIS)

    Davies, K.T.R.

    1990-02-01

    I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs

  15. Flash trajectory imaging of target 3D motion

    Science.gov (United States)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  16. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    Science.gov (United States)

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  17. Quantum-classical correspondence for the Fourier spectrum of a trajectory

    International Nuclear Information System (INIS)

    Heller, E.J.

    1983-01-01

    Using a displaced localized wavepacket (coherent state) as a quantum analog to a classical trajectory, we examine the Fourier spectrum of the expectation value of position Xsub(t)sup(Q), and compare it with the classical Fourier spectrum of position Xsub(t). In both the quasiperiodic and chaotic regimes, a strong classical-quantum correspondence exists in the Fourier spectrum. However, the quantum spectrum has certain interesting features not present in the classical case. (orig.)

  18. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  19. Rapid Detection of Ascorbic Acid Based on a Dual-Electrode Sensor System Using a Powder Microelectrode Embedded with Carboxyl Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    He, Bao-Shan; Zhang, Jun-Xia

    2017-07-02

    In this paper, carboxyl groups were introduced by liquid oxidation methods onto multi-walled carbon nanotubes (MWCNTs) to improve the MWCNTs' electrocatalytic properties. A platinum wire microelectrode (ME) was corroded using aqua regia and subsequently embedded with MWCNTs to achieve more active sites, producing a so-called powder microelectrode (PME). Compared with conventional MEs, the PME has a larger specific surface area and more active sites. When PME was used to detect ascorbic acid (AA), the AA oxidation potential shifted negatively and current peak was visibly increased. The calibration curve obtained for AA was in a range of 5.00 × 10 -6 ~9.50 × 10 -4 mol·L -1 : I pa (μA) = 3.259 × 10 -2 + 1.801 × 10² C (mol·L -1 ) under the optimum testing conditions. Moreover, the detection and quantitation limits were confirmed at 4.89 × 10 -7 mol·L -1 and 1.63 × 10 -7 mol·L -1 , respectively. When the fabricated PME was practically applied to detect AA, it was shown a recovery rate of 94~107% with relative standard deviation (RSD) <5%. The proposed strategy thus offers a promising, rapid, selective and low-cost approach to effective analysis of AA.

  20. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    International Nuclear Information System (INIS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-01-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO 2 ) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g −1  at the scan rate of 5 mV s −1 . This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices. (paper)

  1. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process

    Directory of Open Access Journals (Sweden)

    Longsheng Lu

    2017-03-01

    Full Text Available Carbon fiber microelectrode (CFME has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs, denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF monofilaments grafted with CNTs (simplified as CNTs/CFs were fabricated in two key steps: (i nickel electroless plating, followed by (ii chemical vapor deposition (CVD. Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN6, by using a cyclic voltammetry (CV and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility.

  2. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  3. Studying precipitation recycling over the Tibetan Plateau using evaporation-tagging and back-trajectory analysis

    Science.gov (United States)

    Gao, Y.

    2017-12-01

    Regional precipitation recycling (i.e., the contribution of local evaporation to local precipitation) is an important component of water cycle over the Tibetan Plateau (TP). Two methods were used to investigate regional precipitation recycling: 1) tracking of tagged atmospheric water parcels originating from evaporation in a source region (i.e., E-tagging), and 2) back-trajectory approach to track the evaporative sources contributed to precipitation in a specific region. These two methods were applied to Weather Research and Forecasting (WRF) regional climate simulations to quantify the precipitation recycling ratio in the TP for three selected years: climatologically normal, dry and wet year. The simulation region is characterized by high average elevation above 4000 m and complex terrain. The back-trajectory approach is also calculated over three sub-regions over the TP: namely western, northeastern and southeastern TP, and the E-tagging approach could provide recycling-ratio distributions over the whole TP. Three aspects are investigated to characterize the precipitation recycling: annual mean, seasonal variations and spatial distributions. Averaged over the TP, the precipitation recycling ratio estimated by the E-tagging approach is higher than that from the back-trajectory method. The back-trajectory approach uses a precipitation threshold as total precipitation in five days divided by a random number, and this number was set to 500 as a tread off between equilibrium and computational efficiency. Lower recycling ratio derived from the back-trajectory approach is related to the precipitation threshold used. The E-tagging, however, tracks every air parcel of evaporation regardless of the precipitation amount. There is no obvious seasonal variation in the recycling ratio using both methods. The E-tagging approach shows high recycling ratios in the center TP, indicating stronger land-atmospheric interactions than elsewhere.

  4. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model.

    Science.gov (United States)

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi

    2015-01-01

    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical remodeling. Amiodarone alter potassium ion channel activity (Ito, IKur, IK1 and IKs), shortening fAPD.

  5. The ESA's Space Trajectory Analysis software suite

    Science.gov (United States)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  6. BMI Trajectories from Birth to Young Adulthood.

    Science.gov (United States)

    McGinty, Shannon M; Osganian, Stavroula K; Feldman, Henry A; Milliren, Carly E; Field, Alison E; Richmond, Tracy K

    2018-04-19

    This study aimed to compare BMI trajectories from childhood to early adulthood in those with overweight and/or obesity versus severe obesity. Longitudinal BMI values (2,542 measurements) were calculated from measured heights and weights for 103 children, adolescents, or young adults with overweight, obesity, or severe obesity. Segmented regression with splines was used to model BMI trajectories. Sixty-nine participants were classified as ever having severe obesity versus 34 who never had severe obesity. Trajectories and slopes did not differ by sex or race/ethnicity. Compared with those who never had severe obesity, BMI was higher in the group with severe obesity at all ages, and BMI slope was higher for those with severe obesity at age 14 (P = 0.002), with peak slope occurring later (18 years vs. 16 years) and higher (4.5 ± 0.5 kg/m 2 /y vs. 2.9 ± 0.5 kg/m 2 /y; P BMI fell below zero by the mid-20s (-0.3 ± 0.6 kg/m 2 /y); in those with severe obesity, BMI slope never reached zero (0.9 ± 0.5 kg/m 2 /y). Youth with severe obesity, compared with their peers without, started with higher BMIs, had more rapid rates of BMI increase beginning at age 14, as well as a higher peak and longer period of increase, and never achieved weight stabilization. © 2018 The Obesity Society.

  7. Lagrangian Trajectory Modeling of Lunar Dust Particles

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Immer, Christopher D.

    2008-01-01

    Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.

  8. Heterogeneity in Trajectories of Body Mass Index and Their Associations with Mortality in Old Age: A Literature Review

    Directory of Open Access Journals (Sweden)

    Hiroshi Murayama

    2017-09-01

    Full Text Available This article reviewed studies to investigate the association between trajectories of body mass index (BMI and mortality among older adults. Investigators conducted a systematic search of published peer-reviewed literature in the PubMed database, and three articles that satisfied the inclusion criteria for the review were identified. All of these studies used group-based trajectory models to identify distinct BMI trajectories. Two studies were derived from the U.S. and used data from the Health and Retirement Study, with up to nine repeated observations. Most of the BMI trajectories in older Americans were increasing and fell primarily within the overweight and obese ranges. The other study was from Japan and used nationwide data, with up to seven repeated observations. BMI trajectories identified in the older Japanese were mostly decreasing and fell primarily within the normal weight range. Although the distribution of BMI trajectories was different between the two nations, the findings from these three studies consistently demonstrated that people with stable overweight trajectories had the lowest all-cause mortality rates in both countries. Beyond this, however, these studies suggested that priorities for weight control in old age should likely differ between Western and non-Western countries. Research regarding BMI trajectories and mortality in old age is very limited at present. Evidence from countries other than the U.S. and Japan is warranted in order to validate current findings and guide the development of local clinical and public health strategies for body weight management aimed at improving the health and survival of older adults.

  9. Meteor trajectory estimation from radio meteor observations

    Science.gov (United States)

    Kákona, J.

    2016-01-01

    Radio meteor observation techniques are generally accepted as meteor counting methods useful mainly for meteor flux detection. Due to the technical progress in radio engineering and electronics a construction of a radio meteor detection network with software defined receivers has become possible. These receivers could be precisely time synchronized and could obtain data which provide us with more information than just the meteor count. We present a technique which is able to compute a meteor trajectory from the data recorded by multiple radio stations.

  10. Simulation of molecular transitions using classical trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, A.; Martens, C. C. [University of California, California (United States)

    2001-03-01

    In the present work, we describe the implementation of a semiclassical method to study physical-chemical processes in molecular systems where electronic state transitions and quantum coherence play a dominant role. The method is based on classical trajectory propagation on the underlying coupled electronic surfaces and is derived from the semiclassical limit of the quantum Liouville equation. Unlike previous classical trajectory-based methods, quantum electronic coherence are treated naturally within this approach as complex weighted trajectory ensembles propagating on the average electronic surfaces. The method is tested on a model problem consisting of one-dimensional motion on two crossing electronic surfaces. Excellent agreement is obtained when compared to the exact results obtained by wave packet propagation. The method is applied to model quantum wave packet interferometry, where two wave packets, differing only in a relative phase, collide in the region where the two electronic surfaces cross. The dependence of the resulting population transfer on the initial relative phase of the wave packets is perfectly captured by our classical trajectory method. Comparison with an alternative method, surface hopping, shows that our approach is appropriate for modelling quantum interference phenomena. [Spanish] En este trabajo se describe la implementacion de un metodo semiclasico para estudiar procesos fisicos-quimicos en sistemas moleculares donde las transiciones entre estados electronicos y las coherencias cuanticas juegan un papel predominante. El metodo se basa en la propagacion de trayectorias clasicas sobre las correspondientes superficies electronicas acopladas y se deriva a partir del limite semiclasico de la ecuacion cuantica de Liouville. A diferencia de metodos previos basados en trayectoria clasica, dentro de este esquema, las coherencias electronicas cuanticas son tratadas de manera natural como ensamble de trayectorias con pesos complejos, moviendose en

  11. Data Wrangling Within Different Astronomy Career Trajectories

    Science.gov (United States)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L.; Traweek, S.

    2012-01-01

    Five kinds of astronomers work with large data sets: cosmologists, data analysts, instrumentation people, observers, and numerical theorists. Each of these career trajectories can diverge and converge in and out of collaborations with each other and perform different kinds of work. Nonetheless, each group defines and wrangles data differently. This poster characterizes their different meanings of data, analytic skills, techniques, and technologies. It also identifies some sites and patterns of convergence. We plot these collaborative relationships in bi-partite graphs. These emergent characteristics of the astronomy workforce have implications for curricula, pedagogies, and the division of labor in research collaborations.

  12. Design of Quiet Rotorcraft Approach Trajectories

    Science.gov (United States)

    Padula, Sharon L.; Burley, Casey L.; Boyd, D. Douglas, Jr.; Marcolini, Michael A.

    2009-01-01

    A optimization procedure for identifying quiet rotorcraft approach trajectories is proposed and demonstrated. The procedure employs a multi-objective genetic algorithm in order to reduce noise and create approach paths that will be acceptable to pilots and passengers. The concept is demonstrated by application to two different helicopters. The optimized paths are compared with one another and to a standard 6-deg approach path. The two demonstration cases validate the optimization procedure but highlight the need for improved noise prediction techniques and for additional rotorcraft acoustic data sets.

  13. Beam trajectories through the upgraded XTU tandem

    International Nuclear Information System (INIS)

    Guan Xialing

    1988-01-01

    The paper deals with a problem applicable to all electrostatic accelerators with inclined field accelerating tubes, how the trajectory of the central beam particle is affected if one of the accelerating gaps must be shorted out due to insulator failure. For the long tube of the Legnaro XTU tandem the effect of each accelerator gap is calculated and a method of compensation either by shorting out an appropriate gap with reversed incline or by appropriately steering the beam into the entrance of the low energy tube is given. (orig.)

  14. Quadrotor trajectory tracking using PID cascade control

    Science.gov (United States)

    Idres, M.; Mustapha, O.; Okasha, M.

    2017-12-01

    Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.

  15. Religion and psychosis: a common evolutionary trajectory?

    Science.gov (United States)

    Dein, Simon; Littlewood, Roland

    2011-07-01

    In this article we propose that schizophrenia and religious cognition engage cognate mental modules in the over-attribution of agency and the overextension of theory of mind. We argue similarities and differences between assumptions of ultrahuman agents with omniscient minds and certain ''pathological'' forms of thinking in schizophrenia: thought insertion, withdrawal and broadcasting, and delusions of reference. In everyday religious cognition agency detection and theory of mind modules function ''normally,'' whereas in schizophrenia both modules are impaired. It is suggested that religion and schizophrenia have perhaps had a related evolutionary trajectory.

  16. Discovery of convoys in trajectory databases

    DEFF Research Database (Denmark)

    Jeung, Hoyoung; Yiu, Man Lung; Zhou, Xiaofang

    2008-01-01

    a group of objects that have traveled together for some time. More specifically, this paper formalizes the concept of a convoy query using density-based notions, in order to capture groups of arbitrary extents and shapes. Convoy discovery is relevant for real-life applications in throughput planning...... convoys are further processed to obtain the actual convoys. Our comprehensive empirical study offers insight into the properties of the paper's proposals and demonstrates that the proposals are effective and efficient on real-world trajectory data....

  17. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood.

    Science.gov (United States)

    Wiium, Nora; Breivik, Kyrre; Wold, Bente

    2015-10-28

    Based on nine waves of data collected during a period of 17 years (1990-2007), the present study explored different developmental trajectories of the following unhealthy behaviors: regular smoking, lack of regular exercise, lack of daily fruit intake, and drunkenness. A baseline sample of 1195 13-year-old pupils was from 22 randomly selected schools in the Hordaland County in western Norway. Latent class growth analysis revealed three developmental trajectories. The first trajectory was a conventional trajectory, comprising 36.3% of participants, who showed changes in smoking, physical exercise, fruit intake, and drunkenness consistent with the prevailing age specific norms of these behaviors in the Norwegian society at the time. The second trajectory was a passive trajectory, comprising 25.5% of participants, who reported low levels of both healthy and unhealthy behaviors during the 17-year period. The third trajectory was an unhealthy trajectory, comprising 38.2% of participants, who had high levels of unhealthy behaviors over time. Several covariates were examined, but only sex and mother's and father's educational levels were found to be significantly associated with the identified trajectories. While these findings need to be replicated in future studies, the identification of the different trajectories suggests the need to tailor intervention according to specific needs.

  18. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood

    Directory of Open Access Journals (Sweden)

    Nora Wiium

    2015-10-01

    Full Text Available Based on nine waves of data collected during a period of 17 years (1990–2007, the present study explored different developmental trajectories of the following unhealthy behaviors: regular smoking, lack of regular exercise, lack of daily fruit intake, and drunkenness. A baseline sample of 1195 13-year-old pupils was from 22 randomly selected schools in the Hordaland County in western Norway. Latent class growth analysis revealed three developmental trajectories. The first trajectory was a conventional trajectory, comprising 36.3% of participants, who showed changes in smoking, physical exercise, fruit intake, and drunkenness consistent with the prevailing age specific norms of these behaviors in the Norwegian society at the time. The second trajectory was a passive trajectory, comprising 25.5% of participants, who reported low levels of both healthy and unhealthy behaviors during the 17-year period. The third trajectory was an unhealthy trajectory, comprising 38.2% of participants, who had high levels of unhealthy behaviors over time. Several covariates were examined, but only sex and mother’s and father’s educational levels were found to be significantly associated with the identified trajectories. While these findings need to be replicated in future studies, the identification of the different trajectories suggests the need to tailor intervention according to specific needs.

  19. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood

    Science.gov (United States)

    Wiium, Nora; Breivik, Kyrre; Wold, Bente

    2015-01-01

    Based on nine waves of data collected during a period of 17 years (1990–2007), the present study explored different developmental trajectories of the following unhealthy behaviors: regular smoking, lack of regular exercise, lack of daily fruit intake, and drunkenness. A baseline sample of 1195 13-year-old pupils was from 22 randomly selected schools in the Hordaland County in western Norway. Latent class growth analysis revealed three developmental trajectories. The first trajectory was a conventional trajectory, comprising 36.3% of participants, who showed changes in smoking, physical exercise, fruit intake, and drunkenness consistent with the prevailing age specific norms of these behaviors in the Norwegian society at the time. The second trajectory was a passive trajectory, comprising 25.5% of participants, who reported low levels of both healthy and unhealthy behaviors during the 17-year period. The third trajectory was an unhealthy trajectory, comprising 38.2% of participants, who had high levels of unhealthy behaviors over time. Several covariates were examined, but only sex and mother’s and father’s educational levels were found to be significantly associated with the identified trajectories. While these findings need to be replicated in future studies, the identification of the different trajectories suggests the need to tailor intervention according to specific needs. PMID:26516889

  20. Renewal of Road Networks Using Map-matching Technique of Trajectories

    Directory of Open Access Journals (Sweden)

    WU Tao

    2017-04-01

    Full Text Available The road network with complete and accurate information, as one of the key foundations of Smart City, bears significance in fields like urban planning, traffic managing and public traveling, et al. However, long manufacturing period of road network data, based on traditional surveying methods, often leaves it in an inconsistent state with the latest situation. Recently, positioning techniques ubiquitously used in mobile devices has been gradually coming into focus for domestic and overseas scholars. Currently, most of approaches, generating or updating road networks from mobile location information, are to compute with GPS trajectory data directly by various algorithms, which lead to expensive consumption of computational resources in case of mass GPS data covering large-scale areas. For this reason, we propose a spiral update strategy of road network data based on map-matching technology, which follows a “identify→analyze→extract→update” process. The main idea is to detect condemned road segments of existing road network data with the help of HMM for each trajectory input, as well as repair them, on the local scale, by extracting new road information from trajectory data.The proposed approach avoids computing on the entire dataset of trajectory data for road segments. Instead, it updates information of existing road network data by means of focalizing on the minimum range of potential condemned segments. We evaluated the performance of our proposals using GPS traces collected on taxies and OpenStreetMap(OSM road networks covering urban areas of Wuhan City.

  1. Efficient Procedure to Compute the Microcanonical Volume of Initial Conditions that Lead to Escape Trajectories from a Multidimensional Potential Well

    NARCIS (Netherlands)

    Waalkens, Holger; Burbanks, Andrew; Wiggins, Stephen

    2005-01-01

    A procedure is presented for computing the phase space volume of initial conditions for trajectories that escape or ‘‘react’’ from a multidimensional potential well. The procedure combines a phase space transition state theory, which allows one to construct dividing surfaces that are free of local

  2. Trajectories of Marital Conflict across the Life Course: Predictors and Interactions with Marital Happiness Trajectories

    Science.gov (United States)

    Kamp Dush, Claire M.; Taylor, Miles G.

    2012-01-01

    Using typologies outlined by Gottman and Fitzpatrick as well as institutional and companionate models of marriage, the authors conducted a latent class analysis of marital conflict trajectories using 20 years of data from the Marital Instability Over the Life Course study. Respondents were in one of three groups: high, medium (around the mean), or…

  3. Implementation fidelity trajectories of a health promotion program in multidisciplinary settings: managing tensions in rehabilitation care.

    Science.gov (United States)

    Hoekstra, Femke; van Offenbeek, Marjolein A G; Dekker, Rienk; Hettinga, Florentina J; Hoekstra, Trynke; van der Woude, Lucas H V; van der Schans, Cees P

    2017-12-01

    = - 1032, p = .303). Differences in organizational-level implementation fidelity trajectories did not result in outcome differences at patient-level. This suggests that an effective implementation fidelity trajectory is contingent on the local organization's conditions. More specifically, achieving stable high implementation fidelity required the management of tensions: realizing a localized change vision, while safeguarding the program's standardized core components and engaging the scarce physicians throughout the process. When scaling up evidence-informed health promotion programs, we propose to tailor the management of implementation tensions to local organizations' starting position, size, and circumstances. The Netherlands National Trial Register NTR3961 . Registered 18 April 2013.

  4. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-10-01

    The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.

  5. Cosmic ray particle dosimetry and trajectory tracing

    International Nuclear Information System (INIS)

    Cruty, M.R.; Benton, E.V.; Turnbill, C.E.; Philpott, D.E.

    1975-01-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package

  6. Complexity in Individual Trajectories toward Online Extremism

    Directory of Open Access Journals (Sweden)

    Z. Cao

    2018-01-01

    Full Text Available Society faces a fundamental global problem of understanding which individuals are currently developing strong support for some extremist entity such as ISIS (Islamic State, even if they never end up doing anything in the real world. The importance of online connectivity in developing intent has been confirmed by recent case studies of already convicted terrorists. Here we use ideas from Complexity to identify dynamical patterns in the online trajectories that individuals take toward developing a high level of extremist support, specifically, for ISIS. Strong memory effects emerge among individuals whose transition is fastest and hence may become “out of the blue” threats in the real world. A generalization of diagrammatic expansion theory helps quantify these characteristics, including the impact of changes in geographical location, and can facilitate prediction of future risks. By quantifying the trajectories that individuals follow on their journey toward expressing high levels of pro-ISIS support—irrespective of whether they then carry out a real-world attack or not—our findings can help move safety debates beyond reliance on static watch-list identifiers such as ethnic background or immigration status and/or postfact interviews with already convicted individuals. Given the broad commonality of social media platforms, our results likely apply quite generally; for example, even on Telegram where (like Twitter there is no built-in group feature as in our study, individuals tend to collectively build and pass through the so-called super-group accounts.

  7. Quantum trajectories: Memory and continuous observation

    Science.gov (United States)

    Barchielli, Alberto; Pellegrini, Clément; Petruccione, Francesco

    2012-12-01

    Starting from a generalization of the quantum trajectory theory [based on the stochastic Schrödinger equation (SSE)], non-Markovian models of quantum dynamics are derived. In order to describe non-Markovian effects, the approach used in this article is based on the introduction of random coefficients in the usual linear SSE. A major interest is that this allows a consistent theory of quantum measurement in continuous time to be developed for these non-Markovian quantum trajectory models. In this context, the notions of “instrument,” “a priori,” and “a posteriori” states can be introduced. The key point is that by starting from a stochastic equation on the Hilbert space of the system, we are able to respect the complete positivity of the mean dynamics for the statistical operator and the requirements of the axioms of quantum measurement theory. The flexibility of the theory is next illustrated by a concrete physical model of a noisy oscillator where non-Markovian effects come from the random environment, colored noises, randomness in the stimulating light, and delay effects. The statistics of the emitted photons and the heterodyne and homodyne spectra are studied, and we show how these quantities are sensitive to the non-Markovian features of the system dynamics, so that, in principle, the observation and analysis of the fluorescent light could reveal the presence of non-Markovian effects and allow for a measure of the spectra of the noises affecting the system dynamics.

  8. Maternal age and trajectories of cannabis use.

    Science.gov (United States)

    De Genna, Natacha M; Cornelius, Marie D; Goldschmidt, Lidush; Day, Nancy L

    2015-11-01

    Becoming a mother is a developmental transition that has been linked to desistance from substance use. However, timing of motherhood may be a key determinant of cannabis use in women, based on preliminary evidence from teenage mothers. The goal of this study was to identify trajectories of maternal cannabis use, and to determine if maternal age was associated with different trajectories of use. This prospective study examined 456 pregnant women recruited at a prenatal clinic, ranging in age from 13 to 42 years. The women were interviewed about their cannabis use 1 year prior to pregnancy and during each trimester of pregnancy, and at 6, 10, 14, and 16 years post-partum. A growth mixture model of cannabis use reported at each time point clearly delineated four groups: non/unlikely to use, decreasing likelihood of use, late desistance, and increasing likelihood/chronic use (Lo-Mendell-Rubin adjusted LRT test statistic=35.7, pdepressive symptoms were also associated with more frequent use. These findings have implications for both prevention and treatment of cannabis use in mothers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Dynamic trajectory-based couch motion for improvement of radiation therapy trajectories in cranial SRT

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. Lee [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Thomas, Christopher G., E-mail: Chris.Thomas@cdha.nshealth.ca [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Medical Physics, Nova Scotia Cancer Centre, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia B3H 1V7 (Canada); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Radiology, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-05-15

    Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space, indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry motion

  10. Dynamic trajectory-based couch motion for improvement of radiation therapy trajectories in cranial SRT

    International Nuclear Information System (INIS)

    MacDonald, R. Lee; Thomas, Christopher G.

    2015-01-01

    Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space, indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry motion

  11. Vision-based map building and trajectory planning to enable autonomous flight through urban environments

    Science.gov (United States)

    Watkins, Adam S.

    The desire to use Unmanned Air Vehicles (UAVs) in a variety of complex missions has motivated the need to increase the autonomous capabilities of these vehicles. This research presents autonomous vision-based mapping and trajectory planning strategies for a UAV navigating in an unknown urban environment. It is assumed that the vehicle's inertial position is unknown because GPS in unavailable due to environmental occlusions or jamming by hostile military assets. Therefore, the environment map is constructed from noisy sensor measurements taken at uncertain vehicle locations. Under these restrictions, map construction becomes a state estimation task known as the Simultaneous Localization and Mapping (SLAM) problem. Solutions to the SLAM problem endeavor to estimate the state of a vehicle relative to concurrently estimated environmental landmark locations. The presented work focuses specifically on SLAM for aircraft, denoted as airborne SLAM, where the vehicle is capable of six degree of freedom motion characterized by highly nonlinear equations of motion. The airborne SLAM problem is solved with a variety of filters based on the Rao-Blackwellized particle filter. Additionally, the environment is represented as a set of geometric primitives that are fit to the three-dimensional points reconstructed from gathered onboard imagery. The second half of this research builds on the mapping solution by addressing the problem of trajectory planning for optimal map construction. Optimality is defined in terms of maximizing environment coverage in minimum time. The planning process is decomposed into two phases of global navigation and local navigation. The global navigation strategy plans a coarse, collision-free path through the environment to a goal location that will take the vehicle to previously unexplored or incompletely viewed territory. The local navigation strategy plans detailed, collision-free paths within the currently sensed environment that maximize local coverage

  12. Measuring the Distance of Moving Objects from Big Trajectory Data

    Directory of Open Access Journals (Sweden)

    Khaing Phyo Wai

    2017-03-01

    Full Text Available Location-based services have become important in social networking, mobile applications, advertising, traffic monitoring, and many other domains. The growth of location sensing devices has led to the vast generation of dynamic spatial-temporal data in the form of moving object trajectories which can be characterized as big trajectory data. Big trajectory data enables the opportunities such as analyzing the groups of moving objects. To obtain such facilities, the issue of this work is to find a distance measurement method that respects the geographic distance and the semantic similarity for each trajectory. Measurement of similarity between moving objects is a difficult task because not only their position changes but also their semantic features vary. In this research, a method to measure trajectory similarity based on both geographical features and semantic features of motion is proposed. Finally, the proposed methods are practically evaluated by using real trajectory dataset.

  13. A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories

    Science.gov (United States)

    Narkawicz, Anthony; Munoz, Cesar

    2015-01-01

    In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.

  14. IRVE-II Post-Flight Trajectory Reconstruction

    Science.gov (United States)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  15. GeoTravel: Harvesting Ambient Geographic Footprints from GPS Trajectories

    OpenAIRE

    Liew, Li Ching; Goh, Ong Sing

    2014-01-01

    This study is about harvesting point of interest from GPS trajectories. Trajectories are the paths that moving objects move by follow through space in a function of time while GPS trajectories generally are point-sequences with geographic coordinates, time stamp, speed and heading. User can get information from GPS enable device. For example, user can acquire present location, search the information around them and design driving routes to a destination and thus design travel itineraries. By ...

  16. Synthetic triphones from trajectory-based feature distributions

    CSIR Research Space (South Africa)

    Badenhorst, J

    2015-11-01

    Full Text Available we reconstruct models for unseen transitions. In the current study, we restrict ourselves to triphone modelling, and aim to generate synthetic triphones from seen diphones. If this is possible, the same approach should be applicable to larger contexts... are applied in a similar fashion. Using trajectory models for the same goal, builds on prior work analysing co-articulation trajectories [7], [8], [9] as well as various studies on trajectory modelling for ASR purposes [10], [11], [12], [13]. Particularly...

  17. Trajectory optimization using indirect methods and parametric scramjet cycle analysis

    OpenAIRE

    Williams, Joseph

    2016-01-01

    This study investigates the solution of time sensitive regional strike trajectories for hypersonic missiles. This minimum time trajectory is suspected to be best performed by scramjet powered hypersonic missiles which creates strong coupled interaction between the flight dynamics and the performance of the engine. Comprehensive engine models are necessary to gain better insight into scramjet propulsion. Separately, robust and comprehensive trajectory analysis provides references for vehicles ...

  18. Advancing nursing science through health trajectory research: an introduction.

    Science.gov (United States)

    Wyman, Jean F; Henly, Susan J

    2011-01-01

    The Minnesota Center for Health Trajectory Research has focused on developing ways to better understand how interventions influence health trajectories during transitional, acute, or chronic health challenges across the life span. The health trajectory perspective advances nursing science by providing a person-centered point of view that emphasizes change in health over time within individuals, families, groups, or communities. Theoretical considerations and statistical modeling approaches used in studying health trajectories, along with exemplars from nursing research studies from this special issue of Nursing Research, are highlighted.

  19. Algorithms for computing efficient, electric-propulsion, spiralling trajectories

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  20. Tracing developmental trajectories of oppositional defiant behaviors in preschool children.

    Directory of Open Access Journals (Sweden)

    Lourdes Ezpeleta

    Full Text Available Previous studies on developmental trajectories have used ad hoc definitions of oppositional defiant behaviors (ODB, which makes it difficult to compare results. This article defines developmental trajectories of ODB from ages 3-5 based on five different standard measurements derived from three separate instruments.A sample of 622 three-year-old preschoolers, followed up at ages 4, 5, and 6, was assessed with the five measures of oppositionality answered by parents and teachers. Growth-Mixture-Modeling (GMM estimated separate developmental trajectories for each ODB measure for ages 3 to 5.The number of classes-trajectories obtained in each GMM depended on the ODB measure, but two clear patterns emerged: four trajectories (persistent low, decreasers, increasers/high increasers, persistent moderate/persistent high or three trajectories (persistent low, decreasers, increasers/high increasers. Persistent high trajectories accounted for 4.4%-9.5% of the children. The trajectories emerging from the different ODB measures at ages 3 to 5 discriminated disruptive disorders, comorbidity, use of services, and impairment at age 6, and globally showed a similar pattern, summarizing longitudinal information on oppositionality in preschool children in a similar way.Trajectories resulting from standard scales of the questionnaires have predictive validity for identifying relevant clinical outcomes, but are measure-specific. The results contribute to knowledge about the development of ODB in preschool children.