WorldWideScience

Sample records for local heating effects

  1. Effect of three-dimensional deformations on local heat transfer to a nonuniformly heated falling film of liquid

    International Nuclear Information System (INIS)

    Chinnov, E.A.; Kabov, O.A.

    2004-01-01

    The experimental study on the heat transfer by the water film heated vertical flow is studied within the Reynolds number values from 1 to 45. The chart of the liquid film flow modes is plotted and the heat exchange areas are separated. The data on the dependence of the temperature of the heater walls and local heat flux at the heater symmetry axis on the longitudinal coordinate are obtained. The local heat exchange coefficients are measured. The comparison of the experimental data with the numerical calculations for the smooth film is carried out. The effect of the jet flow formation on the heat transfer to the liquid film is analyzed [ru

  2. Non-local model analysis of heat pulse propagation

    International Nuclear Information System (INIS)

    Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi

    1998-01-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  3. Global and local Joule heating effects seen by DE 2

    Science.gov (United States)

    Heelis, R. A.; Coley, W. R.

    1988-01-01

    In the altitude region between 350 and 550 km, variations in the ion temperature principally reflect similar variations in the local frictional heating produced by a velocity difference between the ions and the neutrals. Here, the distribution of the ion temperature in this altitude region is shown, and its attributes in relation to previous work on local Joule heating rates are discussed. In addition to the ion temperature, instrumentation on the DE 2 satellite also provides a measure of the ion velocity vector representative of the total electric field. From this information, the local Joule heating rate is derived. From an estimate of the height-integrated Pedersen conductivity it is also possible to estimate the global (height-integrated) Joule heating rate. Here, the differences and relationships between these various parameters are described.

  4. Inactivation of biological substances by local heating

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masahiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1982-09-01

    Mechanism of inactivation of biological substances caused by local heating was investigated. The effect of hot-zone formation by local heating on reaction of radicals was previously evaluated. The thermal increase in a hot zone due to low energy LET x-rays had little effect on reactibility of the radicals, but, in a hot zone caused by high energy LET x-rays, formed radicals seemed immediately react to active biological molecules to inactivate them. Direct thermal effect on biological molecules was analysed. Thermal increase in a hot zone may induce degenaration of biological molecules which seems to occur in a short time judged from the extension of a hot zone and the duration of high temperature.

  5. Local business models for district heat production; Kaukolaemmoen paikalliset liiketoimintamallit

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, L.; Pesola, A.; Vanhanen, J.

    2012-12-15

    Local district heating business, outside large urban centers, is a profitable business in Finland, which can be practiced with several different business models. In addition to the traditional, local district heating business, local district heat production can be also based on franchising business model, on integrated service model or on different types of cooperation models, either between a local district heat producer and industrial site providing surplus heat or between a local district heat producer and a larger district heating company. Locally available wood energy is currently utilized effectively in the traditional district heating business model, in which a local entrepreneur produces heat to consumers in the local area. The franchising model is a more advanced version of the traditional district heating entrepreneurship. In this model, franchisor funds part of the investments, as well as offers centralized maintenance and fuel supply, for example. In the integrated service model, the local district heat producer offers also energy efficiency services and other value-added services, which are based on either the local district heat suppliers or his partner's expertise. In the cooperation model with industrial site, the local district heating business is based on the utilization of the surplus heat from the industrial site. In some cases, profitable operating model approach may be a district heating company outsourcing operations of one or more heating plants to a local entrepreneur. It can be concluded that all business models for district heat production (traditional district heat business model, franchising, integrated service model, cooperative model) discussed in this report can be profitable in Finnish conditions, as well for the local heat producer as for the municipality - and, above all, they produce cost-competitive heat for the end-user. All the models were seen as viable and interesting and having possibilities for expansion Finland

  6. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  8. Sensitivities Affecting Heat and Urban Heat Island Effect on Local Scale Projected to Neighborhood Scale in Baltimore, Maryland

    Science.gov (United States)

    Sze, C.; Zaitchik, B. F.; Scott, A.

    2015-12-01

    Urban regions are often impacted more by heat than adjacent rural areas, which is a phenomenon known as the urban heat island (UHI) effect. Urban areas are also highly heterogeneous and notoriously difficult to monitor using standard meteorological protocols—the hottest microclimates within a city often occur in locations that lack open, representative installation sites that are an adequate distance from buildings and direct heat sources. To investigate the challenges of monitoring urban heat, this study examines the sensitivity of temperature and humidity sensors currently used in a Baltimore UHI monitoring network to differences in sun exposure, material on which the data collecting instrument is attached, and land cover class of the vicinity. Sensitivity to sun exposure and attachment site can be interpreted as sources of uncertainty for urban heat monitoring, while sensitivity to land cover may reflect a true source of local temperature and humidity variability. In this study, we present results from a test deployment designed to assess the sensitivity of heat measurements to each of these three factors. We then apply these results to interpret measurements taken across the entire Baltimore UHI monitoring network. These results can then be used to improve heat measurements and more accurately represent and quantify the UHI effect on a broader scale, such as in neighborhoods or urban centers.

  9. Response of eddy activities to localized diabatic heating in Held-Suarez simulations

    Science.gov (United States)

    Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi

    2018-01-01

    Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on eddies has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude eddy activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude eddy activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of eddy activity near the mid-latitude jet stream. Over the heating region, eddy activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean eddy activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of eddy activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.

  10. Conversion to biofuel based heating systems - local environmental effects

    International Nuclear Information System (INIS)

    Jonsson, Anna

    2003-01-01

    One of the most serious environmental problems today is the global warming, i.e.climate changes caused by emissions of greenhouse gases. The greenhouse gases originate from combustion of fossil fuels and changes the atmospheric composition. As a result of the climate change, the Swedish government has decided to make a changeover of the Swedish energy system. This involves an increase of the supply of electricity and heating from renewable energy sources and a decrease in the amount electricity used for heating, as well as a more efficient use of the existing electricity system. Today, a rather large amount electricity is used for heating in Sweden. Furthermore, nuclear power will be phased out by the year 2010 in Sweden. Bio fuels are a renewable energy source and a conceivable alternative to the use of fossil fuels. Therefore, an increase of bio fuels will be seen the coming years. Bio fuels have a lot of environmental advantages, mainly for the global environment, but might also cause negative impacts such as depletion of the soils where the biomass is grown and local deterioration of the air quality where the bio fuels are combusted. These negative impacts are a result of the use of wrong techniques and a lack of knowledge and these factors have to be improved if the increase of the use of bio fuels is to be made effectively. The aim of this master thesis is to evaluate the possibilities for heating with bio fuel based systems in housing areas in the municipalities of Trollhaettan, Ulricehamn and Goetene in Vaestra Goetalands County in the South West of Sweden and to investigate which environmental and health effects are caused by the conversion of heating systems. The objective is to use the case studies as examples on preferable bio fuel based heating systems in different areas, and to what environmental impact this conversion of heating systems might cause. The housing areas for this study have been chosen on the basis of present heating system, one area

  11. Small heating reactors for local heating of communities

    International Nuclear Information System (INIS)

    Seifritz, W.

    1985-08-01

    The incentives to introduce relatively small heating reactors for local heating of communities are presented and the reasons why this vertically integrated energy system will meet the requirement of an emission - free substitution system are outlined. (author)

  12. Local rectification of heat flux

    Science.gov (United States)

    Pons, M.; Cui, Y. Y.; Ruschhaupt, A.; Simón, M. A.; Muga, J. G.

    2017-09-01

    We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the “impurity”. The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.

  13. Photo-induced-heat localization on nanostructured metallic glasses

    Science.gov (United States)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  14. Local pool boiling heat transfer on a 3 Degree inclined tube surface

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    Mechanisms of pool boiling heat transfer have been studied for a long time. Recently, it has been widely investigated in nuclear power plants for the purpose of acquiring inherent safety functions in case of no power supply. To design more efficient heat exchangers, effects of several parameters on heat transfer must be studied in detail. One of the major issues is variation in local heat transfer coefficients on a tube. Lance and Myers reported that the type of boiling liquid can change the trend of local heat transfer coefficients along the tube periphery. Lance and Myers said that as the liquid is methanol the maximum local heat transfer coefficient was observed at the tube bottom while the maximum was at the tube sides as the boiling liquid was n hexane. Corn well and Einarsson reported that the maximum local heat transfer coefficient was observed at the tube bottom, as the boiling liquid was R113. Corn well and Houston explained the reason of the difference in local heat transfer coefficients along the tube circumference with introducing effects of sliding bubbles on heat transfer. According to Gu pta et al., the maximum and the minimum local heat transfer coefficients were observed at the bottom and top regions of the tube circumference, respectively, using a tube bundle and water. Kang also reported the similar results using a single horizontal tube and water. However, the maximum heat transfer coefficient was observed at the angle of 45 deg. Sateesh et al. investigated variations in local heat transfer coefficients along a tube periphery as the inclination angle was changed. Summarizing the published results, some parts are still remaining to be investigated in detail. Although pool boiling analysis on a nearly horizontal tube is necessary for the design of the advanced power reactor plus, no previous results are published yet. Therefore, the present study is aimed to study variations in local pool boiling heat transfer coefficients for a 3 degree inclined

  15. Experimental study on local heat transfer characteristics of porous media with internal heat source

    International Nuclear Information System (INIS)

    Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping

    2008-01-01

    Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)

  16. Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

    Science.gov (United States)

    Walker, Jacob D.

    Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done

  17. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    Science.gov (United States)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  18. The effect of heat transfer laws and thermal conductances on the local stability of an endoreversible heat engine

    International Nuclear Information System (INIS)

    Guzman-Vargas, L; Reyes-Ramirez, I; Sanchez, N

    2005-01-01

    In a recent paper (Santillan et al 2001 J. Phys. D: Appl. Phys. 34 2068-72) the local stability of a Curzon-Ahlborn-Novikov (CAN) engine with equal conductances in the coupling with thermal baths was analysed. In this work, we present a local stability analysis of an endoreversible engine operating at maximum power output, for common heat transfer laws, and for different heat conductances α and β, in the isothermal couplings of the working substance with the thermal sources T 1 and T 2 (T 1 > T 2 ). We find that the relaxation times, in the cases analysed here, are a function of α, β, the heat capacity C, T 1 and T 2 . Besides, the eigendirections in a phase portrait are also functions of τ = T 1 /T 2 and the ratio β/α. From these findings, phase portraits for the trajectories after a small perturbation over the steady-state values of internal temperatures are presented, for some significant situations. Finally, we discuss the local stability and energetic properties of the endoreversible CAN heat engine

  19. Localized dryout: An approach for managing the thermal hydrologi-cal effects of decay heat at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T. A.; Nitao, J.J.; Ramspott, L.D.

    1995-11-01

    For a nuclear waste repository in the unsaturated zone at Yucca Mountain, there are two thermal loading approaches to using decay heat constructively -- that is, to substantially reduce relative humidity and liquid flow near waste packages for a considerable time, and thereby limit waste package degradation and radionuclide dissolution and release. ''Extended dryout'' achieves these effects with a thermal load high enough to generate large-scale (coalesced) rock dryout. ''Localized dryout''(which uses wide drift spacing and a thermal load too low for coalesced dryout) achieves them by maintaining a large temperature difference between the waste package and drift wall; this is done with close waste package spacing (generating a high line-heat load) and/or low-thermal-conductivity backfill in the drift. Backfill can greatly reduce relative humidity on the waste package in both the localized and extended dryout approaches. Besides using decay heat constructively, localized dryout reduces the possibility that far-field temperature rise and condensate buildup above the drifts might adversely affect waste isolation

  20. District heating versus local heating - Social supportability

    International Nuclear Information System (INIS)

    Matei, Magdalena; Enescu, Diana; Varjoghie, Elena; Radu, Florin; Matei, Lucian

    2004-01-01

    District heating, DH, is an energy source which can provide a cost-effective, environmentally friendly source of heat and power for cities, but only in the case of well running systems, with reasonable technological losses. The benefits of DH system are well known: environmental friendly, energy security, economic and social advantages. DH already covers 60% of heating and hot water needs in transition economies. Today, 70 % of Russian, Latvian and Belarus homes use DH, and heating accounts for one-third of total Russian energy consumption. Yet a large number of DH systems in the region face serious financial, marketing or technical problems because of the policy framework. How can DH issues be best addressed in national and local policy? What can governments do to create the right conditions for the sustainable development of DH while improving service quality? What policies can help capture the economic, environmental and energy security benefits of co-generation and DH? To address these questions, the International Energy Agency (IEA) hosted in 2002 and 2004 conference focusing on the crucial importance of well-designed DH policies, for exchanging information on policy approaches. The conclusions of the conference have shown that 'DH systems can do much to save energy and boost energy security, but stronger policy measures are needed to encourage wise management and investment. With a stronger policy framework, DH systems in formerly socialist countries could save the equivalent of 80 billion cubic meters of natural gas a year through supply side efficiency improvements. This is greater than total annual natural gas consumption in Italy'. More efficient systems will also decrease costs, reducing household bills and making DH competitive on long-term. This paper presents the issues: -Theoretical benefits of the district heating and cooling systems; - Municipal heating in Romania; - Technical and economic problems of DH systems and social supportability; - How

  1. Local village heating. Final rapport; Landsby Naervarme. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bojesen, C.

    2012-04-15

    Local Village Heating project relates to smaller villages which are located outside existing or planned district heating areas in Denmark. The analysis phase of Local Village Heating has shown that the concept can be the most feasible common heating system for villages that: 1. has a high building density - the buildings must be placed close together; 2. at least one large heat consumer, school, elder home or company is present in the village; 3. the number of buildings/households in the village is less than approx. 100. The analysis has shown that it is theoretical possible to establish a controlling system for the combined supplier/consumer option and an overall system for prioritizing the primary heat suppliers. A feasible Local Village Heating organisation could be a cooperative similar to other supply systems, such as common water supply and waste water cooperative. (Author)

  2. The relationship between the local temperature and the local heat flux within a one-dimensional semi-infinite domain of heat wave propagation

    Directory of Open Access Journals (Sweden)

    Kulish Vladimir V.

    2003-01-01

    Full Text Available The relationship between the local temperature and the local heat flux has been established for the homogeneous hyperbolic heat equation. This relationship has been written in the form of a convolution integral involving the modified Bessel functions. The scale analysis of the hyperbolic energy equation has been performed and the dimensionless criterion for the mode of energy transport, similar to the Reynolds criterion for the flow regimes, has been proposed. Finally, the integral equation, relating the local temperature and the local heat flux, has been solved numerically for those processes of surface heating whose time scale is of the order of picoseconds.

  3. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  4. Effect of the Local Heat on the Pain of Vitamin K Injection in the Infants

    Directory of Open Access Journals (Sweden)

    Yadollah Zahed Pasha

    2016-12-01

    Full Text Available BackgroundThe absence of pain relief in infants can lead to harmful effects; so, this study aimed to investigate the effect of local heat on the pain of vitamin K injection in the infants.Materials and MethodsThis randomized clinical trial was conducted on 80 healthy infants. For the control group, 1 mg vitamin K was injected into the vastus lateralis muscle by a nurse. In the 3 intervention groups, respectively 5, 10 and 15 minutes before the injection, hot-water bag at 37 °C was placed on the quadriceps muscle and then injection was done with the same condition as in the control group. Immediately after the injection, the Neonatal Infant Pain Scale (NIPS was completed. Data analysis was done using SPSS version 21.0 software.Results41(51.25% girls and 39 (48.75% boys were participated. First-minute Apgar of all samples were 8.64±0.557. Birth weight was 3335.37±339.51 grams and the minimum gestational age 36.37±1.01 weeks. The mean pain score in the first minute in the control group was 3.6± 2.136, which was 3.3± 1.976 in the 5-minute warm-up group, and this amount was reached to 1.6± 1.569 in 10-minute warm up group, and 0.6± 0.821 in 15 minute warm-up group (P=0.008. The mean pain scores in the control group for the second minute was 1.0±1.835, which was reduced to 0.25± 0.716 in the 10-minute and 15-minute warm-up group (P=0.023.ConclusionLocal heating before the injection procedure can be effective in reducing pain in infants and the pain will reduce by increasing the local heating time (15 minutes.

  5. Market: local heating; Markedsanalyse: lokale energisentraler

    Energy Technology Data Exchange (ETDEWEB)

    Naper, Linn R.; Bjoerndalen, Joergen

    2010-07-01

    The aim of this study was to examine how the market for local heating in Norway actually works, whether it is (sufficiently) competition, and what influences the growth opportunities in this market. Local heating can play an important role in ensuring a high proportion of renewable energy for heating and industrial processes. However, this requires a functioning market. The theoretical basis for market analysis is Michael Porter's Five Forces model, which incorporates information about different aspects of a market with a view to evaluate the competitive pressure. The model focuses on customers, competitors and their suppliers, substitutes and potential intruders in the market. This model is complemented by simple economic theory of perfect competition and the concept of perfect competition. (eb)

  6. Experimental determination of local heat flux variation in an electrically heated BR-2 rod

    International Nuclear Information System (INIS)

    Meyer, L.; Merschroth, F.

    1977-08-01

    The installation of thermocouples within the cladding of an electrically heated BR-2 rod might cause local variations of heat flux. In order to detect a resulting temperature variation at the outer surface, experiments with a single electrically heated rod with heat fluxes up to 30.80 W/cm 2 and heat transfer coefficients up to 1000 W/m 2 K by forced convection in air were conducted. The surface temperatures were measured with an optical pyrometer. The experiment showed about 0.6% variation in the surface temperature. An analysis with the TAC2D-code shows that local variation in the heat flux under these conditions is less than 1.2%. (orig.) [de

  7. The effect of local heat on term neonates pain intensity during heel-blood sampling

    Directory of Open Access Journals (Sweden)

    R. GHobadi Mohebi

    2017-04-01

    Full Text Available Aims: Newborns are more sensitive to pain than adults and are more susceptible to the long-term complications of pain. So, it is necessary to use procedures for reducing pain in newborns. The aim of this study was to determine the effect of local heat on the pain intensity of heel-blood sampling in the term newborns. Material & Methods: In this randomized controlled clinical trial study, in 2012, 63 healthy 3 to 5-day newborns who were referred to Shahid Delkhah Health Center in Ferdows were selected by random sampling method and randomly divided into 3 groups (21 people in each group: test (heat, placebo (sound and control. The pain intensity of newborns before, during and after heel-blood sampling was evaluated. The data collection tools were demographic questionnaire and Neonatal Infant Pain Scale (NIPS. Data were analyzed by SPSS 14.5 software and chi-square test, one-way ANOVA, Tukey's post hoc test, and ANOVA with repeated observations. Finding: The mean pain intensity in the three groups was not significantly different before intervention (p=0.86, but the mean pain intensity was lower in the test group than in the other two groups (p=0.006. After heel-blood sampling, the mean pain intensity was the least in the test group and was the most in the control group (p<0.001. Conclusion: Local heat during and after heel blood sampling decreases pain intensity in the term newborns.

  8. Non-local model analysis of heat pulse propagation and simulation of experiments in W7-AS

    International Nuclear Information System (INIS)

    Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi; Itoh, Kimitaka; Stroth, U.

    1999-01-01

    A new model equation which includes the non-local effect in the hear flux is introduced to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [U. Stroth et al.: Plasma Phys. Control. Fusion 38 (1996) 1087] and the power modulation experiments [L. Giannone et al.: Nucl. Fusion 32 (1992) 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to estimate the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  9. Effect of local heat flux spikes on DNB in non-uniformly heated rod bundles

    International Nuclear Information System (INIS)

    Cadek, F.F.; Hill, K.W.; Motley, F.E.

    1975-02-01

    High pressure water tests were carried out to measure the DNB heat flux using an electrically heated rod bundle in which three adjacent rods had 20 percent heat flux spikes at the axial location where DNB is most likely to occur. This test series was run at the same conditions as those of two earlier test series which had unspiked rods, so that spiked and unspiked runs could be paired and spike effects could thus be isolated. Results are described. 7 references. (U.S.)

  10. The effect of the moisture content of a local heat source on the blood flow response of the skin.

    Science.gov (United States)

    Petrofsky, Jerrold Scott; Bains, Gurinder; Raju, Chinna; Lohman, Everett; Berk, Lee; Prowse, Michelle; Gunda, Shashi; Madani, Piyush; Batt, Jennifer

    2009-09-01

    Numerous studies have examined the effect of local and global heating of the body on skin blood flow. However, the effect of the moisture content of the heat source on the skin blood flow response has not been examined. Thirty-three subjects, without diabetes or cardiovascular disease, between the ages of 22 and 32 were examined to determine the relationship between the effects of dry vs. moist heat applied for the same length of time and with the skin clamped at the same skin temperature on the blood flow response of the skin. The skin, heated with an infrared heat lamp (skin temperature monitored with a thermocouple) to 40 degrees C for 15 min, was either kept moist with wet towels or, in a separate experiment, kept dry with Drierite (a desiccant) between the towels to remove any moisture. Before and after heat exposure of the forearm, blood pressure, heart rate, skin moisture content, skin temperature, and skin blood flow were recorded. The results of the experiment showed that there was no change in skin moisture after 15 min exposure to dry heat at 40 degrees C. However, with moist heat, skin moisture increased by 43.7%, a significant increase (P heat, blood flow increased from the resting value by 282.3% whereas with moist heat, blood flow increased by 386% over rest, a significant increase over dry heat (P heat was a better heating modality than dry heat. The reason may be linked to moisture sensitivity in calcium channels in the vascular endothelial cell.

  11. A technical basis for the flux corrected local conditions critical heat flux correlation

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    The so-called 'flux-corrected' local conditions CHF correlation was developed at Ontario Hydro in the 1980's and was demonstrated to successfully correlate the Onset of Intermittent Dryout (OID) CHF data for 37-element fuel with a downstream-skewed axial heat flux distribution. However, because the heat flux correction factor appeared to be an ad-hoc, albeit a successful modifying factor in the correlation, there was reluctance to accept the correlation more generally. This paper presents a thermalhydraulic basis, derived from two-phase flow considerations, that supports the appropriateness of the heat flux correction as a local effects modifying factor. (author)

  12. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    Science.gov (United States)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  13. Ten days of repeated local forearm heating does not affect cutaneous vascular function.

    Science.gov (United States)

    Francisco, Michael A; Brunt, Vienna E; Jensen, Krista Nicole; Lorenzo, Santiago; Minson, Christopher T

    2017-08-01

    The aim of the present study was to determine whether 10 days of repeated local heating could induce peripheral adaptations in the cutaneous vasculature and to investigate potential mechanisms of adaptation. We also assessed maximal forearm blood flow to determine whether repeated local heating affects maximal dilator capacity. Before and after 10 days of heat training consisting of 1-h exposures of the forearm to 42°C water or 32°C water (control) in the contralateral arm (randomized and counterbalanced), we assessed hyperemia to rapid local heating of the skin ( n = 14 recreationally active young subjects). In addition, sequential doses of acetylcholine (ACh, 1 and 10 mM) were infused in a subset of subjects ( n = 7) via microdialysis to study potential nonthermal microvascular adaptations following 10 days of repeated forearm heat training. Skin blood flow was assessed using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC) was calculated as laser-Doppler red blood cell flux divided by mean arterial pressure. Maximal cutaneous vasodilation was achieved by heating the arm in a water-spray device for 45 min and assessed using venous occlusion plethysmography. Forearm vascular conductance (FVC) was calculated as forearm blood flow divided by mean arterial pressure. Repeated forearm heating did not increase plateau percent maximal CVC (CVC max ) responses to local heating (89 ± 3 vs. 89 ± 2% CVC max , P = 0.19), 1 mM ACh (43 ± 9 vs. 53 ± 7% CVC max , P = 0.76), or 10 mM ACh (61 ± 9 vs. 85 ± 7% CVC max , P = 0.37, by 2-way repeated-measures ANOVA). There was a main effect of time at 10 mM ACh ( P = 0.03). Maximal FVC remained unchanged (0.12 ± 0.02 vs. 0.14 ± 0.02 FVC, P = 0.30). No differences were observed in the control arm. Ten days of repeated forearm heating in recreationally active young adults did not improve the microvascular responsiveness to ACh or local heating. NEW & NOTEWORTHY We show for the first time that 10 days of repeated

  14. Research on suitable heating conditions during local PWHT. Pt. 1. Influence of heating conditions on temperature distribution

    International Nuclear Information System (INIS)

    Tanaka, Jinkichi; Horii, Yukihiko; Sato, Masanobu; Murakawa, Hidekazu; Wang Jianhua

    1999-01-01

    To improve weld joint properties a heat treatment so called post weld heat treatment (PWHT) is often implemented for steel weldment. Generally, the PWHT is conducted in a furnace at a factory. But in site welds such as the girth joint of pipe, a local PWHT is applied using electric heater and so on. In the local PWHT steep temperature gradient occurs depending on the heating condition and it leads to rise of the thermal stress in addition to the welding residual stress. However, heating condition is not always defined the same in some standards. Therefore, suitable heat conditions for the local PWHT were studied supposing the power plant and so on experimentally and theoretically. Temperature distribution and thermal strains under different heating conditions were measured during the local PWHT using carbon steel pipes of 340 mm in diameter and 53 mm in wall thickness. The temperature gradient, thermal strain were also analyzed using Finite Element Method (FEM) as axis-symmetric model. Further, the influences of pipe size and heat transfer coefficient on the temperature distribution were analyzed and suitable heating source widths for various pipe sizes were proposed from the viewpoint of temperature distribution. (orig.)

  15. Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change

    Science.gov (United States)

    Taha, H.

    2007-12-01

    Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates

  16. Local entropy generation analysis of a rotary magnetic heat pump regenerator

    International Nuclear Information System (INIS)

    Drost, M.K.; White, M.D.

    1990-01-01

    The rotary magnetic heat pump has attractive thermodynamic performance but it is strongly influenced by the effectiveness of the regenerator. This paper uses local entropy generation analysis to evaluate the regenerator design and to suggest design improvements. The results show that performance of the proposed design is dominated by heat transfer related entropy generation. This suggests that enhancement concepts that improve heat transfer should be considered, even if the enhancement causes a significant increase in viscous losses (pressure drop). One enhancement technique, the use of flow disruptors, was evaluated and the results showed that flow disruptors can significantly reduce thermodynamic losses

  17. The Effect of Inclination Angle on Critical Heat Flux in a Locally Heated Liquid Film Moving Under the Action of Gas Flow in a Mini-Channel

    Directory of Open Access Journals (Sweden)

    Tkachenko Egor M.

    2016-01-01

    Full Text Available Intensively evaporating liquid films moving under the action of the cocurrent gas flow in a microchannel are promising for the use in modern cooling systems of semiconductor devices with high local heat release. This work has studied the dependence of the critical heat flux on the inclination angle of the channel. It has been found that the inclination angle in the plane parallel to the flow has no significant effect on the critical heat flux. Whereas the inclination angle in the plane perpendicular to the flow, on the contrary, significantly changes the value of the critical heat flux. However, for a given flow rate of fluid there is a threshold gas velocity at which the critical heat flux does not differ from the case of zero inclination of the channel. Thus, it can be concluded that the cooling system based on shear-driven liquid films can be potentially used when direction of the gravity changes.

  18. A non-local model analysis of heat pulse propagation

    International Nuclear Information System (INIS)

    Iwasaki, T.; Itoh, S.I.; Yagi, M.; Stroth, U.

    1998-01-01

    The anomalous transport in high temperature plasma has been studied for a long time, from the beginning of the fusion research. Since the electron channel in stellarators and tokamaks is clearly anomalous, it is of fundamental importance to investigate the electron heat diffusivity coefficient, χ e and to understand the physical mechanism. Recently, the experimental data for the transient transport of the heat pulse propagation in fusion plasma has been accumulated. An observation was reported on W7-AS which the heat flux changes faster than the change of the temperature profile, responding to the switching on off of the central heating power. The observation on the transient response has simulated the transport modeling, e.g., the critical marginality which implies the existence of a finite threshold in ∇T for the excitation of the turbulence, or the model in which the thermal conductivity is assumed to depend on the heating power. Extensive study is made by use of these models, and the critical marginally model seems to be insufficient to explain various transient transport. The rapid change of the plasma state and its hysteresis nature were successfully modeled by a heating-power-dependent model. The foundation of this model, however, is left for future work. The development of the transport modeling remains to be an urgent problem. In this paper, we investigate the role of the non-locality of the plasma transport in the study of the heat pulse propagation. For this purpose, a model equation is proposed, in which the non-local effect is taken into account in the heat flux. The properties of this model are investigated by performing a transport simulation. The organization of this paper is as follows: In Sec. II, the model equation is proposed and the properties of the model are explained. Using the model equation, the switching on off experiment is simulated in Sec. III. Summary and discussion are given in Sec. IV. (author)

  19. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    Science.gov (United States)

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  20. Photoinduced local heating in silica photonic crystals for fast and reversible switching.

    Science.gov (United States)

    Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe

    2012-12-04

    Fast and reversible photonic-bandgap tunability is achieved in silica artificial opals by local heating. The effect is fully reversible as heat rapidly dissipates through the non-irradiated structure without active cooling and water is readsorbed. The performance is strongly enhanced by decreasing the photoirradiated opal volume, allowing bandgap shifts of 12 nm and response times of 20 ms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The influence of local versus global heat on the healing of chronic wounds in patients with diabetes.

    Science.gov (United States)

    Petrofsky, Jerrold S; Lawson, Daryl; Suh, Hye Jin; Rossi, Christine; Zapata, Karina; Broadwell, Erin; Littleton, Lindsay

    2007-12-01

    In a previous study, it was shown that placing a subject with chronic diabetic ulcers in a warm room prior to the use of electrical stimulation dramatically increased the healing rate. However, global heating is impractical in many therapeutic environments, and therefore in the present investigation the effect of global heat versus using a local heat source to warm the wound was investigated. Twenty-nine male and female subjects participated in a series of experiments to determine the healing associated with electrical stimulation with the application of local heat through a heat lamp compared to global heating of the subject in a warm room. Treatment consisted of biphasic electrical stimulation at currents at 20 mA for 30 min three times per week for 4 weeks in either a 32 degrees C room or, with the application of local heat, to raise skin temperature to 37 degrees C. Skin blood flow was measured by a laser Doppler imager. Blood flow increased with either local or global heating. During electrical stimulation, blood flow almost doubled on the outside and on the edge of the wound with a smaller increase in the center of the wound. However, the largest increase in blood flow was in the subjects exposed to global heating. Further, healing rates, while insignificant for subjects who did not receive electrical stimulation, showed 74.5 +/- 23.4% healing with global heat and 55.3 +/- 31.1% healing with local heat in 1 month; controls actually had a worsening of their wounds. The best healing modality was global heat. However, there was still a significant advantage in healing with local heat.

  2. The Effect of Being Aerobically Active vs. Inactive on Cutaneous Vascular Conductance during Local Heat Stress in an Older Population

    Directory of Open Access Journals (Sweden)

    Ulrike H. Mitchell

    2017-10-01

    Full Text Available Objective: To test the hypothesis that long- term aerobically trained elderly individuals have a greater amount of bioavailable nitric oxide (NO and have a larger cutaneous vasodilation during local heat stress compared to their inactive elderly counterparts.Methods: Eight aerobically trained and 8 inactive older men (>60 years old participated in this study. NO bioavailability in blood and intradermal dialysate were measured with an ozone based chemiluminescence NO analyzer. Cutaneous vasodilator response to local heating was obtained using laser Doppler velocimetry.Results: Whole blood NO were similar in older- trained and inactive subjects (0.75 ± 0.56 and 0.38 ± 0.32 μM, respectively; Mann–Whitney, p = 0.153, as was intradermal dialysate NO before (7.82 ± 6.32 and 4.18 ± 1.89 μM, respectively and after local heating (7.16 ± 6.27 and 5.88 ± 3.97 μM, respectively, p = 0.354. The cutaneous vasodilator response of the older- inactive group was smaller than the older- trained group [Group-Time interaction, F(24, 264 = 12.0, p < 0.0001]. When compared to a young group the peak vasodilator response of the older- trained subjects was similar. However, the time to initial dilation was 3.1 and 2.2 times longer (p < 0.05 in older- inactive and older- trained subjects, respectively, compared to young subjects.Conclusions: Our data support the hypothesis that the age-related reductions in cutaneous vasodilation can possibly be restored by maintaining an aerobic training regimen (at least 3 years. However, some residual effects of aging remain, specifically a delayed cutaneous vasodilator response to local heating is still present in active older adults. We found no evidence for an increase in systemic or local NO-bioavailability with an extended commitment to aerobic fitness.

  3. The Effect of Being Aerobically Active vs. Inactive on Cutaneous Vascular Conductance during Local Heat Stress in an Older Population.

    Science.gov (United States)

    Mitchell, Ulrike H; Burton, Samantha; Gordon, Christopher; Mack, Gary W

    2017-01-01

    Objective: To test the hypothesis that long- term aerobically trained elderly individuals have a greater amount of bioavailable nitric oxide (NO) and have a larger cutaneous vasodilation during local heat stress compared to their inactive elderly counterparts. Methods: Eight aerobically trained and 8 inactive older men (>60 years old) participated in this study. NO bioavailability in blood and intradermal dialysate were measured with an ozone based chemiluminescence NO analyzer. Cutaneous vasodilator response to local heating was obtained using laser Doppler velocimetry. Results: Whole blood NO were similar in older- trained and inactive subjects (0.75 ± 0.56 and 0.38 ± 0.32 μM, respectively; Mann-Whitney, p = 0.153), as was intradermal dialysate NO before (7.82 ± 6.32 and 4.18 ± 1.89 μM, respectively) and after local heating (7.16 ± 6.27 and 5.88 ± 3.97 μM, respectively, p = 0.354). The cutaneous vasodilator response of the older- inactive group was smaller than the older- trained group [Group-Time interaction, F (24, 264) = 12.0, p < 0.0001]. When compared to a young group the peak vasodilator response of the older- trained subjects was similar. However, the time to initial dilation was 3.1 and 2.2 times longer ( p < 0.05) in older- inactive and older- trained subjects, respectively, compared to young subjects. Conclusions: Our data support the hypothesis that the age-related reductions in cutaneous vasodilation can possibly be restored by maintaining an aerobic training regimen (at least 3 years). However, some residual effects of aging remain, specifically a delayed cutaneous vasodilator response to local heating is still present in active older adults. We found no evidence for an increase in systemic or local NO-bioavailability with an extended commitment to aerobic fitness.

  4. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  5. Measurement of local heat transfer coefficient during gas–liquid Taylor bubble train flow by infra-red thermography

    International Nuclear Information System (INIS)

    Mehta, Balkrishna; Khandekar, Sameer

    2014-01-01

    Highlights: • Infra-red thermographic study of Taylor bubble train flow in square mini-channel. • Design of experiments for measurement of local streamwise Nusselt number. • Minimizing conjugate heat transfer effects and resulting errors in data reduction. • Benchmarking against single-phase flow and three-dimensional computations. • Local heat transfer enhancement up to two times due to Taylor bubble train flow. -- Abstract: In mini/micro confined internal flow systems, Taylor bubble train flow takes place within specific range of respective volume flow ratios, wherein the liquid slugs get separated by elongated Taylor bubbles, resulting in an intermittent flow situation. This unique flow characteristic requires understanding of transport phenomena on global, as well as on local spatio-temporal scales. In this context, an experimental design methodology and its validation are presented in this work, with an aim of measuring the local heat transfer coefficient by employing high-resolution InfraRed Thermography. The effect of conjugate heat transfer on the true estimate of local transport coefficients, and subsequent data reduction technique, is discerned. Local heat transfer coefficient for (i) hydrodynamically fully developed and thermally developing single-phase flow in three-side heated channel and, (ii) non-boiling, air–water Taylor bubble train flow is measured and compared in a mini-channel of square cross-section (5 mm × 5 mm; D h = 5 mm, Bo ≈ 3.4) machined on a stainless steel substrate (300 mm × 25 mm × 11 mm). The design of the setup ensures near uniform heat flux condition at the solid–fluid interface; the conjugate effects arising from the axial back conduction in the substrate are thus minimized. For benchmarking, the data from single-phase flow is also compared with three-dimensional computational simulations. Depending on the employed volume flow ratio, it is concluded that enhancement of nearly 1.2–2.0 times in time

  6. Prediction of critical heat flux by a new local condition hypothesis

    International Nuclear Information System (INIS)

    Im, J. H.; Jun, K. D.; Sim, J. W.; Deng, Zhijian

    1998-01-01

    Critical Heat Flux(CHF) was predicted for uniformly heated vertical round tube by a new local condition hypothesis which incorporates a local true steam quality. This model successfully overcame the difficulties in predicted the subcooled and quality CHF by the thermodynamic equilibrium quality. The local true steam quality is a dependent variable of the thermodynamic equilibrium quality at the exit and the quality at the Onset of Significant Vaporization(OSV). The exit thermodynamic equilibrium quality was obtained from the heat balance, and the quality at OSV was obtained from the Saha-Zuber correlation. In the past CHF has been predicted by the experimental correlation based on local or non-local condition hypothesis. This preliminary study showed that all the available world data on uniform CHF could be predicted by the model based on the local condition hypothesis

  7. Natural gas and local heat supply. Erdgas und Nahwaerme

    Energy Technology Data Exchange (ETDEWEB)

    Berge, W. (Gasversorgungsgesellschaft Filstal mbH (Germany, F.R.) Stadtwerke Goeppingen (Germany, F.R.))

    Local heat supply consists of a thermal power station of a dual-purpose plant, a heat destribution system and the heating systems of the users. A combination of gas heat-pumps, cogeneration plant and gas turbine operated as basic load aggregates is a precondition for the flexible application of energy-saving though investment-intensive technologies. Several existing plants are described in order to explain the structure and functioning of various types of plants. (BWI).

  8. Regimes of heating and dynamical response in driven many-body localized systems

    Science.gov (United States)

    Gopalakrishnan, Sarang; Knap, Michael; Demler, Eugene

    2016-09-01

    We explore the response of many-body localized (MBL) systems to periodic driving of arbitrary amplitude, focusing on the rate at which they exchange energy with the drive. To this end, we introduce an infinite-temperature generalization of the effective "heating rate" in terms of the spread of a random walk in energy space. We compute this heating rate numerically and estimate it analytically in various regimes. When the drive amplitude is much smaller than the frequency, this effective heating rate is given by linear response theory with a coefficient that is proportional to the optical conductivity; in the opposite limit, the response is nonlinear and the heating rate is a nontrivial power law of time. We discuss the mechanisms underlying this crossover in the MBL phase. We comment on implications for the subdiffusive thermal phase near the MBL transition, and for response in imperfectly isolated MBL systems.

  9. Solving fractal steady heat-transfer problems with the local fractional Sumudu transform

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2015-01-01

    Full Text Available In this paper the linear oscillator problem in fractal steady heat-transfer is studied within the local fractional theory. In particular, the local fractional Sumudu transform (LFST will be used to solve both the homogeneous and the non-homogeneous local fractional oscillator equations (LFOEs under fractal steady heat-transfer. It will be shown that the obtained non-differentiable solutions characterize the fractal phenomena with and without the driving force in fractal steady heat transfer at low excess temperatures.

  10. Local and Nonlocal Parallel Heat Transport in General Magnetic Fields

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Chacon, L.

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  11. Comparison of the effects of millimeter wave irradiation, general bath heating, and localized heating on neuronal activity in the leech ganglion

    Science.gov (United States)

    Romanenko, Sergii; Siegel, Peter H.; Wagenaar, Daniel A.; Pikov, Victor

    2013-02-01

    The use of electrically-induced neuromodulation has grown in importance in the treatment of multiple neurological disorders such as Parkinson's disease, dystonia, epilepsy, chronic pain, cluster headaches and others. While electrical current can be applied locally, it requires placing stimulation electrodes in direct contact with the neural tissue. Our goal is to develop a method for localized application of electromagnetic energy to the brain without direct tissue contact. Toward this goal, we are experimenting with the wireless transmission of millimeter wave (MMW) energy in the 10-100 GHz frequency range, where penetration and focusing can be traded off to provide non-contact irradiation of the cerebral cortex. Initial experiments have been conducted on freshly-isolated leech ganglia to evaluate the real-time changes in the activity of individual neurons upon exposure to the MMW radiation. The initial results indicate that low-intensity MMWs can partially suppress the neuronal activity. This is in contrast to general bath heating, which had an excitatory effect on the neuronal activity. Further studies are underway to determine the changes in the state of the membrane channels that might be responsible for the observed neuromodulatory effects.

  12. Simulation of air-heated evaporators using a method of local analysis

    International Nuclear Information System (INIS)

    Parise, J.A.R.; Cartwright, W.G.

    1983-01-01

    The development and application of an analytical method for the performance prediction of air-heated evaporators are presented. A local analysis is employed in which the evaporator is considered as a three dimensional matrix of elementary heat transfer modules. For each element, local film coefficients for both air and the evaporating fluid are determined appropriate to the local conditions, including the two-phase flow regime. An application of the method is considered. (Author) [pt

  13. Modeling of fuel vapor jet eruption induced by local droplet heating

    KAUST Repository

    Sim, Jaeheon

    2014-01-10

    The evaporation of a droplet by non-uniform heating is numerically investigated in order to understand the mechanism of the fuel-vapor jet eruption observed in the flame spread of a droplet array under microgravity condition. The phenomenon was believed to be mainly responsible for the enhanced flame spread rate through a droplet cloud at microgravity conditions. A modified Eulerian-Lagrangian method with a local phase change model is utilized to describe the interfacial dynamics between liquid droplet and surrounding air. It is found that the localized heating creates a temperature gradient along the droplet surface, induces the corresponding surface tension gradient, and thus develops an inner flow circulation commonly referred to as the Marangoni convection. Furthermore, the effect also produces a strong shear flow around the droplet surface, thereby pushing the fuel vapor toward the wake region of the droplet to form a vapor jet eruption. A parametric study clearly demonstrated that at realistic droplet combustion conditions the Marangoni effect is indeed responsible for the observed phenomena, in contrast to the results based on constant surface tension approximation

  14. Second Sound for Heat Source Localization

    CERN Document Server

    Vennekate, Hannes; Uhrmacher, Michael; Quadt, Arnulf; Grosse-Knetter, Joern

    2011-01-01

    Defects on the surface of superconducting cavities can limit their accelerating gradient by localized heating. This results in a phase transition to the normal conduction state | a quench. A new application, involving Oscillating Superleak Transducers (OST) to locate such quench inducing heat spots on the surface of the cavities, has been developed by D. Hartill et al. at Cornell University in 2008. The OSTs enable the detection of heat transfer via second sound in super uid helium. This thesis presents new results on the analysis of their signal. Its behavior has been studied for dierent circumstances at setups at the University of Gottingen and at CERN. New approaches for an automated signal processing have been developed. Furthermore, a rst test setup for a single-cell Superconducting Proton Linac (SPL) cavity has been prepared. Recommendations of a better signal retrieving for its operation are presented.

  15. Calculation of local bed to wall heat transfer in a fluidized-bed

    International Nuclear Information System (INIS)

    Kilkis, B.I.

    1987-01-01

    Surface to bed heat transfer in a fluidized-bed largely depends upon its local and global hydrodynamical behavior including particle velocity, particle trajectory, gas velocity, and void fraction. In this study, a computer program was developed in order to calculate the local bed to wall heat transfer, by accounting for the local and global instantaneous hydrodynamics of the bed. This is accomplished by utilizing the CHEMFLUB computer program. This information at a given location is interpreted so that the most appropriate heat transfer model is utilized for each time increment. These instantaneous heat transfer coefficient for the given location. Repeating the procedure for different locations, a space average heat transfer coefficient is also calculated. This report briefly summarizes the various heat transfer models employed and gives sample computer results reporting the case study for Mickley - Trilling's experimental set-up. Comparisons with available experimental data and correlations are also provided in order to compare and evaluate the computer results

  16. Measurement of heat transfer effectiveness during collision of a Leidenfrost droplet with a heated wall - 15447

    International Nuclear Information System (INIS)

    Park, J.S.; Kim, H.; Bae, S.W.; Kim, K.D.

    2015-01-01

    Droplet-wall collision heat transfer during dispersed flow film boiling plays a role in predicting cooling rate and peak cladding temperature of overheated fuels during reflood following a LOCA accident in nuclear power plants. This study aims at experimentally studying effects of collision velocity and angle, as dynamic characteristics of the colliding droplet, on heat transfer. The experiments were performed by varying collision velocity from 0.2 to 1.5 m/s and collision angle between the droplet path and the wall in the range from 30 to 90 degrees under atmosphere condition. A single droplet was impinged on an infrared-opaque Pt film deposited on an infrared-transparent sapphire plate, which combination permits to measure temperature distribution of the collision surface using a high-speed infrared camera from below. The instantaneous local surface heat flux was obtained by solving transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition of the collision surface. Total heat transfer amount of a single droplet collision was calculated by integrating the local heat flux distribution on the effective heat transfer area during the collision time. The obtained results confirmed the finding from the previous studies that with increasing collision velocity, the heat transfer effectiveness increases due to the increase of the heat transfer area and the local heat flux value. Interestingly, it was found that as collision angle of a droplet with a constant collision velocity decreases from 90 to 50 degrees and thus the vertical velocity component of the collision decreases, the total heat transfer amount per a collision increases. It was observed that the droplet colliding with an angle less than 90 degrees slides on the surface during the collision and the resulting collision area is larger than that in the normal collision. On the other hand, further decrease of collision angle below 40 degrees

  17. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe

    International Nuclear Information System (INIS)

    Mameli, Mauro; Marengo, Marco; Khandekar, Sameer

    2014-01-01

    A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)

  18. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    International Nuclear Information System (INIS)

    Boyd, Ronald D.

    2000-01-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details

  19. Effect of Local Post Weld Heat Treatment on Tensile Properties in Friction Stir Welded 2219-O Al Alloy

    Science.gov (United States)

    Chu, Guannan; Sun, Lei; Lin, Caiyuan; Lin, Yanli

    2017-11-01

    To improve the formability of the aluminum alloy welds and overcome the size limitation of the bulk post weld heat treatment (BPWHT) on large size friction stir welded joints, a local post weld heat treatment method (LPWHT) was proposed. In this method, the resistance heating as the moving heat source is adopted to only heat the weld seam. The temperature field of LPWHT and its influence on the mechanical properties and formability of FSW 2219-O Al alloy joints was investigated. The evaluation of the tensile properties of FSW samples was also examined by mapping the global and local strain distribution using the digital image correlation methodology. The results indicated that the formability was improved greatly after LPWHT, while the hardness distribution of the FSW joint was homogenized. The maximum elongation can reach 1.4 times that of as-welded joints with increase the strength and the strain of the nugget zone increased from 3 to 8% when annealing at 300 °C. The heterogeneity on the tensile deformation of the as-welded joints was improved by the nugget zone showing large local strain value and the reason was given according to the dimple fracture characteristics at different annealing temperatures. The tensile strength and elongation of LPWHT can reach 93.3 and 96.1% of the BPWHT, respectively. Thus, the LPWHT can be advantageous compared to the BPWHT for large size welds.

  20. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    International Nuclear Information System (INIS)

    Grabenstein, V; Kabelac, S

    2012-01-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  1. Effect of local versus remote tonic heat pain during training on acquisition and retention of a finger-tapping sequence task.

    Science.gov (United States)

    Bilodeau, Marie-Claude; Roosink, Meyke; Mercier, Catherine

    2016-02-01

    Although pain is present in a large proportion of patients receiving rehabilitation, its impact on motor learning is still unclear, especially in the case of neuropathic pain that is not tightly linked to specific movements. The aim of this study was to determine the effect of local and remote tonic cutaneous heat pain applied during training on motor learning of a finger-tapping sequence task. Forty-five healthy participants, randomized to the control, local pain or remote pain groups, were trained to perform an explicit finger motor sequence of five items as fast as possible. During the 10 training blocks (30 s each), local pain and remote pain groups received a heat pain stimulus on the wrist or leg, respectively. Performance was tested in the absence of pain in all groups before (baseline), immediately after (post-immediate), 60 min after (post-60 min) and 24 h after training (post-24 h) to assess both acquisition and next-day retention. Speed increased over time from baseline to post-24 h (p pain during training. No changes were observed on error rates, which were very low even at baseline. These results with experimental heat pain suggest that the ability to relearn finger sequence should not be affected by concomitant neuropathic pain in neurorehabilitation. However, these results need to be validated in the context of chronic pain, by including pain as a co-variable in motor rehabilitation trials.

  2. Optimization of a local district heating plant under fuel flexibility and performance

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; From, Niels

    2011-01-01

    are calculated for various local fuels in energyPRO. A comparison has been made between the reference model and the basis for individual solutions. The greatest reduction in heat price is obtained by replacing one engine with a new biogas where heat production is divided by 66% of biogas, 13% natural gas engines......, an investigation has been made to reduce the use of fossil fuels for district heating system and make use of the local renewable resources (Biogas, Solar and Geothermal) for district heating purpose. In this article, the techno-economic assessment is achieved through the development of a suite of models...

  3. Assessment of Global Emissions, Local Emissions and Immissions of Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Georg Erdmann

    2009-08-01

    Full Text Available This paper assesses and compares existing and new technologies for space heating in Germany (e.g., heat pumps, and solar thermal and wood pellet systems in terms of their environmental impacts. The various technologies were analyzed within the context of the new German legislation. The assessment was carried out on three levels: 1. Global emissions: a life cycle assessment was carried out in order to find the global environmental footprint of the various technologies; 2. Local emissions: the effects of local emissions on human health were analyzed; and 3. Immissions: the immissions were evaluated for the various technologies using a dispersion calculation. A special feature of this study is the substitution of frequently used database emission values by values obtained from field studies and our own measurements. The results show large differences between the different technologies: while electric heat pumps performed quite well in most categories, wood pellet systems performed the best with respect to climate change. The latter, however, are associated with high impacts in other environmental impact categories and on a local scale. The promotion of some technologies (especially systems based on fuel oil, a mixture of fuel oil and rapeseed oil, or a mixture of natural gas and biomethane by the newly introduced German legislation is doubtful. In terms of the immissions of wood pellet systems, it can be concluded that, even for extremely unfavorable meteorological conditions, the regulatory limits are not exceeded and the heating systems have a negligible influence on the total PM load in the ambient air.

  4. Interactive effect of aging and local muscle heating on renal vasoconstriction during isometric handgrip.

    Science.gov (United States)

    Kuipers, Nathan T; Sauder, Charity L; Kearney, Matthew L; Ray, Chester A

    2009-08-01

    The purpose of the study was to determine the interactive effect of aging and forearm muscle heating on renal vascular conductance and muscle sympathetic nerve activity (MSNA) during ischemic isometric handgrip. A tube-lined, water-perfused sleeve was used to heat the forearm in 12 young (27 +/- 1 yr) and 9 older (63 +/- 1 yr) subjects. Ischemic isometric handgrip was performed before and after heating. Muscle temperature (intramuscular thermistor) was 34.3 +/- 0.2 and 38.7 +/- 0.1 degrees C during normothermia and heating, respectively. At rest, heating had no effect on renal blood velocity (Doppler ultrasound) or renal vascular conductance in either group (young, n = 12; older, n = 8). Heating compared with normothermia caused a significantly greater increase in renal vasoconstriction during exercise and postexercise muscle ischemia (PEMI) in both groups. However, the increase in renal vasoconstriction during heating was greater in the older compared with the young subjects (18 +/- 3 vs. 8 +/- 3%). During handgrip, heating elicited greater increases in MSNA responses in the older group (young, n = 12; older, n = 6), whereas no statistical difference was observed between groups during PEMI. In summary, aging augments renal vascular responses to ischemic isometric handgrip during heating of the exercising muscle. The greater renal vasoconstriction was associated with augmented MSNA in the older subjects.

  5. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    Science.gov (United States)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  6. Local linear heat rate ramps in the WWER-440 transient regimes

    International Nuclear Information System (INIS)

    Brik, A.N.; Bibilashvili, Ju.L.; Bogatyr, S.M.; Medvedev, A.V.

    1998-01-01

    The operation of the WWER-440 reactors must be accomplished in such a way that the fuel rods durability would be high enough during the whole operation period. The important factors determining the absence of fuel rod failures are the criteria limiting the core characteristics (fuel rod and fuel assembly power, local linear heat rate, etc.). For the transient and load follow conditions the limitations on the permissible local linear rate ramp are also introduced. This limitation is the result of design limit of stress corrosion cracking of the fuel cladding and depends on the local fuel burn-up. The control rod motion is accompanied by power redistribution, which, in principle, can result in violating the design and operation limitations. Consequently, this motion have to be such as the core parameters, including the local ramps of the linear heat generation rates would not exceed the permissible ones.The paper considers the problem of WWER-440 reactor control under transient and load follow conditions and the associated optimisation of local linear heat generation rate ramps. The main factors affecting the solution of the problem under consideration are discussed. Some recommendations for a more optimal reactor operation are given.(Author)

  7. Transient local heat fluxes during the entire vapor bubble life time

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.; Fuchs, T; Wagner, E.; Schweizer, N. [Technische Universitaet Darmstadt (Germany). Technical Thermodynamics], e-mail: pstephan@ttd.tu-darmstadt.de

    2009-07-01

    Recent experimental and numerical investigations of the nucleate boiling heat transfer process at a single active nucleation site are presented and used for an evaluation of the local heat fluxes during the entire life time of a vapor bubble from its nucleation to the rise through the thermal boundary layer. In a special boiling cell, vapor bubbles are generated at a single nucleation site on a 20 {mu}m thin stainless steel heating foil. An infrared camera captures the temperature distribution at the wall with high temporal and spatial resolution. The bubble shape is recorded with a high-speed camera. Measurements were conducted with the pure fluids FC-84 and FC-3284 and with its binary mixtures. For pure fluids, up to 50-60% of the latent heat flows through the three-phase-contact line region. For mixtures, this ratio is clearly reduced. These observations are in agreement with the numerical model of the author's group. The fully transient model contains a multi scale approach ranging from the nanometer to the millimeter scale for the detailed description of the relevant local and global phenomena. It describes the transient heat and fluid flow during the entire periodic cycle of a growing, detaching and rising bubble including the waiting time between two successive bubbles from a single nucleation site. The detailed analysis of the computed transient temperature profiles in wall and fluid give accurate information about the heat supply, temporal energy storage and local evaporation rates. (author)

  8. Transient local heat fluxes during the entire vapor bubble life time

    International Nuclear Information System (INIS)

    Stephan, P.; Fuchs, T; Wagner, E.; Schweizer, N.

    2009-01-01

    Recent experimental and numerical investigations of the nucleate boiling heat transfer process at a single active nucleation site are presented and used for an evaluation of the local heat fluxes during the entire life time of a vapor bubble from its nucleation to the rise through the thermal boundary layer. In a special boiling cell, vapor bubbles are generated at a single nucleation site on a 20 μm thin stainless steel heating foil. An infrared camera captures the temperature distribution at the wall with high temporal and spatial resolution. The bubble shape is recorded with a high-speed camera. Measurements were conducted with the pure fluids FC-84 and FC-3284 and with its binary mixtures. For pure fluids, up to 50-60% of the latent heat flows through the three-phase-contact line region. For mixtures, this ratio is clearly reduced. These observations are in agreement with the numerical model of the author's group. The fully transient model contains a multi scale approach ranging from the nanometer to the millimeter scale for the detailed description of the relevant local and global phenomena. It describes the transient heat and fluid flow during the entire periodic cycle of a growing, detaching and rising bubble including the waiting time between two successive bubbles from a single nucleation site. The detailed analysis of the computed transient temperature profiles in wall and fluid give accurate information about the heat supply, temporal energy storage and local evaporation rates. (author)

  9. Strong contributions of local background climate to urban heat islands

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Smith, Ronald B.; Oleson, Keith

    2014-07-01

    The urban heat island (UHI), a common phenomenon in which surface temperatures are higher in urban areas than in surrounding rural areas, represents one of the most significant human-induced changes to Earth's surface climate. Even though they are localized hotspots in the landscape, UHIs have a profound impact on the lives of urban residents, who comprise more than half of the world's population. A barrier to UHI mitigation is the lack of quantitative attribution of the various contributions to UHI intensity (expressed as the temperature difference between urban and rural areas, ΔT). A common perception is that reduction in evaporative cooling in urban land is the dominant driver of ΔT (ref. 5). Here we use a climate model to show that, for cities across North America, geographic variations in daytime ΔT are largely explained by variations in the efficiency with which urban and rural areas convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than surrounding rural areas, urban heat dissipation is relatively less efficient and urban warming occurs (and vice versa). This convection effect depends on the local background climate, increasing daytime ΔT by 3.0 +/- 0.3 kelvin (mean and standard error) in humid climates but decreasing ΔT by 1.5 +/- 0.2 kelvin in dry climates. In the humid eastern United States, there is evidence of higher ΔT in drier years. These relationships imply that UHIs will exacerbate heatwave stress on human health in wet climates where high temperature effects are already compounded by high air humidity and in drier years when positive temperature anomalies may be reinforced by a precipitation-temperature feedback. Our results support albedo management as a viable means of reducing ΔT on large scales.

  10. Local heat transfer coefficient in a fluidized bed

    International Nuclear Information System (INIS)

    Al-Busoul, A. M.

    1999-01-01

    This paper presents an experimental study for the local heat transfer coefficient. The experiments was conducted inside a reactor with inner diameter (I D = 142mm) at atmospheric conditions (temperature mean value = 29 deg.) The bed was heated by means of a parochial electric heater with a diameter of (d h = 29 mm) and a constant power of 5W. The following factors varied: particles type and diameter, fluid velocity, bed height and heater position inside the reactor. The results were presented and discussed. (author). 15 refs., 7 figs

  11. An iterative procedure for estimating areally averaged heat flux using planetary boundary layer mixed layer height and locally measured heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R. L.; Gao, W.; Lesht, B. M.

    2000-04-04

    Measurements at the central facility of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) are intended to verify, improve, and develop parameterizations in radiative flux models that are subsequently used in General Circulation Models (GCMs). The reliability of this approach depends upon the representativeness of the local measurements at the central facility for the site as a whole or on how these measurements can be interpreted so as to accurately represent increasingly large scales. The variation of surface energy budget terms over the SGP CART site is extremely large. Surface layer measurements of the sensible heat flux (H) often vary by a factor of 2 or more at the CART site (Coulter et al. 1996). The Planetary Boundary Layer (PBL) effectively integrates the local inputs across large scales; because the mixed layer height (h) is principally driven by H, it can, in principal, be used for estimates of surface heat flux over scales on the order of tens of kilometers. By combining measurements of h from radiosondes or radar wind profiles with a one-dimensional model of mixed layer height, they are investigating the ability of diagnosing large-scale heat fluxes. The authors have developed a procedure using the model described by Boers et al. (1984) to investigate the effect of changes in surface sensible heat flux on the mixed layer height. The objective of the study is to invert the sense of the model.

  12. Local heat transfer coefficient for turbulent flow in rod bundles

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1983-03-01

    The correlation of the local heat transfer coefficients in heated triangular array of rod bundles, in terms of the flow hydrodynamic parameters is presented. The analysis is made first for fluid with Prandtl numbers varying from moderated to high (Pr>0.2), and then extended to fluids with low Prandtl numbers (0.004 [pt

  13. Study of flow control by localized volume heating in hypersonic boundary layers

    Science.gov (United States)

    Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.

    2014-12-01

    Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.

  14. Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries.

    Science.gov (United States)

    Lecourieux, Fatma; Kappel, Christian; Pieri, Philippe; Charon, Justine; Pillet, Jérémy; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Lecourieux, David

    2017-01-01

    Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+ 8°C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, γ-aminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," "protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison

  15. Heat pulse analysis in JET and relation to local energy transport models

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.

    1989-01-01

    The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs

  16. Robust non-local effects of ocean heat uptake on radiative feedback and subtropical cloud cover

    Science.gov (United States)

    Rose, B. E. J.

    2016-02-01

    moisture. Our results suggest that cloud feedback under transient climate change is partly modulated by ocean heat uptake through robust but non-local atmospheric processes, and has implications on a timescales ranging from inter-annual to multi-centennial.

  17. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    Science.gov (United States)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  18. The deregulation effects of Finnish electricity markets on district heating prices

    International Nuclear Information System (INIS)

    Linden, Mikael; Peltola-Ojala, Paeivi

    2010-01-01

    This paper investigates an empirical econometric panel data model in order to test deregulation and regional market structure effects on district heating prices in Finland for period 1996-2002. The data was collected from 76 district heating firms throughout Finland. Special emphasis is placed on the modeling of policy-induced competition, which began in year 1999, regional based fuel selection, local market structures, and distribution network sharing effects. The results imply that the local structures of energy production and sales have an important role to play in the formation of market prices and that the price lowering effects of energy market deregulation are permanent. (author)

  19. Realising local government visions for developing district heating: Experiences from a learning country

    International Nuclear Information System (INIS)

    Bush, Ruth E.; Bale, Catherine S.E.; Taylor, Peter G.

    2016-01-01

    District heating (DH) has an important role to play in enabling cities to transition to low-carbon heating. Although schemes are commonplace in some countries, in ‘learning countries’ where building-level technologies make up the majority of heating systems there are numerous barriers to introducing DH. Local governments are seen as key actors in helping to create a ‘shared vision’ for DH amongst stakeholders. This study uses interviews with stakeholders from a range of sectors in the UK (an example of a learning country) to examine the visions of local actors for developing DH and the types of national policy that would support local implementation of these visions. The analysis shows that in engaging with DH development local governments seek multiple types of value. Realising this value will most likely happen by taking a long-term, planned approach to development. In contrast, national government policy is geared towards techno-economic criteria and may lead to only a minority of potential sites being developed, without realisation of wider social or environmental benefits aligned to local visions. The work highlights the importance of local strategic planning, enabled by aligned national policy, in realising the full economic, environmental and social benefits of DH. - Highlights: • Local governments are key to the development of district heating (DH). • Local government-led visions of DH seek to deliver complex value. • In the UK development is led by funding and commercial factors and is not strategic. • To enable DH, national policy must align with the vision of local actors. • Social and environmental criteria must be incorporated in decision-making.

  20. Overview PWR-Blowdown Heat Transfer Separate-Effects Program

    International Nuclear Information System (INIS)

    White, J.D.

    1978-01-01

    The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation

  1. Socio-economic effects and benefits of biofuels in power and heat generation

    International Nuclear Information System (INIS)

    Turkki, J.

    1999-10-01

    This report studies the socioeconomic effects and benefits of domestic fuels - peat and wood and agricultural energy plants also - in power and heat generation. For evaluation of the employment and income effects, it compares the costs of domestic as well as imported fuels as regards to production, transportation and power stations by looking especially at the direct labour input and inputs in terms of intermediate products and investment. Their indirect employment effects and allocation to domestic factor income and imports are introduced by means of an input-output model. The net changes in the disposable incomes of local households, firms and municipalities, the government and other are derived from factor incomes by means of income redistribution. If in heat generation 15 MW oil heating plant is replaced by a peat heating plant, the annual local employment increases by 8 man years. If the fuel used is wood, employment increases by 9 man-years. The disposable income of the local economy rises annually about FIM 0,8 million with the peat alternative and FIM 0,9 million with the wood alternative. Although with the domestic fuel alternatives the income tax revenue grows and the unemployment security payments decrease, the loss of the high fuel taxes collected on oil means however, that the government is netloser by FIM 0,8-1,4 million annually. The total annual import bill decreases both with peat and wood by FIM 2,5 million respectively. Calculated by a small-sized 3/9 MW cogeneration station, which in heat generation replaces oil heating plants and in power generation replaces coal condensation power, the annual local employment effect is 11 man-years with peat and 12 with food fuel. The local economy gain an annual net income of FIM 0,8-0,9 million. The net increase of the government is FIM 0,1 million annually. With the wood alternative the government is a net looser by FIM 0,2 million. The annual import bill decreases by FIM 2,3-2,5 million. (orig.)

  2. Techno-economic analysis of a local district heating plant under fuel flexibility and performance

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse

    2017-01-01

    are calculated using the same procedure according to the use of various local renewable fuels known as “biogas option,” “solar option,” “heat pump option,” and “imported heat option.” A comparison has been made between the reference option and other options. The greatest reduction in heat cost is obtained from......, an investigation has been made to reduce the use of fossil fuels for district heating system and make use of the local renewable resources (biogas, solar, and heat pump) for district heating purposes. In this article, the techno-economic assessment is achieved through the development of a suite of models...... the biogas option by replacing a new engine, where 66 % of the current fuel is substituted with biogas....

  3. Integrating local urban climate modelling and mobile sensor data for personal exposure assessments in the context of urban heat island effect

    Science.gov (United States)

    Ueberham, Maximilian; Hertel, Daniel; Schlink, Uwe

    2017-04-01

    Deeper knowledge about urban climate conditions is getting more important in the context of climate change, urban population growth, urban compaction and continued surface sealing. Especially the urban heat island effect (UHI) is one of the most significant human induced alterations of Earth's surface climate. According to this the appearance frequency of heat waves in cities will increase with deep impacts on personal thermal comfort, human health and local residential quality of citizens. UHI can be very heterogenic within a city and research needs to focus more on the neighborhood scale perspective to get further insights about the heat burden of individuals. However, up to now, few is known about local thermal environmental variances and personal exposure loads. To monitor these processes and the impact on individuals, improved monitoring approaches are crucial, complementing data recorded at conventional fixed stations. Therefore we emphasize the importance of micro-meteorological modelling and mobile measurements to shed new light on the nexus of urban human-climate interactions. Contributing to this research we jointly present the approaches of our two PhD-projects. Firstly we illustrate on the basis of an example site, how local thermal conditions in an urban district can be simulated and predicted by a micro-meteorological model. Secondly we highlight the potentials of personal exposure measurements based on an evaluation of mobile micro-sensing devices (MSDs) and analyze and explain differences between model predictions and mobile records. For the examination of local thermal conditions we calculated ENVI-met simulations within the "Bayerischer Bahnhof" quarter in Leipzig (Saxony, Germany; 51°20', 12°22'). To accomplish the maximum temperature contrasts within the diverse built-up structures we chose a hot summer day (25 Aug 2016) under autochthonous weather conditions. From these simulations we analyzed a UHI effect between the model core (urban area

  4. Local heat transfer performance and exit flow characteristics of a miniature axial fan

    International Nuclear Information System (INIS)

    Stafford, Jason; Walsh, Ed; Egan, Vanessa

    2010-01-01

    Dimensional restrictions in electronic equipment have resulted in miniaturization of many existing cooling technologies. In addition to this, cooling solutions are required to dissipate increased thermal loads to maintain component reliability. Axial fans are widely used in electronics cooling to meet such thermal demands. However, if the extent of non-uniform heat transfer rates, produced by highly three-dimensional air patterns is unknown in the design stages, premature component failure may result. The current study highlights these non-uniformities in heat transfer coefficient, using infrared thermography of a miniature axial fan impinging air on a flat plate. Fan rotational speed and distance from the flat plate are varied to encompass heat transfer phenomena resultant from complex exit air flow distribution. Local peaks in heat transfer coefficient have been shown to be directly related to the air flow and fan motor support interaction. Optimum locations for discrete heat source positioning have been identified which are a function of fan to plate spacing and independent of fan rotational speed when the Reynolds number effect is not apparent.

  5. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  6. Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks

    International Nuclear Information System (INIS)

    Busch, Jonathan; Roelich, Katy; Bale, Catherine S.E.; Knoeri, Christof

    2017-01-01

    The potential contribution of local energy infrastructure – such as heat networks – to the transition to a low carbon economy is increasingly recognised in international, national and municipal policy. Creating the policy environment to foster the scaling up of local energy infrastructure is, however, still challenging; despite national policy action and local authority interest the growth of heat networks in UK cities remains slow. Techno-economic energy system models commonly used to inform policy are not designed to address institutional and governance barriers. We present an agent-based model of heat network development in UK cities in which policy interventions aimed at the institutional and governance barriers faced by diverse actors can be explored. Three types of project instigators are included – municipal, commercial and community – which have distinct decision heuristics and capabilities and follow a multi-stage development process. Scenarios of policy interventions developed in a companion modelling approach indicate that the effect of interventions differs between actors depending on their capabilities. Successful interventions account for the specific motivations and capabilities of different actors, provide a portfolio of support along the development process and recognise the important strategic role of local authorities in supporting low carbon energy infrastructure. - Highlights: • Energy policy should account for diverse actor motivations and capabilities. • Project development is a multi-stage process, not a one-off event. • Participatory agent-based modelling can inform policy that accounts for complexity. • Policy should take a portfolio approach to providing support. • Local authorities have an important strategic role in local infrastructure.

  7. The non-differentiable solution for local fractional Laplace equation in steady heat-conduction problem

    Directory of Open Access Journals (Sweden)

    Chen Jie-Dong

    2016-01-01

    Full Text Available In this paper, we investigate the local fractional Laplace equation in the steady heat-conduction problem. The solutions involving the non-differentiable graph are obtained by using the characteristic equation method (CEM via local fractional derivative. The obtained results are given to present the accuracy of the technology to solve the steady heat-conduction in fractal media.

  8. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  9. Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect

    Directory of Open Access Journals (Sweden)

    Touahri Sofiane

    2012-01-01

    Full Text Available The three dimensional mixed convection heat transfer in a electrically heated horizontal pipe conjugated to a thermal conduction through the entire solid thickness is investigated by taking into account the thermal dependence of the physical properties of the fluid and the outer heat losses. The model equations of continuity, momentum and energy are numerically solved by the finite volume method. The pipe thickness, the Prandtl and the Reynolds numbers are fixed while the Grashof number is varied from 104to107. The results obtained show that the dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection, and the local Nusselt number at the interface solid-fluid is not uniform: it has considerable axial and azimuthally variations. The effect of physical variables of the fluid depending on temperature is significant, which justifies its inclusion. The heat transfer is quantified by the local and average Nusselt numbers. We found that the average Nusselt number of solid-fluid interface of the duct increases with the increase of Grashof number. We have equally found out that the heat transfer is improved thanks to the consideration of the thermo dependence of the physical properties. We have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation: NuA=12.0753 Ri0.156

  10. Experimental and analytical study of natural-convection heat transfer of internally heated liquids

    International Nuclear Information System (INIS)

    Green, G.A.

    1982-08-01

    Boundary heat transfer from a liquid pool with a uniform internal heat source to a vertical or inclined boundary was investigated. The experiments were performed in an open rectangular liquid pool in which the internal heat source was generated by electrical heating. The local heat flux was measured to a boron nitride test wall which was able to be continuously inclined from vertical. Gold plated microthermocouples of 0.01 inch outside diameter were developed to measure the local surface temperature, both front and back, of the boron nitride. The local heat flux and, thus, the local heat transfer coefficient was measured at nineteen locations along the vertical axis of the test plate. A theoretical analysis of the coupled nonlinear boundary layer equations was performed. The parametric effect of the Prandtl number and the dimensionless wall temperature on the boundary heat transfer were investigated When the analytical model was used to calculate the boundary heat transfer data, agreement was achieved with the experimental data within 3% for the local heat transfer and within 2% for the average heat transfer

  11. Numerical prediction of local transitional features of turbulent forced gas flows in circular tubes with strong heating

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Kunugi, Tomoaki; Shehata, A.M.; McEligot, D.M.

    1997-03-01

    Previous numerical simulation for the laminarization due to heating of the turbulent flow in pipe were assessed by comparison with only macroscopic characteristics such as heat transfer coefficient and pressure drop, since no experimental data on the local distributions of the velocity and temperature in such flow situation was available. Recently, Shehata and McEligot reported the first measurements of local distributions of velocity and temperature for turbulent forced air flow in a vertical circular tube with strongly heating. They carried out the experiments in three situations from turbulent flow to laminarizing flow according to the heating rate. In the present study, we analyzed numerically the local transitional features of turbulent flow evolving laminarizing due to strong heating in their experiments by using the advanced low-Re two-equation turbulence model. As the result, we successfully predicted the local distributions of velocity and temperature as well as macroscopic characteristics in three turbulent flow conditions. By the present study, a numerical procedure has been established to predict the local characteristics such as velocity distribution of the turbulent flow with large thermal-property variation and laminarizing flow due to strong heating with enough accuracy. (author). 60 refs

  12. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    International Nuclear Information System (INIS)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-01-01

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  13. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam, E-mail: sganesh@iitk.ac.in

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  14. Local interfacial structure of subcooled boiling flow in a heated annulus

    International Nuclear Information System (INIS)

    Lee, Tae-Ho; Kim, Seong-O; Yun, Byong-Jo; Park, Goon-Cherl; Hibiki, Takashi

    2008-01-01

    Local measurements of flow parameters were performed for vertical upward subcooled boiling flows in an internally heated annulus. The annulus channel consisted of an inner heater rod with a diameter of 19.0 mm and an outer round tube with an inner diameter of 37.5 mm, and the hydraulic equivalent diameter was 18.5 mm. The double-sensor conductivity probe method was used for measuring the local void fraction, interfacial area concentration, bubble Sauter mean diameter and gas velocity, whereas the miniature Pitot tube was used for measuring the local liquid velocity. A total of 32 data sets were acquired consisting of various combinations of heat flux, 88.1-350.9 kW/m 2 , mass flux, 469.7-1061.4kg(m 2 s) and inlet liquid temperature, 83.8-100.5degC. Six existing drift-flux models, six exiting correlations of the interfacial area concentration and bubble layer thickness model were evaluated using the data obtained in the experiment. (author)

  15. Specific heat jump at T/sub c/ of proximity effect sandwiches containing nonmagnetic localized states

    International Nuclear Information System (INIS)

    Maneeratankul, S.; Tang, I.M.

    1987-01-01

    The decrease in the transition temperature and the jump in the specific heat at T/sub c/ of proximity effect sandwiches containing nonmagnetic Anderson impurities in the normal layer are studied. The effects of the resonant scattering by the impurities are treated in the same manner as that used by Kaiser in his study of the effects of resonant scattering on the properties of bulk superconductors. Numerical calculations of the decrease in T/sub c/ and the jump in the specific heat at T/sub c/ as a function of the thickness of the normal layer are presented

  16. Combining the pressure effect with local heat treatment for improving the sheet metal forming process

    Science.gov (United States)

    Palumbo, G.; Piccininni, A.; Guglielmi, P.; Sorgente, D.; Tricarico, L.

    2016-08-01

    The present work deals with the advantages in the Hydromechanical Deep Drawing (HDD) when AA5754 Tailored Heat Treated Blanks (THTBs) are adopted. It is well known that the creation of a suitable distribution of material properties increases the process performance. When non heat-treatable alloys are considered, the THTB approach can be successfully applied to increase the Limit Drawing Ratio (LDR) by changing the peripheral zone into the annealed state starting from a cold-worked blank. If this approach is combined with the advantages of a counterpressure, even more remarkable improvements can be achieved. Due to the large number of involved parameters, the optimized design of both the local treatment and the pressure profile were investigated coupling an axial symmetric Finite Element model with the integration platform modeFRONTIER. Results confirmed the possibility of increasing the LDR from 2.0 (Deep Drawing using a blank in the annealed state) up to about 3.0 if combining the adoption of a THTB with the optimal pressure profile.

  17. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  18. Numerical investigation of heat transfer effects in small wave rotor

    International Nuclear Information System (INIS)

    Deng, Shi; Okamoto, Koji; Teramoto, Susumu

    2015-01-01

    Although a wave rotor is expected to enhance the performance of the ultra-micro gas turbine, the device itself may be affected by downsizing. Apart from the immediate effect of viscosity on flow dynamics when downscaled, the effects of heat transfer on flow field increase at such small scales. To gain an insight into the effects of heat transfer on the internal flow dynamics, numerical investigations were carried out with adiabatic, isothermal and conjugate heat transfer boundary treatments at the wall, and the results compared and discussed in the present study. With the light shed by the discussion of adiabatic and conjugate heat transfer boundary treatments, this work presents investigations of the heat flux distributions, as well as the effects of heat transfer on the internal flow dynamics and the consequent charging and discharging processes for various sizes. When heat transfer is taken into account, states of fluid in the cell before compression process varies, shock waves in compression process are found to be weaker, and changes in the charging and discharging processes are observed. Heat transfer differences between conjugate heat transfer boundary treatment and isothermal boundary treatment are addressed through comparisons of local wall temperature and heat flux. As a result, the difference in discharging temperature of high pressure fluid is noticeable in all sizes investigated, and the rapid increase of differences between results of isothermal and conjugate heat transfer boundary treatment in small size reveals that for certain small sizes (length of cell < 23 mm) the thermal boundary treatment should be taken care of.

  19. Local measurement and numerical modeling of mass/heat transfer from a turbine blade in a linear cascade with tip clearance

    Science.gov (United States)

    Jin, Peitong

    2000-11-01

    Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.

  20. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes

    Science.gov (United States)

    Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.

  1. Local or district heating by natural gas: Which is better from energetic, environmental and economic point of views?

    International Nuclear Information System (INIS)

    Lazzarin, R.; Noro, M.

    2006-01-01

    Generally, a CHP plant coupled with district heating is considered more efficient than traditional local heating systems from an economic and environmental point of view. This is certainly true for municipal waste CHP plants, but for plants fuelled by natural gas the important developments of the last years regarding both boilers (premixed and modulating burners, condensing boilers, etc.) and mechanical vapour compression and absorption heat pumps can change the traditional view. At the same time also district heating plants improved. Therefore it is worth to analyse the whole matter comparing advantages and disadvantages of the different alternatives, with a wide difference between them. The paper reports on the analysis of major district heating natural gas based technologies (vapour and gas turbines, internal combustion engine, combined cycles); the cost of heat and power produced in these plants is compared to the cost of producing the same quantity of electrical energy by a reference GTCC-Gas Turbine Combined Cycle (actually the most efficient technology for pure electrical production) and the cost of heat production by modern local heating technologies using natural gas as fuel (condensing boilers, electrical, gas engine and absorption heat pumps). Regarding energy efficiency and emissions, modern local heating turns out to be more efficient than district heating for most CHP technologies. However, the same does not happen from an economic point of view, because in Italy natural gas used by cogeneration plants is subjected to a much lower taxation than local heating technologies

  2. Localized Beampipe Heating due to $e^{-}$ Capture and Nuclear Excitation in Heavy Ion Colliders

    CERN Document Server

    Klein, S R

    2001-01-01

    At heavy ion colliders, two major sources of beam loss are expected to be $e^+e^-$ production, where the $e^-$ is bound to one of the nuclei, and photonuclear excitation and decay via neutron emission. Both processes alter the ions charged to mass ratio by well defined amounts, creating beams of particles with altered magnetic rigidity. These beams will deposit their energy in a localized region of the accelerator, causing localized heating, The size of the target region depends on the collider optics. For medium and heavy ions, at design luminosity at the Large Hadron Collider, local heating may be more than an order of magnitude higher than expected. This could cause magnet quenches if the local cooling is inadequate. The altered-rigidity beams will also produce localized radiation damage. The beams could also be extracted and used for fixed target experiments.

  3. Studying the Dynamics of Breakdown of Thin Horizontal Liquid Layers with Local Heating

    Directory of Open Access Journals (Sweden)

    Spesivtsev Serafim

    2016-01-01

    Full Text Available Experimental study of liquid layers breakdown when heated locally from the substrate side was made. Water and ethanol were used as working liquids with a layer thickness of 300 μm. Basic steps of the breakdown process were found and mean velocities of the dry spot formation were determined; the values are 0.06 mm/sec for ethanol and 5.15 mm/sec for water. The formation of residual layer over the hot-spot before the breakdown has been found for both liquids. The creation of a droplet cluster near the heating region is observed when using water as a working fluid. It was shown that evaporation is one of the general factors influencing the process of layer breakdown and dry spot formation as well as thermocapillary effect.

  4. Impact of bulk atmospheric motion on local and global containment heat transfer

    International Nuclear Information System (INIS)

    Green, J.A.; Almenas, K.

    1995-01-01

    Local and global correlations for condensing energy transfer in the presence of noncondensable gases in a containment facility have been evaluated. The database employed stems from the E11.2 and E11.4 tests conducted at the German HDR facility. The HDR containment is a 11060-ml, 60-m-high decommissioned light water reactor. The tests simulated long-term (up to 56 h) accident conditions. Numerous instrumented structural blocks (concrete and lead) were located throughout the containment to provide detailed local heat transfer measurements. These data represent what is probably the most extensive database of integral energy transfer measurements available. It is well established that the major resistance to condensation heat transfer in the presence of noncondensable gases is a gaseous boundary layer that builds up in front of the condensing surface. Correlations that seek to model heat transfer for these conditions should depend on parameters that most strongly determine the buildup and thickness of this boundary layer. Two of the most important parameters are the vapor/noncondensable concentration ratio and the local atmospheric motion. Secondary parameters include the atmosphere-to-surface temperature difference, the pressure, and condensing surface properties. The HDR tests are unique in terms of the quantity and variety of instrumentation employed. However, one of the most important parameters, the local bulk atmospheric velocity, is inherently difficult to measure, and only fragmentary measurements are available even in the HDR data-base. A detailed analysis of these data is presented by Green. This study uses statistical methods to evaluate local and global empirical correlations that do not include the atmospheric velocity. The magnitude of the differences between the correlations emphasizes the importance of the local atmospheric velocity and serves to illustrate the accuracy limits of correlations that neglect this essential parameter

  5. Cold local heating. Agrothermal heat supply of an ecovillage; Kalt Nahwaerme. Agrothermische Waermeversorgung einer Plusenergiesiedlung

    Energy Technology Data Exchange (ETDEWEB)

    Pietruschka, Dirk [Hochschule fuer Technik Stuttgart (Germany). Forschungszentrum fuer Nachhaltige Energietechnik; Kluge, Juergen [Doppelacker GmbH, Petershagen-Eggersdorf (Germany)

    2013-03-01

    An ecovillage with highly efficient residential buildings is arisen in the Swabian community Wuestenrot. The power generation in these residential buildings by means of photovoltaic power plants is greater than the energy consumption. Decentralized heat plants supply thermal energy for the space heating and industrial waste. Central agrothermal collectors provide the necessary low-temperature heat for the effective operation of heat pumps over a so-called cold heat grid.

  6. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  7. Maximum skin hyperaemia induced by local heating: possible mechanisms.

    Science.gov (United States)

    Gooding, Kim M; Hannemann, Michael M; Tooke, John E; Clough, Geraldine F; Shore, Angela C

    2006-01-01

    Maximum skin hyperaemia (MH) induced by heating skin to > or = 42 degrees C is impaired in individuals at risk of diabetes and cardiovascular disease. Interpretation of these findings is hampered by the lack of clarity of the mechanisms involved in the attainment of MH. MH was achieved by local heating of skin to 42-43 degrees C for 30 min, and assessed by laser Doppler fluximetry. Using double-blind, randomized, placebo-controlled crossover study designs, the roles of prostaglandins were investigated by inhibiting their production with aspirin and histamine, with the H1 receptor antagonist cetirizine. The nitric oxide (NO) pathway was blocked by the NO synthase inhibitor, NG-nitro-L-arginine methyl esther (L-NAME), and enhanced by sildenafil (prevents breakdown of cGMP). MH was not altered by aspirin, cetirizine or sildenafil, but was reduced by L-NAME: median placebo 4.48 V (25th, 75th centiles: 3.71, 4.70) versus L-NAME 3.25 V (3.10, 3.80) (p = 0.008, Wilcoxon signed rank test). Inhibition of NO production (L-NAME) resulted in a more rapid reduction in hyperaemia after heating (p = 0.011), whereas hyperaemia was prolonged in the presence of sildenafil (p = 0.003). The increase in skin blood flow was largely confined to the directly heated area, suggesting that the role of heat-induced activation of the axon reflex was small. NO, but not prostaglandins, histamine or an axon reflex, contributes to the increase in blood flow on heating and NO is also a component of the resolution of MH after heating. Copyright 2006 S. Karger AG, Basel.

  8. Effect of heat and ionizing radiation on normal and neoplastic tissue of the C3H mouse

    International Nuclear Information System (INIS)

    Thrall, D.E.; Gillette, E.L.; Dewey, W.C.

    1975-01-01

    The radiation response of the skin of the C3H mouse was evaluated in terms of the dose of radiation required to produce moist desquamation completely surrounding the lower aspect of the hind leg by 21 days following irradiation (DD50-21). Irradiation of the leg under various conditions of local tissue oxygenation indicated that when the animals were breathing air (ambient conditions), the cells in the skin were not fully oxygenated. Heat was administered by immersing the leg for 15 min in 44.5 0 C water either immediately prior to or immediately following irradiation under various conditions of local tissue oxygenation. Heat administered following irradiation reduced the DD50-21 values by 724 rad for hyperbaric O 2 , 1210 rad for ambient, and 1656 rad for hypoxic conditions. Approximately these same rad equivalents were observed when heat was administered prior to irradiation, under hyperbaric O 2 and hypoxic conditions. However, administration of heat prior to irradiation under ambient conditions sensitized the cells to the effects of ionizing radiation. This sensitization was assumed to result from heat causing an increase in local tissue oxygenation prior to and at the time of irradiation. The effect of the heat dose administered under acute hypoxic conditions immediately prior to acute hypoxic irradiation was not significantly different from the protocol where heat was administered under ambient conditions immediately prior to acute hypoxic irradiation. This indicates an independence of the magnitude of the heat effect on the tissue oxygenation status at the time of heating. The response of the C3H mouse mammary adenocarcinoma to combined wet heat (Δ) and x radiation (X) administered under either hypoxic, ambient, or hyperbaric O 2 conditions of local tissue oxygenation was studied. (U.S.)

  9. Nonadiabatic effects on surfaces: Kohn anomaly, electronic damping of adsorbate vibrations, and local heating of single molecules

    International Nuclear Information System (INIS)

    Kroeger, J

    2008-01-01

    Three aspects of electron-phonon coupling at metal surfaces are reviewed. One aspect is the Kohn effect, which describes an anomalous dispersion relation of surface phonons due to quasi-one-dimensional nesting of Fermi surface contours. The combination of electron energy loss spectroscopy and angle-resolved photoelectron spectroscopy allows us to unambiguously characterize Kohn anomaly systems. A second aspect is the nonadiabatic damping of adsorbate vibrations. Characteristic spectroscopic line shapes of vibrational modes allow us to estimate the amount of energy transfer between the vibrational mode and electron-hole pairs. Case studies of a Kohn anomaly and nonadiabatic damping are provided by the hydrogen- and deuterium-covered Mo(110) surface. As a third aspect of interaction between electrons and phonons, local heating of a C 60 molecule adsorbed on Cu(100) and in contact with the tip of a scanning tunnelling microscope is covered

  10. The local heat treatment equipment and technology of the pipelines welded joints

    International Nuclear Information System (INIS)

    Korol'kov, P.M.

    1998-01-01

    The principal methods and equipment for local treatment of the pipe-lines weld joints in different industry branches is described. Recommendations about heat treatment equipment and technology application are given

  11. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  12. Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2015-10-01

    Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.

  13. Phase coherence of 0.1 Hz microvascular tone oscillations during the local heating

    Science.gov (United States)

    Mizeva, I. A.

    2017-06-01

    The origin of the mechanisms of blood flow oscillations at low frequencies is discussed. It is known that even isolated arteriole demonstrates oscillations with the frequency close to 0.1 Hz, which is caused by the synchronous activity of myocyte cells. On the other hand, oscillations with close frequency are found in the heart rate, which are associated with quite different mechanism. The main purpose of this work is to study phase coherence of the blood flow oscillations in the peripheral vessels under basal and perturbed conditions. Local heating which locally influences the microvascular tone, as one of currently elucidated in sufficient detail physiological test, was chosen. During such provocation blood flow though the small vessels significantly increases because of vasodilation induced by the local synthesis of nitric oxide. In the first part of the paper microvascular response to the local test is quantified in healthy and pathological conditions of diabetes mellitus type 1. It is obtained that regardless of the pathology, subjects with high basal perfusion had lower reserve for vasodilation, which can be caused by the low elasticity of microvascular structure. Further synchronization of pulsations of the heated and undisturbed skin was evaluated on the base of wavelet phase coherency analysis. Being highly synchronised in basal conditions 0.1 Hz pulsations became more independent during heating, especially during NO-mediated vasodilation.

  14. Changes in the timing, length and heating degree days of the heating season in central heating zone of China

    Science.gov (United States)

    Shen, Xiangjin; Liu, Binhui

    2016-01-01

    Climate change affects the demand for energy consumption, especially for heating and cooling buildings. Using daily mean temperature (Tmean) data, this study analyzed the spatiotemporal changes of the starting date for heating (HS), ending date for heating (HE), length (HL) and heating degree day (HDD) of the heating season in central heating zone of China. Over China’s central heating zone, regional average HS has become later by 0.97 day per decade and HE has become earlier by 1.49 days per decade during 1960–2011, resulting in a decline of HL (−2.47 days/decade). Regional averaged HDD decreased significantly by 63.22 °C/decade, which implies a decreasing energy demand for heating over the central heating zone of China. Spatially, there are generally larger energy-saving rate in the south, due to low average HDD during the heating season. Over China’s central heating zone, Tmean had a greater effect on HL in warm localities and a greater effect on HDD in cold localities. We project that the sensitivity of HL (HDD) to temperature change will increase (decrease) in a warmer climate. These opposite sensitivities should be considered when we want to predict the effects of climate change on heating energy consumption in China in the future. PMID:27651063

  15. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    Science.gov (United States)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  16. Absence of local thermal equilibrium in two models of heat conduction

    OpenAIRE

    Dhar, Abhishek; Dhar, Deepak

    1998-01-01

    A crucial assumption in the conventional description of thermal conduction is the existence of local thermal equilibrium. We test this assumption in two simple models of heat conduction. Our first model is a linear chain of planar spins with nearest neighbour couplings, and the second model is that of a Lorentz gas. We look at the steady state of the system when the two ends are connected to heat baths at temperatures T1 and T2. If T1=T2, the system reaches thermal equilibrium. If T1 is not e...

  17. The Effect of Contact Angle on Dynamics of Dry Spots Spreading in a Horizontal Layer of Liquid at Local Heating

    Directory of Open Access Journals (Sweden)

    Zaitsev D.V.

    2015-01-01

    Full Text Available The effect of equilibrium contact angle on dynamics of dry spot spreading at disruption of a horizontal water layer heated locally from the substrate was studied using the high-speed Schlieren technique. Different methods of working surface processing were applied; this allowed variations of the equilibrium contact angle from 27±6° to 74±9° without a change in thermal properties of the system. It is found out that substrate wettability significantly affects the propagation velocity of dry spot and its final size. It is also found out that the velocity of contact line propagation is higher in the areas of substrate with a higher temperature.

  18. Consistent pattern of local adaptation during an experimental heat wave in a pipefish-trematode host-parasite system.

    Directory of Open Access Journals (Sweden)

    Susanne H Landis

    Full Text Available Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle as a host and its digenean trematode parasite (Cryptocotyle lingua. In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming.

  19. Local Entropy Production in Turbulent Shear Flows: A Tool for Evaluating Heat Transfer Performance

    Institute of Scientific and Technical Information of China (English)

    H. HERWIG; F. KOCK

    2006-01-01

    Performance evaluation of heat transfer devices can be based on the overall entropy production in these devices.In our study we therefore provide equations for the systematic and detailed determination of local entropy production due to dissipation of mechanical energy and due to heat conduction, both in turbulent flows. After turbulence modeling has been incorporated for the fluctuating parts the overall entropy production can be determined by integration with respect to the whole flow domain. Since, however, entropy production rates show very steep gradients close to the wall, numerical solutions are far more effective with wall functions for the entropy production terms. These wall functions are mandatory when high Reynolds number turbulence models are used. For turbulent flow in a pipe with an inserted twisted tape as heat transfer promoter it is shown that based on the overall entropy production rate a clear statement from a thermodynamic point of view is possible. For a certain range of twist strength there is a decrease in overall entropy production compared to the case without insert. Also, the optimum twist strength can be determined. This information is unavailable when only pressure drop and heat transfer data are given.

  20. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  1. Chemothermal Therapy for Localized Heating and Ablation of Tumor

    Directory of Open Access Journals (Sweden)

    Zhong-Shan Deng

    2013-01-01

    Full Text Available Chemothermal therapy is a new hyperthermia treatment on tumor using heat released from exothermic chemical reaction between the injected reactants and the diseased tissues. With the highly minimally invasive feature and localized heating performance, this method is expected to overcome the ubiquitous shortcomings encountered by many existing hyperthermia approaches in ablating irregular tumor. This review provides a relatively comprehensive review on the latest advancements and state of the art in chemothermal therapy. The basic principles and features of two typical chemothermal ablation strategies (acid-base neutralization-reaction-enabled thermal ablation and alkali-metal-enabled thermal/chemical ablation are illustrated. The prospects and possible challenges facing chemothermal ablation are analyzed. The chemothermal therapy is expected to open many clinical possibilities for precise tumor treatment in a minimally invasive way.

  2. Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, Å.; Hansson, P.-A.

    2015-01-01

    Farmers can use their own agricultural biomass residues for heat production in small-scale systems, enabling synergies between the district heating (DH) sector and agriculture. The barriers to entry into the Swedish heat market were extremely high as long as heat distribution were considered natural monopoly, but were recently lowered due to the introduction of a regulated third party access (TPA) system in the DH sector. This study assesses the potential impact on greenhouse gas emissions and cost-based heat price in the DH sector when farmers vertically integrate into the heat supply chain and introduce more local and agricultural crops and residues into the fuel mix. Four scenarios with various degree of farmer integration, were assessed using life cycle assessment (LCA) methodology, and by analysis of the heat production costs. The results show that full integration of local farm and forest owners in the value chain can reduce greenhouse gas emissions and lower production costs/heat price, if there is an incentive to utilise local and agricultural fuels. The results imply that farmer participation in the DH sector should be encouraged by e.g. EU rural development programmes. - Highlights: • Five DH production systems based on different fuels and ownership were analysed. • Lower GHG emissions were obtained when farmers integrate fully into the DH chain. • Lower heat price was obtained by full vertical integration of farmers. • Salix and straw-based production resulted in the lowest GHG and heat price

  3. Analysis of the effect of local heat island in Seoul using LANDSAT image

    Science.gov (United States)

    Lee, K. I.; Ryu, J.; Jeon, S. W.

    2017-12-01

    The increase in the rate of industrialization due to urbanization has caused the Urban Heat Island phenomenon which means that the temperature of the city is higher than the surrounding area, and its intensity is increasing with climate change. Among the cities where heat island phenomenon occur, Seoul city has different degree of urbanization, green area ratio, energy consumption, and population density by each district unit. As a result, the strength of heat island phenomenon is also different. The average maximum temperature in each region may differ by more than 3 °, which is bigger than the suburbs in Seoul and it means that analysis of UHI effect by regional unit is needed. Therefore, this study is to extract the UHI Intensity of the regional unit of the Seoul Metropolitan City using the satellite image, analyzed the difference of intensity according to the regional unit. And do linear regression analysis with variables included in three categories(regional meteorological conditions, anthropogenic heat generation, land use factors). As a result, The UHI Intensity value of the Gu unit is significantly different from the UHI Intensity distribution of the Dong unit. The variable having the greatest positive correlation with UHI Intensity was NDBI(Normalized Difference Built-up Index) which shows the distribution of urban area, and Urban area ratio also has high correlation. There was a negative correlation between mean wind speed but there was no significant correlation between population density and power consumption. The result of this study is to identify the regional difference of UHI Intensity and to identify the factors inducing heat island phenomenon. so It is expected that it will provide direction in urban thermal environment design and policy development in the future.

  4. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  5. Turbulent boundary layer heat transfer experiments: Convex curvature effects including introduction and recovery

    Science.gov (United States)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1982-01-01

    Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.

  6. Nanoimprinted polymer chips for light induced local heating of liquids in micro- and nanochannels

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Pedersen, Jonas Nyvold; Flyvbjerg, Henrik

    2010-01-01

    A nanoimprinted polymer chip with a thin near-infrared absorber layer that enables light-induced local heating (LILH) of liquids inside micro- and nanochannels is presented. An infrared laser spot and corresponding hot-spot could be scanned across the device. Large temperature gradients yield...... a 785 nm laser diode was focused from the backside of the chip to a spot diameter down to 5 ..m in the absorber layer, yielding a localized heating (Gaussian profile) and large temperature gradients in the liquid in the nanochannels. A laser power of 38 mW yielded a temperature of 40°C in the center...

  7. A Study on Infrared Local Heat Treatment for AA5083 to Improve Formability and Automotive Part Forming

    Science.gov (United States)

    Lee, Eun-Ho; Yang, Dong-Yol; Ko, SeJin

    2017-10-01

    Automotive industries are increasingly employing aluminum alloys for auto parts to reduce vehicle weight. However, the low formability of aluminum alloys has been an obstacle to their application. To resolve the formability problem, some studies involving heat treatments under laboratory conditions have been reported. However, for industrial applications, the heat treatment sequence, heating energy efficiency, and a commercial part test should be studied. This work shows an infrared (IR) local heat treatment, heating only small areas where the heat treatment is required, for an aluminum alloy to improve the formability with a reduction of heating energy. The experiment shows that the formability drastically increases when the aluminum alloy is heat treated between two forming stages, referred to as intermediate heat treatment. The microstructures of the test pieces are evaluated to identify the cause of the increase in the formability. For an industrial application, an aluminum tailgate, which cannot be manufactured without heat treatment, was successfully manufactured by the IR local heat treatment with a reduction of energy. A simulation was also conducted with a stress-based forming limit diagram, which is not affected by the strain path and heat treatment histories. The simulation gives a good prediction of the formability improvement.

  8. A study on the flow field and local heat transfer performance due to geometric scaling of centrifugal fans

    International Nuclear Information System (INIS)

    Stafford, Jason; Walsh, Ed; Egan, Vanessa

    2011-01-01

    Highlights: ► Velocity field and local heat transfer trends of centrifugal fans. ► Time-averaged vortices are generated by flow separation. ► Local vortex and impingement regions are evident on surface heat transfer maps. ► Miniature centrifugal fans should be designed with an aspect ratio below 0.3. ► Theory under predicts heat transfer due to complex, unsteady outlet flow. - Abstract: Scaled versions of fan designs are often chosen to address thermal management issues in space constrained applications. Using velocity field and local heat transfer measurement techniques, the thermal performance characteristics of a range of geometrically scaled centrifugal fan designs have been investigated. Complex fluid flow structures and surface heat transfer trends due to centrifugal fans were found to be common over a wide range of fan aspect ratios (blade height to fan diameter). The limiting aspect ratio for heat transfer enhancement was 0.3, as larger aspect ratios were shown to result in a reduction in overall thermal performance. Over the range of fans examined, the low profile centrifugal designs produced significant enhancement in thermal performance when compared to that predicted using classical laminar flow theory. The limiting non-dimensional distance from the fan, where this enhancement is no longer apparent, has also been determined. Using the fundamental information inferred from local velocity field and heat transfer measurements, selection criteria can be determined for both low and high power practical applications where space restrictions exist.

  9. Experiment of flow regime map and local condensing heat transfer coefficients inside three dimensional inner microfin tubes

    Science.gov (United States)

    Du, Yang; Xin, Ming Dao

    1999-03-01

    This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.

  10. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    Science.gov (United States)

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  11. Changes in dermal interstitial ATP levels during local heating of human skin.

    Science.gov (United States)

    Gifford, Jayson R; Heal, Cory; Bridges, Jarom; Goldthorpe, Scott; Mack, Gary W

    2012-12-15

    Heating skin is believed to activate vanilloid type III and IV transient receptor potential ion channels (TRPV3, TRPV4, respectively), resulting in the release of ATP into the interstitial fluid. We examined the hypothesis that local skin heating would result in an accumulation of ATP in the interstitial fluid that would be related with a rise in skin blood flow (SkBF) and temperature sensation. Two microdialysis probes were inserted into the dermis on the dorsal aspect of the forearm in 15 young, healthy subjects. The probed skin was maintained at 31°C, 35°C, 39°C and 43°C for 8 min periods, during which SkBF was monitored as cutaneous vascular conductance (CVC). Dialysate was collected and analysed for ATP ([ATP](d)) using a luciferase-based assay, and ratings of perceived warmth were taken at each temperature. At a skin temperature of 31°C, [ATP](d) averaged 18.93 ± 4.06 nm and CVC averaged 12.57 ± 1.59% peak. Heating skin to 35°C resulted in an increase in CVC (17.63 ± 1.27% peak; P ATP](d). Heating skin to 39°C and 43°C resulted in a decreased [ATP](d) (5.88 ± 1.68 nm and 8.75 ± 3.44 nm, respectively; P ATP does not occur during local heating, and therefore does not have a role in temperature sensation or the dilator response in human skin. Nevertheless, the low threshold of dilatation (35°C) indicates a possible role for the TRPV3, TRPV4 channels or the sensitization of other ion channels in mediating the dilator response.

  12. Experimental data and calculation studies of critical heat fluxes at local disturbances of geometry of WWER fuel assemblies

    International Nuclear Information System (INIS)

    Kobzar, L.L.; Oleksyuk, D.A.

    2001-01-01

    The results of experiments executed in RRC 'Kurchatov Institute on the thermal-physical critical facility SVD are presented herein. The experiments modeled the drawing of two fuel rods to each other till touching WWER-1000 reactor in FA. The experimental model is a 7-rod bundle with the heated length of 1 m. The primary goal of experiments was to acquire the quantitative factors of the reduction in the critical heat fluxes as contrasted to the basic model (without disturbances of FA geometry) at the expense of local disturbance of a rod bundle geometry. As it follows from the experiment, the effect of decrease of the critical heat rate depends on combination of regime parameters and it makes 15% in the most unfavorable case (Authors)

  13. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish

    Directory of Open Access Journals (Sweden)

    Achermann Marc

    2009-12-01

    Full Text Available Abstract Background Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. Results We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 μm targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. Conclusion This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.

  14. Experimental determination of the local heat transfer coefficient in a closely packed pin arrangement

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1982-09-01

    The determination of the heat transfer coefficient of the pins of the Spallation Neutron Source is a very important problem for the development of this facility, as data for thermal and structural studies. For this purpose, a test apparatus was built, in scale 1:1, for the simulation of the thermal and hydraulical conditions of the Neutron Source. This apparatus is a pin bank, with one of the pins electrically heated. Performance of measurements gave the values for the heat transfer coefficient, here presented in the Nusselt Number form, and its local distribution. Results show the linear dependence of Nusselt Number on Reynolds Number, for a constant heat production. (orig.) [de

  15. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In

    2016-01-01

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m"2/K from the 4×4 tube banks, and 4.92 W/m"2/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study

  16. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  17. Strategies to Reduce the Harmful Effects of Extreme Heat Events: A Four-City Study

    Directory of Open Access Journals (Sweden)

    Jalonne L. White-Newsome

    2014-02-01

    Full Text Available Extreme heat events (EHEs are becoming more intense, more frequent and longer lasting in the 21st century. These events can disproportionately impact the health of low-income, minority, and urban populations. To better understand heat-related intervention strategies used by four U.S. cities, we conducted 73 semi-structured interviews with government and non-governmental organization leaders representing public health, general social services, emergency management, meteorology, and the environmental planning sectors in Detroit, MI; New York City, NY; Philadelphia, PA and Phoenix, AZ—cities selected for their diverse demographics, climates, and climate adaptation strategies. We identified activities these leaders used to reduce the harmful effects of heat for residents in their city, as well as the obstacles they faced and the approaches they used to evaluate these efforts. Local leaders provided a description of how local context (e.g., climate, governance and city structure impacted heat preparedness. Despite the differences among study cities, political will and resource access were critical to driving heat-health related programming. Upon completion of our interviews, we convened leaders in each city to discuss these findings and their ongoing efforts through day-long workshops. Our findings and the recommendations that emerged from these workshops could inform other local or national efforts towards preventing heat-related morbidity and mortality.

  18. Existence of a time-dependent heat flux-related ponderomotive effect

    International Nuclear Information System (INIS)

    Schamel, H.; Sack, C.

    1980-01-01

    The existence of a new ponderomotive effect associated with high-frequency waves is pointed out. It originates when time-dependency, mean velocities, or divergent heat fluxes are involved and it supplements the two effects known previously, namely, the ponderomotive force and fake heating. Two proofs are presented; the first is obtained by establishing the momentum equations generalized by including radiation effects and the second by solving the quasi-linear-type diffusion equation explicitly. For a time-dependent wave packet the solution exhibits a new contribution in terms of an integral over previous states. Owing to this term, the plasma has a memory which leads to a breaking of the time symmetry of the plasma response. The range, influenced by the localized wave packet, expands during the course of time due to streamers emanating from the wave active region. Perturbations, among which is the heat flux, are carried to remote positions and, consequently, the region accessible to wave heating is increased. The density dip appears to be less pronounced at the center, and its generation and decay are delayed. The analysis includes a self-consistent action of high-frequency waves as well as the case of traveling wave packets. In order to establish the existence of this new effect, the analytical results are compared with recent microwave experiments. The possibility of generating fast particles by this new ponderomotive effect is emphasized

  19. A study on the flow field and local heat transfer performance due to geometric scaling of centrifugal fans

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Jason, E-mail: jason.stafford@ul.ie [Stokes Institute, Mechanical, Aeronautical and Biomedical Engineering Department, University of Limerick, Limerick (Ireland); Walsh, Ed; Egan, Vanessa [Stokes Institute, Mechanical, Aeronautical and Biomedical Engineering Department, University of Limerick, Limerick (Ireland)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Velocity field and local heat transfer trends of centrifugal fans. Black-Right-Pointing-Pointer Time-averaged vortices are generated by flow separation. Black-Right-Pointing-Pointer Local vortex and impingement regions are evident on surface heat transfer maps. Black-Right-Pointing-Pointer Miniature centrifugal fans should be designed with an aspect ratio below 0.3. Black-Right-Pointing-Pointer Theory under predicts heat transfer due to complex, unsteady outlet flow. - Abstract: Scaled versions of fan designs are often chosen to address thermal management issues in space constrained applications. Using velocity field and local heat transfer measurement techniques, the thermal performance characteristics of a range of geometrically scaled centrifugal fan designs have been investigated. Complex fluid flow structures and surface heat transfer trends due to centrifugal fans were found to be common over a wide range of fan aspect ratios (blade height to fan diameter). The limiting aspect ratio for heat transfer enhancement was 0.3, as larger aspect ratios were shown to result in a reduction in overall thermal performance. Over the range of fans examined, the low profile centrifugal designs produced significant enhancement in thermal performance when compared to that predicted using classical laminar flow theory. The limiting non-dimensional distance from the fan, where this enhancement is no longer apparent, has also been determined. Using the fundamental information inferred from local velocity field and heat transfer measurements, selection criteria can be determined for both low and high power practical applications where space restrictions exist.

  20. Simplified model for determining local heat flux boundary conditions for slagging wall

    Energy Technology Data Exchange (ETDEWEB)

    Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre

    2009-07-15

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  1. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.

    1983-05-01

    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  2. Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: Implications for pressure ulcer risk

    Science.gov (United States)

    Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen

    2013-10-01

    The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.

  3. Local fractional variational iteration algorithm iii for the diffusion model associated with non-differentiable heat transfer

    Directory of Open Access Journals (Sweden)

    Meng Zhi-Jun

    2016-01-01

    Full Text Available This paper addresses a new application of the local fractional variational iteration algorithm III to solve the local fractional diffusion equation defined on Cantor sets associated with non-differentiable heat transfer.

  4. Costs for Alternatives to District Heating. A study of real costs on local heating markets; Alternativkostnad till fjaerrvaerme. En studie av verkliga kostnader paa lokala vaermemarknader

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Annelie; Lehtmets, Marti; Andersson, Sofie

    2008-07-01

    Heating comprise the major part of the cost of supporting a building with necessities like electricity, heat, refuse collection and water and sewage. As these costs increase, it is becoming more interesting to find other solutions in order to reduce them. One alternative is to convert to another heating system. Several price analyses comparing different heating systems have been performed. Avgiftsgruppen publishes one report on a yearly basis, where the costs to support a building with necessities and how they vary between communities are listed. The latest report states that it is less expensive in 75 % of the communities in Sweden to convert from district heating to a pellets boiler or a ground-source pump. However, other studies have established that the heat market is a local market with local conditions. Therefore you need to compare alternative heating costs that are specific to the area instead of estimated average costs at a national level. The purpose of this survey is to study a local heat market in order to verify the real cost of the alternative heating systems to district heating and if these costs vary between different communities. The hypothesis is that it is not possible to generalize the heating cost on a national level. Instead, a local market should be studied to make an accurate cost comparison between heating options. Three communities are studied in order to find real and verified investment costs in pellet boilers and heat pumps. The investments that are of primary interest are those performed in buildings similar to the multi-dwelling house used in earlier price analyses. Furthermore, the building should be located within the distribution network of district heating in order to illustrate the competition between the heating alternatives. The result of the study illustrates the difficulties to find real and verified costs of completed investments in alternative heating systems in buildings that is of primary interest for this study. Contacts

  5. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  6. An improved local radial point interpolation method for transient heat conduction analysis

    Science.gov (United States)

    Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang

    2013-06-01

    The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.

  7. An improved local radial point interpolation method for transient heat conduction analysis

    International Nuclear Information System (INIS)

    Wang Feng; Lin Gao; Hu Zhi-Qiang; Zheng Bao-Jing

    2013-01-01

    The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions

  8. On-farm yield potential of local seed watermelon landraces under heat- and drought-prone conditions in Mali

    DEFF Research Database (Denmark)

    Nantoume, Aminata Dolo; Christiansen, Jørgen Lindskrog; Andersen, Sven Bode

    2012-01-01

    On-farm yield experiments were carried out in the Tombouctou region of Mali in 2009/10 under heat- and drought-prone desert conditions with three local landraces of seed-type watermelons. The landraces, named Fombou, Kaneye and Musa Musa by the farmers, exhibited distinct characteristics for fruit...... responsive. The yields obtained suggest that these local landraces of watermelon are valuable plant genetic resources for securing food supply in arid, heat- and drought-prone areas....

  9. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Ertürk, M. Arcan [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 and Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States); El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A., E-mail: bottoml@mri.jhu.edu [Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2015-03-15

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  10. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Science.gov (United States)

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  11. Monitoring local heating around an interventional MRI antenna with RF radiometry

    International Nuclear Information System (INIS)

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  12. Measurement of the local void fraction at high pressures in a heating channel

    International Nuclear Information System (INIS)

    Martin, R.

    1969-01-01

    Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm 2 ); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm 2 .s, heat flux from 40 to 170 W/cm 2 and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [fr

  13. Effect of heat conditions on the mechanical properties of boron nitride polycrystals

    International Nuclear Information System (INIS)

    Bochko, A.V.

    1986-01-01

    This paper examines the effect of various types of heat treatment on the mechanical and service properties of polycrystals of boron nitride. Quantitative phase analysis was carried out using the methods described when using a DRON-2.0 x-ray diffractometer. The mechanical characteristics were determined by the method of local loading using the standard nitride polycrystals in the initial state are quite high. On the basis of the results it may be concluded that the heat treatment conditions examined (annealing, hf heating, annealing and hf heating) lead to the same changes in the structural state as those taking place in thermal cycling thus causing the corresponding reduction of the level of the strength properties of the boron nitride polycrystals

  14. Effectiveness of a heat exchanger in a heat pump clothes dryer

    Science.gov (United States)

    Nasution, A. H.; Sembiring, P. G.; Ambarita, H.

    2018-02-01

    This paper deals with study on a heat pump clothes dryer coupled with a heat exchanger. The objective is to explore the effects of the heat exchanger on the performance of the heat pump dryer. The heat pump dryer consists of a vapor compression cycle and integrated with a drying room with volume 1 m3. The power of compressor is 800 Watt and the refrigerant of the cycle is R22. The heat exchanger is a flat plate type with dimensions of 400 mm × 400 mm × 400 mm. The results show the present of the heat exchanger increase the performance of the heat pump dryer. In the present experiment the COP, TP and SMER increase 15.11%, 4.81% and 58.62%, respectively. This is because the heat exchanger provides a better drying condition in the drying room with higher temperature and lower relative humidity in comparison with heat pump dryer without heat exchanger. The effectiveness of the heat exchanger is also high, it is above 50%. It is suggested to install a heat exchanger in a heat pump dryer.

  15. Thermal hydraulics-I. 5. Local Heat Transfer and Flow Transition in U-Tubes During a Reflux Condensation Mode

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Kyung-Won; Chu, In-Cheol

    2001-01-01

    For the safety analysis of nuclear power plant (NPP) mid-loop operation, it is very important to determine the mechanisms governing heat transfer and to investigate the factors affecting the onset of flooding in steam generator U-tubes during a reflux condensation mode. The main purpose of this work is to evaluate the local condensation heat transfer with and without non-condensable gases (air) and to investigate the effect of multiple U-tubes on the onset of flooding during a reflux condensation. A schematic diagram of the experimental apparatus is shown in Fig. 1. In the present study, five U-tubes with the same inner diameter of 0.0162 m are installed in a rectangular pool to simulate the geometry of the pressurized water reactor steam generator U-tubes of the Korea standard NPP (KSNPP) (Ulchin Units 3 and 4, inner diameter≅0.01692 m). One central U-tube (2.8 m high) is fully equipped with 32 thermocouples to evaluate the heat transfer coefficients (HTCs), whereas the others (i.e., two short tubes 2.5 m high and two long tubes 3.3 m high) are used to investigate the effect of multiple U-tubes on the flooding phenomena. The local heat flux through a U-tube wall was evaluated from the temperature gradient of the U-tube wall. The onset of flooding, on the other hand, was determined by measuring the change in pressure difference between the bottom and the top of the U-tubes. A total of 512 data for local condensation HTCs (108 for pure steam flow and 404 for steam-air flow conditions, respectively) have been obtained for various flow rates of steam and air under atmospheric conditions. The experimental results for a pure steam flow, in general, agree with the classical Nusselt theory, as shown in Fig. 2. At a relatively high-steam Reynolds number (i.e., >3500), however, the present data are slightly higher than the values predicted by Nusselt theory because of the influence of interfacial shear. In the case of pure steam condensation, the condensate film acts as

  16. A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources

    KAUST Repository

    Sim, Jaeheon

    2015-05-12

    Droplet evaporation by a localized heat source under microgravity conditions was numerically investigated in an attempt to understand the mechanism of the fuel vapor jet ejection, which was observed experimentally during the flame spread through a droplet array. An Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a local phase change model in order to effectively capture the interfacial dynamics between liquid droplet and surrounding air. It was found that the surface tension gradient caused by the temperature variation within the droplet creates a thermo-capillary effect, known as the Marangoni effect, creating an internal flow circulation and outer shear flow which drives the fuel vapor into a tail jet. A parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force characteristics. The results at different pressure conditions indicated that the nonmonotonic response of the evaporation rate to pressure may also be attributed to the Marangoni effect.

  17. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    International Nuclear Information System (INIS)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-01-01

    Topics covered are: anomalous transport and E f- B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies

  18. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  19. Local Heat Application for the Treatment of Buruli Ulcer: Results of a Phase II Open Label Single Center Non Comparative Clinical Trial.

    Science.gov (United States)

    Vogel, Moritz; Bayi, Pierre F; Ruf, Marie-Thérèse; Bratschi, Martin W; Bolz, Miriam; Um Boock, Alphonse; Zwahlen, Marcel; Pluschke, Gerd; Junghanss, Thomas

    2016-02-01

    Buruli ulcer (BU) is a necrotizing skin disease most prevalent among West African children. The causative organism, Mycobacterium ulcerans, is sensitive to temperatures above 37°C. We investigated the safety and efficacy of a local heat application device based on phase change material. In a phase II open label single center noncomparative clinical trial (ISRCTN 72102977) under GCP standards in Cameroon, laboratory confirmed BU patients received up to 8 weeks of heat treatment. We assessed efficacy based on the endpoints 'absence of clinical BU specific features' or 'wound closure' within 6 months ("primary cure"), and 'absence of clinical recurrence within 24 month' ("definite cure"). Of 53 patients 51 (96%) had ulcerative disease. 62% were classified as World Health Organization category II, 19% each as category I and III. The average lesion size was 45 cm(2). Within 6 months after completion of heat treatment 92.4% (49 of 53, 95% confidence interval [CI], 81.8% to 98.0%) achieved cure of their primary lesion. At 24 months follow-up 83.7% (41 of 49, 95% CI, 70.3% to 92.7%) of patients with primary cure remained free of recurrence. Heat treatment was well tolerated; adverse effects were occasional mild local skin reactions. Local thermotherapy is a highly effective, simple, cheap and safe treatment for M. ulcerans disease. It has in particular potential as home-based remedy for BU suspicious lesions at community level where laboratory confirmation is not available. ISRCT 72102977. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  1. Use of a novel smart heating sleeping bag to improve wearers' local thermal comfort in the feet.

    Science.gov (United States)

    Song, W F; Zhang, C J; Lai, D D; Wang, F M; Kuklane, K

    2016-01-13

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers' local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  2. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    Science.gov (United States)

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  3. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Bisht, G.S.; Gupta, S.K.; Prabhu, S.V.

    2013-01-01

    Highlights: ► Measured subcooled boiling pressure drop and local heat transfer coefficient in horizontal tubes. ► Infra-red thermal imaging is used for wall temperature measurement. ► Developed correlations for pressure drop and local heat transfer coefficient. -- Abstract: Horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels of pressurized heavy water reactors (PHWR). Study of horizontal flow under low pressure and low flow (LPLF) conditions is important in understanding the nuclear core behavior during situations like LOCA (loss of coolant accidents). In the present work, local heat transfer coefficient and pressure drop are measured in a horizontal tube under LPLF conditions of subcooled boiling. Geometrical parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm) and length (550 mm, 750 mm and 1000 mm). The operating parameters varied are mass flux (450–935 kg/m 2 s) and inlet subcooling (29 °C, 50 °C and 70 °C). Infra-red thermography is used for the measurement of local wall temperature to estimate the heat transfer coefficient in single phase and two phase flows with water as the working medium at atmospheric pressure. Correlation for single phase diabatic pressure drop ratio (diabatic to adiabatic) as a function of viscosity ratio (wall temperature to fluid temperature) is presented. Correlation for pressure drop under subcooled boiling conditions as a function of Boiling number (Bo) and Jakob number (Ja) is obtained. Correlation for single phase heat transfer coefficient in the thermal developing region is presented as a function of Reynolds number (Re), Prandtl number (Pr) and z/d (ratio of axial length of the test section to diameter). Correlation for two phase heat transfer coefficient under subcooled boiling condition is developed as a function of boiling number (Bo), Jakob number (Ja) and Prandtl number (Pr)

  4. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  5. Heat transfer 1990. Proceedings of the ninth international heat transfer conference

    International Nuclear Information System (INIS)

    Hetsroni, G.

    1990-01-01

    This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 3 are the following chapters: Refrigerant vapor condensation on a horizontal tube bundle. Local heat transfer in a reflux condensation inside a closed two-phase thermosyphon and surface temperature by means of a pulsed photothermal effects

  6. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    Science.gov (United States)

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  7. Laplace transform series expansion method for solving the local fractional heat-transfer equation defined on Cantor sets

    Directory of Open Access Journals (Sweden)

    Sun Huan

    2016-01-01

    Full Text Available In this paper, we use the Laplace transform series expansion method to find the analytical solution for the local fractional heat-transfer equation defined on Cantor sets via local fractional calculus.

  8. Coupling Analysis of Heat Island Effects, Vegetation Coverage and Urban Flood in Wuhan

    Science.gov (United States)

    Liu, Y.; Liu, Q.; Fan, W.; Wang, G.

    2018-04-01

    In this paper, satellite image, remote sensing technique and geographic information system technique are main technical bases. Spectral and other factors comprehensive analysis and visual interpretation are main methods. We use GF-1 and Landsat8 remote sensing satellite image of Wuhan as data source, and from which we extract vegetation distribution, urban heat island relative intensity distribution map and urban flood submergence range. Based on the extracted information, through spatial analysis and regression analysis, we find correlations among heat island effect, vegetation coverage and urban flood. The results show that there is a high degree of overlap between of urban heat island and urban flood. The area of urban heat island has buildings with little vegetation cover, which may be one of the reasons for the local heavy rainstorms. Furthermore, the urban heat island has a negative correlation with vegetation coverage, and the heat island effect can be alleviated by the vegetation to a certain extent. So it is easy to understand that the new industrial zones and commercial areas which under constructions distribute in the city, these land surfaces becoming bare or have low vegetation coverage, can form new heat islands easily.

  9. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  10. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  11. Experimental investigation of heat transfer performance for a novel microchannel heat sink

    International Nuclear Information System (INIS)

    Wang, Y; Ding, G-F

    2008-01-01

    We demonstrated a novel microchannel heat sink with a high local heat transfer efficiency contributed by a complicated microchannel system, which comprises parallel longitudinal microchannels etched in a silicon substrate and transverse microchannels electroplated on a copper heat spreader. The thermal boundary layer develops in transverse microchannels. Meanwhile, the heat transfer area is increased compared with the conventional microchannel heat sink only having parallel longitudinal microchannels. Both benefits yield high local heat transfer efficiency and enhance the overall heat transfer, which is attractive for the cooling of high heat flux electronic devices. Infrared tests show the temperature distribution in the test objects. The effects of flow rate and heat flux levels on heat transfer characteristics are presented. A uniform temperature distribution is obtained through the heating area. The reference temperatures decrease with the increasing flow rate from 0.64 ml min −1 to 6.79 ml min −1 for a constant heat flux of 10.4 W cm −2 . A heat flux of 18.9 W cm −2 is attained at a flow rate of 6.79 ml min −1 for assuring the maximum temperature of the microchannel heat sink less than the maximum working temperature of electronic devices

  12. Local Equation of State for Protons, and Implications for Proton Heating in the Solar Wind.

    Science.gov (United States)

    Zaslavsky, A.; Maksimovic, M.; Kasper, J. C.

    2017-12-01

    The solar wind protons temperature is observed to decrease with distance to the Sun at a slower rate than expected from an adiabatic expansion law: the protons are therefore said to be heated. This observation raises the question of the evaluation of the heating rate, and the question of the heat source.These questions have been investigated by previous authors by gathering proton data on various distances to the Sun, using spacecraft as Helios or Ulysses, and then computing the radial derivative of the proton temperature in order to obtain a heating rate from the internal energy equation. The problem of such an approach is the computation of the radial derivative of the temperature profile, for which uncertainties are very large, given the dispersion of the temperatures measured at a given distance.An alternative approach, that we develop in this paper, consists in looking for an equation of state that links locally the pressure (or temperature) to the mass density. If such a relation exists then one can evaluate the proton heating rate on a local basis, without having any space derivative to compute.Here we use several years of STEREO and WIND proton data to search for polytropic equation of state. We show that such relationships are indeed a good approximation in given solar wind's velocity intervals and deduce the associated protons heating rates as a function of solar wind's speed. The obtained heating rates are shown to scale from around 1 kW/kg in the slow wind to around 10 kW/kg in the fast wind, in remarkable agreement with the rate of energy observed by previous authors to cascade in solar wind's MHD turbulence at 1 AU. These results therefore support the idea of proton turbulent heating in the solar wind.

  13. Sex- and limb-specific differences in the nitric oxide-dependent cutaneous vasodilation in response to local heating

    Science.gov (United States)

    Stanhewicz, Anna E.; Greaney, Jody L.; Larry Kenney, W.

    2014-01-01

    Local heating of the skin is commonly used to assess cutaneous microvasculature function. Controversy exists as to whether there are limb or sex differences in the nitric oxide (NO)-dependent contribution to this vasodilation, as well as the NO synthase (NOS) isoform mediating the responses. We tested the hypotheses that 1) NO-dependent vasodilation would be greater in the calf compared with the forearm; 2) total NO-dependent dilation would not be different between sexes within limb; and 3) women would exhibit greater neuronal NOS (nNOS)-dependent vasodilation in the calf. Two microdialysis fibers were placed in the skin of the ventral forearm and the calf of 19 (10 male and 9 female) young (23 ± 1 yr) adults for the local delivery of Ringer solution (control) or 5 mM Nω-propyl-l-arginine (NPLA; nNOS inhibition). Vasodilation was induced by local heating (42°C) at each site, after which 20 mM NG-nitro-l-arginine methyl ester (l-NAME) was perfused for within-site assessment of NO-dependent vasodilation. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial pressure and normalized to maximum (28 mM sodium nitroprusside, 43°C). Total NO-dependent vasodilation in the calf was lower compared with the forearm in both sexes (Ringer: 42 ± 5 vs. 62 ± 4%; P 0.05). These data suggest that the NO-dependent component of local heating-induced cutaneous vasodilation is lower in the calf compared with the forearm. Contrary to our original hypothesis, there was no contribution of nNOS to NO-dependent vasodilation in either limb during local heating. PMID:25100074

  14. Effects of roll waves on annular flow heat transfer at horizontal condenser tube

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nakamura, Hideo; Anoda, Yoshinari; Sakashita, Akihiro

    2002-01-01

    Heat removal characteristic of a horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. Flow regime observed at the inlet of the condenser tube was annular flow, and the local heat transfer rate was ∼20% larger than the prediction by the Dobson-Chato correlation. Roll waves were found to appear on the liquid film in the annular flow. The measured local condensation heat transfer rate was being closely related to the roll waves frequency. Based on these observations, a model is proposed which predicts the condensation heat transfer coefficient for annular flows around the tube inlet. The proposed model predicts well the influences of pressure, local gas-phase velocity and film thickness. (author)

  15. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    Science.gov (United States)

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  16. Effect of asymmetric plasma potential in the SOL on the particle radial transport and heat flux broadening

    International Nuclear Information System (INIS)

    Hara, Junichiro; Uesugi, Yoshihiko; Miura, Yukitoshi; Kawashima, Hisato.

    1997-01-01

    The effective divertor heat-load relaxation using ExB induced convective cells in the SOL is studied. The ExB convective cells in the SOL are generated by the toroidally asymmetric divertor biasing, which can control the local plasma potential in the SOL. The preliminary experiment has been done in the JFT-2M tokamak with poloidal divertor. The helical SOL current flows along the magnetic field between the locally biased inboard plate and grounded outer plates, thereby modifying plasma potential in the vicinity of the local divertor current flow. The generation of the poloidal electric field reaching up to 1.5kV/m locally in the SOL and the modification of the heat flux profile on the divertor plate is observed. (author)

  17. Effects of a Heat Wave on Nocturnal Stomatal Conductance in Eucalyptus camaldulensis

    Directory of Open Access Journals (Sweden)

    Víctor Resco de Dios

    2018-06-01

    Full Text Available Nocturnal transpiration constitutes a significant yet poorly understood component of the global water cycle. Modeling nocturnal transpiration has been complicated by recent findings showing that stomata respond differently to environmental drivers over day- vs. night-time periods. Here, we propose that nocturnal stomatal conductance depends on antecedent daytime conditions. We tested this hypothesis across six genotypes of Eucalyptus camaldulensis Dehnh. growing under different CO2 concentrations (ambient vs. elevated and exposed to contrasting temperatures (ambient vs. heat wave for four days prior to the night of measurements, when all plants experienced ambient temperature conditions. We observed significant effects after the heat wave that led to 36% reductions in nocturnal stomatal conductance. The response was partly driven by changes in daytime stomatal behavior but additional factors may have come into play. We also observed significant differences in response to the heat wave across genotypes, likely driven by local adaptation to their climate of origin, but CO2 played no effect. Stomatal models may need to incorporate the role of antecedent effects to improve projections particularly after drastic changes in the environment such as heat waves.

  18. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.; Prater, R.; Wong, S.K.

    1984-01-01

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed

  19. Continuous, edge localized ion heating during non-solenoidal plasma startup and sustainment in a low aspect ratio tokamak

    Science.gov (United States)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.

    2017-07-01

    Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV  ⩽  650 eV, which is in contrast to T i,OV  ⩽  70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, while {{T}\\text{i,\\parallel}} experiences little change, in agreement with two-fluid reconnection theory. This ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.

  20. Initiative for local district heating. New chances for municipal utilities. Boundary conditions for the heat market; Initiative Nahwaerme. Neue Chancen fuer Stadtwerke. Rahmenbedingungen fuer den Waermemarkt

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Michael [K.Group GmbH, Muenchen (Germany). Bereich Nachhaltige Energieversorgung und Stadtentwicklung

    2009-06-15

    In the regulated market, municipal utilities are forced to find new fields of activity. The heat market offers good chances. For example, local district heating grids can be established, independent power generation can be encouraged, and new services can be offered which may increase customer loyalty. The district heating initiative of the Baden-Wuerttemberg Minister of the Environment was launched early in 2009 with the intention to offer valuable assistance to the municipal utilities. (orig.)

  1. Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study

    International Nuclear Information System (INIS)

    Pouransari, Zeinab; Vervisch, Luc; Johansson, Arne V.

    2013-01-01

    Highlights: ► A non-premixed turbulent flame close to a solid surface is studied using DNS. ► Heat release effects delay transition and enlarge fluctuation of density and pressure. ► The fine-scale structures damped and surface wrinkling diminished due to heat-release. ► Using semilocal scaling improves the collapse of turbulence statistic in inner region. ► There are regions of the flame where considerable (up to 10%) premixed burning occurs. -- Abstract: The present study concerns the role of heat release effects on characteristics mixing scales of turbulence in reacting wall-jet flows. Direct numerical simulations of exothermic reacting turbulent wall-jets are performed and compared to the isothermal reacting case. An evaluation of the heat-release effects on the structure of turbulence is given by examining the mixture fraction surface characteristics, diagnosing vortices and exploring the dissipation rate of the fuel and passive scalar concentrations, and moreover by illustration of probability density functions of reacting species and scatter plots of the local temperature against the mixture fraction. Primarily, heat release effects delay the transition, enlarge the fluctuation intensities of density and pressure and also enhance the fluctuation level of the species concentrations. However, it has a damping effect on all velocity fluctuation intensities and the Reynolds shear stress. A key result is that the fine-scale structures of turbulence are damped, the surface wrinkling is diminished and the vortices become larger due to heat-release effects. Taking into account the varying density by using semi-local scaling improves the collapse of the turbulence statistics in the inner region, but does not eliminate heat release induced differences in the outer region. Examining the two-dimensional premultiplied spanwise spectra of the streamwise velocity fluctuations indicates a shifting in the positions of the outer peaks, associated with large

  2. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    Science.gov (United States)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  3. Effects of Radiofrequency Induced local Hyperthermia on Normal Canine Liver

    International Nuclear Information System (INIS)

    Suh, Chang Ok; Loh, John J. K.; Seong, Jin Sil

    1991-01-01

    In order to assess the effects of radiofrequency-induced local hyperthermia on the normal liver, histopathologic findings and biochemical changes after localized hyperthermia in canine liver were studied. Hyperthermia was externally administered using the Thermotron RF-8 (Yamamoto Vinyter Co., Japan; Capacitive type heating machine) with parallel opposed electrodes. Thirteen dogs were used and allocated into one control group (N=3) and two treatment groups according to the treatment temperature. Group I (N=5) was heated with 42.5±0.5.deg.C for 30 minutes, and Group(N=5) was heated with 45±0.5.deg.C for 15-30 minutes. Samples of liver tissue were obtained through a needle biopsy immediately after hyperthermia and 7, 14 and 28 days after treatment and examined for SGOT, SGPT and alkaline phosphatase. Although SGOT and SGPT were elevated after hyperthermia in both groups (three of five in each group), there was no liver cell necrosis or hyperthermia related mortality in Group I. A hydropic swelling of hepatocytes was prominent histologic finding. Hyperthermia with 45.deg.C for 30 minutes was fatal and showed extensive liver cell necrosis. In conclusion, liver damage day heat of 42.5±0.5.deg.C for 30 minutes is reversible, and liver damage by heat of 45±0.5.deg.C for 30 minutes can be fatal or irreversible. However, these results cannot be applied directly to human trial. Therefore, in order to apply hyperthermic treatment on human liver tumor safely, close observation of temperature with proper thermometry is mandatory. Hyperthermic treatment should be confined to the tumor area while sparing a normal liver as much as possible

  4. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    Science.gov (United States)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  5. Fuel-element temperature nonstationary distribution caused by local pulsations of the factor of heat transfer to a coolant

    International Nuclear Information System (INIS)

    Pupko, V.Ya.

    1978-01-01

    The equation of nonstationary heat transfer caused by the appearance of a local pulse jump in the factor of heat transfer to a coolant is solved analytically for a cylindrical fuel element. The problem solution is generalized to a case of the periodically pulsating factor of heat transfer according to its value in an arbitrary point of the fuel element surface

  6. Parallel gradient effects on ICRH (Ion Cyclotron Resonance Heating) in Tokamaks

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1987-01-01

    This dissertation examines the effects on Ion Cyclotron Resonance Heating of parallel nonuniformity in the magnetic field which arises from the poloidal field in a tokamak and the universal (major radius)/sup /minus/1/ scaling of the cyclotron frequency. The goal of the analysis is the macroscopic warm plasma current including temperature in the sense of the finite Larmor radius expansion and the quasilocal approximation of the parallel guiding center motion. A 1-D numerical application of the fully nonlocal integral dielectric is performed. Parallel gradient effects are studied for He-3 minority, 2nd harmonic deuterium, and hydrogen minority heating in tokamaks. The results show quite significant alteration of the toroidal wavenumber absorption spectrum, and a wealth of new behavior on the local propagation scale. 95 refs., 37 figs

  7. Lattice Boltzmann analysis of effect of heating location and Rayleigh number on natural convection in partially heated open ended cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gangawane, Krunal Madhukar; Bharti, Ram Prakash; Kumar, Surendra [Indian Institute of Technology Roorkee, Uttarakhand (India)

    2015-08-15

    Natural convection characteristics of a partially heated open ended square cavity have been investigated numerically by using an in-house computational flow solver based on the passive scalar thermal lattice Boltzmann method (PS-TLBM) with D2Q9 (two-dimensional and nine-velocity link) lattice model. The partial part of left wall of the cavity is heated isothermally at either of the three different (bottom, middle and top) locations for the fixed heating length as half of characteristic length (H/2) while the right wall is open to the ambient conditions. The other parts of the cavity are thermally isolated. In particular, the influences of partial heating locations and Rayleigh number (103≤ Ra≤106) in the laminar zone on the local and global natural convection characteristics (such as streamline, vorticity and isotherm contours; centerline variations of velocity and temperature; and local and average Nusselt numbers) have been presented and discussed for the fixed value of the Prandtl number (Pr=0.71). The streamline patterns show qualitatively similar nature for all the three heating cases and Rayleigh numbers, except the change in the recirculation zone which is found to be largest for middle heating case. Isotherm patterns are shifted towards a partially heated wall on increasing Rayleigh number and/or shifting of heating location from bottom to top. Both the local and average Nusselt numbers, as anticipated, shown proportional increase with Rayleigh number. The cavity with middle heating location shown higher heat transfer rate than that for the top and bottom heating cases. Finally, the functional dependence of the average Nusselt number on flow governing parameters is also presented as a closure relationship for the best possible utilization in engineering practices and design.

  8. Local heat transfer around a wall-mounted cube at 45 deg. to flow in a turbulent boundary layer

    International Nuclear Information System (INIS)

    Nakamura, Hajime; Igarashi, Tamotsu; Tsutsui, Takayuki

    2003-01-01

    The flow and local heat transfer around a wall-mounted cube oriented 45 deg. to the flow is investigated experimentally in the range of Reynolds number 4.2 x 10 3 -3.3 x 10 4 based on the cube height. The distribution of local heat transfer on the cube and its base wall are examined, and it is clarified that the heat transfer distribution under the angled condition differs markedly to that for cube oriented perpendicular to the flow, particularly on the top face of the cube. The surface pressure distribution is also investigated, revealing a well-formed pair of leading-edge vortices extending from the front corner of the top face downstream along both front edges for Re>(1-2)x10 4 . Regions of high heat transfer and low pressure are formed along the flow reattachment and separation lines caused by these vortices. In particular, near the front corner of the top face, pressure suction and heat transfer enhancement are pronounced. The average heat transfer on the top face is enhanced at Re>(1-2)x10 4 over that of a cube aligned perpendicular to the flow

  9. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, D. [HTFS, Hyprotech, Didcot (United Kingdom)

    2002-07-01

    Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US national Heat Transfer Conference, 20-22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27-31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert-Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18-23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed. (author)

  10. Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating

    Science.gov (United States)

    Couëdel, L.; Nosenko, V.; Rubin-Zuzic, M.; Zhdanov, S.; Elskens, Y.; Hall, T.; Ivlev, A. V.

    2018-04-01

    The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

  11. The effects of topical heat therapy on chest pain in patients with acute coronary syndrome: a randomised double-blind placebo-controlled clinical trial.

    Science.gov (United States)

    Mohammadpour, Ali; Mohammadian, Batol; Basiri Moghadam, Mehdi; Nematollahi, Mahmoud Reza

    2014-12-01

    To investigate the effects of local heat therapy on chest pain in patients with acute coronary syndrome. Chest pain is a very common complaint in patients with acute coronary syndrome. It is managed both pharmacologically and nonpharmacologically. Pharmacological pain management is associated with different side effects. This was a randomised double-blind placebo-controlled clinical trial conducted in 2013. A convenience sample of 66 patients with acute coronary syndrome was selected from a coronary care unit of a local teaching hospital affiliated to Gonabad University of Medical Sciences, Gonabad, Iran. Patients were randomly assigned to either the experimental or the placebo group. Patients in the experimental and the placebo groups received local heat therapy using a hot pack warmed to 50 and 37 °C, respectively. We assessed chest pain intensity, duration and frequency as well as the need for opioid analgesic therapy both before and after the study. The study instrument consisted of a demographic questionnaire, the McGill Pain Questionnaire, and a data sheet for documenting pain frequency and duration as well as the need for analgesic therapy. The placebo heat therapy did not significantly decrease the intensity, the duration and the frequency of pain episodes. However, pain intensity, duration and frequency in the experimental group decreased significantly after the study. Moreover, the groups differed significantly in terms of the need for opioid analgesic therapy neither before nor after the intervention. Local heat therapy is an effective intervention for preventing and relieving chest pain in patients with acute coronary syndrome. Effective pain management using local heat therapy could help nurses play an important role in providing effective care to patients with acute coronary syndrome and in minimising adverse effects associated with pain medications. © 2014 John Wiley & Sons Ltd.

  12. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  13. Stabilization of a magnetic island by localized heating in a tokamak with stiff temperature profile

    Science.gov (United States)

    Maget, Patrick; Widmer, Fabien; Février, Olivier; Garbet, Xavier; Lütjens, Hinrich

    2018-02-01

    In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gradient and leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island stabilization by a localized heat source, is investigated analytically in this paper. We show that the efficiency of the stabilization is deeply modified compared to the previous estimates due to the strong dependence of the turbulence level on the additional heat source amplitude inside the island.

  14. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  15. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    Science.gov (United States)

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  16. A simple model of the effect of ocean ventilation on ocean heat uptake

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-27

    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Series of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.

  17. Heating GLOBAL vs LOCAL Contamination. Problematic National

    International Nuclear Information System (INIS)

    Turtos Carbonell, Leonor; Fernandez Rondon, Manuel; Meneses Ruiz, Elieza; Rivero Oliva, Jesus; Diaz Rivero, Norberto; Sanchez Gacita, Madeleine; Curbelo Garea, Lariza

    2007-01-01

    The tendency of growth year after year of the half temperature of the planet in correspondence with the increase of the concentrations of gases of greenhouse effect in the atmosphere, is an unequivocal sign that the greenhouse effect and its consequence, the one global heating, is a threat that hangs on the Earth. At national level and international conscience of this situation is won and the actions are increased directed to to mitigate it. The contribution of the energy sector to these emissions is considerable. The work it analyzes the contribution from Cuba to the global climatic change

  18. How Danish communal heat planning empowers municipalities and benefits individual consumers

    International Nuclear Information System (INIS)

    Chittum, Anna; Østergaard, Poul Alberg

    2014-01-01

    Danish municipal heat planning empowers municipalities to implement locally appropriate energy solutions that are the best fit for the locality as a whole and the individual consumers served. Supportive policies and actions at the national and local levels have encouraged heat planning that confers significant autonomy to local governments. By examining how power is distributed and shared by different levels of governments in the planning process, this paper investigates how comprehensive energy planning in Denmark has supported the development of highly cost-effective district heating systems. Lessons from the Danish approach to heat planning are considered for their relevance to the United States, where significant technical district heating potential exists, yet remains well outside the typical energy policy discussions. While the specific Danish political context may not be transferable to other locations, the practical aspects of power sharing, socio-economic cost–benefit analyses, and communal decision-making may inform approaches to local heat planning around the world. - Highlights: • Danish district heating has cost-effectively reduced the country's emissions. • Danish heat planning has been critical to the district heating sector's success. • Danish heat planning confers substantial power to municipalities. • Empowering cities offers significant benefits to cities and consumers. • Danish planning practices can be implemented today in the U.S. and other locations

  19. β-adrenergic blockade does not impair the skin blood flow sensitivity to local heating in burned and non-burned skin under neutral and hot environments in children

    Science.gov (United States)

    Rivas, Eric; McEntire, Serina J.; Herndon, David N.; Mlcak, Ronald P.; Suman, Oscar E.

    2017-01-01

    Objective Tested the hypothesis that propranolol, a drug given to burn patients to reduce hypermetabolism/cardiac stress, may inhibit heat dissipation by changing the sensitivity of skin blood flow (SkBF) to local heating under neutral and hot conditions. Methods In a randomized double-blind study, a placebo was given to 8 burned children while propranolol was given to 13 burned children with similar characteristics (mean ± SD: 11.9±3y, 147±20cm, 45±23kg, 56±12% TBSA). Non-burned children (n=13, 11.4±3y, 152±15cm, 52±13kg) served as healthy controls. A progressive local heating protocol characterized SkBF responses in burned and unburned skin and non-burned control skin under the two environmental conditions (23°C and 34°C) via laser-Doppler flowmetry. Results Resting SkBF was greater in burned and unburned skin compared to the non-burned control (main effect: skin, Pburned; 38±36 unburned vs 9±8 control %SkBFmax). No difference was found for maximal SkBF capacity to local heating between groups. Additionally, dose response curves for the sensitivity of SkBF to local heating were not different among burned or unburned skin, and non-burned control skin (EC50, P>0.05) under either condition. Conclusion Therapeutic propranolol does not negatively affect SkBF under neutral or hot environmental conditions and further compromise temperature regulation in burned children. PMID:28071840

  20. Local Peltier-effect-induced reversible metal–insulator transition in VO2 nanowires

    International Nuclear Information System (INIS)

    Takami, Hidefumi; Kanki, Teruo; Tanaka, Hidekazu

    2016-01-01

    We report anomalous resistance leaps and drops in VO 2 nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal–insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO 2 nanowires because one straight current path through the electronic domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.

  1. Effect of heat treatment on the grooving corrosion resistance of ERW pipes

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Lee, Jae Young; Lim, Soo Hyun; Park, Ji Hwan; Seo, Bo Min; Kim, Seon Hwa

    2002-01-01

    The v-sharp grooving corrosion of ERW(electrical resistance welding) steel pipes limited their wide application in the industry in spite of their high productivity and efficiency. The grooving corrosion is caused mainly by the different microstructures between the matrix and weld that is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. Even though the diminishing of sulfur content is most effective to decrease the susceptibility of grooving corrosion, it requires costly process. In this study, improvement of grooving corrosion resistance was pursuited by post weld heat treatment in the temperature range between 650 .deg. C and 950 .deg. C. Also, the effect of heat input in the welding was investigated. By employing chromnoamperometry and potentiodynamic experiment, the corrosion rate and grooving corrosion index(α) were obtained. It was found that heat treatment could improve the grooving corrosion resistance. Among them, the heat treated at 900 .deg. C and 950 .deg. C had excellent grooving corrosion resistance. The index of heat treated specimen at 900 .deg. C and 950 .deg. C were 1.0, 1.2, respectively, which are almost immune to the grooving corrosion. Potential difference after the heat treatment, between base and weld metal was decreased considerably. While the as-received one measured 61∼71 mV, that of the 900 .deg. C heat treated steel pipe measured only 10mV. The results were explained and discussed

  2. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  3. SOLID FUEL OF HYDROCARBON, WOOD AND AGRICULTURAL WASTE FOR LOCAL HEAT SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2017-01-01

    Full Text Available In Belarus oil refining and oil producing industries are paid close attention. On the background of the active maintaining the level of oil processing and volume of oil extraction in our country and in the countries of the Eurasian Economic Union there is a steady formation of hydrocarbon-containing waste; therefore recycling of the latter is an urgent task to improve the competitiveness of production. The most cost-effective way of using hydrocarbon waste is the conversion of it into power resources. In this case it is possible to obtain significant power-saving and economic effect of the combined use of a hydrocarbon, wood, agricultural and other combustible waste, meanwhile improving the ecological situation at the sites of waste storage and creating a solid fuel with the necessary energy and specified physical-and-chemical properties. A comprehensive solution of a recycling problem makes it possible to use as energy resources a lot of waste that has not found application in other technologies, to produce alternative multi-component fuel which structure meets environmental and energy requirement for local heating systems. In addition, the implementation of such technology will make it possible to reduce power consumption of enterprises of various kinds that consume fuel and will also increase the share of local fuels in the energy balance of a particular region.

  4. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    Science.gov (United States)

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  5. β-Adrenergic blockade does not impair the skin blood flow sensitivity to local heating in burned and nonburned skin under neutral and hot environments in children.

    Science.gov (United States)

    Rivas, Eric; McEntire, Serina J; Herndon, David N; Mlcak, Ronald P; Suman, Oscar E

    2017-05-01

    We tested the hypothesis that propranolol, a drug given to burn patients to reduce hypermetabolism/cardiac stress, may inhibit heat dissipation by changing the sensitivity of skin blood flow (SkBF) to local heating under neutral and hot conditions. In a randomized double-blind study, a placebo was given to eight burned children, while propranolol was given to 13 burned children with similar characteristics (mean±SD: 11.9±3 years, 147±20 cm, 45±23 kg, 56±12% Total body surface area burned). Nonburned children (n=13, 11.4±3 years, 152±15 cm, 52±13 kg) served as healthy controls. A progressive local heating protocol characterized SkBF responses in burned and unburned skin and nonburned control skin under the two environmental conditions (23 and 34°C) via laser Doppler flowmetry. Resting SkBF was greater in burned and unburned skin compared to the nonburned control (main effect: skin, Pburned; 38±36 unburned vs 9±8 control %SkBF max ). No difference was found for maximal SkBF capacity to local heating between groups. Additionally, dose-response curves for the sensitivity of SkBF to local heating were not different among burned or unburned skin, and nonburned control skin (EC 50 , P>.05) under either condition. Therapeutic propranolol does not negatively affect SkBF under neutral or hot environmental conditions and further compromise temperature regulation in burned children. © 2017 John Wiley & Sons Ltd.

  6. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  7. Improving the performance of district heating systems by utilization of local heat boosters

    DEFF Research Database (Denmark)

    Falcone, A.; Dominkovic, D. F.; Pedersen, A. S.

    was to evaluate the possibilities to lower the forward temperature of the heat supply in order to reduce the heat losses of the system. Booster heat pumps are introduced to increase the water temperature close to the final users. A Matlab model was developed to simulate the state of the case study DH network...... was set to minimize the system heat losses. * Corresponding author 0303-1 1 This goal was achieved by lowering the forward temperature to 40°C and relying on the installed heat pumps to boost the water temperature to the admissible value needed for the domestic hot water preparation. Depending......District Heating (DH) plays an important role into the Danish energy green transition towards the future sustainable energy systems. The new, 4 th generation district heating network, the so called Low Temperature District Heating (LTDH), tends to lower the supply temperature of the heat down to 40...

  8. The use of local concentrated heat versus topical acyclovir for a herpes labialis outbreak: results of a pilot study under real life conditions

    Directory of Open Access Journals (Sweden)

    Wohlrab J

    2013-11-01

    Full Text Available Johannes Wohlrab,1 Franziska Voß,2 Christian Müller,2 Lars C Brenn21Department of Dermatology and Venereology, Martin Luther University of Halle-Wittenberg, Halle, 2Department of Medical Science and Operations, Riemser Pharma GmbH, Greifswald, GermanyBackground: Frequent outbreak of herpes labialis can affect quality of life by prodromes like burning, itching, and swelling. Topical applied preparations aim to shorten the duration of symptoms, inhibit the virus replication and/or accelerate the healing process. Local concentrated heat (LCH can reduce burning, itching, or swelling of the skin by influence of mechano-heat sensitive afferent neurons.Patients and methods: To examine the effectiveness of two different topical applications (LCH versus topical acyclovir [TACV] under real life conditions, we conducted a prospective, observational, reference-controlled cohort pilot study with 103 patients. Occurrence of prodromal burning, itching, swelling, and quality of life were assessed.Results: The LCH observation group (OG showed a significantly faster improvement in all symptoms after 1-day of application than the TACV OG. The burden and duration of disease was lower and shorter in the LCH OG than in the TACV OG.Conclusions: The prodromal symptoms in recurrent herpes labialis were attenuated more effectively by LCH than by TACV.Keywords: herpes labialis, local concentrated heat, acyclovir

  9. Study by Hall probe mapping of the trapped flux modification produced by local heating in YBCO HTS bulks for different surface/volume ratios

    International Nuclear Information System (INIS)

    Laurent, Ph; Mathieu, J-P; Mattivi, B; Fagnard, J-F; Meslin, S; Noudem, J G; Ausloos, M; Cloots, R; Vanderbemden, Ph

    2005-01-01

    The aim of this report is to compare the trapped field distribution under a local heating created at the sample edge for different sample morphologies. Hall probe mappings of the magnetic induction trapped in YBCO bulk samples maintained out of thermal equilibrium were performed on YBCO bulk single domains, YBCO single domains with regularly spaced hole arrays, and YBCO superconducting foams. The capability of heat draining was quantified by two criteria: the average induction decay and the size of the thermally affected zone caused by a local heating of the sample. Among the three investigated sample shapes, the drilled single domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. Finally, a simple numerical modelling of the heat flux spreading into a drilled sample is used to suggest some design rules about the hole configuration and their size

  10. Numerical simulation of heat transfer in metal foams

    Science.gov (United States)

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  11. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  12. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    International Nuclear Information System (INIS)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung

    2009-01-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed

  13. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    Science.gov (United States)

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  14. Competition in the household heat product markets in Finland

    International Nuclear Information System (INIS)

    Linden, Mikael; Peltola-Ojala, Paeivi

    2005-01-01

    In the article the market of household heat products is defined independently. The market consists mainly of electricity, district heating, light fuel oil, and wood. Geographically household heat product markets are limited to the area which is covered by the local district heating network. We test indirectly whether this market definition is valid, i.e. do different household heat products act as substitutes to each other. However, the substitution may quite often be limited since the local district heat supplier is the only supplier on the area and also electricity companies have high market shares in the area they are located. The amount of competitors even in these enlarged markets is low. Also the local district heating network gives a technological potential to non-competitive product specific pricing. Thus, a relevant case exists where the district heating company can determine the price of its product without constraints from other firms and heat products. We test empirically whether the local prices of district heating are affected by the local heat product market shares of district heating companies. We use panel data which consists of 75 district heating companies in years 1996 - 2002. The data includes market share, joint production, district heating tariffs, production scale, and raw material input cost variables. The results obtained from different estimations indicate clearly that competitive case is not the prevailing one in the Finnish district heating pricing. The market shares of district heating companies had a positive effect on the district heating prices. The result also does not support the hypothesis that different household heat products belong to same heat product markets. (Author)

  15. Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit

    Directory of Open Access Journals (Sweden)

    Hansol Lim

    2018-03-01

    Full Text Available This study aims to estimate the performance of thermoelectric module (TEM heat pump for simultaneous liquid cooling and heating and propose empirical models for predicting the heat exchange effectiveness. The experiments were conducted to investigate and collect the performance data of TEM heat pump where the working fluid was water. A total of 57 sets of experimental data were statistically analyzed to estimate the effects of each independent variable on the heat exchange effectiveness using analysis of variance (ANOVA. To develop the empirical model, the six design parameters were measured: the number of transfer units (NTU of the heat exchangers (i.e., water blocks, the inlet water temperatures and temperatures of water blocks at the cold and hot sides of the TEM. As a result, two polynomial equations predicting heat exchange effectiveness at the cold and hot sides of the TEM heat pump were derived as a function of the six selected design parameters. Also, the proposed models and theoretical model of conventional condenser and evaporator for heat exchange effectiveness were compared with the additional measurement data to validate the reliability of the proposed models. Consequently, two conclusions have been made: (1 the possibility of using the TEM heat pump for simultaneous cooling and heating was examined with the maximum temperature difference of 30 °C between cold and hot side of TEM, and (2 it is revealed that TEM heat pump has difference with the conventional evaporator and condenser from the comparison results between the proposed models and theoretical model due to the heat conduction and Joule effect in TEM.

  16. Derivation of effectiveness-NTU method for heat exchangers with heat leak; TOPICAL

    International Nuclear Information System (INIS)

    William M. Soyars

    2001-01-01

    A powerful and useful method for heat exchanger analysis is the effectiveness-NTU method. The equations for this technique presented in textbooks, however, are limited to the case where all of the heat transfer occurs between the two fluid streams. In an application of interest to us, cryogenic heat exchangers, we wish to consider a heat leak term. Thus, we have derived equations for the(var e psilon)-NTU method with heat leak involved. The cases to be studied include evaporators, condensers, and counter-flow, with heat leak both in and out

  17. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    International Nuclear Information System (INIS)

    Rebak, R B

    2005-01-01

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale--The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni

  18. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    Science.gov (United States)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  19. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Directory of Open Access Journals (Sweden)

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  20. Monitoring the effects of land use/landcover changes on urban heat island

    Science.gov (United States)

    Gee, Ong K.; Sarker, Md Latifur Rahman

    2013-10-01

    Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to

  1. On uncertainty and local sensitivity analysis for transient conjugate heat transfer problems

    International Nuclear Information System (INIS)

    Rauch, Christian

    2012-01-01

    The need for simulating real-world behavior of automobiles has led to more and more sophisticated models being added of various physical phenomena for being coupled together. This increases the number of parameters to be set and, consequently, the required knowledge of their relative importance for the solution and the theory behind them. Sensitivity and uncertainty analysis provides the knowledge of parameter importance. In this paper a thermal radiation solver is considered that performs conduction calculations and receives heat transfer coefficient and fluid temperate at a thermal node. The equations of local, discrete, and transient sensitivities for the conjugate heat transfer model solved by the finite difference method are being derived for some parameters. In the past, formulations for the finite element method have been published. This paper builds on the steady-state formulation published previously by the author. A numerical analysis on the stability of the solution matrix is being conducted. From those normalized sensitivity coefficients are calculated dimensionless uncertainty factors. On a simplified example the relative importance of the heat transfer modes at various locations is then investigated by those uncertainty factors and their changes over time

  2. Locality effects on bifurcation paradigm of L-H transition in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Boonyarit Chatthong

    2015-12-01

    Full Text Available The locality effects on bifurcation paradigm of L-H transition phenomenon in magnetic confinement plasmas are investigated. One dimensional thermal transport equation with both neoclassical and anomalous transports effects included is considered, where a flow shear due to pressure gradient component is included as a transport suppression mechanism. Three different locally driven models for anomalous transport are considered, including a constant transport model, pressure gradient driven transport model, and critical pressure gradient threshold transport model. Local stability analysis shows that the transition occurs at a threshold flux with hysteresis nature only if ratio of anomalous strength over neoclassical transport exceeds a critical value. The depth of the hysteresis loop depends on both neoclassical and anomalous transports, as well as the suppression strength. The reduction of the heat flux required to maintain H-mode can be as low as a factor of two, which is similar to experimental evidence.

  3. Effect of radiant heat transfer on the performance of high temperature heat exchanger

    International Nuclear Information System (INIS)

    Mori, Yasuo; Hijikata, Kunio; Yamada, Yukio

    1975-01-01

    The development of high temperature gas-cooled reactors is motivated by the consideration of the application of nuclear heat for industrial uses or direct steelmaking and chemical processes. For these purposes, reliable and efficient heat exchangers should be developed. This report analyzes the effect of radiant heat transfer on the performance of high temperature heat exchangers. The heat transfer model is as follows: the channel composed with two parallel adiabatic walls is divided with one parallel plate between the walls. Non-radiative fluid flows in the two separated channels in opposite direction. Heat transfer equations for this system were obtained, and these equations were solved by some approximate method and numerical analysis. The effect of radiation on heat transfer became larger as the radiant heat transfer between two walls was larger. In the heat exchangers of counter flow type, the thermal efficiency is controlled with three parameters, namely radiation-convection parameter, Stanton number and temperature difference. The thermal efficiency was larger with the increase of these parameters. (Iwase, T.)

  4. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1989-01-01

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  5. Multi objective genetic algorithm to optimize the local heat treatment of a hardenable aluminum alloy

    Science.gov (United States)

    Piccininni, A.; Palumbo, G.; Franco, A. Lo; Sorgente, D.; Tricarico, L.; Russello, G.

    2018-05-01

    The continuous research for lightweight components for transport applications to reduce the harmful emissions drives the attention to the light alloys as in the case of Aluminium (Al) alloys, capable to combine low density with high values of the strength-to-weight ratio. Such advantages are partially counterbalanced by the poor formability at room temperature. A viable solution is to adopt a localized heat treatment by laser of the blank before the forming process to obtain a tailored distribution of material properties so that the blank can be formed at room temperature by means of conventional press machines. Such an approach has been extensively investigated for age hardenable alloys, but in the present work the attention is focused on the 5000 series; in particular, the optimization of the deep drawing process of the alloy AA5754 H32 is proposed through a numerical/experimental approach. A preliminary investigation was necessary to correctly tune the laser parameters (focus length, spot dimension) to effectively obtain the annealed state. Optimal process parameters were then obtained coupling a 2D FE model with an optimization platform managed by a multi-objective genetic algorithm. The optimal solution (i.e. able to maximize the LDR) in terms of blankholder force and extent of the annealed region was thus evaluated and validated through experimental trials. A good matching between experimental and numerical results was found. The optimal solution allowed to obtain an LDR of the locally heat treated blank larger than the one of the material either in the wrought condition (H32) either in the annealed condition (H111).

  6. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    Science.gov (United States)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  7. Effectiveness-ntu computation with a mathematical model for cross-flow heat exchangers

    Directory of Open Access Journals (Sweden)

    H. A. Navarro

    2007-12-01

    Full Text Available Due to the wide range of design possibilities, simple manufactured, low maintenance and low cost, cross-flow heat exchangers are extensively used in the petroleum, petrochemical, air conditioning, food storage, and others industries. In this paper a mathematical model for cross-flow heat exchangers with complex flow arrangements for determining epsilon -NTU relations is presented. The model is based on the tube element approach, according to which the heat exchanger outlet temperatures are obtained by discretizing the coil along the tube fluid path. In each cross section of the element, tube-side fluid temperature is assumed to be constant because the heat capacity rate ratio C*=Cmin/Cmax tends toward zero in the element. Thus temperature is controlled by effectiveness of a local element corresponding to an evaporator or a condenser-type element. The model is validated through comparison with theoretical algebraic relations for single-pass cross-flow arrangements with one or more rows. Very small relative errors are obtained showing the accuracy of the present model. epsilon -NTU curves for several complex circuit arrangements are presented. The model developed represents a useful research tool for theoretical and experimental studies on heat exchangers performance.

  8. Local Agenda 21. Settlement pattern and energy for transportation and heating

    International Nuclear Information System (INIS)

    Orderud, Geir Inge

    1998-01-01

    This document deals with Local Agenda 21 (LA21) and the relationship between settlement pattern and the consumption of energy in transportation and heating of houses. Local Agenda 21 originates from the Earth Summit held in Rio in 1992 and draws up the strategies by which the local communities should participate in realizing the recommendations of the summit. So far much of the research around LA21 has examined how well the individual countries that ratified the Rio document have fulfilled the recommendations of Article 28 on local responsibility. From the point of view of research, however, the challenge is rather to investigate the conditions for realizing the broad participation of the people. From the administrative point of view, the important issue is the relationship between the representative channels and the direct participation of local people in the decision processes, as well as the delegation of decision-making authority from national to regional or local level. One recommendation in Agenda 21 is to emit less greenhouse gases. In this connection, a central issue is transportation, which is affected by the settlement pattern. A denser settlement within an urban area is supposed to reduce the transportation and the use of private cars. Thus the local development and area policy is a topic of current interest in the study of how LA21 works locally, especially so because sparsely built-up areas with single family houses are considered as the good way of living. Densely populated urban areas may conflict with the need for arable land and green space. LA 21 and the settlement pattern are both parts of a larger social environment and it is important know these relationships when local measures and actions are analysed. The possibility of a sustainable development must be assessed in relation to the fact that more power is gathered in the global flow of capital. 26 refs

  9. Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures

    DEFF Research Database (Denmark)

    Engelund, Mads; Fürst, Joachim Alexander; Jauho, Antti-Pekka

    2010-01-01

    Control of the edge topology of graphene nanostructures is critical to graphene-based electronics. A means of producing atomically smooth zigzag edges using electronic current has recently been demonstrated in experiments [Jia et al., Science 323, 1701 (2009)]. We develop a microscopic theory...... for current-induced edge reconstruction using density functional theory. Our calculations provide evidence for localized vibrations at edge interfaces involving unpassivated armchair edges. We demonstrate that these vibrations couple to the current, estimate their excitation by Joule heating, and argue...

  10. The foci of DNA double strand break-recognition proteins localize with γH2AX after heat treatment

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Mori, Eiichiro; Ohnishi, Takeo

    2010-01-01

    Recently, there have been many reports concerning proteins which can recognize DNA double strand break (DSBs), and such proteins include histone H2AX phosphorylated at serine 139 (γH2AX), ataxia telangiectasia mutated (ATM) phospho-serine 1981, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phospho-threonine 2609, Nijmegen breakage syndrome 1 (NBS1) phospho-serine 343, checkpoint kinase 2 (CHK2), phospho-threonine 68, and structural maintenance of chromosomes 1 (SMC1) phospho-serine 966. Thus, it should be possible to follow the formation of DSBs and their repair using immunohistochemical methods with multiple antibodies to detect these proteins. When normal human fibroblasts (AG1522 cells) were exposed to 3 Gy of X-rays as a control, clearly discernable foci for these proteins were detected, and these foci localized with γH2AX foci. After heat treatment at 45.5 deg C for 20 min, these proteins are partially localized with γH2AX foci. Here we show that there were slight differences in the localization pattern among these proteins, such as a disappearance from the nucleus (phospho-ATM) and translocation to the cytoplasm (phospho-NBS1) at 30 min after heat treatment, and some foci (phospho-DNA-PKcs and phospho-CHK2) appeared at 8 h after heat treatment. These results are discussed from perspectives of heat-induced denaturation of proteins and formation of DSBs. (author)

  11. Investigation of pitchfork bifurcation phenomena effects on heat transfer of viscoelastic flow inside a symmetric sudden expansion

    Science.gov (United States)

    Shahbani-Zahiri, A.; Hassanzadeh, H.; Shahmardan, M. M.; Norouzi, M.

    2017-11-01

    In this paper, the inertial and non-isothermal flows of the viscoelastic fluid through a planar channel with symmetric sudden expansion are numerically simulated. Effects of pitchfork bifurcation phenomena on the heat transfer rate are examined for the thermally developing and fully developed flow of the viscoelastic fluid inside the expanded part of the planar channel with an expansion ratio of 1:3. The rheological model of exponential Phan Thien-Tanner is used to include both the effects of shear-thinning and elasticity in fluid viscosity. The properties of fluids are temperature-dependent, and the viscous dissipation and heat stored by fluid elasticity are considered in the heat transfer equation. For coupling the governing equations, the PISO algorithm (Pressure Implicit with Splitting of Operator) is applied and the system of equations is linearized using the finite volume method on the collocated grids. The main purpose of this study is to examine the pitchfork bifurcation phenomena and its influences on the temperature distribution, the local and mean Nusselt numbers, and the first and second normal stress differences at different Reynolds, elasticity, and Brinkman numbers. The results show that by increasing the Brinkman number for the heated flow of the viscoelastic fluid inside the expanded part of the channel, the value of the mean Nusselt number is almost linearly decreased. Also, the maximum values of the local Nusselt number for the thermally developing flow and the local Nusselt number of the thermally fully developed flow are decremented by enhancing the Brinkman number.

  12. Entropy Generation Due to Natural Convection in a Partially Heated Cavity by Local RBF-DQ Method

    DEFF Research Database (Denmark)

    Soleimani, S.; Qajarjazi, A.; Bararnia, H.

    2011-01-01

    The Local Radial Basis Function-Differential Quadrature (RBF-DQ) method is applied to twodimensional incompressible Navier-Stokes equations in primitive form. Numerical results of heatlines and entropy generation due to heat transfer and fluid friction have been obtained for laminar natural...

  13. Effect of finite heat input on the power performance of micro heat engines

    International Nuclear Information System (INIS)

    Khu, Kerwin; Jiang, Liudi; Markvart, Tom

    2011-01-01

    Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example. -- Highlights: → Thermodynamic model for micro heat engines. → Effect of different parameters on potential performance. → Tradeoffs for determining optimal size of micro engines.

  14. Dynamical contribution to the heat conductivity in stochastic energy exchanges of locally confined gases

    Science.gov (United States)

    Gaspard, Pierre; Gilbert, Thomas

    2017-04-01

    We present a systematic computation of the heat conductivity of the Markov jump process modeling the energy exchanges in an array of locally confined hard spheres at the conduction threshold. Based on a variational formula (Sasada 2016 (arXiv:1611.08866)), explicit upper bounds on the conductivity are derived, which exhibit a rapid power-law convergence towards an asymptotic value. We thereby conclude that the ratio of the heat conductivity to the energy exchange frequency deviates from its static contribution by a small negative correction, its dynamic contribution, evaluated to be -0.000 373 in dimensionless units. This prediction is corroborated by kinetic Monte Carlo simulations which were substantially improved compared to earlier results.

  15. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    International Nuclear Information System (INIS)

    Alkasasbeh, Hamzeh Taha; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N R , the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed

  16. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    Energy Technology Data Exchange (ETDEWEB)

    Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com [Futures and Trends Research Group, Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Tahar, Razman Mat [Faculty of Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca (Romania)

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.

  17. Diameter effect on critical heat flux

    International Nuclear Information System (INIS)

    Tanase, A.; Cheng, S.C.; Groeneveld, D.C.; Shan, J.Q.

    2009-01-01

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods

  18. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.

    2003-01-01

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  19. On development of analytical closure relationships for local wall friction, heat and mass transfer coefficients for sub-channel codes

    International Nuclear Information System (INIS)

    Kornienko, Y.

    2000-01-01

    The purpose has been to describe an approach suggested for constructing generalized closure relationships for local and subchannel wall friction, heat and mass transfer coefficients, with not only axial and transversal parameters taken into account, but azimuthal substance transfer effects as well. These constitutive relations that are primary for description of one- and two-phase one-dimensional flow models can be derived from the initial 3-D drift flux formulation. The approach is based on the Reynolds flux, boundary layer and generalized coefficient of substance transfer. One more task has been to illustrate the validity of the 'conformity principle' for the limiting cases. The method proposed is based on the similarity theory, boundary layer model, and a phenomenological description of the regularities of the substance transfer (momentum, heat, and mass), as well as on an adequate simulation of the forms of flow structure by a generalized approach to build (an integrated in form and semi-empirical in maintenance structure) analytical relationships for wall friction, heat and mass transfer coefficients. (author)

  20. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  1. Development of the Heated Length Correction Factor

    International Nuclear Information System (INIS)

    Park, Ho-Young; Kim, Kang-Hoon; Nahm, Kee-Yil; Jung, Yil-Sup; Park, Eung-Jun

    2008-01-01

    The Critical Heat Flux (CHF) on a nuclear fuel is defined by the function of flow channel geometry and flow condition. According to the selection of the explanatory variable, there are three hypotheses to explain CHF at uniformly heated vertical rod (inlet condition hypothesis, exit condition hypothesis, local condition hypothesis). For inlet condition hypothesis, CHF is characterized by function of system pressure, rod diameter, rod length, mass flow and inlet subcooling. For exit condition hypothesis, exit quality substitutes for inlet subcooling. Generally the heated length effect on CHF in exit condition hypothesis is smaller than that of other variables. Heated length is usually excluded in local condition hypothesis to describe the CHF with only local fluid conditions. Most of commercial plants currently use the empirical CHF correlation based on local condition hypothesis. Empirical CHF correlation is developed by the method of fitting the selected sensitive local variables to CHF test data using the multiple non-linear regression. Because this kind of method can not explain physical meaning, it is difficult to reflect the proper effect of complex geometry. So the recent CHF correlation development strategy of nuclear fuel vendor is making the basic CHF correlation which consists of basic flow variables (local fluid conditions) at first, and then the geometrical correction factors are compensated additionally. Because the functional forms of correction factors are determined from the independent test data which represent the corresponding geometry separately, it can be applied to other CHF correlation directly only with minor coefficient modification

  2. Local Peltier-effect-induced reversible metal–insulator transition in VO{sub 2} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Hidefumi; Kanki, Teruo, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp; Tanaka, Hidekazu, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-06-15

    We report anomalous resistance leaps and drops in VO{sub 2} nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal–insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO{sub 2} nanowires because one straight current path through the electronic domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.

  3. Effects of heat treatment on the radiosensitivity of Salmonellae

    International Nuclear Information System (INIS)

    Choi, E.H.; Yang, J.S.; Lee, S.R.

    1978-01-01

    When the food poisoning bacteria Salmonella enteritidis and S. typhimurium were treated with radiation (cobalt-60 γ-rays) and heat (10 minutes at 45 0 C or 50 0 C), their sterilizing effect was revealed differently depending on the order of treatments. Post-irradiation heating showed a synergistic effect whereas pre-irradiation heating revealed the opposite effect and the effects differed slightly with heating temperature. (author)

  4. Heat transfer from rotating finned heat exchangers with different orientation angles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Adel Abdalla [Suez Canal University, Marine Engineering and Naval Architecture Department, Faculty of Engineering, Port Said (Egypt)

    2010-03-15

    The local and average heat transfer characteristics of spoke like fins that extend outward from a rotating shaft have been determined experimentally. The experiments encompassed a number of geometrical parameters, including the length and chord of the fins, the number of fins deployed around the circumference of the shaft and the orientation angles of the fin. The experiments cover a wider range of rotational speeds, which varies from 25 up to 2,000 rpm. Three wire heat flux sensors have been used in conjunction with a slip ring apparatus to evaluate the local and average heat transfer coefficients. The output results indicated that, the heat transfer transition on rotating fins occurs at Reynolds number lower than encountered on the stationary rectangular fins in crossflow. In general, with non zero incidence angle, the rotating system acts as a fan and creates axial air motion, which enhance the heat transfer rate. However, the effect of orientation angle reduces with increasing the rotational speed. The Nusselt number data are independent of the number of fins in the circumferential array at high rotational speed and are weakly dependent at low Reynolds numbers. To facilitate the use of the results for design, correlations were developed which represent the fin heat transfer coefficient as a continuous function of the investigated independent parameters. (orig.)

  5. Effective Induction Heating around Strongly Magnetized Stars

    Science.gov (United States)

    Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H.

    2018-05-01

    Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet.

  6. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  7. Transient heating effects in high pressure Diesel injector nozzles

    International Nuclear Information System (INIS)

    Strotos, George; Koukouvinis, Phoevos; Theodorakakos, Andreas; Gavaises, Manolis; Bergeles, George

    2015-01-01

    Highlights: • Simulation of friction-induced heating in high pressure Diesel fuel injectors. • Injection pressures up to 3000 bar. • Simulations with variable fuel properties significantly affect predictions. • Needle motion affects flow and temperature fields. • Possible heterogeneous boiling as injection pressures increase above 2000 bar. - Abstract: The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (C d ), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1 − C d 2 ) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified

  8. Experimental study on convective heat transfer of water flow in a heated tube under natural circulation

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Zhong Yong; Liu Tao

    2006-01-01

    This paper reports on an experimental study on transitional heat transfer of water flow in a heated vertical tube under natural circulation conditions. In the experiments the local and average heat transfer coefficients were obtained. The experimental data were compared with the predictions by a forced flow correlation available in the literature. The comparisons show that the Nusselt number value in the fully developed region is about 30% lower than the predictions by the forced flow correlation due to flow laminarization in the layer induced by co-current bulk natural circulation and free convection. By using the Rayleigh number Ra to represent the influence of free convection on heat transfer, the empirical correlations for the calculation of local and average heat transfer behavior in the tube at natural circulation have been developed. The empirical correlations are in good agreement with the experimental data. Based on the experimental results, the effect of the thermal entry-length behavior on heat transfer design in the tube under natural circulation was evaluated

  9. Effect of two dimensional heat conduction within the wall on heat transfer of a tube partially heated on its circumference

    International Nuclear Information System (INIS)

    Satoh, Isao; Kurosaki, Yasuo

    1987-01-01

    This paper dealt with the numerical calculations of the heat transfer of a tube partially heated on its circumference, considering two-dimensional heat conduction within the wall. The contribution of the unheated region of the tube wall to heat tranfer of the heated region was explained by the term of 'fin efficiency of psuedo-fin', it was clarified that the fin efficiency of the unheated region was little affected by the temperature difference between the inner and outer surfaces of the wall, and could be approximated by the fin efficency of a rectangular fin. Both the circumferential and radial heat conductions within the wall affected the temperature difference between the inner and outer surfaces of the heated region; however, the effect of the temperature difference on the circumferentially average Nusselt number could be obtained by using the analytical solution of radially one-dimensional heat conduction. Using these results, a diagram showing the effect of wall conduction on heat transfer, which is useful for designing the circumferentially nonuniformly heated coolant passages, was obtained. (author)

  10. A heat transfer correlation for transient vapor uptake of powdered adsorbent embedded onto the fins of heat exchangers

    KAUST Repository

    Li, Ang

    2015-10-23

    We present a detailed study on the transient heat transfer phenomena of powdered-adsorbent mixed with an organic binder for adherence to the fins of a heat exchangers. The transient performance of such an adsorbent-heat exchanger configuration has significant application potential in the adsorption desalination plants and chillers but seldom addressed in the literature. An experiment is designed to measure the heat transfer for several adsorption temperatures under a single vapor component environment. Analysis on the experimental data indicates that the adsorbent-adsorbate interactions contribute about 75% of the total thermal resistances throughout the uptake processes. It is found that the initial local adsorption heat transfer coefficients are significantly higher than the average values due primarily to the thermal mass effect of the adsorbent–adsorbate interaction layers. From these experiments, a correlation for the transient local adsorption heat transfer coefficients is presented at the sub-atmospheric pressures and assorted application temperatures.

  11. Heat effects on drug delivery across human skin

    Science.gov (United States)

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  12. Local effects of ECRH on argon transport at ASDEX upgrade

    International Nuclear Information System (INIS)

    Sertoli, Marco

    2010-01-01

    Future deuterium-tritium magnetically confined fusion power plants will most probably rely an high-Z Plasma Facing Components (PFCs) such as tungsten. This choice is determined by the necessity of low erosion of the first wall materials (to guarantee a long lifetime of the wall components) and by the need to avoid the too high tritium wall retention of typical carbon based PFCs. The experience gathered at the ASDEX Upgrade (AUG) tokamak has demonstrated the possibility of reliable and high performance plasma operation with a full tungsten-coated first wall. The observed accumulation of tungsten which can lead to excessive radiation losses is mitigated with the use of Electron Cyclotron Resonance Heating (ECRH). Although this impurity control method is routinely performed at AUG, the underlying physics principles are still not clear. This thesis aims an providing further knowledge an the effects of ECRH an the transport of impurities inside the core plasma. The transport of argon has been therefore investigated in-depth in purely ECR heated L-mode (low-confinement) discharges. Studies an impurity transport in centrally ECR heated nitrogen-seeded H-mode (high-confinement) discharges have also been performed. To this scope, a new crystal X-ray spectrometer of the Johann type has been installed an AUG for argon concentration and ion temperature measurements. New methods for the experimental determination of the total argon density through the integrated use of this diagnostic and of the Soft X-Ray (SXR) diode arrays have been developed. This gives the possibility of evaluating the full profiles of the argon transport coefficients from the linear flux-gradient dependency of local argon density. In comparison to classical χ 2 -minimization methods, the approach proposed here delivers transport coefficients intrinsically independent of the modelling of periodic relaxation mechanisms such as those Lied to sawtooth MHD (Magneto-Hydro-Dynamic) activity. Moreover, the good

  13. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    Science.gov (United States)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  14. Potential regulation on the climatic effect of Tibetan Plateau heating by tropical air-sea coupling in regional models

    Science.gov (United States)

    Wang, Ziqian; Duan, Anmin; Yang, Song

    2018-05-01

    Based on the conventional weather research and forecasting (WRF) model and the air-sea coupled mode WRF-OMLM, we investigate the potential regulation on the climatic effect of Tibetan Plateau (TP) heating by the air-sea coupling over the tropical Indian Ocean and western Pacific. Results indicate that the TP heating significantly enhances the southwesterly monsoon circulation over the northern Indian Ocean and the South Asia subcontinent. The intensified southwesterly wind cools the sea surface mainly through the wind-evaporation-SST (sea surface temperature) feedback. Cold SST anomaly then weakens monsoon convective activity, especially that over the Bay of Bengal, and less water vapor is thus transported into the TP along its southern slope from the tropical oceans. As a result, summer precipitation decreases over the TP, which further weakens the TP local heat source. Finally, the changed TP heating continues to influence the summer monsoon precipitation and atmospheric circulation. To a certain extent, the air-sea coupling over the adjacent oceans may weaken the effect of TP heating on the mean climate in summer. It is also implied that considerations of air-sea interaction are necessary in future simulation studies of the TP heating effect.

  15. Theory of unidirectional spin heat conveyer

    Science.gov (United States)

    Adachi, Hiroto; Maekawa, Sadamichi

    2015-05-01

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  16. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    Science.gov (United States)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  17. Effects of fluid flow on heat transfer in large rotating electrical machines

    International Nuclear Information System (INIS)

    Lancial, Nicolas

    2014-01-01

    EDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydro-generator) notes significant differences compared to results from confined case: both of them are present in an hydro-generator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developed new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature. (author)

  18. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

    International Nuclear Information System (INIS)

    Kitto, J.B. Jr.

    1986-01-01

    An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

  19. Heat Roadmap Europe 2

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible. In these strate......Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible....... In these strategies, the role of district heating has never been fully explored system, nor have the benefits of district heating been quantified at the EU level. This study combines the mapping of local heat demands and local heat supplies across the EU27. Using this local knowledge, new district heating potentials...... are identified and then, the EU27 energy system is modelled to investigate the impact of district heating. The results indicate that a combination of heat savings, district heating in urban areas, and individual heat pumps in rural areas will enable the EU27 to reach its greenhouse gas emission targets by 2050...

  20. Effect of heating rate and grain size on the melting behavior of the alloy Nb-47 mass % Ti in pulse-heating experiments

    International Nuclear Information System (INIS)

    Basak, D.; Boettinger, W.J.; Josell, D.; Coriell, S.R.; McClure, J.L.; Cezairliyan, A.

    1999-01-01

    The effect of heating rate and grain size on the melting behavior of Nb-47 mass% Ti is measured and modeled. The experimental method uses rapid resistive self-heating of wire specimens at rates between ∼10 2 and ∼10 4 K/s and simultaneous measurement of radiance temperature and normal spectral emissivity as functions of time until specimen collapse, typically between 0.4 and 0.9 fraction melted. During heating, a sharp drop in emissivity is observed at a temperature that is independent of heating rate and grain size. This drop is due to surface and grain boundary melting at the alloy solidus temperature even though there is very little deflection (limited melting) of the temperature-time curve from the imposed heating rate. Above the solidus temperature, the emissivity remains nearly constant with increasing temperature and the temperature vs time curve gradually reaches a sloped plateau over which the major fraction of the specimen melts. As the heating rate and/or grain size is increased, the onset temperature of the sloped plateau approaches the alloy liquidus temperature and the slope of the plateau approaches zero. This interpretation of the shapes of the temperature-time-curves is supported by a model that includes diffusion in the solid coupled with a heat balance during the melting process. There is no evidence of loss of local equilibrium at the melt front during melting in these experiments

  1. Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments

    International Nuclear Information System (INIS)

    Spring, J.P.; McLaughlin, D.M.

    2006-01-01

    Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local

  2. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    Science.gov (United States)

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  3. The contribution of skin blood flow in warming the skin after the application of local heat; the duality of the Pennes heat equation.

    Science.gov (United States)

    Petrofsky, Jerrold; Paluso, Dominic; Anderson, Devyn; Swan, Kristin; Yim, Jong Eun; Murugesan, Vengatesh; Chindam, Tirupathi; Goraksh, Neha; Alshammari, Faris; Lee, Haneul; Trivedi, Moxi; Hudlikar, Akshay N; Katrak, Vahishta

    2011-04-01

    As predicted by the Pennes equation, skin blood flow is a major contributor to the removal of heat from an external heat source. This protects the skin from erythema and burns. But, for a person in a thermally neutral room, the skin is normally much cooler than arterial blood. Therefore, if skin blood flow (BF) increases, it should initially warm the skin paradoxically. To examine this phenomenon, 10 young male and female subjects participated in a series of experiments to examine the contribution of skin blood flow in the initial warming the skin after the application of local heat. Heat flow was measured by the use of a thermode above the brachioradialis muscle. The thermode was warmed by constant temperature water at 44°C entering the thermode at a water flow rate of 100 cm(3)/min. Skin temperature was measured by a thermistor and blood flow in the underlying skin was measured by a laser Doppler imager in single point mode. The results of the experiments showed that, when skin temperature is cool (31-32°C), the number of calories being transferred to the skin from the thermode cannot account for the rise in skin temperature alone. A significant portion of the rise in skin temperature is due to the warm arterialized blood traversing the skin from the core areas of the body. However, as skin temperature approaches central core temperature, it becomes less of a heat source and more of a heat sync such that when skin temperature is at or above core temperature, the blood flow to the skin, as predicted by Pennes, becomes a heat sync pulling heat from the thermode. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Experimental assessment for instantaneous temperature and heat flux measurements under Diesel motored engine conditions

    International Nuclear Information System (INIS)

    Torregrosa, A.J.; Bermúdez, V.; Olmeda, P.; Fygueroa, O.

    2012-01-01

    Higlights: ► We measured in-cylinder wall heat fluxes. ► We examine the effects of different engine parameters. ► Increasing air mass flow increase heat fluxes. ► The effect of engine speed can be masked by the effect of volumetric efficiency. ► Differences among the different walls have been found. - Abstract: The main goal of this work is to validate an innovative experimental facility and to establish a methodology to evaluate the influence of some of the engine parameters on local engine heat transfer behaviour under motored steady-state conditions. Instantaneous temperature measurements have been performed in order to estimate heat fluxes on a modified Diesel single cylinder combustion chamber. This study was divided into two main parts. The first one was the design and setting on of an experimental bench to reproduce Diesel conditions and perform local-instantaneous temperature measurements along the walls of the combustion chamber by means of fast response thermocouples. The second one was the development of a procedure for temperature signal treatment and local heat flux calculation based on one-dimensional Fourier analysis. A thermodynamic diagnosis model has been employed to characterise the modified engine with the new designed chamber. As a result of the measured data coherent findings have been obtained in order to understand local behaviour of heat transfer in an internal combustion engine, and the influence of engine parameters on local instantaneous temperature and heat flux, have been analysed.

  5. Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink

    International Nuclear Information System (INIS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-01-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  6. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  7. Combustion heat release effects on asymmetric vortex shedding from bluff bodies

    Science.gov (United States)

    Cross, Caleb Nathaniel

    2011-07-01

    This thesis describes an investigation of oscillatory combustion processes due to vortex shedding from bluff body flame holders. The primary objective of this study was to elucidate the influence of combustion process heat release upon the Benard-von Karman (BVK) instability in reacting bluff body wakes. For this purpose, spatial and temporal heat release distributions in bluff body-stabilized combustion of liquid Jet-A fuel with high-temperature, vitiated air were characterized over a wide range of operating conditions. Two methods of fuel injection were investigated. In the first method, referred to as close-coupled fuel injection, the fuel was supplied via discrete liquid jets injected perpendicular to the cross-flowing air stream just upstream of the bluff body trailing edge, thereby limiting fuel and air mixing prior to burning. The fuel was introduced well upstream (˜0.5 m) of the bluff body in the second fuel injection mode, resulting in a well-evaporated and mixed reactants stream. The resulting BVK heat release dynamics were compared between these fuel injection modes in order to investigate their dependence upon the spatial distributions of fuel-air ratio and heat release in the reacting wake. When close-coupled fuel injection was used, the BVK heat release dynamics increased in amplitude with increasing global equivalence ratio, reaching a maximum just before globally rich blow out of the combustion process occurred. This was due to a decrease in fuel entrainment into the near-wake as the fuel spray penetrated further into the cross-flow, which reduced the local heat release and equivalence ratio (indicated by CH* and C2*/CH* chemiluminescence, respectively). As a result, the density gradient across the near-wake reaction zone decreased, resulting in less damping of vorticity due to dilatation. In addition, unburned reactants were entrained into the recirculation zone due to the injection of discrete liquid fuel jets in close proximity to the wake. This

  8. A Review of Wettability Effect on Boiling Heat Transfer Enhancement

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2012-01-01

    Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer

  9. The urban heat island and its impact on heat waves and human health in Shanghai.

    Science.gov (United States)

    Tan, Jianguo; Zheng, Youfei; Tang, Xu; Guo, Changyi; Li, Liping; Song, Guixiang; Zhen, Xinrong; Yuan, Dong; Kalkstein, Adam J; Li, Furong

    2010-01-01

    With global warming forecast to continue into the foreseeable future, heat waves are very likely to increase in both frequency and intensity. In urban regions, these future heat waves will be exacerbated by the urban heat island effect, and will have the potential to negatively influence the health and welfare of urban residents. In order to investigate the health effects of the urban heat island (UHI) in Shanghai, China, 30 years of meteorological records (1975-2004) were examined for 11 first- and second-order weather stations in and around Shanghai. Additionally, automatic weather observation data recorded in recent years as well as daily all-cause summer mortality counts in 11 urban, suburban, and exurban regions (1998-2004) in Shanghai have been used. The results show that different sites (city center or surroundings) have experienced different degrees of warming as a result of increasing urbanization. In turn, this has resulted in a more extensive urban heat island effect, causing additional hot days and heat waves in urban regions compared to rural locales. An examination of summer mortality rates in and around Shanghai yields heightened heat-related mortality in urban regions, and we conclude that the UHI is directly responsible, acting to worsen the adverse health effects from exposure to extreme thermal conditions.

  10. A multi-functional testing instrument for heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-01-01

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties

  11. Conjugate Heat Transfer Study in Hypersonic Flows

    Science.gov (United States)

    Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar

    2018-04-01

    Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.

  12. Analysis and proposal of implementation effects of heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China in “the 11th Five-Year Plan” period

    International Nuclear Information System (INIS)

    Bao Lingling; Zhao Jing; Zhu Neng

    2012-01-01

    In China, northern heating region contains approximately 6.5 billion m 2 residential building areas accounting for 15% of the total residential living areas of urban and rural. About 70% of the urban residential buildings in north China are high energy consumption buildings. The task of heat metering and energy efficiency retrofit of 0.15 billion m 2 existing residential buildings in northern heating areas of China in “the 11th Five-Year Plan” period was proposed by the Ministry of Housing and Urban–Rural Development (MOHURD) in 2007 and completed in 2010. This paper introduced both central and local governments' efforts on organization, implementation and finance, etc. Then several retrofitting effects involving improving the people's livelihood, mobilizing the enthusiasm of residents for the retrofit and driving the development of relevant industries were presented. Finally, on the basis of analyzing the issues encountered in the progress of the retrofit in the past 4 years, the paper gave some policy proposals on organization system, financing models, reward mechanism, and heating system reformation to help to promote the energy efficiency retrofit in “the 12th Five-Year Plan” period. - Highlights: ► Specific approaches of heat metering and energy efficiency retrofit (HMEER) at central and local level are introduced. ► Main HMEER effects are presented. ► Analyzing several issues encountered in the progress of the HMEER. ► Corresponding proposals are provided.

  13. Light-Induced Local Heating for Thermophoretic Manipulation of DNA in Polymer Micro- and Nanochannels

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Larsen, Niels Bent; Kristensen, Anders

    2010-01-01

    We present a method for making polymer chips with a narrow-band near-infrared absorber layer that enables light-induced local heating of liquids inside fluidic micro- and nanochannels fabricated by thermal imprint in polymethyl methacrylate. We have characterized the resulting liquid temperature...... profiles in microchannels using the temperature dependent fluorescence of the complex [Ru(bpy)3]2+. We demonstrate thermophoretic manipulation of individual YOYO-1 stained T4 DNA molecules inside micro- and nanochannels....

  14. A simple model for local scale sensible and latent heat advection contributions to snowmelt

    OpenAIRE

    Harder, Phillip; Pomeroy, John W.; Helgason, Warren D.

    2018-01-01

    Local-scale advection of energy from warm snow-free surfaces to cold snow-covered surfaces is an important component of the energy balance during snowcover depletion. Unfortunately, this process is difficult to quantify in one-dimensional snowmelt models. This manuscript proposes a simple sensible and latent heat advection model for snowmelt situations that can be readily coupled to one-dimensional energy balance snowmelt models. An existing advection parameterization was coupled to a concept...

  15. Urban Heat Island Effect Actions - Neighborhood Data

    Data.gov (United States)

    Louisville Metro Government — The urban heat island effect — defined as the difference in temperature between the core of Louisville and its suburbs — contributes to heat-related illnesses and...

  16. Long-term effects of multiple borehole heat exchangers; Langzeiteffekt von Mehrfach-Erdwaermesonden

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D. [Scuola universitaria professionale della Svizzera italiana (SUPSI), Dipartimento delle costruzioni e del territorio (DCT), Laboratorio di energia, ecologia ed economia LEEE, Canobbio (Switzerland); Kohl, T.; Meguel, T. [Geoenergie c/o GeoWatt, Zuerich (Switzerland); Brenni, R. [Eidgenoessische Technische Hochschule (ETH), Institut fuer Geophysik, Zuerich (Switzerland)

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the mutual influence of borehole heat exchangers (BHE) used for ground-coupled heat pump systems over longer periods of time (tens to hundreds of years) using simulation programmes. A comparison is made between the two programmes SBM (used in 'g-function' mode) and FRACTure (using finite elements) that were used in the first phase of the project to simulate the mutual effects between three BHEs. The authors consider that the programmes, which use completely different algorithms, both provide reliable results when used to simulate BHE systems. The results of the second phase of the project, where the 'g-function' concept was used to calculate the long-term influence of two and three-borehole configurations, are presented in graphical form. Calculations made for varying thermal conductivity, borehole depth and spacing, time periods and heat extraction rates are presented, whereby local groundwater flows are not taken into account.

  17. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    International Nuclear Information System (INIS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-01-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily. - Highlights: • Spin-valve effect of heat generation happens when Coulomb repulsion in quantum dot is less than phonon frequency. • When Coulomb repulsion is larger than phonon frequency, inverse spin-valve effect appears and is enlarged with bias increasing. • The variation of spin polarization degree can change heat generation effectively. • The heat magnetoresistance can be modulated from heat-resistance to heat-gain by gate voltage easily.

  18. Dynamical effects of vegetation on the 2003 summer heat waves

    Science.gov (United States)

    Stéfanon, M.

    2012-04-01

    Dynamical effects of vegetation on the 2003 summer heat waves Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Nathalie de Noblet(2) (1) IPSL/LMD, France; (2) IPSL/LSCE, France The land surface model (LSM) in regional climate models (RCMs) plays a key role in energy and water exchanges between land and atmosphere. The vegetation can affect these exchanges through physical, biophysical and bio-geophysical mechanisms. It participates to evapo-transpiration process which determines the partitioning of net radiation between sensible and latent heat flux, through water evaporation from soil throughout the entire root system. For seasonal timescale leaf cover change induced leaf-area index (LAI) and albedo changes, impacting the Earth's radiative balance. In addition, atmospheric chemistry and carbon concentration has a direct effect on plant stomatal structure, the main exchange interface with the atmosphere. Therefore the surface energy balance is intimately linked to the carbon cycle and vegetation conditions and an accurate representation of the Earth's surface is required to improve the performance of RCMs. It is even more crucial for extreme events as heat waves and droughts which display highly nonlinear behaviour. If triggering of heat waves is determined by the large scale, local coupled processes over land can amplify or inhibit heat trough several feedback mechanism. One set of two simulation has been conducted with WRF, using different LSMs. They aim to study drought and vegetation effect on the dynamical and hydrological processes controlling the occurrence and life cycle of heat waves In the MORCE plateform, the dynamical global vegetation model (DGVM) ORCHIDEE is implemented in the atmospheric module WRF. ORCHIDEE is based on three different modules. The first module, called SECHIBA, describes the fast processes such as exchanges of energy and water between the atmosphere and the biosphere, and the soil water budget. The phenology and carbon

  19. A scaling law for the local CHF on the external bottom side of a fully submerged reactor vessel

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-01-01

    A scaling law for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water has been developed from the results of an advanced hydrodynamic CHF model for pool boiling on a downward facing curved heating surface. The scaling law accounts for the effects of the size of the vessel, the level of liquid subcooling, the intrinsic properties of the fluid, and the spatial variation of the local critical heat flux along the heating surface. It is found that for vessels with diameters considerably larger than the characteristic size of the vapor masses, the size effect on the local critical heat flux is limited almost entirely to the effect of subcooling associated with the local liquid head. When the subcooling effect is accounted for separately, the local CHF limit is nearly independent of the vessel size. Based upon the scaling law developed in this work, it is possible to merge, within the experimental uncertainties, all the available local CHF data obtained for various vessel sizes under both saturated and subcooled boiling conditions into a single curve. Applications of the scaling law to commercial-size vessels have been made for various system pressures and water levels above the heated vessel. Over the range of conditions explored in this study, the local CHF limit is found to increase by a factor of two or more from the bottom center to the upper edge of the vessel. Meanwhile, the critical heat flux at a given angular position of the heated vessel is also found to increase appreciably with the system pressure and the water level

  20. Vasomotion in human skin before and after local heating recorded with laser Doppler flowmetry. A method for induction of vasomotion

    DEFF Research Database (Denmark)

    Kastrup, J; Bülow, J; Lassen, N A

    1989-01-01

    neurogenic origin. A method for induction of regular amplified alpha-oscillations was discovered and evaluated. When heating the skin locally to 42 degrees C the blood cell flux increased and the pre-heating alpha- and beta-oscillations disappeared. During the post-heating period, amplified regular rhythmic......Rhythmical variations in blood cell flux in human skin have been studied using laser Doppler flowmetry. The fluctuations in blood cell flux could be divided into two different categories named alpha- and beta-oscillations with a median frequency of 6.8 min-1 and 1.5 min-1, respectively...... alpha-oscillations appeared. At the end of the post-heating period beta-oscillations re-appeared....

  1. Nonlinear throughflow and internal heating effects on vibrating porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-06-01

    Full Text Available The effect of vertical throughflow and internal heating effects on fluid saturated porous medium under gravity modulation is investigated. The amplitude of modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weakly nonlinear stability analysis is proposed to study stationary convection. The Nusselt number is obtained numerically to present the results of heat transfer while using Ginzburg–Landau equation. The vertical throughflow has dual effect either to destabilize or to stabilize the system for downward or upward directions. The effect of internal heat source (Ri>0 enhances or sink (Ri<0 diminishes heat transfer in the system. The amplitude and frequency of modulation have the effects of increasing or diminishing heat transport. For linear model Venezian approach suggested that throughflow and internal heating have both destabilizing and stabilizing effects for suitable ranges of Ω. Further, the study establishes that heat transport can be controlled effectively by a mechanism that is external to the system throughflow and gravity modulation.

  2. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  3. Effect of design and operation parameters on heat transfer coefficient in condensers

    International Nuclear Information System (INIS)

    Eskin, N.; Arslan, G.; Balci, T.

    2009-01-01

    Accurate and optimum usage of energy sources is gaining importance all over the world due to the increase of energy need and limited energy sources. Increasing condenser efficiency, reduce both the dimensions and the material usage and also the investment cost of the devices. This can be maintained by increasing the heat transfer coefficient in condensers. Generally, tubes having plain inner surfaces are mounted horizontally in serpentine type condenser applications and due to the performance loss results from the congestion in serpentine connections, vertical tube mounting is not preferred. Due to the complexity of the two-phase flow, a single set of correlation for heat transfer cannot be used. Average and local heat transfer coefficient for condensers are determined. Moreover, for each experiments flow pattern is determined and the validity of the correlations are compared according to that flow pattern. In Table 2, some of the experiments for R134a are listed. Local heat transfer coefficient is also important for condenser design. As a result, to design effective condensers the accuracy of the correlations is very important. When all the experiments are taken into account, it is seen that deviation of the correlations differs according to the refrigerant type, tube dimensions, mass flux, saturation temperature and flow pattern. For high mass flux (>400 kg/m 2 s) Traviss (1973) correlation failed. For small diameters (<3.14 mm) Tandon (1985) correlation estimate the heat transfer coefficient with a high deviation. Most accurate results are obtained for Akers et al. (1959), M.M. Shah (1978), Cavallini and Zecchlin (1974), J.R. Thome - J. El Hajal - A. Cavallini (2003) correlations. For high mass flux and annular flow, M.M. Shah (1978) correlation estimates the heat transfer coefficient with high precision. However, as the tube diameter decrease, this deviation increases. For small tube diameter such as 0.691 mm Cavallini and Zecchlin (1974) gives the most

  4. Effective thermal conductivity of a heat generating rod bundle dissipating heat by natural convection and radiation

    International Nuclear Information System (INIS)

    Senve, Vinay; Narasimham, G.S.V.L.

    2011-01-01

    Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.

  5. Local study of flow and low Reynolds thermal-hydraulic performance of a corrugated plane duct: application to plate heat exchangers

    International Nuclear Information System (INIS)

    Hugonnot, Patrick

    1989-01-01

    This research thesis addresses the local study of a flow in a corrugated plane duct by using experimental and numerical approaches on the one hand, and the experimental determination of thermal-hydraulic performance at low Reynolds number of different plate heat exchanger ducts on the other hand. Experimental visualisations of the local flow allowed regime transitions in 2D and 3D geometries to be determined. As far as the 2D duct is concerned, a wave profile optimisation is proposed, and the numerical study performed by using the TRIO software is in good agreement with experimental results. The optimised duct configuration can thus be envisaged for an industrial development. The determination of the friction coefficient and of the global heat exchange coefficient of different corrugated ducts allows plate exchangers to be sized on a wide range of Reynolds numbers. The respective influences of natural convection and of fluid thermal dependency on heat exchange have been studied [fr

  6. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  7. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    Science.gov (United States)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  8. Newtonian heating effects in three-dimensional flow of viscoelastic fluid

    International Nuclear Information System (INIS)

    Qayyum, A.; Hayat, T.; Alhuthali, M. S.; Malaikah, H. M.

    2014-01-01

    A mathematical model is constructed to investigate the three-dimensional flow of a non-Newtonian fluid. An incompressible viscoelastic fluid is used in mathematical formulation. The conjugate convective process (in which heat the transfer rate from the bounding surface with a finite capacity is proportional to the local surface temperature) in three-dimensional flow of a differential type of non-Newtonian fluid is analyzed for the first time. Series solutions for the nonlinear differential system are computed. Plots are presented for the description of emerging parameters entering into the problem. It is observed that the conjugate heating phenomenon causes an appreciable increase in the temperature at the stretching wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Geothermal modelling and geoneutrino flux prediction at JUNO with local heat production data

    Science.gov (United States)

    Xi, Y.; Wipperfurth, S. A.; McDonough, W. F.; Sramek, O.; Roskovec, B.; He, J.

    2017-12-01

    Geoneutrinos are mostly electron antineutrinos created from natural radioactive decays in the Earth's interior. Measurement of a geoneutrino flux at near surface detector can lead to a better understanding of the composition of the Earth, inform about chemical layering in the mantle, define the power driving mantle convection and plate tectonics, and reveal the energy supplying the geodynamo. JUNO (Jiangmen Underground Neutrino Observatory) is a 20 kton liquid scintillator detector currently under construction with an expected start date in 2020. Due to its enormous mass, JUNO will detect about 400 geoneutrinos per year, making it an ideal tool to study the Earth. JUNO is located on the passive continental margin of South China, where there is an extensive continental shelf. The continental crust surrounding the JUNO detector is between 26 and 32 km thick and represents the transition between the southern Eurasian continental plate and oceanic plate of the South China Sea.We seek to predict the geoneutrino flux at JUNO prior to data taking and announcement of the particle physics measurement. To do so requires a detail survey of the local lithosphere, as it contributes about 50% of the signal. Previous estimates of the geoneutrino signal at JUNO utilized global crustal models, with no local constraints. Regionally, the area is characterized by extensive lateral and vertical variations in lithology and dominated by Mesozoic granite intrusions, with an average heat production of 6.29 μW/m3. Consequently, at 3 times greater heat production than the globally average upper crust, these granites will generate a higher than average geoneutrino flux at JUNO. To better define the U and Th concentrations in the upper crust, we collected some 300 samples within 50 km of JUNO. By combining chemical data obtained from these samples with data for crustal structures defined by local geophysical studies, we will construct a detailed 3D geothermal model of the region. Our

  10. Flower garden trees' ability to absorb solar radiation heat for local heat reduction

    Science.gov (United States)

    Maulana, Muhammad Ilham; Syuhada, Ahmad; Hamdani

    2017-06-01

    Banda Aceh as an urban area tends to have a high air temperature than its rural surroundings. A simple way to cool Banda Aceh city is by planting urban vegetation such as home gardens or parks. In addition to aesthetics, urban vegetation plays an important role as a reducer of air pollution, oxygen producer, and reducer of the heat of the environment. To create an ideal combination of plants, knowledge about the ability of plants to absorb solar radiation heat is necessary. In this study, some types of flowers commonly grown by communities around the house, such as Michelia Champaka, Saraca Asoka, Oliander, Adenium, Codiaeum Variegatum, Jas Minum Sambac, Pisonia Alba, Variegata, Apium Graveolens, Elephantopus Scaber, Randia, Cordylin.Sp, Hibiscus Rosasinensis, Agave, Lili, Amarilis, and Sesamum Indicum, were examined. The expected benefit of this research is to provide information for people, especially in Banda Aceh, on the ability of each plant relationship in absorbing heat for thermal comfort in residential environments. The flower plant which absorbs most of the sun's heat energy is Hibiscus Rosasinensis (kembang sepatu) 6.2 Joule, Elephantopus Scaber.L (tapak leman) 4.l Joule. On the other hand, the lowest heat absorption is Oliander (sakura) 0.9 Joule.

  11. Kinetic-freezing and unfreezing of local-region fluctuations in a glass structure observed by heat capacity hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Aji, D. P. B.; Johari, G. P., E-mail: joharig@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-06-07

    Fluctuations confined to local regions in the structure of a glass are observed as the Johari-Goldstein (JG) relaxation. Properties of these regions and their atomic configuration are currently studied by relaxation techniques, by electron microscopy, and by high-energy X-ray scattering and extended x-ray absorption fine structure methods. One expects that these fluctuations (i) would kinetically freeze on cooling a glass, and the temperature coefficient of its enthalpy, dH/dT, would consequently show a gradual decrease with decrease in T, (ii) would kinetically unfreeze on heating the glass toward the glass-liquid transition temperature, T{sub g}, and dH/dT would gradually increase, and (iii) there would be a thermal hysteresis indicating the time and temperature dependence of the enthalpy. Since no such features have been found, thermodynamic consequences of these fluctuations are debated. After searching for these features in glasses of different types, we found it in one of the most stable metal alloy glasses of composition Pd{sub 40}Ni{sub 10}Cu{sub 30}P{sub 20}. On cooling from its T{sub g}, dH/dT decreased along a broad sigmoid-shape path as local-region fluctuations kinetically froze. On heating thereafter, dH/dT increased along a similar path as these fluctuations unfroze, and there is hysteresis in the cooling and heating paths, similar to that observed in the T{sub g}-endotherm range. After eliminating other interpretations, we conclude that local-region fluctuations seen as the JG relaxation in the non-equilibrium state of a glass contribute to its entropy, and we suggest conditions under which such fluctuations may be observed.

  12. Kinetic-freezing and unfreezing of local-region fluctuations in a glass structure observed by heat capacity hysteresis

    International Nuclear Information System (INIS)

    Aji, D. P. B.; Johari, G. P.

    2015-01-01

    Fluctuations confined to local regions in the structure of a glass are observed as the Johari-Goldstein (JG) relaxation. Properties of these regions and their atomic configuration are currently studied by relaxation techniques, by electron microscopy, and by high-energy X-ray scattering and extended x-ray absorption fine structure methods. One expects that these fluctuations (i) would kinetically freeze on cooling a glass, and the temperature coefficient of its enthalpy, dH/dT, would consequently show a gradual decrease with decrease in T, (ii) would kinetically unfreeze on heating the glass toward the glass-liquid transition temperature, T g , and dH/dT would gradually increase, and (iii) there would be a thermal hysteresis indicating the time and temperature dependence of the enthalpy. Since no such features have been found, thermodynamic consequences of these fluctuations are debated. After searching for these features in glasses of different types, we found it in one of the most stable metal alloy glasses of composition Pd 40 Ni 10 Cu 30 P 20 . On cooling from its T g , dH/dT decreased along a broad sigmoid-shape path as local-region fluctuations kinetically froze. On heating thereafter, dH/dT increased along a similar path as these fluctuations unfroze, and there is hysteresis in the cooling and heating paths, similar to that observed in the T g -endotherm range. After eliminating other interpretations, we conclude that local-region fluctuations seen as the JG relaxation in the non-equilibrium state of a glass contribute to its entropy, and we suggest conditions under which such fluctuations may be observed

  13. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)

    2017-06-01

    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  14. Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach

    Science.gov (United States)

    Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.

    2017-07-01

    Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather

  15. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-01-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods

  16. The effect of nozzle collar on signle phase and boiling heat transfer by planar impinging jet

    International Nuclear Information System (INIS)

    Shin, Chang Hwan; Yim, Seong Hwan; Cho, Hyung Hee; Wu, Seong Je

    2005-01-01

    The water jet impingement cooling is one of the techniques to remove the heat from high heat flux equipment. Local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer are investigated in the free surface jet and submerged jet. Boiling is initiated from the farthest downstream and increase of the wall temperature is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance for H/W≤1 causes significant increases and distribution changes of heat transfer. Developed boiling reduces the differences of heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to nozzle collar, H c are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increases as decreased spacing of collar to heated surface. Heat transfer is enhanced for region from the stagnation to x/W∼8 in the free surface jet and to x/W∼5 in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet comparing with higher velocity condition. It is because the increased velocity by collar is de-accelerated downstream

  17. Temporal variation in the effect of heat and the role of the Italian heat prevention plan.

    Science.gov (United States)

    de'Donato, F; Scortichini, M; De Sario, M; de Martino, A; Michelozzi, P

    2018-05-08

    The aim of the article is to evaluate the temporal change in the effect of heat on mortality in Italy in the last 12 years after the introduction of the national heat plan. Time series analysis. Distributed lag non-linear models were used to estimate the association between maximum apparent temperature and mortality in 23 Italian cities included in the national heat plan in four study periods (before the introduction of the heat plan and three periods after the plan was in place between 2005 and 2016). The effect (relative risks) and impact (attributable fraction [AF] and number of heat-related deaths) were estimated for mild summer temperatures (20th and 75th percentile maximum apparent temperature [Tappmax]) and extreme summer temperatures (75th and 99th percentile Tappmax) in each study period. A survey of the heat preventive measures adopted over time in the cities included in the Italian heat plan was carried out to better describe adaptation measures and response. Although heat still has an impact on mortality in Italian cities, a reduction in heat-related mortality is observed progressively over time. In terms of the impact, the heat AF related to extreme temperatures declined from 6.3% in the period 1999-2002 to 4.1% in 2013-2016. Considering the entire temperature range (20th vs 99th percentile), the total number of heat-related deaths spared over the entire study period was 1900. Considering future climate change and the health burden associated to heat waves, it is important to promote adaptation measures by showing the potential effectiveness of heat prevention plans. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  18. Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland

    Directory of Open Access Journals (Sweden)

    Arja Asikainen

    2017-06-01

    Full Text Available Implementation of greenhouse gas (GHG abatement strategies often ends up as the responsibility of municipal action rather than national policies. Impacts of local GHG reduction measures were investigated in the EU FP7 funded project Urban Reduction of Greenhouse Gas Emissions in China and Europe (URGENCHE. Kuopio in Finland was one of the case study cities. The assessed reduction measures were (1 increased use of biomass in local heat and power cogeneration plant, (2 energy efficiency improvements of residences, (3 increased biofuel use in traffic, and (4 increased small scale combustion of wood for residential heating. Impact assessment compared the 2010 baseline with a 2020 BAU (business as usual scenario and a 2020 CO2 interventions scenario. Changes in emissions were assessed for CO2, particulate matter (PM2.5 and PM10, NOx, and SO2, and respective impacts were assessed for PM2.5 ambient concentrations and health effects. The assessed measures would reduce the local CO2 emissions in the Kuopio urban area by over 50% and local emissions of PM2.5 would clearly decrease. However, the annual average ambient PM2.5 concentration would decrease by just 4%. Thus, only marginal population level health benefits would be achieved with these assumed local CO2 abatement actions.

  19. Interactions between urban heat islands and heat waves

    Science.gov (United States)

    Zhao, Lei; Oppenheimer, Michael; Zhu, Qing; Baldwin, Jane W.; Ebi, Kristie L.; Bou-Zeid, Elie; Guan, Kaiyu; Liu, Xu

    2018-03-01

    Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored

  20. Effects of heat stress on baroreflex function in humans

    Science.gov (United States)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  1. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    Science.gov (United States)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of

  2. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  3. The effect of heating conditions on the properties of nano- and microstructured Ni-Zn ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sutka, A; Mezinskis, G [Institute of Silicate Materials, Riga Technical University, Azenes 14/24, LV-1048 (Latvia); Gross, K A [Department of Materials Engineering, Monash University, VIC 3168 (Australia); Bebris, G [State Forensic Science Bureau, Hospitalu 55, LV-1013 (Latvia); Knite, M, E-mail: andris.sutka@rtu.l [Institute of Technical Physics, Riga Technical University, Azenes 14/24, LV-1048 (Latvia)

    2011-02-15

    The structural, microstructural and morphological, as well as electric and dielectric, properties of nickel-zinc ferrite (Ni{sub 0.3}Zn{sub 0.7}Fe{sub 2}O{sub 4}) derived from sol-gel auto-combustion have been studied after sintering from 900 to 1300 deg. C. The effect of heating rate has not been previously investigated and is reported here. X-ray diffraction showed a pure cubic spinel after calcination. Atomic force microscopy revealed nanosized particles after calcination, but scanning electron microscopy showed nanosized grains after sintering at 900 deg. C. The heating rate has a marked effect on oxidation of Fe{sup 3+} to Fe{sup 2+}, showing an additional approach to control charge carrier concentration in Ni-Zn ferrites (powder and monoliths). The heating rate also influences the average particle size and distribution. Grain size and resistivity of sintered pellets do not show significant change with heating rate, proving that resistivity is mainly dictated by the number of grain boundaries. The dielectric loss tangent curves at room temperature exhibit dielectric relaxation peaks attributed to the similarity in frequency of charge hopping between the localized charge states and external fields. The relaxation peak shifts to higher frequencies for ferrites with nanosized grains.

  4. Microscale Heat Conduction Models and Doppler Feedback

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-01

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  5. A model for particle and heat losses by type I edge localized modes

    International Nuclear Information System (INIS)

    Tokar, M Z; Gupta, A; Kalupin, D; Singh, R

    2007-01-01

    A model to estimate the particle and energy losses caused in tokamaks by type I edge localized modes (ELMs) is proposed. This model is based on the assumption that the increase in transport by ELM is due to flows along magnetic field lines perturbed by ballooning-peeling MHD modes. The model reproduces well the experimentally found variation of losses with the plasma collisionality ν*, namely, the weak dependence of the particle loss and significant reduction of the energy loss with increasing ν*. It is argued that the electron parallel heat conductivity is dominating in the energy loss at not very large ν*

  6. Added effect of heat wave on mortality in Seoul, Korea.

    Science.gov (United States)

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  7. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  8. Comprehensive effects of baffle configuration on the performance of heat exchanger with helical baffles

    International Nuclear Information System (INIS)

    Duan, Zhenya; Shen, Feng; Cao, Xing; Zhang, Junmei

    2016-01-01

    Graphical abstract: - Highlights: • Flow and thermal performances of six helical baffle heat exchangers are analyzed. • The distribution of h s in whole shell-side is demonstrated. • The flow characteristics of two connection method of baffles are compared. • The optimal helix angle is analyzed by synergy principle. - Abstract: In this paper, non-continuous helical baffles heat exchangers with different helix angles and different connection methods, i.e. including continuous connection method and middle-overlapped method, between two adjacent sections have been simulated by using commercial software of GAMBIT and FLUENT. To explore the comprehensive effects of helix angles and connection way of baffles on the performance of heat exchangers, three kinds of helix angles (20°, 30°, 40°) were chosen. Six heat exchanger models were established to cover the chosen helix angles and two connection methods. To minimize the influence of unrelated factors on analysis results, same geometrical parameters and thermo-physical conditions were used. Therefore the six models with the same geometrical model were simulated with different volume flow rates. Analysis results showed that: the larger helix angle contributes to lower heat transfer rate and lower pressure drop; among all simulated models, heat exchanger with 40° helix angle have the highest heat transfer coefficient per unit pressure drop. Continuous connection method contributes to small local resistance and pressure drop and it has better performance than middle-overlapped method when consuming same pumping power.

  9. Comprehensive effects of baffle configuration on the performance of heat exchanger with helical baffles

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhenya, E-mail: zyduan88@163.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China); Shen, Feng; Cao, Xing [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China); Zhang, Junmei [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2016-04-15

    Graphical abstract: - Highlights: • Flow and thermal performances of six helical baffle heat exchangers are analyzed. • The distribution of h{sub s} in whole shell-side is demonstrated. • The flow characteristics of two connection method of baffles are compared. • The optimal helix angle is analyzed by synergy principle. - Abstract: In this paper, non-continuous helical baffles heat exchangers with different helix angles and different connection methods, i.e. including continuous connection method and middle-overlapped method, between two adjacent sections have been simulated by using commercial software of GAMBIT and FLUENT. To explore the comprehensive effects of helix angles and connection way of baffles on the performance of heat exchangers, three kinds of helix angles (20°, 30°, 40°) were chosen. Six heat exchanger models were established to cover the chosen helix angles and two connection methods. To minimize the influence of unrelated factors on analysis results, same geometrical parameters and thermo-physical conditions were used. Therefore the six models with the same geometrical model were simulated with different volume flow rates. Analysis results showed that: the larger helix angle contributes to lower heat transfer rate and lower pressure drop; among all simulated models, heat exchanger with 40° helix angle have the highest heat transfer coefficient per unit pressure drop. Continuous connection method contributes to small local resistance and pressure drop and it has better performance than middle-overlapped method when consuming same pumping power.

  10. Analytical solution to the problem of heat transfer in an MHD flow inside a channel with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    Zniber, K.; Oubarra, A.; Lahjomri, J.

    2005-01-01

    An MHD laminar flow through a two dimensional channel subjected to a uniform magnetic field and heated at the walls of the conduit over the whole length with a sinusoidal heat flux of vanishing mean value or not, is studied analytically. General expressions of the temperature distribution and of the local and mean Nusselt numbers are obtained by using the technique of linear operators in the case of negligible Joule and viscous dissipation and by taking into account the axial conduction effect. The principal results show that an increase of the local Nusselt number with Hartmann number is observed, and, far from the inlet section, the average heat transfer between the fluid and the walls shows a significant improvement at all values of Hartmann number used when the frequency of the prescribed sinusoidal wall heat flux is increasing in the case of vanishing mean value of the heat flux and this is true especially at low Peclet numbers

  11. Can Aerosol Offset Urban Heat Island Effect?

    Science.gov (United States)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  12. Positive effects of vegetation: Urban heat island and green roofs

    International Nuclear Information System (INIS)

    Susca, T.; Gaffin, S.R.; Dell'Osso, G.R.

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 deg. C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO 2 equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. - Highlights: → The local morphology and the scarcity of vegetation in NYC core determines its UHI. → We introduce the evaluation of the effects of the surface albedo on climate change. → We use it to compare a black roof with a white and a green one. → Surface albedo has a crucial role in the evaluation of the environmental loads of the roofs. → Vegetation has positive effects on both the urban and the building scale. - Vegetation has positive effects both on an urban scale, mitigating the urban heat island effect; and on a building scale, where albedo, thermal insulation and biological activity of plants play a crucial role.

  13. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhigang [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Huai, Xiulan; Tao, Yujia; Chen, Huanzhuo [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-12-15

    Three-dimensional conjugate numerical simulations using the inlet, average and variable thermal properties respectively were performed for the laminar water flow and heat transfer in rectangular microchannels with D{sub h} of 0.333 mm at Re of 101-1775. Both average and variable properties are adopted in data reduction. The calculated local and average characteristics of flow and heat transfer are compared among different methods, and with the experiments, correlations and simplified theoretical solution data from published literatures. Compared with the inlet property method, both average and variable property methods have significantly lower f{sub app}, but higher convective heat transfer coefficient h{sub z} and Nu{sub z}. Compared with the average property method, the variable property method has higher f{sub app}Re{sub ave} and lower h{sub z} at the beginning, but lower f{sub app}Re{sub ave} and higher h{sub z} at the later section of the channel. The calculated Nu{sub ave} agree well with the Sieder-Tate correlation and the recently reported experiment, validating the traditional macroscale theory in predicting the flow and heat transfer characteristics in the dimension and Re range of the present work. (author)

  15. Effect of heating method on stress-rupture life

    Science.gov (United States)

    Bizon, P. T.; Calfo, F. D.

    1977-01-01

    The effect of radiant(furnace), resistance(electric current), burner(hot gas stream), and a combination of resistance and burner heating on intermediate time (100 to 300 hr) stress-rupture life and reduction of area was evaluated. All heating methods were studied using the nickel-based alloy Udimet 700 while all but burner heating were evaluated with the cobalt-based alloy Mar-M 509. Limited test results of eight other superalloys were also included in this study. Resistance heated specimens had about 20 to 30 percent of the stress-rupture life of radiant heated specimens. The limited burner heating data showed about a 50 percent life reduction as compared to the radiant heated tests. A metallurgical examination gave no explanation for these reductions.

  16. Effects of polarization-charge shielding in microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  17. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  18. Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating

    Science.gov (United States)

    Sweeney, Charles B.; Lackey, Blake A.; Pospisil, Martin J.; Achee, Thomas C.; Hicks, Victoria K.; Moran, Aaron G.; Teipel, Blake R.; Saed, Mohammad A.; Green, Micah J.

    2017-01-01

    Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks. PMID:28630927

  19. Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating.

    Science.gov (United States)

    Sweeney, Charles B; Lackey, Blake A; Pospisil, Martin J; Achee, Thomas C; Hicks, Victoria K; Moran, Aaron G; Teipel, Blake R; Saed, Mohammad A; Green, Micah J

    2017-06-01

    Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks.

  20. Effect of radiation heat transfer on the performance of high temperature heat exchanger, (2)

    International Nuclear Information System (INIS)

    Yamada, Yukio; Mori, Yasuo; Hijikata, Kunio.

    1977-01-01

    In high temperature helium gas-cooled reactors, the nuclear energy can be utilized effectively, and the safety is excellent as compared with conventional reactors. They are advantageous also in view of environmental problems. In this report, the high temperature heat exchanger used for heating steam with the helium from a high temperature gas reactor is modeled, and the case that radiating gas flow between parallel plates is considered. Analysis was made on the case of one channel and constant heat flux and on the model for a counter-flow type heat exchanger with two channels, and the effect of radiation on the heat transfer in laminar flow and turbulent flow regions was clarified theoretically. The basic equations, the method of approximate solution and the results of calculation are explained. When one dimensional radiation was considered, the representative temperature Tr regarding fluid radiation was introduced, and its relation to mean mixing temperature Tm was determined. It was clarified that the large error in the result did not arise even if Tr was taken equally to Tm, especially in case of turbulent flow. The error was practically negligible when the rate of forced convection heat transfer in case of radiating medium flow was taken same as that in the case without radiation. (Kako, I.)

  1. Effects of nonuniform surface heat flux and uniform volumetric heating on blanket design for fusion reactors

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1988-05-01

    An analytical solution for the temperature profile and film temperature drop for fully-developed, laminar flow in a circular tube is provided. The surface heat flux varies circcimferentally but is constant along the axis of the tube. The volulmetric heat generation is uniform in the fluid. The fully developed laminar velocity profile is approximated by a power velocity profile to represent the flattening effect of a perpendicular magnetic field when the coolant is electrivally conductive. The presence of volumetric heat generation in the fluid adds another component to the film temperature drop to that due to the surface heat flux. The reduction of the boundary layer thickness by a perpendicular magnetic field reduces both of these two film temperature drops. A strong perpendicular magnetic field can reduce the film termperatiure drop by a factor of two if the fluid is electrically conducting. The effect of perpendicualr magnetic field )or the flatness of the velocity profile) is less pronounced on teh film termperature drop due to nonuniform surfacae heat flux than on that due to uniform surface heat flux. An example is provided to show the relative effects on these two film temperd

  2. Numerical research of heat and mass transfer at the ignition of system “fabric – combustible liquid – oxidant” by the local energy source

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available A numerical research was executed for macroscopic regularities determination of heat and mass transfer processes under the conditions of phase transformation and chemical reaction at the ignition of vapour coming from fabrics impregnated by typical combustible liquid into oxidant area at the local power supply. Limit conditions of heterogeneous system “fabric – combustible liquid – oxidant” ignition at the heating of single metal particle was established. Dependences of ignition delay time on temperature and rates of local power source were obtained.

  3. Response of Urban Systems to Climate Change in Europe: Heat Stress Exposure and the Effect on Human Health

    Science.gov (United States)

    Stevens, Catherine; Thomas, Bart; Grommen, Mart

    2015-04-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a

  4. Physiological effects after exposure to heat : A brief literature review

    NARCIS (Netherlands)

    Bogerd, C.P.; Daanen, H.A.M.

    2011-01-01

    Many employees are exposed to heat stress during their work. Although the direct effects of heat are well reported, the long term physiological effects occurring after heat exposure are hardly described. The present manuscript addresses these issues in the form of a brief literature review. Repeated

  5. Experimental study on high cycle thermal fatigue in T-junction. Effect of local flow velocity on transfer of temperature fluctuation from fluid to structure

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Ono, Ayako; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A quantitative evaluation on high cycle thermal fatigue due to temperature fluctuation in fluid is of importance for structural integrity in the reactor. It is necessary for the quantitative evaluation to investigate occurrence and propagation processes of temperature fluctuation, e.g., decay of fluctuation intensity near structures and transfer of temperature fluctuation from fluid to structures. The JSME published a guideline for evaluation of high-cycle thermal fatigue of a pipe as the JSME guideline in 2003. This JSME standard covers T-pipe junction used in LWRs operated in Japan. In the guideline, the effective heat transfer coefficients were obtained from temperature fluctuations in fluid and structure in experiments. In the previous studies, the effective heat transfer coefficients were 2 - 10 times larger than the heat transfer coefficients under steady state conditions in a straight tube. In this study, a water experiment of T-junction was performed to evaluate the transfer characteristics of temperature fluctuation from fluid to structure. In the experiment, temperatures in fluid and structure were measured simultaneously at 20 positions to obtain spatial distributions of the effective heat transfer coefficient. In addition, temperatures in structure and local velocities in fluid were measured simultaneously to evaluate the correlation between the temperature and velocity under the non-stationary fields. The large heat transfer coefficients were registered at the region where the local velocity was high. Furthermore it was found that the heat transfer coefficients were correlated with the time-averaged turbulent heat flux near the pipe wall. (author)

  6. Effect of axial heat flux distribution on CHF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol

    2000-10-01

    Previous investigations for the effect of axial heat flux distributions on CHF and the prediction methods are reviewed and summarized. A total of 856 CHF data in a tube with a non-uniform axial heat flux distribution has been compiled from the articles and analyzed using the 1995 Groeneveld look-up table. The results showed that two representative correction factors, K5 of the look-up table and Tongs F factor, can be applied to describe the axial heat flux distribution effect on CHF. However, they overpredict slightly the measured CHF, depending on the quality and flux peak shape. Hence, a corrected K5 factor, which accounts for the axial heat flux distribution effect is suggested to correct these trends. It predicted the CHF power for the compiled data with an average error of 1.5% and a standard deviation of 10.3%, and also provides a reasonable prediction of CHF locations.

  7. The combined effects of wall longitudinal heat conduction and inlet fluid flow maldistribution in crossflow plate-fin heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ranganayakulu, C. [Aeronautical Development Agency, Bangalore (India); Seetharamu, K.N. [School of Mechanical Engineering, Univ. of Southern Malaysia (KCP), Tronoh (Malaysia)

    2000-05-01

    An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger. (orig.)

  8. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  9. Hybrid district heating system with heat supply from nuclear source

    International Nuclear Information System (INIS)

    Havelka, Z.; Petrovsky, I.

    1987-01-01

    Several designs are described of heat supply from large remote power sources (e.g., WWER-1000 nuclear power plants with a 1000 MW turbine) to localities where mainly steam distribution networks have been built but only some or none networks for hot water distribution. The benefits of the designs stem from the fact that they do not require the conversion of the local steam distribution system to a hot water system. They are based on heat supply from the nuclear power plant to the consumer area in hot water of a temperature of 150 degC to 200 degC. Part of the hot water heat will be used for the production of low-pressure steam which will be compressed using heat pumps (steam compressors) to achieve the desired steam distribution network specifications. Water of lower temperature can be used in the hot water network. The hot water feeder forms an automatic pressure safety barrier in heat supply of heating or technological steam from a nuclear installation. (Z.M.). 5 figs., 9 refs

  10. Measurement techniques of local parameters in the downcomer boiling experiment of APR1400

    International Nuclear Information System (INIS)

    Lee, Eu Hwak

    2004-02-01

    In order to investigate boiling phenomena experimentally in the downcomer during LBLOCA with Direct Vessel Injection (DVI), which is a new Safety Injection System (SIS) of Advanced Power Reactor 1400 MW (APR1400), several parameters should be measured through the verification of their applicability. In this study, measurement techniques of the parameters are developed for the downcomer boiling experiment; local phase velocities, local void fraction and heat flux from the heated wall. The experiment has been performed with the heated wall, which has a thickness of 8.2 cm and a height of 32.5 cm and made of the same material as the prototype (APR1400) with chrome coating against rusting. The newly developed pitot tube is applied to the measurement of local liquid velocity and its calibration curve is obtained experimentally with the consideration of the effect according to water temperature and hole size changes. The developed pitot tube measures the local liquid velocity with 0.69 % deviation and it is confirmed that the water temperature and geometrical change does not affect the calibration curve. The high-speed camera and commercial software are used to measure the local vapor velocity with the accuracy of 0.06 m/sec per pixel and the procedure is confirmed in the present study. It turns out that the vapor velocity is insensitive to void size. High-speed camera and image processing are used to measure the local void fraction with the determined intensity criterion for distinguishing each phase and the results are compared with the bulk void fraction by differential pressure transmitters. In the actual experiment, the developed method is applied successfully and the results show that the criterion of intensity has little effect on local void fraction. And, it is observed that the tendency between the measured local and bulk void faction is maintained with time. In order to measure heat flux from the heated wall, two heat flux measurement techniques are developed

  11. Effect of mineral matter on coal self-heating rate

    Energy Technology Data Exchange (ETDEWEB)

    B. Basil Beamish; Ahmet Arisoy [University of Queensland, Brisbane, Qld. (Australia). School of Engineering

    2008-01-15

    Adiabatic self-heating tests have been conducted on subbituminous coal cores from the same seam profile, which cover a mineral matter content range of 11.2-71.1%. In all cases the heat release rate does not conform to an Arrhenius kinetic model, but can best be described by a third order polynomial. Assessment of the theoretical heat sink effect of the mineral matter in each of the tests reveals that the coal is less reactive than predicted using a simple energy conservation equation. There is an additional effect of the mineral matter in these cases that cannot be explained by heat sink alone. The disseminated mineral matter in the coal is therefore inhibiting the oxidation reaction due to physicochemical effects. 14 refs., 5 figs., 5 tabs.

  12. Localized Electrical Heating System for Various Types of Buildings

    Science.gov (United States)

    Shelehov, I. Y.; Smirnov, E. I.; Inozemsev, V. P.

    2017-11-01

    The article presents an overview of the factors determining the establishment of zones with high temperature in industrial, public and administrative buildings. The authors state the task on the improvement of the electric energy use efficiency and cost savings associated with the heating of these buildings by infrared electric heater devices. Materials and methods: The experiments were conducted in a room with the sizes of 3x6 m2 with a ceiling height of 3 m, the concrete floor was covered with laminate, in which increments of 250 mm were drilled and installed the thermocouple. In the process, had used the patented heating element with distributed heating layer. Signals from the thermocouples were recorded by instruments of the firm “ARIES” brand TPM138 with the standard software delivered together with devices (Owen Process Manager). The obtained distributions of the temperature fields were imported into MS Excel. Control voltage, current consumption, power was carried out by the device of firm “ARIES” brand of IMS. The results of the study: the article defines the purpose of the study and carried out the characterization of infrared heaters with various types of heating elements. The authors detail the main parameters of different types of infrared heaters, evaluated its possibility for application in other areas where the need to create areas of increased temperature. Discussion and conclusion: the result of this work it was determined that heating appliances that use patented heating element with distributed heating layer, improve thermal performance and bring you maximum comfort at a much greater distance compared to existing similar devices

  13. Assessment of a non-uniform heat flux correction model to predicting CHF in PWR rod bundles

    International Nuclear Information System (INIS)

    Dae-Hyun, Hwang; Sung-Quun, Zee

    2001-01-01

    The full text follows. The prediction of CHF (critical heat flux) has been, in most cases, based on the empirical correlation. For PWR fuel assemblies the local parameter correlation requires the local thermal-hydraulic conditions usually calculated by a subchannel analysis code. The cross-sectional averaged fluid conditions of the subchannel, however, are not sufficient for determining CHF, especially for the cases of non-uniform axial heat flux distributions. Many investigators have studied the effect of the upstream heat flux on the CHF. In terms of the upstream memory effect, two different approaches have been considered as the limiting cases. The 'local conditions' hypothesis assumes that there is a unique relationship between the CHF and the local thermal-hydraulic conditions, and consequently there is no memory effect. In the 'overall power' hypothesis, on the other hand, it is assumed that the total power which can be fed into the tube with nonuniform heating will be the same as that for a uniformly heated tube of the same heated length with the same inlet conditions. Thus the CHF is totally influenced by the upstream heat flux distribution. In view of some experimental investigations such as the DeBortoli's test, it revealed that the two approaches are inadequate in general. It means that the local critical heat flux may be affected to some extent by the heat flux distribution upstream of the CHF location. Some correction-factor models have been suggested to take into account the upstream memory effect. Typically, Tong devised a correction factor on the basis of the heat balance of the superheated liquid layer that is spread underneath a highly viscous bubbly layer along the heated surface. His physical model suggested that the fluid enthalpy obtained from an energy balance of the superheated liquid layer is a representative quantity for the onset of DNB (departure nucleate boiling). A theoretically based correction factor model has been proposed by the

  14. Effect of nanofluids on thermal performance of heat pipes

    OpenAIRE

    Ferizaj, Drilon; Kassem, Mohamad

    2014-01-01

    A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bache...

  15. Is prevention of acute pesticide poisoning effective and efficient, with Locally Adapted Personal Protective Equipment?

    DEFF Research Database (Denmark)

    Varma, Anshu; Neupane, Dinesh; Ellekilde Bonde, Jens Peter

    2016-01-01

    BACKGROUND: Farmers' risk of pesticide poisoning can be reduced with personal protective equipment but in low-income countries farmers' use of such equipment is limited. OBJECTIVE: To examine the effectiveness and efficiency of Locally Adapted Personal Protective Equipment to reduce organophosphate...... exposure among farmers. METHODS: In a crossover study, 45 male farmers from Chitwan, Nepal, were randomly allocated to work as usual applying organophosphate pesticides wearing Locally Adapted Personal Protective Equipment or Daily Practice Clothing. For seven days before each experiment, each farmer.......08;0.06]. Wearing the Locally Adapted Personal Protective Equipment versus Daily Practice Clothing gave the following results, respectively: comfort 75.6% versus 100%, sense of heat 64.4% versus 31.3%, other problems 44.4% versus 33.3%, likeability 95.6% versus 77.8%. CONCLUSION: We cannot support the expectation...

  16. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete.

    Science.gov (United States)

    Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan

    2017-07-15

    The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation

  17. Influence of Variable Fluid Properties and Radiative Heat loss on ...

    African Journals Online (AJOL)

    Consequently, comparative analysis is also performed on the wall shear stress and local heat transfer of the present study with the available results.The results show that the inclusion variable viscosity and thermal conductivity, and radiative heat loss mechanism cause significant effects on the fluid flow velocity, temperature ...

  18. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  19. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.

    Science.gov (United States)

    Dahal, Naween; García, Stephany; Zhou, Jiping; Humphrey, Simon M

    2012-11-27

    An extensive comparative study of the effects of microwave versus conventional heating on the nucleation and growth of near-monodisperse Rh, Pd, and Pt nanoparticles has revealed distinct and preferential effects of the microwave heating method. A one-pot synthetic method has been investigated, which combines nucleation and growth in a single reaction via precise control over the precursor addition rate. Using this method, microwave-assisted heating enables the convenient preparation of polymer-capped nanoparticles with improved monodispersity, morphological control, and higher crystallinity, compared with samples heated conventionally under otherwise identical conditions. Extensive studies of Rh nanoparticle formation reveal fundamental differences during the nucleation phase that is directly dependent on the heating method; microwave irradiation was found to provide more uniform seeds for the subsequent growth of larger nanostructures of desired size and surface structure. Nanoparticle growth kinetics are also markedly different under microwave heating. While conventional heating generally yields particles with mixed morphologies, microwave synthesis consistently provides a majority of tetrahedral particles at intermediate sizes (5-7 nm) or larger cubes (8+ nm) upon further growth. High-resolution transmission electron microscopy indicates that Rh seeds and larger nanoparticles obtained from microwave-assisted synthesis are more highly crystalline and faceted versus their conventionally prepared counterparts. Microwave-prepared Rh nanoparticles also show approximately twice the catalytic activity of similar-sized conventionally prepared particles, as demonstrated in the vapor-phase hydrogenation of cyclohexene. Ligand exchange reactions to replace polymer capping agents with molecular stabilizing agents are also easily facilitated under microwave heating, due to the excitation of polar organic moieties; the ligand exchange proceeds with excellent retention of

  20. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

    International Nuclear Information System (INIS)

    Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

    2005-01-01

    In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

  1. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  2. Heat Generation Effects on U-Mo/Al through ABAQUS FEM Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Taewon; Jeong, Gwan Yoon; Lee, Cheol Min; Sohn Dongseong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    U-Mo/Al dispersion fuels have been considered a most promising candidate for a replacement of Highly Enriched Uranium (HEU) fuel in many research reactors. Coulson developed a FEM model which show the fuel meat realistically and compared the thermal conductivity results of two and three dimensional model. Williams also developed a FEM model which are different from the former in that it use regularly meshed unit cells. He showed a heat generation effects through FEM simulation and the effective thermal conductivity of the fuel with heat generated in the fuel particles is a little lower than that of the fuel with no heat generated. In the current work, the heat generation effects are analyzed and discussed in a wider range of volume fraction with more realistic models by using ABAQUS finite element package. The FEM model is used to determine the effective thermal conductivity of U-Mo/Al and to simulate the heat generation effects in the study. This model reflected the microscopic morphology of the fuel very well by making random distribution particles although the particle shape is considered as sphere. All simulation results show the heat generation effects although the effects are small when the volume fraction of fuels are high. When the particles are surrounded with interaction layers, the heat transfer from the particle to matrix is disturbed by interaction layers due to the low thermal conductivity of interaction layers. However this effects decreases when the sum of the volume fraction of fuels and interaction layers exceeds 40-50 vol% because a great portion of the heat must pass through fuels and interaction layers although the heat is applied on the surface. Therefore particle size and initial particle volume fractions will be the important factors for the heat generation effects when interaction layers grow during irradiations.

  3. Double-effect absorption heat pump, phase 3

    Science.gov (United States)

    Cook, F. B.; Cremean, S. P.; Jatana, S. C.; Johnson, R. A.; Malcosky, N. D.

    1987-06-01

    The RD&D program has resulted in design, development and testing of a packaged prototype double-effect generator cycle absorption gas heat pump for the residential and small commercial markets. The 3RT heat pump prototype has demonstrated a COPc of 0.82 and a COPh of 1.65 at ARI rating conditions. The heat pump prototype includes a solid state control system with built-in diagnostics. The absorbent/refrigerant solution thermophysical properties were completely characterized. Commercially available materials of construction were identified for all heat pump components. A corrosion inhibitor was identified and tested in both static and dynamic environments. The safety of the heat pump was analyzed by using two analytical approaches. Pioneer Engineering estimated the factory standard cost to produce the 3RT heat pump at $1,700 at a quantity of 50,000 units/year. One United States patent was allowed covering the heat pump technology, and two divisional applications and three Continuation-in-Park Applications were filed with the U.S.P.T.O. Corresponding patent coverage was applied for in Canada, the EEC, Australia, and Japan. Testing of the prototype heat pump is continuing, as are life tests of multiple pump concepts amd long-term dynamic corrosion tests. Continued development and commercialization of gas absorption heat pumps based on the technology are recommended.

  4. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    Science.gov (United States)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-03-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  5. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Tao Zhi

    2016-10-01

    Full Text Available A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux ranging from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy-influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models.

  6. Results from transient transport experiments in Rijnhuizen tokamak project: Heat convection, transport barriers and 'non-local' effects

    International Nuclear Information System (INIS)

    Mantica, P.; Gorini, G.; Hogeweij, G.M.D.; Kloe, J. de; Lopez Cardozo, N.J.; Schilham, A.M.R.

    2001-01-01

    An overview of experimental transport studies performed on the Rijnhuizen Tokamak Project (RTP) using transient transport techniques in both Ohmic and ECH dominated plasmas is presented. Modulated Electron Cyclotron Heating (ECH) and oblique pellet injection (OPI) have been used to induce electron temperature (T e ) perturbations at different radial locations. These were used to probe the electron transport barriers observed near low order rational magnetic surfaces in ECH dominated steady-state RTP plasmas. Layers of inward electron heat convection in off-axis ECH plasmas were detected with modulated ECH. This suggests that RTP electron transport barriers consist of heat pinch layers rather than layers of low thermal diffusivity. In a different set of experiments, OPI triggered a transient rise of the core T e due to an increase of the T e gradient in the 1< q<2 region. These transient transport barriers were probed with modulated ECH and found to be due to a transient drop of the electron heat diffusivity, except for off-axis ECH plasmas, where a transient inward pinch is also observed. Transient transport studies in RTP could not solve this puzzling interplay between heat diffusion and convection in determining an electron transport barrier. They nevertheless provided challenging experimental evidence both for theoretical modelling and for future experiments. (author)

  7. Heat transfer characteristics of the two-phase closed thermosyphon (wickless heat pipe)

    International Nuclear Information System (INIS)

    Andros, F.E.; Florschuetz, L.W.

    1982-01-01

    Steady-state heat transfer characteristics and heat transfer limits (dry-out) for a vertical stainless steel tubular two-phase closed thermosyphon with Freon-113 working fluid are reported as a function of certain geometric parameters and liquid fill quantity. Condenser section heat transfer characteristics agreed reasonably well with existing laminar film condensation correlations and were found to be independent of the evaporator section, except for larger liquid fills. Evaporator characteristics were quite complex and appeared, under some conditions, to be coupled to condenser characteristics through effects of system pressure and/or surface wave as present on the descending condensate film. A laminar thin film evaporation model was found to give reasonable agreement with local evaporator temperature measurements in those regions of the evaporator where a continuous film apparently persisted. The measured heat transfer characteristics are interpreted relative to an earlier investigation by the authors in which flow characteristics in a similar device were visually and photographically observed. 10 references

  8. Effect of multi-stream heat exchanger on performance of natural gas liquefaction with mixed refrigerant

    Science.gov (United States)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2012-12-01

    A thermodynamic study is carried out to investigate the effect of multi-stream heat exchanger on the performance of natural gas (NG) liquefaction with mixed refrigerant (MR). A cold stream (low-pressure MR) is in thermal contact with opposite flow of two hot streams (high-pressure MR and NG feed) at the same time. In typical process simulation with commercial software (such as Aspen HYSYS®), the liquefaction performance is estimated with a method of minimum temperature approach, simply assuming that two hot streams have the same temperature. In this study, local energy balance equations are rigorously solved with temperature-dependent properties of MR and NG feed, and are linked to the thermodynamic cycle analysis. The figure of merit (FOM) is quantitatively examined in terms of UA (the product of overall heat transfer coefficient and heat exchange area) between respective streams. In a single-stage MR process, it is concluded that the temperature profile from HYSYS is difficult to realize in practice, and the FOM value from HYSYS is an over-estimate, but can be closely achieved with a proper heat-exchanger design. It is also demonstrated that there exists a unique optimal ratio in three UA's, and no direct heat exchanger between hot streams is recommended.

  9. Radiation effects on the mixed convection flow induced by an inclined stretching cylinder with non-uniform heat source/sink.

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Asghar, Saleem

    2017-01-01

    This study investigates the mixed convection flow of Jeffrey liquid by an impermeable inclined stretching cylinder. Thermal radiation and non-uniform heat source/sink are considered. The convective boundary conditions at surface are imposed. Nonlinear expressions of momentum, energy and concentration are transformed into dimensionless systems. Convergent homotopic solutions of the governing systems are worked out by employing homotopic procedure. Impact of physical variables on the velocity, temperature and concentration distributions are sketched and discussed. Numerical computations for skin friction coefficient, local Nusselt and Sherwood numbers are carried out. It is concluded that velocity field enhances for Deborah number while reverse situation is observed regarding ratio of relaxation to retardation times. Temperature and heat transfer rate are enhanced via larger thermal Biot number. Effect of Schmidt number on the concentration and local Sherwood number is quite reverse.

  10. The effects of radiogenic heat on groundwater flow

    International Nuclear Information System (INIS)

    Beddoes, R.J.; Tammemagi, H.Y.

    1986-03-01

    The effects of radiogenic heat released by a nuclear waste repository on the groundwater flow in the neighbouring rock mass is reviewed. The report presents an overview of the hydrogeologic properties of crystalline rocks in the Canadian Shield and also describes the mathematical theory of groundwater flow and heat transfer in both porous media and fractured rock. Numerical methods for the solution of the governing equations are described. A number of case histories are described where analyses of flow systems have been performed both with and without radiogenic heat sources. A number of relevant topics are reviewed such as the role of the porous medium model, boundary conditions and, most importantly, the role of complex coupled processes where the effects of heat and water flow are intertwined with geochemical and mechanical processes. The implications to radioactive waste disposal are discussed

  11. Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning.

    Science.gov (United States)

    Morsy, Ahmed M; Biswas, Roshni; Povinelli, Michelle L

    2017-07-24

    We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm 2 and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

  12. Calculation of the heat flow peak in case of local defect of the fuel plate of a nuclear reactor

    International Nuclear Information System (INIS)

    Fabrega, Serge

    1965-11-01

    The author reports the calculation of the local thermal flow which exits a fuel plate in a nuclear reactor, where a fabrication defect creates a much localized peak of the power density released in the plate. He first reports the development of the problem equations: hypotheses and data, equation elaboration, simplification and resolution. He presents the results of a numeric application to actual cases, and describes how the conduction in the sheath is taken into account (study of the influence of peak width and shape), and gives a synthetic presentation of the formula for the approximate calculation of the heat flow in case of local defect [fr

  13. On the development of a grid-enhanced single-phase convective heat transfer correlation

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2011-01-01

    A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)

  14. Heat transfer in a membrane assisted fluidised bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Volkers, S.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidised bed was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged in a staggered formation with the membrane

  15. Heat transfer in a membrane assisted fluidized bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Volkers, Sander; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidized bed operated in the bubbling fluidization regime was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged

  16. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    Science.gov (United States)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  17. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

    International Nuclear Information System (INIS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-01-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  18. A Note on Variable Viscosity and Chemical Reaction Effects on Mixed Convection Heat and Mass Transfer Along a Semi-Infinite Vertical Plate

    Directory of Open Access Journals (Sweden)

    Mostafa A. A. Mahmoud

    2007-01-01

    Full Text Available In the present study, an analysis is carried out to study the variable viscosity and chemical reaction effects on the flow, heat, and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the shooting method. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. In addition, tabulated results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are presented and discussed.

  19. Liquid-Metal/Water Direct Contact Heat Exchange: Flow Visualization, Flow Stability, and Heat Transfer Using Real-Time X-Ray Imaging

    International Nuclear Information System (INIS)

    Abdulla, Sherif H.; Liu Xin; Anderson, Mark H.; Bonazza, Riccardo; Corradini, Michael L.; Cho, Dae; Page, Richard

    2005-01-01

    Advanced reactor system designs are being considered with liquid-metal cooling connected to a steam power cycle. In addition, current reactor safety systems are considering auxiliary cooling schemes that assure ex-vessel debris coolability utilizing direct water injection into molten material pools to achieve core quenching and eventual coolability. The phenomenon common in both applications is direct contact heat exchange. The current study focuses on detailed measurements of liquid-metal/water direct contact heat exchange that is directly applicable to improvements in effective heat transfer in devices that are being considered for both of these purposes.In this study, a test facility was designed at the University of Wisconsin-Madison to map the operating range of liquid-metal/water direct contact heat exchange. The test section (184-cm height, 45.75-cm width, and 10-cm depth) is a rectangular slice of a larger heat exchange device. This apparatus was used not only to provide measurements of integral thermal performance (i.e., volumetric heat transfer coefficient), but also local heat transfer coefficients in a bubbly flow regime with X-ray imaging based on measured parameters such as bubble formation time, bubble rise velocity, and bubble diameters.To determine these local heat transfer coefficients, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed. With this methodology, a high-energy X-ray imaging system is optimized for our heat exchange experiments. With this real-time, large-area, high-energy X-ray imaging system, the two-phase flow was quantitatively visualized. An efficient image processing strategy was developed by combining several optimal digital image-processing algorithms into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer-related variables such as bubble volumes and velocities, were determined. Finally, an error analysis associated with these measurements

  20. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  1. Characteristics of an ammonia/lithium nitrate double effect heat pump-transformer

    International Nuclear Information System (INIS)

    Heard, C.L.; Rivera, W.; Best, R.

    2016-01-01

    Highlights: • The ammonia/lithium nitrate cycle is a little less efficient than the water/lithium bromide cycle. • Ratios of useful heat delivered to driving heat of nearly four are shown to be achievable. • Operating characteristics of a NH3/LiNO3 double effect absorption heat pump-transformer. - Abstract: The modelled operating characteristics of an ammonia/lithium nitrate double effect absorption heat pump-transformer (Type III absorption heat pump) are presented and compared to other working pair options and absorption heat pump cycles. Heat and mass balance equations are given. The effect of sub-optimal cycle design is shown on cycle thermal efficiency and solution pump power. It is shown that the ammonia/lithium nitrate working pair would achieve a performance a little less efficient than a water/lithium bromide system but is somewhat more tolerant of less than optimum operating conditions with respect to cycle thermal efficiency and solution pump power. Ratios of useful heat delivered to driving heat of nearly four are shown to be achievable with this system.

  2. Fossil fuel and biomass burning effect on climate - heating or cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Y.J.; Fraser, R.S.; Mahoney, R.L. (NASA/Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-06-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO{sub 2} cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO{sub 2} molecules as SO{sub 2} molecules, each SO{sub 2} molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO{sub 2} molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO{sub 2} (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO{sub 2} concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs.

  3. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Anoda, Yoshinari

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m 2 s - 1651 kg/m 2 s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of the grid

  4. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwaki, Chikako [Toshiba Corp., Tokyo (Japan)

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m{sup 2}s - 1651 kg/m{sup 2}s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of

  5. Flow and Heat Transfer Characteristics of Turbulent Gas Flow in Microtube with Constant Heat Flux

    International Nuclear Information System (INIS)

    Hong, Chungpyo; Matsushita, Shinichi; Ueno, Ichiro; Asako, Yutaka

    2012-01-01

    Local friction factors for turbulent gas flows in circular microtubes with constant wall heat flux were obtained numerically. The numerical methodology is based on arbitrary-Lagrangian-Eulerian method to solve two-dimensional compressible momentum and energy equations. The Lam-Bremhorst's Low-Reynolds number turbulence model was employed to calculate eddy viscosity coefficient and turbulence energy. The simulations were performed for a wide flow range of Reynolds numbers and Mach numbers with different constant wall heat fluxes. The stagnation pressure was chosen in such a way that the outlet Mach number ranged from 0.07 to 1.0. Both Darcy friction factor and Fanning friction factor were locally obtained. The result shows that the obtained both friction factors were evaluated as a function of Reynolds number on the Moody chart. The values of Darcy friction factor differ from Blasius correlation due to the compressibility effects but the values of Fanning friction factor almost coincide with Blasius correlation. The wall heat flux varied from 100 to 10000 W/m 2 . The wall and bulk temperatures with positive heat flux are compared with those of incompressible flow. The result shows that the Nusselt number of turbulent gas flow is different from that of incompressible flow.

  6. An analysis of heat effects in different subpopulations of Bangladesh

    Science.gov (United States)

    Burkart, Katrin; Breitner, Susanne; Schneider, Alexandra; Khan, Md. Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2014-03-01

    A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit. Within the scope of this study, we aimed to investigate the effects of heat in a multi-stratified manner, distinguishing by the cause of death, age, gender, location and socio-economic status. We examined 22,840 death counts using semi-parametric Poisson regression models, adjusting for a multitude of potential confounders. Although Bangladesh is dominated by an increase of mortality with decreasing (equivalent) temperatures over a wide range of values, the findings demonstrated the existence of partly strong heat effects at the upper end of the temperature distribution. Moreover, the study demonstrated that the strength of these heat effects varied considerably over the investigated subgroups. The adverse effects of heat were particularly pronounced for males and the elderly above 65 years. Moreover, we found increased adverse effects of heat for urban areas and for areas with a high socio-economic status. The increase in, and acceleration of, urbanisation in Bangladesh, as well as the rapid aging of the population and the increase in non-communicable diseases, suggest that the relevance of heat-related mortality might increase further. Considering rising global temperatures, the adverse effects of heat might be further aggravated.

  7. Mixed convection and heat generation/absorption aspects in MHD flow of tangent-hyperbolic nanoliquid with Newtonian heat/mass transfer

    Science.gov (United States)

    Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.

  8. Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities

    Science.gov (United States)

    Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia

    2017-02-01

    Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.

  9. Thermoregulatory efficiency is increased after heat acclimation in tropical natives.

    Science.gov (United States)

    Magalhães, Flávio C; Passos, Renata L F; Fonseca, Michele A; Oliveira, Kenya P M; Ferreira-Júnior, João B; Martini, Angelo R P; Lima, Milene R M; Guimarães, Juliana B; Baraúna, Valério G; Silami-Garcia, Emerson; Rodrigues, Luiz O C

    2010-01-01

    To evaluate the effects of heat acclimation on sweat rate redistribution and thermodynamic parameters, 9 tropical native volunteers were submitted to 11 days of exercise-heat exposures (40+/-0 degrees C and 45.1+/-0.2% relative humidity). Sudomotor function was evaluated by measuring total and local (forehead, chest, arm, forearm, and thigh) sweat rates, local sweat sodium concentration, and mean skin and rectal temperatures. We also calculated heat production (H), heat storage (S), heat exchange by radiation (R) and by convection (C), evaporated sweat (E(sw)), sweating efficiency (eta(sw)), skin wettedness (w(sk)), and the ratio between the heat storage and the sum of heat production and heat gains by radiation and convection (S/(H+R+C)). The heat acclimation increased the whole-body sweat rate and reduced the mean skin temperature. There were changes in the local sweat rate patterns: on the arm, forearm, and thigh it increased significantly from day 1 to day 11 (all p<0.05) and the sweat rates from the forehead and the chest showed a small nonsignificant increase (p=0.34 and 0.17, respectively). The relative increase of local sweat rates on day 11 was not different among the sites; however, when comparing the limbs (arm, forearm, and thigh) with the trunk (forehead and chest), there was a significant higher increase in the limbs (32+/-5%) in comparison to the trunk (11+/-2%, p=0.001). After the heat acclimation period we observed higher w(sk) and E(sw) and reduced S/(H+R+C), meaning greater thermoregulatory efficiency. The increase in the limb sweat rate, but not the increase in the trunk sweat rate, correlated with the increased w(sk), E(sw), and reduced S/(H+R+C) (p<0.05 to all). Altogether, it can be concluded that heat acclimation increased the limbs' sweat rates in tropical natives and that this increase led to increased loss of heat through evaporation of sweat and this higher sweat evaporation was related to higher thermoregulatory efficiency.

  10. Including solar energy in the local heat supply of the Goettingen city works; Einbindung von Sonnenenergie in die Nahwaermeversorgung der Stadtwerke Goettingen AG

    Energy Technology Data Exchange (ETDEWEB)

    Tepe, R. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany); Schreitmueller, K.R. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany); Vanoli, K. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany)

    1996-11-01

    The research project `Solar local heat Goettingen` was started in 1992 in which, by including a 785 m{sup 2} flat collector plant in the return of the local heat supply of the Goettingen City Works; the potential of the combined system of solar plant and conventional heat supply system is to be proved. The size of the collector plant and inclusion in an existing local heat network promised an advantageous combination due to appreciably lower investment costs (lower collector installation costs) and savings in system technique, reduced operating costs, and higher income due to favourable operating conditions with even low collector operating temperatures and reduced piping losses. In parallel with this system, the Goettingen City Works installed an air collector plant which is used to preheat the combustion air taken to the conventional burners. (orig./HW) [Deutsch] Es entstand im Jahr 1992 das Forschungsvorhaben `Solare Nahwaerme Goettingen`, in dem durch die Einbindung einer 785 m{sup 2} grossen Flachkollektoranlage in den Ruecklauf der Nahwaermeversorgung der Stadtwerke Goettingen AG das Potential der Systemkombination Solaranlage und konventionelle Waermeversorgungssystem nachgewiesen werden sollte. Die Groesse der Kollektoranlage sowie die Einbindung in ein bestehendes Nahwaermenetz versprachen eine vorteilhafte Kombination aufgrund - deutlich geringerer Investionskosten (geringe Kollektorinstallationskosten sowie Einsparungen bei der Systemtechnik); - reduzierter Betriebskosten; - hoher Ertraege durch guenstige Betriebsbedingungen wie gleichbleibend niedriger Kollektorbetriebstemperaturen und reduzierter Leitungsverluste. Parallel zu diesem System installierten die Stadtwerke Goettingen AG eine Luftkollektoranlage, die der Vorwaermung der den konventionellen Brennern zugefuehrten Verbrennungsluft dient. (orig./HW)

  11. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  12. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  13. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    International Nuclear Information System (INIS)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated, and that waste available for heat recovery in 2030 is equally determined by total generation volumes by this year as by future EU deployment levels of district heating. - Highlights: • European municipal solid waste time series data analysed from 1995 to 2012. • Review of modelling approaches to assess future European waste generation. • Weather corrected district heat data for EU Member States in 1995 and 2012. • Low average heat recovery efficiency in current European waste incineration. • Future heat recovery efficiencies as determinant as future generation volumes.

  14. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  15. Local heat transfer around a wall-mounted cube. Case of the attack angle of 45 deg.; Rippotai tokki mawari no kyokusho netsu dentatsu. Katamukikaku 45 degrees no baai

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H.; Igarashi, T.; Tsutsui, T. [National Defense Academy, Kanagawa (Japan)

    1999-11-25

    An experimental study was performed to investigate the local heat transfer around a cube mounted on the wall. The cube lied in the turbulent boundary layer. The flow angle of attack to the cube was 15 degree. The Reynolds number ranged from 4.2 x 10{sup 3} to 3.3 x 10{sup 4}. The surface temperature distributions around time cube were measured with thermocouples tinder the condition of a constant heat flux. The local h eat transfer is very high near the front corner on the top face of the cube. This high heat transfer region extends from the front corner to downstream along both edges. This is caused by the formation of lamb horn vortex. The local heat transfer is also high in time region of horseshoe vortex formed a round the cube. On the wall behind the cube, there is a pair of minimum heat transfer region. The average Nusselt number on each face of the cube is given as a function of Reynolds number. The overall Nusselt number of time cube is expressed by Nu{sub m}=0.43Re{sup 0.58}. (author)

  16. Relativistic effects in local inertial frames including PPN effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.

    1986-01-01

    In this dissertation they use the concept of a generalized Fermi frame to describe the relativistic effects on a body placed in a local inertial frame of reference due to local and distant sources of gravitation. They have considered, in particular, a model, consisted of two spherically symmetric gravitating sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done in the Parametrized-Post-Newtonian formalism using the slow motion, weak field approximation. The PPN parameters used are γ, β, zeta 1 and zeta 2 . They show that the main relativistic effect on a local satellite is described by the Schwarzchild field of the local body and the nonlinear term corresponding to the self-interaction of the local source itself. There are also much smaller terms that are proportional to the product of the potentials of local and distant bodies and distant body's self interactions. The spatial axis of the local frame undergoes Geodetic precession. Effects involving the parameters zeta 1 and zeta 2 seem to be slightly too small to be observable at the present time. In addition they have found accelerations that vanish in the general relativity limit

  17. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil

    Science.gov (United States)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A.; de Freitas, Clarice Umbelino; Bell, Michelle L.

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1 % (95 % confidence interval 4.7, 7.6 %) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6 % (6.2, 11.1 %) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  18. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil.

    Science.gov (United States)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A; de Freitas, Clarice Umbelino; Bell, Michelle L

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1% (95% confidence interval 4.7, 7.6%) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6% (6.2, 11.1%) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  19. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yang; Wen, Meimei [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Kim, Chang Nyung, E-mail: cnkim@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Yang, Shangjing [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of)

    2017-04-15

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  20. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    International Nuclear Information System (INIS)

    Luo, Yang; Wen, Meimei; Kim, Chang Nyung; Yang, Shangjing

    2017-01-01

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  1. Local heat stress and skin blood flowmotion in subjects with familial predisposition or newly diagnosed hypertension.

    Science.gov (United States)

    Gryglewska, Barbara; Nęcki, Mirosław; Cwynar, Marcin; Baron, Tomasz; Grodzicki, Tomasz

    2010-12-01

    The aim of the study was to investigate the skin microcirculation blood flow and flowmotion response to heat stress in normotensive subjects with familial predisposition to hypertension and in hypertensive patients. Normotensives without [NT(-)] or with [NT(+)] familial predisposition and subjects with newly diagnosed hypertension (HT) were studied. Clinic blood pressure (BP) measurements and ambulatory BP monitoring as well as laboratory assessments were performed. Resting (RF), heat (HF) and maximal heat (MHF) blood flows were measured using PeriFlux laser Doppler flowmetry (LDF) and expressed as absolute units (AU) and as index of cutaneous vascular conductance (CVC). Spectral analysis of the skin LDF signal was performed by means of the Perisoft dedicated software. Kruskall-Wallis analysis of variance, χ(2) statistic and multivariate reverse regression analysis were used for calculation. The studied population consisted of 70 persons (mean age 36.1 ± 10.3 years, 44.3% women): 17 NT(-), 22 NT(+) and 31 HT, age and gender matched. Higher values of body mass index (BMI), and insulin, glucose and triglyceride levels were observed in HT than in NT groups. RF, HF and MHF were similar in all study groups, but CVC of maximal heat flow differed (p=0.02); in particular, lower values were observed in the HT than in NT(-) group (p=0.01). The study groups differed with regard to total power (p=0.01) and myogenic (p=0.03) origin flowmotion with the lowest values in the NT(+) group. BMI and night BP characteristics were strong predictors of reduction of CVC, MHF and myogenic origin flowmotion. Skin microcirculation response to local heat stress is altered in hypertensive patients with decrease in maximal heat CVC values. Moreover, normotensive subjects with familial predisposition to hypertension are characterized by diminished myogenic origin of skin blood flowmotion.

  2. Stability analysis on the flow and heat transfer of nanofluid past a stretching/shrinking cylinder with suction effect

    Science.gov (United States)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.; Pop, Ioan

    2018-06-01

    The steady boundary layer flow over a stretching/shrinking cylinder with suction effect is numerically studied. Using a similarity transformations, the governing partial differential equations are transformed into a set of nonlinear differential equations and have been solved numerically using a bvp4c code in Matlab software. The nanofluid model used is taking into account the effects of Brownian motion and thermophoresis. The influences of the governing parameters namely the curvature parameter γ, mass suction parameter S, Brownian motion parameter Nb and thermophoresis parameter Nt on the flow, heat and mass transfers characteristics are presented graphically. The numerical results obtained for the skin friction coefficient, local Nusselt number and local Sherwood number are thoroughly determined and presented graphically for several values of the governing parameters. From our investigation, it is found that the non-unique (dual) solutions exist for a certain range of mass suction parameter. It is observed that as curvature parameter increases, the skin friction coefficient and heat transfer rate decrease, meanwhile the mass transfer rates increase. Moreover, the stability analysis showed that the first solution is linearly stable, while the second solution is linearly unstable.

  3. Region effects influence local tree species diversity.

    Science.gov (United States)

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.

  4. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin

    2015-07-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  5. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-01-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  6. Modeling of heat transfer in a horizontal heat-generating layer by an effective diffusivity approach

    International Nuclear Information System (INIS)

    Cheung, F.B.; Shiah, S.W.

    1994-01-01

    The concept of effective diffusivity is employed to model various processes of heat transfer in a volumetrically heated fluid layer subjected to different initial and boundary conditions. The approach, which involves the solution of only heat diffusion equations, is found to give rather accurate predictions of the transient response of an initially stagnant fluid layer to a step input of power as well as the developing and decaying nature of the flow following a step change in the internal Rayleigh number from one state of steady convection to another. The approach is also found to be applicable to various flow regions of a heat-generating fluid layer, and is not limited to the case in which the entire layer is in turbulent motion. The simplicity and accuracy of the method are clearly illustrated in the analysis. Validity of the effective diffusivity approach is demonstrated by comparing the predicted results with corresponding experimental data

  7. Demand flexibility from residential heat pump

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    Demand response (DR) is considered as a potentially effective tool to compensate generation intermittency imposed by renewable sources. Further, DR can instigate to offer optimum asset utilization and to avoid or delay the need for new infrastructure investment. Being a sizable load together...... with high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...... price based scheduling followed by a demand dispatch based central control and a local voltage based adaptive control, to realize HP demand flexibility. Two-step control architecture, namely local primary control encompassed by the central coordinative control, is proposed to implement...

  8. A study on the effects of system pressure on heat and mass transfer rates of an air cooler

    International Nuclear Information System (INIS)

    Jung, Hyung Ho

    2002-01-01

    In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements

  9. Effects of tissue impedance on heat generation during RF delivery with the Thermage system

    Science.gov (United States)

    Tomkoria, Sara; Pope, Karl

    2005-04-01

    The Thermage ThermaCool TC system is a non-ablative RF device designed to promote tissue tightening and contouring. The system delivers RF energy to a target area under the skin, with volumetric tissue heating in that area. While the amount of energy delivered to a patient can be controlled by ThermaCool system settings, the distribution of energy to the treatment area and underlying layers is variable from individual to individual due to differences in body composition. The present study investigated how local tissue impedance affects the amount of discomfort experienced by patients during RF energy delivery. Discomfort results from heat generation in the treatment area. By using features of the ThermaCool TC System, local impedance (impedance of the treatment area), bulk impedance (impedance of the underlying tissue layers), and total impedance (the sum of local and bulk impedance) were measured for 35 patients. For each patient, impedance measurements were compared to discomfort levels expressed during treatment. Analysis of whole body, local, and bulk impedance values indicate that the percent of total body impedance in the local treatment area contributes to discomfort levels expressed by patients during treatment.

  10. Pricing district heating by marginal cost

    International Nuclear Information System (INIS)

    Difs, Kristina; Trygg, Louise

    2009-01-01

    A vital measure for industries when redirecting the energy systems towards sustainability is conversion from electricity to district heating (DH). This conversion can be achieved for example, by replacing electrical heating with DH and compression cooling with heat-driven absorption cooling. Conversion to DH must, however, always be an economically attractive choice for an industry. In this paper the effects for industries and the local DH supplier are analysed when pricing DH by marginal cost in combination with industrial energy efficiency measures. Energy audits have shown that the analysed industries can reduce their annual electricity use by 30% and increase the use of DH by 56%. When marginal costs are applied as DH tariffs and the industrial energy efficiency measures are implemented, the industrial energy costs can be reduced by 17%. When implementing the industrial energy efficiency measures and also considering a utility investment in the local energy system, the local DH supplier has a potential to reduce the total energy system cost by 1.6 million EUR. Global carbon dioxide emissions can be reduced by 25,000 tonnes if the industrial energy efficiency measures are implemented and when coal-condensing power is assumed to be the marginal electricity source

  11. Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Gbeminiyi Sobamowo

    2017-10-01

    Full Text Available In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the boiling modes is taken into consideration. The developed heat transfer models and the corresponding numerical solutions are used to investigate the effects of various thermo-geometric parameters on the thermal performance of the longitudinal rectangular fin. The results shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin and the internal heat generation within the fin. The obtained results can provide a platform for improvements in the design of the fin in the heat transfer equipment.

  12. Small-scale heat detection using catalytic microengines irradiated by laser

    Science.gov (United States)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  13. About the possible options for models of convective heat transfer in closed volumes with local heating source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2015-01-01

    Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.

  14. FY1995 comprehensive assessments of measures mitigating heat island phenomena in urban areas; 1995 nendo heat shinku wo riyoshita daikibo reibo system no kaihatsu (daitoshi ni okeru kaki koonka taisaku gijutsu no hyoka shuho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The urban heat-island phenomenon is one of the man-made changes of local climate. The objectives of this research are to develop a heat-island model to cover the building scale to mesoscale and to assess the countermeasures to heat- island effects. The analysis of Tokyo by remote-sensing, field observation and estimates of anthropogenically exhausted heat using energy consumption data were conducted. And, techniques to assess the most effective countermeasure against the urban warming were developed. (NEDO)

  15. Effective method for construction of low-dimensional models for heat transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, D.G.; Prokopov, V.G.; Sherenkovskii, Y.V.; Fialko, N.M.; Yurchuk, V.L. [National Academy of Sciences of Ukraine, Kiev (Ukraine). Inst. of Engineering Thermophysics

    2004-12-01

    A low-dimensional model based on the method of proper orthogonal decomposition (POD) and the method of polyargumental systems (MPS) for thermal conductivity problems with strongly localized source of heat has been presented. The key aspect of these methods is that they enable to avoid weak points of other projection methods, which consists in a priori choice of basis functions. It enables us to use the MPS method and the POD method as convenient means to construct low-dimensional models of heat and mass transfer problems. (Author)

  16. Information campaign on solar heating for houses heated by electricity

    International Nuclear Information System (INIS)

    West, M.

    1995-09-01

    A number of NESA's (Danish electric power company) customers were offered the use of a solar water heating system for a short period of time. NESA was responsible for the marketing and consultancy service and worked in cooperation with local plumbers in connection with the delivery of the systems. The company contacted 450 households and its representatives visited 25 of these. 4 customers decided to purchase a solar heating system, fourteen decided to think about it, and four declared that they would not buy one. The company had reckoned with 25 purchases. It is concluded that the price of the solar heating systems was too high for prospective customers and the fact that they were not given a special offer had a negative effect. The economic aspect was absolutely the most important for them, especially the length of the payback period on the higher purchase system. Environmental protection aspects came second in their deliberations. NESA has a positive attitude to their customers' use of solar heating plants and recommends that households are offered very high quality consultancy services in connection with marketing. The project is described in detail. (AB)

  17. Modeling ambipolar potential formation due to ICRF heating effects on electrons

    International Nuclear Information System (INIS)

    Johnson, J.W.; Callen, J.D.; Hershkowitz, N.

    1985-08-01

    A mechanism for the potential bump observed near the region of ICRF heating in the endplugs of the Phaedrus tandem mirror experiment is investigated by numerical simulation of electron orbits in a simple mirror geometry. Given initial magnetic and ambipolar potential wells that trap the electrons, the ''near field'' parallel electric field E-tilde/sub z/e/sup -iωt/, which is localized near and due to the ICRF heating, tends to eject electrons from the region where E-tilde/sub z/ is nonzero. This depletion of the local electron population causes a local increase in the ambipolar potential. The rate at which the electrons are ejected, (dn/dt), is calculated from the electron orbit computation for a given potential well depth. The rate at which passing particles ''fill in'' the potential well can also be calculated. An estimate of how large the bump in the ambipolar potential becomes is obtained by finding the well depth at which (dn/dt) approximately equals the ''filling'' rate. For Phaedrus parameters (n 0 approx. = 4.0 x 10 12 cm -3 , T/sub e/ = 20 eV, E-tilde/sub z/ approx. = 1.0 V/cm) the electron pumping rate balances the ''filling'' rate at a potential well depth of approximately 40 V, consistent with experimental results

  18. Direct numerical simulation of heat transfer to CO2 at supercritical pressure in a vertical tube

    International Nuclear Information System (INIS)

    Bae, Joong-Hun; Yoo, Jung-Yul; Choi, Hae-Cheon

    2003-01-01

    In the present study, the turbulent heat transfer to CO 2 at supercritical pressure in a vertical tube is investigated using Direct Numerical Simulation (DNS), where no turbulence model is adopted. Heat transfer to the supercritical pressure fluids is characterized by rapid variation of thermodynamic/ thermo-physical properties in the fluids. This change in properties occurs within a very narrow range of temperature across the so-called pseudo-critical temperature, causing a peculiar behavior of heat transfer characteristics. The buoyancy effects associated with very large changes in density proved to play a major role in turbulent heat transfer to supercritical pressure fluids. Depending on the degree of buoyancy effects, turbulent heat transfer may increase or significantly decrease, resulting in a local hot spot along the wall. Based on the results of the present DNS study combined with theoretical considerations for turbulent mixed convection heat transfer, the basic mechanism of this local heat transfer deterioration is explained

  19. Climate forcing and response to idealized changes in surface latent and sensible heat

    International Nuclear Information System (INIS)

    Ban-Weiss, George A; Cao Long; Pongratz, Julia; Caldeira, Ken; Bala, Govindasamy

    2011-01-01

    Land use and land cover changes affect the partitioning of latent and sensible heat, which impacts the broader climate system. Increased latent heat flux to the atmosphere has a local cooling influence known as 'evaporative cooling', but this energy will be released back to the atmosphere wherever the water condenses. However, the extent to which local evaporative cooling provides a global cooling influence has not been well characterized. Here, we perform a highly idealized set of climate model simulations aimed at understanding the effects that changes in the balance between surface sensible and latent heating have on the global climate system. We find that globally adding a uniform 1 W m -2 source of latent heat flux along with a uniform 1 W m -2 sink of sensible heat leads to a decrease in global mean surface air temperature of 0.54 ± 0.04 K. This occurs largely as a consequence of planetary albedo increases associated with an increase in low elevation cloudiness caused by increased evaporation. Thus, our model results indicate that, on average, when latent heating replaces sensible heating, global, and not merely local, surface temperatures decrease.

  20. The Effects of Heat Advection on UK Weather and Climate Observations in the Vicinity of Small Urbanized Areas

    Science.gov (United States)

    Bassett, Richard; Cai, Xiaoming; Chapman, Lee; Heaviside, Clare; Thornes, John E.

    2017-10-01

    Weather and climate networks traditionally follow rigorous siting guidelines, with individual stations located away from frost hollows, trees or urban areas. However, the diverse nature of the UK landscape suggests that the feasibility of siting stations that are truly representative of regional climate and free from distorting local effects is increasingly difficult. Whilst the urban heat island is a well-studied phenomenon and usually accounted for, the effect of warm urban air advected downwind is rarely considered, particularly at rural stations adjacent to urban areas. Until recently, urban heat advection (UHA) was viewed as an urban boundary-layer process through the formation of an urban plume that rises above the surface as it is advected. However, these dynamic UHA effects are shown to also have an impact on surface observations. Results show a significant difference in temperatures anomalies (p careful interpretation of long-term temperature data taken near small urban areas.

  1. Study of entropy generation in a slab with non-uniform internal heat generation

    Directory of Open Access Journals (Sweden)

    El Haj Assad Mamdouh

    2013-01-01

    Full Text Available Analysis of entropy generation in a rectangular slab with a nonuniform internal heat generation is presented. Dimensionless local and total entropy generation during steady state heat conduction through the slab are obtained. Two different boundary conditions have been considered in the analysis, the first with asymmetric convection and the second with constant slab surface temperature. Temperature distribution within the slab is obtained analytically. The study investigates the effect of some relevant dimensionless heat transfer parameters on entropy generation. The results show that there exists a minimum local entropy generation but there does not exist a minimum total entropy generation for certain combinations of the heat transfer parameters. The results of calculations are presented graphically.

  2. The variability of Joule heating, and its effects on the ionosphere and thermosphere

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    2001-07-01

    Full Text Available A considerable fraction of the solar wind energy that crosses the magnetopause ends up in the high-latitude thermosphere-ionosphere system as a result of Joule heating, the consequences of which are very significant and global in nature. Often Joule heating calculations use hourly averages of the electric field, rather than the time-varying electric field. This leads to an underestimation of the heating. In this paper, we determine the magnitude of the underestimation of Joule heating by analysing electric field data from the EISCAT Incoherent Scatter Radar, situated at the 67° E magnetic latitude. We find that the underestimation, using hourly-averaged electric field values, is normally ~20%, with an upper value of about 65%. We find that these values are insensitive to changes in solar flux, magnetic activity and magnetic local time, implying that the electric field fluctuations are linear related to the amplitude of the electric field. Assuming that these changes are representative of the entire auroral oval, we then use a coupled ionosphere-thermosphere model to calculate the local changes these underestimations in the heating rate cause to the neutral temperature, mean molecular mass and meridional wind. The changes in each parameter are of the order of a few percent but they result in a reduction in the peak F-region concentration of ~20% in the summer hemisphere at high latitudes, and about half of this level in the winter hemisphere. We suggest that these calculations could be used to add corrections to modelled values of Joule heating.Key words. Ionosphere (eletric fields and currents; ionospheric disturbances; polar ionosphere

  3. AN INVESTIGATION OF LOCAL EFFECTS ON SURFACE WARMING WITH GEOGRAPHICALLY WEIGHTED REGRESSION (GWR

    Directory of Open Access Journals (Sweden)

    Y. Xue

    2012-07-01

    Full Text Available Urban warming is sensitive to the nature (thermal properties, including albedo, water content, heat capacity and thermal conductivity and the placement (surface geometry or urban topography of urban surface. In the literature the spatial dependence and heterogeneity of urban thermal landscape is widely observed based on thermal infrared remote sensing within the urban environment. Urban surface warming is conceived as a big contribution to urban warming, the study of urban surface warming possesses significant meaning for probing into the problem of urban warming.The urban thermal landscape study takes advantage of the continuous surface derived from thermal infrared remote sensing at the landscape scale, the detailed variation of local surface temperature can be measured and analyzed through the systematic investigation. At the same time urban environmental factors can be quantified with remote sensing and GIS techniques. This enables a systematic investigation of urban thermal landscape with a link to be established between local environmental setting and surface temperature variation. The goal of this research is utilizing Geographically Weighted Regression (GWR to analyze the spatial relationship between urban form and surface temperature variation in order to clarify the local effects on surface warming, moreover to reveal the possible dynamics in the local influences of environmental indicators on the variation of local surface temperature across space and time. In this research, GWR analysis proved that the spatial variation in relationships between environmental setting and surface temperature was significant with Monte Carlo significance test and distinctive in day-night change. Comparatively, GWR facilitated the site specific investigation based on local statistical technique. The inference based on GWR model provided enriched information regarding the spatial variation of local environment effect on surface temperature variation which

  4. Heat and mass transfer and hydrodynamics in swirling flows (review)

    Science.gov (United States)

    Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.

    2017-02-01

    Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.

  5. Effects on Public Health of Heat Waves to Improve the Urban Quality of Life

    Directory of Open Access Journals (Sweden)

    Vito Telesca

    2018-04-01

    Full Text Available Life satisfaction has been widely used in recent studies to evaluate the effect of environmental factors on individuals’ well-being. In the last few years, many studies have shown that the potential impact of climate change on cities depends on a variety of social, economic, and environmental determinants. In particular, extreme events, such as flood and heat waves, may cause more severe impacts and induce a relatively higher level of vulnerability in populations that live in urban areas. Therefore, the impact of climate change and related extreme events certainly influences the economy and quality of life in affected cities. Heat wave frequency, intensity, and duration are increasing in global and local climate change scenarios. The association between high temperatures and morbidity is well-documented, but few studies have examined the role of meteo-climatic variables on hospital admissions. This study investigates the effects of temperature, relative humidity, and barometric pressure on health by linking daily access to a Matera (Italy hospital with meteorological conditions in summer 2012. Extreme heat wave episodes that affected most of the city from 1 June to 31 August 2012 (among the selected years 2003, 2012, and 2017 were analyzed. Results were compared with heat waves from other years included in the base period (1971–2000 and the number of emergency hospital admissions on each day was considered. The meteorological data used in this study were collected from two weather stations in Matera. In order to detect correlations between the daily emergency admissions and the extreme health events, a combined methodology based on a heat wave identification technique, multivariate analysis (PCA, and regression analysis was applied. The results highlight that the role of relative humidity decreases as the severity level of heat waves increases. Moreover, the combination of temperatures and daily barometric pressure range (DPR has been

  6. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Young In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Myoung Jun; Lee, Hee Joon [School of Mechanical Eng., Kookmin University, Seoul (Korea, Republic of)

    2014-10-15

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer

  7. Process and device for determining the effect of river water heating by waste heat on its temperature characteristics

    International Nuclear Information System (INIS)

    Pietzsch, L.; Kauer, H.; Lautersack, K.

    1979-01-01

    It is proposed to use measurements for determining the effect of heating river water by introducing waste heat from industrial plants or power-stations, instead of deriving the effect from calculations. A suitable method of measurement is proposed and discussed. (UWI) 891 HP/UWI 892 CKA [de

  8. Self-Heating Effects In Polysilicon Source Gated Transistors

    Science.gov (United States)

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  9. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  10. Anomalous properties of heat diffusion in living tissue caused by branching artery network. Qualitative description

    OpenAIRE

    Lubashevsky, I. A.; Gafiychuk, V. V.; Datsko, B. Y.

    2002-01-01

    We analyze the effect of blood flow through large arteries of peripheral circulation on heat transfer in living tissue. Blood flow in such arteries gives rise to fast heat propagation over large scales, which is described in terms of heat superdiffusion. The corresponding bioheat heat equation is derived. In particular, we show that under local strong heating of a small tissue domain the temperature distribution inside the surrounding tissue is affected substantially by heat superdiffusion.

  11. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  12. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    International Nuclear Information System (INIS)

    Nicolai, Ph.; Busquet, M.; Schurtz, G.

    2000-01-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  13. An experimental study of high heat flux removal by shear-driven liquid films

    Directory of Open Access Journals (Sweden)

    Zaitsev Dmitry

    2017-01-01

    Full Text Available Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films, are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems.

  14. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    Science.gov (United States)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  15. Supply of Prague with heat from a nuclear heat source

    International Nuclear Information System (INIS)

    Poul, F.

    1976-01-01

    The proposals are discussed of supplying Prague, the Czechoslovak Capital, with nuclear reactor-generated heat energy. The proposals meet the requirements of the general urban plan of development. The first nuclear heating plant is to be sited in the Kojetice locality, in the northern Prague suburb. It will be commissioned by 1984 and 1985. It is estimated that the maximum heat output in form of hot water will be 821 MW. By 1995 the construction of the second nuclear heating plant should be started southeast or east of Prague. The connection of these two nuclear plants to the hot water mains together with other conventional heating plants will secure the heat supply for Prague and its new housing estates and industrial works. (Oy)

  16. Brain mediators of the effects of noxious heat on pain.

    Science.gov (United States)

    Atlas, Lauren Y; Lindquist, Martin A; Bolger, Niall; Wager, Tor D

    2014-08-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. Although useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this study, we used multi-level mediation analysis to identify brain mediators of pain--regions in which trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across 4 levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including the following: somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and 2 networks co-localized with "default mode" regions in which stimulus intensity-related decreases mediated increased pain. We also identified "thermosensory" regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  17. Numerical investigations of opposing mixed convection heat transfer in vertical flat channel 2. Vortex flow in case of symmetrical heating

    International Nuclear Information System (INIS)

    Sirvydas, A.; Poskas, R.

    2006-01-01

    We present the results on numerical investigation of the local opposing mixed convection heat transfer in a vertical flat channel with symmetrical heating at low Reynolds numbers. Numerical two-dimensional simulation was performed for the same channel and for the same conditions as in the experiment using the FLUENT 6.1 code. The unsteady flow investigations were performed in airflow for the experimental conditions at the Reynolds number 2130 and Grashof number 6.2* 10 8 . Quasi-steady flow investigations were performed for two Reynolds numbers (2130 and 4310) and the Grashof number up to 3.1*10 9 in order to simulate the buoyancy effect on the flow structure. In both steady and quasi-steady modelling cases the results demonstrated that under the high buoyancy effect the chequerwise local circular flow took place near the heated walls. This made velocity profiles asymmetrical and caused pulsations of the wall temperature. Wall temperature had a pulsatory character, however, the resulting averaged values correlated rather well with experimental data for steady and quasi-steady cases for Re in = 2130. For Re in = 4310, the resulting averaged values for x/d e ≤25 correlated rather well with experimental data. When x/d e > 25, the difference between the experimental and the calculated wall temperature was increasing, increasing, possibly due to a steady flow and heat transfer modelling. (author)

  18. Substituting natural gas heating for electric heating: assessment of the energy and environmental effects in Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.; Sy, E.; Gharghouri, P.

    1996-01-01

    A study was conducted to find practical ways to reduce Ontario's energy consumption and environmental emissions. A major portion of the study focused on the advantages of cogeneration in certain regions and sectors of Ontario. Substituting direct fuel heating with natural gas for electric heating was the principal recommendation. Results of a technical analysis of the effects of substituting electric heating with natural gas heating were described. One of the benefits of this substitution would be reduced fuel energy requirements for direct heating, relative to the two-step process of electricity generation followed by electric heating. It was suggested that natural gas should still be used for electricity generation because natural gas has many advantages as an electricity supply option including reductions in coal and uranium use and related emissions. It was recommended that developers and designers of energy systems seriously consider this option. 33 refs., 2 tabs., 4 figs

  19. Ecological solid fuels, effective heating devices for communal management and their testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kubica, K.

    1995-12-31

    The national balance of primary energy consumption is almost 90% based upon coal. Coal is used not only in electricity production, but also in the communal sector - in heating facilities comprising chiefly local boiler houses and private households.

  20. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  1. Magnetic properties of atmospheric PMx in a small settlement during heating and non-heating season

    Science.gov (United States)

    Petrovsky, E.; Kotlik, B.; Zboril, R.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10, collected over 32-48 hours in a small settlement in south Bohemia during heating and non-heating season. The site is rather remote, with negligible traffic and industrial contributions to air pollution. Thus, the suggested seasonal effect should be dominantly due to local (domestic) heating, burning wood or coal. In our contribution we show typical differences in PMx concentration, which is much higher in the winter (heating) sample, accompanied by SEM analyses and magnetic data oriented on concentration and grain-size distribution of magnetite/maghemite particles. While concentration of Fe-oxides does not vary that much, significant seasonal differences were observed in composition and grain-size distribution, reflecting different sources of the dust particles.

  2. Effects of Simulated Heat Waves on Cardiovascular Functions in Senile Mice

    Directory of Open Access Journals (Sweden)

    Xiakun Zhang

    2014-08-01

    Full Text Available The mechanism of the effects of simulated heat waves on cardiovascular disease in senile mice was investigated. Heat waves were simulated in a TEM1880 meteorological environment simulation chamber, according to a heat wave that occurred in July 2001 in Nanjing, China. Eighteen senile mice were divided into control, heat wave, and heat wave BH4 groups, respectively. Mice in the heat wave and heat wave BH4 groups were exposed to simulated heat waves in the simulation chamber. The levels of ET-1, NO, HSP60, SOD, TNF, sICAM-1, and HIF-1α in each group of mice were measured after heat wave simulation. Results show that heat waves decreased SOD activity in the myocardial tissue of senile mice, increased NO, HSP60, TNF, sICAM-1, and HIF-1α levels, and slightly decreased ET-1 levels, BH4 can relieve the effects of heat waves on various biological indicators. After a comprehensive analysis of the experiments above, we draw the followings conclusions regarding the influence of heat waves on senile mice: excess HSP60 activated immune cells, and induced endothelial cells and macrophages to secrete large amounts of ICAM-1, TNF-α, and other inflammatory cytokines, it also activated the inflammation response in the body and damaged the coronary endothelial cell structure, which increased the permeability of blood vessel intima and decreased SOD activity in cardiac tissues. The oxidation of lipoproteins in the blood increased, and large amounts of cholesterol were generated. Cholesterol penetrated the intima and deposited on the blood vessel wall, forming atherosclerosis and leading to the occurrence of cardiovascular disease in senile mice. These results maybe are useful for studying the effects of heat waves on elderly humans, which we discussed in the discussion chapter.

  3. Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts

    Science.gov (United States)

    Zhang, N.

    2017-12-01

    Cool roofs and green roofs are two popular methods to mitigate urban heat island and improve urban climate. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River Delta, China is investigated using the WRF (Weather Research and Forecasting) model coupled with a physically based urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing roof albedo to 0.7 caused a similar near-surface air temperature decrease as 75% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using the regional effect index. The regional effect could be found in both near-surface air temperature and surface specific/relative humidity when the percentage of roofs covered with high albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.

  4. Thermal effect of a thermoelectric generator on parallel microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution...... in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied...... on the hot surface of the TEG. By considering the maximum temperature limitation for Bi_2 Te_3 material and using the microchannel heat sink for cooling down the TEG system, an optimum pumping power is achieved. The results are in a good agreement with the previous experimental and theoretical studies....

  5. Atomic size and local order effects on the high temperature strength of binary Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abaspour, Saeideh, E-mail: s.abaspour78@gmail.com [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia); Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland (Australia); Zambelli, Victor [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia); Dargusch, Matthew [Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland (Australia); Cáceres, Carlos H. [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia)

    2016-09-15

    The solid solution strengthening introduced by Ca (0.6 and 0.9 at%) and Sn 0.5–2.5 at%) was studied through tensile, compression and stress relaxation tests at room temperature, 373 K (100 °C) and 453 K (180 °C) on solution heat-treated and quenched specimens and compared with existing data for binary alloys containing Ca, Sn, Y, Gd, Nd, Zn and Al as well as for AZ91 alloy. At room temperature the solution-hardening rate introduced by Ca and Sn was much higher than that of Al, matching those of Y, Gd and Zn. Calcium also reduced the tension/compression asymmetry. At high temperature Ca effectively prevented stress relaxation, nearly matching Y, Gd and Nd. Tin was less effective, but still outperformed Al and AZ91 at low stresses. The effects at room and high temperature introduced by Ca and Sn appeared consistent with the presence of short-range order, in line with those introduced by Y, Nd, Gd and Zn. The larger than Mg atom size of Ca, Nd, Gd and Y can be expected to intensify the local order by strengthening the atomic bonds through its effects on the local electron density, accounting for their greater strengthening at high temperature. For given difference in atomic size, the effects on the local order are expected to be lesser for smaller sized atoms like Sn and Zn, hence their more subdued effects.

  6. Effects of Ohmic Heating on Microbial Counts and Denaturatiuon of Proteins in Milk

    OpenAIRE

    SUN, Huixian; KAWAMURA, Shuso; HIMOTO, Jun-ichi; ITOH, Kazuhiko; WADA, Tatsuhiko; KIMURA, Toshinori

    2008-01-01

    The aim of this study was to compare the inactivation effects of ohmic heating (internal heating by electric current) and conventional heating (external heating by hot water) on viable aerobes and Streptococcus thermophilus 2646 in milk under identical temperature history conditions. The effects of the two treatments on quality of milk were also compared by assessing degrees of protein denaturation in raw and sterilized milk (raw milk being sterilized by ohmic heating or conventional heating)...

  7. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    Science.gov (United States)

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  8. A finite volume method for cylindrical heat conduction problems based on local analytical solution

    KAUST Repository

    Li, Wang

    2012-10-01

    A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

  9. A finite volume method for cylindrical heat conduction problems based on local analytical solution

    KAUST Repository

    Li, Wang; Yu, Bo; Wang, Xinran; Wang, Peng; Sun, Shuyu

    2012-01-01

    A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

  10. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  11. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  12. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  13. Experimental and theoretical investigations on condensation heat transfer at very low pressure to improve power plant efficiency

    International Nuclear Information System (INIS)

    Berrichon, J.D.; Louahlia-Gualous, H.; Bandelier, Ph.; Bariteau, N.

    2014-01-01

    Highlights: • Theoretical model for condensation heat transfer at very low pressure is developed using only one iterative loop. • Experimental results on steam and air steam condensation heat transfer at very low pressure are presented. • The developed model gives the good predictions for local condensation heat transfer at low pressure. • A maximal deterioration of 50% in condensation heat transfer is obtained at low pressure for air fraction of 4%. • A new correlation including effect of a wavy film surface for steam condensation at low pressure is suggested. - Abstract: This paper presents experimental investigation on the influence of very low pressure on local and average condensation heat transfer in a vertical tube. Furthermore, this paper develops an analytical study for film condensation heat transfer coefficient in the presence of non-condensable gas inside a vertical tube. The condensate film thickness is calculated for each location in a tube using mass and heat transfer analogy. The effects of interfacial shear stress and waves on condensate film surface are included in the model. The comparative studies show that the present model well predicts the experimental data of Khun et al. [1]for local condensation of steam air mixture at high pressure. Different correlations defined for condensation heat transfer are evaluated. It is found that the correlations of Cavallini and Zecchin [2] and Shah [3] are the closest to the calculated steam condensation local heat transfer coefficient. The model gives a satisfactory accuracy with the experimental results for condensation heat transfer at very low pressure. The mean deviation between the predictions of the theoretical model with the measurements for pure saturated vapor is 12%. Experimental data show that the increase of air fraction to 4% deteriorates condensation heat transfer at low pressure up to 50%

  14. Coupled thermo-capillary and buoyancy convection in a liquid layer locally heated on its free surface

    International Nuclear Information System (INIS)

    Favre, E.

    1997-01-01

    Coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas, which changes drastically the heat and mass transfer across the liquid layer. Two experiments are considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow looking like petals or rays appears when the aspect ratio length/depth is small, and like concentric rings in the case of large values of the aspect ratio. The lateral confinement selects the azimuthal length wave. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be 'weak', even for the largest values of the Marangoni number (Ma ≅ 1.3 * 10 5 ). In the case of mercury, the thermo-capillary effect is reduced to zero, due to impurities at the surface, which have special trajectories we describe and compare to a simpler experiment. The only buoyancy forces induces an un-stationary, weakly turbulent flow as soon as the heating power exceeds 4 W (≅ 4.5 * 10 3 , calculated with h = 1 mm). The last part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number, the buoyancy force, with the help of the literature. Results concerning heat transfer, especially the exponent of the law Nusselt number vs. heating power, are compared with available data. (author) [fr

  15. Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2007-01-01

    Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.

  16. Urban heat islands in the subsurface of German cities

    Science.gov (United States)

    Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.

    2012-04-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a

  17. The effect of heat generation in inclined slats on the natural convective heat transfer from an isothermal heated vertical plate

    International Nuclear Information System (INIS)

    Oosthuizen, P.H.; Sun, L.; Naylor, D.

    2003-01-01

    Natural convective heat transfer from a wide heated vertical isothermal plate with adiabatic surfaces above and below the heated surface has been considered. There are a series of equally spaced vertical thin, flat surfaces (termed 'slats') near the heated surface, these surfaces being, in general, inclined to the heated surface. There is, in general, a uniform heat generation in the slats. The slats are pivoted about their centre-point and thus as their angle is changed, the distance of the tip of the slat from the plate changes. The situation considered is an approximate model of a window with a vertical blind, the particular case where the window is hotter than the room air being considered. The heat generation in the slats in this situation is the result of solar radiation passing through the window and falling on and being absorbed by the slats of the blind. The flow has been assumed to be laminar and steady. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations have been written in dimensionless form and the resulting dimensionless equations have been solved using a commercial finite-element package. The solution has the following parameters: (1) the Rayleigh number (2) the Prandtl number (3) the dimensionless heat generation rate in the slats per unit frontal area (4) the dimensionless distance of the slat center point (the pivot point) from the surface (5) the dimensionless slat size (6) the dimensionless slat spacing (7) the angle of inclination of the slats. Because of the application that motivated the study, results have only been obtained for a Prandtl number of 0.7. The effect of the other dimensionless variables on the mean dimensionless heat transfer rate from the heated vertical surface has been examined. (author)

  18. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Directory of Open Access Journals (Sweden)

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  19. Heat transfer and thermodynamic performance of convective–radiative cooling double layer walls with temperature-dependent thermal conductivity and internal heat generation

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2015-01-01

    Highlights: • First and second laws of thermodynamics have been investigated in a composite wall. • Convective–radiative heat transfer is assumed on both surfaces. • Optimum interface location is calculated to minimize the total entropy generation rate. • Thermal conductivities ratio has great effects on the temperature and entropy generation. - Abstract: Composite geometries have numerous applications in industry and scientific researches. This work investigates the temperature distribution, and local and total entropy generation rates within two-layer composite walls using conjugate convection and radiation boundary conditions. Thermal conductivities of the materials of walls are assumed temperature-dependent. Temperature-dependent internal heat generations are also incorporated into the modeling. The differential transformation method (DTM) is used as an analytical technique to tackle the highly nonlinear system of ordinary differential equations. Thereafter, the local and total entropy generation rates are calculated using the DTM formulated temperature distribution. An exact analytical solution, for the temperature-independent model without radiation effect, is also derived. The correctness and accuracy of the DTM solution are checked against the exact solution. After verification, effects of thermophysical parameters such as location of the interface, convection–conduction parameters, radiation–conduction parameters, and internal heat generations, on the temperature distribution, and both local and total entropy generation rates are examined. To deliver the minimum total entropy generation rate, optimum values for some parameters are also found. Since composite walls are widely used in many fields, the abovementioned investigation is a beneficial tool for many engineering industries and scientific fields to minimize the entropy generation, which is the exergy destruction, of the system

  20. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2014-01-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate......-treated flies. Several hsp70 probe sets were up-regulated 1.7–2-fold in the mildly stressed flies weeks after the last heat treatment (P shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We...... conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life....

  1. ECRH and electron heat transport in tokamaks

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Dumont, R.J.

    2003-01-01

    It has been observed during the ECRH experiments in tokamaks that the shape of the electron temperature profile in stationary regimes is not very sensitive to the ECRH power deposition i.e. the temperature profile remains peaked at the center even though the ECRH power deposition is off-axis. Various models have been invoked for the interpretation of this profile resilience phenomenon: the inward heat pinch, the critical temperature gradient, the Self-Organized Criticality, etc. Except the pinch effect, all of these models need a specific form of the diffusivity in the heat transport equation. In this work, our approach is to solve a simplified time-dependent heat transport equation analytically in cylindrical geometry. The features of this analytical solution are analyzed, in particular the relationship between the temperature profile resilience and the Eigenmode of the physical system with respect to the heat transport phenomenon. Finally, applications of this analytical solution for the determination of the transport coefficient and the polarization of the EC waves are presented. It has been shown that the solution of the simplified transport equation in a finite cylinder is a Fourier-Bessel series. This series represents in fact a decomposition of the heat source in Eigenmode, which are characterized by the Bessel functions of order 0. The physical interpretation of the Eigenmodes is the following: when the heat source is given by a Bessel function of order 0, the temperature profile has exactly the same form as the source at every time. At the beginning of the power injection, the effectiveness of the temperature response is the same for each Eigenmode, and the response in temperature, having the same form as the source, is local. Conversely, in the later phase of the evolution, the effectiveness of the temperature response for each Eigenmode is different: the higher the order, the lower the effectiveness. In this case the response in temperature appears as

  2. Water, heat, and airborne pollutants effects on transpiration of urban trees

    International Nuclear Information System (INIS)

    Wang Hua; Ouyang Zhiyun; Chen Weiping; Wang Xiaoke; Zheng Hua; Ren Yufen

    2011-01-01

    Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered. - Highlights: → Heat, water, pollutants effect on transpiration was evaluated by partitioning method. → Urban tree transpiration was mainly affected by combined effects of these variables. → The heat and water variables affected transpiration of urban trees. → The urban air pollution merely acts as an antagonistic factor. - Heat and water related environmental variables affected transpiration of urban trees and ozone was an added yet minor stress factor.

  3. National conference on centralized heat supply from heat feeders in selected localities

    International Nuclear Information System (INIS)

    1990-05-01

    The proceedings contain 8 contributions, out of which 5 have been inputted in INIS. These deal with centralized heat supply systems, hydraulic and thermal parameters of the hot water distribution systems, and the feasibility of including nuclear sources into the systems. Treated are both actual systems and calculation models. (B.S.)

  4. Entropy Generation Analysis of Natural Convection in Square Enclosures with Two Isoflux Heat Sources

    Directory of Open Access Journals (Sweden)

    S. Z. Nejad

    2017-04-01

    Full Text Available This study investigates entropy generation resulting from natural convective heat transfer in square enclosures with local heating of the bottom and symmetrical cooling of the sidewalls. This analysis tends to optimize heat transfer of two pieces of semiconductor in a square electronic package. In this simulation, heaters are modeled as isoflux heat sources and sidewalls of the enclosure are isothermal heat sinks. The top wall and the non-heated portions of the bottom wall are adiabatic. Flow and temperature fields are obtained by numerical simulation of conservation equations of mass, momentum and energy in laminar, steady and two dimensional flows. With constant heat energy into the cavity, effect of Rayleigh number, heater length, heater strength ratios and heater position is evaluated on flow and temperature fields and local entropy generation. The results show that a minimum entropy generation rate is obtained under the same condition in which a minimum peak heater temperature is obtained.

  5. Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2015-11-01

    T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.

  6. Finite-size effect on optimal efficiency of heat engines.

    Science.gov (United States)

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  7. Research of the Effectiveness of Using Air and Ground Low-grade Heat for Buildings Heating in Different Regions of Russia

    Directory of Open Access Journals (Sweden)

    Vasilyev G.P.

    2016-01-01

    Full Text Available The article presents the results of research on zoning of the Russian Federation based on efficiency of utilization of the low-grade heat of ground and air as well as combinations thereof for heating buildings. When modeling thermal behavior of geothermal HHS in the climatic conditions of various regions of the Russian Federation we considered the effect of long-term recovery of geothermal heat on the thermal behavior of the ground, as well as the effect of the ground pore water phase transitions on the operational efficiency of geothermal heat pump heating systems. The zoning took into account temperature drop of the ground mass caused by many years of heat recovery from the ground. Ground temperatures expected for the 5th year of geothermal HHS operation were used as design ground mass temperatures.

  8. The thermodynamic meaning of local temperature of nonequilibrium open quantum systems

    OpenAIRE

    Ye, LvZhou; Zheng, Xiao; Yan, YiJing; Di Ventra, Massimiliano

    2016-01-01

    Measuring the local temperature of nanoscale systems out of equilibrium has emerged as a new tool to study local heating effects and other local thermal properties of systems driven by external fields. Although various experimental protocols and theoretical definitions have been proposed to determine the local temperature, the thermodynamic meaning of the measured or defined quantities remains unclear. By performing analytical and numerical analysis of bias-driven quantum dot systems both in ...

  9. Osmotic and Heat Stress Effects on Segmentation.

    Directory of Open Access Journals (Sweden)

    Julian Weiss

    Full Text Available During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process.

  10. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Team, JET [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

    2016-02-09

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The higher T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating

  11. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  12. Dynamic study of steam generation from low-grade waste heat in a zeolite–water adsorption heat pump

    International Nuclear Information System (INIS)

    Xue, Bing; Meng, Xiangrui; Wei, Xinli; Nakaso, Koichi; Fukai, Jun

    2015-01-01

    A novel zeolite–water adsorption heat pump system based on a direct-contact heat exchange method to generate steam from low-grade waste gas and water has been proposed and examined experimentally. Superheated steam (200 °C, 0.1 MPa) is generated from hot water (70–80 °C) and dry air (100–130 °C). A dynamic model for steam generation process is developed to describe local mass and heat transfer. This model features a three-phase calculation and a moving water–gas interface. The calculations are carried out in the zeolite–water and zeolite–gas regions. Model outputs are compared with experimental results for validation. The thermal response inside the reactor and mass of steam generated is well predicted. Numerical results show that preheat process with low-temperature steam is an effective method to achieve local equilibrium quickly, thus generation process is enhanced by prolonging the time and increasing mass of the generated steam. Besides, high-pressure steam generation up to 0.5 MPa is possible from the validated dynamic model. Future work could be emphasized on enhancing high-pressure steam generation with preheat process or mass recovery operation

  13. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    Science.gov (United States)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the

  14. Effect of heating scheme on SOL width in DIII-D and EAST

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-08-01

    Full Text Available Joint DIII-D/EAST experiments in the radio-frequency (RF heated H-mode scheme with comparison to that of neutral beam (NB heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broader SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. The joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH H-mode plasmas.

  15. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  16. Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST

    International Nuclear Information System (INIS)

    Kang, Myeong Gie; Chun, Moon Hyun

    1996-01-01

    In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q v ersus ΔT has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q ≤ 50kW/m 2 ) and high heat fluxes (q > 50kW/m 2 ) depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q , one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness (ε) and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient (h b ) is obtained as a function of heat flux (q ) only. 9 figs., 4 tabs., 15 refs. (Author)

  17. Avoided heat-related mortality through climate adaptation strategies in three US cities.

    Science.gov (United States)

    Stone, Brian; Vargo, Jason; Liu, Peng; Habeeb, Dana; DeLucia, Anthony; Trail, Marcus; Hu, Yongtao; Russell, Armistead

    2014-01-01

    Heat-related mortality in US cities is expected to more than double by the mid-to-late 21st century. Rising heat exposure in cities is projected to result from: 1) climate forcings from changing global atmospheric composition; and 2) local land surface characteristics responsible for the urban heat island effect. The extent to which heat management strategies designed to lessen the urban heat island effect could offset future heat-related mortality remains unexplored in the literature. Using coupled global and regional climate models with a human health effects model, we estimate changes in the number of heat-related deaths in 2050 resulting from modifications to vegetative cover and surface albedo across three climatically and demographically diverse US metropolitan areas: Atlanta, Georgia, Philadelphia, Pennsylvania, and Phoenix, Arizona. Employing separate health impact functions for average warm season and heat wave conditions in 2050, we find combinations of vegetation and albedo enhancement to offset projected increases in heat-related mortality by 40 to 99% across the three metropolitan regions. These results demonstrate the potential for extensive land surface changes in cities to provide adaptive benefits to urban populations at risk for rising heat exposure with climate change.

  18. Avoided heat-related mortality through climate adaptation strategies in three US cities.

    Directory of Open Access Journals (Sweden)

    Brian Stone

    Full Text Available Heat-related mortality in US cities is expected to more than double by the mid-to-late 21st century. Rising heat exposure in cities is projected to result from: 1 climate forcings from changing global atmospheric composition; and 2 local land surface characteristics responsible for the urban heat island effect. The extent to which heat management strategies designed to lessen the urban heat island effect could offset future heat-related mortality remains unexplored in the literature. Using coupled global and regional climate models with a human health effects model, we estimate changes in the number of heat-related deaths in 2050 resulting from modifications to vegetative cover and surface albedo across three climatically and demographically diverse US metropolitan areas: Atlanta, Georgia, Philadelphia, Pennsylvania, and Phoenix, Arizona. Employing separate health impact functions for average warm season and heat wave conditions in 2050, we find combinations of vegetation and albedo enhancement to offset projected increases in heat-related mortality by 40 to 99% across the three metropolitan regions. These results demonstrate the potential for extensive land surface changes in cities to provide adaptive benefits to urban populations at risk for rising heat exposure with climate change.

  19. Local effects in flow-accelerated corrosion wall thinning

    International Nuclear Information System (INIS)

    Pietralik, J.

    2006-01-01

    'Full text:' There is enough evidence that flow conditions play the dominant role locally in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, which can be low or high, flow conditions determine the local distribution of wall thinning. This relationship is not new and recent accurate measurements of FAC rate of a plant feeder bend confirm that the relationship between flow local conditions expressed by local mass transfer coefficient and FAC rate in CANDU feeder bends is close. There is also a lot of other direct and indirect, experimental and laboratory evidence about this relationship. This knowledge can be useful for minimizing inspection, predicting new locations for inspection, predicting the location with the highest FAC rate for a given piping component, e.g., feeder element, and determining what components or feeders and to what extent they should be replaced. It applies also to heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local flow parameters. For FAC, the most important flow parameter is mass transfer coefficient. The mass transfer coefficient describes the intensity of the transport of corrosion products from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate. It could also be used in planning experiments because time-varying surface roughness can explain the time-dependence of FAC rates. The paper presents plant and laboratory evidence about the relationship. In addition, it shows correlations for mass transfer coefficient in components that are highly susceptible to FAC. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)

  20. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    2012-01-01

    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  1. Shear flow beneath oceanic plates: Local nonsimilarity boundary layers for olivine rheology

    International Nuclear Information System (INIS)

    Yuen, D.A.; Tovish, A.; Schubert, G.

    1978-01-01

    The principle of local similarity, which has been used to model the two-dimensional boundary layers in the oceanic upper mantle, permits calculation of the temperature, velocity, and stress fields with essentially analytic techniques. Finite difference numerical methods are hard pressed to resolve the detail required by the large variation of viscosity between the lithosphere and the asthenosphere. In this paper the local similarity approximation has been justified by quantitatively evaluating the effect of nonsimilarity due to viscous heating, nonlinear temperature- and pressure-dependent rheology, buoyancy, adiabatic cooling, etc. Nonsimilar effects produce only small modifications of the locally similar boundary layers; important geophysical observables such as surface heat flux and ocean floor topography are given to better than 10% by the locally similar solution. A posteriori evaluations of the term neglected in the boundary layer simplification of the complete equations have been conducted on the locally similar temperature and velocity profiles close to the spreading ridge. The boundary layer models are valid to depths of 100 km at 3 m.y. and 10 km at 0.3 m.y

  2. How Danish communal heat planning empowers municipalities and benefits individual consumers

    DEFF Research Database (Denmark)

    Chittum, Anna; Østergaard, Poul Alberg

    2014-01-01

    Danish municipal heat planning empowers municipalities to implement locally appropriate energy solutions that are the best fit for the locality as a whole and the individual consumers served. Supportive policies and actions at the national and local levels have encouraged heat planning that confe...... locations, the practical aspects of power sharing, socio-economic cost–benefit analyses, and communal decision-making may inform approaches to local heat planning around the world....

  3. Effect of heat treatment on structure and magnetic properties

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  4. Conduction block of mammalian myelinated nerve by local cooling to 15–30°C after a brief heating

    Science.gov (United States)

    Zhang, Zhaocun; Lyon, Timothy D.; Kadow, Brian T.; Shen, Bing; Wang, Jicheng; Lee, Andy; Kang, Audry; Roppolo, James R.; de Groat, William C.

    2016-01-01

    This study aimed at understanding thermal effects on nerve conduction and developing new methods to produce a reversible thermal block of axonal conduction in mammalian myelinated nerves. In 13 cats under α-chloralose anesthesia, conduction block of pudendal nerves (n = 20) by cooling (5–30°C) or heating (42–54°C) a small segment (9 mm) of the nerve was monitored by the urethral striated muscle contractions and increases in intraurethral pressure induced by intermittent (5 s on and 20 s off) electrical stimulation (50 Hz, 0.2 ms) of the nerve. Cold block was observed at 5–15°C while heat block occurred at 50–54°C. A complete cold block up to 10 min was fully reversible, but a complete heat block was only reversible when the heating duration was less than 1.3 ± 0.1 min. A brief (block at 50–54°C or 15 min of nonblock mild heating at 46–48°C significantly increased the cold block temperature to 15–30°C. The effect of heating on cold block fully reversed within ∼40 min. This study discovered a novel method to block mammalian myelinated nerves at 15–30°C, providing the possibility to develop an implantable device to block axonal conduction and treat many chronic disorders. The effect of heating on cold block is of considerable interest because it raises many basic scientific questions that may help reveal the mechanisms underlying cold or heat block of axonal conduction. PMID:26740534

  5. Enhanced heat rectification effect in a quantum dot connected to ferromagnetic leads

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Feng, E-mail: chifeng@semi.ac.cn [School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023 (China); College of Engineering, Bohai University, Jinzhou 121013 (China); Sun, Lian-Liang [College of Science, North China University of Technology, Beijing 100041 (China); Zheng, Jun; Guo, Yu [College of Engineering, Bohai University, Jinzhou 121013 (China)

    2015-06-15

    We study theoretically the heat generation by electric current in an interacting single level quantum-dot connected to ferromagnetic leads. The heat is transferred between the dot and the lattice vibration of its host material (phonon reservoir). Particular attention is paid on the heat's rectification effect achieved by properly arranging the dot level and the bias voltage. We find that this effect is remarkably enhanced when the two leads' magnetic moments are in antiparallel configuration, i.e., the magnitude of the heat generation is reduced (amplified) in the negative (positive) bias regime as compared to the cases of parallel configuration and nonmagnetic leads. The rectification effect is even enhanced when one of the lead's spin polarization approaches to unit, during which the negative differential of the heat generation is weakened due to the change of the spin-dependent electron occupation numbers on the dot. The found results may be used for thermal transistor in the newly emerged research subject of phononics. - Highlights: • Heat flow between electrons and phonons is controlled by interaction between them. • A thermal diode or rectifier is proposed to work under electrical bias. • The heat rectification effect can be enhanced by the leads' ferromagnetism.

  6. A cost-effective evaluation of biomass district heating in rural communities

    International Nuclear Information System (INIS)

    Hendricks, Aaron M.; Wagner, John E.; Volk, Timothy A.; Newman, David H.; Brown, Tristan R.

    2016-01-01

    Highlights: • Develop a cost-effective model using secondary data examining delivering heat through Biomass District Heating (BDH). • Eight of ten rural villages studied could cost-effectively deliver heat through BDH below the 2013 price of heating oil. • 80% of the annual cost of BDH was attributable to capital expenses. • Erratic fuel oil prices substantially impact future feasibility. • Village level feasibility is highly-influenced by the presence of large heat demanders. - Abstract: The economic feasibility of Biomass District Heating (BDH) networks in rural villages is largely unknown. A cost-effective evaluation tool is developed to examine the feasibility of BDH in rural communities using secondary data sources. The approach is unique in that it accounts for all the major capital expenses: energy center, distribution network, and energy transfer stations, as well as biomass procurement. BDH would deliver heat below #2 fuel oil in eight of the ten rural study villages examined, saving nearly $500,000 per year in heating expenses while demanding less than 5% of the forest residues sustainably available regionally. Capital costs comprised over 80% of total costs, illuminating the importance of reaching a sufficient heat density. Reducing capital costs by 1% lowers total cost by $93,000 per year. Extending capital payment period length five years or lowering interest rates has the next highest influence decreasing delivered heat price 0.49% and 0.35% for each 1% change, respectively. This highlights that specific building heat is a strong determinant of feasibility given the relative influence of high-demanding users on the overall village heat-density. Finally, we use a stochastic analysis projecting future #2 fuel oil prices, incorporating historical variability, to determine the probability of future BDH feasibility. Although future oil prices drop below the BDH feasibility threshold, the villages retain a 22–53% probability of feasibility after

  7. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  8. Public crowdsensing of heat waves by social media data

    Science.gov (United States)

    Grasso, Valentina; Crisci, Alfonso; Morabito, Marco; Nesi, Paolo; Pantaleo, Gianni

    2017-07-01

    Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015). Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans) against heat hazards have been already implemented in some WHO (World Health Organization) European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM) offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets). This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM), the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.

  9. Perceived heat stress and health effects on construction workers.

    Science.gov (United States)

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  10. `Green heat` in a UK city

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    This brief article describes the Sheffield `green heat` scheme which utilises heat from a local waste incinerator to operate an independent district heating scheme within Sheffield city centre. Standby and peak overload heat generation capacity is provided by four boiler plants ensuring integrity of supply. The benefits of the scheme and future developments are outlined. (UK)

  11. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  12. Effect of Heat Treatment on the Lycopene Content of Tomato Puree ...

    African Journals Online (AJOL)

    Effect of Heat Treatment on the Lycopene Content of Tomato Puree. MI Mohammed, DI Malami. Abstract. Lycopene is a powerful antioxidant. Epidemiological studies have associated its consumption with numerous health benefits. In this study the effects of heating on lycopene were investigated by exposing tomato ...

  13. Thermo capillary and buoyancy convection in a fluid locally heated on its free surface; Convection thermocapillaire et thermogravitaire dans un fluide chauffe localement sur sa surface libre

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.

    1997-09-26

    coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.

  14. Precooling and Warm-Up Effects on Time Trial Cycling During Heat Stress.

    Science.gov (United States)

    Al-Horani, Ramzi A; Wingo, Jonathan E; Ng, Jason; Bishop, Phillip; Richardson, Mark

    2018-02-01

    Heat stress limits endurance exercise performance. Combining precooling and warm-up prior to endurance exercise in the heat may exploit the benefits of both strategies while avoiding the potential negative consequences of each. This study tested the hypothesis that precooling combined with warm-up improves time trial cycling performance in the heat relative to either treatment alone. Nine healthy men completed three 16.1-km time trials in 33°C after: 1) precooling (ice slurry and ice vest) alone (PREC); 2) warm-up alone (WU); or 3) PREC plus WU (COMBO). Tre was lower after PREC compared to WU throughout exercise and lower than COMBO for the first 12 km; COMBO was lower than WU for the first 4 km. Tsk during PREC was lower than COMBO and WU for the first 8 km, and lower in COMBO than WU for the first 4 km. PREC lowered pre-exercise heart rate relative to COMBO and WU (68 ± 10, 106 ± 12, 101 ± 13 bpm, respectively), but it increased similarly during exercise. Local sweat rate (SR) was lower in PREC (0.1 ± 0.1 mg · cm-2 · min-1) than COMBO (0.5 ± 0.2 mg · cm-2 · min-1) and WU (0.6 ± 0.2 mg · cm-2 · min-1) for the first 4 km. Treatments did not differentially affect performance (PREC = 31.9 ± 1.9 min, COMBO = 32.6 ± 2.7 min, WU = 33.1 ± 2.9 min). We conclude precooling alone or with warm-up mitigated thermal strain during exercise, but did not significantly improve 16.1-km cycling time trial performance.Al-horani RA, Wingo JE, Ng J, Bishop P, Richardson M. Precooling and warm-up effects on time trial cycling during heat stress. Aerosp Med Hum Perform. 2018; 89(2):87-93.

  15. Effect of heat transfer in the fog region during core reflooding

    International Nuclear Information System (INIS)

    Rouai, N. M.; El-sawy, H. M.

    1993-01-01

    Core reflooding following a loss of coolant accident (LOCA) in a pressurized water reactor (PWR) received considerable attention during the past thirty years. In this paper a one dimensional model is used to study the effect of the heat transfer in the fog region ahead of the wet front reflooding rate of a cylindrical fuel element following a LOCA in a PWR. The heat conduction equation in the cladding is solved in coordinate system moving with the wet front under a variety of condition to investigate the effects of such parameters as the initial cladding surface temperature, the decay heat generation rate in the fuel and the mode of heat transfer prevailing. The cladding surface is divided into three axial regions according to the mechanism of heat transfer, namely, a boiling region behind the wet front, a fog region ahead of the wet front and a dry region further downstream of the wet front. The effect of changing the heat transfer coefficient in the fog region on the rewetting rate and on the fog length is investigated. The results of this simple model show that increasing the heat transfer in the fog region increases the rewetting velocity and consequently decreases the fog length. The results are in general agreement with a more accurate two-dimensional model and experimental data. (author)

  16. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  17. Analysis of disturbances in a hypersonic boundary layer on a cone with heating/cooling of the nose tip

    Science.gov (United States)

    Bountin, Dmitry; Maslov, Anatoly; Gromyko, Yury

    2018-05-01

    Experimental results of the influence of local heating/cooling on the development of hypersonic boundary layer disturbances are reported. Local heating/cooling is applied at the cone nose tip. The experiments are carried out at the Mach number M = 5.95, stagnation temperature T0 = 360-418 K, and stagnation pressure P0 = 3.7-45 atm. The unit Reynolds number is varied in the interval Re1 = (4.5-63) × 106 m-1. The investigations are conducted in the boundary layer on a cone with an apex half-angle of 7° and varied bluntness radius of the nose tip [R = 0.03 (sharp nose), 0.75, and 1.5 mm] for different values of the local temperature factor. The nose tip is heated by an ohmic heater. Cooling is performed by supplying liquid nitrogen into the internal cavity of the model nose. A comparative analysis of pressure pulsation spectra on the cone surface is performed. It is demonstrated that heating/cooling in the case of a sharp cone leads to flow destabilization/stabilization. The opposite effect is observed for blunted cones: heating/cooling stabilizes/destabilizes the second-mode disturbances. This effect is enhanced by increasing the nose tip bluntness. All the observed effects vanish with distance downstream from the nose tip.

  18. Effect of dry-heating with pectin on gelatinization properties of sweet ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of dry-heating with pectin at different dry heating temperatures, heating times and pH on the gelatinization properties of sweet potato starch. Methods: The gelatinization properties of sweet potato starch - pectin blend were analyzed using a rapid viscosity analyzer (RVA), differential scanning ...

  19. Subchannel analysis and correlation of the Rod Bundle Heat Transfer (RBHT) steam cooling experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.P.; Mohanta, L.; Miller, D.J.; Cheung, F.B. [Pennsylvania State Univ., University Park, PA (United States); Bajorek, S.M.; Tien, K.; Hoxie, C.L. [U.S. Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    2016-07-15

    A subchannel analysis of the steam cooling data obtained in the Rod Bundle Heat Transfer (RBHT) test facility has been performed in this study to capture the effect of spacer grids on heat transfer. The RBHT test facility has a 7 x 7 rod bundle with heater rods and with seven spacer grids equally spaced along the length of the rods. A method based on the concept of momentum and heat transport analogy has been developed for calculating the subchannel bulk mean temperature from the measured steam temperatures. Over the range of inlet Reynolds number, the local Nusselt number was found to exhibit a minimum value between the upstream and downstream spacer grids. The presence of a spacer grid not only affects the local Nusselt number downstream of the grid but also affects the local Nusselt number upstream of the next grid. A new correlation capturing the effect of Reynolds number on the local flow restructuring downstream as well as upstream of the spacer grids was proposed for the minimum Nusselt number. In addition, a new enhancement factor accounting for the effects of the upstream as well as downstream spacer grids was developed from the RBHT data. The new enhancement factor was found to compare well with the data from the ACHILLLES test facility.

  20. Heat transfer effects on the performance of an air standard Dual cycle

    International Nuclear Information System (INIS)

    Hou, S.-S.

    2004-01-01

    There are heat losses during the cycle of a real engine that are neglected in ideal air standard analysis. In this paper, the effects of heat transfer on the net work output and the indicated thermal efficiency of an air standard Dual cycle are analyzed. Heat transfer from the unburned mixture to the cylinder walls has a negligible effect on the performance for the compression process. Additionally, the heat transfer rates to the cylinder walls during combustion are the highest and extremely important. Therefore, we assume that the compression and power processes proceed instantaneously so that they are reversible adiabatics, and the heat losses during the heat rejection process can be neglected. The heat loss through the cylinder wall is assumed to occur only during combustion and is further assumed to be proportional to the average temperature of both the working fluid and the cylinder wall. The results show that the net work output versus efficiency characteristics and the maximum net work output and the corresponding efficiency bounds are strongly influenced by the magnitude of the heat transfer. Higher heat transfer to the combustion chamber walls lowers the peak temperature and pressure and reduces the work per cycle and the efficiency. The effects of other parameters, in conjunction with the heat transfer, including combustion constants, cut-off ratio and intake air temperature, are also reported. The results are of importance to provide good guidance for the performance evaluation and improvement of practical Diesel engines

  1. Market opening and third party access in district heating networks

    International Nuclear Information System (INIS)

    Soederholm, Patrik; Warell, Linda

    2011-01-01

    The purpose of this paper is to analyse the possible effects of introducing TPA in district heating networks by identifying and scrutinizing a number of possible scenarios for increased competition. The analysis builds on a theoretical discussion of economic efficiency in district heating operations, and the possible impacts on consumer prices of a market opening. An important conclusion is that regulated TPA may have small positive effects on competition, and at the same time it can have a negative impact on the possibility to run the integrated district heating operations in a cost-effective manner. This conclusion stems in part from the observation that most district heating networks are local in scope. Moreover, district heating operations are highly interdependent in, for instance, that the level of the return temperature of the water will affect the efficiency of combined heat and power plants. For these reasons, the introduction of the so-called single-buyer model or, perhaps even more preferable, an extended and more transparent producer market could represent more efficient market designs. Moreover, in networks with clear natural monopoly characteristics an ex ante price regulation must be considered. - Research Highlights: →The paper analyses the possible effects of TPA in district heating networks. → Four possible scenarios for increased competition are identified and scrutinized. → A conclusion is that regulated TPA have only small positive effects on competition. → District heating operations are highly interdependent and separation can be costly.

  2. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  3. Effect of heat loads on the plasma facing components of demo

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yu., E-mail: juri.igitkhanov@partner.kit.edu [ITEP, Karlsruhe Institute of Technology (Germany); Fetzer, R. [IHM, Karlsruhe Institute of Technology (Germany); Bazylev, B. [INR, Karlsruhe Institute of Technology (Germany)

    2016-11-01

    Highlights: • Under the DEMO1 stationary operation the nominal power fluxes along the magnetic field at the FW blanket modules is expected about 50 MW/m{sup 2}. • In the current design and averaged incident angle about 3–4.5° (similar to ITER) the engineering power load to the FW is expected within 2.5÷3.9 MW/m{sup 2}. • In the case of the unmitigated Type I ELMs unavoidable in the higher confinement H-mode of operation energy load per ELM is about 20 MJ/m{sup 2} along the field line, arriving at a frequency of 0.8 Hz with deposition time of 0.6 ms per each ELM. - Abstract: In this paper we analyse a thermo-hydraulic performance of the first wall blanket module during the stationary DEMO operation with the edge localized mode (ELM). Heat loads are estimated based on scaling arguments and predictions from the peeling-ballooning ELM model. Effect of parallel heat fluxes intersecting with the first wall panels and avoidance of overheating by inclination of the panels are considered. The material temperatures of the W/EUROFER sandwich type module with water cooling stainless steel tube and Cu alloy compliance embedded into EUROFER is calculated by using the MEMOS code. The calculations were carried out indicating the required geometric parameters as well as the cooling conditions which allow keeping materials temperatures within allowable engineering limits. Effect of inclination of the first wall plates to avoid the misalignment problems is considered.

  4. Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet

    Directory of Open Access Journals (Sweden)

    Kalidas Das

    2016-10-01

    Full Text Available The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge–Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.

  5. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.

    Science.gov (United States)

    Esteban, Maria-Dolores; Conesa, Raquel; Huertas, Juan-Pablo; Palop, Alfredo

    2015-06-01

    Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures. While the heat resistance was hardly reduced when thymol was present in the heating medium, the effect in the recovery medium was greater, reducing the D100 °C values down to one third for B. subtilis and B. cereus when 0.5 mM thymol was added. This effect was dose dependent and was also observed at other heating temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  7. Summer in the City - Assessing and Communicating the Richmond, VA Urban Heat Island to the Public and Policymakers

    Science.gov (United States)

    Hoffman, J. S.; Maurakis, E. G.; Shandas, V.

    2017-12-01

    The local impacts of global climate change are generally underestimated or misunderstood by the public and policymakers as far-off, future problems. However, differential and regional surface warming trends are exacerbated in urban areas due to the radiative properties of impervious surfaces like buildings and roads relative to natural landscapes. Decades of research illustrate that this unnatural radiative imbalance in the built environment gives rise to the well-studied urban heat island effect, whereby air temperatures in urban areas are several degrees warmer than in surrounding non-urbanized areas. In this way, the urban heat island effect presents a unique opportunity to highlight the human influence on Earth systems and at the same time mobilize local community-scale action to mitigate and become resilient to climate change impacts on tangible, experiential time scales. However, public stakeholders, city planners, and policymakers may view the urban heat island effect and its mitigation strategies through varying degrees of climatological, public health, and urban development knowledge and interest. This variation in stakeholder engagement highlights the need for individualized science communication strategies for each audience in order to maximize understanding of the scientific outcomes and tactics for mitigating the urban heat island effect. The City of Richmond, Virginia is currently developing a climate action plan as part of their greenhouse gas emission reduction initiative, RVAgreen 2050, and its recently announced "Richmond 300," a 20-year city development master plan. These initiatives provide the policy backdrop for a public and stakeholder education campaign centered on communicating urban heat island effects and resilience strategies. As such, the Science Museum of Virginia led the city's first urban heat island assessment using citizen science and leveraging a network of local university, non-profit, and city government stakeholders. Here, we

  8. Prediction of strongly-heated gas flows in a vertical tube using explicit algebraic stress/heat-flux models

    International Nuclear Information System (INIS)

    Baek, Seong Gu; Park, Seung O.

    2003-01-01

    This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions

  9. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (laws for thermal transport in nanocircuits.

  10. Environment-friendly heat supply with natural refrigerants. Large heat pumps use industrial waste heat and waste water; Umweltschonende Waermeversorgung mit natuerlichen Kaeltemitteln. Grosswaermepumpen nutzen industrielle Abwaerme und Abwaesser

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-01-15

    Everywhere, where industrial processes occur or coldness is produced, simultaneously heat is produced. While many private houses use geothermal energy or ambient air for the production of heat, waste water and waste heat prove to be optimal energy sources for the industrial need due to higher output temperatures. By means of large heat pumps the residual heat is used for heating or the supply of hot water for example in local heat supply grids and makes an important contribution to climate protection.

  11. Boron-doped nanodiamonds as possible agents for local hyperthermia

    Science.gov (United States)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2-5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1-5 W cm-2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  12. Effect of short-term exercise-heat acclimation on ventilatory and cerebral blood flow responses to passive heating at rest in humans.

    Science.gov (United States)

    Fujii, Naoto; Tsuji, Bun; Honda, Yasushi; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-09-01

    Hyperthermia induces hyperventilation and cerebral hypoperfusion in resting humans. We tested the hypothesis that short-term exercise-heat acclimation would alleviate those effects. Twenty healthy male subjects were divided into two groups that performed exercise training in the heat (TR-HEAT, n = 10) or cold (TR-COLD, n = 10). Before and after the training, the subjects in both groups participated in passive-heat tests at rest. Training was performed at 37°C (TR-HEAT) or 10°C (TR-COLD) and entailed four 20-min bouts of cycling at 50% peak oxygen uptake separated by 10-min recoveries daily for 6 consecutive days. After TR-HEAT, esophageal temperature was lowered when measured before and during passive heating, as was the esophageal temperature threshold for cutaneous active vasodilation, whereas plasma volume was increased (all P heat acclimation were not all induced by TR-COLD (all P > 0.05). TR-HEAT had no significant effect on passive heating-induced increases in minute ventilation, even when evaluated as the esophageal temperature threshold for increases in minute ventilation and the slope relating minute ventilation to esophageal temperature (all P > 0.05). By contrast, TR-HEAT attenuated the passive heating-induced reduction in the cerebral vascular conductance index (middle cerebral artery mean blood velocity/mean arterial pressure) (all P heating (all P > 0.05). These data suggest that in resting heated humans, short-term heat acclimation achieved through moderate-intensity exercise training (i.e., 50% peak oxygen uptake) in the heat does not influence hyperthermia-induced hyperventilation, but it does potentially attenuate cerebral hypoperfusion. Copyright © 2015 the American Physiological Society.

  13. CONVECTION HEAT TRANSFER IN A CHANNEL OF DIFFERENT CROSS SECTION FILLED WITH POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Ahmed A. Mohammad Saleh

    2018-05-01

    Full Text Available A forced convection heat transfer in ducts (circular, triangular, rectangular cross sections and (1m length with hydraulic diameter (0.1m filled with porous media (glass spheres 12 mm diameter is investigated experimentally at constant heat flux from the wall (1070W/m² with Reynolds number range of (12461-2500. Comparison was made between three ducts for local temperature distribution and local Nusselt number. The experimental results showed the effect of Reynolds number and cross section on the temperature profile and local Nusselt number,also empirical correlations for average Nusselt number and Peclet number were obtained for three ducts.

  14. Effects of heat stress on bovine preimplantation embryos produced in vitro.

    Science.gov (United States)

    Sakatani, Miki

    2017-08-19

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress.

  15. Heat transfer model for quenching by submerging

    International Nuclear Information System (INIS)

    Passarella, D N; Varas, F; MartIn, E B

    2011-01-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  16. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  17. Overview of LEI investigations on heat transfer and flow structure in gas-cooled spheres packings and channels

    International Nuclear Information System (INIS)

    Vilemas, J.; Uspuras, E.; Rimkevicius, S.; Kaliatka, A.; Pabarcius, R.

    2002-01-01

    In this paper experimental investigations on heat transfer and hydrodynamics in various gas-cooled channels over wide ranges of geometrical and performance parameters performed at Lithuanian Energy Institute are presented. Overview introduces long-term experience on investigations of local and average heat transfer, hydraulic drag in various types of sphere packings, in smooth, helical tubes and annular channels equipped with smooth/rough or helical inner lubes, such bundle of twisted tubes, as well as turbulent flow structure and the effects of variable physical properties of gas heat carriers on local heat transfer in channels of different cross sections. Lithuanian Energy Institute has accumulated long term experience in the field of heat transfer investigations and has good experimental basis for providing such studies and following analytical analysis. (author)

  18. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  19. Re-evaluating occupational heat stress in a changing climate.

    Science.gov (United States)

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.

    2011-12-26

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.