WorldWideScience

Sample records for local spatial spectrum

  1. Special features of local spatial spectrum of Bessel light beams

    CSIR Research Space (South Africa)

    Belyi, VN

    2011-11-01

    Full Text Available In this paper the authors consider the angular spectrum of an apertured Bessel beam when the aperture is circular and shifted laterally with respect to the optical axis. Since the perturbation of the resulting angular spectrum is due to a spatially...

  2. Spectrum Sensing and Primary User Localization in Cognitive Radio Networks via Sparsity

    Directory of Open Access Journals (Sweden)

    Lanchao Liu

    2016-01-01

    Full Text Available The theory of compressive sensing (CS has been employed to detect available spectrum resource in cognitive radio (CR networks recently. Capitalizing on the spectrum resource underutilization and spatial sparsity of primary user (PU locations, CS enables the identification of the unused spectrum bands and PU locations at a low sampling rate. Although CS has been studied in the cooperative spectrum sensing mechanism in which CR nodes work collaboratively to accomplish the spectrum sensing and PU localization task, many important issues remain unsettled. Does the designed compressive spectrum sensing mechanism satisfy the Restricted Isometry Property, which guarantees a successful recovery of the original sparse signal? Can the spectrum sensing results help the localization of PUs? What are the characteristics of localization errors? To answer those questions, we try to justify the applicability of the CS theory to the compressive spectrum sensing framework in this paper, and propose a design of PU localization utilizing the spectrum usage information. The localization error is analyzed by the Cramér-Rao lower bound, which can be exploited to improve the localization performance. Detail analysis and simulations are presented to support the claims and demonstrate the efficacy and efficiency of the proposed mechanism.

  3. Wavelet Spatial Energy Spectrums Studies on Drag Reduction by Micro-bubble Injection

    International Nuclear Information System (INIS)

    Ling Zhen; Yassin Hassan

    2006-01-01

    In this study, continuous wavelet transforms and spatial correlation techniques are employed to determine the space-localized wavenumber energy spectrum of the velocity signals in turbulent channel flow. The flow conditions correspond to single phase flow and micro-bubbles injected two phase flow. The wavelet energy spectrums demonstrate that the wavenumber (eddy size) content of the velocity signals is not only space-dependent but also micro-bubbles can impact the eddy size content. Visual observations of the wavelet energy spectrum spatial distribution was realized by using Particle Image Velocimetry (PIV) measurement technique. The two phase flow condition corresponds to a drag reduction of 38.4% with void fraction of 4.9%. The present results provide evidence that micro-bubbles in the boundary layer of a turbulent channel flow can help adjust the eddy size distributions near the wall. This can assist in explaining that micro-bubbles are performing as buffers to keep the energy of fluid particles going in stream-wise direction and reducing the energy of fluid particles going in normal direction. (authors)

  4. A "looming bias" in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization.

    Science.gov (United States)

    McCarthy, Lisa; Olsen, Kirk N

    2017-01-01

    Continuous increases of acoustic intensity (up-ramps) can indicate a looming (approaching) sound source in the environment, whereas continuous decreases of intensity (down-ramps) can indicate a receding sound source. From psychoacoustic experiments, an "adaptive perceptual bias" for up-ramp looming tonal stimuli has been proposed (Neuhoff, 1998). This theory postulates that (1) up-ramps are perceptually salient because of their association with looming and potentially threatening stimuli in the environment; (2) tonal stimuli are perceptually salient because of an association with single and potentially threatening biological sound sources in the environment, relative to white noise, which is more likely to arise from dispersed signals and nonthreatening/nonbiological sources (wind/ocean). In the present study, we extrapolated the "adaptive perceptual bias" theory and investigated its assumptions by measuring sound source localization in response to acoustic stimuli presented in azimuth to imply looming, stationary, and receding motion in depth. Participants (N = 26) heard three directions of intensity change (up-ramps, down-ramps, and steady state, associated with looming, receding, and stationary motion, respectively) and three levels of acoustic spectrum (a 1-kHz pure tone, the tonal vowel /ә/, and white noise) in a within-subjects design. We first hypothesized that if up-ramps are "perceptually salient" and capable of eliciting adaptive responses, then they would be localized faster and more accurately than down-ramps. This hypothesis was supported. However, the results did not support the second hypothesis. Rather, the white-noise and vowel conditions were localized faster and more accurately than the pure-tone conditions. These results are discussed in the context of auditory and visual theories of motion perception, auditory attentional capture, and the spectral causes of spatial ambiguity.

  5. Spatial Cognition in Autism Spectrum Disorders: Superior, Impaired, or Just Intact?

    Science.gov (United States)

    Edgin, Jamie O.; Pennington, Bruce F.

    2005-01-01

    The profile of spatial ability is of interest across autism spectrum disorders (ASD) because of reported spatial strengths in ASD and due to the recent association of Asperger's syndrome with Nonverbal Learning Disability. Spatial functions were examined in relation to two cognitive theories in autism: the central coherence and executive function…

  6. Imprint of spatial curvature on inflation power spectrum

    International Nuclear Information System (INIS)

    Masso, Eduard; Zsembinszki, Gabriel; Mohanty, Subhendra; Nautiyal, Akhilesh

    2008-01-01

    If the Universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the cosmic microwave background anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the Wilkinson microwave anisotropy map five year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω-1>0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large l. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.

  7. Capacity analysis of spectrum sharing spatial multiplexing MIMO systems

    KAUST Repository

    Yang, Liang; Qaraqe, Khalid A.; Serpedin, Erchin; Alouini, Mohamed-Slim

    2014-01-01

    This paper considers a spectrum sharing (SS) multiple-input multiple-output (MIMO) system operating in a Rayleigh fading environment. First the capacity of a single-user SS spatial multiplexing system is investigated in two scenarios that assume

  8. On the theory of spatial localization of photons

    International Nuclear Information System (INIS)

    Keller, Ole

    2005-01-01

    In the quantum physics of near-field optics and optical tunneling light-matter interactions are studied on a length scale (much) smaller than the wavelength of light, and questions regarding the possibilities for strong spatial localization of electromagnetic fields are here in focus. Some of these questions relate to the spatial resolution problem in optics, a problem which has gained considerable attention in connection to optical investigations of mesoscopic systems. Optics beyond the classical diffraction limit has renewed our interest in the various theories for spatial localization of single photons. In the present work aspects of these theories of particular importance for light-matter interaction on the microscopic and mesoscopic length scales are reviewed. Photon wave mechanics, i.e. the (rather unknown) first quantized theory of the photon, allows us to address the spatial field localization problem in a flexible manner which links smoothly to classical electromagnetics. The wave mechanics of free photons is discussed both in the momentum-time domain (Part A) and in the space-time domain (Part B). The first-quantized theory of spatial localization of photons subjected to field-matter interaction is described in Part C, paying particular attendance to the so-called photon energy wave function concept. In Part D, the spatial localization of photons are studied on a field theoretic (second-quantized) basis. The coarse-grained photon localization theory and the spatial localization perceived in various representations (gauges) here are core issues. In the two last parts of the review I describe photon fields in near-field optics (Part E), and the optical tunneling phenomenon, here seen as a fingerprint of weak photon localizability (Part F)

  9. X-ray spectrum local method

    International Nuclear Information System (INIS)

    Avdonin, S.A.

    1985-01-01

    General characteristic and bases of X-ray spectrum local method used for qualitative and quantitative analyses of the mineral chemical composition with volumetric locality of several cubic micrometers. The method is based on the excitation in a sample of characteristic and bremsstrahlung spectra by means of a narrow electron beam at 5-50 keV accelerating voltage. Application of the method when studying uranium minerals and ores is considered. The method allows to determine the uranium presence forms in the ores, morphological features of the minerals, mineral microstructure, UO 2 and UO 3 ratios for unhydrous uraninites and pitchblendes and also to determine mineralization age

  10. Local spectrum and local spectral radius of an operator at a fixed vector

    Czech Academy of Sciences Publication Activity Database

    Bračič, J.; Müller, Vladimír

    2009-01-01

    Roč. 194, č. 2 (2009), s. 155-162 ISSN 0039-3223 R&D Projects: GA ČR GA201/09/0473 Institutional research plan: CEZ:AV0Z10190503 Keywords : surjectivity spectrum * local spectrum * spectral radius Subject RIV: BA - General Mathematics Impact factor: 0.645, year: 2009 http://journals.impan.pl/cgi-bin/doi?sm194-2-3

  11. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika

    2017-01-01

    distortions caused by Taylor’s hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed......We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra...... and spatial structure functions in a way that completely bypasses the need for Taylor’s hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method...

  12. Cross-Industry Spatially Localized Innovation Networks

    Directory of Open Access Journals (Sweden)

    Aleksandr Evseevich Karlik

    2016-12-01

    Full Text Available This article’s objective is to develop conceptual approach to the study of key decision-making factors of cross-industry spatially localized innovation networks regularities by the application of quantitative and qualitative data of St. Petersburg Innovation and Technology Cluster of Machinery Manufacturing and Metalworking. The paper is based on the previous research findings which conclude that such networks have a set of opportunities and constraints for innovation. The hypothesis is that in the clusters, representing a special type of these networks, the spatial proximity partly offsets the negative impact of industrial distance. The authors propose a structural and logical model of strategic decision-making to analyze these effects on innovation. They specify network’s influences on performance: cognitive diversity; knowledge and expertise; structural autonomy and equivalence. The model is applied to spatially localized cross-industry cluster and then improved in accordance with the obtained results for accounting resource flows. It allowed to take into account the dynamics of innovation activity and to develop the practical implications in the particular business context. The analysis identified the peculiarities of spatially localized crossindustry innovation cooperation in perspective of the combinations of tangible resources, information and other intangible resources for the renewal of mature industries. The research results can be used in business as well as in industrial and regional economic policy. In the conclusion, the article outlines future research directions: a comprehensive empirical study with the analysis of data on the factors of cross-industry cooperation which were identified in this paper with testing of causal relations; the developing an approach to the study of spatially localized networks based on the exchange of primary resources in the economic system stability framework.

  13. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  14. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Zhan Zhiming; Liu Jibing

    2011-01-01

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  15. Transfinite ranges and the local spectrum

    Czech Academy of Sciences Publication Activity Database

    Cho, M.; Harte, R.; Müller, Vladimír

    2013-01-01

    Roč. 398, č. 1 (2013), s. 403-408 ISSN 0022-247X R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : transfinite ranges * Coeur algébrique * local spectrum Subject RIV: BA - General Mathematics Impact factor: 1.119, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022247X12007081

  16. Global-local visual biases correspond with visual-spatial orientation.

    Science.gov (United States)

    Basso, Michael R; Lowery, Natasha

    2004-02-01

    Within the past decade, numerous investigations have demonstrated reliable associations of global-local visual processing biases with right and left hemisphere function, respectively (cf. Van Kleeck, 1989). Yet the relevance of these biases to other cognitive functions is not well understood. Towards this end, the present research examined the relationship between global-local visual biases and perception of visual-spatial orientation. Twenty-six women and 23 men completed a global-local judgment task (Kimchi and Palmer, 1982) and the Judgment of Line Orientation Test (JLO; Benton, Sivan, Hamsher, Varney, and Spreen, 1994), a measure of visual-spatial orientation. As expected, men had better performance on JLO. Extending previous findings, global biases were related to better visual-spatial acuity on JLO. The findings suggest that global-local biases and visual-spatial orientation may share underlying cerebral mechanisms. Implications of these findings for other visually mediated cognitive outcomes are discussed.

  17. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ding Chunling; Li Jiahua; Yang Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhan Zhiming [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Liu Jibing, E-mail: clding2006@126.com, E-mail: huajia_li@163.com [Department of Physics, Hubei Normal University, Huangshi 435002 (China)

    2011-07-28

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  18. Emotional state and local versus global spatial memory.

    Science.gov (United States)

    Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A

    2009-02-01

    The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition.

  19. Localization in a one-dimensional spatially correlated random potential

    International Nuclear Information System (INIS)

    Kasner, M.; Weller, W.

    1986-01-01

    The motion of an electron in a random one-dimensional spatially correlated potential is investigated. The spatial correlation is generated by a Markov chain. It is shown that the influence of the spatial correlation can be described by means of oscillating vertices usually neglected in the Berezinskii diagram technique. Correlation mainly leads to an increase of the localization length in comparison with an uncorrelated potential. However, there is a region of the parameter, where the localization decreases. (author)

  20. 3D spatially-adaptive canonical correlation analysis: Local and global methods.

    Science.gov (United States)

    Yang, Zhengshi; Zhuang, Xiaowei; Sreenivasan, Karthik; Mishra, Virendra; Curran, Tim; Byrd, Richard; Nandy, Rajesh; Cordes, Dietmar

    2018-04-01

    Local spatially-adaptive canonical correlation analysis (local CCA) with spatial constraints has been introduced to fMRI multivariate analysis for improved modeling of activation patterns. However, current algorithms require complicated spatial constraints that have only been applied to 2D local neighborhoods because the computational time would be exponentially increased if the same method is applied to 3D spatial neighborhoods. In this study, an efficient and accurate line search sequential quadratic programming (SQP) algorithm has been developed to efficiently solve the 3D local CCA problem with spatial constraints. In addition, a spatially-adaptive kernel CCA (KCCA) method is proposed to increase accuracy of fMRI activation maps. With oriented 3D spatial filters anisotropic shapes can be estimated during the KCCA analysis of fMRI time courses. These filters are orientation-adaptive leading to rotational invariance to better match arbitrary oriented fMRI activation patterns, resulting in improved sensitivity of activation detection while significantly reducing spatial blurring artifacts. The kernel method in its basic form does not require any spatial constraints and analyzes the whole-brain fMRI time series to construct an activation map. Finally, we have developed a penalized kernel CCA model that involves spatial low-pass filter constraints to increase the specificity of the method. The kernel CCA methods are compared with the standard univariate method and with two different local CCA methods that were solved by the SQP algorithm. Results show that SQP is the most efficient algorithm to solve the local constrained CCA problem, and the proposed kernel CCA methods outperformed univariate and local CCA methods in detecting activations for both simulated and real fMRI episodic memory data. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Spatial localization deficits and auditory cortical dysfunction in schizophrenia

    Science.gov (United States)

    Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.

    2014-01-01

    Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608

  2. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    International Nuclear Information System (INIS)

    Iliopoulos, AS; Sun, X; Floros, D; Zhang, Y; Yin, FF; Ren, L; Pitsianis, N

    2016-01-01

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well as histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial

  3. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Floros, D [Aristotle University of Thessaloniki (Greece); Zhang, Y; Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well as histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial

  4. Spatial Outlier Detection of CO2 Monitoring Data Based on Spatial Local Outlier Factor

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2015-12-01

    Full Text Available Spatial local outlier factor (SLOF algorithm was adopted in this study for spatial outlier detection because of the limitations of the traditional static threshold detection. Based on the spatial characteristics of CO2 monitoring data obtained in the carbon capture and storage (CCS project, the K-Nearest Neighbour (KNN graph was constructed using the latitude and longitude information of the monitoring points to identify the spatial neighbourhood of the monitoring points. Then SLOF was adopted to calculate the outlier degrees of the monitoring points and the 3σ rule was employed to identify the spatial outlier. Finally, the selection of K value was analysed and the optimal one was selected. The results show that, compared with the static threshold method, the proposed algorithm has a higher detection precision. It can overcome the shortcomings of the static threshold method and improve the accuracy and diversity of local outlier detection, which provides a reliable reference for the safety assessment and warning of CCS monitoring.

  5. Spatial Outlier Detection of CO2 Monitoring Data Based on Spatial Local Outlier Factor

    OpenAIRE

    Liu Xin; Zhang Shaoliang; Zheng Pulin

    2015-01-01

    Spatial local outlier factor (SLOF) algorithm was adopted in this study for spatial outlier detection because of the limitations of the traditional static threshold detection. Based on the spatial characteristics of CO2 monitoring data obtained in the carbon capture and storage (CCS) project, the K-Nearest Neighbour (KNN) graph was constructed using the latitude and longitude information of the monitoring points to identify the spatial neighbourhood of the monitoring points. Then ...

  6. On the spectrum of a periodic operator with a small localized perturbation

    International Nuclear Information System (INIS)

    Borisov, D I; Gadyl'shin, R R

    2008-01-01

    The paper deals with the spectrum of a periodic self-adjoint differential operator on the real axis perturbed by a small localized non-self-adjoint operator. We show that the continuous spectrum does not depend on the perturbation, the residual spectrum is empty, and the point spectrum has no finite accumulation points. We study the problem of the existence of eigenvalues embedded in the continuous spectrum, obtain necessary and sufficient conditions for the existence of eigenvalues, construct asymptotic expansions of the eigenvalues and corresponding eigenfunctions and consider some examples

  7. Spatial-frequency spectrum of patterns changes the visibility of spatial-phase differences

    Science.gov (United States)

    Lawton, T. B.

    1985-01-01

    It is shown that spatial-frequency components over a 4-octave range affected the visibility of spatial-phase differences. Contrast thresholds were measured for discrimination between two (+45- and -45-deg) spatial phases of a sinusoidal test grating added to a background grating. The background could contain one or several sinusoidal components, all in 0-deg phase. Phase differences between the test and the background were visible at lower contrasts when test and background frequencies were harmonically related than when they were not, when test and background frequencies were within 1 octave than when they were farther apart, when the fundamental frequency of the background was low than when it was high, and for some discriminations more than for others, after practice. The visibility of phase differences was not affected by additional components in the background if the fundamental and difference frequencies of the background remained unchanged. Observers' reports of their strategies gave information about the types of attentive processing that were used to discriminate phase differences. Attentive processing facilitated phase discrimination for multifrequency gratings spanning a much wider range of spatial frequencies than would be possible by using only local preattentive processing. These results were consistent with the visibility of phase differences being processed by some combination of even- and odd-symmetric simple cells tuned to a wide range of different spatial frequencies.

  8. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    Science.gov (United States)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  9. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    Science.gov (United States)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  10. Capacity analysis of spectrum sharing spatial multiplexing MIMO systems

    KAUST Repository

    Yang, Liang

    2014-12-01

    This paper considers a spectrum sharing (SS) multiple-input multiple-output (MIMO) system operating in a Rayleigh fading environment. First the capacity of a single-user SS spatial multiplexing system is investigated in two scenarios that assume different receivers. To explicitly show the capacity scaling law of SS MIMO systems, some approximate capacity expressions for the two scenarios are derived. Next, we extend our analysis to a multiple user system with zero-forcing receivers (ZF) under spatially-independent scheduling and analyze the sum-rate. Furthermore, we provide an asymptotic sum-rate analysis to investigate the effects of different parameters on the multiuser diversity gain. Our results show that the secondary system with a smaller number of transmit antennas Nt and a larger number of receive antennas Nr can achieve higher capacity at lower interference temperature Q, but at high Q the capacity follows the scaling law of the conventional MIMO systems. However, for a ZF SS spatial multiplexing system, the secondary system with small Nt and large Nr can achieve the highest capacity throughout the entire region of Q. For a ZF SS spatial multiplexing system with scheduling, the asymptotic sum-rate scales like Ntlog2(Q(KNtNp-1)/Nt), where Np denotes the number of antennas of the primary receiver and K represents the number of secondary transmitters.

  11. Spatially localized, temporally quasiperiodic, discrete nonlinear excitations

    International Nuclear Information System (INIS)

    Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.

    1995-01-01

    In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution

  12. Inverse problem for in vivo NMR spatial localization

    International Nuclear Information System (INIS)

    Hasenfeld, A.C.

    1985-11-01

    The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs

  13. Inverse problem for in vivo NMR spatial localization

    Energy Technology Data Exchange (ETDEWEB)

    Hasenfeld, A.C.

    1985-11-01

    The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs.

  14. Parental Action and Referral Patterns in Spatial Clusters of Childhood Autism Spectrum Disorder

    Science.gov (United States)

    Schelly, David; Jiménez González, Patricia; Solís, Pedro J.

    2018-01-01

    Sociodemographic factors have long been associated with disparities in autism spectrum disorder (ASD) diagnosis. Studies that identified spatial clustering of cases have suggested the importance of information about ASD moving through social networks of parents. Yet there is no direct evidence of this mechanism. This study explores the…

  15. Localization of Waves in Fractals : Spatial Behavior

    NARCIS (Netherlands)

    Vries, Pedro de; Raedt, Hans De; Lagendijk, Ad

    1989-01-01

    Localization of a quantum particle on two-dimensional percolating networks is investigated numerically. Solving the time-dependent Schrödinger equation for particular initial wave packets we study the spatial behavior of eigenstates for two tight-binding models: the quantum percolation model and the

  16. Effects on ground motion related to spatial variability

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.

    1987-01-01

    Models of the spectral content and the space-time correlation structure of strong earthquake ground motion are combined with transient random vibration analysis to yield site-specific response spectra that can account for the effect of local spatial averaging of the ground motion across a rigid foundation of prescribed size. The methodology is presented with reference to sites in eastern North America, although the basic approach is applicable to other seismic regions provided the source and attenuation parameters are regionally adjusted. Parameters in the spatial correlation model are based on data from the SMART-I accelerograph array, and the sensitivity of response spectra reduction factors with respect to these parameters is examined. The starting point of the analysis is the Fourier amplitude spectrum of site displacement expresses as a function of earthquake source parameters and source-to-site distance. The bedrock acceleration spectral density function at a point, derived from the displacement spectrum, is modified to account for anelastic attenuation, and where appropriate, for local soil effects and/or local spatial averaging across a foundation. Transient random vibration analysis yields approximate analytical expressions for median ground motion amplitudes and median response spectra of an earthquake defined in terms of its spectral density function and strong motion duration. The methodology is illustrated for three events characterized by their m b magnitude and epicentral distance. The focus in this paper is on the stochastic response prediction methodology enabling explicit accounting for strong motion duration and the effect of local spatial averaging on response spectra. The numerical examples enable a preliminary assessment of the reduction of response spectral amplitudes attributable to local spatial averaging across rigid foundations of different sizes. 36 refs

  17. Disease spectrum and treatment patterns in a local male infertility clinic.

    Science.gov (United States)

    Ho, K L; Tsu, James H L; Tam, P C; Yiu, M K

    2015-02-01

    To review disease spectrum and treatment patterns in a local male infertility clinic. Case series. Male infertility clinic in a teaching hospital in Hong Kong. Patients who were seen as new cases in a local male infertility clinic between January 2008 and December 2012. Infertility assessment and counselling on treatment options. Disease spectrum and treatment patterns. A total of 387 new patients were assessed in the male infertility clinic. The mean age of the patients and their female partners was 37.2 and 32.1 years, respectively. The median duration of infertility was 3 years. Among the patients, 36.2% had azoospermia, 8.0% had congenital absence of vas deferens, and 48.3% of patients had other abnormalities in semen parameters. The commonest causes of male infertility were unknown (idiopathic), clinically significant varicoceles, congenital absence of vas deferens, mumps after puberty, and erectile or ejaculatory dysfunction. Overall, 66.1% of patients chose assisted reproductive treatment and 12.4% of patients preferred surgical correction of reversible male infertility conditions. Altogether 36.7% of patients required either surgical sperm retrieval or correction of male infertility conditions. The present study provided important local data on the disease spectrum and treatment patterns in a male infertility clinic. The incidences of azoospermia and congenital absence of vas deferens were much higher than those reported in the contemporary literature. A significant proportion of patients required either surgical sperm retrieval or correction of reversible male infertility conditions.

  18. Electromagnetic spectrum survey of the environment in a locality in Kuala Lumpur, Malaysia

    International Nuclear Information System (INIS)

    Abood, Wafa Ali; Din, Norashidah Md; Ismail, Aiman; Mohamad, Hafizal

    2013-01-01

    The electromagnetic spectrum in the environment is becoming a scarce resource with the emergence of a high number of wireless communications services Cognitive radio (CR) is viewed as a possible solution to the spectrum bottleneck which work in a premise that at an any given time and spatial region there are frequency bands that has no signal occupancy. The CR technique utilizes a temporarily unoccupied licensed band by allowing secondary users to exploit opportunistically the underutilized spectrum licensed to primary users without any harmful interference. Before investigating the technical and political implications of CR, it is necessary to know to what extent the licensed bands are temporally unoccupied. In this paper a spectrum occupancy measurements is conducted to study the utilization of RF spectrum in an environment. The measurements are performed on UHF TV, GSM900 and GSM1800 frequency bands in an urban area in Kuala Lumpur, Malaysia. The evaluation made is based on the power detection principle. From the measurements, the spectrum holes are identified. The obtained results show that the spectral usage is 7.37% for UHF TV band, 12.8% for GSM900 and 5.3% for GSM1800 band leading to the conclusion that a significant amount of spectrum is available for deployment of cognitive radio.

  19. Electromagnetic spectrum survey of the environment in a locality in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Abood, Wafa Ali; Din, Norashidah Md; Ismail, Aiman; Mohamad, Hafizal

    2013-06-01

    The electromagnetic spectrum in the environment is becoming a scarce resource with the emergence of a high number of wireless communications services Cognitive radio (CR) is viewed as a possible solution to the spectrum bottleneck which work in a premise that at an any given time and spatial region there are frequency bands that has no signal occupancy. The CR technique utilizes a temporarily unoccupied licensed band by allowing secondary users to exploit opportunistically the underutilized spectrum licensed to primary users without any harmful interference. Before investigating the technical and political implications of CR, it is necessary to know to what extent the licensed bands are temporally unoccupied. In this paper a spectrum occupancy measurements is conducted to study the utilization of RF spectrum in an environment. The measurements are performed on UHF TV, GSM900 and GSM1800 frequency bands in an urban area in Kuala Lumpur, Malaysia. The evaluation made is based on the power detection principle. From the measurements, the spectrum holes are identified. The obtained results show that the spectral usage is 7.37% for UHF TV band, 12.8% for GSM900 and 5.3% for GSM1800 band leading to the conclusion that a significant amount of spectrum is available for deployment of cognitive radio.

  20. Water-safety strategies and local-scale spatial quality

    NARCIS (Netherlands)

    Nillesen, A.L.

    2013-01-01

    Delta regions throughout the world are subject to increasing flood risks. For protection, regional water safety strategies are being developed. Local-scale spatial qualities should be included in their evaluation. An experimental methodology has been developed for this purpose. This paper

  1. A localized cooperative wideband spectrum sensing for dynamic access of TV bands using RF sensor networks

    KAUST Repository

    Mirza, Mohammed

    2011-07-01

    In this paper we address and simulate a Radio Frequency (RF) sensor network for a cooperative spectrum sensing and localization scheme. The proposed method integrates a Wavelet based Multi-Resolution Spectrum Sensing (MRSS), an N-bit hard combination technique for cooperative decision making and a Received Signal Strength (RSS) based localization algorithm to detect the availability of frequency bands and the location of the usable base station. We develop an N-bit hard combination technique and compare its performance to a traditionally used 2-bit hard combination for cooperative sensing. The key idea is to design a novel RF sensor network based cooperative wideband spectrum sensing and localization scheme by using a wavelet based Multi-Resolution Spectrum Sensing (MRSS) and Received Signal Strength (RSS) Localization techniques which were originally proposed for cognitive radio applications. The performance evaluations are also done to show the different detection accuracies for varying parameters such as number of sensor nodes, Signal to Noise Ratios (SNR) and number of averaged Power Spectral Densities (PSD). The proposed scheme improves the problems of shadowing, fading and noise. In addition, the RSS based localization technique was shown to be an acceptable means of estimating the position of the available transmitter. © 2011 IEEE.

  2. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    Science.gov (United States)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of

  3. Mutual information spectrum for selection of event-related spatial components. Application to eloquent motor cortex mapping.

    Directory of Open Access Journals (Sweden)

    Alexei eOssadtchi

    2014-01-01

    Full Text Available Spatial component analysis is often used to explore multidimensional time series data whose sources cannot be measured directly. Several methods may be used to decompose the data into a set of spatial components with temporal loadings. Component selection is of crucial importance, and should be supported by objective criteria. In some applications, the use of a well defined component selection criterion may provide for automation of the analysis.In this paper we describe a novel approach for ranking of spatial components calculated from the EEG or MEG data recorded within evoked response paradigm. Our method is called Mutual Information Spectrum and is based on gauging the amount of mutual information of spatial component temporal loadings with a synthetically created reference signal. We also describe the appropriate randomization based statistical assessment scheme that can be used for selection of components with statistically significant amount of mutual information. Using simulated data with realistic trial to trial variations and SNR corresponding to the real recordings we demonstrate the superior performance characteristics of the described mutual information based measure as compared to a more conventionally used power driven gauge. We also demonstrate the application of the Mutual Information Spectrum for the selection of task-related independent components from real MEG data. We show that the Mutual Information spectrum allows to identify task-related components reliably in a consistent fashion, yielding stable results even from a small number of trials. We conclude that the proposed method fits naturally the information driven nature of ICA and can be used for routine and automatic ranking of independent components calculated from the functional neuroimaging data collected within event-related paradigms.

  4. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    Science.gov (United States)

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain

  5. Identification of spatially-localized initial conditions via sparse PCA

    Science.gov (United States)

    Dwivedi, Anubhav; Jovanovic, Mihailo

    2017-11-01

    Principal Component Analysis involves maximization of a quadratic form subject to a quadratic constraint on the initial flow perturbations and it is routinely used to identify the most energetic flow structures. For general flow configurations, principal components can be efficiently computed via power iteration of the forward and adjoint governing equations. However, the resulting flow structures typically have a large spatial support leading to a question of physical realizability. To obtain spatially-localized structures, we modify the quadratic constraint on the initial condition to include a convex combination with an additional regularization term which promotes sparsity in the physical domain. We formulate this constrained optimization problem as a nonlinear eigenvalue problem and employ an inverse power-iteration-based method to solve it. The resulting solution is guaranteed to converge to a nonlinear eigenvector which becomes increasingly localized as our emphasis on sparsity increases. We use several fluids examples to demonstrate that our method indeed identifies the most energetic initial perturbations that are spatially compact. This work was supported by Office of Naval Research through Grant Number N00014-15-1-2522.

  6. Oscillations and waves in a spatially distributed system with a 1/f spectrum

    Science.gov (United States)

    Koverda, V. P.; Skokov, V. N.

    2018-02-01

    A spatially distributed system with a 1/f power spectrum is described by two nonlinear stochastic equations. Conditions for the formation of auto-oscillations have been found using numerical methods. The formation of a 1/f and 1/k spectrum simultaneously with the formation and motion of waves under the action of white noise has been demonstrated. The large extreme fluctuations with 1/f and 1/k spectra correspond to the maximum entropy, which points to the stability of such processes. It is shown that on the background of formation and motion of waves at an external periodic action there appears spatio-temporal stochastic resonance, at which one can observe the expansion of the region of periodic pulsations under the action of white noise.

  7. Local governance of energy. Clarification of stakes and illustration by spatial planning

    International Nuclear Information System (INIS)

    Saujot, Mathieu; Ruedinger, Andreas; Guerry, Anais

    2014-01-01

    As energy transition implies important societal transformations, the authors developed an analysis framework about the main questions raised by local governance: role of the different levels of local communities in the definition and implementation of strategies, key stakes of the sharing of skills between the State and communities, and stakes regarding spatial planning in this context. The authors first address the issue of relevance of the different territorial scales in a context of evolution of energy policies. They propose an overview of this issue with reference to the debate on local governance of transition. They discuss the return on experience of decentralisation in other fields of action of local policies, notably urban planning and spatial planning

  8. A localized cooperative wideband spectrum sensing for dynamic access of TV bands using RF sensor networks

    KAUST Repository

    Mirza, Mohammed; Alouini, Mohamed-Slim

    2011-01-01

    In this paper we address and simulate a Radio Frequency (RF) sensor network for a cooperative spectrum sensing and localization scheme. The proposed method integrates a Wavelet based Multi-Resolution Spectrum Sensing (MRSS), an N-bit hard

  9. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    Science.gov (United States)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  10. Multiple Vehicle Cooperative Localization with Spatial Registration Based on a Probability Hypothesis Density Filter

    Directory of Open Access Journals (Sweden)

    Feihu Zhang

    2014-01-01

    Full Text Available This paper studies the problem of multiple vehicle cooperative localization with spatial registration in the formulation of the probability hypothesis density (PHD filter. Assuming vehicles are equipped with proprioceptive and exteroceptive sensors (with biases to cooperatively localize positions, a simultaneous solution for joint spatial registration and state estimation is proposed. For this, we rely on the sequential Monte Carlo implementation of the PHD filtering. Compared to other methods, the concept of multiple vehicle cooperative localization with spatial registration is first proposed under Random Finite Set Theory. In addition, the proposed solution also addresses the challenges for multiple vehicle cooperative localization, e.g., the communication bandwidth issue and data association uncertainty. The simulation result demonstrates its reliability and feasibility in large-scale environments.

  11. Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre

    2014-12-01

    Given its conspicuous nature, gravity has been acknowledged by several research lines as a prime factor in structuring the spatial perception of one's environment. One such line of enquiry has focused on errors in spatial localization aimed at the vanishing location of moving objects - it has been systematically reported that humans mislocalize spatial positions forward, in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, spatial localization errors were found to evolve dynamically with time in a pattern congruent with an anticipated trajectory (representational trajectory). The present study attempts to ascertain the degree to which vestibular information plays a role in these phenomena. Human observers performed a spatial localization task while tilted to varying degrees and referring to the vanishing locations of targets moving along several directions. A Fourier decomposition of the obtained spatial localization errors revealed that although spatial errors were increased "downward" mainly along the body's longitudinal axis (idiotropic dominance), the degree of misalignment between the latter and physical gravity modulated the time course of the localization responses. This pattern is surmised to reflect increased uncertainty about the internal model when faced with conflicting cues regarding the perceived "downward" direction.

  12. Local energy developments based on spatial and systemic approaches

    NARCIS (Netherlands)

    Manickam, Anu

    Local energy developments from a spatial and systemic approach are highlighted using examples from a Dutch case study. Developments in energy systems included interconnectedness of contextual factors and systems responses. The need to explore both the contextual factors and systemic aspects are

  13. Spatial planning via extremal optimization enhanced by cell-based local search

    International Nuclear Information System (INIS)

    Sidiropoulos, Epaminondas

    2014-01-01

    A new treatment is presented for land use planning problems by means of extremal optimization in conjunction to cell-based neighborhood local search. Extremal optimization, inspired by self-organized critical models of evolution has been applied mainly to the solution of classical combinatorial optimization problems. Cell-based local search has been employed by the author elsewhere in problems of spatial resource allocation in combination with genetic algorithms and simulated annealing. In this paper it complements extremal optimization in order to enhance its capacity for a spatial optimization problem. The hybrid method thus formed is compared to methods of the literature on a specific characteristic problem. It yields better results both in terms of objective function values and in terms of compactness. The latter is an important quantity for spatial planning. The present treatment yields significant compactness values as emergent results

  14. The Conceptual Approaches to Strategic Management of Region Using the Spatially Localized Agrarian Economic Systems

    Directory of Open Access Journals (Sweden)

    Petrenko Natalia О.

    2017-10-01

    Full Text Available The article is aimed at improving the theoretical and methodical provisions of the cluster approach to development of the spatially localized systems of the agricultural sector of Ukrainian economy at the regional level. Based on generalizing the relevant theoretical provisions, the identified characteristics of formation and development of the spatially localized systems, it has been found that, originating in the form of economic growth zones, they have been transformed into clustered and subclustered forms. It has been indicated that a prospective form of further development of the spatially localized systems is formation of subclustered structures that take account of the established specialization of localities, appropriate infrastructure, resource availability. The possibility of creating a project of developing a cluster formation was discussed on the example of the Central Economic Area. A complex of basic requirements for the intended localization of the cluster has been formulated. Proceeding from the results of the study, practical proposals for strategic management of region have been developed on the basis of development of cluster formations, using the spatially localized agrarian economic systems.

  15. Relative contributions of visual and auditory spatial representations to tactile localization.

    Science.gov (United States)

    Noel, Jean-Paul; Wallace, Mark

    2016-02-01

    Spatial localization of touch is critically dependent upon coordinate transformation between different reference frames, which must ultimately allow for alignment between somatotopic and external representations of space. Although prior work has shown an important role for cues such as body posture in influencing the spatial localization of touch, the relative contributions of the different sensory systems to this process are unknown. In the current study, we had participants perform a tactile temporal order judgment (TOJ) under different body postures and conditions of sensory deprivation. Specifically, participants performed non-speeded judgments about the order of two tactile stimuli presented in rapid succession on their ankles during conditions in which their legs were either uncrossed or crossed (and thus bringing somatotopic and external reference frames into conflict). These judgments were made in the absence of 1) visual, 2) auditory, or 3) combined audio-visual spatial information by blindfolding and/or placing participants in an anechoic chamber. As expected, results revealed that tactile temporal acuity was poorer under crossed than uncrossed leg postures. Intriguingly, results also revealed that auditory and audio-visual deprivation exacerbated the difference in tactile temporal acuity between uncrossed to crossed leg postures, an effect not seen for visual-only deprivation. Furthermore, the effects under combined audio-visual deprivation were greater than those seen for auditory deprivation. Collectively, these results indicate that mechanisms governing the alignment between somatotopic and external reference frames extend beyond those imposed by body posture to include spatial features conveyed by the auditory and visual modalities - with a heavier weighting of auditory than visual spatial information. Thus, sensory modalities conveying exteroceptive spatial information contribute to judgments regarding the localization of touch. Copyright © 2016

  16. Critical excitation spectrum of a quantum chain with a local three-spin coupling.

    Science.gov (United States)

    McCabe, John F; Wydro, Tomasz

    2011-09-01

    Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D(4),A(4)) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.

  17. Critical excitation spectrum of a quantum chain with a local three-spin coupling

    International Nuclear Information System (INIS)

    McCabe, John F.; Wydro, Tomasz

    2011-01-01

    Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D 4 ,A 4 ) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.

  18. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    Science.gov (United States)

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  19. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images

    Science.gov (United States)

    Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong

    2018-01-01

    Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.

  20. Localized spin-wave modes in a triangular magnetic element studied by micro-focused Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.; Kwon, J.-H. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Grünberg, P. [Grünberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Cho, B.K., E-mail: chobk@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of)

    2017-09-01

    Highlights: • Direct evidence of localized mode in a triangular nano-magnet using μ-BLS. • Localized regions are identified by the internal field distribution. • The spatially resolved measurement was performed to obtain 2-D intensity map. • Spin modes in same positions can be distinguish comparing with simulated spectrum. • Localized modes were identified by comparing with the simulated spatial profiles. - Abstract: Localized spin-wave modes, which were thermally excited at a specific position in a triangular magnetic element, were investigated using micro-focused Brillouin light scattering in two saturated states, the buckle and Y-states, with an applied magnetic field of 0.24 T parallel and perpendicular to the basal edge, respectively. The measured frequency spectrum at a specific beam spot position, rather than an integrated spectrum, was analyzed by comparing it with the simulation data at a precisely selected position within the beam spot area. The analyzed results were used to plot a two-dimensional intensity map and simulation spatial profile to verify the validity of the analysis. From the analysis process, two localized spin-wave modes in a triangular magnetic element were successfully identified near the apex region in the buckle state and near the basal edge region in the Y-state.

  1. Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Oh, G.Y.; Lee, M.H.

    1996-01-01

    The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society

  2. Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe

    2008-01-01

    It is proved that for general, not necessarily periodic, quasi one-dimensional systems the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one-dimensional systems, and this proves the strong Marzari-Vanderbilt conjecture. If the system has some translation symmetries (e.g. usual translations, screw...

  3. Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe

    It is proved that for general, not necessarily periodic quasi one dimensional systems, the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one dimensional systems. If the system has some translation symmetries (e.g. usual translations, screw transformations), they are "inherited" bythe Wannier basis....

  4. Comparative analysis of elements and models of implementation in local-level spatial plans in Serbia

    Directory of Open Access Journals (Sweden)

    Stefanović Nebojša

    2017-01-01

    Full Text Available Implementation of local-level spatial plans is of paramount importance to the development of the local community. This paper aims to demonstrate the importance of and offer further directions for research into the implementation of spatial plans by presenting the results of a study on models of implementation. The paper describes the basic theoretical postulates of a model for implementing spatial plans. A comparative analysis of the application of elements and models of implementation of plans in practice was conducted based on the spatial plans for the local municipalities of Arilje, Lazarevac and Sremska Mitrovica. The analysis includes four models of implementation: the strategy and policy of spatial development; spatial protection; the implementation of planning solutions of a technical nature; and the implementation of rules of use, arrangement and construction of spaces. The main results of the analysis are presented and used to give recommendations for improving the elements and models of implementation. Final deliberations show that models of implementation are generally used in practice and combined in spatial plans. Based on the analysis of how models of implementation are applied in practice, a general conclusion concerning the complex character of the local level of planning is presented and elaborated. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 36035: Spatial, Environmental, Energy and Social Aspects of Developing Settlements and Climate Change - Mutual Impacts and Grant no. III 47014: The Role and Implementation of the National Spatial Plan and Regional Development Documents in Renewal of Strategic Research, Thinking and Governance in Serbia

  5. Subwavelength atom localization via amplitude and phase control of the absorption spectrum-II

    OpenAIRE

    Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    Interaction of the internal states of an atom with spatially dependent standing-wave cavity field can impart position information of the atom passing through it leading to subwavelength atom localization. We recently demonstrated a new regime of atom localization [Sahrai {\\it et al.}, Phys. Rev. A {\\bf 72}, 013820 (2005)], namely sub-half-wavelength localization through phase control of electromagnetically induced transparency. This regime corresponds to extreme localization of atoms within a...

  6. Probing spatial locality in ionic liquids with the grand canonical adaptive resolution molecular dynamics technique

    Science.gov (United States)

    Shadrack Jabes, B.; Krekeler, C.; Klein, R.; Delle Site, L.

    2018-05-01

    We employ the Grand Canonical Adaptive Resolution Simulation (GC-AdResS) molecular dynamics technique to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS, atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level; thus, if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation, then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius corresponds to the size of a few molecules, spatial properties are reasonably reproduced thus suggesting a higher degree of spatial locality, a hypothesis put forward also by other researchers and that seems to play an important role for the characterization of fundamental properties of a large class of ionic liquids.

  7. The energy-momentum spectrum in local field theories with broken Lorentz-symmetry

    International Nuclear Information System (INIS)

    Borchers, H.J.; Buchholz, D.

    1984-05-01

    Assuming locality of the observables and positivity of the energy it is shown that the joint spectrum of the energy-momentum operators has a Lorentz-invariant lower boundary in all superselection sectors. This result is of interest if the Lorentz-symmetry is (spontaneously) broken, such as in the charged sectors of quantum electrodynamics. (orig.)

  8. Amplitude spectrum EEG signal evidence for the dissociation of motor and perceptual spatial working memory in the human brain.

    Science.gov (United States)

    Smyrnis, Nikolaos; Protopapa, Foteini; Tsoukas, Evangelos; Balogh, Allison; Siettos, Constantinos I; Evdokimidis, Ioannis

    2014-02-01

    This study investigated the question whether spatial working memory related to movement plans (motor working memory) and spatial working memory related to spatial attention and perceptual processes (perceptual spatial working memory) share the same neurophysiological substrate or there is evidence for separate motor and perceptual working memory streams of processing. Towards this aim, ten healthy human subjects performed delayed responses to visual targets presented at different spatial locations. Two tasks were attained, one in which the spatial location of the target was the goal for a pointing movement and one in which the spatial location of the target was used for a perceptual (yes or no) change detection. Each task involved two conditions: a memory condition in which the target remained visible only for the first 250 ms of the delay period and a delay condition in which the target location remained visible throughout the delay period. The amplitude spectrum analysis of the EEG revealed that the alpha (8-12 Hz) band signal was smaller, while the beta (13-30 Hz) and gamma (30-45 Hz) band signals were larger in the memory compared to the non-memory condition. The alpha band signal difference was confined to the frontal midline area; the beta band signal difference extended over the right hemisphere and midline central area, and the gamma band signal difference was confined to the right occipitoparietal area. Importantly, both in beta and gamma bands, we observed a significant increase in the movement-related compared to the perceptual-related memory-specific amplitude spectrum signal in the central midline area. This result provides clear evidence for the dissociation of motor and perceptual spatial working memory.

  9. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    International Nuclear Information System (INIS)

    Fischer, P. D.; Brown, M. E.; Hand, K. P.

    2015-01-01

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative

  10. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P. D.; Brown, M. E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hand, K. P., E-mail: pfischer@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-11-15

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.

  11. Spatial knowledge dynamics of innovation processes: local and non-local aspects of buzz and collective learning

    DEFF Research Database (Denmark)

    Tanner, Anne Nygaard

    2014-01-01

    learning processes and require face-to-face contact. In sum, the innovation biography method contributes in uncovering innovation processes and how these rely on many different configurations of spatial knowledge dynamics, including buzz, local ties and global pipelines. The findings imply that policy...

  12. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    Science.gov (United States)

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2) to 30 cm(2), whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  13. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    Directory of Open Access Journals (Sweden)

    Rasheda Arman Chowdhury

    Full Text Available Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG or Magneto-EncephaloGraphy (MEG signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i brain activity may be modeled using cortical parcels and (ii brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM and the Hierarchical Bayesian (HB source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2 to 30 cm(2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  14. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  15. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults

    OpenAIRE

    Heed, Tobias; Roeder, Brigitte; Badde, Stephanie; Schubert, Jonathan

    2017-01-01

    Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while i...

  16. Instantaneous local wave vector estimation from multi-spacecraft measurements using few spatial points

    Directory of Open Access Journals (Sweden)

    T. D. Carozzi

    2004-07-01

    Full Text Available We introduce a technique to determine instantaneous local properties of waves based on discrete-time sampled, real-valued measurements from 4 or more spatial points. The technique is a generalisation to the spatial domain of the notion of instantaneous frequency used in signal processing. The quantities derived by our technique are closely related to those used in geometrical optics, namely the local wave vector and instantaneous phase velocity. Thus, this experimental technique complements ray-tracing. We provide example applications of the technique to electric field and potential data from the EFW instrument on Cluster. Cluster is the first space mission for which direct determination of the full 3-dimensional local wave vector is possible, as described here.

  17. Spatial Information in local society's cultural conservation and research

    Science.gov (United States)

    Jang, J.-J.; Liao, H.-M.; Fan, I.-C.

    2015-09-01

    Western parade, called " raojing " , the main spirit is passing through of these ranges in the process, to reach the people within bless range, many scholars and academic experts's folk research are dependent on such spatial information. 2012, GIS center applied WebGIS and GPS to gather raojing activities spatial information in cooperation with multi-units, aggregated seven sessions, 22 days, 442 temples had pass through . The atlas also published named "Atlas of the 2012 Religious Processions in the Tainan Region" in 2014. we also applied national cultural resources data form relevant government authorities, through the metadata design and data processing(geocoding), established cultural geospatial and thematic information ,such as 800 monuments, 1,100 historic buildings and 4,300 old trees data. In recent years, based on CRGIS technology and operational concepts, different domain experts or local culture-ahistory research worker/team had to cooperate with us to establish local or thematic material and cultural resources. As in collaboration with local culture-history research worker in Kinmen County in 2012, build Kinmen intangible cultural assets - Wind Lion God ,set metadata and build 122 wind lion god `s attribute data and maps through field survey, it is worth mention such fieldwork data integrity is more than the official registration data form Kinmen National Park, the number of is wind lion god more than 40; in 2013,we were in cooperation with academic experts to establish property data and map of the theatre during the Japanese colonial era in Taiwan, a total of 170 theatres ; we were in cooperation with Japanese scholars, used his 44 detaile field survey data of sugar refineries during the Japanese colonial era in Taiwan ,to produce a sugar refineries distribution map and extend to a thematic web(http://map.net.tw/) [The Cultural Heritage Maps of Taiwan Suger Factories in a Century]site according to CRGIS independent cultural concept. Deployment and operation

  18. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.

    Science.gov (United States)

    Gangnon, Ronald E

    2012-03-01

    The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.

  19. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality

    Science.gov (United States)

    Experimental studies show that local plant species loss decreases ecosystem functioning and services, but it remains unclear how other changes in biodiversity, such as spatial homogenization, alter multiple processes (multifunctionality) in natural ecosystems. We present a global analysis of eight ...

  20. Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field

    Science.gov (United States)

    Voorhies, C.

    1998-01-01

    The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.

  1. The Lp Spectrum of Locally Symmetric Spaces with Small Fundamental Group

    International Nuclear Information System (INIS)

    Weber, Andreas

    2009-01-01

    We determine the L p spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M whose universal covering X is a symmetric space of non-compact type with rank one. More precisely, we show that the L p spectra of M and X coincide if the fundamental group of M is small and if the injectivity radius of M is bounded away from zero. In the L 2 case, the restriction on the injectivity radius is not needed

  2. Macroecological factors shape local-scale spatial patterns in agriculturalist settlements.

    Science.gov (United States)

    Tao, Tingting; Abades, Sebastián; Teng, Shuqing; Huang, Zheng Y X; Reino, Luís; Chen, Bin J W; Zhang, Yong; Xu, Chi; Svenning, Jens-Christian

    2017-11-15

    Macro-scale patterns of human systems ranging from population distribution to linguistic diversity have attracted recent attention, giving rise to the suggestion that macroecological rules shape the assembly of human societies. However, in which aspects the geography of our own species is shaped by macroecological factors remains poorly understood. Here, we provide a first demonstration that macroecological factors shape strong local-scale spatial patterns in human settlement systems, through an analysis of spatial patterns in agriculturalist settlements in eastern mainland China based on high-resolution Google Earth images. We used spatial point pattern analysis to show that settlement spatial patterns are characterized by over-dispersion at fine spatial scales (0.05-1.4 km), consistent with territory segregation, and clumping at coarser spatial scales beyond the over-dispersion signals, indicating territorial clustering. Statistical modelling shows that, at macroscales, potential evapotranspiration and topographic heterogeneity have negative effects on territory size, but positive effects on territorial clustering. These relationships are in line with predictions from territory theory for hunter-gatherers as well as for many animal species. Our results help to disentangle the complex interactions between intrinsic spatial processes in agriculturalist societies and external forcing by macroecological factors. While one may speculate that humans can escape ecological constraints because of unique abilities for environmental modification and globalized resource transportation, our work highlights that universal macroecological principles still shape the geography of current human agricultural societies. © 2017 The Author(s).

  3. Evaluation of optical localization in the visible band for ultrasound guidance in radiotherapy using a robotic arm

    NARCIS (Netherlands)

    Camps, S.M.; Costa, M.; Stevens, E.; Sanches, P.G.; Paiva Fonesca, G.; Bellezzo, M.; Verhaegen, F.

    2017-01-01

    In many medical fields, spatial localization of devices is of paramount importance to e.g. deliver treatments correctly or to perform accurate diagnostic evaluations. Among the different technologies available, optical localization in the visible band of the spectrum offers many advantages: minimum

  4. A Socio-spatial Dimension of Local Creative Industry Development in Semarang and Kudus Batik Clusters

    Science.gov (United States)

    Nugroho, P.

    2018-02-01

    Creative industries existence is inseparable from the underlying social construct which provides sources for creativity and innovation. The working of social capital in a society facilitates information exchange, knowledge transfer and technology acquisition within the industry through social networks. As a result, a socio-spatial divide exists in directing the growth of the creative industries. This paper aims to examine how such a socio-spatial divide contributes to the local creative industry development in Semarang and Kudus batik clusters. Explanatory sequential mixed methods approach covering a quantitative approach followed by a qualitative approach is chosen to understand better the interplay between tangible and intangible variables in the local batik clusters. Surveys on secondary data taken from the government statistics and reports, previous studies, and media exposures are completed in the former approach to identify clustering pattern of the local batik industry and the local embeddedness factors which have shaped the existing business environment. In-depth interviews, content analysis, and field observations are engaged in the latter approach to explore reciprocal relationships between the elements of social capital and the local batik cluster development. The result demonstrates that particular social ties have determined the forms of spatial proximity manifested in forward and backward business linkages. Trust, shared norms, and inherited traditions are the key social capital attributes that lead to such a socio-spatial divide. Therefore, the intermediating roles of the bridging actors are necessary to encouraging cooperation among the participating stakeholders for a better cluster development.

  5. Educational Mismatch and Spatial Flexibility in Italian Local Labour Markets

    Science.gov (United States)

    Croce, Giuseppe; Ghignoni, Emanuela

    2015-01-01

    According to recent literature, this paper highlights the relevance of spatial mobility as an explanatory factor of the individual risk of job-education mismatch. To investigate this causal link, we use individual information about daily home-to-work commuting time and choices to relocate in a different local area to get a job. Our model takes…

  6. Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks

    International Nuclear Information System (INIS)

    Ouyang, Min

    2016-01-01

    Infrastructure systems are usually spatially distributed in a wide area and are subject to many types of hazards. For each type of hazards, modeling their direct impact on infrastructure components and analyzing their induced system-level vulnerability are important for identifying mitigation strategies. This paper mainly studies spatially localized attacks that a set of infrastructure components located within or crossing a circle shaped spatially localized area is subject to damage while other components do not directly fail. For this type of attacks, taking interdependent power and gas systems in Harris County, Texas, USA as an example, this paper proposes an approach to exactly identify critical locations in interdependent infrastructure systems and make pertinent vulnerability analysis. Results show that (a) infrastructure interdependencies and attack radius largely affect the position of critical locations; (b) spatially localized attacks cause less vulnerability than equivalent random failures; (c) in most values of attack radius critical locations identified by considering only node failures do not change when considering both node and edge failures in the attack area; (d) for many values of attack radius critical locations identified by topology-based model are also critical from the flow-based perspective. - Highlights: • We propose a method to identify critical locations in interdependent infrastructures. • Geographical interdependencies and attack radius largely affect critical locations. • Localized attacks cause less vulnerability than equivalent random failures. • Whether considering both node and edge failures affects critical locations. • Topology-based critical locations are also critical from flow-based perspective.

  7. Movement Induces the Use of External Spatial Coordinates for Tactile Localization in Congenitally Blind Humans.

    Science.gov (United States)

    Heed, Tobias; Möller, Johanna; Röder, Brigitte

    2015-01-01

    To localize touch, the brain integrates spatial information coded in anatomically based and external spatial reference frames. Sighted humans, by default, use both reference frames in tactile localization. In contrast, congenitally blind individuals have been reported to rely exclusively on anatomical coordinates, suggesting a crucial role of the visual system for tactile spatial processing. We tested whether the use of external spatial information in touch can, alternatively, be induced by a movement context. Sighted and congenitally blind humans performed a tactile temporal order judgment task that indexes the use of external coordinates for tactile localization, while they executed bimanual arm movements with uncrossed and crossed start and end postures. In the sighted, start posture and planned end posture of the arm movement modulated tactile localization for stimuli presented before and during movement, indicating automatic, external recoding of touch. Contrary to previous findings, tactile localization of congenitally blind participants, too, was affected by external coordinates, though only for stimuli presented before movement start. Furthermore, only the movement's start posture, but not the planned end posture affected blind individuals' tactile performance. Thus, integration of external coordinates in touch is established without vision, though more selectively than when vision has developed normally, and possibly restricted to movement contexts. The lack of modulation by the planned posture in congenitally blind participants suggests that external coordinates in this group are not mediated by motor efference copy. Instead the task-related frequent posture changes, that is, movement consequences rather than planning, appear to have induced their use of external coordinates.

  8. Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    International Nuclear Information System (INIS)

    Sahrai, Mostafa; Tajalli, Habib; Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field of a cavity. We show that the position of an atom along this standing wave is determined when probe-field absorption is measured. We find that absorption of the weak probe field at a certain frequency leads to subwavelength localization of the atom in either of the two half-wavelength regions of the cavity field by appropriate choice of the system parameters. We term this result as sub-half-wavelength localization to contrast it with the usual atom localization result of four peaks spread over one wavelength of the standing wave. We observe two localization peaks in either of the two half-wavelength regions along the cavity axis

  9. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    Science.gov (United States)

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Efficient Top-k Locality Search for Co-located Spatial Web Objects

    DEFF Research Database (Denmark)

    Qu, Qiang; Liu, Siyuan; Yang, Bin

    2014-01-01

    In step with the web being used widely by mobile users, user location is becoming an essential signal in services, including local intent search. Given a large set of spatial web objects consisting of a geographical location and a textual description (e.g., online business directory entries of re...

  11. Spatial Information in local society’s cultural conservation and research

    Directory of Open Access Journals (Sweden)

    J.-J. Jang

    2015-09-01

    similar to Western parade, called " raojing " , the main spirit is passing through of these ranges in the process, to reach the people within bless range, many scholars and academic experts's folk research are dependent on such spatial information. 2012, GIS center applied WebGIS and GPS to gather raojing activities spatial information in cooperation with multi-units, aggregated seven sessions, 22 days, 442 temples had pass through . The atlas also published named "Atlas of the 2012 Religious Processions in the Tainan Region" in 2014. we also applied national cultural resources data form relevant government authorities, through the metadata design and data processing(geocoding, established cultural geospatial and thematic information ,such as 800 monuments, 1,100 historic buildings and 4,300 old trees data. In recent years, based on CRGIS technology and operational concepts, different domain experts or local culture-ahistory research worker/team had to cooperate with us to establish local or thematic material and cultural resources. As in collaboration with local culture-history research worker in Kinmen County in 2012, build Kinmen intangible cultural assets - Wind Lion God ,set metadata and build 122 wind lion god ‘s attribute data and maps through field survey, it is worth mention such fieldwork data integrity is more than the official registration data form Kinmen National Park, the number of is wind lion god more than 40; in 2013,we were in cooperation with academic experts to establish property data and map of the theatre during the Japanese colonial era in Taiwan, a total of 170 theatres ; we were in cooperation with Japanese scholars, used his 44 detaile field survey data of sugar refineries during the Japanese colonial era in Taiwan ,to produce a sugar refineries distribution map and extend to a thematic web(http://map.net.tw/ [The Cultural Heritage Maps of Taiwan Suger Factories in a Century]site according to CRGIS independent cultural concept. Deployment and

  12. Explaining local-scale species distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage.

    Directory of Open Access Journals (Sweden)

    Brady J Mattsson

    Full Text Available Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.

  13. Spectrum of the multigroup neutron transport operator for bounded spatial domains

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1979-01-01

    The spectrum of the multigroup neutron transport operator A is studied for bounded spatial regions D which consist of a finite number of material subregions. Our main results provide simple conditions on the material cross sections which guarantee that (1) A possesses eigenvalues in the finite plane; (2) A possesses a ''leading'' eigenvalue lambda 0 which is real, not less than the real part of any other eigenvalue, and to which there corresponds at least one nonnegative eigenfunction psi/sub lambda/0; and (3) A possesses a ''dominant'' eigenvalue lambda 0 which is real, simple, greater than the real part of any other eigenvalue, and whose eigenfunction psi/sub lambda/0 satisfies psi/sub lambda/0> or =0 and ∫psi/sub lambda/0d 2 Ω>0. We give examples to illustrate the results and to show that a leading eigenvalue need not be simple, nor its eigenfunction(s) positive

  14. Spatial localization of nanoparticle growth in photoinduced nanocomposites

    Science.gov (United States)

    Smirnov, Anton A.; Pikulin, Alexander; Bityurin, Nikita

    2018-02-01

    Photoinduced nanocomposites are the polymer materials where the nanoparticles can be generated by the light irradiation. The single atoms of metal are formed due to the photoreduction of the metal-containing precursor added to the polymer matrix. Then the atoms precipitate into the nanoparticles (NPs). Similarly, semiconductor NPs are assembled from the monomer species such as CdS, which can be released due to the photodestruction of the appropriate precursor. We analyze theoretically the possibility of spatial confinement of growing nanoparticles in a domain where the elementary species are generated by a three-dimensionally localized source. It is shown that the effective confinement can be achieved only if the size of the generation domain exceeds some critical spatial scale determined by the parameters of the system. The confinement is provided by the trapping of the diffusing elementary species by the growing nanoparticles. The proposed model considers the irreversible particle growth, typical for the noble metals. Both the nucleation and the particle growth processes are suggested to be diffusion controlled.

  15. Detection of local inflammation induced by repeated exposure to contact allergens by use of IVIS SpectrumCT analyses

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Schmidt, Jonas D.; Christensen, Jan P.

    2017-01-01

    Background: Contact allergy is characterized by local skin inflammation that, in some cases, can result in systemic immune activation. Objectives: To investigate whether IVIS SpectrumCT analyses can be used to detect the immune response induced by contact allergens. Methods: Mice were repeatedly...... exposed to vehicle or allergens on the ears. The local and systemic responses were analysed at different times with the ProSense 750 FAST probe in IVIS SpectrumCT measurements. In addition, changes in ear thickness, cytokine profile in the skin and immunological phenotype in the draining lymph nodes...... and spleen were determined. Results: Local inflammation was detected by ProSense 750 FAST and correlated with changes in ear thickness, cytokine profile and immunological phenotype following exposure to the strong contact allergen 2,4-dinitrofluorobenzene. Analysis of the systemic response with ProSense 750...

  16. Localized electromagnetic modes and transmission spectrum of one-dimensional photon crystal with lattice defects

    CERN Document Server

    Vetrov, S Y

    2001-01-01

    The properties of the localized electromagnetic modes in the one-dimensional photon crystal with a structural defective layer are studied. The anisotropic layer of the nematic liquid layer is considered as the defect. It is shown that the frequency and coefficient of the defective modes attenuation essentially depend on the defective layer thickness and nematic optical axis orientation. The spectrum of the photon crystal transmittance with one or two defects in the lattice is studied. The possibility of controlling the the photon crystal transmittance spectrum on the count of changing the orientation of the nematic optical axis, for example, through the external electric field is shown with an account of strong anisotropy of the dielectric permittivity

  17. Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    OpenAIRE

    Sahrai, Mostafa; Tajalli, Habib; Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field o...

  18. Estimating the Crustal Power Spectrum From Vector Magsat Data: Crustal Power Spectrum

    Science.gov (United States)

    Lowe, David A. J.; Parker, Robert L.; Purucker, Michael E.; Constable, Catherine G.

    2000-01-01

    The Earth's magnetic field can be subdivided into core and crustal components and we seek to characterize the crustal part through its spatial power spectrum (R(sub l)). We process vector Magsat data to isolate the crustal field and then invert power spectral densities of flight-local components along-track for R(sub l) following O'Brien et al. [1999]. Our model (LPPC) is accurate up to approximately degree 45 (lambda=900 km) - this is the resolution limit of our data and suggests that global crustal anomaly maps constructed from vector Magsat data should not contain features with wavelengths less than 900 km. We find continental power spectra to be greater than oceanic ones and attribute this to the relative thicknesses of continental and oceanic crust.

  19. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.

    Science.gov (United States)

    Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A

    2018-03-14

    Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

  20. Spatial and temporal patterns of locally-acquired dengue transmission in northern Queensland, Australia, 1993-2012.

    Science.gov (United States)

    Naish, Suchithra; Dale, Pat; Mackenzie, John S; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993-2012. Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ(2) = 15.17, d.f.  = 1, pQueensland. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas.

  1. Spectrum diagnoses of laser plasma in 'ablation mode' laser propulsion

    International Nuclear Information System (INIS)

    Zhang Ling; Tang Zhiping; Tong Huifeng; Su Maogen; Xue Simin

    2007-01-01

    The propellant materials (LY12 aluminium, No.45 steel, H62 brass, graphite, polyvinyl chloride, polyoxymethylene) in laser propulsion are ablated by a Nd: YAG laser (1.06 μm, 10 ns). The space-resolved and the power density-depended emission spectrums of aluminum and copper plasma are recorded and analyzed. Under the local thermo equilibrium assumption, the electronic temperature and density as well as the average intensity of ionization from the relative intensity of characteristic spectrum for aluminum are obtained. Their dependence on laser power-density and spatial variation are also investigated. The ablation imagines (the ejected plumes) of the six materials in vacuum are obtained and discussed by using a B shutter camera. (authors)

  2. Impaired recognition of facial emotions from low-spatial frequencies in Asperger syndrome.

    Science.gov (United States)

    Kätsyri, Jari; Saalasti, Satu; Tiippana, Kaisa; von Wendt, Lennart; Sams, Mikko

    2008-01-01

    The theory of 'weak central coherence' [Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5-25] implies that persons with autism spectrum disorders (ASDs) have a perceptual bias for local but not for global stimulus features. The recognition of emotional facial expressions representing various different levels of detail has not been studied previously in ASDs. We analyzed the recognition of four basic emotional facial expressions (anger, disgust, fear and happiness) from low-spatial frequencies (overall global shapes without local features) in adults with an ASD. A group of 20 participants with Asperger syndrome (AS) was compared to a group of non-autistic age- and sex-matched controls. Emotion recognition was tested from static and dynamic facial expressions whose spatial frequency contents had been manipulated by low-pass filtering at two levels. The two groups recognized emotions similarly from non-filtered faces and from dynamic vs. static facial expressions. In contrast, the participants with AS were less accurate than controls in recognizing facial emotions from very low-spatial frequencies. The results suggest intact recognition of basic facial emotions and dynamic facial information, but impaired visual processing of global features in ASDs.

  3. Finite-volume effects due to spatially non-local operators arXiv

    CERN Document Server

    Briceño, Raúl A.; Hansen, Maxwell T.; Monahan, Christopher J.

    Spatially non-local matrix elements are useful lattice-QCD observables in a variety of contexts, for example in determining hadron structure. To quote credible estimates of the systematic uncertainties in these calculations, one must understand, among other things, the size of the finite-volume effects when such matrix elements are extracted from numerical lattice calculations. In this work, we estimate finite-volume effects for matrix elements of non-local operators, composed of two currents displaced in a spatial direction by a distance $\\xi$. We find that the finite-volume corrections depend on the details of the matrix element. If the external state is the lightest degree of freedom in the theory, e.g.~the pion in QCD, then the volume corrections scale as $ e^{-m_\\pi (L- \\xi)} $, where $m_\\pi$ is the mass of the light state. For heavier external states the usual $e^{- m_\\pi L}$ form is recovered, but with a polynomial prefactor of the form $L^m/|L - \\xi|^n$ that can lead to enhanced volume effects. These ...

  4. Estimating local noise power spectrum from a few FBP-reconstructed CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Rongping, E-mail: rongping.zeng@fda.hhs.gov; Gavrielides, Marios A.; Petrick, Nicholas; Sahiner, Berkman; Li, Qin; Myers, Kyle J. [Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland 20993 (United States)

    2016-01-15

    Purpose: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. Methods: As a result of FBP reconstruction, the CT NPS has the same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. Results: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available

  5. DETERMINATION OF SPATIAL INTEGRATION AND SUBSTITUTION OF FOREIGN RICE FOR LOCAL RICE IN GHANA

    Directory of Open Access Journals (Sweden)

    Philip Kofi ADOM

    2014-11-01

    Full Text Available This study tested for spatial integration in the rice market and the substitution of imported rice for local rice in Ghana. It is established that the markets for domestic imported rice are well-integrated, but not complete. The imperfect spatial integration of domestic foreign rice markets implies that the market provides opportunities for arbitrage. Price leadership roles are found to be determined by the kind of sub-inter-regional-trade network defined. However, in all, the Accra market emerged as a dominant market leader in the domestic foreign rice market. There is evidence of significant regional substitution of foreign rice for local rice in the long run, but the result is mixed in the short run. The result that local rice is not a perfect substitute for imported rice implies that price disincentive measures such as increasing the import tariffs on foreign rice will only produce a mild effect on increasing the producer price faced by local rice farmers, but aggravate the burden on households’ budget.

  6. Compositional divergence and convergence in local communities and spatially structured landscapes.

    Directory of Open Access Journals (Sweden)

    Tancredi Caruso

    Full Text Available Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence than, less dissimilar (convergence than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect. The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community

  7. Small-angle scattering theory revisited: Photocurrent and spatial localization

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Michelsen, Poul

    2005-01-01

    In this paper theory on collective scattering measurements of electron density fluctuations in fusion plasmas is revisited. We present the first full derivation of the expression for the photocurrent beginning at the basic scattering concepts. Thereafter we derive detailed expressions for the auto......- and crosspower spectra obtained from measurements. These are discussed and simple simulations made to elucidate the physical meaning of the findings. In this context, the known methods of obtaining spatial localization are discussed and appraised. Where actual numbers are applied, we utilize quantities from two...

  8. Real Estate as a Subject of Spatial Conflict Among Central and Local Authorities

    Directory of Open Access Journals (Sweden)

    Źróbek-Różańska Alina

    2015-06-01

    Full Text Available Currently, real estate located in rural areas neighboring cities are under pressure to become a location for the realization of urban and metropolitan projects. Thus, spatial conflicts are an inherent characteristic of modern urban development. Such conflicts vary in terms of the scope, intensity and course they take. An interesting case illustrating the given issue can be the conflict over real estate owned by the State Treasury (central authority and localized within the power of local authorities (gminas. Such a situation requires mediating and producing an outcome that satisfies the goals of both sides. The authors based the deliberations on the topic of spatial conflicts on the example of the relation between the Agricultural Property Agency division in Olsztyn (APA Olsztyn and the smallest local administration units (gminas located within the borders of the Warmia-Masuria (Województwo Warmińsko-Mazurskie and Podlasie (Województwo Podlaskie Provinces. The aim of the research was to describe the background for potential conflict and to study its proceedings. The aim was achieved through studies of relevant literature and data analysis.

  9. Automatic segmentation of low-visibility moving objects through energy analyis of the local 3D spectrum

    Science.gov (United States)

    Nestares, Oscar; Miravet, Carlos; Santamaria, Javier; Fonolla Navarro, Rafael

    1999-05-01

    Automatic object segmentation in highly noisy image sequences, composed by a translating object over a background having a different motion, is achieved through joint motion-texture analysis. Local motion and/or texture is characterized by the energy of the local spatio-temporal spectrum, as different textures undergoing different translational motions display distinctive features in their 3D (x,y,t) spectra. Measurements of local spectrum energy are obtained using a bank of directional 3rd order Gaussian derivative filters in a multiresolution pyramid in space- time (10 directions, 3 resolution levels). These 30 energy measurements form a feature vector describing texture-motion for every pixel in the sequence. To improve discrimination capability and reduce computational cost, we automatically select those 4 features (channels) that best discriminate object from background, under the assumptions that the object is smaller than the background and has a different velocity or texture. In this way we reject features irrelevant or dominated by noise, that could yield wrong segmentation results. This method has been successfully applied to sequences with extremely low visibility and for objects that are even invisible for the eye in absence of motion.

  10. Locality-Aware CTA Clustering For Modern GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ang; Song, Shuaiwen; Liu, Weifeng; Liu, Xu; Kumar, Akash; Corporaal, Henk

    2017-04-08

    In this paper, we proposed a novel clustering technique for tapping into the performance potential of a largely ignored type of locality: inter-CTA locality. We first demonstrated the capability of the existing GPU hardware to exploit such locality, both spatially and temporally, on L1 or L1/Tex unified cache. To verify the potential of this locality, we quantified its existence in a broad spectrum of applications and discussed its sources of origin. Based on these insights, we proposed the concept of CTA-Clustering and its associated software techniques. Finally, We evaluated these techniques on all modern generations of NVIDIA GPU architectures. The experimental results showed that our proposed clustering techniques could significantly improve on-chip cache performance.

  11. Visuo-Spatial Performance in Autism: A Meta-analysis

    OpenAIRE

    Muth, Anne; Honekopp, Johannes; Falter, Christine

    2014-01-01

    Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large heterogeneity that is unaccounted for. No clear differences were found for Mental Rotation. ASD samples showed a stronger local processing preference for...

  12. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  13. Sum-rate analysis of spectrum sharing spatial multiplexing MIMO systems with zero-forcing and multiuser diversity

    KAUST Repository

    Yang, Liang

    2013-06-01

    This paper considers a multiuser spectrum sharing (SS) multiple-input multiple-output (MIMO) system with zero-forcing (ZF) operating in a Rayleigh fading environment. We provide an asymptotic sum-rate analysis to investigate the effects of different parameters on the multiuser diversity gain. For a ZF SS spatial multiplexing system with scheduling, the asymptotic sum-rate scales like Nt log2(Q(Nt Np√K - 1)/N t), where Np denotes the number of antennas of primary receiver, Q is the interference temperature, and K represents the number of secondary transmitters. © 2013 IEEE.

  14. Spatial and Temporal Patterns of Locally-Acquired Dengue Transmission in Northern Queensland, Australia, 1993–2012

    Science.gov (United States)

    Naish, Suchithra; Dale, Pat; Mackenzie, John S.; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Background Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993–2012. Methods Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Results 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ2 = 15.17, d.f. = 1, pQueensland. Conclusions Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas. PMID:24691549

  15. Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR

    Directory of Open Access Journals (Sweden)

    Linqing Luo

    2016-01-01

    Full Text Available Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR and the Time-Frequency (T-F localization of the input pulse shape. T-F localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI and intersymbol interference (ISI to improve the transmission quality in multicarrier modulation (MCM. This paper demonstrates that the T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments of T-F localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is proved to be useful in the pulse shape selection for system resolution optimization.

  16. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults.

    Directory of Open Access Journals (Sweden)

    Jonathan T W Schubert

    Full Text Available Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically ("palm" or "back" of the hand, or externally ("up" or "down" in space. Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly

  17. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults.

    Science.gov (United States)

    Schubert, Jonathan T W; Badde, Stephanie; Röder, Brigitte; Heed, Tobias

    2017-01-01

    Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically ("palm" or "back" of the hand), or externally ("up" or "down" in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top

  18. The effect of unemployment, aggregate wages, and spatial contiguity on local wages: An investigation with German district level data

    OpenAIRE

    Thiess Buettner

    1999-01-01

    Despite spatial rigidity of collectively negotiated wages the local unemployment rate is found to have a significant negative impact on wages. This impact is shown to be consistent with both the wage-curve hypothesis and modern Phillips-curve modelling. Spatial contiguity effects are found in wages and unemployment and their neglect leads to an underestimation of the effect of local unemployment. Yet, the impact of local unemployment on wages turns out to be quite low as compared to studies f...

  19. Quantifying spatial heterogeneity from images

    International Nuclear Information System (INIS)

    Pomerantz, Andrew E; Song Yiqiao

    2008-01-01

    Visualization techniques are extremely useful for characterizing natural materials with complex spatial structure. Although many powerful imaging modalities exist, simple display of the images often does not convey the underlying spatial structure. Instead, quantitative image analysis can extract the most important features of the imaged object in a manner that is easier to comprehend and to compare from sample to sample. This paper describes the formulation of the heterogeneity spectrum to show the extent of spatial heterogeneity as a function of length scale for all length scales to which a particular measurement is sensitive. This technique is especially relevant for describing materials that simultaneously present spatial heterogeneity at multiple length scales. In this paper, the heterogeneity spectrum is applied for the first time to images from optical microscopy. The spectrum is measured for thin section images of complex carbonate rock cores showing heterogeneity at several length scales in the range 10-10 000 μm.

  20. Spatial variation of AIA coronal Fourier power spectra

    Science.gov (United States)

    Ireland, J.; Mcateer, R. T. J.

    2015-12-01

    We describe a study of the spatial distribution of the properties of the Fourier power spectrum of time-series of AIA 171Å and 193Å data. The area studied includes examples of physically different components of the corona, such as coronal moss, a sunspot, quiet Sun and fan loop footpoints. We show that a large fraction of the power spectra are well modeled by a power spectrum that behaves like a power law f-n (n>0)at lower frequencies f, dropping to a constant value at higher frequencies. We also show that there are areas where the power spectra are better described by the above power spectrum model, plus a narrow band oscillatory feature, centered in the 3-5 minute oscillation range. These narrow-band spectral features are thought to be due to the propagation of oscillations from lower down in solar atmosphere to hotter. This allows us to produce maps of large areas of the corona showing where the propagation from one waveband to another does and does not occur. This is an important step in understanding wave propagation in different layers in the corona. We also show the 171Å and 193Å power spectrum power law indices are correlated, with 171Å power law indices in the range n = 1.8 to 2.8, and 193Å power law indices n = 2 to 3.5 approximately. Maps of the power law index show that different ranges of values of the power law indices occur in spatially contiguous parts of the corona, indicating that local spatial structure may play a role in defining the power law index value. Taken with our previous result from Ireland et al. (2015) that physically different parts of the corona have different mean values of the power law index, this new result strongly suggests that the same mechanism producing the observed power law power spectrum is operating everywhere across the corona. We discuss the nanoflare hypothesis as a possible explanation of these observations.

  1. Optimal Audiovisual Integration in the Ventriloquism Effect But Pervasive Deficits in Unisensory Spatial Localization in Amblyopia.

    Science.gov (United States)

    Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F

    2018-01-01

    Classically understood as a deficit in spatial vision, amblyopia is increasingly recognized to also impair audiovisual multisensory processing. Studies to date, however, have not determined whether the audiovisual abnormalities reflect a failure of multisensory integration, or an optimal strategy in the face of unisensory impairment. We use the ventriloquism effect and the maximum-likelihood estimation (MLE) model of optimal integration to investigate integration of audiovisual spatial information in amblyopia. Participants with unilateral amblyopia (n = 14; mean age 28.8 years; 7 anisometropic, 3 strabismic, 4 mixed mechanism) and visually normal controls (n = 16, mean age 29.2 years) localized brief unimodal auditory, unimodal visual, and bimodal (audiovisual) stimuli during binocular viewing using a location discrimination task. A subset of bimodal trials involved the ventriloquism effect, an illusion in which auditory and visual stimuli originating from different locations are perceived as originating from a single location. Localization precision and bias were determined by psychometric curve fitting, and the observed parameters were compared with predictions from the MLE model. Spatial localization precision was significantly reduced in the amblyopia group compared with the control group for unimodal visual, unimodal auditory, and bimodal stimuli. Analyses of localization precision and bias for bimodal stimuli showed no significant deviations from the MLE model in either the amblyopia group or the control group. Despite pervasive deficits in localization precision for visual, auditory, and audiovisual stimuli, audiovisual integration remains intact and optimal in unilateral amblyopia.

  2. Spatially continuous dataset at local scale of Taita Hills in Kenya and Mount Kilimanjaro in Tanzania

    Directory of Open Access Journals (Sweden)

    Sizah Mwalusepo

    2016-09-01

    Full Text Available Climate change is a global concern, requiring local scale spatially continuous dataset and modeling of meteorological variables. This dataset article provided the interpolated temperature, rainfall and relative humidity dataset at local scale along Taita Hills and Mount Kilimanjaro altitudinal gradients in Kenya and Tanzania, respectively. The temperature and relative humidity were recorded hourly using automatic onset THHOBO data loggers and rainfall was recorded daily using GENERALR wireless rain gauges. Thin plate spline (TPS was used to interpolate, with the degree of data smoothing determined by minimizing the generalized cross validation. The dataset provide information on the status of the current climatic conditions along the two mountainous altitudinal gradients in Kenya and Tanzania. The dataset will, thus, enhance future research. Keywords: Spatial climate data, Climate change, Modeling, Local scale

  3. Upper Estimates on the Higher-dimensional Multifractal Spectrum of Local Entropy%局部熵高维重分形谱的上界估计

    Institute of Scientific and Technical Information of China (English)

    严珍珍; 陈二才

    2008-01-01

    We discuss the problem of higher-dimensional multifractal spectrum of lo-cal entropy for arbitrary invariant measures. By utilizing characteristics of a dynam-ical system, namely, higher-dimensional entropy capacities and higher-dimensional correlation entropies, we obtain three upper estimates on the higher-dimensional mul-tifractal spectrum of local entropies. We also study the domain of higher-dimensional multifractal spetrum of entropies.

  4. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Mark G. [Safer Pediatric Imaging and Engineering Horizons International, Lincoln, VT (United States); Benz, Matthew W. [Southboro Medical Group, Southboro, MA (United States); Birnbaum, Steven B. [Dartmouth Hitchcock Clinic Manchester, Department of Radiology, Manchester, NH (United States); Chason, Eric; Sheldon, Brian W. [Brown University, Division of Engineering, Materials Science and Engineering Program, Providence, RI (United States); McGuire, Dale [R and D Manager, C and G Technologies Inc., Jeffersonville, IN (United States)

    2014-08-15

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique. (orig.)

  5. [Does the Fragmented Images Test measure locally oriented visual processing in autism spectrum disorders?].

    Science.gov (United States)

    Scheurich, Armin; Fellgiebel, Andreas; Müller, Mattias J; Poustka, Fritz; Bölte, Sven

    2010-03-01

    The cognitive phenotype of autism spectrum disorders (ASD) is characterized among other things by local processing (weak central coherence). It was examined whether a test that measures identification of fragmented pictures (FBT) is able to seize this preference for local processing. The FBT performance of 15 patients with ASD, 16 with depression, 16 with schizophrenia and of 16 control subjects was compared. In addition, two tests well known to be sensitive to local processing were assessed, namely the Embedded Figures Test (EFT) and the Block Design Test (BDT). ASD patients demonstrated a preference for local processing. Difficulties in global processing, or more specifically in gestalt perception (FBT), were accompanied by good performance on the EFT and BDT as expected. Controlling for age and nonverbal intelligence (ANCOVA) reduced differences to trends. However, the calculation of difference scores (i.e., subtraction of FBT from EFT performance) resulted in significant differences between ASD and control groups even after controlling for of age and intelligence. The FBT is a suitable exploratory test of local visual processing in ASD. In particular, a difference criterion can be generated (FBT vs. EFT) that discriminates between ASD and clinical as well as healthy control groups.

  6. Influence of age, spatial memory, and ocular fixation on localization of auditory, visual, and bimodal targets by human subjects.

    Science.gov (United States)

    Dobreva, Marina S; O'Neill, William E; Paige, Gary D

    2012-12-01

    A common complaint of the elderly is difficulty identifying and localizing auditory and visual sources, particularly in competing background noise. Spatial errors in the elderly may pose challenges and even threats to self and others during everyday activities, such as localizing sounds in a crowded room or driving in traffic. In this study, we investigated the influence of aging, spatial memory, and ocular fixation on the localization of auditory, visual, and combined auditory-visual (bimodal) targets. Head-restrained young and elderly subjects localized targets in a dark, echo-attenuated room using a manual laser pointer. Localization accuracy and precision (repeatability) were quantified for both ongoing and transient (remembered) targets at response delays up to 10 s. Because eye movements bias auditory spatial perception, localization was assessed under target fixation (eyes free, pointer guided by foveal vision) and central fixation (eyes fixed straight ahead, pointer guided by peripheral vision) conditions. Spatial localization across the frontal field in young adults demonstrated (1) horizontal overshoot and vertical undershoot for ongoing auditory targets under target fixation conditions, but near-ideal horizontal localization with central fixation; (2) accurate and precise localization of ongoing visual targets guided by foveal vision under target fixation that degraded when guided by peripheral vision during central fixation; (3) overestimation in horizontal central space (±10°) of remembered auditory, visual, and bimodal targets with increasing response delay. In comparison with young adults, elderly subjects showed (1) worse precision in most paradigms, especially when localizing with peripheral vision under central fixation; (2) greatly impaired vertical localization of auditory and bimodal targets; (3) increased horizontal overshoot in the central field for remembered visual and bimodal targets across response delays; (4) greater vulnerability to

  7. Multi-scale spatial modeling of human exposure from local sources to global intake

    DEFF Research Database (Denmark)

    Wannaz, Cedric; Fantke, Peter; Jolliet, Olivier

    2018-01-01

    Exposure studies, used in human health risk and impact assessments of chemicals are largely performed locally or regionally. It is usually not known how global impacts resulting from exposure to point source emissions compare to local impacts. To address this problem, we introduce Pangea......, an innovative multi-scale, spatial multimedia fate and exposure assessment model. We study local to global population exposure associated with emissions from 126 point sources matching locations of waste-to-energy plants across France. Results for three chemicals with distinct physicochemical properties...... occur within a 100 km radius from the source. This suggests that, by neglecting distant low-level exposure, local assessments might only account for fractions of global cumulative intakes. We also study ~10,000 emission locations covering France more densely to determine per chemical and exposure route...

  8. Human and ecological determinants of the spatial structure of local breed diversity.

    Science.gov (United States)

    Colino-Rabanal, Victor J; Rodríguez-Díaz, Roberto; Blanco-Villegas, María José; Peris, Salvador J; Lizana, Miguel

    2018-04-24

    Since domestication, a large number of livestock breeds adapted to local conditions have been created by natural and artificial selection, representing one of the most powerful ways in which human groups have constructed niches to meet their need. Although many authors have described local breeds as the result of culturally and environmentally mediated processes, this study, located in mainland Spain, is the first aimed at identifying and quantifying the environmental and human contributions to the spatial structure of local breed diversity, which we refer to as livestock niche. We found that the more similar two provinces were in terms of human population, ecological characteristics, historical ties, and geographic distance, the more similar the composition of local breeds in their territories. Isolation by human population distance showed the strongest effect, followed by isolation by the environment, thus supporting the view of livestock niche as a socio-cultural product adapted to the local environment, in whose construction humans make good use of their ecological and cultural inheritances. These findings provide a useful framework to understand and to envisage the effects of climate change and globalization on local breeds and their livestock niches.

  9. Spatial clustering and local risk of leprosy in São Paulo, Brazil.

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Vieira Ramos

    2017-02-01

    Full Text Available Although the detection rate is decreasing, the proportion of new cases with WHO grade 2 disability (G2D is increasing, creating concern among policy makers and the Brazilian government. This study aimed to identify spatial clustering of leprosy and classify high-risk areas in a major leprosy cluster using the SatScan method.Data were obtained including all leprosy cases diagnosed between January 2006 and December 2013. In addition to the clinical variable, information was also gathered regarding the G2D of the patient at diagnosis and after treatment. The Scan Spatial statistic test, developed by Kulldorff e Nagarwalla, was used to identify spatial clustering and to measure the local risk (Relative Risk-RR of leprosy. Maps considering these risks and their confidence intervals were constructed.A total of 434 cases were identified, including 188 (43.31% borderline leprosy and 101 (23.28% lepromatous leprosy cases. There was a predominance of males, with ages ranging from 15 to 59 years, and 51 patients (11.75% presented G2D. Two significant spatial clusters and three significant spatial-temporal clusters were also observed. The main spatial cluster (p = 0.000 contained 90 census tracts, a population of approximately 58,438 inhabitants, detection rate of 22.6 cases per 100,000 people and RR of approximately 3.41 (95%CI = 2.721-4.267. Regarding the spatial-temporal clusters, two clusters were observed, with RR ranging between 24.35 (95%CI = 11.133-52.984 and 15.24 (95%CI = 10.114-22.919.These findings could contribute to improvements in policies and programming, aiming for the eradication of leprosy in Brazil. The Spatial Scan statistic test was found to be an interesting resource for health managers and healthcare professionals to map the vulnerability of areas in terms of leprosy transmission risk and areas of underreporting.

  10. Spatial clustering and local risk of leprosy in São Paulo, Brazil.

    Science.gov (United States)

    Ramos, Antônio Carlos Vieira; Yamamura, Mellina; Arroyo, Luiz Henrique; Popolin, Marcela Paschoal; Chiaravalloti Neto, Francisco; Palha, Pedro Fredemir; Uchoa, Severina Alice da Costa; Pieri, Flávia Meneguetti; Pinto, Ione Carvalho; Fiorati, Regina Célia; Queiroz, Ana Angélica Rêgo de; Belchior, Aylana de Souza; Dos Santos, Danielle Talita; Garcia, Maria Concebida da Cunha; Crispim, Juliane de Almeida; Alves, Luana Seles; Berra, Thaís Zamboni; Arcêncio, Ricardo Alexandre

    2017-02-01

    Although the detection rate is decreasing, the proportion of new cases with WHO grade 2 disability (G2D) is increasing, creating concern among policy makers and the Brazilian government. This study aimed to identify spatial clustering of leprosy and classify high-risk areas in a major leprosy cluster using the SatScan method. Data were obtained including all leprosy cases diagnosed between January 2006 and December 2013. In addition to the clinical variable, information was also gathered regarding the G2D of the patient at diagnosis and after treatment. The Scan Spatial statistic test, developed by Kulldorff e Nagarwalla, was used to identify spatial clustering and to measure the local risk (Relative Risk-RR) of leprosy. Maps considering these risks and their confidence intervals were constructed. A total of 434 cases were identified, including 188 (43.31%) borderline leprosy and 101 (23.28%) lepromatous leprosy cases. There was a predominance of males, with ages ranging from 15 to 59 years, and 51 patients (11.75%) presented G2D. Two significant spatial clusters and three significant spatial-temporal clusters were also observed. The main spatial cluster (p = 0.000) contained 90 census tracts, a population of approximately 58,438 inhabitants, detection rate of 22.6 cases per 100,000 people and RR of approximately 3.41 (95%CI = 2.721-4.267). Regarding the spatial-temporal clusters, two clusters were observed, with RR ranging between 24.35 (95%CI = 11.133-52.984) and 15.24 (95%CI = 10.114-22.919). These findings could contribute to improvements in policies and programming, aiming for the eradication of leprosy in Brazil. The Spatial Scan statistic test was found to be an interesting resource for health managers and healthcare professionals to map the vulnerability of areas in terms of leprosy transmission risk and areas of underreporting.

  11. Hard Decision Fusion based Cooperative Spectrum Sensing in Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    N. Armi N.M. Saad

    2013-09-01

    Full Text Available Cooperative spectrum sensing was proposed to combat fading, noise uncertainty, shadowing, and even hidden node problem due to primary users (PUs activity that is not spatially localized. It improves the probability of detection by collaborating to detect PUs signal in cognitive radio (CR system as well. This paper studies cooperative spectrum sensing and signal detection in CR system by implementing hard decision combining in data fusion centre. Through computer simulation, we evaluate the performances of cooperative spectrum sensing and signal detection by employing OR and AND rules as decision combining. Energy detector is used to observe the presence of primary user (PU signal. Those results are compared to non-cooperative signal detection for evaluation. They show that cooperative technique has better performance than non-cooperative. Moreover, signal to noise ratio (SNR with greater than or equal 10 dB and 15 collaborated users in CR system has optimal value for probability of detection.

  12. Microtheories for Spatial Data Infrastructures - Accounting for Diversity of Local Conceptualizations at a Global Level

    Science.gov (United States)

    Duce, Stephanie; Janowicz, Krzysztof

    The categorization of our environment into feature types is an essential prerequisite for cartography, geographic information retrieval, routing applications, spatial decision support systems, and data sharing in general. However, there is no a priori conceptualization of the world and the creation of features and types is an act of cognition. Humans conceptualize their environment based on multiple criteria such as their cultural background, knowledge, motivation, and particularly by space and time. Sharing and making these conceptualizations explicit in a formal, unambiguous way is at the core of semantic interoperability. One way to cope with semantic heterogeneities is by standardization, i.e., by agreeing on a shared conceptualization. This bears the danger of losing local diversity. In contrast, this work proposes the use of microtheories for Spatial Data Infrastructures, such as INSPIRE, to account for the diversity of local conceptualizations while maintaining their semantic interoperability at a global level. We introduce a novel methodology to structure ontologies by spatial and temporal aspects, in our case administrative boundaries, which reflect variations in feature conceptualization. A local, bottom-up approach, based on non-standard inference, is used to compute global feature definitions which are neither too broad nor too specific. Using different conceptualizations of rivers and other geographic feature types, we demonstrate how the present approach can improve the INSPIRE data model and ease its adoption by European member states.

  13. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    Science.gov (United States)

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  14. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials.

    Science.gov (United States)

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C

    2017-05-16

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.

  15. Tensor perturbations during inflation in a spatially closed Universe

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, 104 Lavey Lab, University Park, PA 16802 (United States)

    2017-05-01

    In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited to the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.

  16. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP.

    Directory of Open Access Journals (Sweden)

    Sebastian J Lehmann

    Full Text Available The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013, and in particular in the anterior intraparietal cortex (AIP. To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta how different frequency bands of the local field potential (LFP in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively. Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  17. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris

    2015-01-01

    Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness but a...

  18. Measuring streetscape complexity based on the statistics of local contrast and spatial frequency.

    Directory of Open Access Journals (Sweden)

    André Cavalcante

    Full Text Available Streetscapes are basic urban elements which play a major role in the livability of a city. The visual complexity of streetscapes is known to influence how people behave in such built spaces. However, how and which characteristics of a visual scene influence our perception of complexity have yet to be fully understood. This study proposes a method to evaluate the complexity perceived in streetscapes based on the statistics of local contrast and spatial frequency. Here, 74 streetscape images from four cities, including daytime and nighttime scenes, were ranked for complexity by 40 participants. Image processing was then used to locally segment contrast and spatial frequency in the streetscapes. The statistics of these characteristics were extracted and later combined to form a single objective measure. The direct use of statistics revealed structural or morphological patterns in streetscapes related to the perception of complexity. Furthermore, in comparison to conventional measures of visual complexity, the proposed objective measure exhibits a higher correlation with the opinion of the participants. Also, the performance of this method is more robust regarding different time scenarios.

  19. Spatially resolved measurements of the magnetocaloric effect and the local magnetic field using thermography

    DEFF Research Database (Denmark)

    Christensen, Dennis; Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2010-01-01

    The magnetocaloric effect causes a magnetic material to change temperature upon application of a magnetic field. Here, spatially resolved measurements of the adiabatic temperature change are performed on a plate of gadolinium using thermography. The adiabatic temperature change is used to extract...... the corresponding change in the local magnetic field strength. The measured temperature change and local magnetic field strength are compared to results obtained with a numerical model, which takes demagnetization into account and employs experimental data....

  20. Selected Economic Aspects Of Adopting A Local Spatial Development Plan Exemplified By The Commune Of Tomice In Malopolskie Province

    Directory of Open Access Journals (Sweden)

    Gawroński Krzysztof

    2015-12-01

    Full Text Available The object of this article is to analyze and asses the legal and economic consequences arising from the adoption (or change of a local spatial development plan. The paper also presents, based on the example of the rural commune of Tomice in the Malopolska Province of Poland, how to estimate income to the commune budget from the collected planning fees. The analyses are based on planning studies, including the local spatial development plan from 2004, and the study of conditions and directions of spatial development from 2012. The council of Tomice Commune adopted the local spatial plan due to the increasing demand for residential areas. According to the plan, over 930 acres of land have been allocated for investment purposes, which is approx. 22.4% of the total area of 4,155 ha. The local plan was developed for all the six cadastral units of the commune, with one hundred percent surface coverage. The physiographic conditions and the location of Tomice Commune encourage the settlement of the urban population (from Wadowice or Krakow, which entails the need for housing investment areas. In 2012, the Tomice Commune adopted a change in the study of conditions and directions of spatial development. The proposed re-zoning of the area is in line with the policy of transitioning from an agricultural character towards the sustainable and multifunctional development of the commune. It is worth noting that the provisions of the plan of 2004 take into account the collection of a one-time fee for the sale of real estate whose value has increased as a result of the adoption of the plan. The amount of this fee for investment areas was set at the level of 30% of the increase in value, in accordance with the provisions of the Polish Act on Spatial Planning and Management. Due to the fact that the currently valid local plan has been in effect for 10 years, it can be assumed that the commune will proceed to make some changes to it. The article estimates the

  1. Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: a theoretical prediction

    Science.gov (United States)

    Piao, Daqing

    2017-02-01

    The magneto-thermo-acoustic effect that we predicted in 2013 refers to the generation of acoustic-pressure wave from magnetic nanoparticle (MNP) when thermally mediated under an alternating magnetic field (AMF) at a pulsed or frequency-chirped application. Several independent experimental studies have since validated magneto-thermoacoustic effect, and a latest report has discovered acoustic-wave generation from MNP at the second-harmonic frequency of the AMF when operating continuously. We propose that applying two AMFs with differing frequencies to MNP will produce acoustic-pressure wave at the summation and difference of the two frequencies, in addition to the two second-harmonic frequencies. Analysis of the specific absorption dynamics of the MNP when exposed to two AMFs of differing frequencies has shown some interesting patterns of acoustic-intensity at the multiple frequency components. The ratio of the acoustic-intensity at the summation-frequency over that of the difference-frequency is determined by the frequency-ratio of the two AMFs, but remains independent of the AMF strengths. The ratio of the acoustic-intensity at the summation- or difference-frequency over that at each of the two second-harmonic frequencies is determined by both the frequency-ratio and the field-strength-ratio of the two AMFs. The results indicate a potential strategy for localization of the source of a continuous-wave magneto-thermalacoustic signal by examining the frequency spectrum of full-field non-differentiating acoustic detection, with the field-strength ratio changed continuously at a fixed frequency-ratio. The practicalities and challenges of this magnetic spatial localization approach for magneto-thermo-acoustic imaging using a simple envisioned set of two AMFs arranged in parallel to each other are discussed.

  2. Assessing implicit odor localization in humans using a cross-modal spatial cueing paradigm.

    Science.gov (United States)

    Moessnang, Carolin; Finkelmeyer, Andreas; Vossen, Alexandra; Schneider, Frank; Habel, Ute

    2011-01-01

    Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal. A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment. No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research. The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans. © 2011 Moessnang et al.

  3. Assessing implicit odor localization in humans using a cross-modal spatial cueing paradigm.

    Directory of Open Access Journals (Sweden)

    Carolin Moessnang

    Full Text Available Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal.A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment.No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research.The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans.

  4. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    Science.gov (United States)

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  5. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.

  6. Using Participatory Approach to Improve Availability of Spatial Data for Local Government

    Science.gov (United States)

    Kliment, T.; Cetl, V.; Tomič, H.; Lisiak, J.; Kliment, M.

    2016-09-01

    Nowadays, the availability of authoritative geospatial features of various data themes is becoming wider on global, regional and national levels. The reason is existence of legislative frameworks for public sector information and related spatial data infrastructure implementations, emergence of support for initiatives as open data, big data ensuring that online geospatial information are made available to digital single market, entrepreneurs and public bodies on both national and local level. However, the availability of authoritative reference spatial data linking the geographic representation of the properties and their owners are still missing in an appropriate quantity and quality level, even though this data represent fundamental input for local governments regarding the register of buildings used for property tax calculations, identification of illegal buildings, etc. We propose a methodology to improve this situation by applying the principles of participatory GIS and VGI used to collect observations, update authoritative datasets and verify the newly developed datasets of areas of buildings used to calculate property tax rates issued to their owners. The case study was performed within the district of the City of Požega in eastern Croatia in the summer 2015 and resulted in a total number of 16072 updated and newly identified objects made available online for quality verification by citizens using open source geospatial technologies.

  7. Developing spatial inequalities in carbon appropriation: a sociological analysis of changing local emissions across the United States.

    Science.gov (United States)

    Elliott, James R; Clement, Matthew Thomas

    2015-05-01

    This study examines an overlooked dynamic in sociological research on greenhouse gas emissions: how local areas appropriate the global carbon cycle for use and exchange purposes as they develop. Drawing on theories of place and space, we hypothesize that development differentially drives and spatially decouples use- and exchange-oriented emissions at the local level. To test our hypotheses, we integrate longitudinal, county-level data on residential and industrial emissions from the Vulcan Project with demographic, economic and environmental data from the U.S. Census Bureau and National Land Change Database. Results from spatial regression models with two-way fixed-effects indicate that alongside innovations and efficiencies capable of reducing environmentally harmful effects of development comes a spatial disarticulation between carbon-intensive production and consumption within as well as across societies. Implications for existing theory, methods and policy are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. High-precision spatial localization of mouse vocalizations during social interaction.

    Science.gov (United States)

    Heckman, Jesse J; Proville, Rémi; Heckman, Gert J; Azarfar, Alireza; Celikel, Tansu; Englitz, Bernhard

    2017-06-07

    Mice display a wide repertoire of vocalizations that varies with age, sex, and context. Especially during courtship, mice emit ultrasonic vocalizations (USVs) of high complexity, whose detailed structure is poorly understood. As animals of both sexes vocalize, the study of social vocalizations requires attributing single USVs to individuals. The state-of-the-art in sound localization for USVs allows spatial localization at centimeter resolution, however, animals interact at closer ranges, involving tactile, snout-snout exploration. Hence, improved algorithms are required to reliably assign USVs. We develop multiple solutions to USV localization, and derive an analytical solution for arbitrary vertical microphone positions. The algorithms are compared on wideband acoustic noise and single mouse vocalizations, and applied to social interactions with optically tracked mouse positions. A novel, (frequency) envelope weighted generalised cross-correlation outperforms classical cross-correlation techniques. It achieves a median error of ~1.4 mm for noise and ~4-8.5 mm for vocalizations. Using this algorithms in combination with a level criterion, we can improve the assignment for interacting mice. We report significant differences in mean USV properties between CBA mice of different sexes during social interaction. Hence, the improved USV attribution to individuals lays the basis for a deeper understanding of social vocalizations, in particular sequences of USVs.

  9. The information spectrum as a measure of radiographic image quality and system performance

    International Nuclear Information System (INIS)

    Kanamori, H.; Matsumoto, M.

    1984-01-01

    The spectrum (spatial-frequency component) of the information capacity of a radiograph, here called the information spectrum, is offered as a measure of image quality and system performance. The information spectrum is a much more practical expression than information capacity by itself: it combines synthetically the contrast, the latitude, the sharpness and the granularity, and is expressed as a function of spatial frequency. The information spectrum can be readily calculated by using the dynamic density range and the MTF and noise Wiener spectrum at medium density range. A practical example is given. The appropriate system for each object can be selected by comparing the information spectral values of various imaging systems at the significant spatial frequency range predetermined for each object. (author)

  10. Comparison of congruence judgment and auditory localization tasks for assessing the spatial limits of visual capture.

    Science.gov (United States)

    Bosen, Adam K; Fleming, Justin T; Brown, Sarah E; Allen, Paul D; O'Neill, William E; Paige, Gary D

    2016-12-01

    Vision typically has better spatial accuracy and precision than audition and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small, visual capture is likely to occur, and when disparity is large, visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audiovisual disparities over which visual capture was likely to occur was narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner.

  11. Comparison of Congruence Judgment and Auditory Localization Tasks for Assessing the Spatial Limits of Visual Capture

    Science.gov (United States)

    Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.

    2016-01-01

    Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630

  12. The Padanian LiMeS. Spatial Interpretation of Local GHG Emission Data

    Directory of Open Access Journals (Sweden)

    Michèle Pezzagno

    2015-04-01

    Full Text Available The relevant role of spatial planning in the enforcement of climate change mitigation, managing the development of new low-carbon infrastructures and increasing system-wide efficiencies across sectors, has been addressed at global level (IPCC, 2014 WGIII. In this context, local GHG inventories appear a relevant tool toward the definition of a coherent, inter-sectorial background for local planning, mitigation, and adaptation policies.Taking advantage of consistent GHG emissions data availability in the Lombard context, local maps of direct GHG emissions have been linked with geographic data, including municipal boundaries, population data, and land-use information, produced and organized within the research PRIN 2007 From metropolitan city to metropolitan corridor: the case of the Po Valley Corridor.The results of this mapping exercise have been evaluated on the background of consolidated knowledge about northern Italy urban patterns, including the Linear Metropolitan System – LiMeS – and preliminary observations about characteristics, potential, and limits of the tool are proposed.

  13. Anderson localization and momentum-space entanglement

    International Nuclear Information System (INIS)

    Andrade, Eric C; Steudtner, Mark; Vojta, Matthias

    2014-01-01

    We consider Anderson localization and the associated metal–insulator transition for non-interacting fermions in D = 1, 2 space dimensions in the presence of spatially correlated on-site random potentials. To assess the nature of the wave function, we follow a recent proposal to study momentum-space entanglement. For a D = 1 model with long-range disorder correlations, both the entanglement spectrum and the entanglement entropy allow us to clearly distinguish between extended and localized states based upon a single realization of disorder. However, for other models, including the D = 2 case with long-range correlated disorder, we find that the method is not similarly successful. We analyze the reasons for its failure, concluding that the much desired generalization to higher dimensions may be problematic. (paper)

  14. The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load.

    Science.gov (United States)

    Vogan, Vanessa M; Morgan, Benjamin R; Lee, Wayne; Powell, Tamara L; Smith, Mary Lou; Taylor, Margot J

    2014-01-01

    Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI). We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7-13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load. Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends. Children with ASD showed differences in activation in the frontal and parietal lobes-both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level

  15. Using a "time machine" to test for local adaptation of aquatic microbes to temporal and spatial environmental variation.

    Science.gov (United States)

    Fox, Jeremy W; Harder, Lawrence D

    2015-01-01

    Local adaptation occurs when different environments are dominated by different specialist genotypes, each of which is relatively fit in its local conditions and relatively unfit under other conditions. Analogously, ecological species sorting occurs when different environments are dominated by different competing species, each of which is relatively fit in its local conditions. The simplest theory predicts that spatial, but not temporal, environmental variation selects for local adaptation (or generates species sorting), but this prediction is difficult to test. Although organisms can be reciprocally transplanted among sites, doing so among times seems implausible. Here, we describe a reciprocal transplant experiment testing for local adaptation or species sorting of lake bacteria in response to both temporal and spatial variation in water chemistry. The experiment used a -80°C freezer as a "time machine." Bacterial isolates and water samples were frozen for later use, allowing transplantation of older isolates "forward in time" and newer isolates "backward in time." Surprisingly, local maladaptation predominated over local adaptation in both space and time. Such local maladaptation may indicate that adaptation, or the analogous species sorting process, fails to keep pace with temporal fluctuations in water chemistry. This hypothesis could be tested with more finely resolved temporal data. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. Experience-Dependency of Reliance on Local Visual and Idiothetic Cues for Spatial Representations Created in the Absence of Distal Information

    Directory of Open Access Journals (Sweden)

    Fabian Draht

    2017-06-01

    Full Text Available Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial representations and navigation: we recorded place cells while rodents navigated towards two visually identical chambers in 180° orientation via two different paths in darkness and in the absence of reliable auditory or olfactory cues. Our goal was to generate a conflict between local visual and direction-specific information, and then to assess which strategy was prioritized in different learning phases. We observed that, in the absence of distal cues, place fields are initially controlled by local visual cues that override idiothetic cues, but that with multiple exposures to the paradigm, spaced at intervals of days, idiothetic cues become increasingly implemented in generating an accurate spatial representation. Taken together, these data support that, in the absence of distal cues, local visual cues are prioritized in the generation of context-specific spatial representations through place cells, whereby idiothetic cues are deemed unreliable. With cumulative exposures to the environments, the animal learns to attend to subtle idiothetic cues to resolve the conflict between visual and direction-specific information.

  17. Experience-Dependency of Reliance on Local Visual and Idiothetic Cues for Spatial Representations Created in the Absence of Distal Information.

    Science.gov (United States)

    Draht, Fabian; Zhang, Sijie; Rayan, Abdelrahman; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise

    2017-01-01

    Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial representations and navigation: we recorded place cells while rodents navigated towards two visually identical chambers in 180° orientation via two different paths in darkness and in the absence of reliable auditory or olfactory cues. Our goal was to generate a conflict between local visual and direction-specific information, and then to assess which strategy was prioritized in different learning phases. We observed that, in the absence of distal cues, place fields are initially controlled by local visual cues that override idiothetic cues, but that with multiple exposures to the paradigm, spaced at intervals of days, idiothetic cues become increasingly implemented in generating an accurate spatial representation. Taken together, these data support that, in the absence of distal cues, local visual cues are prioritized in the generation of context-specific spatial representations through place cells, whereby idiothetic cues are deemed unreliable. With cumulative exposures to the environments, the animal learns to attend to subtle idiothetic cues to resolve the conflict between visual and direction-specific information.

  18. Architecture of the local spatial data infrastructure for regional climate change research

    Science.gov (United States)

    Titov, Alexander; Gordov, Evgeny

    2013-04-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, etc.) are actively used in modeling and analysis of climate change for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset studies in the area of climate and environmental change require a special software support based on SDI approach. A dedicated architecture of the local spatial data infrastructure aiming at regional climate change analysis using modern web mapping technologies is presented. Geoportal is a key element of any SDI, allowing searching of geoinformation resources (datasets and services) using metadata catalogs, producing geospatial data selections by their parameters (data access functionality) as well as managing services and applications of cartographical visualization. It should be noted that due to objective reasons such as big dataset volume, complexity of data models used, syntactic and semantic differences of various datasets, the development of environmental geodata access, processing and visualization services turns out to be quite a complex task. Those circumstances were taken into account while developing architecture of the local spatial data infrastructure as a universal framework providing geodata services. So that, the architecture presented includes: 1. Effective in terms of search, access, retrieval and subsequent statistical processing, model of storing big sets of regional georeferenced data, allowing in particular to store frequently used values (like monthly and annual climate change indices, etc.), thus providing different temporal views of the datasets 2. General architecture of the corresponding software components handling geospatial datasets within the storage model 3. Metadata catalog describing in detail using ISO 19115 and CF-convention standards datasets used in climate researches as a basic element of the

  19. Eliciting local spatial knowledge for community - based disaster risk management : working with Cybertracker in Georgian Caucasus

    NARCIS (Netherlands)

    Spanu, V.; McCall, M.K.

    2013-01-01

    CyberTracker (CT) participatory field data collection software is used as an element of Participatory GIS for acquiring, geo-referencing, storing and transferring local spatial knowledge. It has been developed initially for animal tracking, ecological surveys and conservation management activities,

  20. Spatial sparsity based indoor localization in wireless sensor network for assistive healthcare.

    Science.gov (United States)

    Pourhomayoun, Mohammad; Jin, Zhanpeng; Fowler, Mark

    2012-01-01

    Indoor localization is one of the key topics in the area of wireless networks with increasing applications in assistive healthcare, where tracking the position and actions of the patient or elderly are required for medical observation or accident prevention. Most of the common indoor localization methods are based on estimating one or more location-dependent signal parameters like TOA, AOA or RSS. However, some difficulties and challenges caused by the complex scenarios within a closed space significantly limit the applicability of those existing approaches in an indoor assistive environment, such as the well-known multipath effect. In this paper, we develop a new one-stage localization method based on spatial sparsity of the x-y plane. In this method, we directly estimate the location of the emitter without going through the intermediate stage of TOA or signal strength estimation. We evaluate the performance of the proposed method using Monte Carlo simulation. The results show that the proposed method is (i) very accurate even with a small number of sensors and (ii) very effective in addressing the multi-path issues.

  1. Spectrum of classes of point emitters of electromagnetic wave fields.

    Science.gov (United States)

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  2. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    Science.gov (United States)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  3. Frontal networks in adults with autism spectrum disorder.

    Science.gov (United States)

    Catani, Marco; Dell'Acqua, Flavio; Budisavljevic, Sanja; Howells, Henrietta; Thiebaut de Schotten, Michel; Froudist-Walsh, Seán; D'Anna, Lucio; Thompson, Abigail; Sandrone, Stefano; Bullmore, Edward T; Suckling, John; Baron-Cohen, Simon; Lombardo, Michael V; Wheelwright, Sally J; Chakrabarti, Bhismadev; Lai, Meng-Chuan; Ruigrok, Amber N V; Leemans, Alexander; Ecker, Christine; Consortium, Mrc Aims; Craig, Michael C; Murphy, Declan G M

    2016-02-01

    It has been postulated that autism spectrum disorder is underpinned by an 'atypical connectivity' involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a 'whole brain' non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate--predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these

  4. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    Science.gov (United States)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  5. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    Directory of Open Access Journals (Sweden)

    Atiyeh Zarifi

    2018-03-01

    Full Text Available The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  6. Local and non-local deficits in amblyopia: acuity and spatial interactions.

    Science.gov (United States)

    Bonneh, Yoram S; Sagi, Dov; Polat, Uri

    2004-12-01

    Amblyopic vision is thought to be limited by abnormal long-range spatial interactions, but their exact mode of action and relationship to the main amblyopic deficit in visual acuity is largely unknown. We studied this relationship in a group (N=59) of anisometropic (N=21) and strabismic (or combined, N=38) subjects, using (1) a single and multi-pattern (crowded) computerized static Tumbling-E test with scaled spacing of two pattern widths (TeVA), in addition to an optotype (ETDRS chart) acuity test (VA) and (2) contrast detection of Gabor patches with lateral flankers (lateral masking) along the horizontal and vertical axes as well as in collinear and parallel configurations. By correlating the different measures of visual acuity and contrast suppression, we found that (1) the VA of the strabismic subjects could be decomposed into two uncorrelated components measured in TeVA: acuity for isolated patterns and acuity reduction due to flanking patterns. The latter comprised over 60% of the VA magnitude, on the average and accounted for over 50% of its variance. In contrast, a slight reduction in acuity was found in the anisometropic subjects, and the acuity for a single pattern could account for 70% of the VA variance. (2) The lateral suppression (contrast threshold elevation) in a parallel configuration along the horizontal axis was correlated with the VA (R2=0.7), as well as with the crowding effect (TeVA elevation, R2=0.5) for the strabismic group. Some correlation with the VA was also found for the collinear configuration in the anisometropic group, but less suppression and no correlation were found for all the vertical configurations in all the groups. The results indicate the existence of a specific non-local component of the strabismic deficit, in addition to the local acuity deficit in all amblyopia types. This deficit might reflect long-range lateral inhibition, or alternatively, an inaccurate and scattered top-down attentional selection mechanism.

  7. A two-stage approach to estimate spatial and spatio-temporal disease risks in the presence of local discontinuities and clusters.

    Science.gov (United States)

    Adin, A; Lee, D; Goicoa, T; Ugarte, María Dolores

    2018-01-01

    Disease risk maps for areal unit data are often estimated from Poisson mixed models with local spatial smoothing, for example by incorporating random effects with a conditional autoregressive prior distribution. However, one of the limitations is that local discontinuities in the spatial pattern are not usually modelled, leading to over-smoothing of the risk maps and a masking of clusters of hot/coldspot areas. In this paper, we propose a novel two-stage approach to estimate and map disease risk in the presence of such local discontinuities and clusters. We propose approaches in both spatial and spatio-temporal domains, where for the latter the clusters can either be fixed or allowed to vary over time. In the first stage, we apply an agglomerative hierarchical clustering algorithm to training data to provide sets of potential clusters, and in the second stage, a two-level spatial or spatio-temporal model is applied to each potential cluster configuration. The superiority of the proposed approach with regard to a previous proposal is shown by simulation, and the methodology is applied to two important public health problems in Spain, namely stomach cancer mortality across Spain and brain cancer incidence in the Navarre and Basque Country regions of Spain.

  8. Effect of BDNF Val66Met polymorphism on digital working memory and spatial localization in a healthy Chinese Han population.

    Science.gov (United States)

    Gong, Pingyuan; Zheng, Anyun; Chen, Dongmei; Ge, Wanhua; Lv, Changchao; Zhang, Kejin; Gao, Xiaocai; Zhang, Fuchang

    2009-07-01

    Cognitive abilities are complex human traits influenced by genetic factors. Brain-derived neurotrophic factor (BDNF), a unique polypeptide growth factor, has an influence on the differentiation and survival of neurons in the nervous system. A single-nucleotide polymorphism (rs6265) in the human gene, resulting in a valine to methionine substitution in the pro-BDNF protein, was thought to associate with psychiatric disorders and might play roles in the individual difference of cognitive abilities. However, the specific roles of the gene in cognition remain unclear. To investigate the relationships between the substitution and cognitive abilities, a healthy population-based study and the PCR-SSCP method were performed. The results showed the substitution was associated with digital working memory (p = 0.02) and spatial localization (p = 0.03), but not with inhibition, shifting, updating, visuo-spatial working memory, long-term memory, and others (p > 0.05) among the compared genotype groups analyzed by general linear model. On the other hand, the participants with BDNF (GG) had higher average performance in digital working memory and spatial localization than the ones with BDNF (AA). The findings of the present work implied that the variation in BDNF might play positive roles in human digital working memory and spatial localization.

  9. Systems Factorial Technology provides new insights on global-local information processing in autism spectrum disorders.

    Science.gov (United States)

    Johnson, Shannon A; Blaha, Leslie M; Houpt, Joseph W; Townsend, James T

    2010-02-01

    Previous studies of global-local processing in autism spectrum disorders (ASDs) have indicated mixed findings, with some evidence of a local processing bias, or preference for detail-level information, and other results suggesting typical global advantage, or preference for the whole or gestalt. Findings resulting from this paradigm have been used to argue for or against a detail focused processing bias in ASDs, and thus have important theoretical implications. We applied Systems Factorial Technology, and the associated Double Factorial Paradigm (both defined in the text), to examine information processing characteristics during a divided attention global-local task in high-functioning individuals with an ASD and typically developing controls. Group data revealed global advantage for both groups, contrary to some current theories of ASDs. Information processing models applied to each participant revealed that task performance, although showing no differences at the group level, was supported by different cognitive mechanisms in ASD participants compared to controls. All control participants demonstrated inhibitory parallel processing and the majority demonstrated a minimum-time stopping rule. In contrast, ASD participants showed exhaustive parallel processing with mild facilitatory interactions between global and local information. Thus our results indicate fundamental differences in the stopping rules and channel dependencies in individuals with an ASD.

  10. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    Science.gov (United States)

    Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.

    2014-02-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.

  11. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    International Nuclear Information System (INIS)

    Rasam, A R A; Ghazali, R; Noor, A M M; Mohd, W M N W; Hamid, J R A; Bazlan, M J; Ahmad, N

    2014-01-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia

  12. Non-Hermitian localization in biological networks.

    Science.gov (United States)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R

    2016-04-01

    We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N, the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90^{∘} rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  13. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task.

    Science.gov (United States)

    Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D

    2013-11-01

    Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.

  14. ANALYSIS OF THE POSSIBILITY OF USING HYDROLOGICAL MODELS IN STRATEGIC ENVIRONMENTAL ASSESSMENT OF LOCAL SPATIAL DEVELOPMENT PLANS

    Directory of Open Access Journals (Sweden)

    Mariusz Sojka

    2014-10-01

    Full Text Available The paper presents the possibility of application of the hydrological model HEC-HMS in the development of a strategic environmental assessment of local spatial development plans on surface water. The practical possibility of using simulation models of catchment response to high intensity precipitation is shown on the example of the Różany Potok watercourse catchment which is subject to rapid urbanization process. The area of Różany Potok catchment is 8.1 km2 and a stream length is 5.57 km. In the years 1992–2012 there was a significant increase in impervious areas in the catchment of about 5.2 to 16%. In addition, new local spatial development plans are prepared within the catchment area. The implementation of their records may contribute to the increase in the proportion of impervious areas to over 20%. The increase in the share of impervious areas in the catchment area and traditional approach of precipitation water management can lead to doubling flood flows and increase the risk of local flooding.

  15. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Tom L Schmidt

    2017-05-01

    Full Text Available Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2, we observed slow but steady spatial spread, at about 100-200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2 produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.

  16. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling

    International Nuclear Information System (INIS)

    Guo, Jinxin; Gleeson, Michael R; Liu, Shui; Sheridan, John T

    2011-01-01

    The non-local photopolymerization driven diffusion (NPDD) model predicts that a reduction in the non-local response length within a photopolymer material will improve its high spatial frequency response. The introduction of a chain transfer agent reduces the average molecular weight of polymer chains formed during free radical polymerization. Therefore a chain transfer agent (CTA) provides a practical method to reduce the non-local response length. An extended NPDD model is presented, which includes the chain transfer reaction and most major photochemical processes. The addition of a chain transfer agent into an acrylamide/polyvinyl alcohol photopolymer material is simulated and the predictions of the model are examined. The predictions of the model are experimentally examined in part II of this paper

  17. Risk factors and spatial distribution of extended spectrum ?-lactamase-producing- Escherichia coli at retail poultry meat markets in Malaysia: a cross-sectional study

    OpenAIRE

    Aliyu, A. B.; Saleha, A. A.; Jalila, A.; Zunita, Z.

    2016-01-01

    Background The significant role of retail poultry meat as an important exposure pathway for the acquisition and transmission of extended spectrum ?-lactamase-producing Escherichia coli (ESBL-EC) into the human population warrants understanding concerning those operational practices associated with dissemination of ESBL-EC in poultry meat retailing. Hence, the objective of this study was to determine the prevalence, spatial distribution and potential risk factors associated with the disseminat...

  18. Localization transition in SU(3) gauge theory

    Science.gov (United States)

    Kovács, Tamás G.; Vig, Réka Á.

    2018-01-01

    We study the Anderson-like localization transition in the spectrum of the Dirac operator of quenched QCD. Above the deconfining transition we determine the temperature dependence of the mobility edge separating localized and delocalized eigenmodes in the spectrum. We show that the temperature where the mobility edge vanishes and localized modes disappear from the spectrum coincides with the critical temperature of the deconfining transition. We also identify topological charge related close to zero modes in the Dirac spectrum and show that they account for only a small fraction of localized modes, a fraction that is rapidly falling as the temperature increases.

  19. The pair correlation function of spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2007-01-01

    Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....

  20. A new approach for beam hardening correction based on the local spectrum distributions

    International Nuclear Information System (INIS)

    Rasoulpour, Naser; Kamali-Asl, Alireza; Hemmati, Hamidreza

    2015-01-01

    Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called “beam hardening”. The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile. - Highlights: • A novel Beam Hardening (BH) correction approach was described. • A new concept named Local Spectrum Distributions (LSDs) was used to BH

  1. A new approach for beam hardening correction based on the local spectrum distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rasoulpour, Naser; Kamali-Asl, Alireza, E-mail: a_kamali@sbu.ac.ir; Hemmati, Hamidreza

    2015-09-11

    Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called “beam hardening”. The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile. - Highlights: • A novel Beam Hardening (BH) correction approach was described. • A new concept named Local Spectrum Distributions (LSDs) was used to BH

  2. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: Implications for resilience

    Science.gov (United States)

    Gothe, Emma; Sandin, Leonard; Allen, Craig R.; Angeler, David G.

    2014-01-01

    The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  3. Localized scleroderma: clinical spectrum and therapeutic update.

    Science.gov (United States)

    Careta, Mariana Figueiroa; Romiti, Ricardo

    2015-01-01

    Scleroderma is a rare connective tissue disease that is manifested by cutaneous sclerosis and variable systemic involvement. Two categories of scleroderma are known: systemic sclerosis, characterized by cutaneous sclerosis and visceral involvement, and localized scleroderma or morphea which classically presents benign and self-limited evolution and is confined to the skin and/or underlying tissues. Localized scleroderma is a rare disease of unknown etiology. Recent studies show that the localized form may affect internal organs and have variable morbidity. Treatment should be started very early, before complications occur due to the high morbidity of localized scleroderma. In this review, we report the most important aspects and particularities in the treatment of patients diagnosed with localized scleroderma.

  4. Localized scleroderma: clinical spectrum and therapeutic update*

    Science.gov (United States)

    Careta, Mariana Figueiroa; Romiti, Ricardo

    2015-01-01

    Scleroderma is a rare connective tissue disease that is manifested by cutaneous sclerosis and variable systemic involvement. Two categories of scleroderma are known: systemic sclerosis, characterized by cutaneous sclerosis and visceral involvement, and localized scleroderma or morphea which classically presents benign and self-limited evolution and is confined to the skin and/or underlying tissues. Localized scleroderma is a rare disease of unknown etiology. Recent studies show that the localized form may affect internal organs and have variable morbidity. Treatment should be started very early, before complications occur due to the high morbidity of localized scleroderma. In this review, we report the most important aspects and particularities in the treatment of patients diagnosed with localized scleroderma. PMID:25672301

  5. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with a spatially modulated nonlinearity

    OpenAIRE

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation met...

  6. Magnified Image Spatial Spectrum (MISS) microscopy for nanometer and millisecond scale label-free imaging

    Science.gov (United States)

    Majeed, Hassaan; Ma, Lihong; Lee, Young Jae; Kandel, Mikhail; Min, Eunjung; Jung, Woonggyu; Best-Popescu, Catherine; Popescu, Gabriel

    2018-03-01

    Label-free imaging of rapidly moving, sub-diffraction sized structures has important applications in both biology and material science, as it removes the limitations associated with fluorescence tagging. However, unlabeled nanoscale particles in suspension are difficult to image due to their transparency and fast Brownian motion. Here we describe a novel interferometric imaging technique referred to as Magnified Image Spatial Spectrum (MISS) microscopy, which overcomes these challenges. The MISS microscope provides quantitative phase information and enables dynamic light scattering investigations with an overall optical path length sensitivity of 0.95 nm at 833 frames per second acquisition rate. Using spatiotemporal filtering, we find that the sensitivity can be further pushed down to 0.001-0.01 nm. We demonstrate the instrument's capability through colloidal nanoparticle sizing down to 20 nm diameter and measurements of live neuron membrane dynamics. MISS microscopy is implemented as an upgrade module to an existing microscope, which converts it into a powerful light scattering instrument. Thus, we anticipate that MISS will be adopted broadly for both material and life sciences applications.

  7. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-01-01

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  8. Defining ecologically relevant scales for spatial protection with long-term data on an endangered seabird and local prey availability.

    Science.gov (United States)

    Sherley, Richard B; Botha, Philna; Underhill, Les G; Ryan, Peter G; van Zyl, Danie; Cockcroft, Andrew C; Crawford, Robert J M; Dyer, Bruce M; Cook, Timothée R

    2017-12-01

    Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range-restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state-space modeled cormorant counts at 3 colonies, 22 years of fisheries-independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20-30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small-scale marine protected areas, followed by robust assessment and adaptive-management, to confirm population-level benefits for the cormorants, their prey, and the wider ecosystem, without

  9. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    Science.gov (United States)

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  10. The role of spatial heterogeneity in the evolution of local and global infections of viruses.

    Directory of Open Access Journals (Sweden)

    Koich Saeki

    2018-01-01

    Full Text Available Viruses have two modes spread in a host body, one is to release infectious particles from infected cells (global infection and the other is to infect directly from an infected cell to an adjacent cell (local infection. Since the mode of spread affects the evolution of life history traits, such as virulence, it is important to reveal what level of global and local infection is selected. Previous studies of the evolution of global and local infection have paid little attention to its dependency on the measures of spatial configuration. Here we show the evolutionarily stable proportion of global and local infection, and how it depends on the distribution of target cells. Using an epidemic model on a regular lattice, we consider the infection dynamics by pair approximation and check the evolutionarily stable strategy. We also conduct the Monte-Carlo simulation to observe evolutionary dynamics. We show that a higher local infection is selected as target cells become clustered. Surprisingly, the selected strategy depends not only on the degree of clustering but also the abundance of target cells per se.

  11. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  12. Measuring urban forms from inter-building distances: Combining MST graphs with a Local Index of Spatial Association

    OpenAIRE

    Caruso , Geoffrey; Hilal , Mohamed; Thomas , Isabelle

    2017-01-01

    A new method is proposed for characterising local urban patterns at the scale of a large urban region. The approach overcomes the difficulties of surface-based representations of built-up morphologies and provides an efficient way to account for the proximity of built and non-built land. The strength of the approach resides in the direct use of the coordinates of each building, a very parsimonious input of external parameters, and a local spatial statistical perspective. The method consists i...

  13. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: implications for resilience

    Directory of Open Access Journals (Sweden)

    Emma Göthe

    2014-09-01

    Full Text Available The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  14. A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane

    Science.gov (United States)

    Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin

    2013-02-01

    A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.

  15. Wind energy and spatial planning procedures; La programmation spatiale des projects eoliens

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Wind turbines projects have been increasing, but some are very conflicted. May be it is a reason why some local authorities have to deal with different point of view, above the only energy question and including local specificity. To give local authorities the possibility to be implicated and to be in control of wind projects in their territory, wind spatial planning should permit to choose suitable areas and to optimize wind power development. In this context this synthesis presents the wind spatial planning in Finistere (France), the french regulation, some international experiences (Danish, Flemish, Walloon region, Dutch) and the different approaches of spatial planning. (A.L.B.)

  16. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    Science.gov (United States)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  17. Local topography shapes fine-scale spatial genetic structure in the Arkansas Valley evening primrose, Oenothera harringtonii (Onagraceae).

    Science.gov (United States)

    Rhodes, Matthew K; Fant, Jeremie B; Skogen, Krissa A

    2014-01-01

    Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes. Spatial genetic structure was consistent with theoretical expectations of isolation by distance, but this pattern was weak (Sp = 0.00374). Anisotropic analyses indicated that spatial genetic structure was markedly directional, in this case consistent with increased dispersal along prominent slopes. Landscape genetic models subsequently confirmed that spatial genetic variation was significantly influenced by local topographic heterogeneity, specifically that geographic distance, elevation and aspect were important predictors of spatial genetic structure. Among these variables, geographic distance was ~68% more important than elevation in describing spatial genetic variation, and elevation was ~42% more important than aspect after removing the effect of geographic distance. From these results, we infer a mechanism of hydrochorous seed dispersal along major drainages aided by seasonal monsoon rains. Our findings suggest that landscape features may shape microevolutionary processes at much finer spatial scales than typically considered, and stress the importance of considering how particular dispersal vectors are influenced by their environmental context. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Atom localization via phase and amplitude control of the driving field

    International Nuclear Information System (INIS)

    Ghafoor, Fazal; Qamar, Sajid; Zubairy, M. Suhail

    2002-01-01

    Control of amplitude and phase of the driving field in an atom-field interaction leads towards the strong line narrowing and quenching in the spontaneous emission spectrum. We exploit this fact for the atom localization scheme and achieve a much better spatial resolution in the conditional position probability distribution of the atom. Most importantly the quenching in the spontaneous emission manifests itself in reducing the periodicity in the conditional position probability distribution and hence the uncertainty in a particular position measurement of the single atom by a factor of 2

  19. Working Together? Parent and Local Authority Views on the Process of Obtaining Appropriate Educational Provision for Children with Autism Spectrum Disorders

    Science.gov (United States)

    Tissot, Catherine

    2011-01-01

    Background: There is general agreement across all interested parties that a process of working together is the best way to determine which school or educational setting is right for an individual child with autism spectrum disorder. In the UK, families and local authorities both desire a constructive working relationship and see this as the best…

  20. A Spatial Frequency Account of the Detriment that Local Processing of Navon Letters Has on Face Recognition

    Science.gov (United States)

    Hills, Peter J.; Lewis, Michael B.

    2009-01-01

    Five minutes of processing the local features of a Navon letter causes a detriment in subsequent face-recognition performance (Macrae & Lewis, 2002). We hypothesize a perceptual after effect explanation of this effect in which face recognition is less accurate after adapting to high-spatial frequencies at high contrasts. Five experiments were…

  1. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings.

    Science.gov (United States)

    Wandrag, Elizabeth M; Dunham, Amy E; Duncan, Richard P; Rogers, Haldre S

    2017-10-03

    Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition.

  2. Susceptibility to Optical Illusions Varies as a Function of the Autism-Spectrum Quotient but Not in Ways Predicted by Local-Global Biases

    Science.gov (United States)

    Chouinard, Philippe A.; Unwin, Katy L.; Landry, Oriane; Sperandio, Irene

    2016-01-01

    Individuals with autism spectrum disorder and those with autistic tendencies in non-clinical groups are thought to have a perceptual style privileging local details over global integration. We used 13 illusions to investigate this perceptual style in typically developing adults with various levels of autistic traits. Illusory susceptibility was…

  3. Power spectrum tomography of dark matter annihilation with local galaxy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Shin' ichiro, E-mail: s.ando@uva.nl [GRAPPA Institute, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2014-10-01

    Cross-correlating the gamma-ray background with local galaxy catalogs potentially gives stringent constraints on dark matter annihilation. We provide updated theoretical estimates of sensitivities to the annihilation cross section from gamma-ray data with Fermi telescope and 2MASS galaxy catalogs, by elaborating the galaxy power spectrum and astrophysical backgrounds, and adopting the Markov-Chain Monte Carlo simulations. In particular, we show that taking tomographic approach by dividing the galaxy catalogs into more than one redshift slice will improve the sensitivity by a factor of a few to several. If dark matter halos contain lots of bright substructures, yielding a large annihilation boost (e.g., a factor of ∼100 for galaxy-size halos), then one may be able to probe the canonical annihilation cross section for thermal production mechanism up to masses of ∼700 GeV. Even with modest substructure boost (e.g., a factor of ∼10 for galaxy-size halos), on the other hand, the sensitivities could still reach a factor of three larger than the canonical cross section for dark matter masses of tens to a few hundreds of GeV.

  4. Intact Automatic Imitation and Typical Spatial Compatibility in Autism Spectrum Disorder: Challenging the Broken Mirror Theory.

    Science.gov (United States)

    Sowden, Sophie; Koehne, Svenja; Catmur, Caroline; Dziobek, Isabel; Bird, Geoffrey

    2016-02-01

    A lack of imitative behavior is frequently described as a core feature of Autism Spectrum Disorder (ASD), and is consistent with claims of mirror neuron system dysfunction in these individuals. Previous research has questioned this characterization of ASD however, arguing that when tests of automatic imitation are used--which do not require higher-level cognitive processing--imitative behavior is intact or even enhanced in individuals with ASD. In Experiment 1, 60 adult individuals with ASD and a matched Control group completed an automatic imitation task in which they were required to perform an index or a middle finger lift while observing a hand making either the same, or the alternate, finger movement. Both groups demonstrated a significant imitation effect whereby actions were executed faster when preceded by observation of the same action, than when preceded by the alternate action. The magnitude of this "imitation effect" was statistically indistinguishable in the ASD and Control groups. Experiment 2 utilized an improved automatic imitation paradigm to demonstrate that, when automatic imitation effects are isolated from those due to spatial compatibility, increasing autism symptom severity is associated with an increased tendency to imitate. Notably, there was no association between autism symptom severity and spatial compatibility, demonstrating the specificity of the link between ASD symptoms and increased imitation. These results provide evidence against claims of a lack of imitative behavior in ASD, and challenge the "Broken Mirror Theory of Autism." © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Local Action Groups and Rural Sustainable Development. A spatial multiple criteria approach for efficient territorial planning

    DEFF Research Database (Denmark)

    Palmisano, Giovanni Ottomano; Govindan, M.E., PhD.,, Kannan; Boggia, Antonio

    2016-01-01

    Local Action Groups in order to promote the objectives of Rural Sustainable Development within rural municipalities. Each Local Action Group applies the Strengths, Weaknesses, Opportunities and Threats analysis in order to identify for its own rural municipalities the strategic elements to which...... and a Weakness factors and decision alternatives, as well as impossibility of ranking the decision alternatives. Thus, this research aims to overcome the drawbacks of the Strengths, Weaknesses, Opportunities and Threats analysis and to support Local Action Group partnerships in the sustainability evaluation...... of their rural municipalities, and therefore to aid the identification of a common Rural Sustainable Development strategy to allocate the European Agricultural Fund for Rural Development budget. This decision problem was tackled by applying a Multiple Criteria Spatial Decision Support System that integrates...

  6. Spatial analysis of binary health indicators with local smoothing techniques The Viadana study.

    Science.gov (United States)

    Girardi, Paolo; Marcon, Alessandro; Rava, Marta; Pironi, Vanda; Ricci, Paolo; de Marco, Roberto

    2012-01-01

    When pollution data from a monitoring network is not available, mapping the spatial distribution of disease can be useful to identify populations at risk and to suggest a potential role for suspected emission sources. We aimed at obtaining a continuous spatial representation of the prevalence of symptoms that are potentially associated with the exposure to the pollutants emitted from the wood factories in the children who live in the district of Viadana (Northern Italy). In 2006, all the parents of the children aged 3-14 years residing in the Viadana district (n = 3854), filled in a questionnaire on respiratory symptoms, irritation symptoms of the eyes and skin, use of health services. The children's residential addresses were also collected and geocoded. Generalized additive models and local weighted regression (LOWESS) were used to estimate the distribution of the symptoms, to test for spatial trends of the symptoms' prevalence and to control for potential confounders. Permutation tests were used to identify the areas of significantly increased risk ("hot spots"). The prevalence of respiratory symptoms, eye symptoms and the use of health services showed a statistically significant spatial variation (p big chipboard industries were located. Hot spots were identified fairly near to one of the two chipboard industries in the district. The north-to-south trend in the prevalence of respiratory and eye symptoms, but not of skin symptoms, as well as the location of hot spots, are consistent with the potential exposure to air pollutants both emitted by the wood factories and related to traffic. In these "high risk areas" monitoring of pollution and preventive actions are clearly needed. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  7. Spatial reconstruction of single-cell gene expression

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  8. Multi-information fusion sparse coding with preserving local structure for hyperspectral image classification

    Science.gov (United States)

    Wei, Xiaohui; Zhu, Wen; Liao, Bo; Gu, Changlong; Li, Weibiao

    2017-10-01

    The key question of sparse coding (SC) is how to exploit the information that already exists to acquire the robust sparse representations (SRs) of distinguishing different objects for hyperspectral image (HSI) classification. We propose a multi-information fusion SC framework, which fuses the spectral, spatial, and label information in the same level, to solve the above question. In particular, pixels from disjointed spatial clusters, which are obtained by cutting the given HSI in space, are individually and sparsely encoded. Then, due to the importance of spatial structure, graph- and hypergraph-based regularizers are enforced to motivate the obtained representations smoothness and to preserve the local consistency for each spatial cluster. The latter simultaneously considers the spectrum, spatial, and label information of multiple pixels that have a great probability with the same label. Finally, a linear support vector machine is selected as the final classifier with the learned SRs as input. Experiments conducted on three frequently used real HSIs show that our methods can achieve satisfactory results compared with other state-of-the-art methods.

  9. Radar spectrum opportunities for cognitive communications transmission

    OpenAIRE

    Wang, L; McGeehan, JP; Williams, C; Doufexi, A

    2008-01-01

    In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR...

  10. Spatial difference in genetic variation for fenitrothion tolerance between local populations of Daphnia galeata in Lake Kasumigaura, Japan.

    Science.gov (United States)

    Mano, Hiroyuki; Tanaka, Yoshinari

    2017-12-01

    This study examines the spatial difference in genetic variation for tolerance to a pesticide, fenitrothion, in Daphnia galeata at field sites in Lake Kasumigaura, Japan. We estimated genetic values of isofemale lines established from dormant eggs of D. galeata collected from field sampling sites with the toxicant threshold model applied using acute toxicity. We compared genetic values and variances and broad-sense heritability across different sites in the lake. Results showed that the mean tolerance values to fenitrothion did not differ spatially. The variance in genetic value and heritability of fenitrothion tolerance significantly differed between sampling sites, revealing that long-term ecological risk of fenitrothion may differ between local populations in the lake. These results have implications for aquatic toxicology research, suggesting that differences in genetic variation of tolerance to a chemical among local populations must be considered for understanding the long-term ecological risks of the chemical over a large geographic area.

  11. Spatial effects of Fano resonance in local tunneling conductivity in vicinity of impurity on semiconductor surface

    OpenAIRE

    Mantsevich, V. N.; Maslova, N. S.

    2009-01-01

    We present the results of local tunneling conductivity spatial distribution detailed theoretical investigations in vicinity of impurity atom for a wide range of applied bias voltage. We observed Fano resonance in tunneling conductivity resulting from interference between resonant tunneling channel through impurity energy level and direct tunneling channel between the tunneling contact leads. We have found that interference between tunneling channels strongly modifies form of tunneling conduct...

  12. Temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern based on image texture spectrum descriptor

    Science.gov (United States)

    Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin

    2009-11-01

    The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.

  13. The spatial distribution of known predictors of autism spectrum disorders impacts geographic variability in prevalence in central North Carolina

    Directory of Open Access Journals (Sweden)

    Hoffman Kate

    2012-10-01

    Full Text Available Abstract Background The causes of autism spectrum disorders (ASD remain largely unknown and widely debated; however, evidence increasingly points to the importance of environmental exposures. A growing number of studies use geographic variability in ASD prevalence or exposure patterns to investigate the association between environmental factors and ASD. However, differences in the geographic distribution of established risk and predictive factors for ASD, such as maternal education or age, can interfere with investigations of ASD etiology. We evaluated geographic variability in the prevalence of ASD in central North Carolina and the impact of spatial confounding by known risk and predictive factors. Methods Children meeting a standardized case definition for ASD at 8 years of age were identified through records-based surveillance for 8 counties biennially from 2002 to 2008 (n=532. Vital records were used to identify the underlying cohort (15% random sample of children born in the same years as children with an ASD, n=11,034, and to obtain birth addresses. We used generalized additive models (GAMs to estimate the prevalence of ASD across the region by smoothing latitude and longitude. GAMs, unlike methods used in previous spatial analyses of ASD, allow for extensive adjustment of individual-level risk factors (e.g. maternal age and education when evaluating spatial variability of disease prevalence. Results Unadjusted maps revealed geographic variation in surveillance-recognized ASD. Children born in certain regions of the study area were up to 1.27 times as likely to be recognized as having ASD compared to children born in the study area as a whole (prevalence ratio (PR range across the study area 0.57-1.27; global P=0.003. However, geographic gradients of ASD prevalence were attenuated after adjusting for spatial confounders (adjusted PR range 0.72-1.12 across the study area; global P=0.052. Conclusions In these data, spatial variation of ASD

  14. Spatial localization of speech segments

    DEFF Research Database (Denmark)

    Karlsen, Brian Lykkegaard

    1999-01-01

    loudspeakers were suspended so that they surrounded the subjects in the horizontal plane. The subjects were required to push a button on a pad indicating where they had localized the target to in the horizontal plane. The response pad had twelve buttons arranged uniformly in a circle and two further buttons so...... that the subjects could indicate if they had not heard the target or if they had heard it, but could not localize it. The model consists of three overall parts. One part assigns directional estimates to time-frequency components on the basis of interaural time difference and front/back templates. Another part does...

  15. Characterization of the spatial structure of local functional connectivity using multi-distance average correlation measures.

    Science.gov (United States)

    Macia, Didac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan

    2018-04-24

    There is ample evidence from basic research in neuroscience of the importance of local cortico-cortical networks. Millimetric resolution is achievable with current functional MRI (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of Iso-Distant local Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated iso-distant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using RGB color-coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multi-distance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multi-distance IDAC mapping was able to discriminate between gross anatomo-functional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and de-activate during audio-visual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.

  16. Local polar fluctuations in lead halide perovskites

    Science.gov (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  17. Sum Utilization of Spectrum with Spectrum Handoff and Imperfect Sensing in Interweave Multi-Channel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Waqas Khalid

    2018-05-01

    Full Text Available Fifth-generation (5G heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs as the primary user (PU is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs improve spectrum utilization by allowing opportunistic spectrum access (OSA for secondary users (SUs. The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.

  18. Assessment of damage localization based on spatial filters using numerical crack propagation models

    International Nuclear Information System (INIS)

    Deraemaeker, Arnaud

    2011-01-01

    This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.

  19. Design of a holographic micro-scale spectrum-splitting photovoltaic system

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Russo, Juan M.; Kostuk, Raymond K.

    2015-09-01

    Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.

  20. Neuromorphic infrared focal plane performs sensor fusion on-plane local-contrast-enhancement spatial and temporal filtering

    Science.gov (United States)

    Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.

    1993-08-01

    An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.

  1. Application of local singularity in prospecting potential oil/gas Targets

    Directory of Open Access Journals (Sweden)

    Zhengyu Bao

    2007-06-01

    Full Text Available Together with generalized self-similarity and the fractal spectrum, local singularity analysis has been introduced as one part of the new 3S principle and technique for mineral resource assessment based on multifractal modeling, which has been demonstrated to be useful for anomaly delineation. Local singularity is used in this paper to characterize the property of multifractal distribution patterns of geochemical indexes to delineate potential areas for oil/gas exploration using the advanced GeoDAS GIS technology. Geochemical data of four oil/gas indexes, consisting of acid-extracted methane (SC1, ethane (SC2, propane (SC3, and secondary carbonate (ΔC, from 9637 soil samples amassed within a large area of 11.2×104 km2 in the Songpan-Aba district, Sichuan Province, southwestern China, were analyzed. By eliminating the interference of geochemical oil/gas data with the method of media-modification and Kriging, the prospecting area defined by the local singularity model is better identified and the results show that the subareas with higher singularity exponents for the four oil/gas indexes are potential targets for oil/gas exploration. These areas in the shape of rings or half-rings are spatially associated with the location of the known producing drilling well in this area. The spatial relationship between the anomalies delineated by oil/gas geochemical data and distribution patterns of local singularity exponents is confirmed by using the stable isotope of δ13C.

  2. Spatial reconstruction of single-cell gene expression data.

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  3. A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

    Science.gov (United States)

    Yu, Haiyan; Fan, Jiulun

    2017-12-01

    Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.

  4. Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches

    NARCIS (Netherlands)

    Helbich, M; Griffith, D

    2016-01-01

    Real estate policies in urban areas require the recognition of spatial heterogeneity in housing prices to account for local settings. In response to the growing number of spatially varying coefficient models in housing applications, this study evaluated four models in terms of their spatial patterns

  5. High-spatial-resolution localization algorithm based on cascade deconvolution in a distributed Sagnac interferometer invasion monitoring system.

    Science.gov (United States)

    Pi, Shaohua; Wang, Bingjie; Zhao, Jiang; Sun, Qi

    2016-10-10

    In the Sagnac fiber optic interferometer system, the phase difference signal can be illustrated as a convolution of the waveform of the invasion with its occurring-position-associated transfer function h(t); deconvolution is introduced to improve the spatial resolution of the localization. In general, to get a 26 m spatial resolution at a sampling rate of 4×106  s-1, the algorithm should mainly go through three steps after the preprocessing operations. First, the decimated phase difference signal is transformed from the time domain into the real cepstrum domain, where a probable region of invasion distance can be ascertained. Second, a narrower region of invasion distance is acquired by coarsely assuming and sweeping a transfer function h(t) within the probable region and examining where the restored invasion waveform x(t) gets its minimum standard deviation. Third, fine sweeping the narrow region point by point with the same criteria is used to get the final localization. Also, the original waveform of invasion can be restored for the first time as a by-product, which provides more accurate and pure characteristics for further processing, such as subsequent pattern recognition.

  6. Resource Distribution Approaches in Spectrum Sharing Systems

    Directory of Open Access Journals (Sweden)

    Friedrich K. Jondral

    2008-05-01

    Full Text Available It is increasingly difficult to satisfy growing demands for spectrum with the conventional policy of fixed spectrum allocation. To overcome this problem, flexible/dynamic spectrum sharing methods that can significantly improve spectrum utilization of the spectrum have gained increasing interest recently. This paper presents two dynamic spectrum sharing approaches, a centralized and a decentralized one. The centralized approach is based on hierarchical trading. Each level of hierarchy is composed of “markets” that are associated with a certain spatial area and trading occurrence frequency, whereas area size and trading occurrence frequency depend on the hierarchy level. The decentralized approach is based on game-theory. There, it is assumed that the operators are averse to unequal payoffs and act unselfishly, enabling a stable and sustainable community. Numerical results show that, in the observed scenario, both proposals outperform the reference case of fixed resource allocation significantly in terms of utilized bandwidth. Whereas, negotiation costs for spectrum brokerage appear in the centralized approach, nonnegligible amounts of spectrum are lost in the decentralized approach due to collisions. Thus, a hybrid of centralized and decentralized approach that exploits the benefits of both is also considered.

  7. One-way spatial integration of Navier-Stokes equations: stability of wall-bounded flows

    Science.gov (United States)

    Rigas, Georgios; Colonius, Tim; Towne, Aaron; Beyar, Michael

    2016-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, a regularization of the equations of motion sometimes permits a fast spatial marching procedure that results in a huge reduction in computational cost. Recently, a novel one-way spatial marching algorithm has been developed by Towne & Colonius. The new method overcomes the principle flaw observed in Parabolized Stability Equations (PSE), namely the ad hoc regularization that removes upstream propagating modes. The one-way method correctly parabolizes the flow equations based on estimating, in a computationally efficient way, the local spectrum in each cross-stream plane and an efficient spectral filter eliminates modes with upstream group velocity. Results from the application of the method to wall-bounded flows will be presented and compared with predictions from the full linearized compressible Navier-Stokes equations and PSE.

  8. Where spatial capacity building and spatial decision making meet. Publically debating participatory spatial planning via a newspaper.

    OpenAIRE

    Huybrechts, Liesbeth; Martens, Sarah; Devisch, Oswald

    2015-01-01

    This article reports on the in-between results of a Participatory Design research process in spatial planning in Godsheide, a small village in the Belgian Region of Limburg. The research explores how the language of newspapers enables citizens, policy makers, property developers and local organisations to build capacities (cfr. spatial capacity building) in ‘scripting’ their reflections on, but also actions in spatial change. In the heads of our participants, there existed a duality between -...

  9. Spatial econometrics using microdata

    CERN Document Server

    Dubé, Jean

    2014-01-01

    This book provides an introduction to spatial analyses concerning disaggregated (or micro) spatial data.Particular emphasis is put on spatial data compilation and the structuring of the connections between the observations. Descriptive analysis methods of spatial data are presented in order to identify and measure the spatial, global and local dependency.The authors then focus on autoregressive spatial models, to control the problem of spatial dependency between the residues of a basic linear statistical model, thereby contravening one of the basic hypotheses of the ordinary least squares appr

  10. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    Science.gov (United States)

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  11. Local visual perception bias in children with high-functioning autism spectrum disorders; do we have the whole picture?

    Science.gov (United States)

    Falkmer, Marita; Black, Melissa; Tang, Julia; Fitzgerald, Patrick; Girdler, Sonya; Leung, Denise; Ordqvist, Anna; Tan, Tele; Jahan, Ishrat; Falkmer, Torbjorn

    2016-01-01

    While local bias in visual processing in children with autism spectrum disorders (ASD) has been reported to result in difficulties in recognizing faces and facially expressed emotions, but superior ability in disembedding figures, associations between these abilities within a group of children with and without ASD have not been explored. Possible associations in performance on the Visual Perception Skills Figure-Ground test, a face recognition test and an emotion recognition test were investigated within 25 8-12-years-old children with high-functioning autism/Asperger syndrome, and in comparison to 33 typically developing children. Analyses indicated a weak positive correlation between accuracy in Figure-Ground recognition and emotion recognition. No other correlation estimates were significant. These findings challenge both the enhanced perceptual function hypothesis and the weak central coherence hypothesis, and accentuate the importance of further scrutinizing the existance and nature of local visual bias in ASD.

  12. Nonlocal matching condition and scale-invariant spectrum in bouncing cosmology

    International Nuclear Information System (INIS)

    Chu, C.-S.; Furuta, K.; Lin, F.-L.

    2006-01-01

    In cosmological scenarios such as the pre-big bang scenario or the ekpyrotic scenario, a matching condition between the metric perturbations in the pre-big bang phase and those in the post big bang phase is often assumed. Various matching conditions have been considered in the literature. Nevertheless obtaining a scale-invariant CMB spectrum via a concrete mechanism remains impossible. In this paper, we examine this problem from the point of view of local causality. We begin with introducing the notion of local causality and explain how it constrains the form of the matching condition. We then prove a no-go theorem: independent of the details of the matching condition, a scale-invariant spectrum is impossible as long as the local causality condition is satisfied. In our framework, it is easy to show that a violation of local causality around the bounce is needed in order to give a scale-invariant spectrum. We study a specific scenario of this possibility by considering a nonlocal effective theory inspired by noncommutative geometry around the bounce and show that a scale-invariant spectrum is possible. Moreover we demonstrate that the magnitude of the spectrum is compatible with observations if the bounce is assumed to occur at an energy scale which is a few orders of magnitude below the Planckian energy scale

  13. Spatial hole burning and spectral stability of a quantum-dot laser

    International Nuclear Information System (INIS)

    Savelyev, A. V.; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E.

    2015-01-01

    The inhomogeneous intensity distribution of the optical model along the axis of a semiconductor quantum-dot laser results in spatial hole burning. The influence of this phenomenon on the stability of the multifrequency emission spectrum is studied when the optical transition of the quantum dots is characterized by considerable homogeneous broadening. The results of two models—in which inhomogeneous broadening is disregarded and taken into account—regarding the stability of the radiation spectrum under the influence of slight variation of the spectral loss dependence in the resonator are compared. Inhomogeneous distribution of the charge carriers (spatial hole burning) is found to be a critical factor in determining the form and stability of the spectrum

  14. Spatial hole burning and spectral stability of a quantum-dot laser

    Energy Technology Data Exchange (ETDEWEB)

    Savelyev, A. V., E-mail: savelev@mail.ioffe.ru; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E. [Russian Academy of Sciences, Nanotechnology Center, St. Petersburg Academic University (Russian Federation)

    2015-11-15

    The inhomogeneous intensity distribution of the optical model along the axis of a semiconductor quantum-dot laser results in spatial hole burning. The influence of this phenomenon on the stability of the multifrequency emission spectrum is studied when the optical transition of the quantum dots is characterized by considerable homogeneous broadening. The results of two models—in which inhomogeneous broadening is disregarded and taken into account—regarding the stability of the radiation spectrum under the influence of slight variation of the spectral loss dependence in the resonator are compared. Inhomogeneous distribution of the charge carriers (spatial hole burning) is found to be a critical factor in determining the form and stability of the spectrum.

  15. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  16. Spatial navigation, episodic memory, episodic future thinking, and theory of mind in children with autism spectrum disorder: evidence for impairments in mental simulation?

    Science.gov (United States)

    Lind, Sophie E; Bowler, Dermot M; Raber, Jacob

    2014-01-01

    This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the "memory island" task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the "animations" task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.

  17. Spatial navigation, episodic memory, episodic future thinking, and theory of mind in children with autism spectrum disorder: Evidence for impairments in mental simulation?

    Directory of Open Access Journals (Sweden)

    Sophie Elizabeth Lind

    2014-12-01

    Full Text Available This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation, and which we hypothesised may be impaired in autism spectrum disorder (ASD. Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection, theory of mind, relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the memory island task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. Theory of mind was assessed using the animations task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings, patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not theory of mind or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to number of repetitive behaviours. In other words, children who showed more repetitive behaviours showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.

  18. Spatial navigation, episodic memory, episodic future thinking, and theory of mind in children with autism spectrum disorder: evidence for impairments in mental simulation?

    Science.gov (United States)

    Lind, Sophie E.; Bowler, Dermot M.; Raber, Jacob

    2014-01-01

    This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the “memory island” task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the “animations” task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed. PMID:25538661

  19. When local extinction and colonization of river fishes can be predicted by regional occupancy: the role of spatial scales.

    Directory of Open Access Journals (Sweden)

    Benjamin Bergerot

    Full Text Available Predicting which species are likely to go extinct is perhaps one of the most fundamental yet challenging tasks for conservation biologists. This is particularly relevant for freshwater ecosystems which tend to have the highest proportion of species threatened with extinction. According to metapopulation theories, local extinction and colonization rates of freshwater subpopulations can depend on the degree of regional occupancy, notably due to rescue effects. However, relationships between extinction, colonization, regional occupancy and the spatial scales at which they operate are currently poorly known.And Findings: We used a large dataset of freshwater fish annual censuses in 325 stream reaches to analyse how annual extinction/colonization rates of subpopulations depend on the regional occupancy of species. For this purpose, we modelled the regional occupancy of 34 fish species over the whole French river network and we tested how extinction/colonization rates could be predicted by regional occupancy described at five nested spatial scales. Results show that extinction and colonization rates depend on regional occupancy, revealing existence a rescue effect. We also find that these effects are scale dependent and their absolute contribution to colonization and extinction tends to decrease from river section to larger basin scales.In terms of management, we show that regional occupancy quantification allows the evaluation of local species extinction/colonization dynamics and reduction of local extinction risks for freshwater fish species implies the preservation of suitable habitats at both local and drainage basin scales.

  20. When local extinction and colonization of river fishes can be predicted by regional occupancy: the role of spatial scales.

    Science.gov (United States)

    Bergerot, Benjamin; Hugueny, Bernard; Belliard, Jérôme

    2013-01-01

    Predicting which species are likely to go extinct is perhaps one of the most fundamental yet challenging tasks for conservation biologists. This is particularly relevant for freshwater ecosystems which tend to have the highest proportion of species threatened with extinction. According to metapopulation theories, local extinction and colonization rates of freshwater subpopulations can depend on the degree of regional occupancy, notably due to rescue effects. However, relationships between extinction, colonization, regional occupancy and the spatial scales at which they operate are currently poorly known. And Findings: We used a large dataset of freshwater fish annual censuses in 325 stream reaches to analyse how annual extinction/colonization rates of subpopulations depend on the regional occupancy of species. For this purpose, we modelled the regional occupancy of 34 fish species over the whole French river network and we tested how extinction/colonization rates could be predicted by regional occupancy described at five nested spatial scales. Results show that extinction and colonization rates depend on regional occupancy, revealing existence a rescue effect. We also find that these effects are scale dependent and their absolute contribution to colonization and extinction tends to decrease from river section to larger basin scales. In terms of management, we show that regional occupancy quantification allows the evaluation of local species extinction/colonization dynamics and reduction of local extinction risks for freshwater fish species implies the preservation of suitable habitats at both local and drainage basin scales.

  1. Estimation of local spectrum content of cervical cancer-related features via two dimensional method of geometric restriction in frequency domain

    International Nuclear Information System (INIS)

    Van Raad, V.

    2004-01-01

    Digital colposcopy is an emerging new technology, which can be used as adjunct to the conventional Pap test for staging of cervical cancer and it can improve the diagnostic accuracy of the test. Computer aided diagnosis (CAD) in digital colposcopy has as a goal to segment and outline abnormal areas on the cervix, one of which is an important anatomical landmark on the ectocervix - the transformation zone (TZ). In this paper we proposed a new method for estimation of the local spectrum features of cervical cancer in vivo. We used a 2D method to estimate the energy of the local frequency bands, using a geometric restriction (GR). In the current work we reported up to 12 dB difference between the local power spectral density content of the region of interest (ROI) and (ROI) C for the mid-frequency band. We devised a method to present pseudo-color visual maps of the cervical images, useful for CAD and successful ROI segmentation. (author)

  2. An Effective Strategy to Build Up a Balanced Test Suite for Spectrum-Based Fault Localization

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-01-01

    Full Text Available During past decades, many automated software faults diagnosis techniques including Spectrum-Based Fault Localization (SBFL have been proposed to improve the efficiency of software debugging activity. In the field of SBFL, suspiciousness calculation is closely related to the number of failed and passed test cases. Studies have shown that the ratio of the number of failed and passed test case has more significant impact on the accuracy of SBFL than the total number of test cases, and a balanced test suite is more beneficial to improving the accuracy of SBFL. Based on theoretical analysis, we proposed an PNF (Passed test cases, Not execute Faulty statement strategy to reduce test suite and build up a more balanced one for SBFL, which can be used in regression testing. We evaluated the strategy making experiments using the Siemens program and Space program. Experiments indicated that our PNF strategy can be used to construct a new test suite effectively. Compared with the original test suite, the new one has smaller size (average 90% test case was reduced in experiments and more balanced ratio of failed test cases to passed test cases, while it has the same statement coverage and fault localization accuracy.

  3. On the local field method with the account of spatial dispersion. Application to the optical activity theory

    Science.gov (United States)

    Tyu, N. S.; Ekhilevsky, S. G.

    1992-07-01

    For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.

  4. Investigation on the spatial evolution of the emission spectra in laser-induced Ni plasmas

    International Nuclear Information System (INIS)

    Du Chuanmei; Xu Ying; Zhang Mingxu

    2012-01-01

    In this paper, the spatial resolved emission spectrum of Ni atom in laser induced Ni plasma is measured in the wavelength region from 350 nm to 600 nm. The spatial evolution of the relative intensities and the Stark broadening of the 385.83 nm emission spectrum lines are also obtained. It is shown that Stark broadening and intensity of the spectrum lines increases firstly to its maximum and then de- creases along the direction of laser beam when the distance from the target surface is in the range from 0 to 2.5 mm. The maximum value of Stark broadening and relative intensity of the spectrum lines appear at 1.5 mm from the target surface. (authors)

  5. Fractional power-law spatial dispersion in electrodynamics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.; Trujillo, Juan J.

    2013-01-01

    Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type. -- Highlights: •Plasma-like non-local media with power-law spatial dispersion. •Fractional differential equations for electric fields in the media. •The generalizations of Coulomb’s law and Debye’s screening for the media

  6. Measures with locally finite support and spectrum.

    Science.gov (United States)

    Meyer, Yves F

    2016-03-22

    The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.

  7. Spatial dispersion in atom-surface quantum friction

    International Nuclear Information System (INIS)

    Reiche, D.; Dalvit, D. A. R.; Busch, K.; Intravaia, F.

    2017-01-01

    We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change not only the magnitude but also the distance scaling of quantum friction.

  8. Quantum-classical correspondence for the Fourier spectrum of a trajectory

    International Nuclear Information System (INIS)

    Heller, E.J.

    1983-01-01

    Using a displaced localized wavepacket (coherent state) as a quantum analog to a classical trajectory, we examine the Fourier spectrum of the expectation value of position Xsub(t)sup(Q), and compare it with the classical Fourier spectrum of position Xsub(t). In both the quasiperiodic and chaotic regimes, a strong classical-quantum correspondence exists in the Fourier spectrum. However, the quantum spectrum has certain interesting features not present in the classical case. (orig.)

  9. Spatial Theography

    OpenAIRE

    van Noppen, Jean Pierre

    1995-01-01

    Descriptive theology («theography») frequently resorts to metaphorical modes of meaning. Among these metaphors, the spatial language of localization and orientation plays an important role to delineate tentative insights into the relationship between the human and the divine. These spatial metaphors are presumably based on the universal human experience of interaction between the body and its environment. It is dangerous, however, to postulate universal agreement on meanings associated with s...

  10. Positron emission tomographic localization of left-sided unilateral spatial agnosia

    International Nuclear Information System (INIS)

    Tagawa, Koichi; Nagata, Ken; Shishido, Fumio; Uemura, Kazuo

    1986-01-01

    Positron emission tomography (PET) was used to clarify the localization and the underlying mechanisms of left-sided unilateral spatial agnosia (LUSA). Eleven right-handed patients with cerebral infarction in the territory of the right middle cerebral artery who had LUSA were included in this study. Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) were measured with PET using 15 O steady state method. Sixteen right-handed patients with cerebral infarction who did not exhibit LUSA served as a control group. The mean local values of CBF and CMRO 2 in the control group were 37.4 ml/100 ml tissue/min and 2.66 ml/100 ml tissue/min, respectively. By contrast, those values of CBF and CMRO 2 in the patients with LUSA were 21.7 ml/100 ml tissue/min and 1.43 ml/100 ml tissue/min, respectively. Both CBF and CMRO 2 in the right posterior parietal region were significantly lower in the patients with LUSA as compared with the control group (p 2 between 1.8 and 2.2 ml/100 ml tissue/min. These ranges of CBF and CMRO 2 in the right parietal region were considered to include the threshold level producing LUSA. The CMRO 2 values were more stabilized in the course of cerebral infarction as compared with the CBF values which may be variable on account of luxury perfusion syndrome. The right posterior parietal CMRO 2 values less than 2.0 ml/100 ml tissue/min was considered to be critical in causing LUSA. The above results may suggest that severe damages of CBF and metabolism in the posterior part of the right parietal lobe play an important role in the occurrence of LUSA. (J.P.N.)

  11. [Study on phase correction method of spatial heterodyne spectrometer].

    Science.gov (United States)

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  12. Dynamical versus diffraction spectrum for structures with finite local complexity

    NARCIS (Netherlands)

    Baake, Michael; Lenz, Daniel; van Enter, Aernout

    2015-01-01

    It is well known that the dynamical spectrum of an ergodic measure dynamical system is related to the diffraction measure of a typical element of the system. This situation includes ergodic subshifts from symbolic dynamics as well as ergodic Delone dynamical systems, both via suitable embeddings.

  13. Local Cultural Heritage Sites and Spatial Planning for the Bantik Ethnic Community in Indonesia

    Directory of Open Access Journals (Sweden)

    Egam, P. P.

    2014-07-01

    Full Text Available The course of a city’s development has an effect on both spatial and social aspects, and this situation affects ethnic communities. As a result of recent urban developments, the cultural values of a community that are embedded in living arrangements have been disturbed, thus obscuring, or even hiding, the rich cultural heritage therein. The purpose of this paper is to analyze the spatial characteristics of local neighborhoods based on a wealth of cultural heritage objects. This research focuses on the physical cultural heritage of the Bantik settlement in Malalayang. The spatial characteristics of cultural heritage objects are analyzed, based on physical and other characteristics. The results indicate that, although the Bantik ethnic community in Malalayang, Indonesia, has physical cultural heritage sites, it is unable to effectively develop these as significant cultural spaces because of the physical separation of their locations, the declining meaning of these sites to the community, and the lack of support from indigenous organizations. Distance is not the only determinant of the optimization of cultural space. Planning for cultural spaces involves three zones: 1 a promotion zone, 2 a core zone, and 3 a buffer zone. The greatest potential for developing a cultural space is in the vicinity of Minanga Road and the Niopo Stone, with the physical object reinforcement of similar sites. To improve cultural space, it is not enough to only rely on the existence of a physical object, it is necessary to create a close relationship between the object and the community with the support of indigenous organizations.

  14. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906–1909: evaluating local clustering with the Gi* statistic

    Directory of Open Access Journals (Sweden)

    Curtis Andrew

    2006-03-01

    Full Text Available Abstract Background To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May – 31 October 1906 – 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. Results The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. Conclusion The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century.

  15. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region

    Directory of Open Access Journals (Sweden)

    Xihua Yang

    2015-01-01

    Full Text Available This paper presents spatial interpolation techniques to produce finer-scale daily rainfall data from regional climate modeling. Four common interpolation techniques (ANUDEM, Spline, IDW, and Kriging were compared and assessed against station rainfall data and modeled rainfall. The performance was assessed by the mean absolute error (MAE, mean relative error (MRE, root mean squared error (RMSE, and the spatial and temporal distributions. The results indicate that Inverse Distance Weighting (IDW method is slightly better than the other three methods and it is also easy to implement in a geographic information system (GIS. The IDW method was then used to produce forty-year (1990–2009 and 2040–2059 time series rainfall data at daily, monthly, and annual time scales at a ground resolution of 100 m for the Greater Sydney Region (GSR. The downscaled daily rainfall data have been further utilized to predict rainfall erosivity and soil erosion risk and their future changes in GSR to support assessments and planning of climate change impact and adaptation in local scale.

  16. ENVIRONMENTAL SECURITY IN THE REGION IN THE SERVICE OF SUSTAINABLE DEVELOPMENT OF LOCAL SPATIAL

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2016-04-01

    Full Text Available A fundamental prerequisite for the existence, growth and development of each social community is environmental safety. In modern conditions of environmental degradation as a global process, it is bound to increase social stratification, ethnic and even religious conflict, conflict and intolerance that threatens the safety of society. It is a notorious fact that the world of Simply is no longer in a position to deal with new shocks. The financial crisis has reduced global economic resilience, while geopolitical tensions and increased social concerns point to the fact that the state and society less able than ever to cope with global challenges, among which is the primary problem of environmental security. In modern countries, political, security and other interests of the citizens' day-to-day modeling, transform, get the content, in accordance with the general civilization changes. In this connection, sustainable local spatial development is crucial conditioned ecological without security region and aims to achieve a balance between current consumption of natural resources and the ability of the system to maintain the level at which future generations will be able to use them. The work represents a contribution to the achievement of environmental security as a new, modern forms of security, and originated from the need to once again draw attention to the evident environmental degradation as an integral part of human security. Ecological security of the region protects the basic components of the environment and determinants of the local spatial development. In fact, safety in the field of protection and preservation of the environment is one of the most important factors Security Council shall contemporary world. In doing so, it is important to emphasize, however, that environmental security has no borders and is a global problem, a task and an obligation.

  17. A fast computation method for MUSIC spectrum function based on circular arrays

    Science.gov (United States)

    Du, Zhengdong; Wei, Ping

    2015-02-01

    The large computation amount of multiple signal classification (MUSIC) spectrum function seriously affects the timeliness of direction finding system using MUSIC algorithm, especially in the two-dimensional directions of arrival (DOA) estimation of azimuth and elevation with a large antenna array. This paper proposes a fast computation method for MUSIC spectrum. It is suitable for any circular array. First, the circular array is transformed into a virtual uniform circular array, in the process of calculating MUSIC spectrum, for the cyclic characteristics of steering vector, the inner product in the calculation of spatial spectrum is realised by cyclic convolution. The computational amount of MUSIC spectrum is obviously less than that of the conventional method. It is a very practical way for MUSIC spectrum computation in circular arrays.

  18. Upper bounds for Neyman-Pearson cooperative spectrum sensing

    KAUST Repository

    Zahabi, Sayed Jalal; Tadaion, Ali Akbar; Aissa, Sonia

    2011-01-01

    We consider a cooperative spectrum sensing scenario where the local sensors at the secondary users are viewed as one-level quantizers, and the quantized data are to be fused under Neyman-Pearson (N-P) criterion. We demonstrate how the N-P fusion results in a randomized test, which represents the total performance of our spectrum sensing scheme. We further introduce an upper performance bound for the overall primary user signal detection. An analytical procedure towards the upper bound and its relevant quantization setup at the local sensors are proposed and examined through simulations. © 2011 IEEE.

  19. Upper bounds for Neyman-Pearson cooperative spectrum sensing

    KAUST Repository

    Zahabi, Sayed Jalal

    2011-06-01

    We consider a cooperative spectrum sensing scenario where the local sensors at the secondary users are viewed as one-level quantizers, and the quantized data are to be fused under Neyman-Pearson (N-P) criterion. We demonstrate how the N-P fusion results in a randomized test, which represents the total performance of our spectrum sensing scheme. We further introduce an upper performance bound for the overall primary user signal detection. An analytical procedure towards the upper bound and its relevant quantization setup at the local sensors are proposed and examined through simulations. © 2011 IEEE.

  20. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  1. Environmentally Friendly Concept in Spatial Regulation

    Directory of Open Access Journals (Sweden)

    T Taryono

    2004-01-01

    Full Text Available Spatial order of a region include purpose of structure and interrelatedness of spatial order which as a unity of development mechanism. Spatial order can’t be part from law basic that is UUD’45 and GBHN, in order to the management can be integrated and keep the environment. Spatial order also take note of physical factor and non physical factor. Physical factor consist of soil, water, flora, and fauna. Non physical factors consist of environment, social, economic, and soon. The principle of arrangement of spatial order in a region include national region, regional and local, and a region as an administrative baoundary, that is local government authority, like province, district, subdistrict, and village. The effort for spatial ordering of the environment, for example ordering resource, arrangement of allocation and location, arrangement of environmental aesthetic  and arrangement of environmental quality.

  2. Impurity effect on spectrum of nanoring

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, W; Garcia, L F; Mikhailov, I D, E-mail: willigun@gmail.co [Escuela de Fisica, Universidad Industrial de Santander, Colombia A.A. 678 (Colombia)

    2009-05-01

    The effect of the donor position on the energy levels and far-infrared spectrum of a finite-barrier toroidal-shaped quantum ring in the presence of the external magnetic field applied along the axis is studied. It is shown that the displacement of the donor from the centre toward the ring produces a localization of the low lying states, quenching of the Aharonov- Bohm oscillations of the corresponding levels and a drastic modification of the far-infrared spectrum.

  3. Trajectories of Smooth: The Multidimensionality of Spatial Relations and Autism Spectrum

    Science.gov (United States)

    Reddington, Sarah; Price, Deborah

    2017-01-01

    This paper examines how two men with autism spectrum (AS) experience educational spaces having attended public school in Nova Scotia, Canada. Smooth and striated space is mobilised as the main conceptual framework to account for the men's affectivities when experiencing the educational terrain. The central aim when applying smooth and striated…

  4. Singular spectrum analysis, Harmonic regression and El-Nino effect ...

    Indian Academy of Sciences (India)

    42

    Keywords: Total ozone; Singular Spectrum Analysis; Spatial interpolation; Multivariate ENSO .... needed for a whole gamut of activities that contribute to the ultimate synthesis ..... −0.0009 3 + 0.0581 2 − 1.0123 + 7.3246, 2 = 0.53…

  5. Evidence of Reduced Global Processing in Autism Spectrum Disorder

    Science.gov (United States)

    Booth, Rhonda D. L.; Happé, Francesca G. E.

    2018-01-01

    Frith's original notion of 'weak central coherence' suggested that increased local processing in autism spectrum disorder (ASD) resulted from reduced global processing. More recent accounts have emphasised superior local perception and suggested intact global integration. However, tasks often place local and global processing in direct trade-off,…

  6. Localized and periodic exact solutions to the nonlinear Schroedinger equation with spatially modulated parameters: Linear and nonlinear lattices

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2009-01-01

    Using similarity transformations we construct explicit solutions of the nonlinear Schroedinger equation with linear and nonlinear periodic potentials. We present explicit forms of spatially localized and periodic solutions, and study their properties. We put our results in the framework of the exploited perturbation techniques and discuss their implications on the properties of associated linear periodic potentials and on the possibilities of stabilization of gap solitons using polychromatic lattices.

  7. La question locale comme nouvelle frontière socio-spatiale

    Directory of Open Access Journals (Sweden)

    Christophe Gibout

    2009-06-01

    Full Text Available Partant de l’objet football socialement reconnu et de deux formes de pratique préalablement identifiées – pratiques fédérale et de « pied d’immeuble » – notre travail interroge l’influence et l’importance de la localisation dans la définition formelle des pratiques et la compréhension de leurs logiques identitaires. Parce que les pratiquants déploient des « arts de faire » singuliers sur un territoire jouant le rôle de lien et de liant, notre enquête montre que la dichotomie rural/urbain ne semble plus aujourd’hui heuristiquement pertinente pour comprendre le construit de la pratique sportive. Dès lors émerge la question locale – celle du « chez soi » – comme élément central de la construction sociale de la pratique sportive ; en témoigne la réalité d’une autre forme de football, non exclusive des deux autres : le football « sauvage ».The local question as a new socio-spatial frontierBeyond opposition between urban and rural soccer: the “at home” oneOn the basis of socially recognized football and of two beforehand identified forms of practice – official soccer and football played at the foot of one's building – our work questions the influence and the importance of the localization in the definition of the practices and in the comprehension of their identity logics. Because of the players use « second hand habits » on a territory playing the part of bond and binder, our investigation shows that the rural/urban dichotomy doesn’t seem any more relevant today to understand the construction of sport’s practice. Consequently emerges the local question – the one of « at home » – as central element of the social construction of the sport’s practice as testified to the reality of another form of football, nonexclusive of both others: « wild » football.Lo local como nueva frontera socio-espacialMas allá de la oposición entre el futbol urbano y el futbol rural

  8. The infrared spectrum of Jupiter

    Science.gov (United States)

    Ridgway, S. T.; Larson, H. P.; Fink, U.

    1976-01-01

    The principal characteristics of Jupiter's infrared spectrum are reviewed with emphasis on their significance for our understanding of the composition and temperature structure of the Jovian upper atmosphere. The spectral region from 1 to 40 microns divides naturally into three regimes: the reflecting region, thermal emission from below the cloud deck (5-micron hot spots), and thermal emission from above the clouds. Opaque parts of the Jovian atmosphere further subdivide these regions into windows, and each is discussed in the context of its past or potential contributions to our knowledge of the planet. Recent results are incorporated into a table of atmospheric composition and abundance which includes positively identified constituents as well as several which require verification. The limited available information about spatial variations of the infrared spectrum is presented

  9. Probing Mantle Heterogeneity Across Spatial Scales

    Science.gov (United States)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long

  10. Fault Diagnosis of Rotating Machinery Based on the Multiscale Local Projection Method and Diagonal Slice Spectrum

    Directory of Open Access Journals (Sweden)

    Yong Lv

    2018-04-01

    Full Text Available The vibration signals of bearings and gears measured from rotating machinery usually have nonlinear, nonstationary characteristics. The local projection algorithm cannot only reduce the noise of the nonlinear system, but can also preserve the nonlinear deterministic structure of the signal. The influence of centroid selection on the performance of noise reduction methods is analyzed, and the multiscale local projection method of centroid was proposed in this paper. This method considers both the geometrical shape and statistical error of the signal in high dimensional phase space, which can effectively eliminate the noise and preserve the complete geometric structure of the attractors. The diagonal slice spectrum can identify the frequency components of quadratic phase coupling and enlarge the coupled frequency component in the nonlinear signal. Therefore, the proposed method based on the above two algorithms can achieve more accurate results of fault diagnosis of gears and rolling bearings. The simulated signal is used to verify its effectiveness in a numerical simulation. Then, the proposed method is conducted for fault diagnosis of gears and rolling bearings in application researches. The fault characteristics of faulty bearings and gears can be extracted successfully in the researches. The experimental results indicate the effectiveness of the novel proposed method.

  11. Spatial and kinematic structure of Monoceros star-forming region

    Science.gov (United States)

    Costado, M. T.; Alfaro, E. J.

    2018-05-01

    The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively.

  12. A Spectrum Allocation Mechanism Based on HJ-DQPSO for Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhu Jiang

    2015-11-01

    Full Text Available In cognitive radio network model consisting of secondary users and primary users, in order to solve the difficult multi-objective spectrum allocation issue about maximizing network efficiency and users’ fairness to access network, this paper proposes a new discrete multi-objective combinatorial optimization mechanism—HJ-DQPSO based on Hooke Jeeves (HJ and Quantum Particle Swarm Optimization (QPSO algorithm. The mechanism adopts HJ algorithm to local search to prevent falling into the local optimum, and proposes a discrete QPSO algorithm to match the discrete spectrum assignment model. The mechanism has the advantages of approximating optimal solution, rapid convergence, less parameters, avoiding falling into local optimum. Compared with existing spectrum assignment algorithms, the simulation results show that according to different optimization objectives, the HJ-DQPSO optimization mechanism for multi-objective optimization can better approximate optimal solution and converge fast. We can obtain a reasonable spectrum allocation scheme in the case of satisfying multiple optimization objectives.

  13. Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit

    International Nuclear Information System (INIS)

    McCullough, P. R.; Crouzet, N.; Deming, D.; Madhusudhan, N.

    2014-01-01

    We report near-infrared spectroscopy of the gas giant planet HD 189733b in transit. We used the Hubble Space Telescope Wide Field Camera 3 (HST WFC3) with its G141 grism covering 1.1 μm to 1.7 μm and spatially scanned the image across the detector at 2'' s –1 . When smoothed to 75 nm bins, the local maxima of the transit depths in the 1.15 μm and 1.4 μm water vapor features are, respectively, 83 ± 53 ppm and 200 ± 47 ppm greater than the local minimum at 1.3 μm. We compare the WFC3 spectrum with the composite transit spectrum of HD 189733b assembled by Pont et al., extending from 0.3 μm to 24 μm. Although the water vapor features in the WFC3 spectrum are compatible with the model of non-absorbing, Rayleigh-scattering dust in the planetary atmosphere, we also re-interpret the available data with a clear planetary atmosphere. In the latter interpretation, the slope of increasing transit depth with shorter wavelengths from the near infrared, through the visible, and into the ultraviolet is caused by unocculted star spots, with a smaller contribution of Rayleigh scattering by molecular hydrogen in the planet's atmosphere. At relevant pressures along the terminator, our model planetary atmosphere's temperature is ∼700 K, which is below the condensation temperatures of sodium- and potassium-bearing molecules, causing the broad wings of the spectral lines of Na I and K I at 0.589 μm and 0.769 μm to be weak.

  14. Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, P. R.; Crouzet, N. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Deming, D. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Madhusudhan, N., E-mail: pmcc@stsci.edu [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States)

    2014-08-10

    We report near-infrared spectroscopy of the gas giant planet HD 189733b in transit. We used the Hubble Space Telescope Wide Field Camera 3 (HST WFC3) with its G141 grism covering 1.1 μm to 1.7 μm and spatially scanned the image across the detector at 2'' s{sup –1}. When smoothed to 75 nm bins, the local maxima of the transit depths in the 1.15 μm and 1.4 μm water vapor features are, respectively, 83 ± 53 ppm and 200 ± 47 ppm greater than the local minimum at 1.3 μm. We compare the WFC3 spectrum with the composite transit spectrum of HD 189733b assembled by Pont et al., extending from 0.3 μm to 24 μm. Although the water vapor features in the WFC3 spectrum are compatible with the model of non-absorbing, Rayleigh-scattering dust in the planetary atmosphere, we also re-interpret the available data with a clear planetary atmosphere. In the latter interpretation, the slope of increasing transit depth with shorter wavelengths from the near infrared, through the visible, and into the ultraviolet is caused by unocculted star spots, with a smaller contribution of Rayleigh scattering by molecular hydrogen in the planet's atmosphere. At relevant pressures along the terminator, our model planetary atmosphere's temperature is ∼700 K, which is below the condensation temperatures of sodium- and potassium-bearing molecules, causing the broad wings of the spectral lines of Na I and K I at 0.589 μm and 0.769 μm to be weak.

  15. Evaporation Spectrum of Black Holes from a Local Quantum Gravity Perspective.

    Science.gov (United States)

    Barrau, Aurélien

    2016-12-30

    We revisit the hypothesis of a possible line structure in the Hawking evaporation spectrum of black holes. Because of nonperturbative quantum gravity effects, this would take place arbitrarily far away from the Planck mass. We show, based on a speculative but consistent hypothesis, that this naive prediction might in fact hold in the specific context of loop quantum gravity. A small departure from the ideal case is expected for some low-spin transitions and could allow us to distinguish several quantum gravity models. We also show that the effect is not washed out by the dynamics of the process, by the existence of a mass spectrum up to a given width, or by the secondary component induced by the decay of neutral pions emitted during the time-integrated evaporation.

  16. Testing Local Independence between Two Point Processes

    DEFF Research Database (Denmark)

    Allard, Denis; Brix, Anders; Chadæuf, Joël

    2001-01-01

    Independence test, Inhomogeneous point processes, Local test, Monte Carlo, Nonstationary, Rotations, Spatial pattern, Tiger bush......Independence test, Inhomogeneous point processes, Local test, Monte Carlo, Nonstationary, Rotations, Spatial pattern, Tiger bush...

  17. Auditory Spatial Perception: Auditory Localization

    Science.gov (United States)

    2012-05-01

    body movements that affect localization performance are tipping the chin toward the chest, tilting the body, or pivoting the head toward one or the... Compensatory Strategies . Brain 2002, 125, 1039–1053. Lee, P. L.; Wang, J. H. The Simulation of Binaural Hearing Caused by a Moving Sound Source...during the listening task changes the listener’s 140 listening plane. With a tilted head , the listener is pointing in an oblique plane that

  18. Employment Effects of Spatial Dispersal of Refugees

    OpenAIRE

    Damm, Anna Piil; Rosholm, Michael

    2005-01-01

    We argue that spatial dispersal influences labour market assimilation of refugees through two mechanisms: first, the local job offer arrival rate and, second, place utility. Our partial search model with simultaneous job and residential location search predicts that the reservation wage for local jobs decreases with place utility. We argue that spatial dispersal decreases average place utility of refugees which decreases the transition rate into first job due to large local reservation wages....

  19. Short range spread-spectrum radiolocation system and method

    Science.gov (United States)

    Smith, Stephen F.

    2003-04-29

    A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.

  20. Spatial planning, infrastructure and implementation: Implications for ...

    African Journals Online (AJOL)

    Infrastructure plays key roles in shaping the spatial form of the city at a macro- and a more local scale, and it influences the sustainability, efficiency and inclusiveness of cities and local areas. Linking infrastructure and spatial planning is therefore critical. Wide-ranging sets of knowledge and skills are required to enable ...

  1. Spatial resolution limits for the localization of noise sources using direct sound mapping

    DEFF Research Database (Denmark)

    Comesana, D. Fernandez; Holland, K. R.; Fernandez Grande, Efren

    2016-01-01

    the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially...... extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring......One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has...

  2. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  3. Spatial weighting of Doppler reactivity feedback

    International Nuclear Information System (INIS)

    Carew, J.F.; Diamond, D.J.; Todosow, M.

    1977-12-01

    The spatial weighting of the local Doppler feedback implicit in the determination of the core Doppler feedback reactivity has been investigated. Using a detailed planar PDQ7-II PWR model with local fuel-temperature feedback, the core Doppler spatial weight factor, S, has been determined for various control patterns and power levels. Assuming power-squared weighting of the local Doppler feedback, a simple analytic expression for S has been derived and, based on comparison with the PDQ7-II results, provides a convenient and accurate representation of the Doppler spatial weight factor. The sensitivity of these results to variations in the fuel rod heat transfer coefficients, fuel loading and the magnitude of the Doppler coefficient has also been evaluated. The dependence of the local Doppler coefficient on moderator temperature, boron concentration and control rod density has been determined and found to be weak. Selected comparisons with vendor analyses have been made and indicate general agreement

  4. Calculation of spatial distribution of the EURACOS II converter source

    International Nuclear Information System (INIS)

    Santo, A.C.F. de

    1985-01-01

    It is obtained the neutron spatial flux from the EURACOS (Enriched Uranium Converter Source) device, adjusted to experimental measures. The EURACOS device is a converter source which is constituted a circle plate of highly enriched uranium (90%). The converter provides an intense source of fast neutrons which has the energetic spectrum near to the fission spectrum. (M.C.K.) [pt

  5. ANALYSIS OF THE POSSIBILITY OF USING HYDROLOGICAL MODELS IN STRATEGIC ENVIRONMENTAL ASSESSMENT OF LOCAL SPATIAL DEVELOPMENT PLANS

    OpenAIRE

    Mariusz Sojka; Sadżide Murat-Błażejewska; Rafał Wróżyński

    2014-01-01

    The paper presents the possibility of application of the hydrological model HEC-HMS in the development of a strategic environmental assessment of local spatial development plans on surface water. The practical possibility of using simulation models of catchment response to high intensity precipitation is shown on the example of the Różany Potok watercourse catchment which is subject to rapid urbanization process. The area of Różany Potok catchment is 8.1 km2 and a stream length is 5.57 km. In...

  6. High performance computation of landscape genomic models including local indicators of spatial association.

    Science.gov (United States)

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2017-09-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F ST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  7. Effects of Spatial Localization on Microbial Consortia Growth.

    Directory of Open Access Journals (Sweden)

    Michael Venters

    Full Text Available Microbial consortia are commonly observed in natural and synthetic systems, and these consortia frequently result in higher biomass production relative to monocultures. The focus here is on the impact of initial spatial localization and substrate diffusivity on the growth of a model microbial consortium consisting of a producer strain that consumes glucose and produces acetate and a scavenger strain that consumes the acetate. The mathematical model is based on an individual cell model where growth is described by Monod kinetics, and substrate transport is described by a continuum-based, non-equilibrium reaction-diffusion model where convective transport is negligible (e.g., in a biofilm. The first set of results focus on a single producer cell at the center of the domain and surrounded by an initial population of scavenger cells. The impact of the initial population density and substrate diffusivity is examined. A transition is observed from the highest initial density resulting in the greatest cell growth to cell growth being independent of initial density. A high initial density minimizes diffusive transport time and is typically expected to result in the highest growth, but this expected behavior is not predicted in environments with lower diffusivity or larger length scales. When the producer cells are placed on the bottom of the domain with the scavenger cells above in a layered biofilm arrangement, a similar critical transition is observed. For the highest diffusivity values examined, a thin, dense initial scavenger layer is optimal for cell growth. However, for smaller diffusivity values, a thicker, less dense initial scavenger layer provides maximal growth. The overall conclusion is that high density clustering of members of a food chain is optimal under most common transport conditions, but under some slow transport conditions, high density clustering may not be optimal for microbial growth.

  8. Spectrum-based Fault Localization in Embedded Software

    NARCIS (Netherlands)

    Abreu, R.

    2009-01-01

    Locating software components that are responsible for observed failures is a time-intensive and expensive phase in the software development cycle. Automatic fault localization techniques aid developers/testers in pinpointing the root cause of software failures, as such reducing the debugging effort.

  9. Employment Effects of Spatial Dispersal of Refugees

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    We argue that spatial dispersal influences labour market assimilation of refugees through two mechanisms: first, the local job offer arrival rate and, second, place utility. Our partial search model with simultaneous job and residential location search predicts that the reservation wage for local...... by evaluating the employment effects of the Danish spatial dispersal policy carried out 1986-1998....

  10. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Cheng-Xiang Wang

    2007-02-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  11. A robust spatial filtering technique for multisource localization and geoacoustic inversion.

    Science.gov (United States)

    Stotts, S A

    2005-07-01

    Geoacoustic inversion and source localization using beamformed data from a ship of opportunity has been demonstrated with a bottom-mounted array. An alternative approach, which lies within a class referred to as spatial filtering, transforms element level data into beam data, applies a bearing filter, and transforms back to element level data prior to performing inversions. Automation of this filtering approach is facilitated for broadband applications by restricting the inverse transform to the degrees of freedom of the array, i.e., the effective number of elements, for frequencies near or below the design frequency. A procedure is described for nonuniformly spaced elements that guarantees filter stability well above the design frequency. Monitoring energy conservation with respect to filter output confirms filter stability. Filter performance with both uniformly spaced and nonuniformly spaced array elements is discussed. Vertical (range and depth) and horizontal (range and bearing) ambiguity surfaces are constructed to examine filter performance. Examples that demonstrate this filtering technique with both synthetic data and real data are presented along with comparisons to inversion results using beamformed data. Examinations of cost functions calculated within a simulated annealing algorithm reveal the efficacy of the approach.

  12. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-05-07

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.

  13. Application of Fourier analysis to multispectral/spatial recognition

    Science.gov (United States)

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  14. Adaptive nonlocal means filtering based on local noise level for CT denoising

    International Nuclear Information System (INIS)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-01

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  15. Self-organized spectrum chunk selection algorithm for Local Area LTE-Advanced

    DEFF Research Database (Denmark)

    Kumar, Sanjay; Wang, Yuanye; Marchetti, Nicola

    2010-01-01

    This paper presents a self organized spectrum chunk selection algorithm in order to minimize the mutual intercell interference among Home Node Bs (HeNBs), aiming to improve the system throughput performance compared to the existing frequency reuse one scheme. The proposed algorithm is useful...

  16. Perspective on the Cosmic-ray Electron Spectrum above TeV

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Kun; Wang, Bing-Bing; Bi, Xiao-Jun; Lin, Su-Jie; Yin, Peng-Fei [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-20

    The AMS-02 has measured the cosmic-ray electron (plus positron) spectrum up to ∼TeV with unprecedented precision. The spectrum can be well described by a power law without any obvious features above 10 GeV. The satellite instrument Dark Matter Particle Explorer (DAMPE), which was launched a year ago, will measure the electron spectrum up to 10 TeV with high-energy resolution. The cosmic electrons beyond TeV may be attributed to few local cosmic-ray sources, such as supernova remnants. Therefore, spectral features, such as cut-off and bumps, can be expected at high energies. In this work, we provide a careful study on the perspective of the electron spectrum beyond TeV. We first examine our astrophysical source models on the latest leptonic data of AMS-02 to give a self-consistent picture. Then we focus on the discussion about the candidate sources, which could be electron contributors above TeV. Depending on the properties of the local sources (especially on the nature of Vela), DAMPE may detect interesting features in the electron spectrum above TeV in the future.

  17. Spatial planning for sustainable rural municipalities

    OpenAIRE

    Thellbro, Camilla

    2017-01-01

    Local natural resources (LNRs) are essential for the socioeconomy of rural societies. The United Nations (UN) Agenda 21 and “Our Common Future” state that local spatial planning is central for the prospect of balancing ecological, social and economic sustainable development (SuD). Stakeholder participation in spatial planning enhances acceptance and improves preconditions for successful planning outcomes. Consequently, it is important to increase knowledge about LNRs and the use of them and t...

  18. Second order analysis for spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    We derive summary statistics for stationary Hawkes processes which can be considered as spatial versions of classical Hawkes processes. Particularly, we derive the intensity, the pair correlation function and the Bartlett spectrum. Our results for Gaussian fertility rates and the extension...... to marked Hawkes processes are discussed....

  19. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)

    2016-09-15

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two

  20. Using neuronal populations to study the mechanisms underlying spatial and feature attention

    Science.gov (United States)

    Cohen, Marlene R.; Maunsell, John H.R.

    2012-01-01

    Summary Visual attention affects both perception and neuronal responses. Whether the same neuronal mechanisms mediate spatial attention, which improves perception of attended locations, and non-spatial forms of attention has been a subject of considerable debate. Spatial and feature attention have similar effects on individual neurons. Because visual cortex is retinotopically organized, however, spatial attention can co-modulate local neuronal populations, while feature attention generally requires more selective modulation. We compared the effects of feature and spatial attention on local and spatially separated populations by recording simultaneously from dozens of neurons in both hemispheres of V4. Feature and spatial attention affect the activity of local populations similarly, modulating both firing rates and correlations between pairs of nearby neurons. However, while spatial attention appears to act on local populations, feature attention is coordinated across hemispheres. Our results are consistent with a unified attentional mechanism that can modulate the responses of arbitrary subgroups of neurons. PMID:21689604

  1. Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina.

    Science.gov (United States)

    van Wyk, Michiel; Taylor, W Rowland; Vaney, David I

    2006-12-20

    Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta-ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light-On or light-Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors (LEDs), which respond to spot illumination at both light-On and light-Off. However, the LEDs do not predominate in the rabbit retina and the question arises, what role do they play in fine spatial vision? We studied the morphology and physiology of LEDs in the isolated rabbit retina and examined how their response properties are shaped by the excitatory and inhibitory inputs. Although the LEDs comprise only approximately 15% of the ganglion cells, neighboring LEDs are separated by 30-40 microm on the visual streak, which is sufficient to account for the grating acuity of the rabbit. The spatial and temporal receptive-field properties of LEDs are generated by distinct inhibitory mechanisms. The strong inhibitory surround acts presynaptically to suppress both the excitation and the inhibition elicited by center stimulation. The temporal properties, characterized by sluggish onset, sustained firing, and low bandwidth, are mediated by the temporal properties of the bipolar cells and by postsynaptic interactions between the excitatory and inhibitory inputs. We propose that the LEDs signal fine spatial detail during visual fixation, when high temporal frequencies are minimal.

  2. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  3. How Can It Be More Real? A Case Study to Present the Authenticity of a Local Heritage District from the Perspective of Regional Spatial Morphology

    Directory of Open Access Journals (Sweden)

    Huanxi Zhao

    2018-05-01

    Full Text Available The discussion of authenticity has become an academic theme of great interest to scholars in the tourism and heritage fields. However, there have been relatively few studies related to the authenticity of the spatial morphology of a historical urban area. This paper is based on the approach of the theory of “constructive authenticity”, and takes a local historical district heritage in Beijing as an example to analyze the authenticity of the spatial morphology of a particular heritage site. This paper takes into account three aspects: (1 overall layout; (2 street landscape; and (3 the pattern inside the courtyards. It then analyzes the Nanluo area from the perspective of the change in spatial patterns from the past to the present, as an aspect of research on the protection and sustainable development of local historic districts. Through the analysis, it can be seen that from the point of view of spatial morphology, the Nanluo area is distant from its shape in the past, and the main differences are reflected in the above three aspects. It also can be seen that in today’s Nanluo area, the authenticity of the layout that is perceived by tourists is a “constructive authenticity” that has been developed over years.

  4. β-adrenergic-stimulated macrophages: Comprehensive localization in the M1–M2 spectrum

    Science.gov (United States)

    Lamkin, Donald M.; Ho, Hsin-Yun; Ong, Tiffany H.; Kawanishi, Carly K.; Stoffers, Victoria L.; Ahlawat, Nivedita; Ma, Jeffrey C.Y.; Arevalo, Jesusa M. G.; Cole, Steve W.; Sloan, Erica K.

    2016-01-01

    β-adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1–M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one predefined category of the M1–M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1–M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1–M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1–M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. PMID:27485040

  5. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Mé rouane; Alouini, Mohamed-Slim

    2015-01-01

    for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty

  6. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana.

    Science.gov (United States)

    Eibach, Daniel; Dekker, Denise; Gyau Boahen, Kennedy; Wiafe Akenten, Charity; Sarpong, Nimako; Belmar Campos, Cristina; Berneking, Laura; Aepfelbacher, Martin; Krumkamp, Ralf; Owusu-Dabo, Ellis; May, Jürgen

    2018-04-01

    Antibiotic use in animal husbandry has raised concerns on the spread of resistant bacteria. Currently animal products are traded globally with unprecedented ease, which has been challenging the control of antimicrobial resistance. This study aims to detect and characterize extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae from imported and locally produced poultry products sold in Ghana. Local and imported chicken meat was collected from 94 stores and markets throughout Kumasi (Ghana) and cultured on selective ESBL screening agar. Phenotypic ESBL-producing E. coli and K. pneumoniae isolates were confirmed by combined disc test and further characterized by antibiotic susceptibility testing, amplification of the bla CTX-M , bla TEM and bla SHV genes as well as multilocus sequence typing (MLST) and linked to the country of origin. Out of 200 meat samples, 71 (36%) samples revealed 81 ESBL-producing isolates (46 E. coli and 35 K. pneumoniae), with 44% (30/68) of local poultry and 31% (41/132) of imported products being contaminated. Most ESBL-producing isolates harboured the bla CTX-M-15 gene (61/81, 75%) and the dominant Sequence Types (ST) were ST2570 (7/35, 20%) among K. pneumoniae and ST10 (5/46, 11%) among E. coli. High numbers of ESBL-producing bacteria, particularly on local but also imported poultry meat, represent a potential source for human colonization and infection as well as spread within the community. Surveillance along the poultry production-food-consumer chain would be a valuable tool to identify sources of emerging multidrug resistant pathogens in Ghana. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. On A Quasi-local Mass

    OpenAIRE

    Zhang, Xiao

    2009-01-01

    We modify previous quasi-local mass definition. The new definition provides expressions of the quasi-local energy, the quasi-local linear momentum and the quasi-local mass. And they are equal to the ADM expressions at spatial infinity. Moreover, the new quasi-local energy has the positivity property.

  8. Fine-grained, local maps and coarse, global representations support human spatial working memory.

    Directory of Open Access Journals (Sweden)

    Mohammad Zia Ul Haq Katshu

    Full Text Available While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.

  9. Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory

    Science.gov (United States)

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

  10. Convective model of a microwave discharge in a gas at atmospheric pressure in the form of a spatially localized plasma

    International Nuclear Information System (INIS)

    Skovoroda, A.A.

    1997-01-01

    Experiments and a theoretical model consistent with them are presented which show that a stationary microwave discharge in a gas at atmospheric pressure under the action of free convection due to the action of the buoyant force on the heated air can be spatially localized, taking a spheroidal shape. Vortex motion inside the spheroid gives this localized plasma formation some of the properties of a material body which are manifested in a distinct material isolation from the surrounding space, in the formation of a narrow thermal boundary layer and flow separation, and in the formation of secondary vortices in the wake region. The characteristic radius of the stationary localized plasma is governed mainly by the wavelength of the microwave radiation a∼0.137λ. Energy balance is established to a significant degree by convective cooling of the microwave-heated structure

  11. Emergent Percolation Length and Localization in Random Elastic Networks

    Directory of Open Access Journals (Sweden)

    Ariel Amir

    2013-06-01

    Full Text Available We study, theoretically and numerically, a minimal model for phonons in a disordered system. For sufficient disorder, the vibrational modes of this classical system can become Anderson localized, yet this problem has received significantly less attention than its electronic counterpart. We find rich behavior in the localization properties of the phonons as a function of the density, frequency, and spatial dimension. We use a percolation analysis to argue for a Debye spectrum at low frequencies for dimensions higher than one, and for a localization-delocalization transition (at a critical frequency above two dimensions. We show that in contrast to the behavior in electronic systems, the transition exists for arbitrarily large disorder, albeit with an exponentially small critical frequency. The structure of the modes reflects a divergent percolation length that arises from the disorder in the springs without being explicitly present in the definition of our model. Within the percolation approach, we calculate the speed of sound of the delocalized modes (phonons, which we corroborate with numerics. We find the critical frequency of the localization transition at a given density and find good agreement of these predictions with numerical results using a recursive Green-function method that was adapted for this problem. The connection of our results to recent experiments on amorphous solids is discussed.

  12. Nonlinear evolution of f(R) cosmologies. II. Power spectrum

    International Nuclear Information System (INIS)

    Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos

    2008-01-01

    We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.

  13. Relaxation of ion energy spectrum just after turbulent heating pulse in TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1982-01-01

    The temporal evolution and spatial profile of the ion energy spectrum just after the application of a toroidal current pulse for turbulent heating are investigated experimentally in the TRIAM-1 tokamak and also numerically using the Fokker-Planck equation. The two-component ion energy spectrum formed by turbulent heating relaxes to a single one within tausub(i) (the ion collision time). (author)

  14. Relaxation of ion energy spectrum just after turbulent heating pulse in TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1982-07-01

    The temporal evolution and spatial profile of the ion energy spectrum just after the application of a toroidal current pulse for turbulent heating are investigated experimentally in the TRIAM-1 tokamak and also numerically using the Fokker-Planck equation. The two-component ion energy spectrum formed by turbulent heating relaxes to a single one within tausub(i) (the ion collision time).

  15. Multislot Simultaneous Spectrum Sensing and Energy Harvesting in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available In cognitive radio (CR, the spectrum sensing of the primary user (PU may consume some electrical power from the battery capacity of the secondary user (SU, resulting in a decrease in the transmission power of the SU. In this paper, a multislot simultaneous spectrum sensing and energy harvesting model is proposed, which uses the harvested radio frequency (RF energy of the PU signal to supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple sensing slots consisting of one local-sensing subslot and one energy-harvesting subslot. If the PU is detected to be present in the local-sensing subslot, the SU will harvest RF energy of the PU signal in the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on the presence of the PU is obtained through combining local sensing results from all the sensing slots by adopting “Or-logic Rule”. A joint optimization problem of sensing time and time splitter factor is proposed to maximize the throughput of the SU under the constraints of probabilities of false alarm and detection and energy harvesting. The simulation results have shown that the proposed model can clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput tradeoff model.

  16. Effects of local and spatial conditions on the quality of harvested rainwater in the Mekong Delta, Vietnam

    International Nuclear Information System (INIS)

    Wilbers, Gert-Jan; Sebesvari, Zita; Rechenburg, Andrea; Renaud, Fabrice G.

    2013-01-01

    The objective of this study was to assess the quality of harvested rainwater in the Mekong Delta (MD), Vietnam for local (roof types, storage system and duration) and spatial (proximity of industry, main roads, coastline) conditions. 78 harvested rainwater samples were collected in the MD and analyzed for pH, turbidity, TDS, COD, nutrients (NH 4 , NO 3 , NO 2 , o-PO 4 ), trace metals and coliforms. The results show that thatch roofs lead to an increase of pollutants like COD (max 23.2 mgl −1 ) and turbidity (max 10.1 mgl −1 ) whereas galvanized roofs lead to an increase of Zn (max 2.2 mgl −1 ). The other local and spatial parameters had no or only minor influence on the quality of household harvested rainwater. However, lead (Pb) (max. 16.9 μgl −1 ) and total coliforms (max. 102 500 CFU100 ml −1 ) were recorded at high concentrations, probably due to a variety of household-specific conditions such as rainwater storage, collection and handling practices. -- Highlights: •Rainwater is a main drinking water source in the Mekong Delta. •Harvested rainwater is severely polluted for turbidity, lead and (total) coliforms. •Roof types significantly affect the quality of harvested rainwater. •Effects of household conditions on harvested rainwater quality should be further assessed. •Harvested rainwater is in potential a safe drinking water resource in the Mekong Delta. -- Concentrations of lead and total coliforms in household-harvested rainwater in the Mekong Delta exceed drinking water guidelines in 17% and 92% of the samples, respectively

  17. Control of cell division and the spatial localization of assembled gene products in Caulobacter crescentus

    International Nuclear Information System (INIS)

    Nathan, P.D.

    1988-01-01

    Experiments are described that examine the role of penicillin-binding proteins (PBPs) in the regulation of cell division in Caulobacter crescentus; and the spatial localization of methyl-accepting chemotaxis proteins (MCPs) in C. crescentus swarmer and predivisional cells. In the analysis of PBP function, in vivo and in vitro assays are used to directly label C. crescentus PBPs with [ 3 H] penicillin G in wild type strain CB15, in a series of conditional cell division mutants and in new temperature sensitive cephalosporin C resistant mutants PC8002 and PC8003. 14 PBPs are characterized and a high molecular weight PBP (PBP 1B) that is required for cell division is identified. PBP 1B competes for β-lactams that induce filament formation and may be a high affinity binding protein. A second high molecular weight PBP (PBP 1C) is also associated with defective cell division. The examination of PBP patterns in synchronous swarmer cells reveals that the in vivo activity of PBP 1B and PBP 1C increases at the time that the cell division pathway is initiated. None of the PBPs, however, appear to be differentially localized in the C. crescentus cell. In the analysis of MCP localization, in vivo and in vitro assays are used to directly label C. crescentus MCPs with methyl- 3 H. MCPs are examined in flagellated and non-flagellated vesicles prepared from cells by immunoaffinity chromatography

  18. The 17/5 spectrum of the Kelvin-wave cascade

    OpenAIRE

    Kozik, Evgeny; Svistunov, Boris

    2010-01-01

    Direct numeric simulation of the Biot-Savart equation readily resolves the 17/5 spectrum of the Kelvin-wave cascade from the 11/3 spectrum of the non-local (in the wavenumber space) cascade scenario by L'vov and Nazarenko. This result is a clear-cut visualisation of the unphysical nature of the 11/3 solution, which was established earlier on the grounds of symmetry.

  19. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers

    International Nuclear Information System (INIS)

    Yau, Waifan.

    1988-04-01

    Substitutional carbon on an arsenic lattice site is the shallowest and one of the most dominant acceptors in semi-insulating Liquid Encapsulated Czochralski (LEC) GaAs. However, the role of this acceptor in determining the well known ''W'' shape spatial variation of neutral EL2 concentration along the diameter of a LEC wafer is not known. In this thesis, we attempt to clarify the issue of the carbon acceptor's effect on this ''W'' shaped variation by measuring spatial profiles of this acceptor along the radius of three different as-grown LEC GaAs wafers. With localized vibrational mode absorption spectroscopy, we find that the profile of the carbon acceptor is relatively constant along the radius of each wafer. Average values of concentration are 8 x 10E15 cm -3 , 1.1 x 10E15 cm -3 , and 2.2 x 10E15 cm -3 , respectively. In addition, these carbon acceptor LVM measurements indicate that a residual donor with concentration comparable to carbon exists in these wafers and it is a good candidate for the observed neutral EL2 concentration variation. 22 refs., 39 figs

  20. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  1. Semantic Metadata for Heterogeneous Spatial Planning Documents

    Science.gov (United States)

    Iwaniak, A.; Kaczmarek, I.; Łukowicz, J.; Strzelecki, M.; Coetzee, S.; Paluszyński, W.

    2016-09-01

    Spatial planning documents contain information about the principles and rights of land use in different zones of a local authority. They are the basis for administrative decision making in support of sustainable development. In Poland these documents are published on the Web according to a prescribed non-extendable XML schema, designed for optimum presentation to humans in HTML web pages. There is no document standard, and limited functionality exists for adding references to external resources. The text in these documents is discoverable and searchable by general-purpose web search engines, but the semantics of the content cannot be discovered or queried. The spatial information in these documents is geographically referenced but not machine-readable. Major manual efforts are required to integrate such heterogeneous spatial planning documents from various local authorities for analysis, scenario planning and decision support. This article presents results of an implementation using machine-readable semantic metadata to identify relationships among regulations in the text, spatial objects in the drawings and links to external resources. A spatial planning ontology was used to annotate different sections of spatial planning documents with semantic metadata in the Resource Description Framework in Attributes (RDFa). The semantic interpretation of the content, links between document elements and links to external resources were embedded in XHTML pages. An example and use case from the spatial planning domain in Poland is presented to evaluate its efficiency and applicability. The solution enables the automated integration of spatial planning documents from multiple local authorities to assist decision makers with understanding and interpreting spatial planning information. The approach is equally applicable to legal documents from other countries and domains, such as cultural heritage and environmental management.

  2. Michelson interferometer based spatial phase shift shearography.

    Science.gov (United States)

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  3. TESTBED IMPLEMENTATION OF MULTI DIMENSIONAL SPECTRUM SENSING SCHEMES FOR COGNITIVE RADIO

    Directory of Open Access Journals (Sweden)

    Deepa N Reddy

    2016-06-01

    Full Text Available Cognitive Radio (CR is a promising technology to exploit the underutilized spectrum. Spectrum sensing is one of the most important components for the establishment of cognitive radio system. Spectrum sensing allows the secondary users (SUs to detect the presence of the primary users (PUs. The aim of this work is to create a CR environment to study the spectrum sensing methods using Universal software radio Peripheral (USRP boards. In this paper a novel method of estimation of spectrum opportunities in multiple dimensions especially the space and the angle dimensions are carried out on USRP boards. This paper typically provides the experimental results carried out in an indoor wireless environment. To enhance the sensing performance the space dimension is firstly studied using spatial diversity of the cooperative SUs. Secondly the receiver diversity is analyzed using multiple antennas to enhance the error performance of the wireless system. The spectrum usage is also determined in the angle dimension by investigating the direction of the dominant signals using MUSIC algorithm.

  4. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    Science.gov (United States)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  5. The dynamic and indirect spatial effects of neighborhood conditions on land value, spatial panel dynamic econometrics model

    Science.gov (United States)

    Fitriani, Rahma; Sumarminingsih, Eni; Astutik, Suci

    2017-05-01

    Land value is the product of past decision of its use leading to its value, as well as the value of the surrounded land. It is also affected by the local characteristic and the spillover development demand of the previous time period. The effect of each factor on land value will have dynamic and spatial virtues. Thus, a spatial panel dynamic model is used to estimate the particular effects. The model will be useful for predicting the future land value or the effect of implemented policy on land value. The objective of this paper is to derive the dynamic and indirect spatial marginal effects of the land characteristic and the spillover development demand on land value. Each effect is the partial derivative of the expected land value based on the spatial dynamic model with respect to each variable, by considering different time period and different location. The results indicate that the instant change of local or neighborhood characteristics on land value affect the local and the immediate neighborhood land value. However, the longer the change take place, the effect will spread further, not only on the immediate neighborhood.

  6. Spatial power spectrum of the geomagnetic field since 1945

    International Nuclear Information System (INIS)

    Senanayake, W.E.

    1987-04-01

    The Geomagnetic field for the period 1945-1990 has been analyzed in terms of Spatial Power Spectra of the Main Field and its Secular Variation. It is observed that for the above interval, the magnetic energy density at the core-mantle boundary is almost conserved. This supports the idea that an exchange of energy between different spherical harmonic constituents could occur. The distinctive behaviour of the first two terms (Dipole and Quadrupole), as seen from the spectra of the main field and secular variation, probably indicates somewhat different feature associated with the field origin. (author). 28 refs, 3 figs, 1 tab

  7. Evolutionary multimodal optimization using the principle of locality

    KAUST Repository

    Wong, Kachun; Wu, Chunho; Mok, Ricky; Peng, Chengbin; Zhang, Zhaolei

    2012-01-01

    The principle of locality is one of the most widely used concepts in designing computing systems. To explore the principle in evolutionary computation, crowding differential evolution is incorporated with locality for multimodal optimization. Instead of generating trial vectors randomly, the first method proposed takes advantage of spatial locality to generate trial vectors. Temporal locality is also adopted to help generate offspring in the second method proposed. Temporal and spatial locality are then applied together in the third method proposed. Numerical experiments are conducted to compare the proposed methods with the state-of-the-art methods on benchmark functions. Experimental analysis is undertaken to observe the effect of locality and the synergy between temporal locality and spatial locality. Further experiments are also conducted on two application problems. One is the varied-line-spacing holographic grating design problem, while the other is the protein structure prediction problem. The numerical results demonstrate the effectiveness of the methods proposed. © 2012 Elsevier Inc. All rights reserved.

  8. Evolutionary multimodal optimization using the principle of locality

    KAUST Repository

    Wong, Kachun

    2012-07-01

    The principle of locality is one of the most widely used concepts in designing computing systems. To explore the principle in evolutionary computation, crowding differential evolution is incorporated with locality for multimodal optimization. Instead of generating trial vectors randomly, the first method proposed takes advantage of spatial locality to generate trial vectors. Temporal locality is also adopted to help generate offspring in the second method proposed. Temporal and spatial locality are then applied together in the third method proposed. Numerical experiments are conducted to compare the proposed methods with the state-of-the-art methods on benchmark functions. Experimental analysis is undertaken to observe the effect of locality and the synergy between temporal locality and spatial locality. Further experiments are also conducted on two application problems. One is the varied-line-spacing holographic grating design problem, while the other is the protein structure prediction problem. The numerical results demonstrate the effectiveness of the methods proposed. © 2012 Elsevier Inc. All rights reserved.

  9. Clinical spectrum of onchodermatitis

    International Nuclear Information System (INIS)

    Bari, A.U.

    2007-01-01

    To describe the frequency and to see various dermatological presentations of onchocerciasis in black Africans of Sierra Leone. Local black patients of all age groups, attending dermatology outpatient department of Pak Field Hospital (established as a part of UN peacekeeping mission in Sierra Leone) with clinical diagnosis of onchodermatitis, based on symptomatology and morphological features of the disease, were included. UN troops were excluded. Laboratory investigations including blood complete picture and skin snips were carried out in all patients. Skin biopsy and nodule biopsy was performed in selected cases. Skin manifestations were recorded and categorized into various clinical patterns, i.e. acute, chronic, lichenified, onchocercoma, etc. Data was analyzed by using descriptive statistics in Instat. A total of 3011 patients, belonging to different local tribes, having a variety of skin disorders, were seen during the study period. One hundred and eighty-seven (6.2%) patients were found to have onchodermatitis. Patients were of all ages and both sexes, their ages ranging from 1 month to 73 years. Gender ratio was almost equal. A whole clinical spectrum of onchodermatitis was observed, chronic papular onchodermatitis being the most common pattern. Onchodermatitis with a large spectrum of clinical manifestations was seen in black Africans of the eastern part of Sierra Leone. (author)

  10. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    Science.gov (United States)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee

  11. SEMANTIC METADATA FOR HETEROGENEOUS SPATIAL PLANNING DOCUMENTS

    Directory of Open Access Journals (Sweden)

    A. Iwaniak

    2016-09-01

    Full Text Available Spatial planning documents contain information about the principles and rights of land use in different zones of a local authority. They are the basis for administrative decision making in support of sustainable development. In Poland these documents are published on the Web according to a prescribed non-extendable XML schema, designed for optimum presentation to humans in HTML web pages. There is no document standard, and limited functionality exists for adding references to external resources. The text in these documents is discoverable and searchable by general-purpose web search engines, but the semantics of the content cannot be discovered or queried. The spatial information in these documents is geographically referenced but not machine-readable. Major manual efforts are required to integrate such heterogeneous spatial planning documents from various local authorities for analysis, scenario planning and decision support. This article presents results of an implementation using machine-readable semantic metadata to identify relationships among regulations in the text, spatial objects in the drawings and links to external resources. A spatial planning ontology was used to annotate different sections of spatial planning documents with semantic metadata in the Resource Description Framework in Attributes (RDFa. The semantic interpretation of the content, links between document elements and links to external resources were embedded in XHTML pages. An example and use case from the spatial planning domain in Poland is presented to evaluate its efficiency and applicability. The solution enables the automated integration of spatial planning documents from multiple local authorities to assist decision makers with understanding and interpreting spatial planning information. The approach is equally applicable to legal documents from other countries and domains, such as cultural heritage and environmental management.

  12. NULIF: neutron spectrum generator, few-group constant calculator, and fuel depletion code

    International Nuclear Information System (INIS)

    Wittkopf, W.A.; Tilford, J.M.; Andrews, J.B. II; Kirschner, G.; Hassan, N.M.; Colpo, P.N.

    1977-02-01

    The NULIF code generates a microgroup neutron spectrum and calculates spectrum-weighted few-group parameters for use in a spatial diffusion code. A wide variety of fuel cells, non-fuel cells, and fuel lattices, typical of PWR (or BWR) lattices, are treated. A fuel depletion routine and change card capability allow a broad range of problems to be studied. Coefficient variation with fuel burnup, fuel temperature change, moderator temperature change, soluble boron concentration change, burnable poison variation, and control rod insertion are readily obtained. Heterogeneous effects, including resonance shielding and thermal flux depressions, are treated. Coefficients are obtained for one thermal group and up to three epithermal groups. A special output routine writes the few-group coefficient data in specified format on an output tape for automated fitting in the PDQ07-HARMONY system of spatial diffusion-depletion codes

  13. Cosmological signatures of anisotropic spatial curvature

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo

    2015-01-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature

  14. Cosmological signatures of anisotropic spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  15. Perceptual spatial differentiation of Ljubljana

    Directory of Open Access Journals (Sweden)

    Marko Krevs

    2004-12-01

    Full Text Available Geographical studies of human perception of places at local scale are usually aimed at bet-ter understanding of human spatial perception and knowledge about the places, and of using this knowledge in spatial decision-making or spatial behaviour. Our focus on the first part of these general research aims is presented based on a case study, revealing how residents of the Municipality of Ljubljana perceive and value neighbourhoods of “their” municipality at the beginning of the century1.

  16. SOLAR MODULATION OF THE LOCAL INTERSTELLAR SPECTRUM WITH VOYAGER 1 , AMS-02, PAMELA , AND BESS

    Energy Technology Data Exchange (ETDEWEB)

    Corti, C.; Bindi, V.; Consolandi, C.; Whitman, K., E-mail: corti@hawaii.edu [Physics and Astronomy Department, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-09-20

    In recent years, the increasing precision of direct cosmic rays measurements opened the door to high-sensitivity indirect searches of dark matter and to more accurate predictions for radiation doses received by astronauts and electronics in space. The key ingredients in the study of these phenomena are the knowledge of the local interstellar spectrum (LIS) of galactic cosmic rays and the understanding of how the solar modulation affects the LIS inside the heliosphere. Voyager 1 , AMS-02, PAMELA , and BESS measurements of proton and helium fluxes provide valuable information, allowing us to shed light on the shape of the LIS and the details of the solar modulation during solar cycles 22-24. A new parametrization of the LIS is presented, based on the latest data from Voyager 1 and AMS-02. Using the framework of the force-field approximation, the solar modulation parameter is extracted from the time-dependent fluxes measured by PAMELA and BESS . A modified version of the force-field approximation with a rigidity-dependent modulation parameter is introduced, yielding better fits than the force-field approximation. The results are compared with the modulation parameter inferred by neutron monitors.

  17. Spectrum of the extragalactic background light

    Energy Technology Data Exchange (ETDEWEB)

    Bruzual A, G [Centro de Investigacion de Astronomia, Merida (Venezuela)

    1981-01-01

    The observed spectrum of the extragalactic background light in the range from ultraviolet to optical wavelengths is compared with a model prediction. The model uses the locally observed luminosity function of galaxies as well as evolutionary models for galaxy spectral energy distributions. The predicition is too faint by a factor of about 10.

  18. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    Science.gov (United States)

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-09-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  19. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    International Nuclear Information System (INIS)

    Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  20. Employment Effects of Spatial Dispersal of Refugees

    OpenAIRE

    Anna Piil Damm; Michael Rosholm

    2006-01-01

    Spatial dispersal policies may influence labour market integration of refugees through two mechanisms. First, it may affect the local job offer arrival rate, and second, it may affect place utility. We investigate the second mechanism theoretically by formulating a partial search model in which an individual searches simultaneously for a job and for a new residential location. The model predicts that the reservation wage for local jobs is decreasing in place utility. We argue that spatial dis...

  1. Area spectrum of the D-dimensional de Sitter spacetime

    International Nuclear Information System (INIS)

    Lopez-Ortega, A.

    2009-01-01

    The determination of the quantum area spectrum of a black hole horizon by means of its asymptotic quasinormal frequencies has been explored recently. We believe that for D-dimensional de Sitter horizon we must study if the idea works. Thus taking into account the local description of the thermodynamics of horizons proposed by Padmanabhan and the results of Hod, Kunstatter, and Maggiore we study the area spectrum of the D-dimensional de Sitter horizon.

  2. Area spectrum of the D-dimensional de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Ortega, A., E-mail: alopezo@ipn.m [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Calzada Legaria 694 Colonia Irrigacion, Delegacion Miguel Hidalgo, Mexico, D.F., C.P. 11500 (Mexico)

    2009-11-23

    The determination of the quantum area spectrum of a black hole horizon by means of its asymptotic quasinormal frequencies has been explored recently. We believe that for D-dimensional de Sitter horizon we must study if the idea works. Thus taking into account the local description of the thermodynamics of horizons proposed by Padmanabhan and the results of Hod, Kunstatter, and Maggiore we study the area spectrum of the D-dimensional de Sitter horizon.

  3. On strategic spatial planning

    Directory of Open Access Journals (Sweden)

    Tošić Branka

    2014-01-01

    Full Text Available The goal of this paper is to explain the origin and development of strategic spatial planning, to show complex features and highlight the differences and/or advantages over traditional, physical spatial planning. Strategic spatial planning is seen as one of approaches in legally defined planning documents, and throughout the display of properties of sectoral national strategies, as well as issues of strategic planning at the local level in Serbia. The strategic approach is clearly recognized at the national and sub-national level of spatial planning in European countries and in our country. It has been confirmed by the goals outlined in documents of the European Union and Serbia that promote the grounds of territorial cohesion and strategic integrated planning, emphasizing cooperation and the principles of sustainable spatial development. [Projekat Ministarstva nauke Republike Srbije, br. 176017

  4. Redetermination of the X-ray spectrum of SN 1006 and excess diffuse emission from the Lupus region

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Katsuji; Tsunemi, Hiroshi; Becker, R H; Hughes, J P

    1987-01-01

    X-ray from SN 1006 and from the adjacent Lupus region were separately observed with the Tenma gas scintillation proportional counters. The spectrum of the local excess emission from the Lupus region can be consistently fitted with either a thin thermal bremsstrahlung spectrum with a temperature of 7.5 +- 2.6 keV or a power-law spectrum with a photon index of 2.1 +- 0.1. The x-ray emission from SN 1006, after subtraction of this local excess, has a spectrum which can be described as a power-law spectrum with a photon index of 3.3 +- 0.1 or a thin thermal bremsstrahlung spectrum with a temperature of 1.9 +- 0.1 keV which is much softer than the previously reported spectrum. No significant iron line emission was observed in the SN 1006 spectrum. The 90 % upper limit for the equivalent width of the iron line was reduced to 400 eV. The observed spectrum can also be interpreted in terms of a nonequilibrium ionization model of about 2-keV electron temperature.

  5. Medium usage model for the design of dynamic spectrum management in ISM bands

    NARCIS (Netherlands)

    Witvliet, B.A.; Bentum, M.J.; Schiphorst, R.; Slump, C.H.

    2012-01-01

    This paper presents a new approach for dynamic spectrum management for heterogeneous wireless devices. Local congestion degrades the reliability of wireless applications in the License Exempt bands. This leads to the research questions: (1) how to realize equal spectrum sharing between dissimilar

  6. Visual attention spreads broadly but selects information locally.

    Science.gov (United States)

    Shioiri, Satoshi; Honjyo, Hajime; Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro

    2016-10-19

    Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.

  7. The Relative Importance of Spatial and Local Environmental Factors in Determining Beetle Assemblages in the Inner Mongolia Grassland.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Yu

    Full Text Available The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae along a geographic (longitudinal/precipitation gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.

  8. A Spatial and Temporal analysis of Labour Market Characteristics

    Directory of Open Access Journals (Sweden)

    Pośpiech Ewa

    2016-12-01

    Full Text Available The use of spatial methods is becoming increasingly common in social and economic research as it emphasizes the relevance of spatiality to the understanding of socio-economic facts. Once embraced, the spatial factor can substantially help explain variations in the properties being examined, thus improving the quality of their description and supporting the development of econometric models. This paper explores some of the characteristics of Poland’s job market, making an inquiry into their spatial dependencies. The study looks at the country’s labour market from a local perspective, examining its properties for spatial autocorrelation (both global and local. Linear econometric models are subsequently built for such variables as the number of persons in employment, the number of women and men in employment. The models are further investigated to assess the applicability of spatial modelling in their development.

  9. Local perturbations perturb—exponentially–locally

    International Nuclear Information System (INIS)

    De Roeck, W.; Schütz, M.

    2015-01-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate

  10. Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas

    International Nuclear Information System (INIS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2012-01-01

    Laser-induced plasma emission of an aluminum target in helium gas at 1 atm pressure is numerically and experimentally investigated. A laser pulse at wavelength of 266 nm and pulse duration of 10 ns has been considered. Laser ablation is calculated by a one dimensional model based on thermal evaporation mechanism. Spatial and temporal parameters of plasma expansion are determined by using hydrodynamic equations. Three kinds of plasma emission, including Bremsstrahlung, recombination and spectral emissions are considered for modeling the spectrum. Strong lines of aluminum and helium in wavelength interval of 200 to 450 nm are selected. Aluminum spectrum in UV range is depicted and compared with other spectral ranges. Temporal and spatial evolution of plasma emission up to 200 ns after the laser irradiation is studied. The effect of laser energy on the plasma spectrum is studied. An experimental set-up is arranged to compare numerical calculations with experimental results. Experimental and numerical results illustrate that helium line widths and peak intensities become narrower and weaker with time, respectively. Spatial distribution of spectrum shows that for closer distance to the sample surface, an intense continuous emission is observed, while at the farther distance, continuous emission decreases and spectral lines become sharper. A good coincidence is observed between experimental and numerical results. - Highlights: ► Aluminum plasma emission in helium is numerically and experimentally studied. ► Spectral, Bremsstrahlung and recombination emissions in spectrum are calculated. ► All strong lines of aluminum and helium are chosen for spectrum simulation. ► Line widths and peak intensities at later times become narrower and weaker. ► At specific optimum position, the maximum of signal peaks is acquired.

  11. Securing Localization With Hidden and Mobile Base Stations

    DEFF Research Database (Denmark)

    Capkun, Srdjan; Srivastava, Mani; Cagalj, Mario

    2006-01-01

    localization based on hidden and mobile base stations. Our approach enables secure localization with a broad spectrum of localization techniques: ultrasonic or radio, based on received signal strength or signal time of flight. Through several examples we show how this approach can be used to secure nodecentric...

  12. Multifractality and quantum diffusion from self-consistent theory of localization

    Energy Technology Data Exchange (ETDEWEB)

    Suslov, I. M., E-mail: suslov@kapitza.ras.ru [Kapitza Institute for Physical Problems (Russian Federation)

    2015-11-15

    Multifractal properties of wave functions in a disordered system can be derived from self-consistent theory of localization by Vollhardt and Wölfle. A diagrammatic interpretation of results allows to obtain all scaling relations used in numerical experiments. The arguments are given that the one-loop Wegner result for a space dimension d = 2 + ϵ is exact, so the multifractal spectrum is strictly parabolical. The σ-models are shown to be deficient at the four-loop level and the possible reasons of that are discussed. The extremely slow convergence to the thermodynamic limit is demonstrated. The open question on the relation between multifractality and a spatial dispersion of the diffusion coefficient D(ω, q) is resolved in the compromise manner due to ambiguity of the D(ω, q) definition. Comparison is made with the extensive numerical material.

  13. Analytical model spectrum for electrostatic turbulence in tokamaks

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Misguich, J.H.

    1990-04-01

    In this work we present an analytical model spectrum, for three-dimensional electrostatic turbulence (homogeneous, stationary and locally isotropic in the plane perpendicular to the magnetic field), constructed by using experimental results from TFR and TEXT Tokamaks, and satisfying basic symmetry and parity conditions. The proposed spectrum seems to be tractable for explicit analytical calculations of transport processes, and consistent with experimental data. Additional experimental measurements in the bulk plasma remain however necessary in order to determine some unknown spectral properties of parallel propagation

  14. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway

    Science.gov (United States)

    De Clippele, L. H.; Huvenne, V. A. I.; Orejas, C.; Lundälv, T.; Fox, A.; Hennige, S. J.; Roberts, J. M.

    2018-03-01

    This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reef.

  15. Spectrum monitoring procedures and techniques

    Science.gov (United States)

    1990-07-01

    The first step towards operating an emitter on a test range is to contact the local frequency manager to establish a schedule. Since restricted radio frequency bands and operations are different at each test range location, most testing is accomplished by sharing the spectrum available with all range users. The telemetry bands in particular require spectrum activity scheduling. The objective is to resolve scheduling conflicts prior to operations. When two programs or projects request to use the same spectrum, their activity can be separated by quard bands, discrete frequencies, time, or operating locations (terrain masking). Priorities assigned to each program usually dictate which program will be scheduled first; however, use of priorities to schedule activities should be avoided and only considered as a last resort. When a scheduling conflict cannot be resolved using these techniques, it is brought to the attention of the responsible program managers. When scheduling activities involve other federal or nonfederal agencies, it is in the best interest of program managers to be as flexible as possible.

  16. Localized Measurement of Turbulent Fluctuations in Tokamaks with Coherent Scattering of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    Localized measurements of short-scale turbulent fluctuations in tokamaks are still an outstanding problem. In this paper, the method of coherent scattering of electromagnetic waves for the detection of density fluctuations is revisited. Results indicate that the proper choice of frequency, size and launching of the probing wave can transform this method into an excellent technique for high-resolution measurements of those fluctuations that plasma theory indicates as the potential cause of anomalous transport in tokamaks. The best spatial resolution can be achieved when the range of scattering angles corresponding to the spectrum of fluctuations under investigation is small. This favors the use of high frequency probing waves, such as those of far infrared lasers. The application to existing large tokamaks is discussed

  17. Employment Effects of Spatial Dispersal of Refugees

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    Spatial dispersal policies may influence labour market integration of refugees through two mechanisms. First, it may affect the local job offer arrival rate, and second, it may affect place utility. We investigate the second mechanism theoretically by formulating a partial search model in which a...... due to large local reservation wage effects. We investigate both mechanisms empirically and test the predictions of the theoretical model by evaluating the employment effects of the Danish spatial dispersal policy carried out 1986-1998....

  18. Relating Local to Global Spatial Knowledge: Heuristic Influence of Local Features on Direction Estimates

    Science.gov (United States)

    Phillips, Daniel W.; Montello, Daniel R.

    2015-01-01

    Previous research has examined heuristics--simplified decision-making rules-of-thumb--for geospatial reasoning. This study examined at two locations the influence of beliefs about local coastline orientation on estimated directions to local and distant places; estimates were made immediately or after fifteen seconds. This study goes beyond…

  19. Spatial normalization of array-CGH data

    Directory of Open Access Journals (Sweden)

    Brennetot Caroline

    2006-05-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (array-CGH is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large proportion of arrays, and has not previously been considered in array-CGH experiments. Results We show that existing normalization techniques do not correct these spatial effects properly. We therefore developed an automatic method for the spatial normalization of array-CGH data. This method makes it possible to delineate and to eliminate and/or correct areas affected by spatial bias. It is based on the combination of a spatial segmentation algorithm called NEM (Neighborhood Expectation Maximization and spatial trend estimation. We defined quality criteria for array-CGH data, demonstrating significant improvements in data quality with our method for three data sets coming from two different platforms (198, 175 and 26 BAC-arrays. Conclusion We have designed an automatic algorithm for the spatial normalization of BAC CGH-array data, preventing the misinterpretation of experimental artifacts as biologically relevant outliers in the genomic profile. This algorithm is implemented in the R package MANOR (Micro-Array NORmalization, which is described at http://bioinfo.curie.fr/projects/manor and available from the Bioconductor site http://www.bioconductor.org. It can also be tested on the CAPweb bioinformatics platform at http://bioinfo.curie.fr/CAPweb.

  20. Phase transitions in local equation-of-state approximation and anomalies of spatial charge profiles in non-uniform plasma

    Science.gov (United States)

    Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.

    2018-01-01

    Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.

  1. Colorful ESL Test Papers And Spatial Intelligence:

    Directory of Open Access Journals (Sweden)

    Dennis Moradkhan

    2014-11-01

    Full Text Available The purpose of this research was to find out whether introducing color as an element which may appeal to spatially-intelligent candidates affects their performance on ESL grammar tests. 52 participants were given two parallel grammar tests, one in black and white and the other bearing the full spectrum of colors in the natural daylight. In order to identify the candidates with visual-spatial learning style, the participants and their teachers were asked to respond to Visual-Spatial Identifier rating scale. Based on the results, no significant relationship was found between the performance of candidates on the colorful and black and white grammar tests and their visual-spatial intelligence. It was concluded that other variables including the method of applying colors, the type and combination of colors as well as the differential impact of different colors on candidates with different cultural backgrounds needed to be addressed before any conclusions can be drawn about the application of color in language assessment.

  2. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  3. Effect of magnetic field on energy spectrum and localization of electron in CdS/HgS/CdS/HgS/CdS multilayered spherical nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Holovatsky, V.A., E-mail: ktf@chnu.edu.ua; Bernik, I.B.; Yakhnevych, M. Ya.

    2017-03-01

    The theoretical investigation of magnetic field effect on energy spectrum and localization of the electron and oscillator strengths of intraband quantum transitions in the nanostructure CdS/HgS/CdS/HgS/CdS is performed. The calculations are made in the framework of effective mass approximation and rectangular potential barriers model using the method of the expansion of quasi-particle wave functions over the complete basis of functions obtained as the exact solutions of the Schrodinger equation for the electron in the nanostructure without the magnetic field. It is shown that the magnetic field violates the spherical symmetry of the system and takes off the degeneration of energy spectrum with respect to the magnetic quantum number. The energy of the electron in the states with m≥0 increases when magnetic field enhances; for the states with m<0 these dependences are non-monotonous (decreasing at first and then increasing). Moreover, the ground state of electron is formed alternately by the states with m=0, −1, −2, …. Magnetic field influences on the distribution of quasi-particle density. It is shown that the electron significantly changes its localization in the nanostructure with two potential wells tunneling through the potential barrier under the effect of magnetic field, changing the oscillator strengths of intraband quantum transitions.

  4. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    Science.gov (United States)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest

  5. Supernovae anisotropy power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)

    2017-10-01

    We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.

  6. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    International Nuclear Information System (INIS)

    Keser, Saniye; Duzgun, Sebnem; Aksoy, Aysegul

    2012-01-01

    Highlights: ► Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. ► Traditional non-spatial regression models may not provide sufficient information for better solid waste management. ► Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. ► Significances of global parameters may diminish at local scale for some provinces. ► GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation data is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global

  7. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  8. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    Science.gov (United States)

    Langfellner, J.; Gizon, L.; Birch, A. C.

    2015-09-01

    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period

  9. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model.

    Science.gov (United States)

    Gogol-Prokurat, Melanie

    2011-01-01

    If species distribution models (SDMs) can rank habitat suitability at a local scale, they may be a valuable conservation planning tool for rare, patchily distributed species. This study assessed the ability of Maxent, an SDM reported to be appropriate for modeling rare species, to rank habitat suitability at a local scale for four edaphic endemic rare plants of gabbroic soils in El Dorado County, California, and examined the effects of grain size, spatial extent, and fine-grain environmental predictors on local-scale model accuracy. Models were developed using species occurrence data mapped on public lands and were evaluated using an independent data set of presence and absence locations on surrounding lands, mimicking a typical conservation-planning scenario that prioritizes potential habitat on unsurveyed lands surrounding known occurrences. Maxent produced models that were successful at discriminating between suitable and unsuitable habitat at the local scale for all four species, and predicted habitat suitability values were proportional to likelihood of occurrence or population abundance for three of four species. Unfortunately, models with the best discrimination (i.e., AUC) were not always the most useful for ranking habitat suitability. The use of independent test data showed metrics that were valuable for evaluating which variables and model choices (e.g., grain, extent) to use in guiding habitat prioritization for conservation of these species. A goodness-of-fit test was used to determine whether habitat suitability values ranked habitat suitability on a continuous scale. If they did not, a minimum acceptable error predicted area criterion was used to determine the threshold for classifying habitat as suitable or unsuitable. I found a trade-off between model extent and the use of fine-grain environmental variables: goodness of fit was improved at larger extents, and fine-grain environmental variables improved local-scale accuracy, but fine-grain variables

  10. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  11. Local Spatial Analysis and Dynamic Simulation of Childhood Obesity and Neighbourhood Walkability in a Major Canadian City.

    Science.gov (United States)

    Shahid, Rizwan; Bertazzon, Stefania

    2015-01-01

    Body weight is an important indicator of current and future health and it is even more critical in children, who are tomorrow's adults. This paper analyzes the relationship between childhood obesity and neighbourhood walkability in Calgary, Canada. A multivariate analytical framework recognizes that childhood obesity is also associated with many factors, including socioeconomic status, foodscapes, and environmental factors, as well as less measurable factors, such as individual preferences, that could not be included in this analysis. In contrast with more conventional global analysis, this research employs localized analysis and assesses need-based interventions. The one-size-fit-all strategy may not effectively control obesity rates, since each neighbourhood has unique characteristics that need to be addressed individually. This paper presents an innovative framework combining local analysis with simulation modeling to analyze childhood obesity. Spatial models generally do not deal with simulation over time, making it cumbersome for health planners and policy makers to effectively design and implement interventions and to quantify their impact over time. This research fills this gap by integrating geographically weighted regression (GWR), which identifies vulnerable neighbourhoods and critical factors for childhood obesity, with simulation modeling, which evaluates the impact of the suggested interventions on the targeted neighbourhoods. Neighbourhood walkability was chosen as a potential target for localized interventions, owing to the crucial role of walking in developing a healthy lifestyle, as well as because increasing walkability is relatively more feasible and less expensive then modifying other factors, such as income. Simulation results suggest that local walkability interventions can achieve measurable declines in childhood obesity rates. The results are encouraging, as improvements are likely to compound over time. The results demonstrate that the

  12. Local Spatial Analysis and Dynamic Simulation of Childhood Obesity and Neighbourhood Walkability in a Major Canadian City

    Directory of Open Access Journals (Sweden)

    Rizwan Shahid

    2015-09-01

    Full Text Available Body weight is an important indicator of current and future health and it is even more critical in children, who are tomorrow’s adults. This paper analyzes the relationship between childhood obesity and neighbourhood walkability in Calgary, Canada. A multivariate analytical framework recognizes that childhood obesity is also associated with many factors, including socioeconomic status, foodscapes, and environmental factors, as well as less measurable factors, such as individual preferences, that could not be included in this analysis. In contrast with more conventional global analysis, this research employs localized analysis and assesses need-based interventions. The one-size-fit-all strategy may not effectively control obesity rates, since each neighbourhood has unique characteristics that need to be addressed individually. This paper presents an innovative framework combining local analysis with simulation modeling to analyze childhood obesity. Spatial models generally do not deal with simulation over time, making it cumbersome for health planners and policy makers to effectively design and implement interventions and to quantify their impact over time. This research fills this gap by integrating geographically weighted regression (GWR, which identifies vulnerable neighbourhoods and critical factors for childhood obesity, with simulation modeling, which evaluates the impact of the suggested interventions on the targeted neighbourhoods. Neighbourhood walkability was chosen as a potential target for localized interventions, owing to the crucial role of walking in developing a healthy lifestyle, as well as because increasing walkability is relatively more feasible and less expensive then modifying other factors, such as income. Simulation results suggest that local walkability interventions can achieve measurable declines in childhood obesity rates. The results are encouraging, as improvements are likely to compound over time. The results

  13. Ion energy spectrum just after the application of current pulse for turbulent heating in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Nakamura, Y; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-07-01

    Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time).

  14. Ion energy spectrum just after the application of current pulse for turbulent heating in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Nakamura, Yukio; Hiraki, Naoji; Itoh, Satoshi

    1981-01-01

    Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time). (author)

  15. Spatial patterns of coral survivorship: impacts of adult proximity versus other drivers of localized mortality

    Directory of Open Access Journals (Sweden)

    David A. Gibbs

    2015-11-01

    Full Text Available Species-specific enemies may promote prey coexistence through negative distance- and density-dependent survival of juveniles near conspecific adults. We tested this mechanism by transplanting juvenile-sized fragments of the brooding corals Pocillopora damicornis and Seriatopora hystrix 3, 12, 24 and 182 cm up- and down-current of conspecific adults and monitoring their survival and condition over time. We also characterized the spatial distribution of P. damicornis and S. hystrix within replicate plots on three Fijian reef flats and measured the distribution of small colonies within 2 m of larger colonies of each species. Juvenile-sized transplants exhibited no differences in survivorship as a function of distance from adult P. damicornis or S. hystrix. Additionally, both P. damicornis and S. hystrix were aggregated rather than overdispersed on natural reefs. However, a pattern of juveniles being aggregated near adults while larger (and probably older colonies were not suggests that greater mortality near large adults could occur over longer periods of time or that size-dependent mortality was occurring. While we found minimal evidence of greater mortality of small colonies near adult conspecifics in our transplant experiments, we did document hot-spots of species-specific corallivory. We detected spatially localized and temporally persistent predation on P. damicornis by the territorial triggerfish Balistapus undulatus. This patchy predation did not occur for S. hystrix. This variable selective regime in an otherwise more uniform environment could be one mechanism maintaining diversity of corals on Indo-Pacific reefs.

  16. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

    2013-01-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...

  17. A redetermination of the X-ray spectrum of SN 1006 and excess diffuse emission from the Lupus region

    International Nuclear Information System (INIS)

    Koyama, Katsuji; Tsunemi, Hiroshi; Becker, R.H.; Hughes, J.P.

    1987-01-01

    X-ray from SN 1006 and from the adjacent Lupus region were separately observed with the Tenma gas scintillation proportional counters. The spectrum of the local excess emission from the Lupus region can be consistently fitted with either a thin thermal bremsstrahlung spectrum with a temperature of 7.5 ± 2.6 keV or a power-law spectrum with a photon index of 2.1 ± 0.1. The x-ray emission from SN 1006, after subtraction of this local excess, has a spectrum which can be described as a power-law spectrum with a photon index of 3.3 ± 0.1 or a thin thermal bremsstrahlung spectrum with a temperature of 1.9 ± 0.1 keV which is much softer than the previously reported spectrum. No significant iron line emission was observed in the SN 1006 spectrum. The 90 % upper limit for the equivalent width of the iron line was reduced to 400 eV. The observed spectrum can also be interpreted in terms of a nonequilibrium ionization model of about 2-keV electron temperature. (author)

  18. Spectrum estimation method based on marginal spectrum

    International Nuclear Information System (INIS)

    Cai Jianhua; Hu Weiwen; Wang Xianchun

    2011-01-01

    FFT method can not meet the basic requirements of power spectrum for non-stationary signal and short signal. A new spectrum estimation method based on marginal spectrum from Hilbert-Huang transform (HHT) was proposed. The procession of obtaining marginal spectrum in HHT method was given and the linear property of marginal spectrum was demonstrated. Compared with the FFT method, the physical meaning and the frequency resolution of marginal spectrum were further analyzed. Then the Hilbert spectrum estimation algorithm was discussed in detail, and the simulation results were given at last. The theory and simulation shows that under the condition of short data signal and non-stationary signal, the frequency resolution and estimation precision of HHT method is better than that of FFT method. (authors)

  19. 3D spatial information infrastructure : The case of Port Rotterdam

    NARCIS (Netherlands)

    Zlatanova, S.; Beetz, J.

    2012-01-01

    The development and maintenance of the infrastructure, facilities, logistics and other assets of the Port of Rotterdam requires a broad spectrum of heterogeneous information. This information concerns features, which are spatially distributed above ground, underground, in the air and in the water.

  20. The broad-spectrum antiviral compound ST-669 restricts chlamydial inclusion development and bacterial growth and localizes to host cell lipid droplets within treated cells.

    Science.gov (United States)

    Sandoz, Kelsi M; Valiant, William G; Eriksen, Steven G; Hruby, Dennis E; Allen, Robert D; Rockey, Daniel D

    2014-07-01

    Novel broad-spectrum antimicrobials are a critical component of a strategy for combating antibiotic-resistant pathogens. In this study, we explored the activity of the broad-spectrum antiviral compound ST-669 for activity against different intracellular bacteria and began a characterization of its mechanism of antimicrobial action. ST-669 inhibits the growth of three different species of chlamydia and the intracellular bacterium Coxiella burnetii in Vero and HeLa cells but not in McCoy (murine) cells. The antichlamydial and anti-C. burnetii activity spectrum was consistent with those observed for tested viruses, suggesting a common mechanism of action. Cycloheximide treatment in the presence of ST-669 abrogated the inhibitory effect, demonstrating that eukaryotic protein synthesis is required for tested activity. Immunofluorescence microscopy demonstrated that different chlamydiae grow atypically in the presence of ST-669, in a manner that suggests the compound affects inclusion formation and organization. Microscopic analysis of cells treated with a fluorescent derivative of ST-669 demonstrated that the compound localized to host cell lipid droplets but not to other organelles or the host cytosol. These results demonstrate that ST-669 affects intracellular growth in a host-cell-dependent manner and interrupts proper development of chlamydial inclusions, possibly through a lipid droplet-dependent process. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Comparison of Modeling Grassland Degradation with and without Considering Localized Spatial Associations in Vegetation Changing Patterns

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2018-01-01

    Full Text Available Grassland ecosystems worldwide are confronted with degradation. It is of great importance to understand long-term trajectory patterns of grassland vegetation by advanced analytical models. This study proposes a new approach called a binary logistic regression model with neighborhood interactions, or BLR-NIs, which is based on binary logistic regression (BLR, but fully considers the spatio-temporally localized spatial associations or characterization of neighborhood interactions (NIs in the patterns of grassland vegetation. The BLR-NIs model was applied to a modeled vegetation degradation of grasslands in the Xilin river basin, Inner Mongolia, China. Residual trend analysis on the normalized difference vegetation index (RESTREND-NDVI, which excluded the climatic impact on vegetation dynamics, was adopted as a preprocessing step to derive three human-induced trajectory patterns (vegetation degradation, vegetation recovery, and no significant change in vegetation during two consecutive periods, T1 (2000–2008 and T2 (2007–2015. Human activities, including livestock grazing intensity and transportation accessibility measured by road network density, were included as explanatory variables for vegetation degradation, which was defined for locations if vegetation recovery or no significant change in vegetation in T1 and vegetation degradation in T2 were observed. Our work compared the results of BLR-NIs and the traditional BLR model that did not consider NIs. The study showed that: (1 both grazing intensity and road density had a positive correlation to vegetation degradation based on the traditional BLR model; (2 only road density was found to positively correlate to vegetation degradation by the BLR-NIs model; NIs appeared to be critical factors to predict vegetation degradation; and (3 including NIs in the BLR model improved the model performance substantially. The study provided evidence for the importance of including localized spatial

  2. Non-Local Thermodynamic Equilibrium Spectrum Synthesis of Type IA Supernovae

    Science.gov (United States)

    Nugent, Peter Edward

    1997-09-01

    Type Ia supernovae (SNe Ia) are valuable distance indicators for cosmology and the elements they eject are are important for nucleosynthesis. They appear to be thermonuclear disruptions of carbon-oxygen white dwarfs that accrete from companion stars until they approach the Chandrasekbar mass, and there is a suspicion that the propagation of the nuclear burning front involves a transition from a deflagration to a detonation. Detailed modeling of the atmospheres and spectra of SNe Ia is needed to advance our understanding of SNe Ia. Comparison of synthetic and observed spectra provides information on the temperature, density, velocity, and composition of the ejected matter and thus constrain hydrodynamical models. In addition, the expanding photosphere method yields distances to individual events that are independent of distances based on the decay of 56Ni in SNe Ia and of Cepheid variable stars in the parent galaxies. This thesis is broken down into 4 major sections, each highlighting a different way with which to use spectrum synthesis to analyze SNe Ia. Chapters 2 and 3 look at normal SNe Ia and their potential use as distance indicators using SEAM. Chapter 4 examines spectral correlations with luminosity in SNe Ia and provides a plausible explanation for these correlations via spectrum synthesis. In Chapter 5 the spectra of various hydrodynamical models are calculated in an effort to answer the question of which current progenitor/explosion model is the most plausible for a SN Ia. Finally, we look at the importance of NLTE calculations and line identifications in Chapter 6. Also included are two appendices which contain more technical information concerning γ-ray deposition and the thermalization parameter.

  3. Spatially-Dependent Modelling of Pulsar Wind Nebula G0.9+0.1

    Science.gov (United States)

    van Rensburg, C.; Krüger, P. P.; Venter, C.

    2018-03-01

    We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multi-zone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially-dependent B-field, spatially-dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.

  4. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Linden, Tim [Ohio State U., CCAPP

    2017-11-20

    The HAWC Collaboration has recently reported the detection of bright and spatially extended multi-TeV gamma-ray emission from Geminga, Monogem, and a handful of other nearby, middle-aged pulsars. The angular profile of the emission observed from these pulsars is surprising, in that it implies that cosmic-ray diffusion is significantly inhibited within ~25 pc of these objects, compared to the expectations of standard Galactic diffusion models. This raises the important question of whether the diffusion coefficient in the local interstellar medium is also low, or whether it is instead better fit by the mean Galactic value. Here, we utilize recent observations of the cosmic-ray electron spectrum (extending up to ~20 TeV) by the H.E.S.S. Collaboration to show that the local diffusion coefficient cannot be as low as it is in the regions surrounding Geminga and Monogem. Instead, we conclude that cosmic rays efficiently diffuse through the bulk of the local interstellar medium. Among other implications, this further supports the conclusion that pulsars significantly contribute to the observed positron excess.

  5. Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh, E-mail: f_rezaei@sbu.ac.ir; Tavassoli, Seyed Hassan

    2012-12-01

    Laser-induced plasma emission of an aluminum target in helium gas at 1 atm pressure is numerically and experimentally investigated. A laser pulse at wavelength of 266 nm and pulse duration of 10 ns has been considered. Laser ablation is calculated by a one dimensional model based on thermal evaporation mechanism. Spatial and temporal parameters of plasma expansion are determined by using hydrodynamic equations. Three kinds of plasma emission, including Bremsstrahlung, recombination and spectral emissions are considered for modeling the spectrum. Strong lines of aluminum and helium in wavelength interval of 200 to 450 nm are selected. Aluminum spectrum in UV range is depicted and compared with other spectral ranges. Temporal and spatial evolution of plasma emission up to 200 ns after the laser irradiation is studied. The effect of laser energy on the plasma spectrum is studied. An experimental set-up is arranged to compare numerical calculations with experimental results. Experimental and numerical results illustrate that helium line widths and peak intensities become narrower and weaker with time, respectively. Spatial distribution of spectrum shows that for closer distance to the sample surface, an intense continuous emission is observed, while at the farther distance, continuous emission decreases and spectral lines become sharper. A good coincidence is observed between experimental and numerical results. - Highlights: Black-Right-Pointing-Pointer Aluminum plasma emission in helium is numerically and experimentally studied. Black-Right-Pointing-Pointer Spectral, Bremsstrahlung and recombination emissions in spectrum are calculated. Black-Right-Pointing-Pointer All strong lines of aluminum and helium are chosen for spectrum simulation. Black-Right-Pointing-Pointer Line widths and peak intensities at later times become narrower and weaker. Black-Right-Pointing-Pointer At specific optimum position, the maximum of signal peaks is acquired.

  6. Electron localization and optical absorption of polygonal quantum rings

    Science.gov (United States)

    Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2015-06-01

    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

  7. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    Science.gov (United States)

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  8. Network efficiency in autism spectrum disorder and its relation to brain overgrowth

    Directory of Open Access Journals (Sweden)

    John D Lewis

    2013-12-01

    Full Text Available A substantial body of evidence links differences in brain size to differences in brain organization. We have hypothesized that the developmental aspect of this relation plays a role in autism spectrum disorder (ASD, a neurodevelopmental disorder which involves abnormalities in brain growth. Children with ASD have abnormally large brains by the second year of life, and for several years thereafter their brain size can be multiple standard deviations above the norm. The greater conduction delays and cellular costs presumably associated with the longer long-distance connections in these larger brains is thought to influence developmental processes, giving rise to an altered brain organization with less communication between spatially distant regions. This has been supported by computational models and by findings linking greater intra-cranial volume, an index of maximum brain-size during development, to reduced inter-hemispheric connectivity in individuals with ASD. In this paper, we further assess this hypothesis via a whole-brain analysis of network efficiency. We utilize diffusion tractography to estimate the strength and length of the connections between all pairs of cortical regions. We compute the efficiency of communication between each network node and all others, and within local neighborhoods; we then assess the relation of these measures to intra-cranial volume, and the differences in these measures between adults with autism and typical controls. Intra-cranial volume is shown to be inversely related to efficiency for wide-spread regions of cortex. Moreover, the spatial patterns of reductions in efficiency in autism bear a striking resemblance to the regional relationships between efficiency and intra-cranial volume, particularly for local efficiency. The results thus provide further support for the hypothesized link between brain overgrowth in children with autism and the efficiency of the organization of the brain in adults with autism.

  9. Local-scale spatial variation in diversity of social wasps in an Amazonian rain forest in Caxiuanã, Pará, Brazil (Hymenoptera, Vespidae, Polistinae

    Directory of Open Access Journals (Sweden)

    Orlando Tobias Silveira

    2012-09-01

    Full Text Available Polistine wasps are important in Neotropical ecosystems due to their ubiquity and diversity. Inventories have not adequately considered spatial attributes of collected specimens. Spatial data on biodiversity are important for study and mitigation of anthropogenic impacts over natural ecosystems and for protecting species. We described and analyzed local-scale spatial patterns of collecting records of wasp species, as well as spatial variation of diversity descriptors in a 2500-hectare area of an Amazon forest in Brazil. Rare species comprised the largest fraction of the fauna. Close range spatial effects were detected for most of the more common species, with clustering of presence-data at short distances. Larger spatial lag effects could also be identified in some species, constituting probably cases of exogenous autocorrelation and candidates for explanations based on environmental factors. In a few cases, significant or near significant correlations were found between five species (of Agelaia, Angiopolybia, and Mischocyttarus and three studied environmental variables: distance to nearest stream, terrain altitude, and the type of forest canopy. However, association between these factors and biodiversity variables were generally low. When used as predictors of polistine richness in a linear multiple regression, only the coefficient for the forest canopy variable resulted significant. Some level of prediction of wasp diversity variables can be attained based on environmental variables, especially vegetation structure. Large-scale landscape and regional studies should be scheduled to address this issue.

  10. The occipital place area represents the local elements of scenes.

    Science.gov (United States)

    Kamps, Frederik S; Julian, Joshua B; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D

    2016-05-15

    Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents is not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found that OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements - both in spatial boundary and scene content representation - while PPA and RSC represent global scene properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Magpies can use local cues to retrieve their food caches.

    Science.gov (United States)

    Feenders, Gesa; Smulders, Tom V

    2011-03-01

    Much importance has been placed on the use of spatial cues by food-hoarding birds in the retrieval of their caches. In this study, we investigate whether food-hoarding birds can be trained to use local cues ("beacons") in their cache retrieval. We test magpies (Pica pica) in an active hoarding-retrieval paradigm, where local cues are always reliable, while spatial cues are not. Our results show that the birds use the local cues to retrieve their caches, even when occasionally contradicting spatial information is available. The design of our study does not allow us to test rigorously whether the birds prefer using local over spatial cues, nor to investigate the process through which they learn to use local cues. We furthermore provide evidence that magpies develop landmark preferences, which improve their retrieval accuracy. Our findings support the hypothesis that birds are flexible in their use of memory information, using a combination of the most reliable or salient information to retrieve their caches. © Springer-Verlag 2010

  12. The application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2006-01-01

    Aiming at the shortcomings that BP algorithm is usually trapped to a local optimum and it has a low speed of convergence in the application of neural network to identify gamma spectrum, according to the advantage of the globe optimal searching of particle swarm optimization, this paper put forward a new algorithm for neural network training by combining BP algorithm and Particle Swarm Optimization-mixed PSO-BP algorithm. In the application to identify gamma spectrum, the new algorithm overcomes the shortcoming that BP algorithm is usually trapped to a local optimum and the neural network trained by it has a high ability of generalization with identification result of one hundred percent correct. Practical example shows that the mixed PSO-BP algorithm can effectively and reliably be used to identify gamma spectrum. (authors)

  13. Abiotic and biotic controls on local spatial distribution and performance of Boechera stricta

    Directory of Open Access Journals (Sweden)

    KUSUM J NAITHANI

    2014-07-01

    Full Text Available This study investigates the relative influence of biotic and abiotic factors on community dynamics using an integrated approach and highlights the influence of space on genotypic and phenotypic traits in plant community structure. We examined the relative influence of topography, environment, spatial distance, and intra- and interspecific interactions on spatial distribution and performance of Boechera stricta (rockcress, a close perennial relative of model plant Arabidopsis. First, using Bayesian kriging, we mapped the topography and environmental gradients and explored the spatial distribution of naturally occurring rockcress plants and two neighbors, Taraxacum officinale (dandelion and Solidago missouriensis (goldenrod found in close proximity within a typical diverse meadow community across topographic and environmental gradients. We then evaluated direct and indirect relationships among variables using Mantel path analysis and developed a network displaying abiotic and biotic interactions in this community. We found significant spatial autocorrelation among rockcress individuals, either because of common microhabitats as displayed by high density of individuals at lower elevation and high soil moisture area, or limited dispersal as shown by significant spatial autocorrelation of naturally occurring inbred lines, or a combination of both. Goldenrod and dandelion density around rockcress does not show any direct relationship with rockcress fecundity, possibly due to spatial segregation of resources. However, dandelion density around rockcress shows an indirect negative influence on rockcress fecundity via herbivory, indicating interspecific competition. Overall, we suggest that common microhabitat preference and limited dispersal are the main drivers for spatial distribution. However, intra-specific interactions and insect herbivory are the main drivers of rockcress performance in the meadow community.

  14. Entanglement spectrum and boundary theories with projected entangled-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Cirac, Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Poilblanc, Didier [Laboratoire de Physique Theorique, C.N.R.S. and Universite de Toulouse, Toulouse (France); Schuch, Norbert [California Institute of Technology, Pasadena, CA (United States); Verstraete, Frank [Vienna Univ. (Austria)

    2012-07-01

    In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various models and find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.

  15. The impact of I(C)T in spatial planning education, 25 years of blended e-learning

    NARCIS (Netherlands)

    Knaap, van der W.G.M.

    2014-01-01

    The Wageningen spatial planning education curriculum is based on a mix of decision-oriented and design-oriented approaches. It is also intertwined with a wide range of E-learning options. The Elearning environment consists of a spectrum of applications such as model studies, spatial analysis using

  16. Visuo-Spatial Performance in Autism: A Meta-Analysis

    Science.gov (United States)

    Muth, Anne; Hönekopp, Johannes; Falter, Christine M.

    2014-01-01

    Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large…

  17. The JET Alfven Eigenmode Local Manager for the real-time detection and tracking of a frequency-degenerate spectrum of MHD instabilities

    International Nuclear Information System (INIS)

    Testa, D.; Carfantan, H.; Fasoli, A.; Goodyear, A.; King, Q.; Blanchard, P.; Klein, A.; Lavanchy, P.; Panis, T.

    2011-01-01

    We present the real-time VME system used to detect and track MHD instabilities, and particularly Alfven Eigenmodes, on the JET tokamak [J. Wesson, Tokamaks, 3rd ed., Oxford Science Publication, Oxford, 2003, p. 617]. This system runs on a 1 kHz clock cycle, and allows performing a real-time, unsupervised and blind detection, decomposition and tracking of the individual components in a frequency-degenerate, multi-harmonic spectrum, using a small number of input data which are unevenly sampled in the spatial domain. This makes it possible to follow in real-time the detected modes as the plasma background evolves, and measure in real-time their frequency, damping rate, toroidal mode-number and relative amplitude. The successful implementation of this system opens a clear path towards developing real-time control tools for electro-magnetic instabilities in future fusion devices aimed at achieving a net energy gain, such as ITER [J. Wesson, Tokamaks, 3rd ed., Oxford Science Publication, Oxford, 2003, p. 711].

  18. Multi-scale model of epidemic fade-out: Will local extirpation events inhibit the spread of white-nose syndrome?

    Science.gov (United States)

    O'Reagan, Suzanne M; Magori, Krisztian; Pulliam, J Tomlin; Zokan, Marcus A; Kaul, RajReni B; Barton, Heather D; Drake, John M

    2015-04-01

    White-nose syndrome (WNS) is an emerging infectious disease that has resulted in severe declines of its hibernating bat hosts in North America. The ongoing epidemic of white-nose syndrome is a multi-scale phenomenon becau.se it causes hibernaculum-level extirpations, while simultaneously spreading over larger spatial scales. We investigate a neglected topic in ecological epidemiology: how local pathogen-driven extirpations impact large-scale pathogen spread. Previous studies have identified risk factors for propagation of WNS over hibernaculum and landscape scales but none of these have tested the hypothesis that separation of spatial scales and disease-induced mortality at the hibernaculum level might slow or halt its spread. To test this hypothesis, we developed a mechanistic multi-scale model parameterized using white-nose syndrome.county and site incidence data that connects hibernaculum-level susceptible-infectious-removed (SIR) epidemiology to the county-scale contagion process. Our key result is that hibernaculum-level extirpations will not inhibit county-scale spread of WNS. We show that over 80% of counties of the contiguous USA are likely to become infected before the current epidemic is over and that geometry of habitat connectivity is such that host refuges are exceedingly rare. The macroscale spatiotemporal infection pattern that emerges from local SIR epidemiological processes falls within a narrow spectrum of possible outcomes, suggesting that recolonization, rescue effects, and multi-host complexities at local scales are not important to forward propagation of WNS at large spatial scales. If effective control measures are not implemented, precipitous declines in bat populations are likely, particularly in cave-dense regions that constitute the main geographic corridors of the USA, a serious concern for bat conservation.

  19. Exploring spatial patterns in the associations between local AIDS incidence and socioeconomic and demographic variables in the state of Rio de Janeiro, Brazil.

    Science.gov (United States)

    Alves, André T J; Nobre, Flavio F; Waller, Lance A

    2016-05-01

    Access to antiretroviral therapy (ART), universally provided in Brazil since 1996, resulted in a reduction in overall morbidity and mortality due to AIDS or AIDS-related complications, but in some municipalities of Rio de Janeiro, AIDS incidence remains high. Public health surveillance remains an invaluable tool for understanding current AIDS epidemiologic patterns and local socioeconomic and demographic factors associated with increased incidence. Geographically Weighted Poisson Regression (GWPR) explores spatial varying impacts of these factors across the study area focusing attention on local variations in ecological associations. The set of sociodemographic variables under consideration revealed significant associations with local AIDS incidence and these associations varied geographically across the study area. We find the effects of predictors on AIDS incidence are not constant across the state, contrary to assumptions in the global models. We observe and quantify different local factors driving AIDS incidence in different parts of the state. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Spatial infinity in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Shiromizu, Tetsuya; Tomizawa, Shinya

    2004-01-01

    Motivated by recent studies on the uniqueness or nonuniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes (n≥4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the nontrivial Weyl tensor (n-1) C abcd in general. We also address static spacetime and its multipole moments P a 1 a 2 ···a s . Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed multipole moments in static vacuum spacetimes. For example, we consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of the static vacuum solution we need some additional information, at least the Weyl tensor (n-2) C abcd at spatial infinity

  1. Spectrum 101: An Introduction to Spectrum Management

    Science.gov (United States)

    2004-03-01

    produces a Joint Restricted Frequency List (JRFL). The JFRL consolidates and classifies the spectrum uses that are most critical to operations and to...Management Office JRFL Joint Restricted Frequency List JSC Joint Spectrum Center JSIR Joint Spectrum Interference Resolution JSME Joint Spectrum...Multifunctional Information Distribution System MILSATCOM Military Satellite Communications MOA Memorandum of Agreement MRFL Master Radio Frequency

  2. Spatial pattern formation induced by Gaussian white noise.

    Science.gov (United States)

    Scarsoglio, Stefania; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2011-02-01

    The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.

    Science.gov (United States)

    Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn

    2009-01-01

    1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.

  4. Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale.

    Science.gov (United States)

    Muška, Milan; Tušer, Michal; Frouzová, Jaroslava; Mrkvička, Tomáš; Ricard, Daniel; Seďa, Jaromír; Morelli, Federico; Kubečka, Jan

    2018-03-29

    Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.

  5. Spatial characteristics of white matter abnormalities in schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); S.M. Ehrlich (Stefan); B.C. Ho (Beng ); D.S. Manoach (Dara); A. Caprihan (Arvind); S.C. Schulz (S. Charles); N.C. Andreasen; R.L. Gollub (Randy); V.D. Calhoun (Vince); V. Magnotta

    2013-01-01

    textabstractThere is considerable evidence implicating brain white matter (WM) abnormalities in the pathophysiology of schizophrenia; however, the spatial localization of WM abnormalities reported in the existing studies is heterogeneous. Thus, the goal of this study was to quantify the spatial

  6. Accounting for spatially heterogeneous conditions in local-scale surveillance strategies: case study of the biosecurity insect pest, grape phylloxera (Daktulosphaira vitifoliae (Fitch)).

    Science.gov (United States)

    Triska, Maggie D; Powell, Kevin S; Collins, Cassandra; Pearce, Inca; Renton, Michael

    2018-04-29

    Surveillance strategies are often standardized and completed on grid patterns to detect pest incursions quickly; however, it may be possible to improve surveillance through more targeted surveillance that accounts for landscape heterogeneity, dispersal and the habitat requirements of the invading organism. We simulated pest spread at a local-scale, using grape phylloxera (Daktulosphaira vitifoliae (Fitch)) as a case study, and assessed the influence of incorporating spatial heterogeneity into surveillance strategies compared to current, standard surveillance strategies. Time to detection, spread within and spread beyond the vineyard were reduced by conducting surveys that target sampling effort in soil that is highly suitable to the invading pest in comparison to standard surveillance strategies. However, these outcomes were dependent on the virulence level of phylloxera as phylloxera is a complex pest with multiple genotypes that influence spread and detectability. Targeting surveillance strategies based on local-scale spatial heterogeneity can decrease the time to detection without increasing the survey cost and surveillance that targets highly suitable soil is the most efficient strategy for detecting new incursions. Additionally, combining targeted surveillance strategies with buffer zones and hygiene procedures, and updating surveillance strategies as additional species information becomes available, will further decrease the risk of pest spread. This article is protected by copyright. All rights reserved.

  7. Dye and pigment-free structural colors and angle-insensitive spectrum filters

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lingjie Jay; Hollowell, Andrew E.; Wu, Yi-Kuei

    2017-01-17

    Optical spectrum filtering devices displaying minimal angle dependence or angle insensitivity are provided. The filter comprises a localized plasmonic nanoresonator assembly having a metal material layer defining at least one nanogroove and a dielectric material disposed adjacent to the metal material layer. The dielectric material is disposed within the nanogroove(s). The localized plasmonic nanoresonator assembly is configured to funnel and absorb a portion of an electromagnetic spectrum in the at least one nanogroove via localized plasmonic resonance to generate a filtered output having a predetermined range of wavelengths that displays angle insensitivity. Thus, flexible, high efficiency angle independent color filters having very small diffraction limits are provided that are particularly suitable for use as pixels for various display devices or for use in anti-counterfeiting and cryptography applications. The structures can also be used for colored print applications and the elements can be rendered as pigment-like particles.

  8. Study of Landau spectrum for a two-dimensional random magnetic field

    International Nuclear Information System (INIS)

    Furtlehner, C.

    1997-01-01

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of 'strong' mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author)

  9. Local box-counting dimensions of discrete quantum eigenvalue spectra: Analytical connection to quantum spectral statistics

    Science.gov (United States)

    Sakhr, Jamal; Nieminen, John M.

    2018-03-01

    Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.

  10. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  11. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  12. Influence of large local and non-local bispectra on primordial black hole abundance

    International Nuclear Information System (INIS)

    Young, Sam; Regan, Donough; Byrnes, Christian T.

    2016-01-01

    Primordial black holes represent a unique probe to constrain the early universe on small scales—providing the only constraints on the primordial power spectrum on the majority of scales. However, these constraints are strongly dependent on even small amounts of non-Gaussianity, which is unconstrained on scales significantly smaller than those visible in the CMB. This paper goes beyond previous considerations to consider the effects of a bispectrum of the equilateral, orthogonal and local shapes with arbitrary magnitude upon the abundance of primordial black holes. Non-Gaussian density maps of the early universe are generated from a given bispectrum and used to place constraints on the small scale power spectrum. When small, we show that the skewness provides an accurate estimate for how the constraint depends on non-Gaussianity, independently of the shape of the bispectrum. We show that the orthogonal template of non-Gaussianity has an order of magnitude weaker effect on the constraints than the local and equilateral templates

  13. CMB anomalies and the effects of local features of the inflaton potential

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, Alexander Gallego [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); ICRANet, Pescara (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Romano, Antonio Enea [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); University of Torino, Department of Physics, Turin (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Gariazzo, Stefano [University of Torino, Department of Physics, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain)

    2017-04-15

    Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales k = 0.002 Mpc{sup -1}, respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales. (orig.)

  14. Formation of universal and diffusion regions of non-linear spectra of relativistic electrons in spatially limited sources

    International Nuclear Information System (INIS)

    Kontorovich, V.M.; Kochanov, A.E.

    1980-01-01

    It is demonstrated that in the case of hard injection of relativistic electrons accompanied by the joint action of synchrotron (Compton) losses and energy-dependent spatial diffusion, a spectrum with 'breaks' is formed containing universal (with index γ = 2) and diffusion regions, both independent of the injection spectrum. The effect from non-linearity of the electron spectrum is considered in averaged electromagnetic spectra for various geometries of sources (sphere, disk, arm). It is shown that an universal region (with index α = 0.5) can occur in the radiation spectrum. (orig.)

  15. A spatial framework for targeting urban planning for pollinators and people with local stakeholders: A route to healthy, blossoming communities?

    Science.gov (United States)

    Bellamy, Chloe C; van der Jagt, Alexander P N; Barbour, Shelley; Smith, Mike; Moseley, Darren

    2017-10-01

    Pollinators such as bees and hoverflies are essential components of an urban ecosystem, supporting and contributing to the biodiversity, functioning, resilience and visual amenity of green infrastructure. Their urban habitats also deliver health and well-being benefits to society, by providing important opportunities for accessing nature nearby to the homes of a growing majority of people living in towns and cities. However, many pollinator species are in decline, and the loss, degradation and fragmentation of natural habitats are some of the key drivers of this change. Urban planners and other practitioners need evidence to carefully prioritise where they focus their resources to provide and maintain a high quality, multifunctional green infrastructure network that supports pollinators and people. We provide a modelling framework to inform green infrastructure planning as a nature based solution with social and ecological benefits. We show how habitat suitability models (HSM) incorporating remote sensed vegetation data can provide important information on the influence of urban landcover composition and spatial configuration on species distributions across cities. Using Edinburgh, Scotland, as a case study city, we demonstrate this approach for bumble bees and hoverflies, providing high resolution predictive maps that identify pollinator habitat hotspots and pinch points across the city. By combining this spatial HSM output with health deprivation data, we highlight 'win-win' opportunity areas in most need of improved green infrastructure to support pollinator habitat quality and connectivity, as well as societal health and well-being. In addition, in collaboration with municipal planners, local stakeholders, and partners from a local greenspace learning alliance, we identified opportunities for citizen engagement activities to encourage interest in wildlife gardening as part of a 'pollinator pledge'. We conclude that this quantitative, spatially explicit and

  16. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  17. Temporal overlap estimation based on interference spectrum in CARS microscopy

    Science.gov (United States)

    Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen

    2018-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.

  18. Spatial Dynamics and Determinants of County-Level Education Expenditure in China

    Science.gov (United States)

    Gu, Jiafeng

    2012-01-01

    In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…

  19. Measurement of global and local resonance terms

    CERN Document Server

    Tomás, R; Calaga, R; Fischer, W; Franchi, A; Rumolo, Giovanni

    2005-01-01

    Recently, resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of beam position monitor (BPM) data. Based on these measurements a new analysis has been derived to extract truly local observables from BPM data. These local observables are called local resonance terms since they share some similarities with the global resonance terms. In this paper we derive these local terms analytically and present experimental measurements of sextupolar global and local resonance terms in RHIC. Nondestructive measurements of these terms using ac dipoles are also presented.

  20. Perspectives on spatial data analysis

    CERN Document Server

    Rey, Sergio

    2010-01-01

    This book takes both a retrospective and prospective view of the field of spatial analysis by combining selected reprints of classic articles by Arthur Getis with current observations by leading experts in the field. Four main aspects are highlighted, dealing with spatial analysis, pattern analysis, local statistics as well as illustrative empirical applications. Researchers and students will gain an appreciation of Getis' methodological contributions to spatial analysis and the broad impact of the methods he has helped pioneer on an impressively broad array of disciplines including spatial epidemiology, demography, economics, and ecology. The volume is a compilation of high impact original contributions, as evidenced by citations, and the latest thinking on the field by leading scholars. This makes the book ideal for advanced seminars and courses in spatial analysis as well as a key resource for researchers seeking a comprehensive overview of recent advances and future directions in the field.

  1. Application of real time spectrum measurement to radiation monitors

    International Nuclear Information System (INIS)

    Matsuno, K.; Watanabe, M.; Sakamaki, T.

    1996-01-01

    A multichannel analyzer (MCA) and two realtime spectrum monitoring methods have been developed for use in radiation monitors. The new MCA was designed to be installed at a local site as a component of a radiation monitor. The MCA repeats spectrum measurement at short intervals (Δt) and, after each measurement, transmits a spectrum datum to the operation console. The authors applied two methods to process Δt spectrum counts for each channel for longer time interval. One method of processing counts is the 'running average (RA) method'. The other method is the 'exponential smoothing (ES) method', which simulates RC rate meters by subtracting a fraction corresponding to the accumulated counts. Relative standard deviations for each channel can be made the same by selecting an appropriate value. The response with the 'ES' method is initially faster than that with the 'RA' method, but the 'RA' method allows a full response to be reached at a predictable time. (author)

  2. Local helioseismology: three-dimensional imaging of the solar interior

    NARCIS (Netherlands)

    Gizon, L.; Birch, A.C.; Spruit, H.C.

    2010-01-01

    The Sun supports a rich spectrum of internal waves that are continuously excited by turbulent convection. The Global Oscillation Network Group (GONG) network and the SOHO/MDI (Solar and Heliospheric Observatory/Michelson Doppler Imager) space instrument provide an exceptional database of spatially

  3. Potential of dynamic spectrum allocation in LTE macro networks

    Science.gov (United States)

    Hoffmann, H.; Ramachandra, P.; Kovács, I. Z.; Jorguseski, L.; Gunnarsson, F.; Kürner, T.

    2015-11-01

    In recent years Mobile Network Operators (MNOs) worldwide are extensively deploying LTE networks in different spectrum bands and utilising different bandwidth configurations. Initially, the deployment is coverage oriented with macro cells using the lower LTE spectrum bands. As the offered traffic (i.e. the requested traffic from the users) increases the LTE deployment evolves with macro cells expanded with additional capacity boosting LTE carriers in higher frequency bands complemented with micro or small cells in traffic hotspot areas. For MNOs it is crucial to use the LTE spectrum assets, as well as the installed network infrastructure, in the most cost efficient way. The dynamic spectrum allocation (DSA) aims at (de)activating the available LTE frequency carriers according to the temporal and spatial traffic variations in order to increase the overall LTE system performance in terms of total network capacity by reducing the interference. This paper evaluates the DSA potential of achieving the envisaged performance improvement and identifying in which system and traffic conditions the DSA should be deployed. A self-optimised network (SON) DSA algorithm is also proposed and evaluated. The evaluations have been carried out in a hexagonal and a realistic site-specific urban macro layout assuming a central traffic hotspot area surrounded with an area of lower traffic with a total size of approximately 8 × 8 km2. The results show that up to 47 % and up to 40 % possible DSA gains are achievable with regards to the carried system load (i.e. used resources) for homogenous traffic distribution with hexagonal layout and for realistic site-specific urban macro layout, respectively. The SON DSA algorithm evaluation in a realistic site-specific urban macro cell deployment scenario including realistic non-uniform spatial traffic distribution shows insignificant cell throughput (i.e. served traffic) performance gains. Nevertheless, in the SON DSA investigations, a gain of up

  4. Spatial ecological processes and local factors predict the distribution and abundance of spawning by steelhead (Oncorhynchus mykiss across a complex riverscape.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Falke

    Full Text Available Processes that influence habitat selection in landscapes involve the interaction of habitat composition and configuration and are particularly important for species with complex life cycles. We assessed the relative influence of landscape spatial processes and local habitat characteristics on patterns in the distribution and abundance of spawning steelhead (Oncorhynchus mykiss, a threatened salmonid fish, across ∼15,000 stream km in the John Day River basin, Oregon, USA. We used hurdle regression and a multi-model information theoretic approach to identify the relative importance of covariates representing key aspects of the steelhead life cycle (e.g., site access, spawning habitat quality, juvenile survival at two spatial scales: within 2-km long survey reaches (local sites and ecological neighborhoods (5 km surrounding the local sites. Based on Akaike's Information Criterion, models that included covariates describing ecological neighborhoods provided the best description of the distribution and abundance of steelhead spawning given the data. Among these covariates, our representation of offspring survival (growing-season-degree-days, °C had the strongest effect size (7x relative to other predictors. Predictive performances of model-averaged composite and neighborhood-only models were better than a site-only model based on both occurrence (percentage of sites correctly classified = 0.80±0.03 SD, 0.78±0.02 vs. 0.62±0.05, respectively and counts (root mean square error = 3.37, 3.93 vs. 5.57, respectively. The importance of both temperature and stream flow for steelhead spawning suggest this species may be highly sensitive to impacts of land and water uses, and to projected climate impacts in the region and that landscape context, complementation, and connectivity will drive how this species responds to future environments.

  5. The reorientation of spatial planning in Denmark

    DEFF Research Database (Denmark)

    Galland, Daniel

    2011-01-01

    comprehensiveness and integration that once characterised planning policies and institutional practices occurring within and across the different administrative levels that constitute the Danish planning system have long since been at stake. Accordingly, the social and welfarist rationales behind spatial planning...... could be clarified in accordance with three different yet also interrelated categorisations: (a) the evolving conception of spatial planning; (b) the shifting roles of spatial planning in handling spatial development and economic growth; and (c) the changing governance structures embedded in spatial...... planning practices at different administrative levels. As a whole, the outcome of this dissertation confirms that there is an increasing policy and institutional mismatch between national, regional and urban/local planning practices. It further suggests that the lack of spatial reflexion embedded...

  6. Remote state preparation of spatial qubits

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Prosser, M. A.; Neves, L. [Center for Optics and Photonics, Universidad de Concepcion, Casilla 4016, Concepcion (Chile) and Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2011-07-15

    We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.

  7. Remote state preparation of spatial qubits

    International Nuclear Information System (INIS)

    Solis-Prosser, M. A.; Neves, L.

    2011-01-01

    We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.

  8. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  9. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  10. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-03-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  11. Evaluation of spatial variability of metal bioavailability in soils using geostatistics

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Hauschild, Michael Zwicky; Rosenbaum, Ralph K.

    2012-01-01

    Soil properties show signifficant spatial variability at local, regional and continental scales. This is a challenge for life cycle impact assessment (LCIA) of metals, because fate, bioavailability and effect factors are controlled by environmental chemistry and can vary orders of magnitude...... is performed using ArcGIS Geostatistical Analyst. Results show that BFs of copper span a range of 6 orders of magnitude, and have signifficant spatial variability at local and continental scales. The model nugget variance is signifficantly higher than zero, suggesting the presence of spatial variability...

  12. Digital Speckle Photography of Subpixel Displacements of Speckle Structures Based on Analysis of Their Spatial Spectra

    Science.gov (United States)

    Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Lyakin, D. V.; Ryabukho, V. P.

    2018-04-01

    We have investigated the capabilities of the method of digital speckle interferometry for determining subpixel displacements of a speckle structure formed by a displaceable or deformable object with a scattering surface. An analysis of spatial spectra of speckle structures makes it possible to perform measurements with a subpixel accuracy and to extend the lower boundary of the range of measurements of displacements of speckle structures to the range of subpixel values. The method is realized on the basis of digital recording of the images of undisplaced and displaced speckle structures, their spatial frequency analysis using numerically specified constant phase shifts, and correlation analysis of spatial spectra of speckle structures. Transformation into the frequency range makes it possible to obtain quantities to be measured with a subpixel accuracy from the shift of the interference-pattern minimum in the diffraction halo by introducing an additional phase shift into the complex spatial spectrum of the speckle structure or from the slope of the linear plot of the function of accumulated phase difference in the field of the complex spatial spectrum of the displaced speckle structure. The capabilities of the method have been investigated in natural experiment.

  13. Joint Top-K Spatial Keyword Query Processing

    DEFF Research Database (Denmark)

    Wu, Dingming; Yiu, Man Lung; Cong, Gao

    2012-01-01

    Web users and content are increasingly being geopositioned, and increased focus is being given to serving local content in response to web queries. This development calls for spatial keyword queries that take into account both the locations and textual descriptions of content. We study the effici......Web users and content are increasingly being geopositioned, and increased focus is being given to serving local content in response to web queries. This development calls for spatial keyword queries that take into account both the locations and textual descriptions of content. We study...... the efficient, joint processing of multiple top-k spatial keyword queries. Such joint processing is attractive during high query loads and also occurs when multiple queries are used to obfuscate a user's true query. We propose a novel algorithm and index structure for the joint processing of top-k spatial...... keyword queries. Empirical studies show that the proposed solution is efficient on real data sets. We also offer analytical studies on synthetic data sets to demonstrate the efficiency of the proposed solution. Index Terms IEEE Terms Electronic mail , Google , Indexes , Joints , Mobile communication...

  14. Open space preservation, property value, and optimal spatial configuration

    Science.gov (United States)

    Yong Jiang; Stephen K. Swallow

    2007-01-01

    The public has increasingly demonstrated a strong support for open space preservation. How to finance the socially efficient level of open space with the optimal spatial structure is of high policy relevance to local governments. In this study, we developed a spatially explicit open space model to help identify the socially optimal amount and optimal spatial...

  15. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During cogenesis in Drosophila melanogaster local Egfr activation by the spatially-restricted TGFalpha-like ligand Gurken (Grk...

  16. Spatial Distribution Of Local Markets In Ife North Local Government Area

    Directory of Open Access Journals (Sweden)

    OMOTOYE-OMISORE Oyelola

    2015-08-01

    Full Text Available Researches have been carried out in the past by several authors concerning agricultural marketing without the use of geospatial techniques. This research therefore is meant to show the efficacy of Geographical Information System GIS in local market distribution. The role of market place as a man-made feature where goods and services are exchanged for the purpose of satisfying human needs cannot be overemphasized especially in the general development of villages and towns. This study shows the effectiveness of GIS without the use of metrics method to determine the agricultural market locations and closeness of the markets in Ife North Local Government area. Different kinds of people bring their goods from far and near villages for sale and sustainability in this research both primary and secondary data were collected. Primary data includes the use of Global Positioning System GPS receiver to collect coordinate points of the existing markets. It also involves verbal interview with market women. While secondary data were sourced from administrative maps and satellite images of the area of study it was geo-referenced and digitized. Arc Map was used to run average nearest neighbor analysis. Base on the analysis performed the major constraint facing the market people is poor road network which affect majority of the farmers in transporting their goods from remote villages as indicated in this study. As a result new markets sites were proposed with the use of geospatial techniques for easy accessibility.

  17. Endogenous spatial attention: evidence for intact functioning in adults with autism

    Science.gov (United States)

    Grubb, Michael A.; Behrmann, Marlene; Egan, Ryan; Minshew, Nancy J.; Carrasco, Marisa; Heeger, David J.

    2012-01-01

    Lay Abstract Attention allows us to selectively process the vast amount of information with which we are confronted. Focusing on a certain location of the visual scene (visual spatial attention) enables the prioritization of some aspects of information while ignoring others. Rapid manipulation of the attention field (i.e., the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the deployment and size of the spatial attention field. We measured how well participants perform a visual discrimination task (accuracy) and how quickly they do so (reaction time), with and without spatial uncertainty (i.e., the lack of predictability concerning the spatial position of the upcoming stimulus). We found that high–functioning adults with autism exhibited slower reactions times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals, in all three experiments. These results provide evidence of intact endogenous spatial attention function in high–functioning adults with ASD, suggesting that atypical endogenous spatial attention cannot be a latent characteristic of autism in general. Scientific Abstract Rapid manipulation of the attention field (i.e., the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three psychophysical experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the

  18. Modeling the spatial reach of the LFP

    DEFF Research Database (Denmark)

    Lindén, Henrik; Tetzlaff, Tom; Potjans, Tobias C

    2011-01-01

    The local field potential (LFP) reflects activity of many neurons in the vicinity of the recording electrode and is therefore useful for studying local network dynamics. Much of the nature of the LFP is, however, still unknown. There are, for instance, contradicting reports on the spatial extent ...

  19. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2015-02-01

    Cooperation among cognitive radio users improves the spectrum sensing performance by combining local decisions measured over independent sensing channels, allowing reduction of miss-detection and false alarm probabilities. While most of the works in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false-alarm probabilities are derived for a general scheme of imperfect reporting channels under non necessarily identical sensing and reporting channels. Numerical simulations show that imperfect reporting channels should be considered to optimize the cooperative sensing in terms of consumed energy and probability of error.

  20. Reduced Reliance on Optimal Facial Information for Identity Recognition in Autism Spectrum Disorder

    Science.gov (United States)

    Leonard, Hayley C.; Annaz, Dagmara; Karmiloff-Smith, Annette; Johnson, Mark H.

    2013-01-01

    Previous research into face processing in autism spectrum disorder (ASD) has revealed atypical biases toward particular facial information during identity recognition. Specifically, a focus on features (or high spatial frequencies [HSFs]) has been reported for both face and nonface processing in ASD. The current study investigated the development…

  1. Towards democracy in spatial planning through spatial information built by communities: The investigation of spatial information built by citizens from participatory mapping to volunteered geographic information in Indonesia

    Science.gov (United States)

    Yudono, Adipandang

    2017-06-01

    Recently, crowd-sourced information is used to produce and improve collective knowledge and community capacity building. Triggered by broadening and expanding access to the Internet and cellular telephones, the utilisation of crowd-sourcing for policy advocacy, e-government and e-participation has increased globally [1]. Crowd-sourced information can conceivably support government’s or general social initiatives to inform, counsel, and cooperate, by engaging subjects and empowering decentralisation and democratization [2]. Crowd-sourcing has turned into a major technique for interactive mapping initiatives by urban or rural community because of its capability to incorporate a wide range of data. Continuously accumulated spatial data can be sorted, layered, and envisioned in ways that even beginners can comprehend with ease. Interactive spatial visualization has the possibility to be a useful democratic planning tool to empower citizens participating in spatial data provision and sharing in government programmes. Since the global emergence of World Wide Web (WWW) technology, the interaction between information providers and users has increased. Local communities are able to produce and share spatial data to produce web interfaces with territorial information in mapping application programming interfaces (APIs) public, such as Google maps, OSM and Wikimapia [3][4][5]. In terms of the democratic spatial planning action, Volunteered Geographic Information (VGI) is considered an effective voluntary method of helping people feel comfortable with the technology and other co-participants in order to shape coalitions of local knowledge. This paper has aim to investigate ‘How is spatial data created by citizens used in Indonesia?’ by discussing the characteristics of spatial data usage by citizens to support spatial policy formulation, starting with the history of participatory mapping to current VGI development in Indonesia.

  2. A smooth bouncing cosmology with scale invariant spectrum

    International Nuclear Information System (INIS)

    Creminelli, P.; Senatore, L.

    2007-01-01

    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n S > or approx. 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling. (author)

  3. Seismic risk assessment of architectural heritages in Gyeongju considering local site effects

    Science.gov (United States)

    Park, H.-J.; Kim, D.-S.; Kim, D.-M.

    2013-02-01

    A seismic risk assessment is conducted for cultural heritage sites in Gyeongju, the capital of Korea's ancient Silla Kingdom. Gyeongju, home to UNESCO World Heritage sites, contains remarkable artifacts of Korean Buddhist art. An extensive geotechnical survey including a series of in situ tests is presented, providing pertinent soil profiles for site response analyses on thirty cultural heritage sites. After the shear wave velocity profiles and dynamic material properties were obtained, site response analyses were carried out at each historical site and the amplification characteristics, site period, and response spectrum of the site were determined for the earthquake levels of 2400 yr and 1000 yr return periods based on the Korean seismic hazard map. Response spectrum and corresponding site coefficients obtained from site response analyses considering geologic conditions differ significantly from the current Korean seismic code. This study confirms the importance of site-specific ground response analyses considering local geological conditions. Results are given in the form of the spatial distribution of bedrock depth, site period, and site amplification coefficients, which are particularly valuable in the context of a seismic vulnerability study. This study presents the potential amplification of hazard maps and provides primary data on the seismic risk assessment of each cultural heritage.

  4. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During oogenesis in Drosophila melanogaster, local EGFR activation by the spatially restricted TGF alpha-like ligand, Gurken (Grk...

  5. Spatial structure of ion-scale plasma turbulence

    Directory of Open Access Journals (Sweden)

    Yasuhito eNarita

    2014-03-01

    Full Text Available Spatial structure of small-scale plasma turbulence is studied under different conditions of plasma parameter beta directly in the three-dimensional wave vector domain. Two independent approaches are taken: observations of turbulent magnetic field fluctuations in the solar wind measured by four Cluster spacecraft, and direct numerical simulations of plasma turbulence using the hybrid code AIKEF, both resolving turbulence on the ion kinetic scales. The two methods provide independently evidence of wave vector anisotropy as a function of beta. Wave vector anisotropy is characterized primarily by an extension of the energy spectrum in the direction perpendicular to the large-scale magnetic field. The spectrum is strongly anisotropic at lower values of beta, and is more isotropic at higher values of beta. Cluster magnetic field data analysis also provides evidence of axial asymmetry of the spectrum in the directions around the large-scale field. Anisotropy is interpreted as filament formation as plasma evolves into turbulence. Axial asymmetry is interpreted as the effect of radial expansion of the solar wind from the corona.

  6. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain

    Science.gov (United States)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian

    2018-01-01

    In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.

  7. Micro-scale spatial expansion of microbial cells and mobile genetic elements

    DEFF Research Database (Denmark)

    Smets, Barth F.; Kreft, Jan-Ulrich; Or, Dani

    Microbes can actively explore their local spatial environment when sufficiently hydrated pathways are present - mobile gene elements can also travel in local environments when cellular density is sufficient. In this presentation, I will present our efforts at predicting the dynamics of these two...... processes, and how they are affected by physical and biological constraints, using spatially-explicit agent-based models....

  8. A Malthusian curb on spatial structure in microorganism populations.

    Science.gov (United States)

    Martin, A P

    2004-10-07

    That all organisms are born in the company of a parent but die alone is a fundamental biological asymmetry. It has been suggested that this provides a deep-rooted source of spatial pattern formation for microorganisms even at the scale of the population. Such a theory, however, neglects the strong influence in nature of the limited and spatially variable availability of food. The tendency, first recognized by Thomas Malthus in the 18th century, of a population to out-strip its food resources will eventually lead, through local starvation, to the suppression of a heterogeneity growing within a population. Using a generic model it is demonstrated that including local food limitation of breeding strongly dampens spatial structure otherwise resulting from birth and death. The extent of this damping is shown to be a function of the strength of the coupling between organisms and their food and of the total abundance of organic material. Moreover, this work provides an example of a density-dependent process acting to diminish spatial structure rather than to create it and highlights the rich variety of behaviour that is missed by continuum models which fail to represent such local dynamics.

  9. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Sqd to produce spatially-restricted Egfr activation...

  10. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Squid to produce spatially-restricted EGFR activation...

  11. Local GIS: development and assessment of the geoportal for local governments and local communities. Case study of a small town in Poland

    Directory of Open Access Journals (Sweden)

    Medolińska Katarzyna

    2017-12-01

    Full Text Available Of the numerous applications of GIS, administration and public services count among the main fields of application. They are both the users and the owners of the largest amount of spatial data. Portals for higher authorities have been the subject of extensive discussions, but the development and possible use of GIS systems in the form of geoportals at local levels still seems to have been insufficiently discussed. This article presents the process of designing and developing a portal for the lowest authorities - local authorities and the local community. A small town in Poland, Sokółka, was assumed as the study area. The concept development was preceded by, among others: recognition of the needs of an administrative unit in conducting spatial policy; establishment of the objectives, functionalities and assumptions of the designed GIS; a SWOT analysis of the designed geoportal; and an analysis of data resources. Pilot implementation was completed with an evaluation of the geoportal encompassing various groups of potential users.

  12. Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI.

    Science.gov (United States)

    Silverstein, S M; All, S D; Kasi, R; Berten, S; Essex, B; Lathrop, K L; Little, D M

    2010-07-01

    People with schizophrenia demonstrate perceptual organization impairments, and these are thought to contribute to their face processing difficulties. We examined the neural substrates of emotionally neutral face processing in schizophrenia by investigating neural activity under three stimulus conditions: faces characterized by the full spectrum of spatial frequencies, faces with low spatial frequency information removed [high spatial frequency (HSF) condition], and faces with high spatial frequency information removed [low spatial frequency (LSF) condition]. Face perception in the HSF condition is more reliant on local feature processing whereas perception in the LSF condition requires greater reliance on global form processing. Past studies of perceptual organization in schizophrenia indicate that patients perform relatively more poorly with degraded stimuli but also that, when global information is absent, patients may perform better than controls because of their relatively increased ability to initially process individual features. Therefore, we hypothesized that people with schizophrenia (n=14) would demonstrate greater face processing difficulties than controls (n=13) in the LSF condition, whereas they would demonstrate a smaller difference or superior performance in the HSF condition. In a gender-discrimination task, behavioral data indicated high levels of accuracy for both groups, with a trend toward an interaction involving higher patient performance in the HSF condition and poorer patient performance in the LSF condition. Patients demonstrated greater activity in the fusiform gyrus compared to controls in both degraded conditions. These data suggest that impairments in basic integration abilities may be compensated for by relatively increased activity in this region.

  13. An LES study on the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL)

    Science.gov (United States)

    Kang, S. L.; Chun, J.; Kumar, A.

    2015-12-01

    We study the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL), using the Weather Research and Forecasting (WRF) model in large eddy simulation (LES) mode. In order to investigate the response of the CBL to multi-scale feature of the surface SHF field over a local area of several tens of kilometers or smaller, an analytic surface SHF map is crated as a function of the chosen feature. The spatial variation in the SHF map is prescribed with a two-dimensional analytical perturbation field, which is generated by using the inverse transform technique of the Fourier series whose coefficients are controlled, of which spectrum to have a particular slope in the chosen range of wavelength. Then, the CBL responses to various SHF heterogeneities are summarized as a function of the spectral slope, in terms of mean structure, turbulence statistics and cross-scale processes. The range of feasible SHF heterogeneities is obtained from the SHF maps produced by a land surface model (LSM) of the WRF system. The LSM-derived SHF maps are a function of geographical data on various resolutions. Based on the numerical experiment results with the surface heterogeneities in the range, we will discuss the uncertainty in the SHF heterogeneity and its impact on the atmosphere in a numerical model. Also we will present the range of spatial scale of the surface SHF heterogeneity that significantly influence on the whole CBL. Lastly, we will report the test result of the hypothesis that the spatial variability of SHF is more representative of surface thermal heterogeneity than is the latent heat flux over the local area of several tens of kilometers or smaller.

  14. Diffuse galactic continuum emission measured by COMPTEL and the cosmic-ray electron spectrum

    Science.gov (United States)

    Strong, A. W.; Diehl, R.; Schoenfelder, V.; Varendorff, M.; Youssefi, G.; Bloemen, H.; Hermsen, W.; De Vries, C.; Morris, D.; Stacy, J. G.

    1994-01-01

    Diffuse galactic continuum gamma-ray emission in the 0.75-30 MeV range from the inner Galaxy has been studied using data from COMPTEL on the Compton Gamma-Ray Observatory. Observations of the inner Galaxy from the Sky Survey have been used. The imaging properties of COMPTEL enable spatial analysis of the gamma-ray distribution using model fitting. A model based on atomic and molecular gas distributions in the Galaxy has been used to derive the emissivity spectrum of the gamma-ray emission and this spectrum is compared with theoretical estimates of bremsstrahlung emission from cosmic-ray electrons.

  15. Spatial inequalities in infant survival at an early stage of the longevity revolution: A pan-European view across 5000+ regions and localities in 1910

    Directory of Open Access Journals (Sweden)

    Sebastian Klüsener

    2014-06-01

    Full Text Available Background: Spatial inequalities in human development are of great concern to international organisations and national governments. Demographic indicators like the infant mortality rate are important measures for determining these inequalities. Using demographic indicators over long time periods at relatively high levels of geographical detail, we can examine the long-term continuities and changes in spatial inequalities. Objective: This paper presents the initial outcomes of a larger project that aims to analyse spatial variation in infant survival across Europe over the last 100 years. In this paper, we focus on spatial disparities in infant survival in 1910. At that time, the longevity revolution was still at an early stage. We look at general spatial variation patterns within and across countries, and discuss some of the challenges related to the comparativeness of the data. Methods: We link official infant mortality data from more than 5,000 European regions and localities for the period around 1910 to a European historical GIS of administrative boundaries. The data are analysed using descriptive spatial analysis techniques. Results: In 1910, a number of countries in northern and western Europe led the longevity revolution in Europe, with the area of low infant mortality also extending into the northwestern parts of the German Empire. Other areas with low infant mortality levels included the Belgian region of Wallonia, most parts of Switzerland, as well as central and south-western France. In eastern and southern Europe, we find significant variation within and across countries, which might stem in part from data quality problems.

  16. Executive functioning and local-global visual processing: candidate endophenotypes for autism spectrum disorder?

    Science.gov (United States)

    Van Eylen, Lien; Boets, Bart; Cosemans, Nele; Peeters, Hilde; Steyaert, Jean; Wagemans, Johan; Noens, Ilse

    2017-03-01

    Heterogeneity within autism spectrum disorder (ASD) hampers insight in the etiology and stimulates the search for endophenotypes. Endophenotypes should meet several criteria, the most important being the association with ASD and the higher occurrence rate in unaffected ASD relatives than in the general population. We evaluated these criteria for executive functioning (EF) and local-global (L-G) visual processing. By administering an extensive cognitive battery which increases the validity of the measures, we examined which of the cognitive anomalies shown by ASD probands also occur in their unaffected relatives (n = 113) compared to typically developing (TD) controls (n = 100). Microarrays were performed, so we could exclude relatives from probands with a de novo mutation in a known ASD susceptibility copy number variant, thus increasing the probability that genetic risk variants are shared by the ASD relatives. An overview of studies investigating EF and L-G processing in ASD relatives was also provided. For EF, ASD relatives - like ASD probands - showed impairments in response inhibition, cognitive flexibility and generativity (specifically, ideational fluency), and EF impairments in daily life. For L-G visual processing, the ASD relatives showed no anomalies on the tasks, but they reported more attention to detail in daily life. Group differences were similar for siblings and for parents of ASD probands, and yielded larger effect sizes in a multiplex subsample. The group effect sizes for the comparison between ASD probands and TD individuals were generally larger than those of the ASD relatives compared to TD individuals. Impaired cognitive flexibility, ideational fluency and response inhibition are strong candidate endophenotypes for ASD. They could help to delineate etiologically more homogeneous subgroups, which is clinically important to allow assigning ASD probands to different, more targeted, interventions. © 2016 Association for Child and Adolescent

  17. Caffeine promotes global spatial processing in habitual and non-habitual caffeine consumers

    Directory of Open Access Journals (Sweden)

    Grace E. Giles

    2013-10-01

    Full Text Available Information processing is generally biased toward global cues, often at the expense of local information. Equivocal extant data suggests that arousal states may accentuate either a local or global processing bias, at least partially dependent on the nature of the manipulation, task and stimuli. To further differentiate the conditions responsible for such equivocal results we varied caffeine doses to alter physiological arousal states and measured their effect on tasks requiring the retrieval of local versus global spatial knowledge. In a double-blind, repeated-measures design, non-habitual (Exp. 1; N=36, M=42.5±29 mg/day caffeine and habitual (Exp. 2; N=34, M=579.5±311.5 mg/day caffeine caffeine consumers completed four test sessions corresponding to each of four caffeine doses (0 mg, 100 mg, 200 mg, 400 mg. During each test session, participants consumed a capsule containing one of the three doses of caffeine or placebo, waited sixty minutes, and then completed two spatial tasks, one involving memorizing maps and one spatial descriptions. A spatial statement verification task tested local versus global spatial knowledge by differentially probing memory for proximal versus distal landmark relationships. On the map learning task, results indicated that caffeine enhanced memory for distal (i.e. global compared to proximal (i.e. local comparisons at 100 (marginal, 200, and 400 mg caffeine in non-habitual consumers, and marginally beginning at 200 mg caffeine in habitual consumers. On the spatial descriptions task, caffeine enhanced memory for distal compared to proximal comparisons beginning at 100 mg in non-habitual but not habitual consumers. We thus provide evidence that caffeine-induced physiological arousal amplifies global spatial processing biases, and these effects are at least partially driven by habitual caffeine consumption.

  18. S4-3: Spatial Processing of Visual Motion

    Directory of Open Access Journals (Sweden)

    Shin'ya Nishida

    2012-10-01

    Full Text Available Local motion signals are extracted in parallel by a bank of motion detectors, and their spatiotemporal interactions are processed in subsequent stages. In this talk, I will review our recent studies on spatial interactions in visual motion processing. First, we found two types of spatial pooling of local motion signals. Directionally ambiguous 1D local motion signals are pooled across orientation and space for solution of the aperture problem, while 2D local motion signals are pooled for estimation of global vector average (e.g., Amano et al., 2009 Journal of Vision 9(3:4 1–25. Second, when stimulus presentation is brief, coherent motion detection of dynamic random-dot kinematogram is not efficient. Nevertheless, it is significantly improved by transient and synchronous presentation of a stationary surround pattern. This suggests that centre-surround spatial interaction may help rapid perception of motion (Linares et al., submitted. Third, to know how the visual system encodes pairwise relationships between remote motion signals, we measured the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared with similar tasks with luminance or orientation signals, motion comparison was more rapid and hence efficient. This high performance was affected little by inter-element separation even when it was increased up to 100 deg. These findings indicate the existence of specialized processes to encode long-range relationships between motion signals for quick appreciation of global dynamic scene structure (Maruya et al., in preparation.

  19. Regional homogeneity of fMRI time series in autism spectrum disorders.

    Science.gov (United States)

    Shukla, Dinesh K; Keehn, Brandon; Müller, Ralph Axel

    2010-05-26

    Functional magnetic resonance imaging (fMRI) and functional connectivity MRI (fcMRI) studies of autism spectrum disorders (ASD) have suggested atypical patterns of activation and long-distance connectivity for diverse tasks and networks in ASD. We explored the regional homogeneity (ReHo) approach in ASD, which is analogous to conventional fcMRI, but focuses on local connectivity. FMRI data of 26 children with ASD and 29 typically developing (TD) children were acquired during continuous task performance (visual search). Effects of motion and task were removed and Kendall's coefficient of concordance (KCC) was computed, based on the correlation of the blood oxygen level dependent (BOLD) time series for each voxel and its six nearest neighbors. ReHo was lower in the ASD than the TD group in superior parietal and anterior prefrontal regions. Inverse effects of greater ReHo in the ASD group were detected in lateral and medial temporal regions, predominantly in the right hemisphere. Our findings suggest that ReHo is a sensitive measure for detecting cortical abnormalities in autism. However, impact of methodological factors (such as spatial resolution) on ReHo require further investigation. Published by Elsevier Ireland Ltd.

  20. GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, A. C.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Heikkila, B. C.; Lal, N. [Goddard Space Flight Center. Greenbelt, MD 20771 (United States); Webber, W. R. [New Mexico State University, Las Cruces, NM 88003 (United States); Jóhannesson, G. [University of Iceland, Reykjavik (Iceland); Moskalenko, I. V.; Orlando, E.; Porter, T. A. [HEPL and KIPAC, Stanford University, Stanford, CA 94305 (United States)

    2016-11-01

    Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc{sup -1} and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc{sup -1}, with a broad maximum in the 10–50 MeV nuc{sup -1} range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ∼15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is -0.009 ± 0.055% AU{sup -1}, consistent with models having no local interstellar gradient. The energy spectrum of electrons ( e {sup -} + e {sup +}) with 2.7–74 MeV is consistent with E {sup -1.30±0.05} and exceeds the H intensity at energies below ∼50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc{sup -1} and electrons with >3 MeV is 0.83–1.02 eV cm{sup -3} and the ionization rate of atomic H is in the range of 1.51–1.64 × 10{sup -17} s{sup -1}. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.

  1. Local and global dynamical effects of dark energy

    Science.gov (United States)

    Chernin, A. D.

    Local expansion flows of galaxies were discovered by Lemaitre and Hubble in 1927-29 at distances of less than 25-30 Mpc. The global expansion of the Universe as a whole was predicted theoretically by Friedmann in 1922-24 and discovered in the 1990s in observations at truly cosmological distances of more than 1 000 Mpc. On all these spatial scales, the flows follow a (nearly) linear velocity-distance relation, known now as Hubble's law. This similarity of local and global phenomena is due to the universal dark energy antigravity which dominates the cosmic dynamics on both local and global spatial scales.

  2. low-Cost, High-Performance Alternatives for Target Temperature Monitoring Using the Near-Infrared Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Virgo, Mathew [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-02-01

    A process is being developed for commercial production of the medical isotope Mo-99 through a photo-nuclear reaction on a Mo-100 target using a highpower electron accelerator. This process requires temperature monitoring of the window through which a high-current electron beam is transmitted to the target. For this purpose, we evaluated two near infrared technologies: the OMEGA Engineering iR2 pyrometer and the Ocean Optics Maya2000 spectrometer with infrared-enhanced charge-coupled device (CCD) sensor. Measuring in the near infrared spectrum, in contrast to the long-wavelength infrared spectrum, offers a few immediate advantages: (1) ordinary glass or quartz optical elements can be used; (2) alignment can be performed without heating the target; and (3) emissivity corrections to temperature are typically less than 10%. If spatial resolution is not required, the infrared pyrometer is attractive because of its accuracy, low cost, and simplicity. If spatial resolution is required, we make recommendations for near-infrared imaging based on our data augmented by calculations

  3. Improving spatial prediction of Schistosoma haematobium prevalence in southern Ghana through new remote sensors and local water access profiles.

    Science.gov (United States)

    Kulinkina, Alexandra V; Walz, Yvonne; Koch, Magaly; Biritwum, Nana-Kwadwo; Utzinger, Jürg; Naumova, Elena N

    2018-06-04

    Schistosomiasis is a water-related neglected tropical disease. In many endemic low- and middle-income countries, insufficient surveillance and reporting lead to poor characterization of the demographic and geographic distribution of schistosomiasis cases. Hence, modeling is relied upon to predict areas of high transmission and to inform control strategies. We hypothesized that utilizing remotely sensed (RS) environmental data in combination with water, sanitation, and hygiene (WASH) variables could improve on the current predictive modeling approaches. Schistosoma haematobium prevalence data, collected from 73 rural Ghanaian schools, were used in a random forest model to investigate the predictive capacity of 15 environmental variables derived from RS data (Landsat 8, Sentinel-2, and Global Digital Elevation Model) with fine spatial resolution (10-30 m). Five methods of variable extraction were tested to determine the spatial linkage between school-based prevalence and the environmental conditions of potential transmission sites, including applying the models to known human water contact locations. Lastly, measures of local water access and groundwater quality were incorporated into RS-based models to assess the relative importance of environmental and WASH variables. Predictive models based on environmental characterization of specific locations where people contact surface water bodies offered some improvement as compared to the traditional approach based on environmental characterization of locations where prevalence is measured. A water index (MNDWI) and topographic variables (elevation and slope) were important environmental risk factors, while overall, groundwater iron concentration predominated in the combined model that included WASH variables. The study helps to understand localized drivers of schistosomiasis transmission. Specifically, unsatisfactory water quality in boreholes perpetuates reliance of surface water bodies, indirectly increasing

  4. Mixed model with spatial variance-covariance structure for accommodating of local stationary trend and its influence on multi-environmental crop variety trial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Negash, A. W.; Mwambi, H.; Zewotir, T.; Eweke, G.

    2014-06-01

    The most common procedure for analyzing multi-environmental trials is based on the assumption that the residual error variance is homogenous across all locations considered. However, this may often be unrealistic, and therefore limit the accuracy of variety evaluation or the reliability of variety recommendations. The objectives of this study were to show the advantages of mixed models with spatial variance-covariance structures, and direct implications of model choice on the inference of varietal performance, ranking and testing based on two multi-environmental data sets from realistic national trials. A model comparison with a {chi}{sup 2}-test for the trials in the two data sets (wheat data set BW00RVTI and barley data set BW01RVII) suggested that selected spatial variance-covariance structures fitted the data significantly better than the ANOVA model. The forms of optimally-fitted spatial variance-covariance, ranking and consistency ratio test were not the same from one trial (location) to the other. Linear mixed models with single stage analysis including spatial variance-covariance structure with a group factor of location on the random model also improved the real estimation of genotype effect and their ranking. The model also improved varietal performance estimation because of its capacity to handle additional sources of variation, location and genotype by location (environment) interaction variation and accommodating of local stationary trend. (Author)

  5. Technologies for Elastic Optical Networking Systems in Spatial, Temporal and Spectral Domains

    Science.gov (United States)

    Qin, Chuan

    As the demand for more data capacity keeps increasing, the need for the more efficient use of the data channel becomes more imperative. The fixed wavelength grid which has been in use for more than ten years in conventional wavelength division multiplexing (WDM) is a bottleneck that prevents the capacity from upgrading towards 400 Gb/s and above. A new elastic optical networking scheme where both transceivers and interconnects become flexible break the boundary of wavelength grids and allow a more efficient use of the limited optical bands for communication. This dissertation focuses on a few enabling technologies for elastic optical networking systems. Optical arbitrary waveform generation (OAWG) uses Fourier synthesis and generates user-defined broad-band scalable optical waveforms with high-fidelity through line-by-line full field control of a coherent optical frequency comb. OAWG finds its niche in elastic optical networking since it provides no grids, and scales to user-defined bandwidth. When elastic optical networking builds various connections to use an arbitrary number of subcarriers depending on the users' bandwidth needs, the flexibility also creates non-contiguous spectral fragmentation, much like a computer hard disk generating fragments. Spectral defragmentation aims to re-optimize and re-assign the optical spectrum to achieve more efficient use of the spectrum. One of the technologies is "hop tuning" defragmentation method with a fast auto-tracking local oscillator (LO). In the demonstrated defragmentation experiment, I used a field-programmable gate array (FPGA) to monitor the wavelength change in the signal laser and tune the front and rear current that controls the wavelength of the local oscillator laser. However, the control of the front and rear current needs a complete and accurate calibration of the LO laser and may not apply to a larger number of coherent communication links. A single-tone optical frequency shifter can shift the LO laser

  6. Multicriteria optimization of the spatial dose distribution

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-01-01

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution

  7. Optimal Pricing of Spectrum Resources in Wireless Opportunistic Access

    Directory of Open Access Journals (Sweden)

    Hanna Bogucka

    2012-01-01

    Full Text Available We consider opportunistic access to spectrum resources in cognitive wireless networks. The users equipment, or the network nodes in general are able to sense the spectrum and adopt a subset of available resources (the spectrum and the power individually and independently in a distributed manner, that is, based on their local channel quality information and not knowing the Channel State Information (CSI of the other nodes' links in the considered network area. In such a network scenery, the competition of nodes for available resources is observed, which can be modeled as a game. To obtain spectrally efficient and fair spectrum allocation in this competitive environment with the nodes having no information on the other players, taxation of resources is applied to coerce desired behavior of the competitors. In the paper, we present mathematical formulation of the problem of finding the optimal taxation rate (common for all nodes and propose a reduced-complexity algorithm for this optimization. Simulation results for these derived optimal values in various scenarios are also provided.

  8. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.; Lenc, E. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), Marsfield, NSW 2122 (Australia); Line, J. L. B.; Hancock, P. J.; Kapińska, A. D.; McKinley, B.; Procopio, P. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) (Australia); Hurley-Walker, N.; Tingay, S. J.; Franzen, T. M. O.; Morgan, J. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Dwarakanath, K. S. [Raman Research Institute (RRI), Bangalore 560080 (India); For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Hindson, L.; Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Offringa, A. R., E-mail: joseph.callingham@sydney.edu.au [Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands); and others

    2017-02-20

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  9. Quasi-particle energy spectra in local reduced density matrix functional theory.

    Science.gov (United States)

    Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  10. Localized solutions for a nonlocal discrete NLS equation

    International Nuclear Information System (INIS)

    Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis

    2015-01-01

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces

  11. Localized solutions for a nonlocal discrete NLS equation

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)

    2015-09-04

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.

  12. Spatial autocorrelation analysis of tourist arrivals using municipal data: A Serbian example

    Directory of Open Access Journals (Sweden)

    Stankov Uglješa

    2017-01-01

    Full Text Available Spatial autocorrelation methodologies can be used to reveal patterns and temporal changes of different spatial variables, including tourism arrivals. The research adopts a GIS-based approach to spatially analyse tourist arrivals in Serbia, using Global Moran's I and Anselin's Local Moran's I statistics applied on the level of municipalities. To assess feasibility of this approach the article discusses spatial changes of tourist arrivals in order to identify potentially significant trends of interest for tourism development policy in Serbia. There is a significant spatial inequality in the distribution of tourism arrivals in Serbia that is not adequately addressed in tourism development plans. The results of global autocorrelation suggest the existence of low and decreasing spatial clustering for domestic tourist arrivals and high, relatively stable spatial clustering for international tourists. Local autocorrelation statistics revealed different of domestic and international tourism arrivals. In order to assess feasibility of this approach these results are discussed in their significance to tourism development policy in Serbia.

  13. Measurement of the transverse energy spectrum in proton-nucleon collisions

    International Nuclear Information System (INIS)

    Bettoni, D.

    1988-01-01

    The author describes a measurement of the transverse energy spectrum in proton-nucleon interactions carried out at the CERN SPS using the HELIOS spectrometer. The measurement is of particular interest in that it is performed in a rapidity region away from central rapidity, where experimental data is scarce. In this rapidity region very interesting physics is anticipated and the measurement of the proton-nucleon collisions is essential as a basis to understand the more complicated proton-nucleus and nucleus-nucleus interactions. Both these topics are part of the experimental program of HELIOS. The measurement was done using a deuterium target enclosed in an iron tube. The contribution to the transverse energy spectrum from the p-Fe events is discriminated against by reconstructing the primary interaction vertex using drift chamber information. The measured spectrum is corrected via Monte Carlo to deconvolute the effect of reinteractions. High spatial resolution and multi-track resolving power are achieved with the use of a cool gas, such that the electron characteristic energy is close to the thermal limit: this implies a small diffusion coefficient and a consequently good positional accuracy. Of vital importance are the low value of the drift velocity, the fast, differentiating electronics and a careful shaping of the electric field configuration to improve the isochrony of the drift collection. The author reports on the design and tests of drift chamber prototypes built along the above lines, with which a spatial accuracy of 0.06 mm and a double track resolution of 0.6 mm were measured. He also describes the final drift chamber system and its operation in HELIOS

  14. Spatial pattern of diarrhea based on regional economic and environment by spatial autoregressive model

    Science.gov (United States)

    Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy

    2014-10-01

    The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.

  15. A new methodology of spatial cross-correlation analysis.

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  16. Evaluating the use of local ecological knowledge to monitor hunted tropical-forest wildlife over large spatial scales

    Directory of Open Access Journals (Sweden)

    Luke Parry

    2015-09-01

    Full Text Available Monitoring the distribution and abundance of hunted wildlife is critical to achieving sustainable resource use, yet adequate data are sparse for most tropical regions. Conventional methods for monitoring hunted forest-vertebrate species require intensive in situ survey effort, which severely constrains spatial and temporal replication. Integrating local ecological knowledge (LEK into monitoring and management is appealing because it can be cost-effective, enhance community participation, and provide novel insights into sustainable resource use. We develop a technique to monitor population depletion of hunted forest wildlife in the Brazilian Amazon, based on the local ecological knowledge of rural hunters. We performed rapid interview surveys to estimate the landscape-scale depletion of ten large-bodied vertebrate species around 161 Amazonian riverine settlements. We assessed the explanatory and predictive power of settlement and landscape characteristics and were able to develop robust estimates of local faunal depletion. By identifying species-specific drivers of depletion and using secondary data on human population density, land form, and physical accessibility, we then estimated landscape- and regional-scale depletion. White-lipped peccary (Tayassu pecari, for example, were estimated to be absent from 17% of their putative range in Brazil's largest state (Amazonas, despite 98% of the original forest cover remaining intact. We found evidence that bushmeat consumption in small urban centers has far-reaching impacts on some forest species, including severe depletion well over 100 km from urban centers. We conclude that LEK-based approaches require further field validation, but have significant potential for community-based participatory monitoring as well as cost-effective, large-scale monitoring of threatened forest species.

  17. The Kuramoto–Sivashinsky equation. A Local Attractor Filled with Unstable Periodic Solutions

    Directory of Open Access Journals (Sweden)

    Anatoli N. Kulikov

    2018-01-01

    Full Text Available A periodic boundary value problem is considered for one version of the KuramotoSivashinsky equation, which is widely known in mathematical physics. Local bifurcations in a neighborhood of the spatially homogeneous equilibrium points in the case when they change stability are studied. It is shown that the loss of stability of homogeneous equilibrium points leads to the appearance of a two-dimensional attractor on which all solutions are periodic functions of time, except one spatially inhomogeneous state. A spectrum of frequencies of the given family of periodic solutions fills the entire number line, and they are all unstable in a sense of Lyapunov definition in the metric of the phase space (space of initial conditions of the corresponding initial boundary value problem. It is chosen the Sobolev space as the phase space. For the periodic solutions which fill the two-dimensional attractor, the asymptotic formulas are given. In order to analyze the bifurcation problem it was used analysis methods for infinite-dimensional dynamical systems: the integral (invariant manifold method, the Poincare normal form theory, and asymptotic methods. The analysis of bifurcations for periodic boundary value problem was reduced to analysing the structure of the neighborhood of the zero solution of the homogeneous Dirichlet boundary value problem for the considered equation. 

  18. The spatial limitations of current neutral models of biodiversity.

    Directory of Open Access Journals (Sweden)

    Rampal S Etienne

    Full Text Available The unified neutral theory of biodiversity and biogeography is increasingly accepted as an informative null model of community composition and dynamics. It has successfully produced macro-ecological patterns such as species-area relationships and species abundance distributions. However, the models employed make many unrealistic auxiliary assumptions. For example, the popular spatially implicit version assumes a local plot exchanging migrants with a large panmictic regional source pool. This simple structure allows rigorous testing of its fit to data. In contrast, spatially explicit models assume that offspring disperse only limited distances from their parents, but one cannot as yet test the significance of their fit to data. Here we compare the spatially explicit and the spatially implicit model, fitting the most-used implicit model (with two levels, local and regional to data simulated by the most-used spatially explicit model (where offspring are distributed about their parent on a grid according to either a radially symmetric Gaussian or a 'fat-tailed' distribution. Based on these fits, we express spatially implicit parameters in terms of spatially explicit parameters. This suggests how we may obtain estimates of spatially explicit parameters from spatially implicit ones. The relationship between these parameters, however, makes no intuitive sense. Furthermore, the spatially implicit model usually fits observed species-abundance distributions better than those calculated from the spatially explicit model's simulated data. Current spatially explicit neutral models therefore have limited descriptive power. However, our results suggest that a fatter tail of the dispersal kernel seems to improve the fit, suggesting that dispersal kernels with even fatter tails should be studied in future. We conclude that more advanced spatially explicit models and tools to analyze them need to be developed.

  19. Deficit in visual temporal integration in autism spectrum disorders.

    Science.gov (United States)

    Nakano, Tamami; Ota, Haruhisa; Kato, Nobumasa; Kitazawa, Shigeru

    2010-04-07

    Individuals with autism spectrum disorders (ASD) are superior in processing local features. Frith and Happe conceptualize this cognitive bias as 'weak central coherence', implying that a local enhancement derives from a weakness in integrating local elements into a coherent whole. The suggested deficit has been challenged, however, because individuals with ASD were not found to be inferior to normal controls in holistic perception. In these opposing studies, however, subjects were encouraged to ignore local features and attend to the whole. Therefore, no one has directly tested whether individuals with ASD are able to integrate local elements over time into a whole image. Here, we report a weakness of individuals with ASD in naming familiar objects moved behind a narrow slit, which was worsened by the absence of local salient features. The results indicate that individuals with ASD have a clear deficit in integrating local visual information over time into a global whole, providing direct evidence for the weak central coherence hypothesis.

  20. Data management on the spatial web

    DEFF Research Database (Denmark)

    Jensen, Christian S.

    2012-01-01

    Due in part to the increasing mobile use of the web and the proliferation of geo-positioning, the web is fast acquiring a significant spatial aspect. Content and users are being augmented with locations that are used increasingly by location-based services. Studies suggest that each week, several...... billion web queries are issued that have local intent and target spatial web objects. These are points of interest with a web presence, and they thus have locations as well as textual descriptions. This development has given prominence to spatial web data management, an area ripe with new and exciting...... opportunities and challenges. The research community has embarked on inventing and supporting new query functionality for the spatial web. Different kinds of spatial web queries return objects that are near a location argument and are relevant to a text argument. To support such queries, it is important...

  1. Spatial effects in meta-foodwebs.

    Science.gov (United States)

    Barter, Edmund; Gross, Thilo

    2017-08-30

    In ecology it is widely recognised that many landscapes comprise a network of discrete patches of habitat. The species that inhabit the patches interact with each other through a foodweb, the network of feeding interactions. The meta-foodweb model proposed by Pillai et al. combines the feeding relationships at each patch with the dispersal of species between patches, such that the whole system is represented by a network of networks. Previous work on meta-foodwebs has focussed on landscape networks that do not have an explicit spatial embedding, but in real landscapes the patches are usually distributed in space. Here we compare the dispersal of a meta-foodweb on Erdős-Rényi networks, that do not have a spatial embedding, and random geometric networks, that do have a spatial embedding. We found that local structure and large network distances in spatially embedded networks, lead to meso-scale patterns of patch occupation by both specialist and omnivorous species. In particular, we found that spatial separations make the coexistence of competing species more likely. Our results highlight the effects of spatial embeddings for meta-foodweb models, and the need for new analytical approaches to them.

  2. Cross-coherent vector sensor processing for spatially distributed glider networks.

    Science.gov (United States)

    Nichols, Brendan; Sabra, Karim G

    2015-09-01

    Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.

  3. Adult Autism Subthreshold Spectrum (AdAS Spectrum): Validation of a questionnaire investigating subthreshold autism spectrum.

    Science.gov (United States)

    Dell'Osso, L; Gesi, C; Massimetti, E; Cremone, I M; Barbuti, M; Maccariello, G; Moroni, I; Barlati, S; Castellini, G; Luciano, M; Bossini, L; Rocchetti, M; Signorelli, M; Aguglia, E; Fagiolini, A; Politi, P; Ricca, V; Vita, A; Carmassi, C; Maj, M

    2017-02-01

    Increasing literature has shown the usefulness of a dimensional approach to autism. The present study aimed to determine the psychometric properties of the Adult Autism Subthreshold Spectrum (AdAS Spectrum), a new questionnaire specifically tailored to assess subthreshold forms of autism spectrum disorder (ASD) in adulthood. 102 adults endorsing at least one DSM-5 symptom criterion for ASD (ASDc), 143 adults diagnosed with a feeding and eating disorder (FED), and 160 subjects with no mental disorders (CTL), were recruited from 7 Italian University Departments of Psychiatry and administered the following: SCID-5, Autism-Spectrum Quotient (AQ), Ritvo Autism and Asperger Diagnostic Scale 14-item version (RAADS-14), and AdAS Spectrum. The AdAS Spectrum demonstrated excellent internal consistency for the total score (Kuder-Richardson's coefficient=.964) as well as for five out of seven domains (all coefficients>.80) and sound test-retest reliability (ICC=.976). The total and domain AdAS Spectrum scores showed a moderate to strong (>.50) positive correlation with one another and with the AQ and RAADS-14 total scores. ASDc subjects reported significantly higher AdAS Spectrum total scores than both FED (pcriteria (FED 0 ) and those with one ASD symptom criterion (FED 1 ) , a gradient of severity in AdAS Spectrum scores from CTL subjects to ASD patients, across FED 0 , ASD 1 , FED 1 was shown. The AdAS Spectrum showed excellent internal consistency and test-retest reliability and strong convergent validity with alternative dimensional measures of ASD. The questionnaire performed differently among the three diagnostic groups and enlightened some significant effects of gender in the expression of autistic traits. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation.

    Science.gov (United States)

    Xie, Yuanpu; Zhang, Zizhao; Sapkota, Manish; Yang, Lin

    2016-10-01

    Accurate segmentation of perimysium plays an important role in early diagnosis of many muscle diseases because many diseases contain different perimysium inflammation. However, it remains as a challenging task due to the complex appearance of the perymisum morphology and its ambiguity to the background area. The muscle perimysium also exhibits strong structure spanned in the entire tissue, which makes it difficult for current local patch-based methods to capture this long-range context information. In this paper, we propose a novel spatial clockwork recurrent neural network (spatial CW-RNN) to address those issues. Specifically, we split the entire image into a set of non-overlapping image patches, and the semantic dependencies among them are modeled by the proposed spatial CW-RNN. Our method directly takes the 2D structure of the image into consideration and is capable of encoding the context information of the entire image into the local representation of each patch. Meanwhile, we leverage on the structured regression to assign one prediction mask rather than a single class label to each local patch, which enables both efficient training and testing. We extensively test our method for perimysium segmentation using digitized muscle microscopy images. Experimental results demonstrate the superiority of the novel spatial CW-RNN over other existing state of the arts.

  5. Damage Spreading in Spatial and Small-world Random Boolean Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.

    2014-02-18

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  6. Spatial Angular Compounding for Elastography without the Incompressibility Assumption

    OpenAIRE

    Rao, Min; Varghese, Tomy

    2005-01-01

    Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Previous results using spatial angular compounding, however, were based on the use of the tissue incompressibility assumption. Compounded elastograms were obtained from a spatially-weighted average of local strain estimated from radiofrequency echo signals acquired at different insonification angles. In this paper, we present a new method for reducing the noise artifacts in...

  7. Impact localization on composite structures using time difference and MUSIC approach

    Science.gov (United States)

    Zhong, Yongteng; Xiang, Jiawei

    2017-05-01

    1-D uniform linear array (ULA) has the shortcoming of the half-plane mirror effect, which does not allow discriminating between a target placed above the array and a target placed below the array. This paper presents time difference (TD) and multiple signal classification (MUSIC) based omni-directional impact localization on a large stiffened composite structure using improved linear array, which is able to perform omni-directional 360° localization. This array contains 2M+3 PZT sensors, where 2M+1 PZT sensors are arranged as a uniform linear array, and the other two PZT sensors are placed above and below the array. Firstly, the arrival times of impact signals observed by the other two sensors are determined using the wavelet transform. Compared with each other, the direction range of impact source can be decided in general, 0°to 180° or 180°to 360°. And then, two dimensional multiple signal classification (2D-MUSIC) based spatial spectrum formula using the uniform linear array is applied for impact localization by the general direction range. When the arrival times of impact signals observed by upper PZT is equal to that of lower PZT, the direction can be located in x axis (0°or 180°). And time difference based MUSIC method is present to locate impact position. To verify the proposed approach, the proposed approach is applied to a composite structure. The localization results are in good agreement with the actual impact occurring positions.

  8. Local variability in long-term care services: local autonomy, exogenous influences and policy spillovers.

    Science.gov (United States)

    Fernandez, José-Luis; Forder, Julien

    2015-03-01

    In many countries, public responsibility over the funding and provision of long-term care services is held at the local level. In such systems, long-term care provision is often characterised by significant local variability. Using a panel dataset of local authorities over the period 2002-2012, the paper investigates the underlying causes of variation in gross social care expenditure for older people in England. The analysis distinguishes between factors outside the direct control of policy makers, local preferences and local policy spillovers. The results indicate that local demand and supply factors, and to a much lesser extent local political preferences and spatial policy spillovers, explain a large majority of the observed variation in expenditure. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Local consequences of national policies - a spatial analysis of preferences for forest access reduction

    DEFF Research Database (Denmark)

    Nielsen, Anne Sofie Elberg; Lundhede, Thomas; Jacobsen, Jette Bredahl

    2016-01-01

    Stated preference studies eliciting welfare economic consequence of national policies, are often not considering the spatial variation in supply and demand. This spatial variation may however cause large distributional heterogeneity of policy changes. In this study, we use a choice experiment to ...

  10. Spatial irregularities in Jupiter's upper ionosphere observed by voyager radio occultations

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, D.P.; Tyler, G.L.

    1982-07-01

    Dual frequency radio occultation experiments carried out with Voyagers 1 and 2 provided data on the spatial irregularities in Jupiter's ionosphere at four different locations. Sample spectra of weak fluctuations in amplitude and phase of the 3.6-cm and 13-cm wavelength radio signals can be interpreted by using the theory for scattering from an anisotropic power law phase screen. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yielded estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. Equipment limitations and the method of analysis constrain the observations to irregularities of approximate size 1--200 km. No evidence of the inner or outer scale of the irregularities was found. For length scales in the range given, the three-dimensional spatial spectrum obeys a power law with exponent varying from -3.0 to -3.7, and the root mean square fractional variations in electron density are 1--15%. All observed irregularities appear to be anisotropic with axial ratios between 2:1 and 10:1. Ionospheric parameters vary with altitude and latitude. We conclude that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  11. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...... and flexure and show that localized cable bending has a pronounced influence on the fatigue resistance of cables under dynamic excitations....

  12. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi

    2012-04-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  13. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2012-01-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  14. Exponential decay rate of the power spectrum for solutions of the Navier--Stokes equations

    International Nuclear Information System (INIS)

    Doering, C.R.; Titi, E.S.

    1995-01-01

    Using a method developed by Foias and Temam [J. Funct. Anal. 87, 359 (1989)], exponential decay of the spatial Fourier power spectrum for solutions of the incompressible Navier--Stokes equations is established and explicit rigorous lower bounds on a small length scale defined by the exponential decay rate are obtained

  15. Chiral phase transition and Anderson localization in the instanton liquid model for QCD

    International Nuclear Information System (INIS)

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2006-01-01

    We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations

  16. Structure Mapping in Autism Spectrum Disorder: Levels of Information Processing and Relations to Executive Functions

    Science.gov (United States)

    Hetzroni, Orit E.; Shalahevich, Kiril

    2018-01-01

    Analogical reasoning was investigated among children with autism spectrum disorders (ASD) without intellectual disabilities and typical development (TD). Children were asked to select one of two targets in two conditions: (1) with and without spatial structure similarity; (2) with and without a perceptual distractor. Results demonstrate that…

  17. Sum-rate analysis of spectrum sharing spatial multiplexing MIMO systems with zero-forcing and multiuser diversity

    KAUST Repository

    Yang, Liang; Qaraqe, Khalid A.; Serpedin, Erchin; Alouini, Mohamed-Slim

    2013-01-01

    This paper considers a multiuser spectrum sharing (SS) multiple-input multiple-output (MIMO) system with zero-forcing (ZF) operating in a Rayleigh fading environment. We provide an asymptotic sum-rate analysis to investigate the effects of different

  18. Parametric instabilities excited by localized pumps near the lower-hybrid frequency

    International Nuclear Information System (INIS)

    Kuo, Y.Y.; Chen, L.

    1976-04-01

    Parametric instabilities excited in non-uniform plasmas by spatially localized pump fields oscillating near the local lower-hybrid frequency are analytically investigated. Corresponding threshold conditions, temporal growth rates, and spatial amplification factors are obtained for the oscillating-two-stream instability and the decay instabilities due to nonlinear electron and ion Landau dampings

  19. Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.

    Science.gov (United States)

    Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge

    2007-08-01

    Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.

  20. Attending to global versus local stimulus features modulates neural processing of low versus high spatial frequencies: An analysis with event-related brain potentials.

    Directory of Open Access Journals (Sweden)

    Anastasia V Flevaris

    2014-04-01

    Full Text Available Spatial frequency (SF selection has long been recognized to play a role in global and local processing, though the nature of the relationship between SF processing and global/local perception is debated. Previous studies have shown that attention to relatively lower SFs facilitates global perception, and that attention to relatively higher SFs facilitates local perception. Here we recorded event-related brain potentials (ERPs to investigate whether processing of low versus high SFs is modulated automatically during global and local perception, and to examine the time course of any such effects. Participants compared bilaterally presented hierarchical letter stimuli and attended to either the global or local levels. Irrelevant SF grating probes flashed at the center of the display 200 ms after the onset of the hierarchical letter stimuli could either be low or high in SF. It was found that ERPs elicited by the SF grating probes differed as a function of attended level (global vs. local. ERPs elicited by low SF grating probes were more positive in the interval 196-236 ms during global than local attention, and this difference was greater over the right occipital scalp. In contrast, ERPs elicited by the high SF gratings were more positive in the interval 250-290 ms during local than global attention, and this difference was bilaterally distributed over the occipital scalp. These results indicate that directing attention to global versus local levels of a hierarchical display facilitates automatic perceptual processing of low versus high SFs, respectively, and this facilitation is not limited to the locations occupied by the hierarchical display. The relatively long latency of these attention-related ERP modulations suggests that initial (early SF processing is not affected by attention to hierarchical level, lending support to theories positing a higher level mechanism to underlie the relationship between SF processing and global versus local