WorldWideScience

Sample records for localized hole energy-level

  1. Energy level diagrams for black hole orbits

    Science.gov (United States)

    Levin, Janna

    2009-12-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  2. Energy level diagrams for black hole orbits

    International Nuclear Information System (INIS)

    Levin, Janna

    2009-01-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  3. A Localization-Free Interference and Energy Holes Minimization Routing for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Khan, Anwar; Ahmedy, Ismail; Anisi, Mohammad Hossein; Javaid, Nadeem; Ali, Ihsan; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan

    2018-01-09

    Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.

  4. A Localization-Free Interference and Energy Holes Minimization Routing for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Anwar Khan

    2018-01-01

    Full Text Available Interference and energy holes formation in underwater wireless sensor networks (UWSNs threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.

  5. Localized AdS_{5}×S^{5} Black Holes.

    Science.gov (United States)

    Dias, Óscar J C; Santos, Jorge E; Way, Benson

    2016-10-07

    According to heuristic arguments, global AdS_{5}×S^{5} black holes are expected to undergo a phase transition in the microcanonical ensemble. At high energies, one expects black holes that respect the symmetries of the S^{5}; at low energies, one expects "localized" black holes that appear pointlike on the S^{5}. According to anti-de Sitter/conformal field theory correspondence, N=4 supersymmetric Yang-Mills (SYM) theory on a 3-sphere should therefore exhibit spontaneous R-symmetry breaking at strong coupling. In this Letter, we numerically construct these localized black holes. We extrapolate the location of this phase transition, and compute the expectation value of the broken scalar operator with lowest conformal dimension. Via the correspondence, these results offer quantitative predictions for N=4 SYM theory.

  6. Plasma balls in large-N gauge theories and localized black holes

    International Nuclear Information System (INIS)

    Aharony, Ofer; Minwalla, Shiraz; Wiseman, Toby

    2006-01-01

    We argue for the existence of plasma balls-metastable, nearly homogeneous lumps of gluon plasma at just above the deconfinement energy density-in a class of large-N confining gauge theories that undergo first-order deconfinement transitions. Plasma balls decay over a time scale of order N 2 by thermally radiating hadrons at the deconfinement temperature. In gauge theories that have a dual description that is well approximated by a theory of gravity in a warped geometry, we propose that plasma balls map to a family of classically stable finite-energy black holes localized in the IR. We present a conjecture for the qualitative nature of large-mass black holes in such backgrounds and numerically construct these black holes in a particular class of warped geometries. These black holes have novel properties; in particular, their temperature approaches a nonzero constant value at large mass. Black holes dual to plasma balls shrink as they decay by Hawking radiation; towards the end of this process, they resemble ten-dimensional Schwarzschild black holes, which we propose are dual to small plasma balls. Our work may find practical applications in the study of the physics of localized black holes from a dual viewpoint

  7. Six-dimensional localized black holes: Numerical solutions

    International Nuclear Information System (INIS)

    Kudoh, Hideaki

    2004-01-01

    To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider black holes bound to a brane. In a previous paper, we studied numerical solutions of localized black holes whose horizon radii are smaller than the AdS curvature radius. In this paper, we improve the numerical method and discuss properties of the six-dimensional (6D) localized black holes whose horizon radii are larger than the AdS curvature radius. At a horizon temperature T≅1/2πl, the thermodynamics of the localized black hole undergo a transition with its character changing from a 6D Schwarzschild black hole type to a 6D black string type. The specific heat of the localized black holes is negative, and the entropy is greater than or nearly equal to that of the 6D black strings with the same thermodynamic mass. The large localized black holes show flattened horizon geometries, and the intrinsic curvature of the horizon four-geometry becomes negative near the brane. Our results indicate that the recovery mechanism of lower-dimensional Einstein gravity on the brane works even in the presence of the black holes

  8. Dark information of black hole radiation raised by dark energy

    Science.gov (United States)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  9. Emergence of Space-Time Localization and Cosmic Decoherence:. More on Irreversible Time, Dark Energy, Anti-Matter and Black-Holes

    Science.gov (United States)

    Magnon, Anne

    2005-04-01

    anticipated by black-hole event horizons, cosmic censors able to shelter causal geometry). In analogy with black-hole singularities, the Big-Bang can be viewed as a geometric hint that a transition from incoherence to (causal space-time) localization and related coherence (comprehensibility), is taking place (space-time demolition, a reverse process towards incoherence or information recycling, is expected in the vicinity of singularities, as hinted by black-holes and related "time-machines"). A theory of the emergence of perception (and life?), in connection with observability and the function of partition (able to screen totality), is on its way [interface incoherence-coherence, sleeping and awaking states of localization, horizons of perception etc, are anticipated by black-hole event horizons, beyond which a non causal, dimensionless incoherent regime or memorization process, presents itself with the loss of localization, suggesting a unifying regime (ultimate energies?) hidden in cosmic potentialities]. The decoherence process presented here, suggests an ultimate interaction, expression of the logical relation of subsystems to totality, and to be identified to the flow of information or its recycling through cosmic jump (this is anticipated by the dissipation of distance or hierarchies on null-cones, themselves recycled with information and events). The geometric projection of this unified irreversible dynamics is expressed by unified Yang-Mills field equations (coupled to Einsteinian gravity). An ultimate form of action ("set"-volumes of information) presents itself, whose extrema can be achieved through extremal transfer of information and related partition of cells of information (thus anticipating the mitosis of living cells, possibly triggered at the non localizable level, as imposed by the logical regime of cosmic decoherence: participating subsystems ?). The matching of the objective and subjective facets of (information and) decoherences is perceived as contact

  10. Stability issues of black hole in non-local gravity

    Science.gov (United States)

    Myung, Yun Soo; Park, Young-Jai

    2018-04-01

    We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.

  11. Horizon wave function for single localized particles: GUP and quantum black-hole decay

    International Nuclear Information System (INIS)

    Casadio, Roberto; Scardigli, Fabio

    2014-01-01

    A localized particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle's energy density exceeds a certain threshold, it should be a black hole. To combine these two pictures, we introduce a horizon wave function determined by the particle wave function in position space, which eventually yields the probability that the particle is a black hole. The existence of a minimum mass for black holes naturally follows, albeit not in the form of a sharp value around the Planck scale, but rather like a vanishing probability that a particle much lighter than the Planck mass may be a black hole. We also show that our construction entails an effective generalized uncertainty principle (GUP), simply obtained by adding the uncertainties coming from the two wave functions associated with a particle. Finally, the decay of microscopic (quantum) black holes is also described in agreement with what the GUP predicts. (orig.)

  12. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  13. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  14. Investigating Dark Energy with Black Hole Binaries

    International Nuclear Information System (INIS)

    Mersini-Houghton, Laura; Kelleher, Adam

    2009-01-01

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accrete dark energy. The accretion induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state w[z] of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. This talk describes how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy.

  15. Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3

    Science.gov (United States)

    Chen, Hungru; Umezawa, Naoto

    2014-07-01

    Hybrid density functional calculations are carried out to investigate the behavior of holes in SrTiO3. As in many other oxides, it is shown that a hole tend to localize on one oxygen forming an O- anion with a concomitant lattice distortion; therefore a hole polaron. The calculated emission energy from the recombination of the localized hole and a conduction-band electron is about 2.5 eV, in good agreement with experiments. Therefore the localization of the hole or self-trapping is likely to be responsible for the green photoluminescence at low temperature, which was previously attributed to an unknown defect state. Compared to an electron, the calculated hole polaron mobility is three orders of magnitude lower at room temperature. In addition, two O- anions can bind strongly to form an O22- peroxide anion. No electronic states associated with the O22- peroxide anion are located inside the band gap or close to the band edges, indicating that it is electronically inactive. We suggest that in addition to the oxygen vacancy, the formation of the O22- peroxide anion can be an alternative to compensate acceptor doping in SrTiO3.

  16. QED loop effects in the spacetime background of a Schwarzschild black hole

    Science.gov (United States)

    Emelyanov, Viacheslav A.

    2017-12-01

    The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.

  17. Black holes in the presence of dark energy

    International Nuclear Information System (INIS)

    Babichev, E O; Dokuchaev, V I; Eroshenko, Yu N

    2013-01-01

    The new, rapidly developing field of theoretical research—studies of dark energy interacting with black holes (and, in particular, accreting onto black holes)–—is reviewed. The term 'dark energy' is meant to cover a wide range of field theory models, as well as perfect fluids with various equations of state, including cosmological dark energy. Various accretion models are analyzed in terms of the simplest test field approximation or by allowing back reaction on the black-hole metric. The behavior of various types of dark energy in the vicinity of Schwarzschild and electrically charged black holes is examined. Nontrivial effects due to the presence of dark energy in the black hole vicinity are discussed. In particular, a physical explanation is given of why the black hole mass decreases when phantom energy is being accreted, a process in which the basic energy conditions of the famous theorem of nondecreasing horizon area in classical black holes are violated. The theoretical possibility of a signal escaping from beneath the black hole event horizon is discussed for a number of dark energy models. Finally, the violation of the laws of thermodynamics by black holes in the presence of noncanonical fields is considered. (reviews of topical problems)

  18. Black supernovae and black holes in non-local gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University,200433 Shanghai (China); Theoretical Astrophysics, Eberhard-Karls Universität Tübingen,72076 Tübingen (Germany); Malafarina, Daniele [Department of Physics, Nazarbayev University,010000 Astana (Kazakhstan); Modesto, Leonardo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University,200433 Shanghai (China)

    2016-04-22

    In a previous paper, we studied the interior solution of a collapsing body in a non-local theory of gravity super-renormalizable at the quantum level. We found that the classical singularity is replaced by a bounce, after which the body starts expanding. A black hole, strictly speaking, never forms. The gravitational collapse does not create an event horizon but only an apparent one for a finite time. In this paper, we solve the equations of motion assuming that the exterior solution is static. With such an assumption, we are able to reconstruct the solution in the whole spacetime, namely in both the exterior and interior regions. Now the gravitational collapse creates an event horizon in a finite comoving time, but the central singularity is approached in an infinite time. We argue that these black holes should be unstable, providing a link between the scenarios with and without black holes. Indeed, we find a non catastrophic ghost-instability of the metric in the exterior region. Interestingly, under certain conditions, the lifetime of our black holes exactly scales as the Hawking evaporation time.

  19. Selecting core-hole localization or delocalization in CS2 by photofragmentation dynamics.

    Science.gov (United States)

    Guillemin, R; Decleva, P; Stener, M; Bomme, C; Marin, T; Journel, L; Marchenko, T; Kushawaha, R K; Jänkälä, K; Trcera, N; Bowen, K P; Lindle, D W; Piancastelli, M N; Simon, M

    2015-01-21

    Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

  20. Static black hole and vacuum energy: thin shell and incompressible fluid

    Science.gov (United States)

    Ho, Pei-Ming; Matsuo, Yoshinori

    2018-03-01

    With the back reaction of the vacuum energy-momentum tensor consistently taken into account, we study static spherically symmetric black-hole-like solutions to the semi-classical Einstein equation. The vacuum energy is assumed to be given by that of 2-dimensional massless scalar fields, as a widely used model in the literature for black holes. The solutions have no horizon. Instead, there is a local minimum in the radius. We consider thin shells as well as incompressible fluid as the matter content of the black-hole-like geometry. The geometry has several interesting features due to the back reaction of vacuum energy. In particular, Buchdahl's inequality can be violated without divergence in pressure, even if the surface is below the Schwarzschild radius. At the same time, the surface of the star can not be far below the Schwarzschild radius for a density not much higher than the Planck scale, and the proper distance from its surface to the origin can be very short even for very large Schwarzschild radius. The results also imply that, contrary to the folklore, in principle the Boulware vacuum can be physical for black holes.

  1. Light escape cones in local reference frames of Kerr-de Sitter black hole spacetimes and related black hole shadows

    Science.gov (United States)

    Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan

    2018-03-01

    We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.

  2. Energy levels of a scalar particle in a static gravitational field close to the black hole limit

    Science.gov (United States)

    Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.

    2011-10-01

    The bound-state energy levels of a scalar particle in the gravitational field of finite-sized objects with interiors described by the Florides and Schwarzschild metrics are found. For these metrics, bound states with zero energy (where the binding energy is equal to the rest mass of the scalar particle) only exist when a singularity occurs in the metric. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides metric the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the center. Moreover, the energy spectrum is shown to become quasi-continuous as the metric becomes singular.

  3. Management of Sustainable Energy Efficient Development at the Local Level: Stakeholder-Oriented Approach

    Directory of Open Access Journals (Sweden)

    Horban Vasylyna B.

    2016-11-01

    Full Text Available There presented a theoretical rationale for the expediency of using the stakeholder-oriented approach to improve the process of management of sustainable energy efficient development at the local level. The evolution of theories by scientific schools that studied the concepts of «stakeholders» and «interested parties» is analyzed and generalized. A classification of types of stakeholders in the context of eighteen typological features is suggested, which allows to more effectively align their interests and contributes to establishing constructive forms of cooperation in order to achieve efficient final results. An algorithm of interaction with interested parties in achieving the goals of sustainable energy efficient development at the local level is elaborated. Typical motivational interests of stakeholders at the local level in the field of sustainable energy efficient development (on the example of Ukraine are identified. Instruments of prioritization of stakeholders depending on the life cycle stages of energy efficiency projects are proposed. The results obtained in the course of the research can be used to develop local energy efficient programs, business plans and feasibility studies for energy efficient projects.

  4. Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials.

    Science.gov (United States)

    Eastham, Nicholas D; Logsdon, Jenna L; Manley, Eric F; Aldrich, Thomas J; Leonardi, Matthew J; Wang, Gang; Powers-Riggs, Natalia E; Young, Ryan M; Chen, Lin X; Wasielewski, Michael R; Melkonyan, Ferdinand S; Chang, Robert P H; Marks, Tobin J

    2018-01-01

    Bulk-heterojunction organic photovoltaic materials containing nonfullerene acceptors (NFAs) have seen remarkable advances in the past year, finally surpassing fullerenes in performance. Indeed, acceptors based on indacenodithiophene (IDT) have become synonymous with high power conversion efficiencies (PCEs). Nevertheless, NFAs have yet to achieve fill factors (FFs) comparable to those of the highest-performing fullerene-based materials. To address this seeming anomaly, this study examines a high efficiency IDT-based acceptor, ITIC, paired with three donor polymers known to achieve high FFs with fullerenes, PTPD3T, PBTI3T, and PBTSA3T. Excellent PCEs up to 8.43% are achieved from PTPD3T:ITIC blends, reflecting good charge transport, optimal morphology, and efficient ITIC to PTPD3T hole-transfer, as observed by femtosecond transient absorption spectroscopy. Hole-transfer is observed from ITIC to PBTI3T and PBTSA3T, but less efficiently, reflecting measurably inferior morphology and nonoptimal energy level alignment, resulting in PCEs of 5.34% and 4.65%, respectively. This work demonstrates the importance of proper morphology and kinetics of ITIC → donor polymer hole-transfer in boosting the performance of polymer:ITIC photovoltaic bulk heterojunction blends. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Local and dynamic properties of light interacting with subwavelength holes

    NARCIS (Netherlands)

    Prangsma, Jord

    2009-01-01

    The discovery of the extraordinary transmission phenomena has initiated an intense study of the interaction of light with subwavelength holes. In this thesis the dynamic and local properties of light interacting with subwavelength holes are investigated. First of all the role of hole shape on the

  6. Growing massive black holes in a Local Group environment: the central supermassive, slowly sinking and ejected populations

    Science.gov (United States)

    Micic, Miroslav; Holley-Bockelmann, Kelly; Sigurdsson, Steinn

    2011-06-01

    We explore the growth of ≤107 M⊙ black holes that reside at the centres of spiral and field dwarf galaxies in a Local Group type of environment. We use merger trees from a cosmological N-body simulation known as Via Lactea 2 (VL-2) as a framework to test two merger-driven semi-analytic recipes for black hole growth that include dynamical friction, tidal stripping and gravitational wave recoil in over 20 000 merger tree realizations. First, we apply a Fundamental Plane limited (FPL) model to the growth of Sgr A*, which drives the central black hole to a maximum mass limited by the black hole Fundamental Plane after every merger. Next, we present a new model that allows for low-level prolonged gas accretion (PGA) during the merger. We find that both models can generate an Sgr A* mass black hole. We predict a population of massive black holes in local field dwarf galaxies - if the VL-2 simulation is representative of the growth of the Local Group, we predict up to 35 massive black holes (≤106 M⊙) in Local Group field dwarfs. We also predict that hundreds of ≤105 M⊙ black holes fail to merge, and instead populate the Milky Way halo, with the most massive of them at roughly the virial radius. In addition, we find that there may be hundreds of massive black holes ejected from their hosts into the nearby intergalactic medium due to gravitational wave recoil. We discuss how the black hole population in the Local Group field dwarfs may help to constrain the growth mechanism for Sgr A*.

  7. Energy Distribution of a Regular Black Hole Solution in Einstein-Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    I. Radinschi

    2015-01-01

    Full Text Available A study about the energy momentum of a new four-dimensional spherically symmetric, static and charged, regular black hole solution developed in the context of general relativity coupled to nonlinear electrodynamics is presented. Asymptotically, this new black hole solution behaves as the Reissner-Nordström solution only for the particular value μ=4, where μ is a positive integer parameter appearing in the mass function of the solution. The calculations are performed by use of the Einstein, Landau-Lifshitz, Weinberg, and Møller energy momentum complexes. In all the aforementioned prescriptions, the expressions for the energy of the gravitating system considered depend on the mass M of the black hole, its charge q, a positive integer α, and the radial coordinate r. In all these pseudotensorial prescriptions, the momenta are found to vanish, while the Landau-Lifshitz and Weinberg prescriptions give the same result for the energy distribution. In addition, the limiting behavior of the energy for the cases r→∞, r→0, and q=0 is studied. The special case μ=4 and α=3 is also examined. We conclude that the Einstein and Møller energy momentum complexes can be considered as the most reliable tools for the study of the energy momentum localization of a gravitating system.

  8. Local Hawking temperature for dynamical black holes

    International Nuclear Information System (INIS)

    Hayward, S A; Criscienzo, R Di; Nadalini, M; Vanzo, L; Zerbini, S

    2009-01-01

    A local Hawking temperature is derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi variant of the Parikh-Wilczek tunneling method. It is given by a dynamical surface gravity as defined geometrically. The operational meaning of the temperature is that Kodama observers just outside the horizon measure an invariantly redshifted temperature, diverging at the horizon itself. In static, asymptotically flat cases, the Hawking temperature as usually defined by the Killing vector agrees in standard cases, but generally differs by a relative redshift factor between the horizon and infinity, this being the temperature measured by static observers at infinity. Likewise, the geometrical surface gravity reduces to the Newtonian surface gravity in the Newtonian limit, while the Killing definition instead reflects measurements at infinity. This may resolve a long-standing puzzle concerning the Hawking temperature for the extremal limit of the charged stringy black hole, namely that it is the local temperature which vanishes. In general, this confirms the quasi-stationary picture of black-hole evaporation in early stages. However, the geometrical surface gravity is generally not the surface gravity of a static black hole with the same parameters. (fast track communication)

  9. The effect of particle-hole interaction on the XPS core-hole spectrum

    International Nuclear Information System (INIS)

    Ohno, Masahide; Sjoegren, Lennart

    2004-01-01

    How the effective particle-hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster-Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy)

  10. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    Science.gov (United States)

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  11. Thermodynamic phase transition in the rainbow Schwarzschild black hole

    International Nuclear Information System (INIS)

    Gim, Yongwan; Kim, Wontae

    2014-01-01

    We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energy tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole

  12. Mass and free energy of Lovelock black holes

    International Nuclear Information System (INIS)

    Kastor, David; Traschen, Jennie; Ray, Sourya

    2011-01-01

    An explicit formula for the ADM mass of an asymptotically AdS black hole in a generic Lovelock gravity theory is presented, identical in form to that in Einstein gravity, but multiplied by a function of the Lovelock coupling constants and the AdS curvature radius. A Gauss' law-type formula relates the mass, which is an integral at infinity, to an expression depending instead on the horizon radius. This and other thermodynamic quantities, such as the free energy, are then analyzed in the limits of small and large horizon radius, yielding results that are independent of the detailed choice of Lovelock couplings. In even dimensions, the temperature diverges in both limits, implying the existence of a minimum temperature for black holes. The negative free energy of sufficiently large black holes implies the existence of a Hawking-Page transition. In odd dimensions, the temperature still diverges for large black holes, which again have negative free energy. However, the temperature vanishes as the horizon radius tends to zero and sufficiently small black holes have positive specific heat.

  13. Communication: Hole localization in Al-doped quartz SiO{sub 2} within ab initio hybrid-functional DFT

    Energy Technology Data Exchange (ETDEWEB)

    Gerosa, Matteo [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Di Valentin, Cristiana; Pacchioni, Gianfranco [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milan (Italy); Bottani, Carlo Enrico, E-mail: carlo.bottani@polimi.it [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy); Onida, Giovanni [Dipartimento di Fisica dell’ Universita’ degli Studi di Milano and European Theoretical Spectroscopy Facility (ETSF), Via Celoria 16, 20133 Milan (Italy)

    2015-09-21

    We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO{sub 2}, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained ab initio, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.

  14. Entropy of localized states and black hole evaporation

    International Nuclear Information System (INIS)

    Olum, K.D.

    1997-01-01

    We call a state 'vacuum bounded' if every measurement performed outside a specified interior region gives the same result as in the vacuum. We compute the maximum entropy of a vacuum-bounded state with a given energy for a one-dimensional model, with the aid of numerical calculations on a lattice. The maximum entropy is larger than it would be for rigid wall boundary conditions by an amount δS, which for large energies is approx-lt(1)/(6)ln(L in T), where L in is the length of the interior region. Assuming that the state resulting from the evaporation of a black hole is similar to a vacuum-bounded state, and that the similarity between vacuum-bounded and rigid-wall-bounded problems extends from 1 to 3 dimensions, we apply these results to the black hole information paradox. Under these assumptions we conclude that large amounts of information cannot be emitted in the final explosion of a black hole. copyright 1997 The American Physical Society

  15. Collective effects, relaxation and localization of hole levels in atoms, molecules, solids, and adsorbates

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    Recent progress in descriptions of photoelectron spectra is reviewed with emphasis on cases where the one-electron and quasi-particle approximations break down and the hole level becomes spread over a number of discrete lines or a continuum or both. Unifying aspects and similarities between interaction processes in atoms, molecules and solids are stressed. 38 references

  16. Levels and transitions in /sup 204/Pb and the four valence neutron-hole configurations

    International Nuclear Information System (INIS)

    Hanly, J.M.; Hicks, S.E.; McEllistrem, M.T.; Yates, S.W.

    1988-01-01

    Levels of the nucleus /sup 204/Pb have been investigated using the (n,n'γ) reaction, and γ rays from low-spin excited levels have been observed. Forty-three low-spin levels connected by 78 γ rays are found below 2.9 MeV, whereas only about 28 levels had previously been known. The levels below 2 MeV excitation energy are expected to be dominated by the p/sub 1/2/, f/sub 5/2/, and p/sub 3/2/ valence neutron hole excitations, and 0 + levels at 0, 1730, and 2433.1 keV are associated primarily with these configurations. These states are at almost the same excitation energies as parent 0 + excitations in /sup 206/Pb. Approximately six unnatural-parity levels are identified; this is close to the number predicted in six orbit valence-space shell model calculations. The number of natural-parity levels found, however, is almost twice that calculated with the shell model. Levels and transitions below 2 MeV excitation energy are consistent with expectations basing /sup 204/Pb states on correlated two-hole excitations dominant in /sup 206/Pb

  17. Electron and hole transport in ambipolar, thin film pentacene transistors

    International Nuclear Information System (INIS)

    Saudari, Sangameshwar R.; Kagan, Cherie R.

    2015-01-01

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV

  18. Electron and hole transport in ambipolar, thin film pentacene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Saudari, Sangameshwar R. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Kagan, Cherie R. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-01-21

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.

  19. A local-community-level, physically-based model of end-use energy consumption by Australian housing stock

    International Nuclear Information System (INIS)

    Ren Zhengen; Paevere, Phillip; McNamara, Cheryl

    2012-01-01

    We developed a physics based bottom-up model to estimate annual housing stock energy consumption at a local community level (Census Collection District—CCD) with an hourly resolution. Total energy consumption, including space heating and cooling, water heating, lighting and other household appliances, was simulated by considering building construction and materials, equipment and appliances, local climates and occupancy patterns. The model was used to analyse energy use by private dwellings in more than five thousand CCDs in the state of New South Wales (NSW), Australia. The predicted results focus on electricity consumption (natural gas and other fuel sources were excluded as the data are not available) and track the actual electricity consumption at CCD level with an error of 9.2% when summed to state level. For NSW and Victoria 2006, the predicted state electricity consumption is close to the published model (within 6%) and statistical data (within 10%). A key feature of the model is that it can be used to predict hourly electricity consumption and peak demand at fine geographic scales, which is important for grid planning and designing local energy efficiency or demand response strategies. - Highlights: ► We developed a physics-based model to estimate housing stock energy consumption. ► House type and vintage, family type and occupancy time were considered. ► The model results are close to actual energy consumption at local community level. ► Its’ results agree well with the published model and statistical data at state level. ► It shows the model could provide from hourly to annual residential energy consumption.

  20. Quasar Formation and Energy Emission in Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2012-07-01

    Full Text Available Formation and energy emission of quasars are investigated in accord with the black hole universe, a new cosmological model recently developed by Zhang. According to this new cosmological model, the universe originated from a star-like black hole and grew through a supermassive black hole to the present universe by accreting ambient matter and merging with other black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe have been fully ex- plained in Paper I and II. This study as Paper III explains how a quasar forms, ignites and releases energy as an amount of that emitted by dozens of galaxies. A main sequence star, after its fuel supply runs out, will, in terms of its mass, form a dwarf, a neutron star, or a black hole. A normal galaxy, after its most stars have run out of their fuels and formed dwarfs, neutron stars, and black holes, will eventually shrink its size and collapse towards the center by gravity to form a supermassive black hole with billions of solar masses. This collapse leads to that extremely hot stellar black holes merge each other and further into the massive black hole at the center and meantime release a huge amount of radiation energy that can be as great as that of a quasar. Therefore, when the stellar black holes of a galaxy collapse and merge into a supermassive black hole, the galaxy is activated and a quasar is born. In the black hole universe, the observed dis- tant quasars powered by supermassive black holes can be understood as donuts from the mother universe. They were actually formed in the mother universe and then swallowed into our universe. The nearby galaxies are still very young and thus quiet at the present time. They will be activated and further evolve into quasars after billions of years. At that time, they will enter the universe formed by the currently observed distant quasars as similar to the distant quasars entered our universe

  1. Energy and information near black hole horizons

    International Nuclear Information System (INIS)

    Freivogel, Ben

    2014-01-01

    The central challenge in trying to resolve the firewall paradox is to identify excitations in the near-horizon zone of a black hole that can carry information without injuring a freely falling observer. By analyzing the problem from the point of view of a freely falling observer, I arrive at a simple proposal for the degrees of freedom that carry information out of the black hole. An infalling observer experiences the information-carrying modes as ingoing, negative energy excitations of the quantum fields. In these states, freely falling observers who fall in from infinity do not encounter a firewall, but freely falling observers who begin their free fall from a location close to the horizon are ''frozen'' by a flux of negative energy. When the black hole is ''mined,'' the number of information-carrying modes increases, increasing the negative energy flux in the infalling frame without violating the equivalence principle. Finally, I point out a loophole in recent arguments that an infalling observer must detect a violation of unitarity, effective field theory, or free infall

  2. Entropy localization and extensivity in the semiclassical black hole evaporation

    International Nuclear Information System (INIS)

    Casini, H.

    2009-01-01

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  3. Energy distribution of a magnetic stringy black hole

    International Nuclear Information System (INIS)

    Radinschi, Irina

    2004-01-01

    In this paper we calculate the energy distribution of a magnetic stringy black hole solution in the Landau and Lifshitz and Weinberg prescriptions. It is well-known that a main property of the low energy theory is that there are two different frames in which the features of the space-time may look very different. These two frames are the Einstein frame and the string frame. We choose the string frame to carry out the calculations. We study the dependence of the energy associated with the magnetic stringy black hole solution on its mass M and charge Q. (authors)

  4. Black holes and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1979-01-01

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M 2 greater than or equal to Q 2 + P 2 , where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M 2 = a 2 + Q 2 + P 2 ) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  5. On the localization of four-dimensional brane-world black holes

    International Nuclear Information System (INIS)

    Kanti, P; Pappas, N; Zuleta, K

    2013-01-01

    In the context of brane-world models, we pursue the question of the existence of five-dimensional solutions describing regular black holes localized close to the brane. Employing a perturbed Vaidya-type line-element embedded in a warped fifth dimension, we attempt to localize the extended black-string singularity, and to restore the regularity of the AdS spacetime at a finite distance from the brane by introducing an appropriate bulk energy–momentum tensor. As a source for this bulk matter, we are considering a variety of non-ordinary field-theory models of scalar fields either minimally coupled to gravity, but including non-canonical kinetic terms, mixing terms, derivative interactions and ghosts, or non-minimally coupled to gravity through a general coupling to the Ricci scalar. In all models considered, even in those characterized by a high degree of flexibility, a negative result was reached. Our analysis demonstrates how difficult the analytic construction of a localized brane-world black hole may be in the context of a well-defined field-theory model. Finally, with regard to the question of the existence or not of a static classical black-hole solution on the brane, our analysis suggests that such solutions could in principle exist; however, the associated field configuration itself has to be dynamic. (paper)

  6. Community based social marketing for implementation of energy saving targets at local level

    Directory of Open Access Journals (Sweden)

    Dalia Streimikiene

    2015-05-01

    Full Text Available Energy saving and greenhouse gas (GHG emission reduction policies at local level need to be investigated and new tools for climate change mitigation are necessary seeking to achieve GHG emission targets in Lithuania. Most Lithuanian municipalities have signed Covenant of Mayors and have prepared local energy action plans. However, all these plans include just energy saving measures on supply side and renovation of buildings. Nevertheless, the significant energy savings and GHG emission reductions can be achieved through behavioural changes. The aim of the paper is to apply community based social marketing approach in assessment of achievable energy saving and GHG emission reduction targets set by local energy action plans. The paper presents the results of case study implemented in Kaunas region municipality. The case study was conducted by creating focus groups and applying two scenarios: baseline or doing nothing and climate change mitigation scenario including intervention measures. The results of case study revealed that the total energy consumption reduction target set in Sustainable energy development strategy of Kaunas region county - 11% - can be achieved by combining results of energy consumption reduction in both focus groups. The survey conducted after study finalization revealed that respondents were provided with a lot of additional knowledge during the study and achieved real money savings. The major barriers of energy savings in households are related with the lack of information on energy savings and GHG emission reduction.

  7. Quasilocal energy, Komar charge and horizon for regular black holes

    International Nuclear Information System (INIS)

    Balart, Leonardo

    2010-01-01

    We study the Brown-York quasilocal energy for regular black holes. We also express the identity that relates the difference of the Brown-York quasilocal energy and the Komar charge at the horizon to the total energy of the spacetime for static and spherically symmetric black hole solutions in a convenient way which permits us to understand why this identity is not satisfied when we consider nonlinear electrodynamics. However, we give a relation between quantities evaluated at the horizon and at infinity when nonlinear electrodynamics is considered. Similar relations are obtained for more general static and spherically symmetric black hole solutions which include solutions of dilaton gravity theories.

  8. Influence of large local and non-local bispectra on primordial black hole abundance

    International Nuclear Information System (INIS)

    Young, Sam; Regan, Donough; Byrnes, Christian T.

    2016-01-01

    Primordial black holes represent a unique probe to constrain the early universe on small scales—providing the only constraints on the primordial power spectrum on the majority of scales. However, these constraints are strongly dependent on even small amounts of non-Gaussianity, which is unconstrained on scales significantly smaller than those visible in the CMB. This paper goes beyond previous considerations to consider the effects of a bispectrum of the equilateral, orthogonal and local shapes with arbitrary magnitude upon the abundance of primordial black holes. Non-Gaussian density maps of the early universe are generated from a given bispectrum and used to place constraints on the small scale power spectrum. When small, we show that the skewness provides an accurate estimate for how the constraint depends on non-Gaussianity, independently of the shape of the bispectrum. We show that the orthogonal template of non-Gaussianity has an order of magnitude weaker effect on the constraints than the local and equilateral templates

  9. Supersymmetric localization for BPS black hole entropy: 1-loop partition function from vector multiplets

    International Nuclear Information System (INIS)

    Gupta, Rajesh Kumar; Ito, Yuto; Jeon, Imtak

    2015-01-01

    We use the techniques of supersymmetric localization to compute the BPS black hole entropy in N=2 supergravity. We focus on the n_v+1 vector multiplets on the black hole near horizon background which is AdS_2× S"2 space. We find the localizing saddle point of the vector multiplets by solving the localization equations, and compute the exact one-loop partition function on the saddle point. Furthermore, we propose the appropriate functional integration measure. Through this measure, the one-loop determinant is written in terms of the radius of the physical metric, which depends on the localizing saddle point value of the vector multiplets. The result for the one-loop determinant is consistent with the logarithmic corrections to the BPS black hole entropy from vector multiplets.

  10. Phantom energy accretion onto black holes in a cyclic universe

    International Nuclear Information System (INIS)

    Sun Chengyi

    2008-01-01

    Black holes pose a serious problem in cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by phantom energy prior to turnaround before they can create any problems. In this paper, using the mechanism of phantom accretion onto black holes, we find that black holes do not disappear before phantom turnaround. But the remanent black holes will not cause any problems due to Hawking evaporation.

  11. Thermodynamics and stability of hyperbolic charged black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Wang Anzhong

    2004-01-01

    In AdS space the black hole horizon can be a hypersurface with a positive, zero, or negative constant curvature, resulting in different horizon topology. Thermodynamics and stability of black holes in AdS spaces are quite different for different horizon curvatures. In this paper we study thermodynamics and stability of hyperbolic charged black holes with negative constant curvature horizon in the grand canonical ensemble and canonical ensemble, respectively. They include hyperbolic Reissner-Nordstroem black holes in arbitrary dimensions and hyperbolic black holes in the D=5,4,7 gauged supergravities. It is found that associated Gibbs free energies are always negative, which implies that these black hole solutions are globally stable and the black hole phase is dominant in the grand canonical ensemble, but there is a region in the phase space where the black hole is not locally thermodynamically stable with a negative heat capacity for a given gauge potential. In the canonical ensemble, the Helmholtz free energies are not always negative and heat capacities with fixed electric charge are not always positive, which indicates that the Hawking-Page phase transition may happen and black holes are not always locally thermodynamically stable

  12. Stress-energy tensor near a charged, rotating, evaporating black hole

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The recently developed two-dimensional stress-energy regularization techniques are applied to the two-dimensional analog of the Reissner-Nordstroem family of black-hole metrics. The calculated stress-energy tensor in all cases contains the thermal radiation discovered by Hawking. Implications for the evolution of the interior of a charged black hole are considered. The calculated stress-energy tensor is found to diverge on the inner, Cauchy, horizon. Thus the effect of quantum mechanics is to cause the Cauchy horizon to become singular. The stress-energy tensor is also calculated for the ''most reasonable'' two-dimensional analog of the Kerr-Newman family of black-hole metrics. Although the analysis is not as rigorous as in the Reissner-Nordstroem case, it appears that the correct value for the Hawking radiation also appears in this model

  13. Black Hole Universe Model and Dark Energy

    Science.gov (United States)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  14. Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?

    OpenAIRE

    Eid, Cherrelle; Bollinger, L. Andrew; Koirala, Binod; Scholten, Daniel; Facchinetti, Emanuele; Lilliestam, Johan; Hakvoort, Rudi

    2016-01-01

    The growing penetration of distributed energy resources is opening up opportunities for local energy management (LEM) – the coordination of decentralized energy supply, storage, transport, conversion and consumption within a given geographical area. Because European electricity market liberalization concentrates competition at the wholesale level, local energy management at the distribution level is likely to impose new roles and responsibilities on existing and/or new actors. This paper prov...

  15. Effect of vacuum energy on evolution of primordial black holes in Einstein gravity

    International Nuclear Information System (INIS)

    Nayak, Bibekananda; Jamil, Mubasher

    2012-01-01

    We study the evolution of primordial black holes by considering present universe is no more matter dominated rather vacuum energy dominated. We also consider the accretion of radiation, matter and vacuum energy during respective dominance period. In this scenario, we found that radiation accretion efficiency should be less than 0.366 and accretion rate is much larger than previous analysis by Nayak et al. (2009) . Thus here primordial black holes live longer than previous works Nayak and Singh (2011). Again matter accretion slightly increases the mass and lifetime of primordial black holes. However, the vacuum energy accretion is slightly complicated one, where accretion is possible only up to a critical time. If a primordial black hole lives beyond critical time, then its' lifespan increases due to vacuum energy accretion. But for presently evaporating primordial black holes, critical time comes much later than their evaporating time and thus vacuum energy could not affect those primordial black holes.

  16. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  17. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  18. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  19. Excitons formed from spatially separated electrons and holes in Ge/Si geterostructures with Ge quantum dots

    International Nuclear Information System (INIS)

    Pokutnyj, S.I.

    2016-01-01

    The effect of a significant increase in the exciton binding energy of space-separated electrons and holes (hole moves in the volume of the quantum dot, and the electron is localized on a spherical surface section quantum dot-matrix) in nanosystems containing germanium quantum dots grown in a matrix of silicon by compared with the binding energy of an exciton in a silicon single crystal. It was found that in such nanosystems in the conduction band silicon matrix is first a zone of states of electron-hole pairs, which with increasing radius of the quantum dot becomes a zone of exciton states, located in the band gap of silicon matrix. It is shown that the mechanism of light absorption in nanosystems due to transitions between quantum-electron levels of the electron-hole pairs, as well as the electron transitions between quantum-exciton levels.

  20. High energy radiation from black holes gamma rays, cosmic rays, and neutrinos

    CERN Document Server

    Dermer, Charles D

    2009-01-01

    Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systemat

  1. Economic impact of the energy transition at the local level. Methodologies and case studies

    International Nuclear Information System (INIS)

    Maurer, Christiane; Ustinskaya, Elina

    2014-12-01

    An understanding of the mechanisms that link the energy transition to the stimulation of the economy on the ground is indispensable in terms of more efficient targeting of local energy transition policies. Objective evidence of economic results is required, as is a better understanding of economic analysis methods, in order to equip local and regional authorities with the tools required to demonstrate the economic benefits for all the key players. With the 'Economic impact of the energy transition at a local level - Methodologies and case studies' study, Energy Cities illustrates numerous socio-economic aspects of the energy transition and confirms the local economic benefits, through the use of data. As with any complex, new and diffuse process, this field of research is still not fully understood. Appropriate, high-quality analysis at the local level has rarely been carried out to date and a critical assessment of the methods used is necessary. This study will fill a gap and provide suggestions on potential areas for further research in a range of fields which should be further explored and examined in collaboration with local authorities and voluntary partners. Methodology and results The first part of the study sets out the scope of the study and contains a general description of the impact observed and the potential outcome of transition policies in the main green growth sectors: eco-innovation, the energy performance of buildings, renewable energy, sustainable mobility, recycling and industrial ecology. The analysis then focuses on the feedback of six towns and regions with a policy of active sustainable development (building renovation, support for eco-industries, promotion of soft mobility etc.), presented from the point of view of the economic results observed and the evaluation methods used. The study comprises five European authorities - Brussels, Copenhagen, Hannover, Kirklees and the Greater Paris Region, and one North American authority - Nolan County

  2. Black-hole galactic nuclei: a high-energy perspective

    CERN Document Server

    Boldt, E; Loewenstein, M

    2002-01-01

    The gravitational radiation signals to be anticipated from events involving black-hole galactic nuclei depend on the spin of the underlying object. To obtain evidence about the spin of Seyfert AGN black holes, we can rely on future ultra-high resolution spectral/spatial x-ray studies of iron K line fluorescence from the innermost regions of accreting matter. Normal galaxies present more of a challenge. To account for the highest energy cosmic rays, we propose that ultra-relativistic particle acceleration can occur near the event horizons of spun-up supermassive black-holes at the non-active nuclei of giant elliptical galaxies. This conjecture about the black hole spin associated with such nuclei is subject to verification via the characteristic TeV curvature radiation expected to be detected with upcoming gamma-ray observatories.

  3. Hole energy and momentum distributions in valence bands

    International Nuclear Information System (INIS)

    Laan, G. van der.

    1982-01-01

    In order to understand the electrical and magnetic properties of solids, the knowledge of the density of states and the dispersion relation of the valence bands is indispensable. This thesis offers some alternative methods to obtain information about the nature of the valence band. Part A deals with the energy distribution of the photoelectrons. A simple model, which explains the core hole satellite structure in compounds with large correlation effects between the valence band holes and the created photo-hole, is outlined. CuCl, CuX 2 (X = F Cl and Br) are studied, by photoemission and Auger electron spectroscopies in determining the valence band properties. Part B deals with the simultaneous measurement of the energy and the wave vector of the emitted electrons. A practical example is given for the determination of the dispersion relation in copper. The measurements of a surface resonance band and the distribution of the secondary electrons are also reported. (Auth.)

  4. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.

    Science.gov (United States)

    Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S

    2017-10-10

    The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

  5. Energy-extraction processes from a Kerr black hole immersed in a magnetic field. I. Negative-energy states

    International Nuclear Information System (INIS)

    Dhurandhar, S.V.; Dadhich, N.

    1984-01-01

    This is the first of two papers on the energy-extraction processes near a Kerr black hole immersed in a magnetic field. In this paper we shall consider the consequences of a dipole field extending to infinity matched on to a uniform field in the interior which contains the Kerr black hole. The magnetic fields considered are perturbative in nature. The matching of the fields is imperative owing to the ''no-hair theorem'' and the second law of black-hole physics. Two intriguing situations arising in this context are discussed, namely, (1) the second law of black-hole physics and (2) the law of conservation of energy in an energy-extraction process. At first sight both these laws seem to be violated. These issues arise basically because in the presence of the magnetic field there can exist negative-energy states even for L>0 particles. These issues get resolved by realizing that it is the sign of P/sub c/phi = L-eA/sub cphi/ and not L which determines a corotating or counterrotating orbit. It is also shown that negative-energy states can exist away from the horizon in the presence of either of the fields, the dipole and the uniform, thus favoring energy-extraction processes away from the black hole. This type of energy extraction is solely a consequence of the magnetic field. Also, a fairly detailed analysis of the effective-potential curves is provided, mainly relevant to the existence of negative energies and energy extraction. The formalism of the energy-extraction process will be considered in the second paper

  6. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    International Nuclear Information System (INIS)

    Koide, Shinji; Baba, Tamon

    2014-01-01

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  7. Local energy decay of massive Dirac fields in the 5D Myers-Perry metric

    International Nuclear Information System (INIS)

    Daudé, Thierry; Kamran, Niky

    2012-01-01

    We consider massive Dirac fields evolving in the exterior region of a five-dimensional Myers-Perry black hole and study their propagation properties. Our main result states that the local energy of such fields decays in a weak sense at late times. We obtain this result in two steps: first, using the separability of the Dirac equation, we prove the absence of a pure point spectrum for the corresponding Dirac operator; second, using a new form of the equation adapted to the local rotations of the black hole, we show by a Mourre theory argument that the spectrum is absolutely continuous. This leads directly to our main result. (paper)

  8. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  9. Local energy governance in vermont: an analysis of energy system transition strategies and actor capacity

    Science.gov (United States)

    Rowse, Tarah

    While global, national, and regional efforts to address climate and energy challenges remain essential, local governments and community groups are playing an increasingly stronger and vital role. As an active state in energy system policy, planning and innovation, Vermont offers a testing ground for research into energy governance at the local level. A baseline understanding of the energy planning and energy organizing activities initiated at the local level can support efforts to foster a transition to a sustainable energy system in Vermont. Following an inductive, applied and participatory approach, and grounded in the fields of sustainability transitions, energy planning, and community energy, this research project identifies conditions for change, including opportunities and challenges, within Vermont energy system decision-making and governance at the local level. The following questions are posed: What are the main opportunities and challenges for sustainable energy development at the town level? How are towns approaching energy planning? What are the triggers that will facilitate a faster transition to alternative energy systems, energy efficiency initiatives, and localized approaches? In an effort to answer these questions two studies were conducted: 1) an analysis of municipal energy plans, and 2) a survey of local energy actors. Study 1 examined Vermont energy planning at the state and local level through a review and comparison of 40 municipal plan energy chapters with the state 2011 Comprehensive Energy Plan. On average, municipal plans mentioned just over half of the 24 high-level strategies identified in the Comprehensive Energy Plan. Areas of strong and weak agreement were examined. Increased state and regional interaction with municipal energy planners would support more holistic and coordinated energy planning. The study concludes that while municipalities are keenly aware of the importance of education and partnerships, stronger policy mechanisms

  10. Hybrid Density Functional Study of the Local Structures and Energy Levels of CaAl2O4:Ce3.

    Science.gov (United States)

    Lou, Bibo; Jing, Weiguo; Lou, Liren; Zhang, Yongfan; Yin, Min; Duan, Chang-Kui

    2018-05-03

    First-principles calculations were carried out for the electronic structures of Ce 3+ in calcium aluminate phosphors, CaAl 2 O 4 , and their effects on luminescence properties. Hybrid density functional approaches were used to overcome the well-known underestimation of band gaps of conventional density functional approaches and to calculate the energy levels of Ce 3+ ions more accurately. The obtained 4f-5d excitation and emission energies show good consistency with measured values. A detailed energy diagram of all three sites is obtained, which explains qualitatively all of the luminescent phenomena. With the results of energy levels calculated by combining the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) and the constraint occupancy approach, we are able to construct a configurational coordinate diagram to analyze the processes of capture of a hole or an electron and luminescence. This approach can be applied for systematic high-throughput calculations in predicting Ce 3+ activated luminescent materials with a moderate computing requirement.

  11. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    International Nuclear Information System (INIS)

    Satoshi Matsuzaki

    2002-01-01

    Burn wavelength (λ B )-dependent nonphotochemical hole spectra are reported for the lowest energy Q y -absorption band of the Fenna-Matthews-Olson (FMO) trimer complex from Prosthecochloris aestuarii. This band at 825 nm is contributed to by three states that stem from the lowest energy state of the subunit of the trimer. The spectra reveal unusually rich and quite sharp low energy satellite structure that consists of holes at 18, 24, 36, 48, 72, 120 and 165 cm -1 as measured relative to the resonant hole at λ B . The possibility that some of these holes are due to correlated downward energy transfer from the two higher energy states that contribute to the 825 nm band could be rejected. Thus, the FMO complex is yet another example of a photosynthetic complex for which structural heterogeneity results in distributions for the values of the energy gaps between Q y -states. The results of theoretical simulations of the hole spectra are consistent with the above holes being due to intermolecular phonons and low energy intramolecular vibrations of the bacteriochlorophyll a (BChl a) molecule. The 36 cm -1 and higher energy modes are most likely due to the intramolecular BChl a modes. The simulations lead to the determination of the Huang-Rhys (S) factor for all modes

  12. The upper bound of radiation energy in the Myers-Perry black hole collision

    International Nuclear Information System (INIS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-01-01

    We have investigated the upper bound of the radiation energy in the head-on collision of two Myers-Perry black holes. Initially, the two black holes are far away from each other, and they become one black hole after the collision. We have obtained the upper bound of the radiation energy thermodynamically allowed in the process. The upper bound of the radiation energy is obtained in general dimensions. The radiation bound depends on the alignments of rotating axes for a given initial condition due to spin-spin interaction. We have found that the collision may not be occurred for a initially ultra-spinning black hole.

  13. On the evaluation of semiclassical nuclear many-particle many-hole level densities

    International Nuclear Information System (INIS)

    Blin, A.H.; Hiller, B.; Schuck, P.; Yannouleas, C.

    1985-10-01

    An exact general scheme is described to calculate the m-particle n-hole fermion level densities for an arbitrary single particle Hamiltonian taking into account the Pauli exclusion principle. This technique is applied to obtain level densities of the three dimensional isotropic harmonic oscillator semiclassically in the Thomas-Fermi approach. In addition, we study the l-particle l-hole level density of the Woods-Saxon potential. For the harmonic oscillator we analyze the temperature dependence of the linear response function and the influence of pairing correlations on the l-particle l-hole level density. Finally, a Taylor expansion method of the m-particle n-hole level densities is discussed

  14. The Phase Transition of Higher Dimensional Charged Black Holes

    International Nuclear Information System (INIS)

    Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying

    2016-01-01

    We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.

  15. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein—Power—Maxwell Gravity

    International Nuclear Information System (INIS)

    Abbas, G.; Ramzan, R. M.

    2013-01-01

    We investigate the phantom energy accretion onto a 3D black hole formulated in the Einstein—Power—Maxwell theory, and present the conditions for critical accretion of phantom energy onto the black hole. Further, we discuss the thermodynamics of phantom energy accreting onto the black hole and find that the first law of thermodynamics is easily satisfied while the second law and the generalized second law of thermodynamics remain invalid and conditionally valid, respectively. The results for the Banados—Teitelboim—Zanelli black hole can be recovered by taking Maxwellian contribution equal to zero

  16. Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons

    Science.gov (United States)

    Chakraborty, Sumanta; Dadhich, Naresh

    2015-12-01

    A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d = 2 m + 2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.

  17. Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta; Dadhich, Naresh

    2015-01-01

    A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d=2m+2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.

  18. ADM mass and quasilocal energy of black hole in the deformed Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2010-01-01

    Inspired by the Einstein-Born-Infeld black hole, we introduce the isolated horizon to study the Kehagias-Sfetsos (KS) black hole in the deformed Horava-Lifshitz gravity. This is because the KS black hole is more close to the Einstein-Born-Infeld black hole than the Reissner-Nordstroem black hole. We find the horizon and ADM masses by using the first law of thermodynamics and the area-law entropy. The mass parameter m is identified with the quasilocal energy at infinity. Accordingly, we discuss the phase transition between the KS and Schwarzschild black holes by considering the heat capacity and free energy.

  19. Energy of ground state of laminar electron-hole liquid

    International Nuclear Information System (INIS)

    Andryushin, E.A.

    1976-01-01

    The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed

  20. Ultrafast probing of core hole localization in N2.

    Science.gov (United States)

    Schöffler, M S; Titze, J; Petridis, N; Jahnke, T; Cole, K; Schmidt, L Ph H; Czasch, A; Akoury, D; Jagutzki, O; Williams, J B; Cherepkov, N A; Semenov, S K; McCurdy, C W; Rescigno, T N; Cocke, C L; Osipov, T; Lee, S; Prior, M H; Belkacem, A; Landers, A L; Schmidt-Böcking, H; Weber, Th; Dörner, R

    2008-05-16

    Although valence electrons are clearly delocalized in molecular bonding frameworks, chemists and physicists have long debated the question of whether the core vacancy created in a homonuclear diatomic molecule by absorption of a single x-ray photon is localized on one atom or delocalized over both. We have been able to clarify this question with an experiment that uses Auger electron angular emission patterns from molecular nitrogen after inner-shell ionization as an ultrafast probe of hole localization. The experiment, along with the accompanying theory, shows that observation of symmetry breaking (localization) or preservation (delocalization) depends on how the quantum entangled Bell state created by Auger decay is detected by the measurement.

  1. Electronic hole localization in rutile and anatase TiO2 - Self-interaction correction in Delta-SCF DFT

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Jacobsen, Karsten Wedel; Rossmeisl, Jan

    2011-01-01

    We study electronic hole localization in rutile and anatase titanium dioxide by means of Δ-Self-Consistent Field Density Functional Theory. In order to compare stabilities of the localized and the delocalized hole states we introduce a simple correction to the wrong description of the localizatio...

  2. The energy balance in coronal holes and average quiet-sun regions

    Science.gov (United States)

    Raymond, J. C.; Doyle, J. G.

    1981-01-01

    Emission measure curves are presented for average coronal hole and quiet-sun spectra taken during the Skylab mission by Vernazza and Reeves (1978), and the curves are used to discuss the energy balance in each region. Close-coupling calculations are used for the Be sequence, assuming a 10 level ion; for B sequence ions mainly distorted wave calculations in an 11 level ion are used, but close-coupling cross sections are used for some ions; for C and Mg sequence ions, distorted wave calculations are used with 15 and 10 level ions, respectively, and close-coupling results are used for Li-like ions with two levels. Results are presented and include the following: the coronal hole spectrum shows a smaller slope in the emission measure distribution, consistent with the expected outflow effects. It is concluded that the simple constant pressure models of static coronal loops of constant cross section are basically able to match the observed emission measure distribution of the average quiet sun between 1,000,000 and 10,000,000 K. However, the cell center and network distributions are respectively steeper and shallower than predicted by the detailed cooling curve.

  3. MINIMIZING THE MHD POTENTIAL ENERGY FOR THE CURRENT HOLE REGION IN TOKAMAKS

    International Nuclear Information System (INIS)

    CHU, M.S; PARKS, P.B

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n ≠ 0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n = 0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region''. The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  4. Minimizing the magnetohydrodynamic potential energy for the current hole region in tokamaks

    International Nuclear Information System (INIS)

    Chu, M.S.; Parks, P.B.

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n≠0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n=0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma, or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region.'' The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  5. Plate with a hole obeys the averaged null energy condition

    International Nuclear Information System (INIS)

    Graham, Noah; Olum, Ken D.

    2005-01-01

    The negative energy density of Casimir systems appears to violate general relativity energy conditions. However, one cannot test the averaged null energy condition (ANEC) using standard calculations for perfectly reflecting plates, because the null geodesic would have to pass through the plates, where the calculation breaks down. To avoid this problem, we compute the contribution to ANEC for a geodesic that passes through a hole in a single plate. We consider both Dirichlet and Neumann boundary conditions in two and three space dimensions. We use a Babinet's principle argument to reduce the problem to a complementary finite disk correction to the perfect mirror result, which we then compute using scattering theory in elliptical and spheroidal coordinates. In the Dirichlet case, we find that the positive correction due to the hole overwhelms the negative contribution of the infinite plate. In the Neumann case, where the infinite plate gives a positive contribution, the hole contribution is smaller in magnitude, so again ANEC is obeyed. These results can be extended to the case of two plates in the limits of large and small hole radii. This system thus provides another example of a situation where ANEC turns out to be obeyed when one might expect it to be violated

  6. Robust identification and localization of intramedullary nail holes for distal locking using CBCT: a simulation study.

    Science.gov (United States)

    Kamarianakis, Z; Buliev, I; Pallikarakis, N

    2011-05-01

    Closed intramedullary nailing is a common technique for treatment of femur and tibia fractures. The most challenging step in this procedure is the precise placement of the lateral screws that stabilize the fragmented bone. The present work concerns the development and the evaluation of a method to accurately identify in the 3D space the axes of the nail hole canals. A limited number of projection images are acquired around the leg with the help of a C-arm. On two of them, the locking hole entries are interactively selected and a rough localization of the hole axes is performed. Perpendicularly to one of them, cone-beam computed tomography (CBCT) reconstructions are produced. The accurate identification and localization of the hole axes are done by an identification of the centers of the nail holes on the tomograms and a further 3D linear regression through principal component analysis (PCA). Various feature-based approaches (RANSAC, least-square fitting, Hough transform) have been compared for best matching the contours and the centers of the holes on the tomograms. The robustness of the suggested method was investigated using simulations. Programming is done in Matlab and C++. Results obtained on synthetic data confirm very good localization accuracy - mean translational error of 0.14 mm (std=0.08 mm) and mean angular error of 0.84° (std=0.35°) at no radiation excess. Successful localization can be further used to guide a surgeon or a robot for correct drilling the bone along the nail openings. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Role of particle-hole symmetry in mirror energy difference

    International Nuclear Information System (INIS)

    Kumar, V.; Kumar, S.; Hasan, Z.; Kumar, D.; Koranga, B.S.; Rohitash; Singh, D.; Negi, D.; Angus, L.

    2011-01-01

    Charge symmetry between protons and neutrons means that they can be viewed as two states of the same particle, the nucleon, characterized by different projections of the isospin quantum number. In the hypothesis of charge symmetry expected identical behaviour of excited states of two nuclei with the same total number of nucleons (isobaric nuclei). The nuclei with magic number are considered to be spherical. When the number of particles/holes increase, the nucleus try towards more deformed upto mid-shell. It shows symmetry between particles and holes towards the deformation. The hypothesis of Particle-hole symmetry expected identical behaviour of excited states of two nuclei close to magic number. It is worthwhile to examine the shape of mirror energy difference (MED) close to magic number nuclei, which will also an example of particle-hole symmetry

  8. Local invariants vanishing on stationary horizons: a diagnostic for locating black holes.

    Science.gov (United States)

    Page, Don N; Shoom, Andrey A

    2015-04-10

    Inspired by the example of Abdelqader and Lake for the Kerr metric, we construct local scalar polynomial curvature invariants that vanish on the horizon of any stationary black hole: the squared norms of the wedge products of n linearly independent gradients of scalar polynomial curvature invariants, where n is the local cohomogeneity of the spacetime.

  9. Gravastars and black holes of anisotropic dark energy

    International Nuclear Information System (INIS)

    Chan, Roberto; Silva, Maria de Fatima Alves da; Rocha, Pedro Senna

    2011-01-01

    Full text: Dynamical models of prototype gravastars made of anisotropic dark energy are constructed, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1 - γ)σ divides the whole spacetime into two regions, the internal region filled with a dark energy fluid, and the external Schwarzschild region. The models represent 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes. Here we show, for the first time in the literature, a model of gravastar and formation of black hole with both interior and thin shell constituted exclusively of dark energy. Besides, the sign of the parameter of anisotropy (Pt - Pr ) seems to be relevant to the gravastar formation. The formation is favored when the tangential pressure is greater than the radial pressure, at least in the neighborhood of the isotropic case (ω = -1). (author)

  10. Gravastars and black holes of anisotropic dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Roberto [Observatorio Nacional (ON), Rio de Janeiro, RJ (Brazil); Silva, Maria de Fatima Alves da; Rocha, Pedro Senna [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2011-07-01

    Full text: Dynamical models of prototype gravastars made of anisotropic dark energy are constructed, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1 - {gamma}){sigma} divides the whole spacetime into two regions, the internal region filled with a dark energy fluid, and the external Schwarzschild region. The models represent 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes. Here we show, for the first time in the literature, a model of gravastar and formation of black hole with both interior and thin shell constituted exclusively of dark energy. Besides, the sign of the parameter of anisotropy (Pt - Pr ) seems to be relevant to the gravastar formation. The formation is favored when the tangential pressure is greater than the radial pressure, at least in the neighborhood of the isotropic case ({omega} = -1). (author)

  11. Quasinormal modes of brane-localized standard model fields. II. Kerr black holes

    International Nuclear Information System (INIS)

    Kanti, P.; Konoplya, R. A.; Zhidenko, A.

    2006-01-01

    This paper presents a comprehensive study of the fundamental quasinormal modes of all standard model fields propagating on a brane embedded in a higher-dimensional rotating black-hole spacetime. The equations of motion for fields with spin s=0, 1/2 and 1 propagating in the induced-on-the-brane background are solved numerically, and the dependence of their QN spectra on the black-hole angular momentum and dimensionality of spacetime is investigated. It is found that the brane-localized field perturbations are longer-lived when the higher-dimensional black hole rotates faster, while an increase in the number of transverse-to-the-brane dimensions reduces their lifetime. Finally, the quality factor Q, that determines the best oscillator among the different field perturbations, is investigated and found to depend on properties of both the particular field studied (spin, multipole numbers) and the gravitational background (dimensionality, black-hole angular momentum parameter)

  12. Conference: photovoltaic energy - local authorities - Citizen

    International Nuclear Information System (INIS)

    Belon, Daniel; Witte, Sonja; Simonet, Luc; Waldmann, Lars; Fouquet, Doerte; Dupassieux, Henri; Longo, Fabio; Brunel, Arnaud; Kruppert, Andreas; Vachette, Philippe

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the role of photovoltaic energy, local authorities and Citizens as pillars of the energy transition. In the framework of this French-German exchange of experience, about 100 participants exchanged views on the role of local authorities and Citizens in the implementation of the energy transition. This document brings together the available presentations (slides) made during this event: 1 - Solar photovoltaics, local communities and citizens - Cornerstones of the energy revolution. Franco-German viewpoints (Daniel Belon); 2 - Structure and management of the distribution system operators in Germany. efficient, innovative and reliable: Local public enterprises in Germany (Sonja Witte); 3 - Photovoltaic energy: technical challenges for power grids - A distribution network operator's (DNO) point-of-view (Luc Simonet); 4 - The sun and the grid - challenges of the energy transition (Lars Waldmann); 5 - The role of local public authorities in the networks management: legal situation in France, Germany and in the EU (Doerte Fouquet); 6 - Towards energy transition: challenges for renewable energies - Urban solar planning tools (Henri Dupassieux); 7 - The local energy supply as a municipal task - solar land-use planning in practice in Germany (Fabio Longo); 8 - Supporting and facilitating the financing of photovoltaic projects at a community level (Arnaud Brunel); 9 - Photovoltaics in the municipality VG Arzfeld (Andreas Kruppert); 10 - For the energy revolution to be a success: Invest into renewable energy. Local, controllable and renewable 'shared energy' that is grassroots (Philippe Vachette)

  13. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    Science.gov (United States)

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  14. High energy particles with negative and positive energies in the vicinity of black holes

    Science.gov (United States)

    Grib, A. A.; Pavlov, Yu. V.

    2014-07-01

    It is shown that the energy in the centre of mass frame of two colliding particles in free fall at any point of the ergosphere of the rotating black hole can grow without limit for fixed energy values of particles on infinity. The effect takes place for large negative values of the angular momentum of one of the particles. It occurs that the geodesics with negative energy in equatorial plane of rotating black holes cannot originate or terminate inside the ergosphere. Their length is always finite and this leads to conclusion that they must originate and terminate inside the gravitational radius of the ergosphere. The energy in the centre of mass frame of one particle falling into the gravitational radius and the other arriving from the area inside it is growing without limit on the horizon.

  15. Rotating hairy black holes in arbitrary dimensions

    Science.gov (United States)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  16. Relationship between high-energy absorption cross section and strong gravitational lensing for black hole

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng

    2011-01-01

    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.

  17. High energy effects on D-brane and black hole emission rates

    International Nuclear Information System (INIS)

    Das, S.; Dasgupta, A.; Sarkar, T.

    1997-01-01

    We study the emission of scalar particles from a class of near-extremal five-dimensional black holes and the corresponding D-brane configuration at high energies. We show that the distribution functions and the black hole greybody factors are modified in the high energy tail of the Hawking spectrum in such a way that the emission rates exactly match. We extend the results to charged scalar emission and to four dimensions. copyright 1997 The American Physical Society

  18. URBAN FEATURES AND ENERGY CONSUMPTION AT LOCAL LEVEL

    Directory of Open Access Journals (Sweden)

    Ali Soltani

    2012-12-01

    Full Text Available There has been a growing interest in discovering the human effects on the environment and energy consumption in recent decades. It is estimated that the share of energy consumed in transportation and housing systems are around 20 and 30 percent of total energy consumption respectively. Furthermore, the residential greenhouse emissions depend on urban form and structure. This paper explores the effects of urban features on residential energy consumption at neighborhood level using data collected through household questionnaire (n=140. Two residential districts in metropolitan Shiraz, south of Iran, were selected as case study areas. Different features of two areas were compared including building density, typology, housing location, parcel size, floor area and construction materials. Ordinary linear regression was used to discover the impact of explanatory variables on energy consumption. It was found that some physical variables such as parcel size, setback and number of floors played significant roles in explaining the variances exist in energy use level. The results can be used by governmental agencies to modify land use policies and subdivision rules in hope of saving energy and achieving a sustainable community.

  19. Energy extraction from a Konoplya–Zhidenko rotating non-Kerr black hole

    Directory of Open Access Journals (Sweden)

    Fen Long

    2018-01-01

    Full Text Available We have investigated the properties of the ergosphere and the energy extraction by Penrose process in a Konoplya–Zhidenko rotating non-Kerr black hole spacetime. We find that the ergosphere becomes thin and the maximum efficiency of energy extraction decreases as the deformation parameter increases. For the case with aM, we find that the maximum efficiency can reach so high that it is almost unlimited as the positive deformation parameter is close to zero, which is a new feature of energy extraction in such kind of rotating non-Kerr black hole spacetime.

  20. Geodesics of black holes with dark energy

    Science.gov (United States)

    Ghaderi, K.

    2017-12-01

    Dark energy is the most popular hypothesis to explain recent observations suggesting that the world will increasingly expand. One of the models of dark energy is quintessence which is highly plausible. In this paper, we investigate the effect of dark energy on the null geodesics of Schwarzschild, Reissner-Nordström, Schwarzschild-de Sitter and Bardeen black holes. Using the definition of effective potential, the radius of the circular orbits, the period, the instability of the circular orbits, the force exerted on the photons and the deviation angle of light in quintessence field are calculated and the results are analyzed and discussed.

  1. Stability of black holes based on horizon thermodynamics

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2015-12-01

    Full Text Available On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss–Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E, P, V, T, S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss–Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.

  2. Looking for the invisible universe - Black matter, black energy, black holes

    International Nuclear Information System (INIS)

    Elbaz, David

    2016-01-01

    As the discovery of the expansion of the universe and of black holes put the study of cosmology into question again because it now refers to invisible things such as black holes, black energy and black matter, the author proposes an other view on the universe within such a context. He first discusses these three enigmas of black matter, black energy and black holes. In a second part, he addresses, discusses and comments five illusions: the Uranian illusion (questions of the existence of an anti-world, of black matter temperature), the Mercurian illusion (quantum gravity, the string theory), the Martian illusion (a patchwork universe, the illusion of the infinite), the cosmic Maya (the John Wheeler's cup, the holographic universe), and the narcissistic illusion

  3. On non-linear magnetic-charged black hole surrounded by quintessence

    Science.gov (United States)

    Nam, Cao H.

    2018-06-01

    We derive a non-linear magnetic-charged black hole surrounded by quintessence, which behaves asymptotically like the Schwarzschild black hole surrounded by quintessence but at the short distances like the dS geometry. The horizon properties of this black hole are investigated in detail. The thermodynamics of the black hole is studied in the local and global views. Finally, by calculating the heat capacity and the free energy, we point to that the black hole may undergo a thermal phase transition, between a larger unstable black hole and a smaller stable black hole, at a critical temperature.

  4. Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-Tc superconductors

    International Nuclear Information System (INIS)

    Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P; Schmitt, F; Meevasana, W; Motoyama, E M; Lu, D H; Kim, C; Scalettar, R T

    2009-01-01

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  5. High-energy localized eigenstates in a Fabry-Perot graphene resonator in a magnetic field

    Science.gov (United States)

    Zalipaev, V. V.

    2012-06-01

    A semiclassical analysis of the high-energy eigenstates of Dirac fermions inside a graphene monolayer nanoribbon resonator of Fabry-Perot type in a magnetic field with zigzag boundary conditions is discussed. A semiclassical asymptotic method of construction of Maslov spectral series of energy spectrum and eigenfunctions, localized in an asymptotically small neighborhood of a periodic orbit, is developed for the graphene Dirac system. The isolated periodic orbit is confined between two flat boundaries. The analysis involves constructing a localized asymptotic solution to the Dirac system (electron-hole Gaussian beam). Then, the stability of a continuous family of periodic orbits (POs) confined between reflecting boundaries of the resonator is studied. The asymptotics of the eigenfunctions are constructed as a superposition of two Gaussian beams propagating in opposite directions between two reflecting points of the periodic orbit. The asymptotics of the energy spectrum are obtained by means of the generalized Bohr-Sommerfeld quantization condition only for stable POs. It provides two parts of semiclassical Maslov spectral series with positive and negative energies, for electrons and holes, correspondingly, with two different Hamiltonian dynamics and families of classical trajectories. The presence of electrostatic potential is vital as it makes a family of periodic orbit stable. For one subclass of lens-shaped periodic orbits, for a piecewise linear potential, localized eigenstates were computed numerically by the finite element method using COMSOL, and proved to be in very good agreement with the ones computed semiclassically.

  6. A topological extension of GR: Black holes induce dark energy

    International Nuclear Information System (INIS)

    Spaans, M

    2013-01-01

    A topological extension of general relativity is presented. The superposition principle of quantum mechanics, as formulated by the Feynman path integral, is taken as a starting point. It is argued that the trajectories that enter this path integral are distinct and thus that space-time topology is multiply connected. Specifically, space-time at the Planck scale consists of a lattice of three-tori that facilitates many distinct paths for particles to travel along. To add gravity, mini black holes are attached to this lattice. These mini black holes represent Wheeler's quantum foam and result from the fact that GR is not conformally invariant. The number of such mini black holes in any time-slice through four-space is found to be equal to the number of macroscopic (so long-lived) black holes in the entire universe. This connection, by which macroscopic black holes induce mini black holes, is a topological expression of Mach's principle. The proposed topological extension of GR can be tested because, if correct, the dark energy density of the universe should be proportional the total number of macroscopic black holes in the universe at any time. This prediction, although strange, agrees with current astrophysical observations.

  7. Does the mass of a black hole decrease due to the accretion of phantom energy?

    International Nuclear Information System (INIS)

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-01-01

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  8. High energy particle collisions near black holes

    Directory of Open Access Journals (Sweden)

    Zaslavskii O. B.

    2016-01-01

    Full Text Available If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect. The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process.

  9. Quantum vacuum energy near a black hole: the Maxwell field

    International Nuclear Information System (INIS)

    Elster, T.

    1984-01-01

    A quantised Maxwell field is considered propagating in the gravitational field of a Schwarzschild black hole. The vector Hartle-Hawking propagator is defined on the Riemannian section of the analytically continued space-time and expanded in terms of four-dimensional vector spherical harmonics. The equations for the radial functions appearing in the expansion are derived for both odd and even parity. Using the expansion of the vector Hartle-Hawking propagator, the point-separated expectation value of the Maxwellian energy-momentum tensor in the Hartle-Hawking vacuum is derived. The renormalised values of radial pressure, tangential pressure and energy density are obtained near the horizon of the black hole. In contrast to the scalar field, the Maxwell field exhibits a positive energy density near the horizon in the Hartle-Hawking vacuum state. (author)

  10. A Rigorous Treatment of Energy Extraction from a Rotating Black Hole

    Science.gov (United States)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2009-05-01

    The Cauchy problem is considered for the scalar wave equation in the Kerr geometry. We prove that by choosing a suitable wave packet as initial data, one can extract energy from the black hole, thereby putting supperradiance, the wave analogue of the Penrose process, into a rigorous mathematical framework. We quantify the maximal energy gain. We also compute the infinitesimal change of mass and angular momentum of the black hole, in agreement with Christodoulou’s result for the Penrose process. The main mathematical tool is our previously derived integral representation of the wave propagator.

  11. Energy flux through the horizon in the black hole-domain wall systems

    International Nuclear Information System (INIS)

    Stojkovic, Dejan

    2004-01-01

    We study various configurations in which a domain wall (or cosmic string), described by the Nambu-Goto action, is embedded in a background space-time of a black hole in (3+1) and higher dimensional models. We calculate energy fluxes through the black hole horizon. In the simplest case, when a static domain wall enters the horizon of a static black hole perpendicularly, the energy flux is zero. In more complicated situations, where parameters which describe the domain wall surface are time and position dependent, the flux is non-vanishing is principle. These results are of importance in various conventional cosmological models which accommodate the existence of domain walls and strings and also in brane world scenarios. (author)

  12. High energy colliders as black hole factories: The end of short distance physics

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Thomas, Scott

    2002-01-01

    If the fundamental Planck scale is of order of a TeV, as is the case in some extra-dimension scenarios, future hadron colliders such as the CERN Large Hadron Collider will be black hole factories. The nonperturbative process of black hole formation and decay by Hawking evaporation gives rise to spectacular events with up to many dozens of relatively hard jets and leptons with a characteristic ratio of hadronic to leptonic activity of roughly 5:1. The total transverse energy of such events is typically a sizable fraction of the beam energy. Perturbative hard scattering processes at energies well above the Planck scale are cloaked behind a horizon, thus limiting the ability to probe short distances. The high energy black hole cross section grows with energy at a rate determined by the dimensionality and geometry of the extra dimensions. This dependence therefore probes the extra dimensions at distances larger than the Planck scale

  13. Three-charge black holes on a circle

    International Nuclear Information System (INIS)

    Harmark, Troels; Obers, Niels A.; Roenne, Peter B.; Kristjansson, Kristjan R.

    2007-01-01

    We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the finite entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes

  14. Managing transition towards energy efficient housing at the local level

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    2010-01-01

    regulation in several European countries, the general picture remains that existing regimes in the building sector are withheld and that little innovation in terms of new radical energy efficient solutions is taking place. In order to dissolve such a deadlock in the building sector, there is a need to target...... the capability to coordinate and facilitate this complex transition process. The local scale of policy-formulation has been chosen in this paper in order to describe transition processes from the perspective of practitioners, who are hands on the specific building projects. The local scale provides an in......-depth study of how specific practitioners, such as local planning authorities, building firms, building developers, technical experts and suppliers, interact and coordinate their efforts in the local arena of a specific building project (within a more general framework). The focus on the local scale allows...

  15. Universality, maximum radiation, and absorption in high-energy collisions of black holes with spin.

    Science.gov (United States)

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans

    2013-07-26

    We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

  16. Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Wan [Chonbuk National University, Research Institute of Physics and Chemistry, Jeonju (Korea, Republic of); Kim, Seung Kook [Seonam University, Department of Physical Therapy, Namwon (Korea, Republic of); Park, Young-Jai [Sogang University, Department of Physics, Seoul (Korea, Republic of)

    2016-10-15

    In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole. (orig.)

  17. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    Science.gov (United States)

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  18. Al-bound hole polarons in TiO2

    International Nuclear Information System (INIS)

    Stashans, Arvids; Bermeo, Sthefano

    2009-01-01

    Changes in the structural and electronic properties of TiO 2 (anatase and rutile) due to the Al-doping are studied using a quantum-chemical approach based on the Hartree-Fock theory. The formation of hole polarons trapped at oxygen sites near the Al impurity has been discovered and their spatial configuration are discussed. The occurrence of well-localized one-center hole polarons in rutile may influence its photocatalytic activity. Optical absorption energy for this hole center is obtained, 0.4 eV, using the ΔSCF approach.

  19. Energy level alignment symmetry at Co/pentacene/Co interfaces

    NARCIS (Netherlands)

    Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2006-01-01

    We have employed x-ray and ultraviolet photoemission spectroscopies (XPS and UPS) to study the energy level alignment and electronic structure at the Co/pentacene/Co interfaces. In the case of pentacene deposition on Co we found an interfacial dipole of about 1.05 eV and a hole injection barrier of

  20. Thermodynamics of Born-Infeld-anti-de Sitter black holes in the grand canonical ensemble

    International Nuclear Information System (INIS)

    Fernando, Sharmanthie

    2006-01-01

    The main objective of this paper is to study thermodynamics and stability of static electrically charged Born-Infeld black holes in AdS space in D=4. The Euclidean action for the grand canonical ensemble is computed with the appropriate boundary terms. The thermodynamical quantities such as the Gibbs free energy, entropy and specific heat of the black holes are derived from it. The global stability of black holes are studied in detail by studying the free energy for various potentials. For small values of the potential, we find that there is a Hawking-Page phase transition between a BIAdS black hole and the thermal-AdS space. For large potentials, the black hole phase is dominant and is preferred over the thermal-AdS space. Local stability is studied by computing the specific heat for constant potentials. The nonextreme black holes have two branches: small black holes are unstable and the large black holes are stable. The extreme black holes are shown to be stable both globally as well as locally. In addition to the thermodynamics, we also show that the phase structure relating the mass M and the charge Q of the black holes is similar to the liquid-gas-solid phase diagram

  1. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    Science.gov (United States)

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  2. Direct Observation of Electron-to-Hole Energy Transfer in CdSe Quantum Dots

    NARCIS (Netherlands)

    Hendry, E.; Koeberg, M.; Wang, F.; Zhang, H.; de Mello Donega, C.; Vanmaekelbergh, D.; Bonn, M.

    2006-01-01

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This

  3. Connecting horizon pixels and interior voxels of a black hole

    International Nuclear Information System (INIS)

    Nicolini, Piero; Singleton, Douglas

    2014-01-01

    In this paper we discuss to what extent one can infer details of the interior structure of a black hole based on its horizon. Recalling that black hole thermal properties are connected to the non-classical nature of gravity, we circumvent the restrictions of the no-hair theorem by postulating that the black hole interior is singularity free due to violations of the usual energy conditions. Further these conditions allow one to establish a one-to-one, holographic projection between Planckian areal “bits” on the horizon and “voxels”, representing the gravitational degrees of freedom in the black hole interior. We illustrate the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole entropy can emerge as the statistical entropy of a gas of voxels

  4. Role of local governments in promoting energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.

    1980-11-01

    An examination is made of the incentives which influence the decisions by local governments to adopt energy-efficiency programs, either unilaterally or in partnership with the Federal government. It is found that there is significant potential for improved energy efficiency in urban residential, commercial, and industrial buildings and that exploiting these opportunities is in the interest of both Federal and local governments. Unless there is a unique combination of strong local leadership, a tradition of resource management, and external energy shocks, communities are unlikely to realize this potential. Conflicting demands, traditional perceptions, and lack of funding pose a major barrier to a strong unilateral commitment by local governments. A Federal-local partnership built upon and complementary to existing efforts in areas such as housing, social welfare, and economic development offers an excellent opportunity to realize the inherent potential of local energy-efficiency programs. At the local level, energy is not perceived as an isolated issue, but one which is part of a number of problems arising from the continuing increase in energy prices.

  5. Hole mobility enhancement of p-MOSFETs using global and local Ge-channel technologies

    International Nuclear Information System (INIS)

    Takagi, Shinichi; Tezuka, T.; Irisawa, T.; Nakaharai, S.; Maeda, T.; Numata, T.; Ikeda, K.; Sugiyama, N.

    2006-01-01

    Mobility enhancement technologies have currently been recognized as mandatory for future scaled MOSFETs. In this paper, we review our recent results on high hole mobility p-MOSFETs using global/local SiGe or Ge channels. There are two directions for introducing SiGe or Ge channels into Si CMOS platform. One is to use SiGe or Ge global substrates and the other is to form SiGe or Ge-channel regions locally on Si wafers. In both cases, the Ge condensation technique, where Ge-channel layers are formed by oxidizing SiGe films on SOI substrates, are effectively utilized. As for the global technologies, ultrathin GOI substrates are prepared and used to fabricate high mobility GOI p-MOSFETs. As for the local technologies, SGOI or GOI channels are formed locally in the active area of p-MOSFETs on SOI wafers. It is shown that the hole mobility enhancement factor of as high as 10 is obtained in locally fabricated p-MOSFETs through the effects of high-Ge content and the compressive strain. Furthermore, the local Ge-channel technologies are combined with global SiGe or Ge substrates for pursuing the optimal and individual design of n-MOSFETs and p-MOSFETs on a single Si wafer. The CMOS device composed of strained-Si n-MOSFETs and SGOI p-MOSFETs is successfully integrated on a same wafer, which is a promising CMOS structure under deep sub 100 nm technology nodes

  6. EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    O’ Riordan, Michael; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  7. The maximum energy of cosmic rays gained in the jet of black holes

    International Nuclear Information System (INIS)

    Tascau, Oana; Biermann, Peter

    2003-01-01

    In this paper we will present the results of the calculation of maximum energy gained by a particle in the acceleration process done by the black hole mechanism. We are using here the model of P. Biermann and H. Falcke to determine if and how the black holes contribute to the cosmic rays that reach the Earth. The conclusion is that at the highest energy only M87 contributes, as has been claimed for many years. Secondly, at lower energy, Cen A may indeed take over as second most important source, again as expected for some time. (authors)

  8. Al-bound hole polarons in TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids, E-mail: arvids@utpl.edu.ec [Grupo de Fisicoquimica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Bermeo, Sthefano [Grupo de Fisicoquimica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)] [Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2009-09-18

    Changes in the structural and electronic properties of TiO{sub 2} (anatase and rutile) due to the Al-doping are studied using a quantum-chemical approach based on the Hartree-Fock theory. The formation of hole polarons trapped at oxygen sites near the Al impurity has been discovered and their spatial configuration are discussed. The occurrence of well-localized one-center hole polarons in rutile may influence its photocatalytic activity. Optical absorption energy for this hole center is obtained, 0.4 eV, using the {Delta}SCF approach.

  9. Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

    OpenAIRE

    Graber, James S.

    1999-01-01

    A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

  10. Measurements and characterization of a hole trap in neutron-irradiated silicon

    International Nuclear Information System (INIS)

    Avset, B.S.

    1996-04-01

    The report describes measurements on a hole trap in neutron irradiated silicon diodes made one high resistivity phosphorus doped floatzone silicon. The hole trap was detected by Deep Level Transient Spectroscopy. This measurement gave a trap activation energy of 0.475 MeV. Other measurements showed that the trap has very small capture cross sections for both holes and electrons (10 -18 to 10 -20 cm 2 ) and that the hole capture cross section is temperature dependent. The energy level position of the trap has been estimated to be between 0.25 and 0.29 eV from the valence band. 25 refs., 21 figs., 4 tabs

  11. Acoustic black holes: recent developments in the theory and applications.

    Science.gov (United States)

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air.

  12. Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Stanford, CA 94305 (United States); Schmitt, F; Meevasana, W; Motoyama, E M [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Lu, D H [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kim, C [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Scalettar, R T [Physics Department, University of California-Davis, Davis, CA 95616 (United States)], E-mail: moritzb@slac.stanford.edu

    2009-09-15

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  13. Suppressing recombination in polymer photovoltaic devices via energy-level cascades.

    Science.gov (United States)

    Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H

    2013-08-14

    An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lovelock black holes with maximally symmetric horizons

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)

    2011-08-21

    We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.

  15. New model. Local financing for local energy

    International Nuclear Information System (INIS)

    Detroy, Florent

    2015-01-01

    While evoking the case of the VMH Energies company in the Poitou-Charentes region, and indicating the difference between France and Germany in terms of wind and photovoltaic energy production potential, of number of existing local companies, and of citizen-based funding, this article shows that renewable energies could put the energy production financing in France into question again, with a more important participation of local communities and of their inhabitants. The author describes how the law on energy transition makes this possible, notably with the strengthening of citizen participation. The author evokes some French local experiments and the case of Germany where this participation is already very much developed

  16. Excess-electron energy levels, localization and transport in disordered media

    International Nuclear Information System (INIS)

    Hamill, W.H.

    1980-01-01

    In disordered dielectrics, the fundamental parameters which control the physics and chemistry of excess electrons are time, temperature and energy or mean scattering distance. Viscosity and hardness do not directly affect the electron affinity of media, the optical spectra, or the chemical reactivity of dry or delocalized electrons or of relaxed localized or trapped electrons. Since the mean scattering distance and the transport mechanism, including barrier height, are fundamental, both liquids and glasses (including polymers) are considered in order to cover the range of relevant information. Based on the above described background, transport, localization, dry electron scavenging, trapped electron scavenging and recombination are explained. There are no available data for the energy of excess dry electrons in the media relative to vacuum in glasses, unfortunately, because of the very small yield of separated charge pairs at cryogenic temperature. Thermoplastic glassy solids provide attractive possibility above 250 K, and deserve consideration as the substitutes for cryogenic glasses. The same consideration applies to the measurements of electron drift mobility, which are essential for the adequate description of electron scavenging. (Wakatsuki, Y.)

  17. Stress-energy tensors for vector fields outside a static black hole

    International Nuclear Information System (INIS)

    Barrios, F.A.; Vaz, C.

    1989-01-01

    We obtain new, approximate stress-energy tensors to describe gauge fields in the neighborhood of a Schwarzschild black hole. We assume that the coefficient of ∇ 2 R in the trace anomaly is correctly given by ζ-function regularization. Our approximation differs from that of Page and of Brown and Ottewill and relies upon a new, improved ansatz for the form of the stress-energy tensor in the ultrastatic optical metric of the black hole. The Israel-Hartle-Hawking thermal tensor is constructed to be regular on the horizon and possess the correct asymptotic behavior. Our approximation of Unruh's tensor is likewise constructed to be regular on the future horizon and exhibit a luminosity which agrees with Page's numerically obtained value. Geometric expressions for the approximate tensors are given, and the approximate energy density of the thermal tensor on the horizon is compared with recent numerical estimates

  18. Localized hole effects in inner-shell excitation

    International Nuclear Information System (INIS)

    Rescigno, T.N.; Orel, A.E.

    1983-01-01

    Ab initio calculations of valence shell ionization potentials have shown that orbital relaxation and correlation differences usually make contributions of comparable magnitude. In marked contrast to this observation is the situation for deep core ionization, where correlation differences (approx. 1 eV) play a relatively minor role compared to orbital relaxation (approx. 20 eV). Theoretical calculations have shown that this relaxation is most easily described if the 1s-vacancy created by a K-shell excitation is allowed to localize on one of the atomic centers. For molecules possessing a center of inversion, this means that the molecular orbitals that best describe the final state do not transform as any irreducible representation of the molecular point group. Recent experimental work by Shaw, King, Read and Cvejanovic and by Stefani and coworkers has prompted us to carry out further calculations on N 2 , as well as analogous investigations of 1s/sub N/ → π* excitation in NO and N 2 O. The generalized oscillator strengths display a striking similarity and point to the essential correctness of the localized hole picture for N 2 . The theoretical calculations are briefly described, followed by a summary of the results and comparison to experiment, followed by a short discussion

  19. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface

    Directory of Open Access Journals (Sweden)

    Shi Chen

    2014-08-01

    Full Text Available The energy level alignment at the CH3NH3PbI3/copper phthalocyanine (CuPc interface is investigated by X-ray photoelectron spectroscopy (XPS and ultraviolet photoelectron spectroscopy (UPS. XPS reveal a 0.3 eV downward band bending in the CuPc film. UPS validate this finding and further reveal negligible interfacial dipole formation – verifying the viability of vacuum level alignment. The highest occupied molecular orbital of CuPc is found to be closer to the Fermi level than the valance band maximum of CH3NH3PbI3, facilitating hole transfer from CH3NH3PbI3 to CuPc. However, subsequent hole extraction from CuPc may be impeded by the downward band bending in the CuPc layer.

  20. Black hole spectroscopy: Systematic errors and ringdown energy estimates

    Science.gov (United States)

    Baibhav, Vishal; Berti, Emanuele; Cardoso, Vitor; Khanna, Gaurav

    2018-02-01

    The relaxation of a distorted black hole to its final state provides important tests of general relativity within the reach of current and upcoming gravitational wave facilities. In black hole perturbation theory, this phase consists of a simple linear superposition of exponentially damped sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are necessary to describe waveforms with a prescribed precision? What error do we incur by only including quasinormal modes, and not tails? What other systematic effects are present in current state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics with distorted black holes, have hardly been addressed in the literature. We use numerical relativity waveforms and accurate evolutions within black hole perturbation theory to provide some answers. We show that (i) a determination of the fundamental l =m =2 quasinormal frequencies and damping times to within 1% or better requires the inclusion of at least the first overtone, and preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin with precision better than 1% requires the inclusion of at least two quasinormal modes for any given angular harmonic mode (ℓ , m ). We also improve on previous estimates and fits for the ringdown energy radiated in the various multipoles. These results are important to quantify theoretical (as opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.

  1. Relation between bulk compressibility and surface energy of electron-hole liquids

    International Nuclear Information System (INIS)

    Singwi, K.S.; Tosi, M.P.

    1979-08-01

    Attention is drawn to the existence of an empirical relation chiσ/asup(*)sub(B) approximately 1 between the compressibility, the surface energy and the excitonic radius in electron-hole liquids. (author)

  2. To renew local energy policies

    International Nuclear Information System (INIS)

    Bailleul, Esther; Alfano, Patrick; Ballan, Etienne; Bosboeuf, Pascale; Braun, Nicolas; Budin, Jacques-Olivier; Caron, Jean-Francois; Couturier, Christian; Dantec, Ronan; Ducolombier, Alexandre; Durand, Lucas; Haeringer, Nicolas; Izard, Charlotte; Jadot, Yannick; Joos, Marine; Landel, Pierre-Antoine; Le Du, Mathieu; Lucas, Guillaume; Maya, Michel; Moisan, Marie; Peullemeulle, Justine; Pin, Pascaline; Poize, Noemie; Regnier, Yannick; Rudinger, Andreas; Saultier, Patrick; Serne, Pierre; Zeroual, Bouchr; Arevalo, Henri; Bregeon, Anne; Vauquois, Victor; Aussavy, Gregoire

    2016-08-01

    Presented as a guide, this book proposes an operational and transverse approach to local action in the field of energy. It is illustrated by many field examples which show how actors have been able to (re)gain control of the energy issue. In the first part in which they present the main issues, the authors outline that local authorities are in front line for a European energy transition, recall the French legal framework for local energy transition, describe how to address local energy self-sufficiency, and comment stakes and levers for energy transition financing. The second part deals with action. The authors there describe how to manage a local energy transition, how to act transversally, how to get citizen involved, and how to relate energy transition and local development

  3. Effect of hole injection layer/hole transport layer polymer and device structure on the properties of white OLED.

    Science.gov (United States)

    Cho, Ho Young; Park, Eun Jung; Kim, Jin-Hoo; Park, Lee Soon

    2008-10-01

    Copolymers containing carbazole and aromatic amine unit were synthesized by using Pd-catalyzed polycondensation reaction. The polymers were characterized in terms of their molecular weight and thermal stability and their UV and PL properties in solution and film state. The band gap energy of the polymers was also determined by the UV absorption and HOMO energy level data. The polymers had high HOMO energy level of 5.19-5.25 eV and work function close to that of ITO. The polymers were thus tested as hole injection/transport layer in the white organic light emitting diodes (OLED) by using 4,4'-bis(2,2-diphenyl-ethen-1-yl)diphenyl (DPVBi) as blue emitting material and 5,6,11,12-tetraphenylnaphthacene (Rubrene) as orange emitting dopant. The synthesized polymer, poly bis[6-bromo-N-(2-ethylhexyl)-carbazole-3-yl] was found to be useful as hole injection layer/hole transport layer (HIL/HTL) multifunctional material with high luminance efficiency and stable white color coordinate in the wide range of applied voltage.

  4. Black hole emission process in the high energy limit

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B [Observatoire de Paris, Section de Meudon, 92 (France). Groupe d' Astrophysique Relativiste; Gibbons, G W; Lin, D N.C.; Perry, M J [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics; Cambridge Univ. (UK). Inst. of Astronomy)

    1976-11-01

    The ultimate outcome of the Hawking process of particle emission by small black holes is discussed in terms of the various conceivable theories of the behaviour of matter in the ultra-high temperature limit. It is shown that if high temperature matter is described by a relatively hard equation of state with an adiabatic index GAMMA greater than 6/5 then interactions between particles can probably be ignored so that the rate of creation will continue to be describable by Hawking's method. On the other hand for softer equations of state (including those of the ultra soft Hagedorn type) the created matter will almost certainly be highly opaque and a hydrodynamic model of the emission process will be more appropriate. Actual astronomical detection of the final emission products might in principle have provided valuable information about the correct theory of ultra high energy physics but it is shown that in practice the black hole death rate is so low that observational distinction of the resulting high energy decay products from the background would require high resolution detectors.

  5. ESA's high-energy observatories spot doughnut-shaped cloud with a black-hole filling

    Science.gov (United States)

    2004-07-01

    hi-res Size hi-res: 7265 KB Credits: ESA, V. Beckmann (GSFC) Doughnut-shaped cloud surrounds black hole This artist's impression shows the thick dust torus that astronomers believe surrounds supermassive black holes and their accretion discs, like the one harboured in the nucleus of the spiral galaxy NGC 4388. When the torus is seen `edge-on’ as in this case, the visible light emitted by the accretion disc is partially blocked. However, the sharp X-ray and gamma-ray eyes of XMM-Newton and Integral can peer through the thick dust and see how the energy released by the accretion disc interacts with and is absorbed by the torus. Black holes are objects so compact and with gravity so strong that not even light can escape from them. Scientists think that `supermassive’ black holes are located in the cores of most galaxies, including our Milky Way galaxy. They can contain the mass of thousands of millions of suns, confined within a region no larger than our Solar System. They appear to be surrounded by a hot, thin disk of accreting gas and, farther out, the thick doughnut-shaped torus. Depending on the inclination of the torus, it can hide the black hole and the hot accretion disc from the line of sight. Galaxies in which a torus blocks the light from the central accretion disc are called `Seyfert 2’ types and are usually faint to optical telescopes. Another theory, however, is that these galaxies appear rather faint because the central black hole is not actively accreting gas and the disc surrounding it is therefore faint. An international team of astronomers led by Dr Volker Beckmann, Goddard Space Flight Center (Greenbelt, USA) has studied one of the nearest objects of this type, a spiral galaxy called NGC 4388, located 65 million light years away in the constellation Virgo. Since NGC 4388 is relatively close, and therefore unusually bright for its class, it is easier to study. Astronomers often study black holes that are aligned face-on, thus avoiding the

  6. Atomistic spectrometrics of local bond-electron-energy pertaining to Na and K clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: YWang8@hnust.edu.cn [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Huang, Yongli; Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-01-15

    Graphical abstract: - Highlights: • Coordination environment resolves electron binding-energy shift of Na and K clusters. • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. - Abstract: Consistency between density functional theory calculations and photoelectron spectroscopy measurements confirmed our predications on the undercoordination-induced local bond relaxation and core level shift of Na and K clusters. It is clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and local potential well depression and shift the electron binding-energy accordingly. Numerical consistency turns out the energy levels for an isolated Na (E{sub 2p} = 31.167 eV) and K (E{sub 3p} = 18.034 eV) atoms and their respective bulk shifts of 2.401 eV and 2.754 eV, which is beyond the scope of conventional approaches. This strategy has also resulted in quantification of the local bond length, bond energy, binding energy density, and atomic cohesive energy associated with the undercoordinated atoms.

  7. Curing Black Hole Singularities with Local Scale Invariance

    Directory of Open Access Journals (Sweden)

    Predrag Dominis Prester

    2016-01-01

    Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.

  8. Global Status Report on Local Renewable Energy Policies

    International Nuclear Information System (INIS)

    Martinot, Eric; Yamashita, Noriaki; Tan, Vincent; Irie, Risa; Van Staden, Maryke; Zimmermann, Monika

    2011-01-01

    This report complements the REN21 Renewables Global Status Report by providing more detailed information at the city and local levels about policies and activities to promote renewable energy. It is intended to facilitate dialogue and illuminate pathways for future policies and actions at the local level. This 'working draft' version is intended to solicit comments and additional information

  9. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  10. Two-particle one-hole multiple-scattering contribution to 17O energies using an energy-dependent reaction matrix

    International Nuclear Information System (INIS)

    Bando, H.; Krenciglowa, E.M.

    1976-01-01

    The role of 2p1h correlations in 17 O is studied within a multiple-scattering formalism. An accurate, energy-dependent reaction matrix with orthogonalized plane-wave intermediate states is used to assess the relative importance of particle-particle and particle-hole correlations in the 17 O energies. The effect of energy dependence of the reaction matrix is closely examined. (Auth.)

  11. Dynamical manifestations of quantum chaos: correlation hole and bulge

    Science.gov (United States)

    Torres-Herrera, E. J.; Santos, Lea F.

    2017-10-01

    A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable-chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  12. Black-hole bremsstrahlung and the efficiency of mass-energy radiative transfer

    International Nuclear Information System (INIS)

    Oliveira, H. P. de; Soares, I. Damiao; Tonini, E. V.

    2008-01-01

    We present results from numerical evolution of a boosted black hole, perturbed nonlinearly by an axisymmetric distribution of matter in the realm of Robinson-Trautman spacetimes. Characteristic initial data for the system were constructed and the Robinson-Trautmann equation was integrated for these data using a numerical code based on the Galerkin-collocation method. The emission of gravitational waves by the system is typical of bremsstrahlung at early times, a consequence of the deceleration of the black hole as it interacts with the perturbation; part of the perturbation is radiated away and another part is absorbed into the hole. The angular pattern evolves to the quadrupole form for later times. The final configuration is a black hole in motion with larger (Bondi) rest mass and smaller boost parameter. The efficiency Δ of mass-energy extraction by gravitational wave emission was also computed. The relation of Δ to the mass of the remnant black hole satisfies a nonextensive thermostatistics distribution with entropic index q≅1/2. The result extends analytical evaluations based on the linearized theory of gravitational wave emission. For each initial boost parameter, there always exists a (large) value of the perturbation parameter A 0 for which the momentum of the remnant black hole has opposite sign to that of the unperturbed black hole, due to the strong deceleration during the process of gravitational wave emission. The temporal wave form is that of an initial burst and we evaluate that for a large range of A 0 the process corresponds to a high power output in the initial dominant pulse.

  13. Quantum Black Hole Model and HAWKING’S Radiation

    Science.gov (United States)

    Berezin, Victor

    The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking’s radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.

  14. Flat-space holography and stress tensor of Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Baghchesaraei, Omid, E-mail: omidbaghchesaraei@gmail.com [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Fareghbal, Reza, E-mail: r_fareghbal@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Izadi, Yousef, E-mail: yizadi2015@fau.edu [Department of Physics, Florida Atlantic University, Boca Raton, FL 33431 (United States)

    2016-09-10

    We propose a stress tensor for the Kerr black hole written in the Boyer–Lindquist coordinate. To achieve this, we use the dictionary of the Flat/CCFT correspondence and take the flat-space limit from the quasi-local stress tensor of the four-dimensional Kerr–AdS black hole. The proposed stress tensor yields the correct values for the mass and angular momentum of the Kerr black hole at spatial infinity. We also calculate some components of the energy momentum tensor of the three dimensional CCFT and show that they are consistent with the holographic calculation of the Kerr black hole. The calculation we present in this paper is another confirmation for the Flat/CCFT proposal.

  15. A partnership approach to local energy management between European and Asian cities

    International Nuclear Information System (INIS)

    Webber, Peter; Pardo, Manuel; Conway, Stewart; Lack, Don; Ferreira, Vasco; Castanheira, Luis

    2005-01-01

    In Europe, several local areas have a number of years of experience with implementing local energy and greenhouse gas management policies, addressing national and international climate change targets. For example, in the city of Leicester in the UK, local strategies and measures have been implemented over several years to improve the energy efficiency of the Council's own operations and to manage city-wide energy consumption and greenhouse gas emissions. Recently, Leicester has participated in a European Commission funded project, which explores the potential for European local authorities and agencies to use their experience to work with a local area in a developing country where energy demand has been increasing rapidly, addressing climate change and sustainable development issues. The project has aimed to provide support at the local level with developing a framework to minimise energy-related contributions to climate change and air pollution, while giving quality of life benefits. It has used a partnership approach between Leicester, Vila Nova de Gaia municipality in Portugal, and a city in the Gujarat, India. The local level's role in each country in local energy management has been investigated. This has included a baseline assessment of local energy use, renewable energy and climate change issues in each partner city. The most locally relevant energy technologies have been selected and their implementation discussed in the local workshops involving a range of organisations and individuals, with actions being identified to improve the local management of energy, such as raising awareness and ensuring easy access to information

  16. Particle-hole states in 138Ba

    International Nuclear Information System (INIS)

    Bondarenko, V.A.; Khitrov, V.A.; Popov, Yu.P.; Brant, S.; Paar, V.; Simicic, L.

    1995-01-01

    The thermal-neutron-capture gamma rays and γγ-coincidences were measured by means of Ge detectors. Using primary and secondary (n, γ) data, the level scheme of 138 Ba was established with 63 levels up to an excitation energy of 5 MeV. The level energies and (d, p) transfer data were compared with model predictions of the interacting boson-fermion-fermion model. As shown, this model provides a basic understanding of the neutron particle-hole states of 138 Ba in the energy range of 3.5-5.0 MeV. ((orig.))

  17. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    Directory of Open Access Journals (Sweden)

    Xiwang Cui

    2016-11-01

    Full Text Available Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%.

  18. Black hole firewalls require huge energy of measurement

    Science.gov (United States)

    Hotta, Masahiro; Matsumoto, Jiro; Funo, Ken

    2014-06-01

    The unitary moving mirror model is one of the best quantum systems for checking the reasoning of the original firewall paradox of Almheiri et al. [J. High Energy Phys. 02 (2013) 062] in quantum black holes. Though the late-time part of radiations emitted from the mirror is fully entangled with the early part, no firewall exists with a deadly, huge average energy flux in this model. This is because the high-energy entanglement structure of the discretized systems in almost maximally entangled states is modified so as to yield the correct description of low-energy effective field theory. Furthermore, the strong subadditivity paradox of firewalls is resolved using nonlocality of general one-particle states and zero-point fluctuation entanglement. Due to the Reeh-Schlieder theorem in quantum field theory, another firewall paradox is inevitably raised with quantum remote measurements in the model. We resolve this paradox from the viewpoint of the energy cost of measurements. No firewall appears, as long as the energy for the measurement is much smaller than the ultraviolet cutoff scale.

  19. Evidence for Black Hole Growth in Local Analogs to Lyman Break Galaxies

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Overzier, Roderik A.; Hornschemeier, Ann; LaMassa, Stephanie M.

    2011-01-01

    We have used XMM-Newton to observe six Lyman break analogs (LBAs): members of the rare population of local galaxies that have properties that are very similar to distant Lyman break galaxies. Our six targets were specifically selected because they have optical emission-line properties that are intermediate between starbursts and Type 2 (obscured) active galactic nuclei (AGNs). Our new X-ray data provide an important diagnostic of the presence of an AGN. We find X-ray luminosities of order 10(sup 42) erg per second and ratios of X-ray to far-IR lummositles that are higher than values in pure starburst galaxies by factors ranging from approximately 3 to 30. This strongly suggests the presence of an AGN in at least some of the galaxies. The ratios of the luminosities of the hard (2-10 keV) X-ray to [O III] emission line are low by about an order of magnitude compared with Type 1 AGN, but are consistent with the broad range seen in Type 2 AGN. Either the AGN hard X-rays are significantly obscured or the [O III] emission is dominated by the starburst. We searched for an iron emission line at approximately 6.4 ke V, which is a key feature of obscured AGNs, but only detected emission at the approximately 2sigma level. Finally, we find that the ratios of the mid-infrared (24 micrometer) continuum to [O III]lambda 5007 luminosities in these LBAs are higher than the values for Type 2 AGN by an average of 0.8 dex. Combining all these clues, we conclude that an AGN is likely to be present, but that the bolometric luminosity is produced primarily by an intense starburst. If these black holes are radiating at the Eddington limit, their masses would lie in the range of 10(sup 5) - 10(sup 6) solar mass. These objects may offer ideal local laboratories to investigate the processes by which black holes grew in the early universe.

  20. Topological black holes dressed with a conformally coupled scalar field and electric charge

    International Nuclear Information System (INIS)

    Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo

    2006-01-01

    Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame

  1. Exchange functional by a range-separated exchange hole

    International Nuclear Information System (INIS)

    Toyoda, Masayuki; Ozaki, Taisuke

    2011-01-01

    An approximation to the exchange-hole density is proposed for the evaluation of the exact exchange energy in electronic structure calculations within the density-functional theory and the Kohn-Sham scheme. Based on the localized nature of density matrix, the exchange hole is divided into the short-range (SR) and long-range (LR) parts by using an adequate filter function, where the LR part is deduced by matching of moments with the exactly calculated SR counterpart, ensuring the correct asymptotic -1/r behavior of the exchange potential. With this division, the time-consuming integration is truncated at a certain interaction range, largely reducing the computation cost. The total energies, exchange energies, exchange potentials, and eigenvalues of the highest-occupied orbitals are calculated for the noble-gas atoms. The close agreement of the results with the exact values suggests the validity of the approximation.

  2. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    Science.gov (United States)

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  3. Lee–Wick black holes

    Directory of Open Access Journals (Sweden)

    Cosimo Bambi

    2017-01-01

    Full Text Available We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee–Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M>Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M=Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.

  4. Local energy policies in Poland and the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Both the Czech Republic and Poland as former Communist countries, are transforming their economies from central planning to a free market. This applies equally to energy planning and because they are starting from the same point, they have come up with very comparable solutions despite strong cultural differences, so that the parallels are striking. This study analyzes the energy management in local authorities in Poland and the Czech Republic with the objective of better: identifying the current situation, identifying the opportunities for action both now and in an extended European Union, identifying the constraints that may hinder full integration of East European municipalities in European Union programmes, improve the integration of municipalities in the countries concerned in pan-European networks of municipalities interested in energy issues. The study reviews the powers and responsibilities of local authorities in the energy field and the institutional framework within which local authorities work. There are now 16 directly elected regional authorities in Poland and the local authorities have been restructured into two levels, the Powiad and the Gmina. Similarly, in the Czech Republic 14 elected regional authorities have been established. This document brings together 2 reports: the final report and the study report about the energy policies in Poland and in the Czech republic: structure of local government, general and institutional aspects, national political organisation, national administrative organisation, municipal role in production and distribution, regulation and planning, energy issues, energy management policies, specific aspects at local level etc... The conclusions from two review seminars (Jablonec nad Nison (Czech republic), 25-26 January 2001, and Bielsko Biala (Poland), 22-23 February 2001) and some fact files on 4 large Czech towns and 4 large Polish towns complete the study. (J.S.)

  5. Towards a Novel no-hair Theorem for Black Holes

    CERN Document Server

    Hertog, T

    2006-01-01

    We provide strong numerical evidence for a new no-scalar-hair theorem for black holes in general relativity, which rules out spherical scalar hair of static four dimensional black holes if the scalar field theory, when coupled to gravity, satisfies the Positive Energy Theorem. This sheds light on the no-scalar-hair conjecture for Calabi-Yau compactifications of string theory, where the effective potential typically has negative regions but where supersymmetry ensures the total energy is always positive. In theories where the scalar tends to a negative local maximum of the potential at infinity, we find the no-scalar-hair theorem holds provided the asymptotic conditions are invariant under the full anti-de Sitter symmetry group.

  6. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  7. The RPA Atomization Energy Puzzle.

    Science.gov (United States)

    Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I

    2010-01-12

    There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.

  8. Drilling history core hole DC-8

    International Nuclear Information System (INIS)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  9. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  10. Thermodynamic phase transition of a black hole in rainbow gravity

    Directory of Open Access Journals (Sweden)

    Zhong-Wen Feng

    2017-09-01

    Full Text Available In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking–Page-type phase transitions in the framework of rainbow gravity theory.

  11. All-solution processed composite hole transport layer for quantum dot light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)

    2016-03-31

    In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.

  12. Environmentally-adapted local energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Moe, N; Oefverholm, E [NUTEK, Stockholm (Sweden); Andersson, Owe [EKAN Gruppen (Sweden); Froste, H [Swedish Environmental Protection Agency, Stockholm (Sweden)

    1997-10-01

    Energy companies, municipalities, property companies, firms of consultants, environmental groups and individuals are examples of players working locally to shape environmentally adapted energy systems. These players have needed information making them better able to make decisions on cost-efficient, environmentally-adapted energy systems. This book answers many of the questions they have put. The volume is mainly based on Swedish handbooks produced by the Swedish National Board for Industrial and Technical Development, NUTEK, together with the Swedish Environmental Protection Agency. These handbooks have been used in conjunction with municipal energy planning, local Agenda 21 work, to provide a basis for deciding on concrete local energy systems. The contents in brief: -The book throws new light on the concept of energy efficiency; -A section on the environment compares how air-polluting emissions vary with different methods of energy production; -A section contains more than 40 ideas for measures which can be profitable, reduce energy consumption and the impact on the environment all at the same time; -The book gives concrete examples of new, alternative and environmentally-adapted local energy systems. More efficient use of energy is included as a possible change of energy system; -The greatest emphasis is laid upon alternative energy systems for heating. It may be heating in a house, block of flats, office building or school; -Finally, there are examples of environmentally-adapted local energy planning.

  13. Territory and energy: policies, scales and tools for mobilization, knowledge and local action

    International Nuclear Information System (INIS)

    Chanard, Camille

    2011-01-01

    The thesis is about French local authorities' energy policies, and more particularly about regional policies. In a context of reassessment of fossil fuel-based energy systems, local authorities have a key role to play. Indeed, energy systems are complex and require to act locally, in order to keep fair access for consumers and to adapt supply to needs and uses. In the same way, environmental constraints and sustainable exploitation of local resources involve to have a good knowledge of territory and of local energy potential. But, local authorities do not know much about boundaries and about components of territorial energy systems. The main purpose of the thesis is to determine structure and behaviour of these energy systems in order to identify public policy incentive levers at local scale. The first part of the thesis deals with the links between land uses, actors' behaviours, political choices and energy consumptions. Here, we point out the specific interest of geography and territorial approach to treat energy issue, both for land planning and for actors' mobilization. In the second part, we identify policy instruments which local authorities should dispose and actions they should implement in order to develop energy saving and renewables. Then, the third part is more specific to regional level. The analysis of two French planning instruments (Regional Plans for Climate, Air and Energy and Regional Energy Observatories), shows the interest of this scale which could, with its position between national and local levels, contribute to improve knowledge of territories, to coordinate local actions and to develop energy policies adapted to local specificities [fr

  14. Thermodynamics and phase transition of black hole in an asymptotically safe gravity

    International Nuclear Information System (INIS)

    Ma, Meng-Sen

    2014-01-01

    We study the effects of quantum gravitational correction on the thermodynamics of black holes in the asymptotic safety scenario. Owing to the quantum-corrected Schwarzschild metric, the thermodynamic quantities are also corrected and a Hawking–Page-type phase transition may exist. We also employ the concept of thermodynamic geometry to the black hole to characterize the phase transition. By introducing a cavity enclosing the black hole, we apply the spatially finite boundary conditions to further investigate the thermodynamic phase transition of the black hole. It is shown that the larger and small black holes are both locally stable according to heat capacity. According to free energy, we find that the quantum-corrected black hole has similar thermodynamic phase structure to that of RN–AdS black hole. In addition, we also discuss the possibility of the phase transition between the black hole and the hot curved space. Above a certain temperature T 0 , the black hole is more probable than the hot space

  15. Think globally, act locally? Local climate change and energy policies in Sweden and the UK

    International Nuclear Information System (INIS)

    Collier, U.; Loefstedt, R.E.

    1997-01-01

    While climate change is obviously a global environmental problem, there is nevertheless potential for policy initiatives at the local level. Although the competences of local authorities vary between countries, they all have some responsibilities in the crucial areas of energy and transport policy. This paper examines local competences in Sweden and the UK and looks at the responses to the climate change issue by six local authorities, focussing on energy related developments. The points of departure are very different in the two countries. Swedish local authorities are much more independent than UK ones, especially through the ownership of local energy companies. Yet, UK local authorities are relatively active in the climate change domain, at least in terms of drawing up response strategies, which they see as an opportunity for reasserting their role, after a long period of erosion of their powers. Furthermore, there is more scope for action in the UK, as in Sweden many potential measures, especially in the energy efficiency field, have already been taken. However, in both countries climate change is only a relatively marginal area of local environmental policy making and the political will, as well as the financial resources, for more radical measures are often absent. (Author)

  16. Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures

    Science.gov (United States)

    Fang, Ke; Murase, Kohta

    2018-04-01

    The origin of ultrahigh-energy cosmic rays (UHECRs) is a half-century-old enigma1. The mystery has been deepened by an intriguing coincidence: over ten orders of magnitude in energy, the energy generation rates of UHECRs, PeV neutrinos and isotropic sub-TeV γ-rays are comparable, which hints at a grand unified picture2. Here we report that powerful black hole jets in aggregates of galaxies can supply the common origin for all of these phenomena. Once accelerated by a jet, low-energy cosmic rays confined in the radio lobe are adiabatically cooled; higher-energy cosmic rays leaving the source interact with the magnetized cluster environment and produce neutrinos and γ-rays; the highest-energy particles escape from the host cluster and contribute to the observed cosmic rays above 100 PeV. The model is consistent with the spectrum, composition and isotropy of the observed UHECRs, and also explains the IceCube neutrinos and the non-blazar component of the Fermi γ-ray background, assuming a reasonable energy output from black hole jets in clusters.

  17. Acceleration of particles by black holes: Kinematic explanation

    International Nuclear Information System (INIS)

    Zaslavskii, O. B.

    2011-01-01

    A new simple and general explanation of the effect of acceleration of particles by black holes to infinite energies in the center of mass frame is suggested. It is based on kinematics of particles moving near the horizon. This effect arises when particles of two kinds collide near the horizon. For massive particles, the first kind represents a particle with the generic energy and angular momentum (I call them ''usual''). Near the horizon, such a particle has a velocity almost equal to that of light in the frame that corotates with a black hole (the frame is static if a black hole is static). The second kind (called ''critical'') consists of particles with the velocity v< c near the horizon due to special relationship between the energy and angular momentum (or charge). As a result, the relative velocity approaches the speed of light c, and the Lorentz factor grows unbound. This explanation applies both to generic rotating black holes and charged ones (even for radial motion of particles). If one of the colliding particles is massless (photon), the critical particle is distinguished by the fact that its frequency is finite near the horizon. The existence (or absence) of the effect is determined depending on competition of two factors--gravitational blue shift for a photon propagating towards a black hole and the Doppler effect due to transformation from the locally nonrotating frame to a comoving one. Classification of all possible types of collisions is suggested depending on whether massive or massless particle is critical or usual.

  18. Local Operators in the Eternal Black Hole.

    Science.gov (United States)

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-11-20

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.

  19. New geometries for black hole horizons

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-10

    We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal p-branes as well as helicoidal black rings and helicoidal black tori in D≥6.

  20. Soft Hair on Black Holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  1. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  2. TANDEM - French-German cooperation for local energy transition

    International Nuclear Information System (INIS)

    Mouchard, Claire; Garreau, Enora; Maurer, Christiane; Schilken, Peter; Keilmann, Jenny-Claire; Janssen, Ulrike

    2014-01-01

    The simultaneous implementation of the German 'Energiewende' and the French 'Transition energetique' prompted both country's governments to sign various cooperation agreements. As both 'Energiewende' and 'Transition energetique' put a strong focus on decentralization of energy supply, establishing close inter-communal cooperation is particularly promising. The project TANDEM, which is jointly led by Klima-Buendnis and Energy Cities - both local authority networks - and co-funded by Germany's Federal Environment Agency (UBA) and the French Energy Agency ADEME provides French and German local authorities with a unique opportunity to exchange experiences and create partnerships for climate protection having the following objectives: - Creating broad mutual understanding for the respective situation, challenges and framework in energy and climate policy; - Encourage exchanges with regard to obstacles and success factors concerning the realization of ambitious energy- and climate-goals and promoting mutual transfer of know-how; - Stimulating close collaboration between local authorities from both countries while involving and supporting local stakeholders and citizens; - Implementing initial stages of cooperation projects during the lifetime of the TANDEM project and creating a foundation for long-term cooperation; - Raise awareness for demands, requirements and concerns of local authorities on a national and European level in order to strengthen their influence and enlarge their scope of action. In this document, the authors briefly present the French, German and European contexts and the organization of both countries regarding energy transition. Then, a parallel is made between the national energy-climate plans of both countries ('Klimaschutzkonzepte' and 'Plans Climat-Energie Territoriaux') to identify the similarities and differences in order to learn from each other and to be able to create cooperations between both policy mechanisms

  3. Broadband energy harvesting using acoustic black hole structural tailoring

    International Nuclear Information System (INIS)

    Zhao, Liuxian; Semperlotti, Fabio; Conlon, Stephen C

    2014-01-01

    This paper explores the concept of an acoustic black hole (ABH) as a main design framework for performing dynamic structural tailoring of mechanical systems for vibration energy harvesting applications. The ABH is an integral feature embedded in the host structure that allows for a smooth reduction of the phase velocity, theoretically approaching zero, while minimizing the reflected energy. This mechanism results in structural areas with high energy density that can be effectively exploited to develop enhanced vibration-based energy harvesting. Fully coupled electro-mechanical models of an ABH tapered structure with surface mounted piezo-transducers are developed to numerically simulate the response of the system to both steady state and transient excitations. The design performances are numerically evaluated using structural intensity data as well as the instantaneous voltage/power and energy output produced by the piezo-transducer network. Results show that the dynamically tailored structural design enables a drastic increase in the harvested energy as compared to traditional structures, both under steady state and transient excitation conditions. (papers)

  4. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  5. On the hole accelerator for III-nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    In this work, we systematically conduct parametric studies revealing the sensitivity of the hole injection on the hole accelerator (a hole accelerator is made of the polarization mismatched p-electron blocking layer (EBL)/p-GaN/p-Al x Ga 1−x N heterojunction) with different designs, including the AlN composition in the p-Al x Ga 1−x N layer, and the thickness for the p-GaN layer and the p-Al x Ga 1−x N layer. According to our findings, the energy that the holes obtain does not monotonically increase as the AlN incorporation in the p-Al x Ga 1−x N layer increases. Meanwhile, with p-GaN layer or p-Al x Ga 1−x N layer thickening, the energy that the holes gain increases and then reaches a saturation level. Thus, the hole injection efficiency and the device efficiency are very sensitive to the p-EBL/p-GaN/p-Al x Ga 1−x N design, and the hole accelerator can effectively increase the hole injection if properly designed.

  6. Gravitomagnetism and angular momenta of black-holes

    OpenAIRE

    Marcelo Samuel Berman

    2007-01-01

    We review the energy contents formulae of Kerr-Newman black-holes, where gravitomagnetic energy term comes into play (Berman 2004, 2006a,b). Then, we obtain the angular momenta formulae, which include the gravitomagnetic effect. Three theorems can be enunciated: (1) No black-hole has its energy confined to its interior; (2) Rotating black-holes do not have confined angular momenta; (3) The energy density of a black-hole is not confined to its interior. The difference between our calculation a...

  7. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    Science.gov (United States)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  8. Density functional theory calculations of energy-loss carbon near-edge spectra of small diameter armchair and zigzag nanotubes: Core-hole, curvature, and momentum-transfer orientation effects

    International Nuclear Information System (INIS)

    Titantah, J.T.; Lamoen, D.; Jorissen, K.

    2004-01-01

    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1 nm using the all-electron full-potential(-linearized)-augmented-plane-wave method. Emphasis is laid on the effects of curvature, the electron-beam orientation, and the inclusion of the core hole on the carbon electron-energy-loss K edge. The electron-energy-loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature-induced π-σ hybridization is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron-energy-loss measurements. We also find that the energy-loss near-edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, we report a reduction in the anisotropy as seen on the energy-loss near-edge spectra of carbon nanotubes

  9. An EPR study of positive hole transfer and trapping in irradiated frozen solutions containing aromatic traps

    International Nuclear Information System (INIS)

    Egorov, A.V.; Zezin, A.A.; Feldman, V.I.

    2002-01-01

    Complete text of publication follows. Processes of positive hole migration and trapping are of basic significance for understanding of the primary events in the radiation chemistry of solid molecular systems. Specific interest is concerned with the case, when ionization energies of 'hole traps' are rather close, so one may expect 'fine tuning' effects resulting from variations in conformation, weak interactions, molecular packing, etc. In this contribution we report the results of EPR study of formation of radical cations in irradiated frozen halocarbon solutions containing aromatic molecules of different structure. Using the 'two-trap' model made it possible to obtain an evidence for efficient long-range trap-to-trap positive hole transfer between alkyl benzene molecules with close ionization energies distributed in the matrices with high ionization potentials. The distance of transfer was found to be 2-4 nm. In the case of frozen solutions containing ethylbenzene and toluene, it was found that the efficiency and direction of hole transfer was controlled by the conformation of ethylbenzene radical cation. The study of positive hole localization in 'bridged' diphenyls of Ph(CH 2 ) n Ph type revealed that the structure of radical cations of these species was affected by local environment (type of halocarbon matrix) and the conformational flexibility of 'bridge'. In summary, we may conclude that migration and localization of positive hole in rigid systems containing aromatic 'traps' is quite sensitive to rather subtle effects. This conclusion may be of common significance for the radiation chemistry of systems with physical dispersion of the traps of similar chemical structure (e.g. macromolecules, adsorbed molecules, etc.)

  10. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  11. On the gravitational wave background from black hole binaries after the first LIGO detections

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias, E-mail: icholis1@jhu.edu [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, 21218 (United States)

    2017-06-01

    The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density) of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.

  12. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophylla (BChla) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  13. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  14. Charged spinning black holes as particle accelerators

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune

    2010-01-01

    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/√(3))≤(a/M)≤1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

  15. Hole Drilling Technique – on site stress measurement

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    2. Hole Drilling Technique for onsite stress measurement has been used to validate the stress level at 2 pillars of the Sint-Jacobschurch (Leuven, B). The technique allows estimating the stress in a stone from measuring deformation when a small hole is made. It is a low intrusive technique. The application of it is limited to local stress measurements and is a complement to stress estimate from calculations of from the use of –for example- flat jacks. In addition to the flat-jack technique...

  16. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  17. Black hole multiplicity at particle colliders (Do black holes radiate mainly on the brane?)

    International Nuclear Information System (INIS)

    Cavaglia, Marco

    2003-01-01

    If gravity becomes strong at the TeV scale, we may have the chance to produce black holes at particle colliders. In this Letter we revisit some phenomenological signatures of black hole production in TeV-gravity theories. We show that the bulk-to-brane ratio of black hole energy loss during the Hawking evaporation phase depends crucially on the black hole greybody factors and on the particle degrees of freedom. Since the greybody factors have not yet been calculated in the literature, and the particle content at trans-Planckian energies is not known, it is premature to claim that the black hole emits mainly on the brane. We also revisit the decay time and the multiplicity of the decay products of black hole evaporation. We give general formulae for black hole decay time and multiplicity. We find that the number of particles produced during the evaporation phase may be significantly lower than the average multiplicity which has been used in the past literature

  18. Probing the quantum correlation and Bell non-locality for Dirac particles with Hawking effect in the background of Schwarzschild black hole

    International Nuclear Information System (INIS)

    Xu, Shuai; Song, Xue-ke; Shi, Jia-dong; Ye, Liu

    2014-01-01

    In this Letter, we analytically explore the effect of the Hawking radiation on the quantum correlation and Bell non-locality for Dirac particles in the background of Schwarzschild black hole. It is shown that when the Hawking effect is almost nonexistent, corresponding to the case of an almost extreme black hole, the quantum properties of physically accessible state are the same for the initial situation. For finite Hawking temperature T, the accessible quantum correlation monotonously decreases along with increasing T owing to the thermal fields generated by the Hawking effect, and the accessible quantum non-locality will be disappeared when the Hawking temperature is more than a fixed value which increases with the parameter r of Werner state growing. Then we analyze the redistribution of quantum correlation, and find that for the case of the Hawking temperature being infinite, corresponding to the case of the black hole evaporating completely, the quantum correlation of physically accessible state is equal to the one of the inaccessible states. Moreover, due to the Pauli exclusion principle and the differences between Fermi–Dirac and Bose–Einstein statistics, for the Dirac fields the accessible classical correlation decreases with increase of the Hawking temperature, which is different for the scalar fields. For Bell non-locality, we also find that the quantum non-locality is always extinct for physically inaccessible states, and the strength of the non-locality decreases with enlarging intensity of Hawking effect when the non-locality is existent in physically accessible state.

  19. Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong [Chongqing Jiaotong University, School of Material Science and Engineering, Chongqing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Liu, Xian-Ming [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States); Hubei University for Nationalities, Center for Theoretical Physics, School of Sciences, Enshi, Hubei (China); Li, Li-Fang [Chinese Academy of Sciences, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Beijing (China)

    2016-11-15

    With the non-local observables such as two point correlation function and holographic entanglement entropy, we probe the phase structure of the Born-Infeld-anti-de Sitter black holes. For the case bQ > 0.5, where b is the Born-Infeld parameter and Q is the charge of the black hole, the phase structure is found to be similar to that of the Van der Waals phase transition, namely the black hole undergoes a first order phase transition and a second order phase transition before it reaches a stable phase. While for the case bQ < 0.5, a new phase branch emerges besides the Van der Waals phase transition. For the first order phase transition, the equal area law is checked, and for the second order phase transition, the critical exponent of the heat capacity is obtained. All these results are found to be the same as that observed in the entropy-temperature plane. (orig.)

  20. Stationary black holes: large D analysis

    International Nuclear Information System (INIS)

    Suzuki, Ryotaku; Tanabe, Kentaro

    2015-01-01

    We consider the effective theory of large D stationary black holes. By solving the Einstein equations with a cosmological constant using the 1/D expansion in near zone of the black hole we obtain the effective equation for the stationary black hole. The effective equation describes the Myers-Perry black hole, bumpy black holes and, possibly, the black ring solution as its solutions. In this effective theory the black hole is represented as an embedded membrane in the background, e.g., Minkowski or Anti-de Sitter spacetime and its mean curvature is given by the surface gravity redshifted by the background gravitational field and the local Lorentz boost. The local Lorentz boost property of the effective equation is observed also in the metric itself. In fact we show that the leading order metric of the Einstein equation in the 1/D expansion is generically regarded as a Lorentz boosted Schwarzschild black hole. We apply this Lorentz boost property of the stationary black hole solution to solve perturbation equations. As a result we obtain an analytic formula for quasinormal modes of the singly rotating Myers-Perry black hole in the 1/D expansion.

  1. Efficient red organic electroluminescent devices based on trivalent europium complex obtained by designing the device structure with stepwise energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang; Jiang, Yunlong; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Deng, Ruiping; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2016-02-15

    In this study, we aim to further enhance the electroluminescence (EL) performances of trivalent europium complex Eu(TTA){sub 3}phen (TTA=thenoyltrifluoroacetone and phen=1,10-phenanthroline) by designing the device structure with stepwise energy levels. The widely used bipolar material 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy) was chosen as host material, while the doping concentration of Eu(TTA){sub 3}phen was optimized to be 4%. To facilitate the injection and transport of holes, MoO{sub 3} anode modification layer and 4,4′,4′′-Tris(carbazole-9-yl)triphenylamine (TcTa) hole transport layer were inserted in sequence. Efficient pure red emission with suppressed efficiency roll-off was obtained attributed to the reduction of accumulation holes, the broadening of recombination zone, and the improved balance of holes and electrons on Eu(TTA){sub 3}phen molecules. Finally, the device with 3 nm MoO{sub 3} and 5 nm TcTa obtained the highest brightness of 3278 cd/m{sup 2}, current efficiency of 12.45 cd/A, power efficiency of 11.50 lm/W, and external quantum efficiency of 6.60%. Such a device design strategy helps to improve the EL performances of emitters with low-lying energy levels and provides a chance to simplify device fabrication processes. - Highlights: • Electroluminescent performances of europium complex were further improved. • Device structure with stepwise energy levels was designed. • Better carriers' balance was realized by improving the injection and transport of holes. • The selection of bipolar host caused the broadening of recombination zone.

  2. Consequences of Spin-Orbit Coupling at the Single Hole Level: Spin-Flip Tunneling and the Anisotropic g Factor.

    Science.gov (United States)

    Bogan, A; Studenikin, S A; Korkusinski, M; Aers, G C; Gaudreau, L; Zawadzki, P; Sachrajda, A S; Tracy, L A; Reno, J L; Hargett, T W

    2017-04-21

    Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.

  3. RANKING OF LOCAL AND DOMESTIC FUEL-ENERGY RECOURSES IN GROSS CONSUMPTION OF BELARUSSIAN FUEL-ENERGY RECOURSES

    Directory of Open Access Journals (Sweden)

    Y. N. Rumiantsava

    2008-01-01

    Full Text Available Local and domestic fuel-energy recourses of theRepublicofBelarusin gross consumption of fuel-energy  recourses  has  been ranked on the  basis of the  analysis of scientific  literature,  statistical information and also fundamental documentation in the sphere of energy policy and power saving. The paper proposes to give a special emphasis on usage of products after processing domestically manufactured fuel-energy recourses that have been obtained from local and imported raw-materials with the purpose to estimate a power security level of the Republic from a new point of view.

  4. Rotating black holes at future colliders. III. Determination of black hole evolution

    International Nuclear Information System (INIS)

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-01-01

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes

  5. The first neighborhood micro-grid of shared energy, RennesGrid: A harbinger of the energy transition at the local level

    International Nuclear Information System (INIS)

    Djahel, Thierry

    2017-01-01

    To develop a concrete policy for saving energy and for the energy transition, the Rennes metropolitan area and Schneider Electric have launched RennesGrid, a 20-year experiment with managing energy consumption at Ker Lann, an urban development zone located in Bruz township, 12 kilometers southwest of Rennes, France. Covering more than 160 hectares, Ker Lann groups: approximately sixty companies specialized in high technology; seventeen establishments of higher education, research and training; and residential units and dormitories for students. RennesGrid will make it less dependent on carbon energy thanks to the production of local, renewable sources using photovoltaic installations. For consumers, the objective is to reduce their energy needs and consume a renewable form of energy produced locally. Planned for operation at the end of 2017 and endowed with a global investment budget of Euro 5.8 million, this experiment is a private business with a hold over three hectares of land under a 20-year concession. Its business model is, however, mainly based on a cooperative approach (in particular with residents of the zone) and on innovative arrangements for participatory funding

  6. Drilling history core hole DC-6 Hanford, Washington

    International Nuclear Information System (INIS)

    1978-06-01

    Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored

  7. Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    International Nuclear Information System (INIS)

    Saida, Hiromi

    2007-01-01

    We consider a black hole in a heat bath, and the whole system which consists of the black hole and the heat bath is isolated from outside environments. When the black hole evaporates, the Hawking radiation causes an energy flow from the black hole to the heat bath. Therefore, since no energy flow arises in an equilibrium state, the thermodynamic state of the whole system is not in equilibrium. That is, in a region around the black hole, the matter field of Hawking radiation and that of heat bath should be in a nonequilibrium state due to the energy flow. Using a simple model which reflects the nonequilibrium nature of energy flow, we find the nonequilibrium effect on a black hole evaporation as follows: if the nonequilibrium region around a black hole is not so large, the evaporation time scale of a black hole in a heat bath becomes longer than that in an empty space (a situation without heat bath), because of the incoming energy flow from the heat bath to the black hole. However, if the nonequilibrium region around a black hole is sufficiently large, the evaporation time scale in a heat bath becomes shorter than that in an empty space, because a nonequilibrium effect of the temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. Further, a specific nonequilibrium phenomenon is found: a quasi-equilibrium evaporation stage under the nonequilibrium effect proceeds abruptly to a quantum evaporation stage at a semi-classical level (at black hole radius R g > Planck length) within a very short time scale with a strong burst of energy. (Contrarily, when the nonequilibrium effect is not taken into account, a quasi-equilibrium stage proceeds smoothly to a quantum stage at R g < Planck length without so strong an energy burst.) That is, the nonequilibrium effect of energy flow tends to make a black hole evaporation process more dynamical and to accelerate that process. Finally, on the final fate

  8. Energy Road-map 2050: Towards regional and local energy Road-maps. IMAGINE seminar 2011

    International Nuclear Information System (INIS)

    Maillot, Herve; Pidoux, Blandine

    2011-11-01

    The 2011 IMAGINE Seminar held in Brussels on 9 November 2011 united around fifty representatives from Energy Cities network member cities as well as representatives from the European Parliament and the Commission, various industrial sectors and civil society organisations. Participants were invited to share their visions of their action by 2040-2050 in a sustainable and desirable city, having achieved its energy transition. The spontaneous and inspiring discussions that followed broached the following questions: - What is and should be the role of the local level in the EU Energy Road-map? - What if European local authorities were to develop their own 'Energy 2050' Road-maps? - What local and regional policies can social and economic players use for contributing to achieving European targets? - Under what conditions is the 'low energy cities with a high quality of life for all' concept relevant? The debate helped outline a shared, global vision as a step towards European collective dynamics giving territories a major role in energy transition. At the end of the day, participants from very different backgrounds converged on the following key points: - Like European institutions, territories must develop a long-term vision, failing which they will be unable to take meaningful action, mobilise players and make the right decisions in the short-term. - The energy-territory relationship, from efficient energy use to supply policies, is a major democratic challenge. - Although a number of technologies are already available, they still have to be integrated so that citizens can satisfy their needs and become fully accountable for their energy use. - Energy strategies must help meet a number of local challenges: social and territorial cohesion, employment and economic development, environmental protection and quality of life. To do so, they need to be designed taking those they are supposed to serve, i.e. citizens, into consideration. - The interaction between local

  9. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    Science.gov (United States)

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

  10. Charged rotating black holes on a 3-brane

    International Nuclear Information System (INIS)

    Aliev, A.N.; Guemruekcueoglu, A.E.

    2005-01-01

    We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superseded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the 'squared' energy-momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of nonuniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles

  11. Control of hole localization in magnetic semiconductors by axial strain

    Science.gov (United States)

    Raebiger, Hannes; Bae, Soungmin; Echeverría-Arrondo, Carlos; Ayuela, Andrés

    2018-02-01

    Mn and Fe-doped GaN are widely studied prototype systems for hole-mediated magnetic semiconductors. The nature of the hole states around the Mn and Fe impurities, however, remains under debate. Our self-interaction corrected density-functional calculations show that the charge neutral Mn 0 and positively charged Fe+ impurities have symmetry-broken d5+h ground states, in which the hole is trapped by one of the surrounding N atoms in a small polaron state. We further show that both systems also have a variety of other d5+h configurations, including symmetric, delocalized states, which may be stabilized by axial strain. This finding opens a pathway to promote long-range hole-mediated magnetic interactions by strain engineering and clarifies why highly strained thin-films samples often exhibit anomalous magnetic properties.

  12. A sustainable local energy policy. Into a renewable millennium; Politique energetique locale durable: vers un millenaire renouvelable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    local promotional policies. Many of them, via their technical departments, municipal energy companies, local energy agencies, promotional resources etc. have the operational means to take action. These proceedings comprise: a presentation of three examples of municipal practice, two round tables about some communities 100% supplied with renewable energy, and about the liberalization of energy markets and the development of renewable energy, and 8 working groups about: renewable energy sources, local development, employment and social issues, renewable energy sources and urban planning, financing renewable energy policies, programmes for promoting renewable energy sources at local level, solar thermal, biomass and biogas, wind energy, and photovoltaic. (J.S.)

  13. Energy Survival: entertainment as a resource for local energy actions

    Energy Technology Data Exchange (ETDEWEB)

    Elburg, Henk van; Moosdijk, Catelijne van de [SenterNovem (Netherlands)

    2007-07-01

    In 2005, SenterNovem, the Dutch Broadcasting Corporation, a publishing company and a consortium of local authorities launched 'Energy Survival'; a renewing energy marketing strategy for children to create a demand for local energy actions. New elements are powerful branding and the use of cross media techniques through national TV, internet, local events and primary education. Through entertainment, Energy Survival influences children's attitude towards energy consumption and its convincing relation with the environment. It aims at qualifying children to become 'energy ambassadors' in their own local environment: family, school and neighbourhood. Energy Survival has become a well tested energy game-concept for children in whom public and private partners cooperate under one brand name and with a clear division of roles and interests. However, the backbone of the concept is the local approach: local actions in municipalities and in primary schools, supported by television and internet where children learn to deal with the upcoming energy challenges of the planet they will inherit. By providing an internet-based teaching method, especially primary schools will be an effective multiplier to reach children. Broadcasting the energy game on national TV on the one hand, and local events and preliminaries on the other hand, ensure opportunities for widespread 'duplication' of the concept, adapted to local policy priorities regarding sustainable energy because each municipality is permitted to choose its own themes. Despite the fact that the project is still young and that the partners consider it as a 'long term-investment', the first independent monitoring results indicate that Energy Survival so far is quite successful. Ratings of the first TV-series show a national market share of 20 % in the age group 6-12 years and significantly more interaction between children and their parents on energy related issues. The website

  14. Notes on Phase Transition of Nonsingular Black Hole

    International Nuclear Information System (INIS)

    Ma Meng-Sen; Zhao Ren

    2015-01-01

    On the belief that a black hole is a thermodynamic system, we study the phase transition of nonsingular black holes. If the black hole entropy takes the form of the Bekenstein—Hawking area law, the black hole mass M is no longer the internal energy of the black hole thermodynamic system. Using the thermodynamic quantities, we calculate the heat capacity, thermodynamic curvature and free energy. It is shown that there will be a larger black hole/smaller black hole phase transition for the nonsingular black hole. At the critical point, the second-order phase transition appears. (paper)

  15. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    Science.gov (United States)

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  16. Frontiers of controlling energy levels at interfaces

    Science.gov (United States)

    Koch, Norbert

    The alignment of electron energy levels at interfaces between semiconductors, dielectrics, and electrodes determines the function and efficiency of all electronic and optoelectronic devices. Reliable guidelines for predicting the level alignment for a given material combination and methods to adjust the intrinsic energy landscape are needed to enable efficient engineering approaches. These are sufficiently understood for established electronic materials, e.g., Si, but for the increasing number of emerging materials, e.g., organic and 2D semiconductors, perovskites, this is work in progress. The intrinsic level alignment and the underlying mechanisms at interfaces between organic and inorganic semiconductors are discussed first. Next, methods to alter the level alignment are introduced, which all base on proper charge density rearrangement at a heterojunction. As interface modification agents we use molecular electron acceptors and donors, as well as molecular photochromic switches that add a dynamic aspect and allow device multifunctionality. For 2D semiconductors surface transfer doping with molecular acceptors/donors transpires as viable method to locally tune the Fermi-level position in the energy gap. The fundamental electronic properties of a prototypical 1D interface between intrinsic and p-doped 2D semiconductor regions are derived from local (scanning probe) and area-averaged (photoemission) spectroscopy experiments. Future research opportunities for attaining unsurpassed interface control through charge density management are discussed.

  17. Energy localization and decay in highly ionic crystals

    International Nuclear Information System (INIS)

    Williams, R.T.; Thoma, E.D.; Bunton, P.H.

    1994-01-01

    Luminescence from localized states in pure wide-gap crystals is examined from the perspective of modern fast scintillator requirements. Recent advances in the understanding of self-trapped excitons are summarized with regard to excited-state configurations, spectra, and luminescence efficiency. As an example, the fast luminescence of partially quenched type I STEs (self-trapped excitons) in RbI offers tunable-lifetime subnanosecond pulses which could be useful for timing applications. The possible role of hole localization in cross luminescence is discussed. Stokes-shifted luminescence in some pure rare-earth fluoride crystals probably originates from self-trapped excitons of forms to be discussed

  18. Black holes and everyday physics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    Black holes have piqued much curiosity. But thus far they have been important only in ''remote'' subjects like astrophysics and quantum gravity. It is shown that the situation can be improved. By a judicious application of black hole physics, one can obtain new results in ''everyday physics''. For example, black holes yield a quantum universal upper bound on the entropy-to-energy ratio for ordinary thermodynamical systems which was unknown earlier. It can be checked, albeit with much labor, by ordinary statistical methods. Black holes set a limitation on the number of species of elementary particles-quarks, leptons, neutrinos - which may exist. And black holes lead to a fundamental limitation on the rate at which information can be transferred for given message energy by any communication system. (author)

  19. Local Alternative for Energy Supply : Performance Assessment of Integrated Community Energy Systems

    NARCIS (Netherlands)

    Koirala, B.P.; Chaves Avila, J.P.; Gomez, T.; Hakvoort, R.A.; Herder, P.M.

    2016-01-01

    Integrated community energy systems (ICESs) are emerging as a modern development to re-organize local energy systems allowing simultaneous integration of distributed energy resources (DERs) and engagement of local communities. Although local energy initiatives, such as ICESs are rapidly emerging due

  20. Understanding Local Energy Initiatives and Preconditions for Business Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Jablonska, B. [ECN Policy Studies, Petten (Netherlands); Oostra, M. [TNO, Delft (Netherlands)

    2013-09-15

    More and more local bottom-up energy initiatives are emerging. Those involved encounter many barriers during the realization of their ideas. As the generation of renewable energy is mostly included, these local initiatives contribute to the targets set at regional, national and EU level. At the same time, they are an indication that end-users themselves want to be part of the energy transition. What are the reasons for citizens to organize themselves and start and initiative? What kind of barriers do they encounter? What does this mean for roles and responsibilities of professionals? And to what kind of opportunities does this lead for products and services? Answers to these questions provide a solid starting point to develop methods and instruments to stimulate, facilitate and upscale local energy initiatives. This paper bundles the outcomes of three workshops and three additional interviews in the Netherlands as part of the European E-hub project. Conclusions can be drawn on needs and drivers, barriers, risks and solutions (lessons learned), possible roles for professionals and opportunities for new products and services.

  1. Multi-level, Multi-stage and Stochastic Optimization Models for Energy Conservation in Buildings for Federal, State and Local Agencies

    Science.gov (United States)

    Champion, Billy Ray

    Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. . Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. . The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM

  2. Drilling history core hole DC-4

    International Nuclear Information System (INIS)

    1978-12-01

    Core hole DC-4 was completed at a depth of 3998 feet in December, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Sicsson, Inc. furnished the engineering, daily supervision of the cable tool and core drilling activities, and geological core logging for DC-4. Core hole DC-4 is located on the Hanford Site about 3 miles east of the Yakima Barricade and approximately 103 feet southwest of rotary hole DC-5, which was completed to 3990 feet in February, 1978. Hanford Site coordinates reported for hole DC-4 are north 49,385.62 feet and west 85,207.63 feet, and Washington State coordinates are north 454,468.73 feet and east 2,209,990.87 feet. No elevation survey is available for hole DC-4, but it is approximately 745 feet above mean sea level based upon the survey of hole DC-5, which has a reported elevation of 745.16 feet on the top of the 3-inch flange. The purpose of core hole DC-4 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing, cross-hole seismic shear, and pressure wave velocity studies with rotary hole DC-5. Hole DC-4 was drilled through the overburden into basalt bedrock by cable tool methods (0-623 feet) and continuously cored through the final interval (623 to 3998 feet).Core recovery was 95.8 percent of the total footage cored

  3. Scrambling time from local perturbations of the eternal BTZ black hole

    Energy Technology Data Exchange (ETDEWEB)

    Caputa, Paweł [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh, EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, 277-8583 (Japan); Watanabe, Kento [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan)

    2015-08-04

    We compute the mutual information between finite intervals in two non-compact 2d CFTs in the thermofield double formulation after one of them has been locally perturbed by a primary operator at some time t{sub ω} in the large c limit. We determine the time scale, called the scrambling time, at which the mutual information vanishes and the original entanglement between the thermofield double gets destroyed by the perturbation. We provide a holographic description in terms of a free falling particle in the eternal BTZ black hole that exactly matches our CFT calculations. Our results hold for any time t{sub ω}. In particular, when the latter is large, they reproduce the bulk shock-wave propagation along the BTZ horizon description.

  4. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  5. Superradiance energy extraction, black-hole bombs and implications for astrophysics and particle physics

    CERN Document Server

    Brito, Richard; Pani, Paolo

    2015-01-01

    This volume gives a unified picture of the multifaceted subject of superradiance, with a focus on recent developments in the field, ranging from fundamental physics to astrophysics. Superradiance is a radiation enhancement process that involves dissipative systems. With a 60 year-old history, superradiance has played a prominent role in optics, quantum mechanics and especially in relativity and astrophysics. In Einstein's General Relativity, black-hole superradiance is permitted by dissipation at the event horizon, which allows energy extraction from the vacuum, even at the classical level. When confined, this amplified radiation can give rise to strong instabilities known as "blackhole bombs'', which have applications in searches for dark matter, in physics beyond the Standard Model and in analog models of gravity. This book discusses and draws together all these fascinating aspects of superradiance.

  6. Energy network dispatch optimization under emergency of local energy shortage

    International Nuclear Information System (INIS)

    Cai, Tianxing; Zhao, Chuanyu; Xu, Qiang

    2012-01-01

    The consequence of short-time energy shortage under extreme conditions, such as earthquake, tsunami, and hurricane, may cause local areas to suffer from delayed rescues, widespread power outages, tremendous economic losses, and even public safety threats. In such urgent events of local energy shortage, agile energy dispatching through an effective energy transportation network, targeting the minimum energy recovery time, should be a top priority. In this paper, a novel methodology is developed for energy network dispatch optimization under emergency of local energy shortage, which includes four stages of work. First, emergency-area-centered energy network needs to be characterized, where the capacity, quantity, and availability of various energy sources are determined. Second, the energy initial situation under emergency conditions needs to be identified. Then, the energy dispatch optimization is conducted based on a developed MILP (mixed-integer linear programming) model in the third stage. Finally, the sensitivity of the minimum dispatch time with respect to uncertainty parameters is characterized by partitioning the entire space of uncertainty parameters into multiple subspaces. The efficacy of the developed methodology is demonstrated via a case study with in-depth discussions. -- Highlights: ► Address the energy network dispatch problem under emergency of local energy shortage. ► Minimize the energy restoration time for the entire energy network under emergency events. ► Develop a new MILP model and a sensitivity analysis method with respect to uncertainties.

  7. The energy transition: new dialogues between cities and local stakeholders. Exploratory study

    International Nuclear Information System (INIS)

    Saxer, Olivia; Lacassagne, Sylvie; Guerin, Laura; Dupas, Stephane

    2016-01-01

    Energy Cities has carried out an exploratory study for cities and diverse project leaders desiring to start a sustainable energy transition in collaboration with all stakeholders in their territory. Local authorities have a key role to play in climate and energy policies and in the energy transition towards a low carbon, energy efficient and sustainable society. However, they cannot act alone. They often control only a small percentage of the emissions of local greenhouse gases directly, and this percentage rarely exceeds a quarter. It is therefore necessary to rely on the involvement of local stakeholders, which in turn will provide an opportunity for these stakeholders to be ambitious through innovative actions. How to stimulate stakeholders' involvement? In the past several years, a number of citizens', economic actors' or other local actors' initiatives have contributed to the energy transition of territories. These initiatives are based on empowerment. For instance, stakeholders can get access and the power to act on innovative tools and approaches, such as social economy, stakeholders' participation, crowd-funding, renewable energy citizen cooperatives and fab labs. Two primary questions to explore: As coordinators and pilots of local strategies for energy transition, how can local authorities foster, identify, support and replicate local energy transition initiatives? What dialogue should local authorities and leaders of local initiatives engage in? How can they drive new modes of governance, where stakeholders share responsibility to co-develop public policies, manage their city, and encourage the energy transition at the local level? We selected more than ten European energy transition initiatives, as diverse as they are innovative, anticipating new forms of governance and new ways to act and collaborate. The exploratory study does not only describe their process but it also analyses the synergies between the different stakeholders and the role the

  8. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  9. The local investment in renewable energies; L'investissement local dans les energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Poussard, E.; Quantin, J.; Grepmeier, K.; Larsen, J.; Manolakaki, E.; Twele, J

    2003-07-01

    These proceedings present some European testimonies about the advantage of local investment, illustrated with concrete cases taken in Germany, Denmark and Switzerland. They demonstrate that local investment in renewable energy sources is a reality and that this practice has indisputably contributed to their significant development in some countries of the European Union. The sustain of foreign banks to the financing of renewable energy sources is at the evidence an example to follow up in countries like France, Greece or Spain. Important efforts have to be made to simplify and encourage the implementation of projects, in particular from the administrative point of view. Beyond the financial aspects, the colloquium has shown that these practices of citizenship involvement represent an important factor of social adaptation and acceptation. The projects, gathering local actors but also the overall citizens through common investment funds, ensure a better territorial anchoring and a sustain to local and sustainable development. This document has been published with the support of the European Commission and ADEME (French Agency for Environment and Energy Management). (J.S.)

  10. New life styles to accompany the transition. Energy and territories: Toward the concept 'Energy 2.0' with local authorities

    International Nuclear Information System (INIS)

    Magnin, Gerard

    2011-01-01

    There has never really been a policy for heating, which represents 40 % of needs, even though a policy has existed for a long time now for electricity, which represents only 20 %. The latter has overdetermined the country's total energy system, thus leading to a national, centralized approach focused on macro-level quantitative needs in energy and on a single product. In contrast, a local, decentralized, more qualitative approach should focus on needs in relation to heating as well as electricity and on tapping local energy potentials, including saving energy. The concept of 'energy subsidiarity' is proposed. In its general acceptation, 'subsidiarity' implies that the search for solutions be conducted as closely as possible to the problems to be solved. In relation to energy, it implies systematically mobilizing locally available energy potentials

  11. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  12. Effects of hole self-trapping by polarons on transport and negative bias illumination stress in amorphous-IGZO

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-04-01

    The effects of hole injection in amorphous indium-gallium-zinc-oxide (a-IGZO) are analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6 eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative Bias Illumination Stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In the presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.

  13. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  14. The energy level alignment at the CH_3NH_3PbI_3/pentacene interface

    International Nuclear Information System (INIS)

    Ji, Gengwu; Zhao, Bin; Song, Fei; Zheng, Guanhaojie; Zhang, Xiaonan; Shen, Kongchao; Yang, Yingguo; Chen, Shi; Gao, Xingyu

    2017-01-01

    Highlights: • The Energy Level Alignment at the CH_3NH_3PbI_3/Pentacene Interface was resolved experimentally. • The downward band bending and the dipole found at the pentacene side would favorably drive holes away from the interface into pentacene. • A ∼0.7 eV offset between pentacene HOMO and CH_3NH_3PbI_3 VBM would be in favor of hole transfer whereas a ∼1.35 eV offset between pentacene LUMO and CH_3NH_3PbI_3 CBM should efficiently block the unwanted electron transfer from perovskite to pentacene. • Pentacene could be a viable hole transfer material candidate on perovskite to be explored in perovskite devices. - Abstract: Pentacene thin film on CH_3NH_3PbI_3 was studied by in-situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy to determine their interfacial energy level alignment. A 0.2 eV downward band bending together with a 0.1 eV interfacial dipole was found at the pentacene side, whereas there was no band bending found at the CH_3NH_3PbI_3 side. The offset between CH_3NH_3PbI_3 Valance Band Maximum (VBM) and pentacene Highest Occupied Molecular Orbital (HOMO) and that between CH_3NH_3PbI_3 Conduction Band Minimum (CBM) and pentacene Lowest Unoccupied Molecular Orbital (LUMO) was determined to be 0.7 and 1.35 eV, respectively. The band alignment at this interface is favor of efficient hole transfer, which suggests pentacene as a viable HTL candidate to be explored in perovskite solar cells.

  15. Local government influence on energy conservation ambitions in existing housing sites-Plucking the low-hanging fruit?

    International Nuclear Information System (INIS)

    Hoppe, T.; Bressers, J.Th.A.; Lulofs, K.R.D.

    2011-01-01

    Greater energy efficiency can be achieved in existing dwellings thanks to longer lifecycles, slow replacement rates, and technical innovations. Many such dwellings are located in dense urban neighbourhoods, where urban renewal projects are undertaken. Local government can encourage the setting of ambitious goals as a stepping stone to realizing energy efficiency goals that achieve high levels of energy efficiency. The research question which this paper addresses is: to what degree do local governments influence ambitions to conserve energy in existing housing sites? To examine this issue, thirty-three sites in the Netherlands were studied using a quantitative analysis. The results show that collaboration between local authorities and local actors increases the level of ambition to conserve energy. However, local authorities intentionally selected sites with poor energy efficiency, so it would be easy to meet ambitious energy conservation targets. Collaboration between local authorities and local actors turns out to be the key factor in selecting those sites. Moreover, there is little sign of genuine ambition. This article contributes to the debate on energy conservation policies in local housing sites. The study provides starting points for systematic, empirical research into the realisation of energy conservation in existing housing, especially in large-scale refurbishment projects. - Research Highlights: → Local governments encourage the setting of goals to realize energy efficiency goals. → Local authorities intentionally select sites with poor initial energy efficiency performance. → Collaboration with local actors turns out to be a key factor in selecting those sites. →There is little sign of genuine ambition. → Starting points for empirical research into the realisation of energy conservation in housing.

  16. Micro Black Holes and the Democratic Transition

    CERN Document Server

    Dvali, Gia

    2009-01-01

    Unitarity implies that the evaporation of microscopic quasi-classical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasi-classical black holes, according to which all the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top the usual quantum evaporation time, there is a new time-scale which characterizes a purely classical process during which the black hole looses the ability to differentiate among the species, and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially non-democratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the oth...

  17. Study of high energy emissions from stellar mass accreting holes

    International Nuclear Information System (INIS)

    Cadolle-Bel, Marion

    2006-01-01

    The present work is dedicated to the study of various X-ray binary Systems harbouring accreting stellar mass black holes (or candidates) associated in X-ray binary Systems mainly through the spectral and timing properties of the high energy 3 keV"-"1 MeV emission, sometimes completed by observations performed in radio, near-infrared and optical. The first part is devoted to accretion physics phenomena and the challenges of understanding the X-ray/gamma emission produced with the modeling of such high energy processes. Then I will define in a second part the instruments on board INTEGRAL and the way coded masked aperture is employed. In a third part, I will develop the standard data reduction analysis and my own contribution in improving the usual software before detailing the specific informatics tools I have developed for my own analysis. In the fourth part I will turn towards the deep analysis and interpretations I have performed on several black hole X-ray binary Systems chosen properly: the persistent black hole source Cygnus X-1 which has been studied since several years and surprised us by a high-energy excess detected; two new transient sources which provide interesting information, XTE J1720-318 located in the galactic bulge and SWIFT J1753.5-0127, probably situated in the halo. I will also detail my work on H 1743-322, recently identified by INTEGRAL as the HEAO source discovered in 1977, and on three (almost) persistent micro-quasars with superluminal jets, 1E 1740.7-2942, GRS 1758-258 and GRS 1915+105. I will analyze for each source spectral parameter evolutions and their links with each other during state transitions. I will then discuss the presence of two different X/gamma-ray emitting media with a relatively changing geometry. While establishing a cyclic order for the different variability classes of GRS 1915+105 observed during ten years, I will propose an interpretation for such behaviour, compatible with the theoretical predictions of the

  18. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  19. The black hole information paradox and the fate of the infalling observer

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    General Relativity predicts that the horizon of a large black hole is smooth. On the other hand, Quantum Mechanics, and the requirement that no information is lost during black hole evaporation, suggests that the horizon may be dramatically modified at the quantum level, even when the local curvature is small. I will discuss recent developments related to this fundamental conflict between General Relativity and Quantum Mechanics. I will present a proposal, motivated by the AdS/CFT correspondence, which seems to resolve the paradox and which opens up a novel framework for a quantitatively precise description of the black hole interior.

  20. Photon-exchange energy transfer of an electron–hole plasma between quasi-two-dimensional semiconductor layers

    International Nuclear Information System (INIS)

    Lyo, S.K.

    2012-01-01

    Photon-mediated energy transfer is shown to play an important role for transfer of an electron–hole plasma between two quasi-two-dimensional quantum wells separated by a wide barrier. The magnitude and the dependence of the transfer rate of an electron–hole plasma on the temperature, the well-to-well distance, and the plasma density are compared with those of the standard Förster (i.e., dipolar) rate and also with the exciton transfer rate. The plasma transfer rate through the photon-exchange mechanism decays very slowly as a function of the well-to-well distance and is larger than the dipolar rate except for short distances. The transfer rate of plasmas saturates at high densities and decays rapidly with the temperature. - Highlights: ► We study energy transfer (ET) between two two-dimensional semiconductor quantum wells. ► We compare the ET rates of an electron–hole plasma (at a high density) and Mott excitons. ► We show that the proposed photon-exchange rate is practically dominant over the Förster rate. ► We examine the dependences of the ET rate on the temperature, density, and well-to-well distance.

  1. Black holes at neutrino telescopes

    International Nuclear Information System (INIS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-01-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the large hadron collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC. (orig.)

  2. Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole

    Directory of Open Access Journals (Sweden)

    G. Abbas

    2014-01-01

    Full Text Available Few years ago, Setare (2006 has investigated the Cardy-Verlinde formula of noncommutative black hole obtained by noncommutativity of coordinates. In this paper, we apply the same procedure to a noncommutative black hole obtained by the coordinate coherent approach. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal field theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of noncommutative Schwarzschild black hole and have shown that entropy of noncommutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.

  3. Local Operators in the Eternal Black Hole

    NARCIS (Netherlands)

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-01-01

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that

  4. Single-hole and three-quasiparticle levels in 131Sn observed in the decay of sup(131g,m1,m2)In

    International Nuclear Information System (INIS)

    Fogelberg, B.; Blomqvist, J.

    1984-01-01

    The β - decay of mass-separated 131 In has been studied. Three different β-decaying states were found of which one is a high-spin isomer at about 4.1 MeV excitation energy. The level scheme for 131 Sn shows the full set of neutron single-hole levels below about 2.5 MeV and a number of three-quasiparticle levels in the region from about 4 to 7 MeV. The half-life of the 4846.7 keV level was determined to 300 ns. Some data on the decays of 131 Sn and sup(127,129)In are also reported. (orig.)

  5. Effects of dark energy on the efficiency of charged AdS black holes as heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hang [Nankai University, School of Physics, Tianjin (China); Meng, Xin-He [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Science, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-08-15

    In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the P-V plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density ρ{sub q} grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(V{sub 1}) and the bigger black holes(V{sub 2}) will lead to a lower efficiency, while the bigger pressure difference P{sub 1} - P{sub 4} will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity. (orig.)

  6. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.

    Science.gov (United States)

    Cornil, J; Verlaak, S; Martinelli, N; Mityashin, A; Olivier, Y; Van Regemorter, T; D'Avino, G; Muccioli, L; Zannoni, C; Castet, F; Beljonne, D; Heremans, P

    2013-02-19

    strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies.

  7. Searching for High-energy, Horizon-scale Emissions from Galactic Black Hole Transients during Quiescence

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L. C.-C.; Pu, Hung-Yi; Hirotani, Kouichi; Matsushita, Satoki; Inoue, Makoto [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Kong, Albert K. H; Chang, Hsiang-Kuang [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tam, Pak-Hin T., E-mail: lupin@asiaa.sinica.edu.tw, E-mail: hpu@perimeterinstitute.ca, E-mail: hirotani@tiara.sinica.edu.tw [School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082 (China)

    2017-08-10

    We search for the gamma-ray counterparts of stellar-mass black holes using the long-term Fermi archive to investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon. We achieve this by applying the pulsar outer-gap model to their magnetospheres. When a black hole transient (BHT) is in a low-hard or quiescent state, the radiatively inefficient accretion flow cannot emit enough MeV photons that are required to sustain the force-free magnetosphere in the polar funnel via two-photon collisions. In this charge-starved gap region, an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious Gamma-rays via the curvature and inverse-Compton (IC) processes. It is found that these gamma-ray emissions exhibit a flaring activity when the plasma accretion rate typically stays between 0.01% and 0.005% of the Eddington value for rapidly rotating, stellar-mass black holes. By analyzing the detection limit determined from archival Fermi /Large Area Telescope data, we find that the 7-year averaged duty cycle of such flaring activities should be less than 5% and 10% for XTE J1118+480 and 1A 0620-00, respectively, and that the detection limit is comparable to the theoretical prediction for V404 Cyg. It is predicted that the gap emission can be discriminated from the jet emission if we investigate the high-energy spectral behavior or observe nearby BHTs during deep quiescence simultaneously in infrared wavelength and very-high energies.

  8. Theoretical Frontiers in Black Holes and Cosmology School

    CERN Document Server

    Orazi, Emanuele

    2016-01-01

    These lecture notes are dedicated to the most recent theoretical applications of Black Hole solutions in high-energy physics. The main motivation of this volume is to present the latest black hole backgrounds that are relevant for gauge/gravity correspondence. Leading scientists in the field explain effective techniques for finding singular and cosmological solutions embedded in gauged supergravity, shedding light on underlying properties and symmetries. Starting from a basic level, the mathematical structures underlying black holes and cosmologies are revealed, helping the reader grasp the connection between theoretical approaches and physical observations with insights into possible future developments from both a theoretical and experimental point of view. The topics covered in this volume are based on lectures delivered during the “Theoretical Frontiers in Black Holes and Cosmology” school, held in Natal in June 2015.

  9. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  10. Dynamical black holes in low-energy string theory

    Energy Technology Data Exchange (ETDEWEB)

    Aniceto, Pedro [Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Rocha, Jorge V. [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-05-08

    We investigate time-dependent spherically symmetric solutions of the four-dimensional Einstein-Maxwell-axion-dilaton system, with the dilaton coupling that occurs in low-energy effective heterotic string theory. A class of dilaton-electrovacuum radiating solutions with a trivial axion, previously found by Güven and Yörük, is re-derived in a simpler manner and its causal structure is clarified. It is shown that such dynamical spacetimes featuring apparent horizons do not possess a regular light-like past null infinity or future null infinity, depending on whether they are radiating or accreting. These solutions are then extended in two ways. First we consider a Vaidya-like generalisation, which introduces a null dust source. Such spacetimes are used to test the status of cosmic censorship in the context of low-energy string theory. We prove that — within this family of solutions — regular black holes cannot evolve into naked singularities by accreting null dust, unless standard energy conditions are violated. Secondly, we employ S-duality to derive new time-dependent dyon solutions with a nontrivial axion turned on. Although they share the same causal structure as their Einstein-Maxwell-dilaton counterparts, these solutions possess both electric and magnetic charges.

  11. Black hole microstates in AdS{sub 4} from supersymmetric localization

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [Blackett Laboratory, Imperial College London,South Kensington Campus, London SW7 2AZ (United Kingdom); International School for Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); Hristov, Kiril [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,Tsarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,piazza della Scienza 3, I-20126 Milano (Italy); INFN, sezione di Milano-Bicocca,piazza della Scienza 3, I-20126 Milano (Italy)

    2016-05-10

    This paper addresses a long standing problem, the counting of the microstates of supersymmetric asymptotically AdS black holes in terms of a holographically dual field theory. We focus on a class of asymptotically AdS{sub 4} static black holes preserving two real supercharges which are dual to a topologically twisted deformation of the ABJM theory. We evaluate in the large N limit the topologically twisted index of the ABJM theory and we show that it correctly reproduces the entropy of the AdS{sub 4} black holes. An extremization of the index with respect to a set of chemical potentials is required. We interpret it as the selection of the exact R-symmetry of the superconformal quantum mechanics describing the horizon of the black hole.

  12. Innovation in Multi-Level Governance for Energy Efficiency. Sharing experience with multi-level governance to enhance energy efficiency. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    Jollands, Nigel; Gasc, Emilien; Pasquier, Sara Bryan

    2009-12-15

    Despite creating a plethora of national and international regulations and voluntary programmes to improve energy efficiency, countries are far from achieving full energy efficiency potential across all sectors of the economy. One major challenge, among numerous barriers, is policy implementation. One strategy that many national governments and international organisations have used to address the implementation issue is to engage regional and local authorities. To that end, many programmes have been created that foster energy efficiency action and collaboration across levels of government. The aim of this report is to identify trends and detail recent developments in multi-level governance in energy efficiency (MLGEE). By sharing lessons learned from daily practitioners in the field, the IEA hopes energy efficiency policy makers at all levels of government will be able to identify useful multilevel governance (MLG) practices across geographical and political contexts and use these to design robust programmes; modify existing programmes, and connect and share experiences with other policy makers in this field.

  13. Electron-hole pair effects in methane dissociative chemisorption on Ni(111)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xuan; Jiang, Bin, E-mail: bjiangch@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Juaristi, J. Iñaki [Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián (Spain); Alducin, Maite [Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-07-28

    The dissociative chemisorption of methane on metal surfaces has attracted much attention in recent years as a prototype of gas-surface reactions in understanding the mode specific and bond selective chemistry. In this work, we systematically investigate the influence of electron-hole pair excitations on the dissociative chemisorption of CH{sub 4}/CH{sub 3}D/CHD{sub 3} on Ni(111). The energy dissipation induced by surface electron-hole pair excitations is modeled as a friction force introduced in the generalized Langevin equation, in which the independent atomic friction coefficients are determined within the local-density friction approximation. Quasi-classical trajectory calculations for CH{sub 4}/CH{sub 3}D/CHD{sub 3} have been carried out on a recently developed twelve-dimensional potential energy surface. Comparing the dissociation probabilities obtained with and without friction, our results clearly indicate that the electron-hole pair effects are generally small, both on absolute reactivity of each vibrational state and on the mode specificity and bond selectivity. Given similar observations in both water and methane dissociation processes, we conclude that electron-hole pair excitations would not play an important role as long as the reaction is direct and the interaction time between the molecule and metal electrons is relatively short.

  14. Energy savings certificates 2011-2013 - Local Authorities. Knowledge for action

    International Nuclear Information System (INIS)

    2013-03-01

    Combating climate change and preserving our natural resources calls for a broad mobilization. Regional and local authorities and their public bodies are particularly concerned, as their own buildings and properties consume energy. These authorities are also essential drivers of local policies that can mobilize citizens and consumers within their territory. A number of tools and mechanisms are currently being implemented to meet these challenges, at the national and European levels. Among these, Energy Savings Certificates (ESCs) were introduced in France by the Energy Policy Law of 13 July 2005, with the aim of achieving energy savings in sectors of dispersed activity, mainly buildings, but also light industry, agriculture and transport. For local authorities this mechanism is an additional financial leverage tool that can be used to support their energy management projects. Under this scheme energy suppliers must promote energy-efficient investments, and thus are potential sources of financing for project owners. The Grenelle environmental conference forcefully reiterated the need to take action to renovate existing building stock. In order to achieve the ambitious goals that have been set, the financial mechanisms put into place, including the ESC scheme, must be amplified. Following the first conclusive test period (2006-2009), the ESC scheme is being ramped up during a second more ambitious three-year period that began on 1 January 2011. The present document is intended to inform local authorities of changes in the ESC scheme to be implemented for the second period covering 2011-2013. This guidance is divided into two parts: the first section describes the principles of the ESC scheme, and the second offers advice to local authorities that want to use this scheme for an energy management project. You will also find a practical information sheet listing all the steps to be taken to submit an ESC claim. In this document, for reasons of simplicity, the generic

  15. Thin accretion disk around regular black hole

    Directory of Open Access Journals (Sweden)

    QIU Tianqi

    2014-08-01

    Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.

  16. French local agencies of energy control; Agences locales francaise de maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the SAVE program, the European Commission brings financial assistance to the creation of local or regional agencies of energy control in municipalities and regions. The main criteria are the impacts on the energy demand, the reinforcement of the economic and social cohesion, the environmental quality and the contribution to the economic development and the employment creation. In this document, realized by Energie-Cites, the Ademe objective is to present a state of the art of french local agencies. Ten agencies are presented as case study. Each case deals with the following topics: the main context of the action which details the energy and the environmental policy of the municipality, the creation and the description of the agency, the implemented actions and the perspectives. (A.L.B.)

  17. Local conservation law and dark radiation in cosmological braneworld

    International Nuclear Information System (INIS)

    Minamitsuji, Masato; Sasaki, Misao

    2004-01-01

    In the context of the Randall-Sundrum (RS) single-brane scenario, we discuss the bulk geometry and dynamics of a cosmological brane in terms of the local energy conservation law which exists for the bulk that allows slicing with a maximally symmetric three-space. This conservation law enables us to define a local mass in the bulk. We show that there is a unique generalization of the dark radiation on the brane, which is given by the local mass. We find there also exists a conserved current associated with the Weyl tensor, and the corresponding local charge, which we call the Weyl charge, is given by the sum of the local mass and a certain linear combination of the components of the bulk energy-momentum tensor. This expression of the Weyl charge relates the local mass to the projected Weyl tensor, E μν , which plays a central role in the geometrical formalism of the RS braneworld. On the brane, in particular, this gives a decomposition of the projected Weyl tensor into the local mass and the bulk energy-momentum tensor. Then, as an application of these results, we consider a null dust model for the bulk energy-momentum tensor and discuss the black hole formation in the bulk. We investigate the causal structure by identifying the locus of the apparent horizon and clarify possible brane trajectories in the bulk. We find that the brane stays always outside the black hole as long as it is expanding. We also find an upper bound on the value of the Hubble parameter in terms of the matter energy density on the brane, irrespective of the energy flux emitted from the brane

  18. TANDEM - French-German cooperation for local energy transition. 2014-2017 results, 2017-2019 prospects

    International Nuclear Information System (INIS)

    Turfin, Anne; Maurer, Christiane; Schilken, Peter; Mouchard, Claire; Coquio, Rozenn; Kynast, Helmi

    2016-11-01

    The simultaneous implementation of the 'Transition energetique' process in France and of the 'Energiewende' process in Germany has resulted in the signature of a number of cooperation agreements between the two States. Since both these energy transition processes are largely based on decentralising energy supplies, close local authority cooperation looks promising. The TANDEM project is jointly led by two local authority networks, Energy Cities and Klima-Buendnis, with co-funding from ADEME (French Environment and Energy Management Agency) and UBA (German Federal Environment Agency). The TANDEM project provides French and German local authorities with a unique opportunity to share information and cooperate on climate protection issues in order to: provide improved mutual understanding of the situation, challenges and framework of climate and energy policies; encourage exchanges on the obstacles and leverages impeding or fostering the attainment of ambitious energy and climate objectives and encourage knowledge transfer; boost close cooperation between local authorities from both countries, involving local stakeholders and citizens; implement the first stages of cooperation projects during the lifetime of the TANDEM project and lay solid foundations for long-term cooperation; relay local authorities' claims and concerns at both national and European levels, aimed at providing them with greater latitude and freedom of action. Approaches specific to each country have been developed to promote energy transition at the local level. A comparative analysis of existing practices, tools and experiences involving research work and interviews will be conducted and made available to the participating authorities as well as to national organisations. This analysis will be used by national organisations to develop and enhance their action and by local authorities to improve mutual understanding during their discussions. Cooperation projects aimed at implementing energy

  19. Chen-Nester-Tung quasi-local energy and Wang-Yau quasi-local mass

    Science.gov (United States)

    Liu, Jian-Liang; Yu, Chengjie

    2017-10-01

    In this paper, we show that the Chen-Nester-Tung (CNT) quasi-local energy with 4D isometric matching references is closely related to the Wang-Yau (WY) quasi-local energy. As a particular example, we compute the second variation of the CNT quasi-local energy for axially symmetric Kerr-like spacetimes with axially symmetric embeddings at the obvious critical point (0 , 0) and find that it is a saddle critical point in most of the cases. Also, as a byproduct, we generalize a previous result about the coincidence of the CNT quasi-local energy and Brown-York mass for axially symmetric Kerr-like spacetimes by Tam and the first author Liu and Tam (2016) to general spacetimes.

  20. A local energy market for electricity and hydrogen

    DEFF Research Database (Denmark)

    Xiao, Yunpeng; Wang, Xifan; Pinson, Pierre

    2017-01-01

    The proliferation of distributed energy resources entails efficient market mechanisms in distribution-level networks. This paper establishes a local energy market (LEM) framework in which electricity and hydrogen are traded. Players in the LEM consist of renewable distributed generators (DGs......), loads, hydrogen vehicles (HVs), and a hydrogen storage system (HSS) operated by a HSS agent (HSSA). An iterative LEM clearing method is proposed based on the merit order principle. Players submit offers/bids with consideration of their own preferences and profiles according to the utility functions...

  1. Local acceptance of renewable energy-A case study from southeast Germany

    International Nuclear Information System (INIS)

    Musall, Fabian David; Kuik, Onno

    2011-01-01

    The European 20-20-20 goals, as well as national targets for the next decade, require a substantial increase in installed renewable capacity in Germany. While public support for such measures is high on an abstract level, the situation in the local context is often very different. Here, the impact of renewable energy might cause resistance. Empirical research shows that a community ownership model can have a positive effect on local acceptance. Our study explores whether such an effect can also be demonstrated in a community co-ownership model. The question is relevant since larger projects exceed the financial possibilities of most communities, leaving them with only co-ownership as an option. The research design is based on a comparative case study, utilizing a questionnaire-based survey. The results of the survey clearly show that a significant difference in local acceptance exists between the two cases. The residents of Zschadrass, where a community co-ownership model exists, are consistently more positive towards local renewable energy and also towards renewable energy in general. The results provide evidence that the co-ownership model is a means to reconcile local acceptance with an increased use of renewable energy in Germany. - Highlights: → We study if community co-ownership affects local acceptance of renewable energy → We interviewed residents from two villages with different ownership models → Residents with co-ownership are consistently more positive towards renewable energyLocal acceptance is higher with co-ownership than with a private ownership model.

  2. Delocalization of brane gravity by a bulk black hole

    International Nuclear Information System (INIS)

    Seahra, Sanjeev S; Clarkson, Chris; Maartens, Roy

    2005-01-01

    We investigate the analogue of the Randall-Sundrum braneworld in the case when the bulk contains a black hole. Instead of the static vacuum Minkowski brane of the RS model, we have an Einstein static vacuum brane. We find that the presence of the bulk black hole has a dramatic effect on the gravity that is felt by brane observers. In the RS model, the 5D graviton has a stable localized zero mode that reproduces 4D gravity on the brane at low energies. With a bulk black hole, there is no such solution-gravity is delocalized by the 5D horizon. However, the brane does support a discrete spectrum of metastable massive bound states, or quasinormal modes, as was recently shown to be the case in the RS scenario. These states should dominate the high frequency component of the bulk gravity wave spectrum on a cosmological brane. We expect our results to generalize to any bulk spacetime containing a Killing horizon. (letter to the editor)

  3. Network approach for local and community governance of energy: The case of Oxfordshire

    International Nuclear Information System (INIS)

    Parag, Yael; Hamilton, Jo; White, Vicki; Hogan, Bernie

    2013-01-01

    One of the many barriers to the incorporation of local and community actors in emerging energy governance structures and policy delivery mechanisms is the lack of thorough understanding of how they work in practice, and how best to support and develop effective local energy governance. Taking a meso-level perspective and a network approach to governance, this paper sheds some new light on this issue, by focusing on the relation, channels of communication and interactions between low carbon community groups (LCCGs) and other actors. Based on data gathered from LCCGs in Oxfordshire, UK, via network survey and interviews the research maps the relations in terms of the exchanges of information and financial support, and presents a relation-based structure of local energy governance. Analysis reveals the intensity of energy related information exchanges that is taking place at the county level and highlights the centrality of intermediary organization in facilitating information flow. The analysis also identifies actors that are not very dominant in their amount of exchanges, but fill ‘weak-tie’ functions between otherwise disconnected LCCGs or other actors in the network. As an analytical tool the analysis could be useful for various state and non-state actors that want to better understand and support – financially and otherwise – actors that enable energy related local action. - Highlights: • We used social network analysis to examine local and community governance of energy. • We examined information and financial support flow within the network. • Analysis highlights central and peripheral actors in the local governance structure. • The findings highlight the central role intermediary organizations have in local governance structures

  4. Calculations of carrier localization in InxGa1-xN

    International Nuclear Information System (INIS)

    Wang, Lin-Wang

    2001-01-01

    The electronic structures of cubic InGaN systems are calculated using an atomistic empirical pseudopotential method. Two extreme cases are studied. One is a pure InN quantum dot embedded in a pure GaN matrix, another is a pure In x Ga 1-x N alloy without clustering. We find hole localizations in both cases. The hole wave function starts to be localized as soon as a few In atoms segregate to form a small cluster, while the electron wave function only becomes localized after the number of In atoms in the quantum dot becomes larger than 200. The hole state is also strongly localized in a pure In x Ga 1-x N alloy, on top of randomly formed (110) directioned In-N-In chains. Using one proposed model, we have calculated the hole energy fluctuation, and related that to photoluminescence linewidth. The calculated linewidth is about 100 meV, close to the experimental results. Wurtzite InGaN is also studied for optical anisotropies. We find that in both quantum dot and pure alloy, the polarization is in the xy plane perpendicular to the c axis of the wurtzite structure

  5. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... coronal hole and solar wind. For both the wavelength bands, we also com- pute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength. 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and ...

  6. Will we observe black holes at the LHC?

    International Nuclear Information System (INIS)

    Cavaglia, Marco; Das, Saurya; Maartens, Roy

    2003-01-01

    The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck scale O(TeV), this leads to important changes in the formation and detection of black holes at the large hadron collider. The number of particles produced in Hawking evaporation decreases substantially. The evaporation ends when the black-hole mass is Planck scale, leaving a remnant and a consequent missing energy of order TeV. Furthermore, the minimum energy for black-hole formation in collisions is increased, and could even be increased to such an extent that no black holes are formed at LHC energies. (letter to the editor)

  7. Local and regional energy companies offering energy services: Key activities and implications for the business model

    International Nuclear Information System (INIS)

    Kindström, Daniel; Ottosson, Mikael

    2016-01-01

    Highlights: • Many companies providing energy services are experiencing difficulties. • This research identifies key activities for the provision of energy services. • Findings are aggregated to the business-model level providing managerial insights. • This research identifies two different business model innovation paths. • Energy companies may need to renew parts of, or the entire, business model. - Abstract: Energy services play a key role in increasing energy efficiency in the industry. The key actors in these services are the local and regional energy companies that are increasingly implementing energy services as part of their market offering and developing service portfolios. Although expectations for energy services have been high, progress has so far been limited, and many companies offering energy services, including energy companies, are experiencing difficulties in implementing energy services and providing them to the market. Overall, this research examines what is needed for local and regional energy companies to successfully implement energy services (and consequently provide them to the market). In doing this, a two-stage process is used: first, we identify key activities for the successful implementation of energy services, and second, we aggregate the findings to the business model level. This research demonstrates that to succeed in implementing energy services, an energy company may need to renew parts or all of its existing product-based business model, formulate a new business model, or develop coexisting multiple business models. By discussing two distinct business model innovation processes, this research demonstrates that there can be different paths to success.

  8. Danish Experience in Local Energy Planning

    DEFF Research Database (Denmark)

    Lund, Henrik; Sørensen, Per Alex

    2003-01-01

    The paper describes the influence from public participation brings examples of local energy planning from Ærø and Samsø islands in Denmark.......The paper describes the influence from public participation brings examples of local energy planning from Ærø and Samsø islands in Denmark....

  9. Quantum Mechanics of Black Holes

    OpenAIRE

    Giddings, Steven B.

    1994-01-01

    These lectures give a pedagogical review of dilaton gravity, Hawking radiation, the black hole information problem, and black hole pair creation. (Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology)

  10. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    Science.gov (United States)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  11. Multi-Gateway-Based Energy Holes Avoidance Routing Protocol for WSN

    Directory of Open Access Journals (Sweden)

    Rohini Sharma

    2016-04-01

    Full Text Available In wireless sensor networks (WSNs, efficient energy conservation is required to prolong the lifetime of the network. In this work, we have given emphasis on balanced energy consumption and energy holes avoidance. This paper proposes a multi-gateway-based approach to reduce the transmission distance between the sender and the sink node. The area to be monitored is divided into regions and gateway nodes are deployed at optimal positions. We have designed a transmission scheme, in which sensors in the sink region communicate directly to the sink, sensors in the gateway region communicate directly to the gateway, and sensors in the cluster region transmit their data directly to their respective cluster head which transmits data to the gateway in its region. If the distance between a cluster head and the sink is less than the distance between the cluster head and the gateway node, the cluster head transmits data to the sink instead of the gateway node. We have compared the proposed protocol with Low-Energy Adaptive Clustering Hierarchy (LEACH, Gateway Based Energy Aware Multi-Hop Routing (M-GEAR, and Gateway Based Stable Election Protocol (GSEP protocols. The protocol performs better than other protocols in terms of throughput, stability period, lifetime, residual energy, and the packet transmitted to the sink.

  12. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  13. Tachyon hair on two-dimensional black holes

    International Nuclear Information System (INIS)

    Peet, A.; Susskind, L.; Thorlacius, L.

    1993-01-01

    Static black holes in two-dimensional string theory can carry tachyon hair. Configurations which are nonsingular at the event horizon have a nonvanishing asymptotic energy density. Such solutions can be smoothly extended through the event horizon and have a nonvanishing energy flux emerging from the past singularity. Dynamical processes will not change the amount of tachyon hair on a black hole. In particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. There also exist static solutions with a finite total energy, which have singular event horizons. Simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type

  14. Local Agenda 21 and renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report summarises the findings of a study to examine the progress of the Local Agenda 21 (LA21) plans of local authorities relevant to renewable energy. Current UK policy and funding of renewable energy, the development of LA21 in the UK, the research methodology, and the results of a questionnaire survey are discussed. The findings of consultations with local LA21 groups, discussions of good practice examples and approaches, and final recommendations are outlined. (UK)

  15. ON ESTIMATING THE HIGH-ENERGY CUTOFF IN THE X-RAY SPECTRA OF BLACK HOLES VIA REFLECTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    García, Javier A.; Steiner, James F.; McClintock, Jeffrey E.; Keck, Mason L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Dauser, Thomas; Wilms, Jörn, E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@head.cfa.harvard.edu, E-mail: keckm@bu.edu, E-mail: thomas.dauser@sternwarte.uni-erlangen.de [Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2015-08-01

    The fundamental parameters describing the coronal spectrum of an accreting black hole are the slope Γ of the power-law continuum and the energy E{sub cut} at which it rolls over. Remarkably, this latter parameter can be accurately measured for values as high as 1 MeV by modeling the spectrum of X-rays reflected from a black hole accretion disk at energies below 100 keV. This is possible because the details in the reflection spectrum, rich in fluorescent lines and other atomic features, are very sensitive to the spectral shape of the hardest coronal radiation illuminating the disk. We show that by fitting simultaneous NuSTAR (3–79 keV) and low-energy (e.g., Suzaku) data with the most recent version of our reflection model relxill one can obtain reasonable constraints on E{sub cut} at energies from tens of keV up to 1 MeV, for a source as faint as 1 mCrab in a 100 ks observation.

  16. Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Narducci, Dario, E-mail: dario.narducci@unimib.it [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Consorzio DeltaTi Research (Italy); Selezneva, Ekaterina [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Cerofolini, Gianfranco [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Consorzio DeltaTi Research (Italy); Frabboni, Stefano; Ottaviani, Giampiero [Department of Physics, University of Modena and Reggio Emilia, via Campi 213, 41100 Modena (Italy)

    2012-09-15

    Energy filtering has been widely considered as a suitable tool to increase the thermoelectric performances of several classes of materials. In its essence, energy filtering provides a way to increase the Seebeck coefficient by introducing a strongly energy-dependent scattering mechanism. Under certain conditions, however, potential barriers may lead to carrier localization, that may also affect the thermoelectric properties of a material. A model is proposed, actually showing that randomly distributed potential barriers (as those found, e.g., in polycrystalline films) may lead to the simultaneous occurrence of energy filtering and carrier localization. Localization is shown to cause a decrease of the actual carrier density that, along with the quantum tunneling of carriers, may result in an unexpected increase of the power factor with the doping level. The model is corroborated toward experimental data gathered by several authors on degenerate polycrystalline silicon and lead telluride. - Graphical abstract: In heavily doped semiconductors potential barriers may lead to both carrier energy filtering and localization. This may lead to an enhancement of the thermoelectric properties of the material, resulting in an unexpected increase of the power factor with the doping level. Highlights: Black-Right-Pointing-Pointer Potential barriers are shown to lead to carrier localization in thermoelectric materials. Black-Right-Pointing-Pointer Evidence is put forward of the formation of a mobility edge. Black-Right-Pointing-Pointer Energy filtering and localization may explain the enhancement of power factor in degenerate semiconductors.

  17. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  18. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    Science.gov (United States)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.

  19. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  20. Plasma electron hole kinematics. I. Momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, I. H.; Zhou, C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  1. Local investment in renewable energies - European experiences; Investissement local dans les energies renouvelables - recueil d'experiences europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Quantin, J; Grepmeier, K; Larsen, J; Manolakaki, E; Smith, M

    2004-01-01

    This booklet is realized within the framework of the european commission called PREDAC. This document have been conceived by a working group specialized on the local investment into renewable energies thematic. The objectives of this project are: to promote citizen participation in the financing of renewable energies projects in Europe; to make organizations, investor clubs and local government to be aware of this way of implication into renewable energies development; to examine more especially three renewable energy sources: biomass, photovoltaic and wind in Denmark, France, Germany, Greece and United Kingdom. (author)

  2. Hawking radiation from dilatonic black holes via anomalies

    International Nuclear Information System (INIS)

    Jiang Qingquan; Cai Xu; Wu Shuangqing

    2007-01-01

    Recently, Hawking radiation from a Schwarzschild-type black hole via a gravitational anomaly at the horizon has been derived by Robinson and Wilczek. Their result shows that, in order to demand general coordinate covariance at the quantum level to hold in the effective theory, the flux of the energy-momentum tensor required to cancel the gravitational anomaly at the horizon of the black hole is exactly equal to that of (1+1)-dimensional blackbody radiation at the Hawking temperature. In this paper, we attempt to apply the analysis to derive Hawking radiation from the event horizons of static, spherically symmetric dilatonic black holes with arbitrary coupling constant α, and that from the rotating Kaluza-Klein (α=√(3)) as well as the Kerr-Sen (α=1) black holes via an anomalous point of view. Our results support Robinson and Wilczek's opinion. In addition, the properties of the obtained physical quantities near the extreme limit are qualitatively discussed

  3. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    Science.gov (United States)

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  4. Production of spinning black holes at colliders

    International Nuclear Information System (INIS)

    Park, S. C.; Song, H. S.

    2003-01-01

    When the Planck scale is as low as TeV, there will be chances to produce Black holes at future colliders. Generally, black holes produced via particle collisions can have non-zero angular momenta. We estimate the production cross-section of rotating Black holes in the context of low energy gravitation theories by taking the effects of rotation into account. The production cross section is shown to be enhanced by a factor of 2 - 3 over the naive estimate σ = π ∼ R S 2 , where R S denotes the Schwarzschild radius of black hole for a given energy. We also point out that the decay spectrum may have a distinguishable angular dependence through the grey-body factor of a rotating black hole. The angular dependence of decaying particles may give a clear signature for the effect of rotating black holes.

  5. Characterization of nitride hole lateral transport in a charge trap flash memory by using a random telegraph signal method

    Science.gov (United States)

    Liu, Yu-Heng; Jiang, Cheng-Min; Lin, Hsiao-Yi; Wang, Tahui; Tsai, Wen-Jer; Lu, Tao-Cheng; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    We use a random telegraph signal method to investigate nitride trapped hole lateral transport in a charge trap flash memory. The concept of this method is to utilize an interface oxide trap and its associated random telegraph signal as an internal probe to detect a local channel potential change resulting from nitride charge lateral movement. We apply different voltages to the drain of a memory cell and vary a bake temperature in retention to study the electric field and temperature dependence of hole lateral movement in a nitride. Thermal energy absorption by trapped holes in lateral transport is characterized. Mechanisms of hole lateral transport in retention are investigated. From the measured and modeled results, we find that thermally assisted trap-to-band tunneling is a major trapped hole emission mechanism in nitride hole lateral transport.

  6. Collision of two rotating Hayward black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of)

    2017-07-15

    We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226. (orig.)

  7. Local governance of energy. Clarification of stakes and illustration by spatial planning

    International Nuclear Information System (INIS)

    Saujot, Mathieu; Ruedinger, Andreas; Guerry, Anais

    2014-01-01

    As energy transition implies important societal transformations, the authors developed an analysis framework about the main questions raised by local governance: role of the different levels of local communities in the definition and implementation of strategies, key stakes of the sharing of skills between the State and communities, and stakes regarding spatial planning in this context. The authors first address the issue of relevance of the different territorial scales in a context of evolution of energy policies. They propose an overview of this issue with reference to the debate on local governance of transition. They discuss the return on experience of decentralisation in other fields of action of local policies, notably urban planning and spatial planning

  8. Energy-Based Acoustic Source Localization Methods: A Survey

    Directory of Open Access Journals (Sweden)

    Wei Meng

    2017-02-01

    Full Text Available Energy-based source localization is an important problem in wireless sensor networks (WSNs, which has been studied actively in the literature. Numerous localization algorithms, e.g., maximum likelihood estimation (MLE and nonlinear-least-squares (NLS methods, have been reported. In the literature, there are relevant review papers for localization in WSNs, e.g., for distance-based localization. However, not much work related to energy-based source localization is covered in the existing review papers. Energy-based methods are proposed and specially designed for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review of these different algorithms for energy-based single and multiple source localization problems, their merits and demerits and to point out possible future research directions.

  9. Analytic solutions in the dyon black hole with a cosmic string: Scalar fields, Hawking radiation and energy flux

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2015-11-15

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.

  10. Empty black holes, firewalls, and the origin of Bekenstein-Hawking entropy

    Science.gov (United States)

    Saravani, Mehdi; Afshordi, Niayesh; Mann, Robert B.

    2014-01-01

    We propose a novel solution for the endpoint of gravitational collapse, in which spacetime ends (and is orbifolded) at a microscopic distance from black hole event horizons. This model is motivated by the emergence of singular event horizons in the gravitational aether theory, a semiclassical solution to the cosmological constant problem(s) and thus suggests a catastrophic breakdown of general relativity close to black hole event horizons. A similar picture emerges in fuzzball models of black holes in string theory, as well as the recent firewall proposal to resolve the information paradox. We then demonstrate that positing a surface fluid in thermal equilibrium with Hawking radiation, with vanishing energy density (but nonvanishing pressure) at the new boundary of spacetime, which is required by Israel junction conditions, yields a thermodynamic entropy that is identical to the Bekenstein-Hawking area law, SBH, for charged rotating black holes. To our knowledge, this is the first derivation of black hole entropy that only employs local thermodynamics. Furthermore, a model for the microscopic degrees of freedom of the surface fluid (which constitute the microstates of the black hole) is suggested, which has a finite, but Lorentz-violating, quantum field theory. Finally, we comment on the effects of physical boundary on Hawking radiation and show that relaxing the assumption of equilibrium with Hawking radiation sets SBH as an upper limit for Black Hole entropy.

  11. Particle–hole duality, integrability, and Russian doll BCS model

    Energy Technology Data Exchange (ETDEWEB)

    Bork, L.V. [Center for Fundamental and Applied Research, N. L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, 117218 Moscow (Russian Federation); Pogosov, W.V., E-mail: walter.pogosov@gmail.com [Center for Fundamental and Applied Research, N. L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation)

    2015-08-15

    We address a generalized Richardson model (Russian doll BCS model), which is characterized by the breaking of time-reversal symmetry. This model is known to be exactly solvable and integrable. We point out that the Russian doll BCS model, on the level of Hamiltonian, is also particle–hole symmetric. This implies that the same state can be expressed both in the particle and hole representations with two different sets of Bethe roots. We then derive exact relations between Bethe roots in the two representations, which can hardly be obtained staying on the level of Bethe equations. In a quasi-classical limit, similar identities for usual Richardson model, known from literature, are recovered from our results. We also show that these relations for Richardson roots take a remarkably simple form at half-filling and for a symmetric with respect to the middle of the interaction band distribution of one-body energy levels, since, in this special case, the rapidities in the particle and hole representations up to the translation satisfy the same system of equations.

  12. French local agencies of energy control; Agences locales francaise de maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the SAVE program, the European Commission brings financial assistance to the creation of local or regional agencies of energy control in municipalities and regions. The main criteria are the impacts on the energy demand, the reinforcement of the economic and social cohesion, the environmental quality and the contribution to the economic development and the employment creation. In this document, realized by Energie-Cites, the Ademe objective is to present a state of the art of french local agencies. Ten agencies are presented as case study. Each case deals with the following topics: the main context of the action which details the energy and the environmental policy of the municipality, the creation and the description of the agency, the implemented actions and the perspectives. (A.L.B.)

  13. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In fo...

  14. Particle-hole excitations in N=50 nuclei

    International Nuclear Information System (INIS)

    Johnstone, I.P.; Skouras, L.D.

    1997-01-01

    Energy levels in N=50 nuclei are calculated allowing single-particle excitations from the p 1/2 and g 9/2 shells into the d 5/2 , s 1/2 , d 3/2 , and g 7/2 shells. Important parts of the interaction are determined by least-squares fits to known levels. Agreement with experiment is very good. The high-spin particle-hole states appear to be mainly yrast levels in mass 93 and higher, but are not in 90 Zr. copyright 1997 The American Physical Society

  15. Si segregation at Fe grain boundaries analyzed by ab initio local energy and local stress

    International Nuclear Information System (INIS)

    Bhattacharya, Somesh Kr; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori

    2014-01-01

    Using density-functional theory calculations combined with recent local-energy and local-stress schemes, we studied the effects of Si segregation on the structural, mechanical and magnetic properties of the Σ3(1 1 1) and Σ11(3 3 2) Fe GBs formed by rotation around the [1 1 0] axis. The segregation mechanism was analyzed by the local-energy decomposition of the segregation energy, where the segregation energy is expressed as a sum of the following four terms: the local-energy change of Si atoms from the isolated state in bulk Fe to the GB segregated state, the stabilization of replaced Fe atoms from the GB to the bulk, the local-energy change of neighboring Fe atoms from the pure GB to the segregated GB and the local-energy change of neighboring Fe atoms from the system of an isolated Si atom in the bulk Fe to the pure bulk Fe. The segregation energy and value of each term greatly depends on the segregation site and Si concentration. The segregation at interface Fe sites with higher local energies in the original GB configurations naturally leads to higher segregation-energy gains, while interface sites with lower local energies can lead to larger energy gains if stronger Si–Fe interactions occur locally in the final segregated configurations. The high Si concentration reduces the segregation-energy gain per Si atom due to the local-energy increases of Si atoms neighboring to each other or through the reduction in the number of stabilized Fe atoms per Si atom as observed in a Si dimer in bulk Fe. In the Si-segregated GBs, Si–Fe bonds enhance local Young’s moduli and tend to suppress the interface weakening, while the GB adhesion is slightly reduced. And Fe atoms contacting Si atoms have reduced magnetic moments, due to Si–Fe sp-d hybridization interactions. (paper)

  16. Micro black holes and the democratic transition

    International Nuclear Information System (INIS)

    Dvali, Gia; Pujolas, Oriol

    2009-01-01

    Unitarity implies that the evaporation of microscopic quasiclassical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasiclassical black holes, according to which all of the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top of the usual quantum evaporation time, there is a new time scale which characterizes a purely classical process during which the black hole loses the ability to differentiate among the species and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially nondemocratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all of the branes share the same black hole and all of the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.

  17. Magnetized black holes and nonlinear electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  18. Local Energy Advising in Sweden: Historical Development and Lessons for Future Policy-Making

    Directory of Open Access Journals (Sweden)

    Are E. Kjeang

    2017-12-01

    Full Text Available In Sweden, energy-consulting services, here referred to as local energy advising (LEA, have traditionally contributed to improving household energy efficiency. The aim of this article is to analyze the development of this service from the 1970s, when the consultancy came into being, to the present day, through a review of documents and published literature. The analysis enables the understanding of the evolution of local energy advising as a policy instrument, and provides valuable insights for the future. Local energy advising has often been subsidized by the Swedish government and used as a state policy measure rather than a municipal one. As a policy measure, the function of the service has changed over time. In the early period, the oil crisis was a fact and the local advisers were used to inform households. In the 1980s, however, the task of energy-advising was taken over by the energy companies in the spirit of market liberalization. In the 1990s, Sweden became a member of the European Union, and the emphasis was put on general information campaigns. Recently, the development of decentralized energy systems (including micro-energy systems has necessitated targeting individuals with information. One important lesson to learn from the historical development of LEA is the imperativeness of providing energy advising at the local rather than the state level for better efficiency.

  19. Quantum corrections to Schwarzschild black hole

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; El-Menoufi, Basem Kamal [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einstein's gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory. (orig.)

  20. MASSIVE BLACK HOLES IN STELLAR SYSTEMS: 'QUIESCENT' ACCRETION AND LUMINOSITY

    International Nuclear Information System (INIS)

    Volonteri, M.; Campbell, D.; Mateo, M.; Dotti, M.

    2011-01-01

    Only a small fraction of local galaxies harbor an accreting black hole, classified as an active galactic nucleus. However, many stellar systems are plausibly expected to host black holes, from globular clusters to nuclear star clusters, to massive galaxies. The mere presence of stars in the vicinity of a black hole provides a source of fuel via mass loss of evolved stars. In this paper, we assess the expected luminosities of black holes embedded in stellar systems of different sizes and properties, spanning a large range of masses. We model the distribution of stars and derive the amount of gas available to a central black hole through a geometrical model. We estimate the luminosity of the black holes under simple, but physically grounded, assumptions on the accretion flow. Finally, we discuss the detectability of 'quiescent' black holes in the local universe.

  1. Atomic force microscopy for cellular level manipulation: imaging intracellular structures and DNA delivery through a membrane hole.

    Science.gov (United States)

    Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi

    2009-01-01

    The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.

  2. Renewable energy and the need for local energy markets

    DEFF Research Database (Denmark)

    Hvelplund, Frede

    2006-01-01

    green energy policy should be introduced in order to secure both public and political acceptance. Local markets should be established in order to secure the technical integration of a large proportion of wind power and other fluctuating renewable energy sources into the energy system....

  3. Two types of fundamental luminescence of ionization-passive electrons and holes in optical dielectrics—Intraband-electron and interband-hole luminescence (theoretical calculation and comparison with experiment)

    Science.gov (United States)

    Vaisburd, D. I.; Kharitonova, S. V.

    1997-11-01

    A short high-power pulse of ionizing radiation creates a high concentration of nonequilibrium electrons and holes in a dielectric. They quickly lose their energy, generating a multiplicity of secondary quasiparticles: electron—hole pairs, excitons, plasmons, phonons of all types, and others. When the kinetic energy of an electron becomes less that some value EΔ≈(1.3-2)Eg it loses the ability to perform collisional ionization and electron excitations of the dielectric medium. Such an electron is said to be ionization-passive. It relaxes to the bottom of the lower conduction band by emitting phonons. Similarly a hole becomes ionization-passive when it “floats up” above some level EH and loses the ability for Auger ionization of the dielectric medium. It continues to float upward to the ceiling of the upper valance band only by emitting phonons. The concentrations of ionization-passive electrons and holes are larger by several orders of magnitude than those of the active electrons and holes and consequently make of a far larger contribution to many kinetic processes such as luminescence. Intraband and interband quantum transitions make the greatest contribution to the fundamental (independent of impurities and intrinsic defects) electromagnetic radiation of ionization-passive electrons and holes. Consequently the brightest types of purely fundamental luminescence of strongly nonequilibrium electrons and holes are intraband and interband luminescence. These forms of luminescence, discovered relatively recently, carry valuable information on the high-energy states of the electrons in the conduction band and of the holes in the valence band of a dielectric. Experimental investigations of these types of luminescence were made, mainly on alkali halide crystals which were excited by nanoseconal pulses of high-current-density electrons and by two-photon absorption of the ultraviolet harmonics of pulsed laser radiation beams of nanosecond and picosecond duration. The

  4. Mechanism of the generation of black hole entropy in Sakharov's induced gravity

    International Nuclear Information System (INIS)

    Frolov, V.P.; Fursaev, D.V.

    1997-01-01

    The mechanism of the generation of Bekenstein-Hawking entropy S BH of a black hole in the Sakharov's induced gravity is proposed. It is suggested that the physical degrees of freedom, which explain the entropy S BH , form only a finite subset of the standard Rindler-like modes defined outside the black hole horizon. The entropy S R of the Rindler modes, or entanglement entropy, is always ultraviolet divergent, while the entropy of the physical modes is finite and coincides in the induced gravity with S BH . The two entropies S BH and S R differ by a surface integral Q interpreted as a Noether charge of nonminimally coupled scalar constituents of the model. We demonstrate that energy E and Hamiltonian H of the fields localized in a part of space-time, restricted by the Killing horizon Σ, differ by the quantity T H Q, where T H is the temperature of a black hole. The first law of black hole thermodynamics enables one to relate the probability distribution of fluctuations of the black hole mass, caused by the quantum fluctuations of the fields, to the probability distribution of physical modes over energy E. The latter turns out to be different from the distribution of the Rindler modes. We show that the probability distribution of the physical degrees of freedom has a sharp peak at E=0 with the width proportional to the Planck mass. The logarithm of number of physical states at the peak coincides exactly with the black hole entropy S BH . This enables us to argue that the energy distribution of the physical modes and distribution of the black hole mass are equivalent in induced gravity. Finally it is shown that the Noether charge Q is related to the entropy of the low-frequency modes propagating in the vicinity of the bifurcation surface Σ of the horizon. (Abstract Truncated)

  5. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  6. On Electron Hole Evolution in Inhomogeneous Plasmas

    Science.gov (United States)

    Kuzichev, I.; Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2017-12-01

    Electron holes (EHs) are the stationary localized non-linear structures in phase space existing due to an electron population trapped within EH electrostatic potential. EHs were found to be a common phenomenon in the Earth's magnetosphere. Such structures were observed in reconnecting current sheets, injection fronts in the outer radiation belt, and in many other situations. EHs usually propagate along magnetic field lines with velocities about electron thermal velocity, are localized on the scale of about 4-10 Debye lengths, and have the field amplitude up to hundreds of mV/m. Generation of these structures, evolution, and their role in relaxation of instabilities and energy dissipation, particle energization, supporting large-scale potential drops is under active investigation. In this report, we present the results of 1.5D gyrokinetic Vlasov-Maxwell simulations of the EH evolution in plasmas with inhomogeneous magnetic field and inhomogeneous density. Our calculations show that the inhomogeneity has a critical effect on the EH dynamics. EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. During the deceleration of EH, the potential drop (weak double layer) along EH is generated. Such a potential drop might be experimentally observable even for single EH in the reconnecting current sheets. The same holds for the propagation in the plasma with inhomogeneous density. For some parameters of the system, the deceleration results in the turning of the hole. The interesting feature of this process is that the turning point depends only on the EH parameters, being independent of the average inhomogeneity scale. Our calculations also demonstrate the significant difference between "quasi-particle" concept and real evolution of the hole. Indeed, the EH is accelerated (decelerated) faster than it follows from a quasi-particle energy conservation law. It indicates

  7. Simulation of magnetic holes formation in the magnetosheath

    Science.gov (United States)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2017-12-01

    Magnetic holes have been frequently observed in the Earth's magnetosheath and are believed to be the consequence of the nonlinear evolution of the mirror instability. Mirror mode perturbations mainly form as magnetic holes in regions where the plasma is marginally mirror stable with respect to the linear instability criterion. We present an expanding box particle-in-cell simulation to mimic the changing conditions in the magnetosheath as the plasma is convected through it that produces mirror mode magnetic holes. We show that in the initial nonlinear evolution, where the plasma conditions are mirror unstable, the magnetic peaks are dominant, while later, as the plasma relaxes toward marginal stability, the fluctuations evolve into deep magnetic holes. While the averaged plasma parameters in the simulation remain close to the mirror instability threshold, the local plasma in the magnetic holes is highly unstable to mirror instability and locally mirror stable in the magnetic peaks.

  8. Learning molecular energies using localized graph kernels

    Science.gov (United States)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  9. Regimes of mini black hole abandoned to accretion

    Science.gov (United States)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  10. Hawking radiation inside a Schwarzschild black hole

    Science.gov (United States)

    Hamilton, Andrew J. S.

    2018-05-01

    The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law character of the Hawking radiation, coupled with conservation of energy-momentum, the trace anomaly, and the familiar behavior of Hawking radiation far from the black hole, leads to a complete description of the quantum energy-momentum inside a Schwarzschild black hole. The quantum energy-momentum near the singularity diverges as r^{-6}, and consists of relativistic Hawking radiation and negative energy vacuum in the ratio 3 : - 2. The classical back reaction of the quantum energy-momentum on the geometry, calculated using the Einstein equations, serves merely to exacerbate the singularity. All the results are consistent with traditional calculations of the quantum energy-momentum in 1 + 1 spacetime dimensions.

  11. Coordination-resolved local bond relaxation, electron binding-energy shift, and Debye temperature of Ir solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Wang, Yan [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou, Hunan 416000 (China); Yang, Yezi [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-11-30

    Highlights: • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. • Thermal XPS resolves the Debye temperature and atomic cohesive energy. - Abstract: Numerical reproduction of the measured 4f{sub 7/2} energy shift of Ir(1 0 0), (1 1 1), and (2 1 0) solid skins turns out the following: (i) the 4f{sub 7/2} level of an isolated Ir atom shifts from 56.367 eV to 60.332 eV by 3.965 eV upon bulk formation; (ii) the local energy density increases by up to 130% and the atomic cohesive energy decreases by 70% in the skin region compared with the bulk values. Numerical match to observation of the temperature dependent energy shift derives the Debye temperature that varies from 285.2 K (Surface) to 315.2 K (Bulk). We clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and quantum entrapment of electron binding energy, which perturbs the Hamiltonian and the core shifts in the skin region.

  12. The Fourier transform as a signature for chaos in nuclear energy levels

    International Nuclear Information System (INIS)

    Bybee, C.R.; Mitchell, G.E.; Shriner, J.F. Jr.

    1996-01-01

    The Fourier transform of the autocorrelation function is an alternative test to characterize level statistics. For GOE statistics there is a suppression of the Fourier transform near the origin; this correlation hole is absent for Poisson statistics. Numerical modeling has been used to quantify the method and determine the dependence of the correlation-hole area on number, density, sampling interval, and fraction of missing or spurious levels. For large N the normalized correlation-hole area is a nearly universal constant and insensitive to missing and spurious levels. However, for the smaller sample sizes typical of nuclear data, application of the FT method yields ambiguous results. (orig.)

  13. The Fourier transform as a signature for chaos in nuclear energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Bybee, C.R. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Mitchell, G.E. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Shriner, J.F. Jr. [Tennessee Technological Univ., Cookeville (United States)

    1996-08-01

    The Fourier transform of the autocorrelation function is an alternative test to characterize level statistics. For GOE statistics there is a suppression of the Fourier transform near the origin; this correlation hole is absent for Poisson statistics. Numerical modeling has been used to quantify the method and determine the dependence of the correlation-hole area on number, density, sampling interval, and fraction of missing or spurious levels. For large N the normalized correlation-hole area is a nearly universal constant and insensitive to missing and spurious levels. However, for the smaller sample sizes typical of nuclear data, application of the FT method yields ambiguous results. (orig.)

  14. Excitation energy transfer in natural photosynthetic complexes and chlorophyll trefoils: hole-burning and single complex/trefoil spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785

    2012-09-12

    In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers

  15. Black holes are neither particle accelerators nor dark matter probes.

    Science.gov (United States)

    McWilliams, Sean T

    2013-01-04

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  16. Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA

    Science.gov (United States)

    McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.

  17. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    Science.gov (United States)

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  18. Aligned energy-level design for decreasing operation voltage of tandem white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Wu, Zih-Jyun; Liang, Yi-Hu; Chang, Yu-Shuo; Chiu, Chuan-Hao; Tai, Cheng-Wei; Chang, Hsin-Hua

    2013-01-01

    In general, organic light-emitting devices (OLEDs) need to operate at higher current density levels to ensure an ample light flux. However, stressed operation will result in poor performance and limited device lifetime. Recently, a tandem structure has been proposed as a pivotal technique to meet the stringent lighting requirements for OLED commercialization, with a research focus on decreasing the concomitant higher operation voltage. Driving two connected emission units (EMUs) in a tandem structure often requires more than twice the driving voltage for a single EMU. This study investigates bipolar host materials and their effective employment in fabricating tandem white phosphorescent OLEDs (PhOLEDs). In addition, the design of a mechanism to align the energy level between the hole transport layer/emitting layer is shown to effectively mitigate operational voltages. In sharp contrast to devices using a unipolar host material, we demonstrate that the turn-on voltage of blue PhOLEDs could be decreased from 3.8 V to 2.7 V through utilizing a bipolar host. Furthermore, applying the proposed techniques to tandem white PhOLEDs produces a luminance of 10 3 cd/m 2 by a 10.1 V driving voltage. - Highlights: • The matched energy level between the hole transport/emitting layer lowers voltages. • Multiple conduction dopants were used to investigate charge generation layer. • Two-color emitters were used to quantify the charge generation strength

  19. Local investment in renewable energies - European experiences; Investissement local dans les energies renouvelables - recueil d'experiences europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Quantin, J.; Grepmeier, K.; Larsen, J.; Manolakaki, E.; Smith, M

    2004-01-01

    This booklet is realized within the framework of the european commission called PREDAC. This document have been conceived by a working group specialized on the local investment into renewable energies thematic. The objectives of this project are: to promote citizen participation in the financing of renewable energies projects in Europe; to make organizations, investor clubs and local government to be aware of this way of implication into renewable energies development; to examine more especially three renewable energy sources: biomass, photovoltaic and wind in Denmark, France, Germany, Greece and United Kingdom. (author)

  20. Assessing the impact of renewable energy deployment on local sustainability: Towards a theoretical framework

    Energy Technology Data Exchange (ETDEWEB)

    del Rio, Pablo [Facultad de Ciencias Juridicas y Sociales de Toledo, Universidad de Castilla-La Mancha, C/Cobertizo de S. Pedro Martir s/n, Toledo-45071 (Spain); Burguillo, Mercedes [Facultad de Ciencias Economicas y Empresariales, Universidad de Alcala, Pza. de la Victoria 3, 28802 Alcala de Henares, Madrid (Spain)

    2008-06-15

    Renewable energy sources (RES) have a large potential to contribute to the sustainable development (SD) of specific territories by providing them with a wide variety of socioeconomic and environmental benefits. However, the existing literature has put much emphasis on the environmental benefits (including the reduction of global and local pollutants), while socioeconomic impacts have not received a comparable attention. These include diversification of energy supply, enhanced regional and rural development opportunities, creation of a domestic industry and employment opportunities. With the exception of the diversification and security of energy supply, these benefits have usually been mentioned, but their analysis has been too general (i.e., mostly at the national level) and a focus on the regional and, even more so, the local level, has been lacking. At most, studies provide scattered evidence of some of those regional and local benefits, but without an integrated conceptual framework to analyse them. This paper tries to make a contribution in this regard by developing an integrated theoretical framework which allows a comprehensive analysis of the impact of renewable energy on local sustainability and which can be empirically applied to identify these benefits in different territories. (author)

  1. Spin One Hawking Radiation from Dirty Black Holes

    OpenAIRE

    Petarpa Boonserm; Tritos Ngampitipan; Matt Visser

    2013-01-01

    A “clean” black hole is a black hole in vacuum such as the Schwarzschild black hole. However in real physical systems, there are matter fields around a black hole. Such a black hole is called a “dirty black hole”. In this paper, the effect of matter fields on the black hole and the greybody factor is investigated. The results show that matter fields make a black hole smaller. They can increase the potential energy to a black hole to obstruct Hawking radiation to propagate. This causes the gre...

  2. Black Holes at the LHC: Progress since 2002

    International Nuclear Information System (INIS)

    Park, Seong Chan

    2008-01-01

    We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.

  3. Quantum-gravity fluctuations and the black-hole temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-05-15

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  4. Quantum-gravity fluctuations and the black-hole temperature

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  5. Uncorrelated electron-hole transition energy in GaN|InGaN|GaN spherical QDQW nanoparticles

    International Nuclear Information System (INIS)

    Haddou El Ghazi; Anouar Jorio and Izeddine Zorkani

    2013-01-01

    The electron (hole) energy and uncorrelated 1S e - 1S h electron-hole transition in Core(GaN)|well(In x Ga 1-x N)|shell(GaN) spherical QDQW nanoparticles is investigated as a function of the inner and the outer radii. The calculations are performed within the framework of the effective-mass approximation and the finite parabolic potential confinement barrier in which two confined parameters are taking account. The Indium composition effect is also investigated. A critical value of the outer and the inner ratio is obtained which constitutes the turning point of two indium composition behaviors. (author)

  6. Primordial braneworld black holes: significant enhancement of ...

    Indian Academy of Sciences (India)

    Abstract. The Randall-Sundrum (RS-II) braneworld cosmological model with a frac- tion of the total energy density in primordial black holes is considered. Due to their 5d geometry, these black holes undergo modified Hawking evaporation. It is shown that dur- ing the high-energy regime, accretion from the surrounding ...

  7. Gravitational wave production by Hawking radiation from rotating primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)

    2016-10-01

    In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.

  8. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  9. Local electricity market design for the coordination of distributed energy resources at district level

    NARCIS (Netherlands)

    Ampatzis, M.; Nguyen, P.H.; Kling, W.L.

    2014-01-01

    The increasing penetration of distributed energy resources at the distribution grid level creates concerns about their successful integration in the existing electric grid, designed for centralized generation by large power plants. Failure to the proper integration of distributed energy resources

  10. The dynamics of electron and ion holes in a collisionless plasma

    Directory of Open Access Journals (Sweden)

    B. Eliasson

    2005-01-01

    Full Text Available We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly

  11. Near horizon structure of extremal vanishing horizon black holes

    Directory of Open Access Journals (Sweden)

    S. Sadeghian

    2015-11-01

    Full Text Available We study the near horizon structure of Extremal Vanishing Horizon (EVH black holes, extremal black holes with vanishing horizon area with a vanishing one-cycle on the horizon. We construct the most general near horizon EVH and near-EVH ansatz for the metric and other fields, like dilaton and gauge fields which may be present in the theory. We prove that (1 the near horizon EVH geometry for generic gravity theory in generic dimension has a three dimensional maximally symmetric subspace; (2 if the matter fields of the theory satisfy strong energy condition either this 3d part is AdS3, or the solution is a direct product of a locally 3d flat space and a d−3 dimensional part; (3 these results extend to the near horizon geometry of near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry. We present some specific near horizon EVH geometries in 3, 4 and 5 dimensions for which there is a classification. We also briefly discuss implications of these generic results for generic (gauged supergravity theories and also for the thermodynamics of near-EVH black holes and the EVH/CFT proposal.

  12. Vacuum polarization of massless fields in black holes

    International Nuclear Information System (INIS)

    Zel'nikov, A.I.; Frolov, V.P.

    1987-01-01

    This chapter contains a detailed survey of the fundamental results from an investigation of the contribution of massless fields to vacuum polarization near black holes. A method is developed for calculating the vacuum average energy-momentum tensor for the electromagnetic field on the surface of a black hole. An explicit value is derived for the renormalized energy-momentum tensor of an electromagnetic field near the event horizon of a rotating black hole

  13. On the theory of hole propagation in an antiferromagnetic background

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1994-10-01

    The spectrum of hole quasiparticles and the role of magnetic correlations has been considered in the self-consistent Irreducible Green Functions formalism, motivated from Strongly Correlated Electron systems for correlated electron models of high-Tc superconductivity. The hole quasiparticle dynamics has been discussed for t-J model and compared with that of the spin-fermion model. For this Kondo-Heisenberg-type model it was clearly pointed out on the self-energy level, beyond Hartree-Fock approximation, how the one-and two magnon processes define the true nature of carriers in HTSC. (author). 57 refs

  14. Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?

    NARCIS (Netherlands)

    Eid, C.; Bollinger, L.A.; Koirala, B.P.; Scholten, D.J.; Facchinetti, E.; Lilliestam, J.; Hakvoort, R.A.

    2016-01-01

    The growing penetration of distributed energy resources is opening up opportunities for local energy management (LEM) – the coordination of decentralized energy supply, storage, transport, conversion and consumption within a given geographical area. Because European electricity market liberalization

  15. Ratchet Effects and Domain Wall Energy Landscapes in Amorphous Magnetic Films with 2D Arrays of Asymmetric Holes

    Science.gov (United States)

    Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.

    2009-03-01

    The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203

  16. A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.

    Science.gov (United States)

    Tang, Jian; Jiang, Xiaoliang

    2017-01-01

    Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF) energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of local image. The means of this objective function have a multiplicative factor that estimates the bias field in the transformed domain. Then, the bias field prior is fully used. Therefore, our model can estimate the bias field more accurately. Finally, minimization of this energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-of-the-art approaches.

  17. Local agenda 21 and renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    This study, involving a questionnaire survey of UK local authorities, was carried out in order to examine the effectiveness of the Local Agenda 21 (LA21) in promoting the use of renewable energy, overcome barriers to the uptake of renewable energy, collect examples of good practice, and identify the possible role of the Department of Trade and Industry and other governmental programmes in meeting the needs of LA21 which was an outcome of the 1992 Rio de Janeiro Earth Summit. The background to the project, and the government's commitment to increasing the amount of electricity produced from renewable energy sources are discussed along with the setting up of LA21, and key areas where local authorities can help contribute towards LA21. The funding of the study and examples of good practice are discussed. Recommendations are provided.

  18. Thermodynamic Relations for Kiselev and Dilaton Black Hole

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Pradhan, Parthapratim; Majeed, Bushra

    2015-01-01

    We investigate the thermodynamics and phase transition for Kiselev black hole and dilaton black hole. Specifically we consider Reissner-Nordström black hole surrounded by radiation and dust and Schwarzschild black hole surrounded by quintessence, as special cases of Kiselev solution. We have calculated the products relating the surface gravities, surface temperatures, Komar energies, areas, entropies, horizon radii, and the irreducible masses at the Cauchy and the event horizons. It is observed that the product of surface gravities, product of surface temperature, and product of Komar energies at the horizons are not universal quantities for the Kiselev solutions while products of areas and entropies at both the horizons are independent of mass of the above-mentioned black holes (except for Schwarzschild black hole surrounded by quintessence). For charged dilaton black hole, all the products vanish. The first law of thermodynamics is also verified for Kiselev solutions. Heat capacities are calculated and phase transitions are observed, under certain conditions

  19. Stationary black holes with stringy hair

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  20. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  1. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  2. The local investment in renewable energies

    International Nuclear Information System (INIS)

    Poussard, E.; Quantin, J.; Grepmeier, K.; Larsen, J.; Manolakaki, E.; Twele, J.

    2003-01-01

    These proceedings present some European testimonies about the advantage of local investment, illustrated with concrete cases taken in Germany, Denmark and Switzerland. They demonstrate that local investment in renewable energy sources is a reality and that this practice has indisputably contributed to their significant development in some countries of the European Union. The sustain of foreign banks to the financing of renewable energy sources is at the evidence an example to follow up in countries like France, Greece or Spain. Important efforts have to be made to simplify and encourage the implementation of projects, in particular from the administrative point of view. Beyond the financial aspects, the colloquium has shown that these practices of citizenship involvement represent an important factor of social adaptation and acceptation. The projects, gathering local actors but also the overall citizens through common investment funds, ensure a better territorial anchoring and a sustain to local and sustainable development. This document has been published with the support of the European Commission and ADEME (French Agency for Environment and Energy Management). (J.S.)

  3. The black hole quantum atmosphere

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  4. The black hole quantum atmosphere

    Directory of Open Access Journals (Sweden)

    Ramit Dey

    2017-11-01

    Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  5. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  6. Einstein black holes, free scalars, and AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Louko, Jorma; Wisniewski, Jacek

    2004-01-01

    We investigate AdS/CFT correspondence for two families of Einstein black holes in d≥4 dimensions, modeling the boundary conformal field theory by a free conformal scalar field and evaluating the boundary two-point function in the bulk geodesic approximation. For the d≥4 counterpart of the nonrotating Banados-Teitelboim-Zanelli hole and for its Z 2 quotient, the boundary state is thermal in the expected sense, and its stress-energy reflects the properties of the bulk geometry and suggests a novel definition for the mass of the hole. For the generalized Schwarzschild-AdS hole with a flat horizon of topology R d-2 , the boundary stress-energy has a thermal form with energy density proportional to the hole Arnowitt-Deser-Misner mass, but stress-energy corrections from compactified horizon dimensions cannot be consistently included at least for d=5

  7. Integrated energy systems and local energy markets

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable...... energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade...

  8. Thermodynamics of de Sitter black holes with a conformally coupled scalar field

    International Nuclear Information System (INIS)

    Barlow, Anne-Marie; Doherty, Daniel; Winstanley, Elizabeth

    2005-01-01

    We study the thermodynamics of de Sitter black holes with a conformally coupled scalar field. The geometry is that of the lukewarm Reissner-Nordstroem-de Sitter black holes, with the event and cosmological horizons at the same temperature. This means that the region between the event and cosmological horizons can form a regular Euclidean instanton. The entropy is modified by the nonminimal coupling of the scalar field to the geometry, but can still be derived from the Euclidean action, provided suitable modifications are made to deal with the electrically charged case. We use the first law as derived from the isolated horizons formalism to compute the local horizon energies for the event and cosmological horizons

  9. From Rindler horizon to mini black holes at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ghaffary, Tooraj [Islamic Azad University, Department of Science, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2017-02-15

    Recently researchers (A. Sepehri et al., Astrophys. Space Sci. 344, 79 (2013)) have considered the signature of superstring balls near mini black holes at LHC and calculate the information loss for these types of strings. Motivated by their work, we consider the evolution of events in high energy experiments from lower energies for which the Rindler horizon is formed to higher energies in which mini black holes and string balls are emerged. Extending the Gottesman and Preskill method to string theory, we find the information loss for excited strings ''string balls'' in mini black holes at LHC and calculate the information transformation from the collapsing matter to the state of outgoing Hawking radiation for strings. We come to the conclusion that information transformation for high energy strings is complete. Then the thermal distribution of excited strings near mini black holes at LHC is calculated. In order to obtain the total string cross section near black holes produced in proton-proton collision, we multiply the black hole production cross section by the thermal distribution of strings. It is observed that many high energy excited strings are produced near the event horizon of TeV black holes. These excited strings evaporate to standard model particles like Higgs boson and top quark at Hagedorn temperature. We derive the production cross section for these particles due to string ball decay at LHC and consider their decay to light particles like bottom quarks and gluons. (orig.)

  10. Renewable energy and the need for local energy markets

    International Nuclear Information System (INIS)

    Hvelplund, Frede

    2006-01-01

    In Denmark, a technological change towards cleaner energy technologies has been developed and implemented since around 1975. This development has had two phases: The first from 1975 until around 1996, when wind power was a niche production that supplied only 3.5% of the electricity consumption and was brought close to cost competitiveness, and the present second phase, in which wind power supplies an increasing share (in 2004 18.6%) of electricity consumption along with combined heat and power plants, which supply around 50% of consumption. Denmark succeeded in overcoming the first phase, and a large green energy technology cluster was established. During the second phase, new difficulties and challenges have arisen, both with regard to local public acceptance and the need for integrating an increasing percentage of fluctuating energy sources into the energy system. In this Phase 2, a new offensive green energy policy should be introduced in order to secure both public and political acceptance. Local markets should be established in order to secure the technical integration of a large proportion of wind power and other fluctuating renewable energy sources into the energy system

  11. Influence of screening effect on hydrogen passivation of hole silicon

    International Nuclear Information System (INIS)

    Aleksandrov, O.V.

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 14 to 1.2 x 10 20 cm -3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level [ru

  12. Local acceptance of wind energy: Factors of success identified in French and German case studies

    International Nuclear Information System (INIS)

    Jobert, Arthur; Laborgne, Pia; Mimler, Solveig

    2007-01-01

    The objective of this paper is to identify and analyse factors that are important for winning acceptance of wind-energy parks on the local level. The developers of wind-energy parks need to know how to manage 'social acceptance' at the different stages of planning, realisation and operation. Five case studies in France and Germany focused on factors of success in developing a wind-energy project on a given site and illuminated how policy frameworks influence local acceptance. Our hypothesis is that these factors fall into two categories: institutional conditions, such as economic incentives and regulations; and site-specific conditions (territorial factors), such as the local economy, the local geography, local actors, and the actual on-site planning process (project management)

  13. REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Denney, K. D.; Peterson, B. M.; Pogge, R. W.; Atlee, D. W.; Bentz, M. C.; Bird, J. C.; Comins, M. L.; Dietrich, M.; Eastman, J. D.; Adair, A.; Au-Yong, K.; Chisholm, E.; Ewald, S.; Ferbey, S.; Jackson, K.; Brokofsky, D. J.; Gaskell, C. M.; Hedrick, C. H.; Doroshenko, V. T.; Efimov, Y. S.

    2010-01-01

    We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hβ reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hβ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) R BLR -L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hβ time-delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.

  14. New interaction paths in the energy landscape: the role of local energy initiatives

    OpenAIRE

    de Boer, Jessica; Zuidema, Christian; Gugerell, Katharina

    2018-01-01

    Energy transition is an encompassing process which not only involves the energy system but also the landscape in which the energy system is embedded. Renewable energy is triggering new interactions with local landscapes in physical, socio-economic and institutional senses. We capture these interactions using the energy landscape concept, which expresses the interdependence of the energy system with the landscape. We aim to understand whether and how local energy initiatives facilitate this in...

  15. Minidisks in Binary Black Hole Accretion

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  16. A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK

    International Nuclear Information System (INIS)

    Zhang Tao; Siebers, Peer-Olaf; Aickelin, Uwe

    2012-01-01

    This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e., economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of residential energy consumers in the UK have been identified. They are: pioneer greens, follower greens, concerned greens, home stayers, unconscientious wasters, regular wasters, daytime wasters, and disengaged wasters. Using a case study, these archetypes of residential energy consumers demonstrate the robustness of the 3-D model in aiding local energy policy/intervention design in the UK. - Highlights: ► This paper reviews the three traditional lines of research in residential energy consumption in the UK. ► Based on the literature review, the paper proposes a 3-D conceptual model for archetyping UK residential energy consumers. ► The 3-D archetype model can aid local energy policy/intervention design in the UK.

  17. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  18. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2010-05-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  19. Local investment in renewable energies - European experiences

    International Nuclear Information System (INIS)

    Quantin, J.; Grepmeier, K.; Larsen, J.; Manolakaki, E.; Smith, M.

    2004-01-01

    This booklet is realized within the framework of the european commission called PREDAC. This document have been conceived by a working group specialized on the local investment into renewable energies thematic. The objectives of this project are: to promote citizen participation in the financing of renewable energies projects in Europe; to make organizations, investor clubs and local government to be aware of this way of implication into renewable energies development; to examine more especially three renewable energy sources: biomass, photovoltaic and wind in Denmark, France, Germany, Greece and United Kingdom. (author)

  20. Energy conditions of non-singular black hole spacetimes in conformal gravity

    International Nuclear Information System (INIS)

    Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Stuchlik, Zdenek

    2017-01-01

    Conformal gravity can elegantly solve the problem of spacetime singularities present in Einstein's gravity. For every physical spacetime, there is an infinite family of conformally equivalent singularity-free metrics. In the unbroken phase, every non-singular metric is equivalent and can be used to infer the physical properties of the spacetime. In the broken phase, a Higgs-like mechanism should select a certain vacuum, which thus becomes the physical one. However, in the absence of the complete theoretical framework we do not know how to select the right vacuum. In this paper, we study the energy conditions of non-singular black hole spacetimes obtained in conformal gravity assuming they are solutions of Einstein's gravity with an effective energy-momentum tensor. We check whether such conditions can be helpful to select the vacuum of the broken phase. (orig.)

  1. Energy conditions of non-singular black hole spacetimes in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Toshmatov, Bobir [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); Ahmedov, Bobomurat [Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Abdujabbarov, Ahmadjon [Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Tashkent University of Information Technologies, Tashkent (Uzbekistan); Stuchlik, Zdenek [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic)

    2017-08-15

    Conformal gravity can elegantly solve the problem of spacetime singularities present in Einstein's gravity. For every physical spacetime, there is an infinite family of conformally equivalent singularity-free metrics. In the unbroken phase, every non-singular metric is equivalent and can be used to infer the physical properties of the spacetime. In the broken phase, a Higgs-like mechanism should select a certain vacuum, which thus becomes the physical one. However, in the absence of the complete theoretical framework we do not know how to select the right vacuum. In this paper, we study the energy conditions of non-singular black hole spacetimes obtained in conformal gravity assuming they are solutions of Einstein's gravity with an effective energy-momentum tensor. We check whether such conditions can be helpful to select the vacuum of the broken phase. (orig.)

  2. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    International Nuclear Information System (INIS)

    Maeda, Hideki; Harada, Tomohiro; Carr, B. J.

    2008-01-01

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0<γ<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they are not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity

  3. Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program

    Directory of Open Access Journals (Sweden)

    Fredrik Backman

    2017-01-01

    Full Text Available Improved energy efficiency has become a strategic issue and represents a priority for European competitiveness. Countries adopt various energy policies on local and national levels where energy audit programs are the most common energy end-use efficiency policy for industrial small- and medium-sized enterprises (SMEs. However, studies indicate that cost-efficient energy conservation measures are not always implemented, which can be explained by the existence of barriers to energy efficiency. This paper investigates how Swedish municipalities can support local micro- and small-sized enterprises with improved energy efficiency and the existence of different barriers to the implementation of energy efficiency. Relating this empirical case study to the theoretical barriers outlined in the text, this study found that the major explanatory factors related to non-implementation of cost-effective energy efficiency measures among micro- and small-sized industrial enterprises were bounded rationality (lack of time and/or other priorities, split incentives (having other priorities for capital investments, and imperfect information (slim organization and lack of technical skill. This study also found that information in the form of a report was the main thing that companies gained from working on the project “Energy-Driven Business”. Notably, the study involved companies that had participated in a local energy program and, still, companies face major barriers inhibiting implementation, indicating a need to further study other alternative policy models and how knowledge transfer can be improved.

  4. On geodesics with negative energies in the ergoregions of dirty black holes

    Science.gov (United States)

    Zaslavskii, O. B.

    2015-03-01

    We consider behavior of equatorial geodesics with the negative energy in the ergoregion of a generic rotating "dirty" (surrounded by matter) black hole. It is shown that under very simple and generic conditions on the metric coefficients, there are no such circular orbits. This entails that such geodesic must originate and terminate under the event horizon. These results generalize the observation made for the Kerr metric in A. A. Grib, Yu. V. Pavlov and V. D. Vertogradov, Mod. Phys. Lett.29, 1450110 (2014), arXiv:1304.7360.

  5. Energy concepts for self-supplying communities based on local and renewable energy sources

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2016-01-01

    The reduction of GHG emissions in buildings is a focus area of national energy policies, because buildings are responsible for a major share of energy consumption. Policies to increase the share of renewable energies and energy efficiency measures are implemented at local scale. Municipalities...... that virtually allow a heating energy and electricity supply fully based on local, renewable energy resources. The most feasible and cost-efficient variant is the use of local food production waste in a CHP plant feeding a district heating grid. The overall aim is to show that a self-sufficient heat......- and electricity supply of typical urban communities is possible and can be implemented in a cost-efficient way, if the energy planning is done systematically and in coherence with urban planning....

  6. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    Science.gov (United States)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  7. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    Science.gov (United States)

    Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min

    2014-10-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  8. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  9. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    International Nuclear Information System (INIS)

    Hutchinson, John; Stojkovic, Dejan

    2016-01-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model. (paper)

  10. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    Science.gov (United States)

    Hutchinson, John; Stojkovic, Dejan

    2016-07-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model.

  11. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    Science.gov (United States)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  12. Black hole complementarity: The inside view

    Directory of Open Access Journals (Sweden)

    David A. Lowe

    2014-10-01

    Full Text Available Within the framework of black hole complementarity, a proposal is made for an approximate interior effective field theory description. For generic correlators of local operators on generic black hole states, it agrees with the exact exterior description in a region of overlapping validity, up to corrections that are too small to be measured by typical infalling observers.

  13. Thermalization with chemical potentials, and higher spin black holes

    International Nuclear Information System (INIS)

    Mandal, Gautam; Sinha, Ritam; Sorokhaibam, Nilakash

    2015-01-01

    We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of local observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green’s functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[λ]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.

  14. Analytic continuation of black hole entropy in Loop Quantum Gravity

    International Nuclear Information System (INIS)

    Jibril, Ben Achour; Mouchet, Amaury; Noui, Karim

    2015-01-01

    We define the analytic continuation of the number of black hole microstates in Loop Quantum Gravity to complex values of the Barbero-Immirzi parameter γ. This construction deeply relies on the link between black holes and Chern-Simons theory. Technically, the key point consists in writing the number of microstates as an integral in the complex plane of a holomorphic function, and to make use of complex analysis techniques to perform the analytic continuation. Then, we study the thermodynamical properties of the corresponding system (the black hole is viewed as a gas of indistinguishable punctures) in the framework of the grand canonical ensemble where the energy is defined à la Frodden-Gosh-Perez from the point of view of an observer located close to the horizon. The semi-classical limit occurs at the Unruh temperature T U associated to this local observer. When γ=±i, the entropy reproduces at the semi-classical limit the area law with quantum corrections. Furthermore, the quantum corrections are logarithmic provided that the chemical potential is fixed to the simple value μ=2T U .

  15. Plasma horizons of a charged black hole

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1977-01-01

    The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)

  16. Interactive Cosegmentation Using Global and Local Energy Optimization

    OpenAIRE

    Xingping Dong,; Jianbing Shen,; Shao, Ling; Yang, Ming-Hsuan

    2015-01-01

    We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothne...

  17. The effect of nuclear gas distribution on the mass determination of supermassive black holes

    Science.gov (United States)

    Mejía-Restrepo, J. E.; Lira, P.; Netzer, H.; Trakhtenbrot, B.; Capellupo, D. M.

    2018-01-01

    Supermassive black holes reside in the nuclei of most galaxies. During their active episodes, black holes are powered by accretion discs where gravitational energy is converted into radiation1. Accurately determining black hole masses is key to understand how the population evolves over time and how the black holes relate to their host galaxies2-4. Beyond the local universe, z ≳ 0.2, the mass is commonly estimated assuming a virialized motion of gas in the close vicinity of the active black holes, traced through broad emission lines5,6. However, this procedure has uncertainties associated with the unknown distribution of the gas clouds. Here, we show that the black hole masses derived from the properties of the accretion disk and virial mass estimates differ by a factor that is inversely proportional to the width of the broad emission lines. This leads to virial mass misestimations up to a factor of six. Our results suggest that a planar gas distribution that is inclined with respect to the line of sight may account for this effect. However, radiation pressure effects on the distribution of gas can also reproduce our results. Regardless of the physical origin, our findings contribute to mitigating the uncertainties in current black hole mass estimations and, in turn, will help us to better understand the evolution of distant supermassive black holes and their host galaxies.

  18. Time dependent black holes and scalar hair

    International Nuclear Information System (INIS)

    Chadburn, Sarah; Gregory, Ruth

    2014-01-01

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  19. The mass formula for an exotic BTZ black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baocheng, E-mail: zhangbc.zhang@yahoo.com

    2016-04-15

    An exotic Bañados–Teitelboim–Zanelli (BTZ) black hole has an angular momentum larger than its mass in three dimension (3D), which suggests the possibility that cosmic censorship could be violated if angular momentum is extracted by the Penrose process. In this paper, we propose a mass formula for the exotic BTZ black hole and show no violation of weak cosmic censorship in the gedanken process above by understanding properly its mass formula. Unlike the other black holes, the total energy of the exotic BTZ black hole is represented by the angular momentum instead of the mass, which supports a basic point of view that the same geometry should be determined by the same energy in 3D general relativity whose equation of motion can be given either by normal 3D Einstein gravity or by exotic 3D Einstein gravity. However, only the mass of the exotic black hole is related to the thermodynamics and other forms of energy are “dumb”, which is consistent with the earlier thermodynamic analysis about exotic black holes.

  20. The mass formula for an exotic BTZ black hole

    International Nuclear Information System (INIS)

    Zhang, Baocheng

    2016-01-01

    An exotic Bañados–Teitelboim–Zanelli (BTZ) black hole has an angular momentum larger than its mass in three dimension (3D), which suggests the possibility that cosmic censorship could be violated if angular momentum is extracted by the Penrose process. In this paper, we propose a mass formula for the exotic BTZ black hole and show no violation of weak cosmic censorship in the gedanken process above by understanding properly its mass formula. Unlike the other black holes, the total energy of the exotic BTZ black hole is represented by the angular momentum instead of the mass, which supports a basic point of view that the same geometry should be determined by the same energy in 3D general relativity whose equation of motion can be given either by normal 3D Einstein gravity or by exotic 3D Einstein gravity. However, only the mass of the exotic black hole is related to the thermodynamics and other forms of energy are “dumb”, which is consistent with the earlier thermodynamic analysis about exotic black holes.

  1. Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania

    International Nuclear Information System (INIS)

    Streimikiene, Dalia; Baležentis, Tomas; Kriščiukaitienė, Irena

    2012-01-01

    Lithuania has developed several important climate change mitigation policy documents however there are no attempts in Lithuania to develop local climate change mitigation policies or to decentralize climate change mitigation policy. Seeking to achieve harmonization and decentralization of climate change mitigation and energy policies in Lithuania the framework for local climate change mitigation strategy need to be developed taking into account requirements, targets and measures set in national climate change mitigation and energy policy documents. The paper will describe how national climate change mitigation and energy policies can be implemented via local energy and climate change mitigation plans. The aim of the paper is to analyze the climate change mitigation policy and its relationship with policies promoting sustainable energy development in Lithuania and to present a framework for local approaches to climate change mitigation in Lithuania, in the context of the existing national and supra-national energy, climate change, and rural development policies. - Highlights: ► The framework for local energy action plans is offered. ► The structural support possibilities are assessed with respect to the Lithuanian legal base. ► The proposals are given for further promotion of sustainable energy at the local level.

  2. Aligned energy-level design for decreasing operation voltage of tandem white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hao, E-mail: chc@saturn.yzu.edu.tw [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan, ROC (China); Wu, Zih-Jyun; Liang, Yi-Hu; Chang, Yu-Shuo; Chiu, Chuan-Hao; Tai, Cheng-Wei [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan, ROC (China); Chang, Hsin-Hua, E-mail: hhua3@mail.vnu.edu.tw [Department of Electro-Optical Engineering, Vanung University, Chung-Li 32061, Taiwan, ROC (China)

    2013-12-02

    In general, organic light-emitting devices (OLEDs) need to operate at higher current density levels to ensure an ample light flux. However, stressed operation will result in poor performance and limited device lifetime. Recently, a tandem structure has been proposed as a pivotal technique to meet the stringent lighting requirements for OLED commercialization, with a research focus on decreasing the concomitant higher operation voltage. Driving two connected emission units (EMUs) in a tandem structure often requires more than twice the driving voltage for a single EMU. This study investigates bipolar host materials and their effective employment in fabricating tandem white phosphorescent OLEDs (PhOLEDs). In addition, the design of a mechanism to align the energy level between the hole transport layer/emitting layer is shown to effectively mitigate operational voltages. In sharp contrast to devices using a unipolar host material, we demonstrate that the turn-on voltage of blue PhOLEDs could be decreased from 3.8 V to 2.7 V through utilizing a bipolar host. Furthermore, applying the proposed techniques to tandem white PhOLEDs produces a luminance of 10{sup 3} cd/m{sup 2} by a 10.1 V driving voltage. - Highlights: • The matched energy level between the hole transport/emitting layer lowers voltages. • Multiple conduction dopants were used to investigate charge generation layer. • Two-color emitters were used to quantify the charge generation strength.

  3. Local investment in renewable energies; Investissement local dans les Energies Renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Grepmeier, K; Larsen, J; Manolakaki, E; Quantin, J; Twele, J

    2003-07-01

    This document presents european examples on the interest of the local investment, illustrated by cases studies in Germany, Denmark and Switzerland. Two main points were discussed: the financial tools and the french strategy. The colloquium provided many discussions and analyzes on the possibility of significant contribution to the collective efforts in favor of the public involvement in the renewable energies development in Europe. (A.L.B.)

  4. Effective theory of black holes in the 1/D expansion

    International Nuclear Information System (INIS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-01-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this ‘black hole surface’ (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for ‘black droplets’, i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  5. High-energy observations of the state transition of the X-ray nova and black hole candidate XTE J1720-318

    DEFF Research Database (Denmark)

    Bel, M.C.; Rodriguez, J.; Sizun, P.

    2004-01-01

    We report the results of extensive high-energy observations of the X-ray transient and black hole candidate XTE J1720-318 performed with INTEGRAL, XMM-Newton and RXTE. The source, which underwent an X-ray outburst in 2003 January, was observed in February in a spectral state dominated by a soft......, typical of a black-hole binary in the so-called High/Soft State. We then followed the evolution of the source outburst over several months using the INTEGRAL Galactic Centre survey observations. The source became active again at the end of March: it showed a clear transition towards a much harder state...... of the black hole X-ray novae class which populate our galactic bulge and we discuss its properties in the frame of the spectral models used for transient black hole binaries....

  6. Shell model calculations for levels and transition rates in 204Pb and 206Pb

    International Nuclear Information System (INIS)

    Wang, D.; McEllistrem, M.T.

    1990-01-01

    Level energies and decay rates of both negative and positive parity levels of 206,204 Pb have been calculated through mixed-configuration shell model calculations using the modified surface delta interaction (MSDI), the Schiffer-True central interaction, and another two-body interaction. These calculations were all carried out with a full six-orbit neutron hole space. The predicted low-lying levels with the MSDI are in excellent agreement with experiments, accounting for the energies, spins, and parities of essentially all levels below 3 MeV excitation energy except known particle-hole collective excitations in both nuclei. Almost all calculated E2 and M1 transition rates are consistent with measured branching ratios for γ-ray decay of excited levels. The comparison of the observed and calculated levels demonstrates the important role played by the neutron-hole i 13/2 configuration in the levels of 204 Pb and 206 Pb, and interprets an apparent discrepancy over the character and energy spacings of 0 + levels in 204 Pb

  7. Thermodynamic theory of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The thermodynamic theory underlying black hole processes is developed in detail and applied to model systems. It is found that Kerr-Newman black holes undergo a phase transition at a = 0.68M or Q = 0.86M, where the heat capacity has an infinite discontinuity. Above the transition values the specific heat is positive, permitting isothermal equilibrium with a surrounding heat bath. Simple processes and stability criteria for various black hole situations are investigated. The limits for entropically favoured black hole formation are found. The Nernst conditions for the third law of thermodynamics are not satisfied fully for black holes. There is no obvious thermodynamic reason why a black hole may not be cooled down below absolute zero and converted into a naked singularity. Quantum energy-momentum tensor calculations for uncharged black holes are extended to the Reissner-Nordstrom case, and found to be fully consistent with the thermodynamic picture for Q < M. For Q < M the model predicts that 'naked' collapse also produces radiation, with such intensity that the collapsing matter is entirely evaporated away before a naked singularity can form.

  8. Black hole accretion: the quasar powerhouse

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A program is described which calculates the effects of material falling into the curved space-time surrounding a rotation black hole. The authors have developed a two-dimensional, general-relativistic hydrodynamics code to simulate fluid flow in the gravitational field of a rotating black hole. Such calculations represent models that have been proposed for the energy sources of both quasars and jets from radiogalaxies. In each case, the black hole that powers the quasar or jet would have a mass of about 100 million times the mass of the sun. The black hole would be located in the center of a galaxy whose total mass is 1000 time greater than the black hole mass. (SC)

  9. Black Hole Safari: Tracking Populations and Hunting Big Game

    Science.gov (United States)

    McConnell, N. J.

    2013-10-01

    Understanding the physical connection, or lack thereof, between the growth of galaxies and supermassive black holes is a key challenge in extragalactic astronomy. Dynamical studies of nearby galaxies are building a census of black hole masses across a broad range of galaxy types and uncovering statistical correlations between galaxy bulge properties and black hole masses. These local correlations provide a baseline for studying galaxies and black holes at higher redshifts. Recent measurements have probed the extremes of the supermassive black hole population and introduced surprises that challenge simple models of black hole and galaxy co-evolution. Future advances in the quality and quantity of dynamical black hole mass measurements will shed light upon the growth of massive galaxies and black holes in different cosmic environments.

  10. Influence of screening effect on hydrogen passivation of hole silicon

    CERN Document Server

    Aleksandrov, O V

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 sup 1 sup 4 to 1.2 x 10 sup 2 sup 0 cm sup - sup 3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level

  11. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  12. Modified dispersion relations and black hole physics

    International Nuclear Information System (INIS)

    Ling Yi; Li Xiang; Hu Bo

    2006-01-01

    A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter

  13. Will black holes eventually engulf the Universe?

    International Nuclear Information System (INIS)

    Martin-Moruno, Prado; Jimenez Madrid, Jose A.; Gonzalez-Diaz, Pedro F.

    2006-01-01

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models

  14. Low-scale gravity black holes at LHC

    CERN Document Server

    Regos, E; Gamsizkan, H; Trocsanyi, Z

    2009-01-01

    We search for extra dimensions by looking for black holes at LHC. Theoretical investigations provide the basis for the collider experiments. We use black hole generators to simulate the experimental signatures (colour, charge, spectrum of emitted particles, missing transverse energy) of black holes at LHC in models with TeV scale quantum gravity, rotation, fermion splitting, brane tension and Hawking radiation. We implement the extra-dimensional simulations at the CMS data analysis and test further beyond standard models of black holes too.

  15. Local authorities in the context of energy and climate policy

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Polonara, Fabio; Brandoni, Caterina

    2012-01-01

    Several measures to boost the energy system towards a low-carbon future can be planned and implemented by local authorities, such as energy-saving initiatives in public buildings and lighting, information campaigns, and renewable energy pilot projects. This work analyzes the public administration's role in energy and climate policies by assessing carbon-lowering measures for properties and services managed directly by local governments in central Italy. Both short- and long-term schemes were considered in the analysis of local authority energy strategies. The MARKAL-TIMES energy model was applied to long-term energy planning to assess the effect of low-carbon initiatives on public-sector energy consumption up to 2030. Two energy scenarios were built, i.e. a Business As Usual (BAU) scenario based on current or soon-to-be-adopted national policies, and an Exemplary Public Scenario (EPS) including some further virtuous local policies suggested by local authorities. Our results show that a 20% primary energy reduction can be achieved with respect to the baseline year by means of short-term energy policies (5-year time span), while a primary energy saving of about 30% can be reached with longer-term energy policies (25-year time span), even after taking the increase in energy demand into account. This work goes to show the part that local governments can play in energy policy and their contribution to the achievement of climate goals. - Highlights: ► Assessment of Local Administration (LA) role in energy and climate policy. ► Analysis of both short-term and long-term carbon lowering measures. ► Use of MARKAL-TIMES model generator for long-term energy analysis. ► 20% primary energy reduction can be reached with short-term energy policies. ► 30% primary energy reduction can be reached with longer-term energy policies.

  16. The energy level alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/pentacene interface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Gengwu [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhao, Bin; Song, Fei [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Zheng, Guanhaojie; Zhang, Xiaonan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); University of Chinese Academy of Science, Beijing 100049 (China); Shen, Kongchao [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Yang, Yingguo [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Chen, Shi, E-mail: ChenShi@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gao, Xingyu, E-mail: gaoxingyu@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2017-01-30

    Highlights: • The Energy Level Alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/Pentacene Interface was resolved experimentally. • The downward band bending and the dipole found at the pentacene side would favorably drive holes away from the interface into pentacene. • A ∼0.7 eV offset between pentacene HOMO and CH{sub 3}NH{sub 3}PbI{sub 3} VBM would be in favor of hole transfer whereas a ∼1.35 eV offset between pentacene LUMO and CH{sub 3}NH{sub 3}PbI{sub 3} CBM should efficiently block the unwanted electron transfer from perovskite to pentacene. • Pentacene could be a viable hole transfer material candidate on perovskite to be explored in perovskite devices. - Abstract: Pentacene thin film on CH{sub 3}NH{sub 3}PbI{sub 3} was studied by in-situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy to determine their interfacial energy level alignment. A 0.2 eV downward band bending together with a 0.1 eV interfacial dipole was found at the pentacene side, whereas there was no band bending found at the CH{sub 3}NH{sub 3}PbI{sub 3} side. The offset between CH{sub 3}NH{sub 3}PbI{sub 3} Valance Band Maximum (VBM) and pentacene Highest Occupied Molecular Orbital (HOMO) and that between CH{sub 3}NH{sub 3}PbI{sub 3} Conduction Band Minimum (CBM) and pentacene Lowest Unoccupied Molecular Orbital (LUMO) was determined to be 0.7 and 1.35 eV, respectively. The band alignment at this interface is favor of efficient hole transfer, which suggests pentacene as a viable HTL candidate to be explored in perovskite solar cells.

  17. Fault localization technics in energy and communication cables. Fehlerortungstechnik in Energie- und Nachrichtenkabeln

    Energy Technology Data Exchange (ETDEWEB)

    Bartz, W G; Wippler, E

    1981-01-01

    Though fault localization technics in energy and information cables represents a special field within electrical engineering or electrical measurement engineering its significance becomes visible when fault-localization technics is seen with the same eyes as energy supply or information exchange. To maintain supply and exchange disturbance free, e.g. by means of continuous or periodical monitoring or to restore them quickly in case of disturbance is the task of fault localization technics. This new volume shall give a survey on the network structures in energy and communication networks, on the types and frequency of past interruptions and also on procedures to evaluate interruptions statistically. Methods, procedures and measurement techniques of fault-localization technics are presented for usual communication and energy cables as well as for optical communication cables.

  18. Hole-spin dynamics in p-doped GaAs/AlGaAs heterostructures; Lochspindynamik in p-dotierten GaAs/AlGaAs-Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, Michael

    2012-11-15

    spin dynamics in these QWs. In the most narrow QW with a width of 4 nm, hole spin lifetimes around 100 ns have been observed at low temperatures. This amounts to a lifetime increase of two orders of magnitude compared to previously reported values. The hole spins there become protected against spin flip scattering to the light hole band due to the increased heavy hole-light hole-splitting. The low temperatures are necessary to ensure localization of the holes in QW width fluctuations, hence k-dependent dephasing mechanisms are suppressed. Temperature dependent measurements give an activation energy of 1.4 meV in the 4 nm QW, in good agreement with theoretical considerations for the localization potential depth. Using the previously established RSA method, the hole g factor could be extracted very precisely. For the in-plane component in [001]-grown QWs, no dependence on QW width or in-plane crystal axis was observed, while the g factor changed significantly with temperature. The larger out-of-plane g factor component could be determined from measurements with magnetic fields tilted against the QW plane with great accuracy. Finally, the g-factor could be changed by nearly a factor of two via an electrostatic gate, while suppressing the g-factor inhomogeneity by an order of magnitude. This leads to enhanced hole spin lifetimes due to a suppression of ensemble dephasing.

  19. Black hole as a wormhole factory

    Directory of Open Access Journals (Sweden)

    Sung-Won Kim

    2015-12-01

    Full Text Available There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc/G1/2∼10−5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as “spacetime foam”, due to large fluctuations below the Planck length (ħG/c31/2∼10−33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called “Black Wormhole”, consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2>1/2, a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2<1/2, the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2=1/2. This solution suggests the “Generalized Cosmic Censorship” by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by “negative” energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the

  20. Activity coefficients of electrons and holes in semiconductors

    International Nuclear Information System (INIS)

    Orazem, M.E.; Newman, J.

    1984-01-01

    Dilute-solution transport equations with constant activity coefficients are commonly used to model semiconductors. These equations are consistent with a Boltzmann distribution and are invalid in regions where the species concentration is close to the respective site concentration. A more rigorous treatment of transport in a semiconductor requires activity coefficients which are functions of concentration. Expressions are presented for activity coefficients of electrons and holes in semiconductors for which conduction- and valence-band energy levels are given by the respective bandedge energy levels. These activity coefficients are functions of concentration and are thermodynamically consistent. The use of activity coefficients in macroscopic transport relationships allows a description of electron transport in a manner consistent with the Fermi-Dirac distribution

  1. Accretion onto some well-known regular black holes

    International Nuclear Information System (INIS)

    Jawad, Abdul; Shahzad, M.U.

    2016-01-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  2. Accretion onto some well-known regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  3. Accretion onto some well-known regular black holes

    Science.gov (United States)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  4. A New Method for Local Energy Planning in Developing Countries

    International Nuclear Information System (INIS)

    Van Beeck, N.

    2001-01-01

    Energy planning is an essential tool in the economic development of industrialized as well as developing countries. Energy planning in this paper is restricted to the selection of new energy systems for the production of proper energy forms in order to meet increased energy demand. This demand is actually the desire for certain energy services, which are the starting point of the new decision support method for local energy planning presented in this paper. In the decision making process concerning energy planning at the local level it is important to include context-related issues because the context determines for a large part the viability of the technologies or systems used. The context, in turn, is represented by the aims of the relevant actors, which are translated into measurable indicators to compare the different options. The impact assessment must allow for inclusion of all the indicators, either quantitative or qualitative in order to find the most appropriate technology for a region rather than the technically best or economically most optimal one. Appropriateness is defined by the context and is thus case specific, but the framework described in this paper is generally applicable within the given limitations. Note that the new method described in this paper is a decision support tool, implying that it does not decide for the energy planner which actions to take. The ultimate decision must be made by the planners themselves

  5. Physical effects in gravitational field of black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1986-01-01

    A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed

  6. "Iron-Clad" Evidence For Spinning Black Hole

    Science.gov (United States)

    2003-09-01

    Telltale X-rays from iron may reveal if black holes are spinning or not, according to astronomers using NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory. The gas flows and bizarre gravitational effects observed near stellar black holes are similar to those seen around supermassive black holes. Stellar black holes, in effect, are convenient `scale models' of their much larger cousins. Black holes come in at least two different sizes. Stellar black holes are between five and 20 times the mass of the Sun. At the other end of the size scale, supermassive black holes contain millions or billions times the mass of our Sun. The Milky Way contains both a supermassive black hole at its center, as well as a number of stellar black holes sprinkled throughout the Galaxy. At a press conference at the "Four Years of Chandra" symposium in Huntsville, Ala., Jon Miller of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. discussed recent results on the X-ray spectra, or distribution of X-rays with energy, from the iron atoms in gas around three stellar black holes in the Milky Way. "Discovering the high degree of correspondence between stellar and supermassive black holes is a real breakthrough," said Miller. "Because stellar black holes are smaller, everything happens about a million times faster, so they can be used as a test-bed for theories of how spinning black holes affect the space and matter around them." X-rays from a stellar black hole are produced when gas from a nearby companion star is heated to tens of millions of degrees as it swirls toward the black hole. Iron atoms in this gas produce distinctive X-ray signals that can be used to study the orbits of particles around the black hole. For example, the gravity of a black hole can shift the X-rays to lower energies. "The latest work provides the most precise measurements yet of the X-ray spectra for stellar black holes," said Miller. "These data help rule out

  7. Dual jets from binary black holes.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  8. Quantum information erasure inside black holes

    International Nuclear Information System (INIS)

    Lowe, David A.; Thorlacius, Larus

    2015-01-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  9. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  10. Energy relaxation and separation of a hot electron-hole pair in organic aggregates from a time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin

    2014-01-01

    The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation

  11. Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole

    Science.gov (United States)

    Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric

    2017-07-01

    We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.

  12. Computer simulation of the formation of Langmuir solitons and holes in a cylindrical magnetized plasma column

    International Nuclear Information System (INIS)

    Turikov, V.A.

    1978-06-01

    Nonlinear plasma oscillations in a cylindrical plasma resulting from a short localized external excitation are examined by means of a particle-in-cell simulation scheme. Computer calculations are performed for describing the experimental results obtained in a single-ended Q-machine plasma in a cylindrical waveguide. It is assumed that there is a strong magnetic field in the direction of the column axis. When the amplitude of the excitation potential is close to the kinetic energy of electrons having a phase velocity of the electron plasma wave, the formation is observed of solitons and holes in phase space. After formation, the solitons and holes move with constant velocities. The velocities of solitons are close to the wave-phase velocity, while holes move with smaller velocities. When the external potential amplitude is increased, there is a tendency that the number of holes grows. The potential amplitude of the self-consistent field in the soliton region damps in time with increasing soliton width. The potential profile of the hole does not change after its formation. (Auth.)

  13. Enhancing local distinctiveness fosters public acceptance of tidal energy: A UK case study

    International Nuclear Information System (INIS)

    Devine-Wright, Patrick

    2011-01-01

    Tidal energy has the technical potential to form part of a low carbon electricity sector, however, its 'social potential' is less clear, as few empirical studies of public beliefs and responses have been conducted to date. This research addressed this gap by investigating a tidal energy convertor in Northern Ireland, said to be the first grid-connected device of its kind in the world. Data was collected from 313 residents of two nearby villages using mixed methods, guided by a conceptual framework that avoided 'NIMBY' assumptions and instead drew on place theory. Findings indicated strong support for the project, arising from beliefs that the project enhanced local distinctiveness by 'putting the area on the map worldwide'; appeared visually familiar and helped tackle climate change. These positive beliefs outweighed concerns about outcome and process aspects, which were preponderant in one of the two villages. The project was interpreted to have few positive local economic outcomes, to potentially threaten local livelihoods and local ecology. Moreover, residents expressed cynicism about consultation procedures, and reported low levels of behavioural engagement. Implications of the findings for the literature on public acceptance of renewable energy, and for the emerging marine energy sector specifically, are discussed.

  14. Wind energy and local development; Eolien et developpement local

    Energy Technology Data Exchange (ETDEWEB)

    Depreste, B. [Ministere de l' Amenagement du Territoire et de l' Environnement, 75 - Paris (France); Beutin, Ph. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Cabanes, A. [Communes du Canton de Saint Agreve, 07 (France); Puig, J.; Jochen, T. [BWE, Berlin (Germany); Gunnar boye, Olesen [Danish Organisation for Renewable Energy (Denmark); Preben, Maegaard; Bidal, J.L. [FNSEA, 75 - Paris (France); Hartmann, Ch. [Confederation Paysanne, Alsace (France); Jedliczka, M.; Quantin, J.

    2002-04-01

    This issue of Cler Info journal includes a dossier about the development of wind energy in France and in some other European countries (Spain, Germany, Denmark) and about its economical impact at the local scale. (J.S.)

  15. Fate of an accretion disc around a black hole when both the viscosity and dark energy is in effect

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sandip; Biswas, Ritabrata [The University of Burdwan, Department of Mathematics, Burdwan, West Bengal (India)

    2017-10-15

    This paper deals with the viscous accretion flow of a modified Chaplygin gas towards a black hole as the central gravitating object. A modified Chaplygin gas is a particular type of dark energy model which mimics of radiation era to phantom era depending on the different values of its parameters. We compare the dark energy accretion with the flow of adiabatic gas. An accretion disc flowing around a black hole is an example of a transonic flow. To construct the model, we consider three components of the Navier-Stokes equation, the equation of continuity and the modified Chaplygin gas equation of state. As a transonic flow passes through the sonic point, the velocity gradient being apparently singular there, it gives rise to two flow branches: one in-falling, the accretion and the other outgoing, the wind. We show that the wind curve is stronger and the wind speed reaches that of light at a finite distance from the black hole when dark energy is considered. Besides, if we increase the viscosity, the accretion disc is shortened in radius. These two processes acting together make the system deviate much from the adiabatic accretion case. It shows a weakening process for the accretion procedure by the work of the viscous system influencing both the angular momentum transport and the repulsive force of the modified Chaplygin gas. (orig.)

  16. Strategic energy planning within local authorities in the UK: A study of the city of Leeds

    International Nuclear Information System (INIS)

    Bale, Catherine S.E.; Foxon, Timothy J.; Hannon, Matthew J.; Gale, William F.

    2012-01-01

    This paper considers the development of a strategic energy body in a local authority in the UK and looks at the perceived need for, and possible roles of, such a body. Historically, energy provision and management has not usually been a strategic priority for UK local authorities. Yet energy considerations are implicit in key local authority responsibilities such as transport, waste management, planning, and the provision of housing services. In addition, recent UK central government policies support the move to localism and provide incentives for low-carbon energy generation. A study was undertaken to assess the potential (including both the perceived benefits and actual capacity to deliver) for Leeds City Council to develop a strategic body to execute delivery of city-level energy decision-making. We examine the perceived benefits to a range of main stakeholders, using data drawn from interviews with managers responsible for low-carbon and renewable energy projects across the city. Through participant observation we explore the capacity of a local authority to deliver a strategic energy body, and we briefly examine the possible forms of delivery. We conclude with recommendations for national policy that would enable the development of strategic energy bodies across local governments in the UK. - Highlights: ► Strategic energy planning is currently not a priority for UK local authorities. ► We present an empirical study of strategic energy planning in local authorities. ► Results from stakeholder interviews suggest support for a strategic energy body. ► We identify the capacity barriers to implementing a strategic energy body. ► We make recommendations for ways forward and support needed from national policy.

  17. An empirical analysis of the impact of renewable energy deployment on local sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Del Rio, Pablo [Institute for Public Goods and Policies (IPP), Centro de Ciencias Humanas y Sociales, Consejo Superior de Investigaciones Cientificas (CSIC), C/Albasanz 26-28, 28037 Madrid (Spain); Burguillo, Mercedes [Facultad de Ciencias Economicas y Empresariales, Universidad de Alcala, Pza. de la Victoria 3, 28802 Alcala de Henares, Madrid (Spain)

    2009-08-15

    It is usually mentioned that renewable energy sources (RES) have a large potential to contribute to the sustainable development of specific territories by providing them with a wide variety of socioeconomic benefits, including diversification of energy supply, enhanced regional and rural development opportunities, creation of a domestic industry and employment opportunities. The analysis of these benefits has usually been too general (i.e., mostly at the national level) and a focus on the regional and especially the local level has been lacking. This paper empirically analyses those benefits, by applying a conceptual and methodological framework previously developed by the authors to three renewable energy technologies in three different places in Spain. With the help of case studies, the paper shows that the contribution of RES to the economic and social dimensions of sustainable development might be significant. Particularly important is employment creation in these areas. Although, in absolute terms, the number of jobs created may not be high, it may be so with respect to the existing jobs in the areas considered. Socioeconomic benefits depend on several factors, and not only on the type of renewable energy, as has usually been mentioned. The specific socioeconomic features of the territories, including the productive structure of the area, the relationships between the stakeholders and the involvement of the local actors in the renewable energy project may play a relevant role in this regard. Furthermore, other local (socioeconomic) sustainability aspects beyond employment creation should be considered. (author)

  18. Black hole entropy, curved space and monsters

    International Nuclear Information System (INIS)

    Hsu, Stephen D.H.; Reeb, David

    2008-01-01

    We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than the area A of a black hole of equal mass. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S 3/4 . This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states

  19. Continuous creation of matter across the black holes

    International Nuclear Information System (INIS)

    Manjunath, R

    2006-01-01

    The mass distribution in a galaxy that gets evolved around a black hole exhibits a certain degree of deterministic abstraction. The present work is based on the outcome of this abstraction. A black hole or a neutron star at the centre of a galaxy emits radiation when the edge of the galaxy gets disintegrated by getting absorbed in to another black hole or becomes a member of another galactic distribution. This is necessary for the existence of the black hole to counter for the surrounding structure with its own internal formation. The radiation is emitted as self similar pulses that exactly resemble the pattern of absorption of the rim of the galaxy. This concept is based on information geometry. An additional term that accounts for the feedback energy is appended to the energy momentum tensor. It has been shown that the mass around the black hole is distributed in bands that exhibit multiple resolutions. This translates on to self similarity in the emission pattern from the black hole. The recent emission of radiation from a neutron star is interpreted as one such phenomenon

  20. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  1. Super-horizon primordial black holes

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Carr, B.J.

    2005-01-01

    We discuss a new class of solutions to the Einstein equations which describe a primordial black hole (PBH) in a flat Friedmann background. Such solutions arise if a Schwarzschild black hole is patched onto a Friedmann background via a transition region. They are possible providing the black hole event horizon is larger than the cosmological apparent horizon. Such solutions have a number of strange features. In particular, one has to define the black hole and cosmological horizons carefully and one then finds that the mass contained within the black hole event horizon decreases when the black hole is larger than the Friedmann cosmological apparent horizon, although its area always increases. These solutions involve two distinct future null infinities and are interpreted as the conversion of a white hole into a black hole. Although such solutions may not form from gravitational collapse in the same way as standard PBHs, there is nothing unphysical about them, since all energy and causality conditions are satisfied. Their conformal diagram is a natural amalgamation of the Kruskal diagram for the extended Schwarzschild solution and the conformal diagram for a black hole in a flat Friedmann background. In this paper, such solutions are obtained numerically for a spherically symmetric universe containing a massless scalar field, but it is likely that they exist for more general matter fields and less symmetric systems

  2. Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H.; Akinoglu, E. M.; Fumagalli, P., E-mail: paul.fumagalli@fu-berlin.de [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Caballero, B.; García-Martín, A. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, Tres Cantos, E-28760 Madrid (Spain); Papaioannou, E. Th. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Cuevas, J. C. [Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Giersig, M. [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Helmholtz Zentrum Berlin, Institute of Nanoarchitectures for Energy Conversion, 14195 Berlin (Germany)

    2015-04-13

    A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.

  3. Particle accelerators inside spinning black holes.

    Science.gov (United States)

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  4. Gauss-Bonnet black holes in dS spaces

    International Nuclear Information System (INIS)

    Cai Ronggen; Guo Qi

    2004-01-01

    We study the thermodynamic properties associated with the black hole horizon and cosmological horizon for the Gauss-Bonnet solution in de Sitter space. When the Gauss-Bonnet coefficient is positive, a locally stable small black hole appears in the case of spacetime dimension d=5, the stable small black hole disappears, and the Gauss-Bonnet black hole is always unstable quantum mechanically when d≥6. On the other hand, the cosmological horizon is found to be always locally stable independent of the spacetime dimension. But the solution is not globally preferred; instead, the pure de Sitter space is globally preferred. When the Gauss-Bonnet coefficient is negative, there is a constraint on the value of the coefficient, beyond which the gravity theory is not well defined. As a result, there is not only an upper bound on the size of black hole horizon radius at which the black hole horizon and cosmological horizon coincide with each other, but also a lower bound depending on the Gauss-Bonnet coefficient and spacetime dimension. Within the physical phase space, the black hole horizon is always thermodynamically unstable and the cosmological horizon is always stable; furthermore, as in the case of the positive coefficient, the pure de Sitter space is still globally preferred. This result is consistent with the argument that the pure de Sitter space corresponds to an UV fixed point of dual field theory

  5. Small AdS black holes from SYM

    International Nuclear Information System (INIS)

    Asplund, Curtis; Berenstein, David

    2009-01-01

    We provide a characterization of the set of configurations in N=4 SYM theory that are dual to small AdS black holes. Our construction shows that the black hole dual states are approximately thermal on a SU(M) subset of degrees of freedom of a SU(N) gauge theory. M is determined dynamically and the black hole degrees of freedom are dynamically insulated from the rest. These states are localized on the S 5 and have dynamical processes that correspond to matter absorption that make them behave as black objects

  6. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  7. Black Holes from Particle Physics Perspective (1/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  8. Black Holes from Particle Physics Perspective (2/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  9. Smooth causal patches for AdS black holes

    Science.gov (United States)

    Raju, Suvrat

    2017-06-01

    We review the paradox of low energy excitations of a black hole in anti-de Sitter space (AdS). An appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that this seems to violate a general rule of statistical mechanics, which states that an operator with energy parametrically smaller than k T cannot create a significant excitation in a thermal system. When we carefully examine the position dependence of the boundary unitary operator that produces the excitation and the bulk observable necessary to detect the anomalously large effect, we find that they do not both fit in a single causal patch. This follows from a remarkable property of position-space AdS correlators that we establish explicitly and resolves the paradox in a generic state of the system, since no combination of observers can both create the excitation and observe its effect. As a special case of our analysis, we show how this resolves the "Born rule" paradox of Marolf and Polchinski [J. High Energy Phys. 01 (2016) 008, 10.1007/JHEP01(2016)008] and we verify our solution using an independent calculation. We then consider boundary states that are finely tuned to display a spontaneous excitation outside the causal patch of the infalling observer, and we propose a version of causal patch complementarity in AdS/CFT that resolves the paradox for such states as well.

  10. Can energy utilities play a role in local political energy savings programs?

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    2012-01-01

    Danish municipalities are putting climate change high on the agenda with action plans and targets to cut greenhouse gas (GHG) emissions. To reach these targets the municipalities need to engage citizens and the local business sector. In order to find new routes on how to engage and motivate local...... businesses to achieve GHG reductions, seven Danish municipalities (Copenhagen, Albertslund, Allerød, Ballerup, Herning, Kolding and Næstved) have joined forces in an EU LIFE project “Carbon 20”. A key element in the Carbon 20 project is to offer an energy screening free of charge for the participating...... the screening to small companies since the savings are rather limited in absolute terms. This article will focus on the appropriateness of using energy utilities (or consultants working on their behalf) in a local political context of engaging the local business sector in achieving energy savings and GHG...

  11. When will the Antarctic Ozone Hole Recover?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.

  12. Hydrostatic-pressure effects on the correlated electron-hole transition energies in GaAs-Ga{sub 1-x}Al{sub x}As semiconductor quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, N. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Instituto de Fisica, Unicamp, CP 6165, Campinas, Sao Paulo, 13083-970 (Brazil); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Reyes-Gomez, E. [Dept. of Theor. Physics, Univ. of Havana, San Lazaro y L, Vedado 10400, Havana (Cuba); Instituto de Fisica, Unicamp, CP 6165, Campinas, Sao Paulo, 13083-970 (Brazil); Oliveira, L.E. [Instituto de Fisica, Unicamp, CP 6165, Campinas, Sao Paulo, 13083-970 (Brazil)

    2006-03-01

    The effects of hydrostatic pressure on the correlated e-h transition energies in single GaAs-Ga{sub 1-x}Al{sub x}As quantum wells are calculated via a variational procedure, in the framework of the effective-mass and non-degenerate parabolic-band approximations. The valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. Both heavy- and light-hole exciton energies are obtained, and correlated e-h transition energies are found in good agreement with available experimental measurements. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Hole-transport material variation in fully vacuum deposited perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl, E-mail: karl.leo@iapp.de [Institut für Angewandte Photophysik, Technische Universität Dresden, 01069 Dresden (Germany)

    2014-08-01

    This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH{sub 3}NH{sub 3}PbI{sub x−3}Cl{sub x} perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

  14. Hole-transport material variation in fully vacuum deposited perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Lauren E. Polander

    2014-08-01

    Full Text Available This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH3NH3PbIx−3Clx perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

  15. A model of optimization for local energy infrastructure development

    International Nuclear Information System (INIS)

    Juroszek, Zbigniew; Kudelko, Mariusz

    2016-01-01

    The authors present a non-linear, optimization model supporting the planning of local energy systems development. The model considers two forms of final energy – heat and electricity. The model reflects both private and external costs and is designed to show the social perspective. It considers the variability of the marginal costs attributed to local renewable resources. In order to demonstrate the capacity of the model, the authors present a case study by modelling the development of the energy infrastructure in a municipality located in the south of Poland. The ensuing results show that a swift and significant shift in the local energy policy of typical central European municipalities is needed. The modelling is done in two scenarios – with and without the internalization of external environmental costs. The results confirm that the internalization of the external costs of energy production on a local scale leads to a significant improvement in the allocation of resources. - Highlights: • A model for municipal energy system development in Central European environment has been developed. • The variability of marginal costs of local, renewable fuels is considered. • External, environmental costs are considered. • The model reflects both network and individual energy infrastructure (e.g. individual housing boilers). • A swift change in Central European municipal energy infrastructure is necessary.

  16. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.

    Science.gov (United States)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-10

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  17. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus

    Science.gov (United States)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-01

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  18. α'-Corrections to extremal dyonic black holes in heterotic string theory

    International Nuclear Information System (INIS)

    Sahoo, Bindusar; Sen, Ashoke

    2007-01-01

    We explicitly compute the entropy of an extremal dyonic black hole in heterotic string theory compactified on T 6 or K3 x T 2 by taking into account all the tree level four derivative corrections to the low energy effective action. For supersymmetric black holes the result agrees with the answer obtained earlier 1) by including only the Gauss-Bonnet corrections to the effective action 2) by including all terms related to the curvature squared terms via space-time supersymmetry transformation, and 3) by using general arguments based on the assumption of AdS 3 near horizon geometry and space-time supersymmetry. For non-supersymmetric extremal black holes the result agrees with the one based on the assumption of AdS 3 near horizon geometry and space-time supersymmetry of the underlying theory

  19. Unruh-Verlinde temperature and energy of (2+1)-dimensional matter coupled black hole via entropic force

    International Nuclear Information System (INIS)

    Han Yiwen; Hong Yun; Bao Zhiqing

    2011-01-01

    Verlinde's recent work, which shows that gravity may be explained as an entropic force caused by the changes in information associated with the positions of material bodies, is extended to study the Unruh-Verlinde temperature and energy of a static spherically symmetric charged black hole. The results indicate that the Unruh-Verlinde temperature is equal to the Hawking temperature at the event horizon. The energy is dependent on the radius of the screen, which is also a consequence of the Gauss' laws of gravity and electrostatics. (authors)

  20. Black holes in Lorentz-violating gravity theories

    International Nuclear Information System (INIS)

    Barausse, Enrico; Sotiriou, Thomas P

    2013-01-01

    Lorentz symmetry and the notion of light cones play a central role in the definition of horizons and the existence of black holes. Current observations provide strong indications that astrophysical black holes do exist in Nature. Here we explore what happens to the notion of a black hole in gravity theories where local Lorentz symmetry is violated, and discuss the relevant astrophysical implications. Einstein-aether theory and Hořava gravity are used as the theoretical background for addressing this question. We review earlier results about static, spherically symmetric black holes, which demonstrate that in Lorentz-violating theories there can be a new type of horizon and, hence, a new notion of black hole. We also present both known and new results on slowly rotating black holes in these theories, which provide insights on how generic these new horizons are. Finally, we discuss the differences between black holes in Lorentz-violating theories and in General Relativity, and assess to what extent they can be probed with present and future observations. (paper)

  1. Collisional Penrose process near the horizon of extreme Kerr black holes.

    Science.gov (United States)

    Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida

    2012-09-21

    Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.

  2. The deployment of new energy technologies and the need for local learning

    International Nuclear Information System (INIS)

    Neij, Lena; Heiskanen, Eva; Strupeit, Lars

    2017-01-01

    The objective of this paper is to identify local aspects of technological learning in the deployment of solar photovoltaic (PV), a globally important form of distributed energy technology. We review literature in the economics of innovation and economic geography to identify the need for local learning when adopting new technologies and seek evidence on the local aspects of learning processes in the deployment of new (energy) technologies. The analysis focuses on the empirical evidence of learning processes in PV deployment. Our findings show that learning for PV deployment exhibits characteristics of local learning identified in the innovation literature (tacit knowledge, shared narratives, user relations and learning in interorganizational networks). In addition, we show that competencies in the deployment of PV rely on learning processes that are closely connected to the historically and geographically distinctive characteristics of the built environment. We also find evidence of the significance of proximity in (local) learning, as well as examples of knowledge being codified over time into national and global knowledge flows. We conclude with policy implications that acknowledge the importance of local learning for deployment. - Highlights: • PV deployment exhibits characteristics of local learning. • Some processes of local learning have become codified on a national level. • Based on a proximity in local learning we stress the importance of local policy.

  3. Black holes by analytic continuation

    CERN Document Server

    Amati, Daniele

    1997-01-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation --accessible in the 1+1 gravity theory considered-- is implicit in an S matrix approach and provides in this way a possible solution to the problem of information loss.

  4. Bound states of spin-half particles in a static gravitational field close to the black hole field

    Science.gov (United States)

    Spencer-Smith, A. F.; Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.

    2013-03-01

    We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.

  5. Local investment in renewable energies

    International Nuclear Information System (INIS)

    2003-11-01

    Although the vast majority of renewable energies projects are established by commercial developers, some of them are financed by ''ordinary citizens'' pooling together through different schemes. This is particularly frequent in Denmark and Germany, possibly a key reason for the continuous and so successful growth of various renewable energies sources in these countries. This guideline aims to define the term of local investment and provides examples of development and recommendations. (A.L.B.)

  6. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  7. Quasi-local conserved charges of spin-3 topologically massive gravity

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2016-08-01

    Full Text Available In this paper we obtain conserved charges of spin-3 topologically massive gravity by using a quasi-local formalism. We find a general formula to calculate conserved charge of the spin-3 topologically massive gravity which corresponds to a Killing vector field ξ. We show that this general formula reduces to the previous one for the ordinary spin-3 gravity presented in [18] when we take into account only transformation under diffeomorphism, without considering generalized Lorentz gauge transformation (i.e. λξ=0, and by taking 1μ→0. Then we obtain a general formula for the entropy of black hole solutions of the spin-3 topologically massive gravity. Finally we apply our formalism to calculate energy, angular momentum and entropy of a special black hole solution and we find that obtained results are consistent with previous results in the limiting cases. Moreover our results for energy, angular momentum and entropy are consistent with the first law of black hole mechanics.

  8. Horizon strings and interior states of a black hole

    Directory of Open Access Journals (Sweden)

    K.P. Yogendran

    2015-11-01

    Full Text Available We provide an explicit construction of classical strings that have endpoints on the horizons of the 2D Lorentzian black hole. We argue that this is a dual description of geodesics that are localized around the horizon which are the Lorentzian counterparts of the winding strings of the Euclidean black hole (the cigar geometry. Identifying these with the states of the black hole, we can expect that issues of black hole information loss can be posed sharply in terms of a fully quantizable string theory.

  9. A toy model of black hole complementarity

    CERN Document Server

    Banerjee, Souvik; Papadodimas, Kyriakos; Raju, Suvrat

    2016-01-01

    We consider the algebra of simple operators defined in a time band in a CFT with a holographic dual. When the band is smaller than the light crossing time of AdS, an entire causal diamond in the center of AdS is separated from the band by a horizon. We show that this algebra obeys a version of the Reeh-Schlieder theorem: the action of the algebra on the CFT vacuum can approximate any low energy state in the CFT arbitrarily well, but no operator within the algebra can exactly annihilate the vacuum. We show how to relate local excitations in the complement of the central diamond to simple operators in the band. Local excitations within the diamond are invisible to the algebra of simple operators in the band by causality, but can be related to complicated operators called "precursors". We use the Reeh-Schlieder theorem to write down a simple and explicit formula for these precursors on the boundary. We comment on the implications of our results for black hole complementarity and the emergence of bulk locality fr...

  10. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    Science.gov (United States)

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  11. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  12. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    Science.gov (United States)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  13. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  14. The localized effect of the Bi level on the valence band in the dilute bismuth GaBixAs1-x alloy

    Science.gov (United States)

    Zhao, Chuan-Zhen; Zhu, Min-Min; Wang, Jun; Wang, Sha-Sha; Lu, Ke-Qing

    2018-05-01

    The research on the temperature dependence of the band gap energy of the dilute bismuth GaBixAs1-x alloy has been done. It is found that its temperature insensitiveness is due to the enhanced localized character of the valence band state and the small decrease of the temperature coefficient for the conduction band minimum (CBM). The enhanced localized character of the valence band state is the main factor. In order to describe the localized effect of the Bi levels on the valence band, the localized energy is introduced into the Varshni's equation. It is found that the effect of the localized Bi level on the valence band becomes strong with increasing Bi content. In addition, it is found that the pressure dependence of the band gap energy of GaBixAs1-x does not seem to be influenced by the localized Bi levels. It is due to two factors. One is that the pressure dependence of the band gap energy is mainly determined by the D CBM of GaBixAs1-x. The D CBM of GaBixAs1-x is not influenced by the localized Bi levels. The other is that the small variation of the pressure coefficient for the D valence band maximum (VBM) state of GaBixAs1-x can be cancelled by the variation of the pressure coefficient for the D CBM state of GaBixAs1-x.

  15. Struggle over energy transition in Berlin: How do grassroots initiatives affect local energy policy-making?

    International Nuclear Information System (INIS)

    Blanchet, Thomas

    2015-01-01

    This paper examines the growing role of grassroots initiatives in the governance of urban energy systems. In recent years, research has increasingly underlined the potential for sustainable innovation of community-led bottom-up actions but has at the same time underestimated their potential impact on the governance of energy systems. Based on a strategic action field framework (SAF), this paper analyses the conflicts over the remunicipalisation of Berlin's electricity grid and investigates the creation and strategic development of two grassroots initiatives as well as their interaction with the local government and the established grid operator. We argue that grassroots initiatives have an important impact on the local energy system, not just through their influence on the implementation of local energy policy but above all by their framing of a specific vision of a local energy transition. The paper discusses the scope and limits of such initiatives in an urban context. - Highlights: • Grassroots initiatives as actors with countervailing power in local energy policy. • They increase citizens' awareness and impact the action of the local government. • Grids as objects of struggle between competing visions of energy transition. • Urban context is both a resource and a constraint for grassroots initiatives action

  16. French policy localism: Surfing on ‘Positive Energie Territories’ (Tepos)

    International Nuclear Information System (INIS)

    Nadaï, Alain; Labussière, Olivier; Debourdeau, Ariane; Régnier, Yannick; Cointe, Béatrice; Dobigny, Laure

    2015-01-01

    This paper is interested in sustainable energy initiatives in French rural areas. It follows up the UK debate about ‘localism’. UK policy localism has been cast as neoliberal, framing communities as competent and competitive actors, morally responsible and accountable for their destiny. In France, the emerging policy localism is surfing on an ongoing political structuration of innovative rural territories – ‘Positive Energie Territories’ (TEPOS). The paper presents and discusses the results of a rough census (undertaken in 2012) of significant experiences in this domain. It points to a few experiences and depicts them as risky, trial-and-error transcalar processes that endow locally emergent energy issues with a political dimension. To this extent, they amount to a different way of doing energy policy. The analysis points to an ambiguity in French policy localism. This localism may pave the way for an upscaling of the ongoing TEPOS political structuration, or tend to make TEPOS into demonstration territories within a neoliberal RTD policy approach. In the latter case, it may not necessarily fit territories to pursue their political structuration with a view to the energy transition. - Highlights: • The paper bears witness to the emergence of a French energy policy localism. • It presents a sample of significant local rural experiences in the climate energy domain in rural France. • These experiences are risky, trial-and-error transcalar processes. • They amount to a different way of doing energy policy. • French localism surfs on these innovative territories while remaining ambiguous about the status that it confers on them

  17. Local order dependent impurity levels in alloy semiconductors

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Ecole Normale Superieure, 75 - Paris

    1981-01-01

    We develop a one band/may sites model for an isoelectronic impurity in a semiconductor alloy. The cluster-Bethe-lattice approximation is used to study the dependence of the impurity energy level upon the short range order (SRO) of the alloy. The Kikuchi parametrization is used to describe the latter. We take into account diagonal disorder only, with possible off-diagonal relaxation around the impurity site. All the inequivalent clusters of the impurity site and its first nearest neighbours are considered, thus including the important short range alloy potential fluctuations. Results are presented for the local density of impurity states, for different degrees of SRO in the alloy. (Author) [pt

  18. Energy transition in and by the local media

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    2013-01-01

    have addressed the media at a national or international level. This article investigates the mediating of a local, municipal initiative, i.e. the so-called ‘Energy Town Frederikshavn’ project in northern Denmark, which has set the ambitious goal of complete transition to renewable energy consumption...... and CO2 neutrality within a few years. Using frame analysis, informed by discourse studies, the article analyzes how the project emerged and was established as a public phenomenon in the media coverage, including how it was made intelligible and which social actors were represented as having a say...... on the matter. The findings show several differences to national or international representations of climate change and sustainability, such as a prevalent profiling frame and an indication of a reversal of the so-called Giddens’ paradox....

  19. The Agri-Territorial Energy System: Energy from Biomass as a Tool in Local Development

    International Nuclear Information System (INIS)

    Tritz, Yvan

    2012-01-01

    Biomass is a high-potential energy source whose development has been one of the primary objectives of the debate over the environment in France. Among the projects emerging today, we highlight two types of logics: large-scale projects such as electrical power or biofuel production plants, and smaller, local initiatives launched in rural areas. This paper lays down and illustrates the bases for the Agri-Territorial Energy System (ATES). This was inspired by Local Productive Systems and Localized Agri-food Systems, and the concept was set up on the basis of analyses of local projects involving biomass energy production. The ATES option offers strong local rooting and an organizational innovation process linking multi-stake holders. The concept is illustrated by two case studies: the Miscanthus project in Ammerzwiller (Alsace), and the Bois Bocage energy project in Orne (Basse-Normandie). These examples bring up an important point, namely the multifunctional dimension of the ATES concept

  20. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  1. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25  Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  2. Energy concepts for self-supplying communities based on local and renewable energy sources

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2016-01-01

    The reduction of GHG emissions in buildings is a focus area of national energy policies, because buildings are responsible for a major share of energy consumption. Policies to increase the share of renewable energies and energy efficiency measures are implemented at local scale. Municipalities......, as responsible entities for physical planning, can hold a key role in transforming energy systems towards carbon-neutrality, based on renewable energies. The implementation should be approached at community scale, which has advantages compared to only focusing on buildings or cities. But community energy...... planning can be a complex and time-consuming process. Many municipalities hesitate to initiate such a process, because of missing guidelines and uncertainty about possible energy potentials. Case studies help to understand applied methodologies and could show available energy potentials in different local...

  3. Excluding black hole firewalls with extreme cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-183 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-06-01

    The AMPS argument for black hole firewalls seems to arise not only from the assumption of local effective field theory outside the stretched horizon but also from an overcounting of internal black hole states that include states that are singular in the past. Here I propose to exclude such singular states by Extreme Cosmic Censorship (the conjectured principle that the universe is entirely nonsingular, except for transient singularities inside black and/or white holes). I argue that the remaining set of nonsingular realistic states do not have firewalls but yet preserve information in Hawking radiation from black holes that form from nonsingular initial states.

  4. Excluding black hole firewalls with extreme cosmic censorship

    International Nuclear Information System (INIS)

    Page, Don N.

    2014-01-01

    The AMPS argument for black hole firewalls seems to arise not only from the assumption of local effective field theory outside the stretched horizon but also from an overcounting of internal black hole states that include states that are singular in the past. Here I propose to exclude such singular states by Extreme Cosmic Censorship (the conjectured principle that the universe is entirely nonsingular, except for transient singularities inside black and/or white holes). I argue that the remaining set of nonsingular realistic states do not have firewalls but yet preserve information in Hawking radiation from black holes that form from nonsingular initial states

  5. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  6. Primordial black holes from fifth forces

    Science.gov (United States)

    Amendola, Luca; Rubio, Javier; Wetterich, Christof

    2018-04-01

    Primordial black holes can be produced by a long-range attractive fifth force stronger than gravity, mediated by a light scalar field interacting with nonrelativistic "heavy" particles. As soon as the energy fraction of heavy particles reaches a threshold, the fluctuations rapidly become nonlinear. The overdensities collapse into black holes or similar screened objects, without the need for any particular feature in the spectrum of primordial density fluctuations generated during inflation. We discuss whether such primordial black holes can constitute the total dark matter component in the Universe.

  7. Black hole spectra in holography: Consequences for equilibration of dual gauge theories

    Directory of Open Access Journals (Sweden)

    Alex Buchel

    2015-07-01

    Full Text Available For a closed system to equilibrate from a given initial condition there must exist an equilibrium state with the energy equal to the initial one. Equilibrium states of a strongly coupled gauge theory with a gravitational holographic dual are represented by black holes. We study the spectrum of black holes in Pilch–Warner geometry. These black holes are holographically dual to equilibrium states of strongly coupled SU(N N=2⁎ gauge theory plasma on S3 in the planar limit. We find that there is no energy gap in the black hole spectrum. Thus, there is a priori no obstruction for equilibration of arbitrary low-energy states in the theory via a small black hole gravitational collapse. The latter is contrasted with phenomenological examples of holography with dual four-dimensional CFTs having non-equal central charges in the stress–energy tensor trace anomaly.

  8. Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Mane, Sandeep B; Sutanto, Albertus Adrian; Cheng, Chih-Fu; Xie, Meng-Yu; Chen, Chieh-I; Leonardus, Mario; Yeh, Shih-Chieh; Beyene, Belete Bedemo; Diau, Eric Wei-Guang; Chen, Chin-Ti; Hung, Chen-Hsiung

    2017-09-20

    The high performance of the perovskite solar cells (PSCs) cannot be achieved without a layer of efficient hole-transporting materials (HTMs) to retard the charge recombination and transport the photogenerated hole to the counterelectrode. Herein, we report the use of boryl oxasmaragdyrins (SM01, SM09, and SM13), a family of aromatic core-modified expanded porphyrins, as efficient hole-transporting materials (HTMs) for perovskite solar cells (PSCs). These oxasmaragdyrins demonstrated complementary absorption spectra in the low-energy region, good redox reversibility, good thermal stability, suitable energy levels with CH 3 NH 3 PbI 3 perovskite, and high hole mobility. A remarkable power conversion efficiency of 16.5% (V oc = 1.09 V, J sc = 20.9 mA cm -2 , fill factor (FF) = 72%) is achieved using SM09 on the optimized PSCs device employing a planar structure, which is close to that of the state-of-the-art hole-transporting materials (HTMs), spiro-OMeTAD of 18.2% (V oc = 1.07 V, J sc = 22.9 mA cm -2 , FF = 74%). In contrast, a poor photovoltaic performance of PSCs using SM01 is observed due to the interactions of terminal carboxylic acid functional group with CH 3 NH 3 PbI 3 .

  9. A unitary model of the black hole evaporation

    Science.gov (United States)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  10. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Xianguo Li

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers. (Author)

  11. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Li Xianguo

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers

  12. Investigation of Spiral and Sweeping Holes

    Science.gov (United States)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  13. Very high energy emission from passive supermassive black holes

    Energy Technology Data Exchange (ETDEWEB)

    Pedaletti, Giovanna

    2009-10-22

    The H.E.S.S. experiment, an array of four Imaging Cherenkov Telescopes, widened the horizon of Very High Energy (VHE) astronomy. Its unprecedented sensitivity is well suited for the study of new classes of expected VHE emitters, such as passive galactic nuclei that are the main focus of the work presented in this thesis. Acceleration of particles up to Ultra High Energies is expected in the magnetosphere of supermassive black holes (SMBH). The radiation losses of these accelerated particles are expected to reach the VHE regime in which H.E.S.S. operates. Predicted fluxes exceed the sensitivity of the array. However, strong photon fields in the surrounding of the acceleration region might absorb the produced radiation. Therefore observations focus on those galactic nuclei that are underluminous at lower photon energies. This work presents data collected by the H.E.S.S. telescopes on the test candidate NGC 1399 and their interpretation. While no detection has been achieved, important constraints can be derived from the obtained upper limits on the maximum energy attainable by the accelerated particles and on the magnetic field strength in the acceleration region. A limit on the magnetic field of B < 74 Gauss is given. The limit is model dependent and a scaling of the result with the assumptions is given. This is the tightest empirical constraint to date. Because of the lack of signal from the test candidate, a stacking analysis has been performed on similar sources in three cluster fields. A search for signal from classes of active galactic nuclei has also been made in the same three fields. None of the analyzed samples revealed a significant signal. Also presented are the expectations for the next generation of Cherenkov Telescopes and an outlook on the relativistic effects expected on the VHE emission close to SMBH. (orig.)

  14. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  15. General Business Model Patterns for Local Energy Management Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)

    2016-03-03

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  16. Ultrafast exciton decay in PbS quantum dots through simultaneous electron and hole recombination with a surface-localized ion pair

    Energy Technology Data Exchange (ETDEWEB)

    Edme, Kedy; Bettis Homan, Stephanie; Nepomnyashchii, Alexander B.; Weiss, Emily A., E-mail: e-weiss@northwestern.edu

    2016-06-01

    Highlights: • We synthesize complexes of PbS quantum dots (QDs) and tetracyanoquinodimethane (TCNQ). Each PbS QD spontaneously reduces up to 17 TCNQ molecules. • The photoluminescence of the PbS QDs is quenched in the presence of the reduced TCNQ species through ultrafast non-radiative, simultaneous decay of the electron and hole. • We assign this decay to a four-carrier, concerted charge recombination mechanism with the surface localized sulfur–TCNQ{sup x−} ion pair. - Abstract: This paper describes the ultrafast decay of the band-edge exciton in PbS quantum dots (QDs) through simultaneous recombination of the excitonic hole and electron with the surface localized ion pair formed upon adsorption of tetracyanoquinodimethane (TCNQ). Each PbS QD (R = 1.8 nm) spontaneously reduces up to 17 TCNQ molecules upon adsorption of the TCNQ molecule to a sulfur on the QD surface. The photoluminescence of the PbS QDs is quenched in the presence of the reduced TCNQ species through ultrafast (⩽15-ps) non-radiative decay of the exciton; the rate constant for the decay process increases approximately linearly with the number of adsorbed, reduced TCNQ molecules. Near-infrared and mid-infrared transient absorption show that this decay occurs through simultaneous transfer of the excitonic electron and hole, and is assigned to a four-carrier, concerted charge recombination mechanism based on the observations that (i) the PL of the QDs recovers when spontaneously reduced TCNQ{sup 1−} desorbs from the QD surface upon addition of salt, and (ii) the PL of the QDs is preserved when another spontaneous oxidant, ferrocinium, which cannot participate in charge transfer in its reduced state, is substituted for TCNQ.

  17. San Jose, California: Evaluating Local Solar Energy Generation Potential (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "San Jose, California: Evaluating Local Solar Energy Generation Potential" explains how the City of San Jose used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  18. Accretion of Ghost Condensate by Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  19. Gravitational entropy of nonstationary black holes and spherical shells

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1989-01-01

    The problem of defining the gravitational entropy of a nonstationary black hole is considered in a simple model consisting of a spherical shell which collapses into a preexisting black hole. The second law of black-hole mechanics strongly suggests identifying one-quarter of the area of the event horizon as the gravitational entropy of the system. It is, however, impossible to accurately locate the position of the global event horizon using only local measurements. In order to maintain a local thermodynamics, it is suggested that the entropy of the black hole be identified with one-quarter the area of the apparent horizon. The difference between the event-horizon entropy (to the extent it can be determined) and the apparent-horizon entropy may then be interpreted as the gravitational entropy of the collapsing shell. The total (event-horizon) gravitational entropy evolves in a smooth (C 0 ) fashion, even in the presence of δ-functional shells of matter

  20. Evaluating Small Sphere Limit of the Wang-Yau Quasi-Local Energy

    Science.gov (United States)

    Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung

    2018-01-01

    In this article, we study the small sphere limit of the Wang-Yau quasi-local energy defined in Wang and Yau (Phys Rev Lett 102(2):021101, 2009, Commun Math Phys 288(3):919-942, 2009). Given a point p in a spacetime N, we consider a canonical family of surfaces approaching p along its future null cone and evaluate the limit of the Wang-Yau quasi-local energy. The evaluation relies on solving an "optimal embedding equation" whose solutions represent critical points of the quasi-local energy. For a spacetime with matter fields, the scenario is similar to that of the large sphere limit found in Chen et al. (Commun Math Phys 308(3):845-863, 2011). Namely, there is a natural solution which is a local minimum, and the limit of its quasi-local energy recovers the stress-energy tensor at p. For a vacuum spacetime, the quasi-local energy vanishes to higher order and the solution of the optimal embedding equation is more complicated. Nevertheless, we are able to show that there exists a solution that is a local minimum and that the limit of its quasi-local energy is related to the Bel-Robinson tensor. Together with earlier work (Chen et al. 2011), this completes the consistency verification of the Wang-Yau quasi-local energy with all classical limits.

  1. The Weak Gravity Conjecture and the axionic black hole paradox

    Science.gov (United States)

    Hebecker, Arthur; Soler, Pablo

    2017-09-01

    In theories with a perturbatively massless 2-form (dual to an axion), a paradox may arise in the process of black hole evaporation. Schwarzschild black holes can support a non-trivial Wilson-line-type field, the integral of the 2-form around their horizon. After such an `axionic black hole' evaporates, the Wilson line must be supported by the corresponding 3-form field strength in the region formerly occupied by the black hole. In the limit of small axion decay-constant f, the energy required for this field configuration is too large. Thus, energy cannot be conserved in the process of black hole evaporation. The natural resolution of this paradox is through the presence of light strings, which allow the black hole to "shed" its axionic hair sufficiently early. This gives rise to a new Weak-Gravity-type argument in the 2-form context: small coupling, in this case f , enforces the presence of light strings or a low cutoff. We also discuss how this argument may be modified in situations where the weak coupling regime is achieved in the low-energy effective theory through an appropriate gauging of a model with a vector field and two 2-forms.

  2. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.

    Science.gov (United States)

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-08-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.

  3. State and Local Initiatives: Your Bridge to Renewable Energy and Energy Efficiency Resources (Brochure)

    International Nuclear Information System (INIS)

    Epstein, K.

    2001-01-01

    A brochure for local and state policymakers, informing them about the State and Local Initiatives team at the National Renewable Energy Laboratory. The brochure outlines the benefits of using renewables and energy efficiency, the benefits of using the State and Local Initiatives team as a liaison to the wealth of information at NREL, and some of the services and resources available

  4. Local acceptance of wind energy. A comparison between Germany, Argentina and Spain

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno, Moira [Freie Univ. Berlin (DE). Forschungszentrum fuer Umweltpolitik (ffu)

    2011-07-01

    Commercial exploitation of wind parks started in the early 1990s in Germany, and in the mid 1990s in Spain and Argentina. Then, there have been an incremental use of wind turbines in rural areas. Many of them are characterised in economic terms by a diversified economic structure with a marginal significance. In the ''innovative democracy and concrete institutional economy'' approach one of the key problems regarding wind turbines, is the local acceptance. This raises the following questions: how is local acceptance, from the perspective of the innovative democracy, of the wind regions in Germany and Spain and why it was developed in this way. Another central question concerning the local acceptance of wind energy is how wind regions in Argentina (as an example of an emerging country investing in renewable energy) can learn from the European experiences. Based on this, I would like to make a comparative analysis between Germany, Spain and Argentina on the basis of various regions with the corresponding wind parks, within regional differences and similarities are to be worked out. First results tend to demonstrate that wind energy promotion programs will be most successful (in terms of their higher level of social acceptance) in locales that have participatory decision making structures and incorporate wind energy development into broader local or regional development programs. For example in touristic programs. In order to verify this the case study approach is focused on comparing selected regions based on the three countries. (orig.)

  5. Longitudinal holes in debunched particle beams in storage rings, perpetuated by space-charge forces

    Directory of Open Access Journals (Sweden)

    Shane Koscielniak

    2001-04-01

    Full Text Available Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition if the impedance is inductive (or resistive or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coasting beams. We shall also report on computer simulations of boosterlike beams that provide compelling evidence that it is space-charge force which perpetuates the holes. We shall show that the localized solitonlike structures, i.e., holes, decouple from the steady-state distribution and that they are simple solutions of the nonlinearized time-independent Vlasov equation. We have derived conditions for stationarity of holes that satisfy the requirement of self-consistency; essentially, the relation between the momentum spread and depth of the holes is given by the Hamiltonian—with the constraint that the phase-space density be high enough to support the solitons. The stationarity conditions have scaling laws similar to the Keil-Schnell criteria except that the charge and momentum spread of the hole replaces that of the beam.

  6. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  7. A New Model of Black Hole Formation

    Directory of Open Access Journals (Sweden)

    Thayer G. D.

    2013-10-01

    Full Text Available The formation of a black hole and its event horizon are described. Conclusions, which are the result of a thought experiment, show that Schwarzschild [1] was correct: A singularity develops at the event horizon of a newly-formed black hole. The intense gravitational field that forms near the event horizon results in the mass-energy of the black hole accumulating in a layer just inside the event horizon, rather than collapsing into a central singularity.

  8. Observability of Quantum State of Black Hole

    CERN Document Server

    David, J R; Mandal, G; Wadia, S R; David, Justin R.; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.

    1997-01-01

    We analyze terms subleading to Rutherford in the $S$-matrix between black hole and probes of successively high energies. We show that by an appropriate choice of the probe one can read off the quantum state of the black hole from the S-matrix, staying asymptotically far from the BH all the time. We interpret the scattering experiment as scattering off classical stringy backgrounds which explicitly depend on the internal quantum numbers of the black hole.

  9. Topology, entropy, and Witten index of dilaton black holes

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Kallosh, R.E.

    1995-01-01

    We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) a topology S 1 xRxS 2 and Euler number χ=0 in contrast with the nonextreme case with χ=2. The entropy of extreme U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstroem case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of all extreme black holes, including [U(1)] 2 black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten index. We have studied also the topology of ''moduli space'' of multi-black-holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not hyper-Kaehler since the corresponding geometry has a torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electromagnetic black hole is 300 times greater than that released by the fission of a 235 U nucleus

  10. Pseudo-particles picture in single-hole-doped two-dimensional Neel ordered antiferromagnet

    International Nuclear Information System (INIS)

    Pereira, A R; Ercolessi, E; Pires, A S T

    2007-01-01

    Using the nonlinear σ model on a non-simply connected manifold, we consider the interaction effects between the elementary excitations (magnons and skyrmions) and static spin vacancy (hole) in two-dimensional quantum antiferromagnetic systems. Holes scatter magnons and trap skyrmions. The phase-shifts of the scattered magnons are obtained and used to calculate the zero point energy of spin waves measured with respect to the vacuum. It is suggested that this zero point energy lowers the energy cost of removing spins from the lattice. We also study the problems of the skyrmion-hole interactions and the skyrmion-hole (half-skyrmion-hole) bound states in the presence of magnons. We argue that two adjacent non-magnetic impurities are attracted when they are placed at the centre of half-skyrmions

  11. Schwarzschild black holes as unipolar inductors: Expected electromagnetic power of a merger

    International Nuclear Information System (INIS)

    Lyutikov, Maxim

    2011-01-01

    The motion of a Schwarzschild black hole with velocity v 0 =β 0 c through a constant magnetic field B 0 in vacuum induces a component of the electric field along the magnetic field, generating a nonzero second Poincare electromagnetic invariant * F·F≠0. This will produce (e.g., via radiative effects and vacuum breakdown) an electric charge density of the order of ρ ind =B 0 β 0 /(2πeR G ), where R G =2GM/c 2 is the Schwarzschild radius and M is the mass of the black hole; the charge density ρ ind is similar to the Goldreich-Julian density. The magnetospheres of moving black holes resemble in many respects the magnetospheres of rotationally-powered pulsars, with pair formation fronts and outer gaps, where the sign of the induced charge changes. As a result, the black hole will generate bipolar electromagnetic jets each consisting of two counter-aligned current flows (four current flows total), each carrying an electric current of the order I≅eB 0 R G β 0 . The electromagnetic power of the jets is L≅(GM) 2 B 0 2 β 0 2 /c 3 ; for a particular case of merging black holes the resulting Poynting power is L≅(GM) 3 B 0 2 /(c 5 R), where R is the radius of the orbit. In addition, in limited regions near the horizon the first electromagnetic invariant changes sign, so that the induced electric field becomes larger than the magnetic field, E>B. As a result, there will be local dissipation of the magnetic field close to the horizon, within a region with the radial extent ΔR≅R G β 0 . The total energy loss from a system of merging black holes is a sum of two components with similar powers, one due to the rotation of space-time within the orbit, driven by the nonzero angular momentum in the system, and the other due to the linear motion of the black holes through the magnetic field. Since the resulting electrodynamics is in many respects similar to pulsars, merging black holes may generate coherent radio and high energy emission beamed approximately along the

  12. Local investment in renewable energies; Investissement local dans les energies renouvelables - depliant d'information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    Although the vast majority of renewable energies projects are established by commercial developers, some of them are financed by ''ordinary citizens'' pooling together through different schemes. This is particularly frequent in Denmark and Germany, possibly a key reason for the continuous and so successful growth of various renewable energies sources in these countries. This guideline aims to define the term of local investment and provides examples of development and recommendations. (A.L.B.)

  13. Local and global Casimir energies for a semitransparent cylindrical shell

    International Nuclear Information System (INIS)

    Cavero-Pelaez, Ines; Milton, Kimball A; Kirsten, Klaus

    2007-01-01

    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ-function potential in a (3 + 1)-dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak coupling, through O(λ 2 ), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the δ-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ 3 ), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy and does not reflect divergences in the local energy density as the surface is approached

  14. Black-hole creation in quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)

    1997-11-01

    It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.

  15. Energy localization in the phi4 oscillator chain.

    Science.gov (United States)

    Ponno, A; Ruggiero, J; Drigo, E; De Luca, J

    2006-05-01

    We study energy localization in a finite one-dimensional phi(4) oscillator chain with initial energy in a single oscillator of the chain. We numerically calculate the effective number of degrees of freedom sharing the energy on the lattice as a function of time. We find that for energies smaller than a critical value, energy equipartition among the oscillators is reached in a relatively short time. On the other hand, above the critical energy, a decreasing number of particles sharing the energy is observed. We give an estimate of the effective number of degrees of freedom as a function of the energy. Our results suggest that localization is due to the appearance, above threshold, of a breather-like structure. Analytic arguments are given, based on the averaging theory and the analysis of a discrete nonlinear Schrödinger equation approximating the dynamics, to support and explain the numerical results.

  16. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  17. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    Science.gov (United States)

    Tretyakova, Daria; Latosh, Boris

    2018-02-01

    In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.

  18. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    Directory of Open Access Journals (Sweden)

    Daria Tretyakova

    2018-02-01

    Full Text Available In this review, we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on black holes, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the issues that are not fully investigated.

  19. Local embeddedness in community energy projects. A social entrepreneurship perspective

    Directory of Open Access Journals (Sweden)

    Mihaela Vancea

    2017-12-01

    Full Text Available An increasing number of community energy projects have emerged recently, reflecting diverse sociotechnical configurations in the energy sector. This article is based on an empirical study examining different types of community energy projects such as energy cooperatives, public service utilities and other entrepreneurially oriented initiatives across the European Union. Based on an in-depth analysis of three case studies, the article aims to introduce a social entrepreneurship perspective when discussing the relationship between local embeddedness and different forms of organisation and ownership in community energy. The results indicate that community energy projects can expand beyond the local scale without losing their collective and democratic form of functioning and ownership. Moreover, social movements can act as catalysts for this expansion beyond the local, in a quest for wider social transformation. Social entrepreneurship may provide a suitable analytical lens to avoid the ‘local trap’ when examining different forms of organisation and ownership in renewable energy, and further explore the question of scaling.

  20. The nature of holes in carbon doped titania

    International Nuclear Information System (INIS)

    Rabani, J.

    2009-01-01

    Complete text of publication follows. It is well known that semiconductors (SC) produce conduction band electrons and valence band holes upon band gap excitation. The mobile species become quickly trapped at the surface. The most popular semiconductor is titanium dioxide, where the reactive surface holes (h T + ) have been recently identified as surface -O ·- (or - · OH depending on pH) covalently linked to Ti atoms. Most organic compounds are oxidized by the holes. These holes react similarly to · OH radicals and hence there is some resemblance between the photochemistry of TiO 2 and radiolysis, although in the case of TiO 2 the reactions take place on the surface. Titanium dioxide has many favorable properties for application as a photocatalyst for decontamination of water from organic materials, but is lacking absorption in the visible range, where photons are relatively cheap. In addition the quantum yield of reaction with solutes in water is too low under conditions required by industrial water treatment due to the competition between electron-hole recombination and localization at the surface. The discovery that doping of TiO 2 leads to extension of the photoactive region from UV to visible light has remarkably increased the interest in such doped TiO 2 , and a large number of materials have been developed on the basis of this strategy. We'll focus on carbon doped TiO 2 where the visible photoactivity is attributed to introduction of intragap localized carbon states or organic segments. Visible photolysis of aerated carbon doped TiO 2 (C-TiO 2 ) aqueous suspensions induces oxidation of the model compound used, namely methanol. The effects of absorbed light density, added hydrogen peroxide and added catalase on the rate of HCHO formation have been studied. The mechanism has been shown to involve oxidation of CH 3 OH by surface trapped holes, although these holes have lower energy than those formed upon UV photolysis of undoped TiO 2 . The C-TiO 2 electrons