DEFF Research Database (Denmark)
Bache, Stefan Holst
A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....
Pardalos, Panos
1995-01-01
Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention.
Linearly constrained minimax optimization
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...
Automated minimax design of networks
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans; Voldby, J
1975-01-01
A new gradient algorithm for the solution of nonlinear minimax problems has been developed. The algorithm is well suited for automated minimax design of networks and it is very simple to use. It compares favorably with recent minimax and leastpth algorithms. General convergence problems related...
Quantum local asymptotic normality and other questions of quantum statistics
Kahn, Jonas
2008-01-01
This thesis is entitled Quantum Local Asymptotic Normality and other questions of Quantum Statistics ,. Quantum statistics are statistics on quantum objects. In classical statistics, we usually start from the data. Indeed, if we want to predict the weather, and can measure the wind or the
Asymptotically exact solution of a local copper-oxide model
International Nuclear Information System (INIS)
Zhang Guangming; Yu Lu.
1994-03-01
We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig
Asymptotic behavior of local dipolar fields in thin films
Energy Technology Data Exchange (ETDEWEB)
Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)
2016-10-15
A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.
Asymptotically optimal data analysis for rejecting local realism
International Nuclear Information System (INIS)
Zhang, Yanbao; Glancy, Scott; Knill, Emanuel
2011-01-01
Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p value, which can be defined as the maximum probability according to local realism of a violation at least as high as that witnessed. Thus, high violation corresponds to small p value. We propose a prediction-based-ratio (PBR) analysis protocol whose p values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. If the prepared state does not vary in time, the p values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, e-print arXiv:quant-ph/0110137]. We find that the p values of the former can be too small and are therefore not statistically valid, while those derived from the latter are suboptimal. PBR p values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details.
Local fields for asymptotic matching in multidimensional mode conversion
International Nuclear Information System (INIS)
Tracy, E. R.; Kaufman, A. N.; Jaun, A.
2007-01-01
The problem of resonant mode conversion in multiple spatial dimensions is considered. Using phase space methods, a complete theory is developed for constructing matched asymptotic expansions that fit incoming and outgoing WKB solutions. These results provide, for the first time, a complete and practical method for including multidimensional conversion in ray tracing algorithms. The paper provides a self-contained description of the following topics: (1) how to use eikonal (also known as ray tracing or WKB) methods to solve vector wave equations and how to detect conversion regions while following rays; (2) once conversion is detected, how to fit to a generic saddle structure in ray phase space associated with the most common type of conversion; (3) given the saddle structure, how to carry out a local projection of the full vector wave equation onto a local two-component normal form that governs the two resonantly interacting waves. This determines both the uncoupled dispersion functions and the coupling constant, which in turn determine the uncoupled WKB solutions; (4) given the normal form of the local two-component wave equation, how to find the particular solution that matches the amplitude, phase, and polarization of the incoming ray, to the amplitude, phase, and polarization of the two outgoing rays: the transmitted and converted rays
Programming for Sparse Minimax Optimization
DEFF Research Database (Denmark)
Jonasson, K.; Madsen, Kaj
1994-01-01
We present an algorithm for nonlinear minimax optimization which is well suited for large and sparse problems. The method is based on trust regions and sequential linear programming. On each iteration, a linear minimax problem is solved for a basic step. If necessary, this is followed...... by the determination of a minimum norm corrective step based on a first-order Taylor approximation. No Hessian information needs to be stored. Global convergence is proved. This new method has been extensively tested and compared with other methods, including two well known codes for nonlinear programming...
Wassenaar, R.F.
1992-01-01
The minimum-maximum (minimax) circuit selects the minimum and maximum of two input currents. Four transistors in matched pairs are operated in the saturation region. Because the behavior of the circuit is based on matched devices and is independent of the relationship between the drain current and
Minimax bounds for active learning
Castro, R.M.; Nowak, R.; Bshouty, N.H.; Gentile, C.
2007-01-01
This paper aims to shed light on achievable limits in active learning. Using minimax analysis techniques, we study the achievable rates of classification error convergence for broad classes of distributions characterized by decision boundary regularity and noise conditions. The results clearly
Minimax estimation of qubit states with Bures risk
Acharya, Anirudh; Guţă, Mădălin
2018-04-01
The central problem of quantum statistics is to devise measurement schemes for the estimation of an unknown state, given an ensemble of n independent identically prepared systems. For locally quadratic loss functions, the risk of standard procedures has the usual scaling of 1/n. However, it has been noticed that for fidelity based metrics such as the Bures distance, the risk of conventional (non-adaptive) qubit tomography schemes scales as 1/\\sqrt{n} for states close to the boundary of the Bloch sphere. Several proposed estimators appear to improve this scaling, and our goal is to analyse the problem from the perspective of the maximum risk over all states. We propose qubit estimation strategies based on separate adaptive measurements, and collective measurements, that achieve 1/n scalings for the maximum Bures risk. The estimator involving local measurements uses a fixed fraction of the available resource n to estimate the Bloch vector direction; the length of the Bloch vector is then estimated from the remaining copies by measuring in the estimator eigenbasis. The estimator based on collective measurements uses local asymptotic normality techniques which allows us to derive upper and lower bounds to its maximum Bures risk. We also discuss how to construct a minimax optimal estimator in this setup. Finally, we consider quantum relative entropy and show that the risk of the estimator based on collective measurements achieves a rate O(n-1log n) under this loss function. Furthermore, we show that no estimator can achieve faster rates, in particular the ‘standard’ rate n ‑1.
Minimax discrimination of quasi-Bell states
Energy Technology Data Exchange (ETDEWEB)
Kato, Kentaro [Quantum ICT Research Institute, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610 (Japan)
2014-12-04
An optimal quantum measurement is considered for the so-called quasi-Bell states under the quantum minimax criterion. It is shown that the minimax-optimal POVM for the quasi-Bell states is given by its square-root measurement and is applicable to the teleportation of a superposition of two coherent states.
High-frequency asymptotics of the local vertex function. Algorithmic implementations
Energy Technology Data Exchange (ETDEWEB)
Tagliavini, Agnese; Wentzell, Nils [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany); Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Li, Gang; Rohringer, Georg; Held, Karsten; Toschi, Alessandro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Taranto, Ciro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Andergassen, Sabine [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany)
2016-07-01
Local vertex functions are a crucial ingredient of several forefront many-body algorithms in condensed matter physics. However, the full treatment of their frequency dependence poses a huge limitation to the numerical performance. A significant advancement requires an efficient treatment of the high-frequency asymptotic behavior of the vertex functions. We here provide a detailed diagrammatic analysis of the high-frequency asymptotic structures and their physical interpretation. Based on these insights, we propose a frequency parametrization, which captures the whole high-frequency asymptotics for arbitrary values of the local Coulomb interaction and electronic density. We present its algorithmic implementation in many-body solvers based on parquet-equations as well as functional renormalization group schemes and assess its validity by comparing our results for the single impurity Anderson model with exact diagonalization calculations.
Generalized Minimax Programming with Nondifferentiable (G, β-Invexity
Directory of Open Access Journals (Sweden)
D. H. Yuan
2013-01-01
Full Text Available We consider the generalized minimax programming problem (P in which functions are locally Lipschitz (G, β-invex. Not only G-sufficient but also G-necessary optimality conditions are established for problem (P. With G-necessary optimality conditions and (G, β-invexity on hand, we construct dual problem (DI for the primal one (P and prove duality results between problems (P and (DI. These results extend several known results to a wider class of programs.
Lambert, A.; Simatos, F.
2015-01-01
Consider compound Poisson processes with negative drift and no negative jumps, which converge to some spectrally positive Lévy process with nonzero Lévy measure. In this paper, we study the asymptotic behavior of the local time process, in the spatial variable, of these processes killed at two
Lambert, A.; Simatos, F.
2012-01-01
Consider compound Poisson processes with negative drift and no negative jumps, which converge to some spectrally positive L\\'evy process with non-zero L\\'evy measure. In this paper we study the asymptotic behavior of the local time process, in the spatial variable, of these processes killed at two
Global and local asymptotics for the busy period of an M/G/1 queue
Denisov, D.E.; Shneer, V.
2010-01-01
We consider an M/G/1 queue with subexponential service times. We give a simple derivation of the global and local asymptotics for the busy period. Our analysis relies on the explicit formula for the joint distribution for the number of customers and the length of the busy period of an M/G/1 queue.
Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm
International Nuclear Information System (INIS)
Kleinmann, M.; Kampermann, H.; Bruss, D.
2011-01-01
We revisit the problem of discriminating orthogonal quantum states within the local-quantum-operation-and-classical-communication (LOCC) paradigm. Our particular focus is on the asymptotic situation where the parties have infinite resources and the protocol may become arbitrarily long. Our main result is a necessary condition for perfect asymptotic LOCC discrimination. As an application, we prove that for complete product bases, unlimited resources are of no advantage. On the other hand, we identify an example for which it still remains undecided whether unlimited resources are superior.
International Nuclear Information System (INIS)
Pogosian, S.
1981-01-01
It is known that in the grand canonical ensemble (for the case of small density of particles) the fluctuations (approximately mod(Λ)sup(1/2)) in the particle number have an asymptotic normal distribution as Λ→infinity. A similar statement holds for the distribution of the particle number in a bounded domain evaluated with respect to the limiting Gibbs distribution. The author obtains an asymptotic expansion in the local limit theorem for the particle number in the grand canonical ensemble, by using the asymptotic expansion of the grand canonical partition function. The coefficients of this expansion are not constants but depend on the form of the domain Λ. More precisely, they are constant up to a correction which is small (for large Λ). The author obtains an explicit form for the second term of the asymptotic expansion in the local limit theorem for the particle number, and also gets the first correction terms for the coefficients of this expansion. (Auth.)
On Some Generalized Ky Fan Minimax Inequalities
Directory of Open Access Journals (Sweden)
Xianqiang Luo
2009-01-01
Full Text Available Some generalized Ky Fan minimax inequalities for vector-valued mappings are established by applying the classical Browder fixed point theorem and the Kakutani-Fan-Glicksberg fixed point theorem.
Singularities in minimax optimization of networks
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1976-01-01
A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used in the li......A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used...
Asymptotic analysis of the local potential approximation to the Wetterich equation
Bender, Carl M.; Sarkar, Sarben
2018-06-01
This paper reports a study of the nonlinear partial differential equation that arises in the local potential approximation to the Wetterich formulation of the functional renormalization group equation. A cut-off-dependent shift of the potential in this partial differential equation is performed. This shift allows a perturbative asymptotic treatment of the differential equation for large values of the infrared cut-off. To leading order in perturbation theory the differential equation becomes a heat equation, where the sign of the diffusion constant changes as the space-time dimension D passes through 2. When D 2 one obtains a backward heat equation whose initial-value problem is ill-posed. For the special case D = 1 the asymptotic series for cubic and quartic models is extrapolated to the small infrared-cut-off limit by using Padé techniques. The effective potential thus obtained from the partial differential equation is then used in a Schrödinger-equation setting to study the stability of the ground state. For cubic potentials it is found that this Padé procedure distinguishes between a -symmetric theory and a conventional Hermitian theory (g real). For an theory the effective potential is nonsingular and has a stable ground state but for a conventional theory the effective potential is singular. For a conventional Hermitian theory and a -symmetric theory (g > 0) the results are similar; the effective potentials in both cases are nonsingular and possess stable ground states.
Gontscharuk, Veronika; Landwehr, Sandra; Finner, Helmut
2015-01-01
The higher criticism (HC) statistic, which can be seen as a normalized version of the famous Kolmogorov-Smirnov statistic, has a long history, dating back to the mid seventies. Originally, HC statistics were used in connection with goodness of fit (GOF) tests but they recently gained some attention in the context of testing the global null hypothesis in high dimensional data. The continuing interest for HC seems to be inspired by a series of nice asymptotic properties related to this statistic. For example, unlike Kolmogorov-Smirnov tests, GOF tests based on the HC statistic are known to be asymptotically sensitive in the moderate tails, hence it is favorably applied for detecting the presence of signals in sparse mixture models. However, some questions around the asymptotic behavior of the HC statistic are still open. We focus on two of them, namely, why a specific intermediate range is crucial for GOF tests based on the HC statistic and why the convergence of the HC distribution to the limiting one is extremely slow. Moreover, the inconsistency in the asymptotic and finite behavior of the HC statistic prompts us to provide a new HC test that has better finite properties than the original HC test while showing the same asymptotics. This test is motivated by the asymptotic behavior of the so-called local levels related to the original HC test. By means of numerical calculations and simulations we show that the new HC test is typically more powerful than the original HC test in normal mixture models. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minimax: Multiparticle physics at the TeVatron collider
International Nuclear Information System (INIS)
Bjorken, J.D.
1994-01-01
The author and two dozen others are engaged in a small test/experiment in the Fermilab Tevatron collider. It is called Minimax, and its purpose is to explore large-cross-section physics in the forward direction. The primary goal of Minimax is search for events containing the residue of disoriented chiral condensate (dcc) produced in the primary collision. The theoretical ideas are very speculative. But if they are right, they could provide an interpretation of the Centauro/anti-Centauro anomalies claimed to have been seen in cosmic-ray events. In this paper, the history and status of Minimax is described
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2010-02-01
It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distinction between Born localization in QM (which in the relativistic context changes its name to Newton- Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix. In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of part II. The present division into two semi-autonomous essays is the result of a partition and extension of an originally one-part manuscript. (author)
International Nuclear Information System (INIS)
Schroer, Bert
2010-01-01
It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distinction between Born-localization in QM (which in the relativistic context changes its name to Newton-Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix. In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of part II. The present division into two semi-autonomous essays is the result of a partition and extension of an originally one-part manuscript. (author)
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freie Universitaet, Berlin (Germany). Inst. fuer Theoretische Physik
2010-02-15
It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distinction between Born localization in QM (which in the relativistic context changes its name to Newton- Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix. In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of part II. The present division into two semi-autonomous essays is the result of a partition and extension of an originally one-part manuscript. (author)
A minimax procedure in the context of sequential mastery testing
Vos, Hendrik J.
1999-01-01
The purpose of this paper is to derive optimal rules for sequential mastery tests. In a sequential mastery test, the decision is to classify a subject as a master or a nonmaster, or to continue sampling and administering another random test item. The framework of minimax sequential decision theory
Linear minimax estimation for random vectors with parametric uncertainty
Bitar, E
2010-06-01
In this paper, we take a minimax approach to the problem of computing a worst-case linear mean squared error (MSE) estimate of X given Y , where X and Y are jointly distributed random vectors with parametric uncertainty in their distribution. We consider two uncertainty models, PA and PB. Model PA represents X and Y as jointly Gaussian whose covariance matrix Λ belongs to the convex hull of a set of m known covariance matrices. Model PB characterizes X and Y as jointly distributed according to a Gaussian mixture model with m known zero-mean components, but unknown component weights. We show: (a) the linear minimax estimator computed under model PA is identical to that computed under model PB when the vertices of the uncertain covariance set in PA are the same as the component covariances in model PB, and (b) the problem of computing the linear minimax estimator under either model reduces to a semidefinite program (SDP). We also consider the dynamic situation where x(t) and y(t) evolve according to a discrete-time LTI state space model driven by white noise, the statistics of which is modeled by PA and PB as before. We derive a recursive linear minimax filter for x(t) given y(t).
Applying the minimax principle to sequential mastery testing
Vos, Hendrik J.
2002-01-01
The purpose of this paper is to derive optimal rules for sequential mastery tests. In a sequential mastery test, the decision is to classify a subject as a master, a nonmaster, or to continue sampling and administering another random item. The framework of minimax sequential decision theory (minimum
Reduced minimax filtering by means of differential-algebraic equations
V. Mallet; S. Zhuk (Sergiy)
2011-01-01
htmlabstractA reduced minimax state estimation approach is proposed for high-dimensional models. It is based on the reduction of the ordinary differential equation with high state space dimension to the low-dimensional Differential-Algebraic Equation (DAE) and on the subsequent application of the
175 Years of Linear Programming - Minimax and Cake Topography
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. 175 Years of Linear Programming - Minimax and Cake Topography. Vijay Chandru M R Rao. Series Article Volume 4 Issue 7 July 1999 pp 4-13. Fulltext. Click here to view fulltext PDF. Permanent link:
The asymptotic behavior of Frobenius-Perron operator with local lower-bound function
International Nuclear Information System (INIS)
Ding Yiming
2003-01-01
Let (X,Σ,μ) be a σ-finite measure space, S:X→X be a nonsingular transformation and P S :L 1 →L 1 be the Frobenius-Perron operator associated with S. It is proved that if P S satisfies the local lower-bound function condition then for every f is a subset of D the sequence {P S n f} converges strongly to a stationary density of P S as n→∞. The statistical stability of S is also concerned via the local lower-bound function method
Asymptotically exact localized expansions for signals in the time–frequency domain
International Nuclear Information System (INIS)
Muzhikyan, Aramazd H; Avanesyan, Gagik T
2012-01-01
Based on a unique waveform with strong exponential localization property, an exact mathematical method for solving problems in signal analysis in the time–frequency domain is presented. An analogue of the Gabor frame exposes the non-commutative geometry of the time–frequency plane. Signals are visualized using the constructed graphical representation. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Fu, Honghao; Leung, Debbie; Mančinska, Laura
2014-05-01
We consider bipartite LOCC, the class of operations implementable by local quantum operations and classical communication between two parties. Surprisingly, there are operations that can be approximated to arbitrary precision but are impossible to implement exactly if only a finite number of messages are exchanged. This significantly complicates the analysis of what can or cannot be approximated with LOCC. Toward alleviating this problem, we exhibit two scenarios in which allowing vanishing error does not help. The first scenario is implementation of projective measurements with product measurement operators. The second scenario is the discrimination of unextendable product bases on two three-dimensional systems.
Primal Interior Point Method for Minimization of Generalized Minimax Functions
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2010-01-01
Roč. 46, č. 4 (2010), s. 697-721 ISSN 0023-5954 R&D Projects: GA ČR GA201/09/1957 Institutional research plan: CEZ:AV0Z10300504 Keywords : unconstrained optimization * large-scale optimization * nonsmooth optimization * generalized minimax optimization * interior-point methods * modified Newton methods * variable metric methods * global convergence * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://dml.cz/handle/10338.dmlcz/140779
Thompson, P. M.; Stein, G.
1980-01-01
The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.
Simultaneous feature selection and classification via Minimax Probability Machine
Directory of Open Access Journals (Sweden)
Liming Yang
2010-12-01
Full Text Available This paper presents a novel method for simultaneous feature selection and classification by incorporating a robust L1-norm into the objective function of Minimax Probability Machine (MPM. A fractional programming framework is derived by using a bound on the misclassification error involving the mean and covariance of the data. Furthermore, the problems are solved by the Quadratic Interpolation method. Experiments show that our methods can select fewer features to improve the generalization compared to MPM, which illustrates the effectiveness of the proposed algorithms.
Primal Interior-Point Method for Large Sparse Minimax Optimization
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2009-01-01
Roč. 45, č. 5 (2009), s. 841-864 ISSN 0023-5954 R&D Projects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : unconstrained optimization * large-scale optimization * minimax optimization * nonsmooth optimization * interior-point methods * modified Newton methods * variable metric methods * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.445, year: 2009 http://dml.cz/handle/10338.dmlcz/140034
Minimax rational approximation of the Fermi-Dirac distribution
Moussa, Jonathan E.
2016-10-01
Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ɛ-1)) poles to achieve an error tolerance ɛ at temperature β-1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δocc, the occupied energy interval. This is particularly beneficial when Δ ≫ Δocc, such as in electronic structure calculations that use a large basis set.
International Nuclear Information System (INIS)
Dewar, R. L.
1995-01-01
A large part of physics consists of learning which asymptotic methods to apply where, yet physicists are not always taught asymptotics in a systematic way. Asymptotology is given using an example from aerodynamics, and a rent Phys. Rev. Letter Comment is used as a case study of one subtle way things can go wrong. It is shown that the application of local analysis leads to erroneous conclusions regarding the existence of a continuous spectrum in a simple test problem, showing that a global analysis must be used. The final section presents results on a more sophisticated example, namely the WKBJ solution of Mathieu equation. 13 refs., 2 figs
International Nuclear Information System (INIS)
Meyer, P.
1978-01-01
After having established the renormalization group equations and the possibilities of fixed points for the effective coupling constants the non abelian gauge theories are shown to have the property of asymptotic freedom. These results are applied to the colour gauge group of the strong interactions of quarks and gluons. The behavior of the moments of the structure functions of the deep inelastic scattering of leptons on nucleons (scaling and its logarithmic violations) is then deduced with using the Wilson's operator product expansion [fr
An improved partial bundle method for linearly constrained minimax problems
Directory of Open Access Journals (Sweden)
Chunming Tang
2016-02-01
Full Text Available In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems. In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers. Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical results show that the proposed method is effective.
A Projected Conjugate Gradient Method for Sparse Minimax Problems
DEFF Research Database (Denmark)
Madsen, Kaj; Jonasson, Kristjan
1993-01-01
A new method for nonlinear minimax problems is presented. The method is of the trust region type and based on sequential linear programming. It is a first order method that only uses first derivatives and does not approximate Hessians. The new method is well suited for large sparse problems...... as it only requires that software for sparse linear programming and a sparse symmetric positive definite equation solver are available. On each iteration a special linear/quadratic model of the function is minimized, but contrary to the usual practice in trust region methods the quadratic model is only...... with the method are presented. In fact, we find that the number of iterations required is comparable to that of state-of-the-art quasi-Newton codes....
Efficient Minimax Design of Networks without Using Derivatives
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Niels Ole; Schjær-Jacobsen, Hans
1975-01-01
., which makes the gradient computation by the adjoint network method or related methods rather complicated, and often numerical errors are introduced in the gradients. Consequently, the algorithm is found to be of particular relevance in optimum design of practical microwave networks. The relative...... design results. Finally, optimum broad-band design of a practical coaxial transferred-electron reflection-type amplilier is carried out by means of the proposed method. The results are supported by experimental verification.......A new minimax network optimization algorithm not requiring derivatives has been developed. It is based on successive linear approximations to the nonlinear functions defining the problem. Adequate modeling of distributed parameter circuits for optimization purposes often involves parasitic, etc...
PET image reconstruction: mean, variance, and optimal minimax criterion
International Nuclear Information System (INIS)
Liu, Huafeng; Guo, Min; Gao, Fei; Shi, Pengcheng; Xue, Liying; Nie, Jing
2015-01-01
Given the noise nature of positron emission tomography (PET) measurements, it is critical to know the image quality and reliability as well as expected radioactivity map (mean image) for both qualitative interpretation and quantitative analysis. While existing efforts have often been devoted to providing only the reconstructed mean image, we present a unified framework for joint estimation of the mean and corresponding variance of the radioactivity map based on an efficient optimal min–max criterion. The proposed framework formulates the PET image reconstruction problem to be a transformation from system uncertainties to estimation errors, where the minimax criterion is adopted to minimize the estimation errors with possibly maximized system uncertainties. The estimation errors, in the form of a covariance matrix, express the measurement uncertainties in a complete way. The framework is then optimized by ∞-norm optimization and solved with the corresponding H ∞ filter. Unlike conventional statistical reconstruction algorithms, that rely on the statistical modeling methods of the measurement data or noise, the proposed joint estimation stands from the point of view of signal energies and can handle from imperfect statistical assumptions to even no a priori statistical assumptions. The performance and accuracy of reconstructed mean and variance images are validated using Monte Carlo simulations. Experiments on phantom scans with a small animal PET scanner and real patient scans are also conducted for assessment of clinical potential. (paper)
Determination of stability of epimetamorphic rock slope using Minimax Probability Machine
Directory of Open Access Journals (Sweden)
Manoj Kumar
2016-01-01
Full Text Available The article employs Minimax Probability Machine (MPM for the prediction of the stability status of epimetamorphic rock slope. The MPM gives a worst-case bound on the probability of misclassification of future data points. Bulk density (d, height (H, inclination (β, cohesion (c and internal friction angle (φ have been used as input of the MPM. This study uses the MPM as a classification technique. Two models {Linear Minimax Probability Machine (LMPM and Kernelized Minimax Probability Machine (KMPM} have been developed. The generalization capability of the developed models has been checked by a case study. The experimental results demonstrate that MPM-based approaches are promising tools for the prediction of the stability status of epimetamorphic rock slope.
Asymptotic numbers, asymptotic functions and distributions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-07-01
The asymptotic functions are a new type of generalized functions. But they are not functionals on some space of test-functions as the distributions of Schwartz. They are mappings of the set denoted by A into A, where A is the set of the asymptotic numbers introduced by Christov. On its part A is a totally-ordered set of generalized numbers including the system of real numbers R as well as infinitesimals and infinitely large numbers. Every two asymptotic functions can be multiplied. On the other hand, the distributions have realizations as asymptotic functions in a certain sense. (author)
An Approximation Algorithm for the Facility Location Problem with Lexicographic Minimax Objective
Directory of Open Access Journals (Sweden)
Ľuboš Buzna
2014-01-01
Full Text Available We present a new approximation algorithm to the discrete facility location problem providing solutions that are close to the lexicographic minimax optimum. The lexicographic minimax optimum is a concept that allows to find equitable location of facilities serving a large number of customers. The algorithm is independent of general purpose solvers and instead uses algorithms originally designed to solve the p-median problem. By numerical experiments, we demonstrate that our algorithm allows increasing the size of solvable problems and provides high-quality solutions. The algorithm found an optimal solution for all tested instances where we could compare the results with the exact algorithm.
Asymptotically Safe Dark Matter
DEFF Research Database (Denmark)
Sannino, Francesco; Shoemaker, Ian M.
2015-01-01
We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....
Pol, van der T.D.; Gabbert, S.; Weikard, H.P.; Ierland, van E.C.; Hendrix, E.M.T.
2017-01-01
This paper studies the dynamic application of the minimax regret (MR) decision criterion to identify robust flood risk management strategies under climate change uncertainty and emerging information. An MR method is developed that uses multiple learning scenarios, for example about sea level rise
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
Asymptotics and Borel summability
Costin, Ovidiu
2008-01-01
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us
Lattimore, Tor; Hutter, Marcus
2011-01-01
Artificial general intelligence aims to create agents capable of learning to solve arbitrary interesting problems. We define two versions of asymptotic optimality and prove that no agent can satisfy the strong version while in some cases, depending on discounting, there does exist a non-computable weak asymptotically optimal agent.
Minimax robust power split in AF relays based on uncertain long-term CSI
Nisar, Muhammad Danish
2011-09-01
An optimal power control among source and relay nodes in presence of channel state information (CSI) is vital for an efficient amplify and forward (AF) based cooperative communication system. In this work, we study the optimal power split (power control) between the source and relay node in presence of an uncertainty in the CSI. The prime contribution is to solve the problem based on an uncertain long-term knowledge of both the first and second hop CSI (requiring less frequent updates), and under an aggregate network-level power constraint. We employ the minimax optimization methodology to arrive at the minimax robust optimal power split, that offers the best possible guarantee on the end-to-end signal to noise ratio (SNR). The derived closed form analytical expressions admit simple intuitive interpretations and are easy to implement in real-world AF relaying systems. Numerical results confirm the advantages of incorporating the presence of uncertainty into the optimization problem, and demonstrate the usefulness of the proposed minimax robust optimal power split. © 2011 IEEE.
International Nuclear Information System (INIS)
Todorov, T.D.
1980-01-01
The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed
Asymptotic freedom without guilt
International Nuclear Information System (INIS)
Ma, E.
1979-01-01
The notion of asymptotic freedom in quantum chromodynamics is explained on general physical grounds, without invoking the formal arguments of renormalizable quantum field theory. The related concept of quark confinement is also discussed along the same line. 5 references
Large Deviations and Asymptotic Methods in Finance
Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef
2015-01-01
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...
Wojciech L. Magowski; John C. Moser
2003-01-01
The Tarsonemus minimax species-group is established for bark beetle commensals of the genus Tarsonemus Canestrini and Fanzago, 1876. T. minimax Vitzthum 1926 is redescribed, and two new species, T. terebrans and T. typographi n. spp., are described and illustrated. A...
Quasi-extended asymptotic functions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-01-01
The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example
Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators
Energy Technology Data Exchange (ETDEWEB)
Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl
2016-09-15
We present a robust and non-heuristic algorithm that finds all extremum points of the error distribution function of numerically Laplace-transformed orbital energy denominators. The extremum point search is one of the two key steps for finding the minimax approximation. If pre-tabulation of initial guesses is supposed to be avoided, strategies for a sufficiently robust algorithm have not been discussed so far. We compare our non-heuristic approach with a bracketing and bisection algorithm and demonstrate that 3 times less function evaluations are required altogether when applying it to typical non-relativistic and relativistic quantum chemical systems.
On the calculation of the minimax-converse of the channel coding problem
Elkayam, Nir; Feder, Meir
2015-01-01
A minimax-converse has been suggested for the general channel coding problem by Polyanskiy etal. This converse comes in two flavors. The first flavor is generally used for the analysis of the coding problem with non-vanishing error probability and provides an upper bound on the rate given the error probability. The second flavor fixes the rate and provides a lower bound on the error probability. Both converses are given as a min-max optimization problem of an appropriate binary hypothesis tes...
Minimax robust relay selection based on uncertain long-term CSI
Nisar, Muhammad Danish
2014-02-01
Cooperative communications via multiple relay nodes is known to provide the benefits of increase diversity and coverage. Simultaneous transmission via multiple relays, however, requires strong coordination between nodes either in terms of slot-based transmission or distributed space-time (ST) code implementation. Dynamically selecting a single best relay out of multiple relays and then using it alone for cooperative transmission alleviates the need for this strong coordination while still reaping the benefits of increased diversity and coverage. In this paper, we consider the design of relay selection (RS) under an imperfect knowledge of long-term channel state information (CSI) at the relay nodes, and we pursue minimax optimization to arrive at a robust RS approach that promises the best guarantee on the worst-case end-to-end signal-to-noise ratio (SNR). We provide some intuitive examples and extensive simulation results, not only in terms of worst-case SNR performance but also in terms of average bit-error-rate (BER) performance, to demonstrate the benefits of the proposed minimax robust RS scheme. © 2013 IEEE.
Kobak, B. V.; Zhukovskiy, A. G.; Kuzin, A. P.
2018-05-01
This paper considers one of the classical NP complete problems - an inhomogeneous minimax problem. When solving such large-scale problem, there appear difficulties in obtaining an exact solution. Therefore, let us propose getting an optimum solution in an acceptable time. Among a wide range of genetic algorithm models, let us choose the modified Goldberg model, which earlier was successfully used by authors in solving NP complete problems. The classical Goldberg model uses a single-point crossover and a singlepoint mutation, which somewhat decreases the accuracy of the obtained results. In the article, let us propose using a full two-point crossover with various mutations previously researched. In addition, the work studied the necessary probability to apply it to the crossover in order to obtain results that are more accurate. Results of the computation experiment showed that the higher the probability of a crossover, the higher the quality of both the average results and the best solutions. In addition, it was found out that the higher the values of the number of individuals and the number of repetitions, the closer both the average results and the best solutions to the optimum. The paper shows how the use of a full two-point crossover increases the accuracy of solving an inhomogeneous minimax problem, while the time for getting the solution increases, but remains polynomial.
DEFF Research Database (Denmark)
Litim, Daniel F.; Sannino, Francesco
2014-01-01
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...
Cristallini, Achille
2016-07-01
A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.
Asymptotic variance of grey-scale surface area estimators
DEFF Research Database (Denmark)
Svane, Anne Marie
Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....
Asymptotical representation of discrete groups
International Nuclear Information System (INIS)
Mishchenko, A.S.; Mohammad, N.
1995-08-01
If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Asymptotics of relativistic spin networks
International Nuclear Information System (INIS)
Barrett, John W; Steele, Christopher M
2003-01-01
The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol
Variationally Asymptotically Stable Difference Systems
Directory of Open Access Journals (Sweden)
Goo YoonHoe
2007-01-01
Full Text Available We characterize the h-stability in variation and asymptotic equilibrium in variation for nonlinear difference systems via n∞-summable similarity and comparison principle. Furthermore we study the asymptotic equivalence between nonlinear difference systems and their variational difference systems by means of asymptotic equilibria of two systems.
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
Model Hadron asymptotic behaviour
International Nuclear Information System (INIS)
Kralchevsky, P.; Nikolov, A.
1983-01-01
The work is devoted to the problem of solving a set of asymptotic equations describing the model hardon interaction. More specifically an interactive procedure consisting of two stages is proposed and the first stage is exhaustively studied here. The principle of contracting transformations has been applied for this purpose. Under rather general and natural assumptions, solutions in a series of metric spaces suitable for physical applications have been found. For each of these spaces a solution with unique definiteness is found. (authors)
Extended asymptotic functions - some examples
International Nuclear Information System (INIS)
Todorov, T.D.
1981-01-01
Several examples of extended asymptotic functions of two variables are given. This type of asymptotic functions has been introduced as an extension of continuous ordinary functions. The presented examples are realizations of some Schwartz distributions delta(x), THETA(x), P(1/xsup(n)) and can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. The examples illustrate the method of construction of extended asymptotic functions similar to the distributions. The set formed by the extended asymptotic functions is also considered. It is shown, that this set is not closed with respect to addition and multiplication
A mini-max principle for drift waves and mesoscale fluctuations
International Nuclear Information System (INIS)
Itoh, S-I; Itoh, K
2011-01-01
A mini-max principle for the system of the drift waves and mesoscale fluctuations (e.g. zonal flows, etc) is studied. For the system of model equations a Lyapunov function is constructed, which takes the minimum when the stationary state is realized. The dynamical evolution describes the access to the state that is realized. The competition between different mesoscale fluctuations is explained. The origins of irreversibility that cause an approach to the stationary state are discussed. A selection rule among fluctuations is derived, and conditions, under which different kinds of mesocale fluctuations coexist, are investigated. An analogy of this minimum principle to the principle of 'minimum Helmholtz free energy' in thermal equilibrium is shown.
Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system
Energy Technology Data Exchange (ETDEWEB)
Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)
2015-11-30
We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.
A minimax technique for time-domain design of preset digital equalizers using linear programming
Vaughn, G. L.; Houts, R. C.
1975-01-01
A linear programming technique is presented for the design of a preset finite-impulse response (FIR) digital filter to equalize the intersymbol interference (ISI) present in a baseband channel with known impulse response. A minimax technique is used which minimizes the maximum absolute error between the actual received waveform and a specified raised-cosine waveform. Transversal and frequency-sampling FIR digital filters are compared as to the accuracy of the approximation, the resultant ISI and the transmitted energy required. The transversal designs typically have slightly better waveform accuracy for a given distortion; however, the frequency-sampling equalizer uses fewer multipliers and requires less transmitted energy. A restricted transversal design is shown to use the least number of multipliers at the cost of a significant increase in energy and loss of waveform accuracy at the receiver.
Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data.
Cai, T Tony; Zhang, Anru
2016-09-01
Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are proposed and their theoretical and numerical properties are investigated. Minimax rates of convergence are established under the spectral norm loss and the proposed estimators are shown to be rate-optimal under mild regularity conditions. Simulation studies demonstrate that the estimators perform well numerically. The methods are also illustrated through an application to data from four ovarian cancer studies. The key technical tools developed in this paper are of independent interest and potentially useful for a range of related problems in high-dimensional statistical inference with missing data.
Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data*
Cai, T. Tony; Zhang, Anru
2016-01-01
Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are proposed and their theoretical and numerical properties are investigated. Minimax rates of convergence are established under the spectral norm loss and the proposed estimators are shown to be rate-optimal under mild regularity conditions. Simulation studies demonstrate that the estimators perform well numerically. The methods are also illustrated through an application to data from four ovarian cancer studies. The key technical tools developed in this paper are of independent interest and potentially useful for a range of related problems in high-dimensional statistical inference with missing data. PMID:27777471
Exponential asymptotics of homoclinic snaking
International Nuclear Information System (INIS)
Dean, A D; Matthews, P C; Cox, S M; King, J R
2011-01-01
We study homoclinic snaking in the cubic-quintic Swift–Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319–54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement
Directory of Open Access Journals (Sweden)
INTAN S. AHMAD
2008-04-01
Full Text Available This work presents the application of a primal-dual interior point method to minimax optimisation problems. The algorithm differs significantly from previous approaches as it involves a novel non-monotone line search procedure, which is based on the use of standard penalty methods as the merit function used for line search. The crucial novel concept is the discretisation of the penalty parameter used over a finite range of orders of magnitude and the provision of a memory list for each such order. An implementation within a logarithmic barrier algorithm for bounds handling is presented with capabilities for large scale application. Case studies presented demonstrate the capabilities of the proposed methodology, which relies on the reformulation of minimax models into standard nonlinear optimisation models. Some previously reported case studies from the open literature have been solved, and with significantly better optimal solutions identified. We believe that the nature of the non-monotone line search scheme allows the search procedure to escape from local minima, hence the encouraging results obtained.
International Nuclear Information System (INIS)
Bailin, D.
1974-01-01
It is proved that the characteristic power deviations from scaling of the theories which are not asymptotically free should be detectable in the N.A.L. muon experiments. The Yukawa theories here considered have SU(3) non-singlet structure function moments varying as a power of -q 2 , namely (-q 2 ) at power -p. The maximum value of p is determined to be 2/3:SU3 and 1:SU2. The outstanding question is whether the Yukawa theories considered do in fact have fixed points satisfying the inequalities, and thus simultaneous (non-trivial) zeroes of β(g) and β(lambda) have to be found
High frequency asymptotic methods
International Nuclear Information System (INIS)
Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.
1991-01-01
The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets
Asymptotic Safety Guaranteed in Supersymmetry
Bond, Andrew D.; Litim, Daniel F.
2017-11-01
We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed points, R charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is achieved in a Veneziano limit. Consistency with unitarity and the a theorem is established. We find that supersymmetry enhances the predictivity of asymptotically safe theories.
An asymptotic solution of large-N QCD
Directory of Open Access Journals (Sweden)
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
More asymptotic safety guaranteed
Bond, Andrew D.; Litim, Daniel F.
2018-04-01
We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.
Asymptotically safe grand unification
Energy Technology Data Exchange (ETDEWEB)
Bajc, Borut [J. Stefan Institute,1000 Ljubljana (Slovenia); Sannino, Francesco [CP-Origins & the Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Université de Lyon, France, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France)
2016-12-28
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
Energy Technology Data Exchange (ETDEWEB)
Voort, Sebastian van der [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Water, Steven van de [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Perkó, Zoltán [Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Heijmen, Ben [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Lathouwers, Danny [Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Hoogeman, Mischa, E-mail: m.hoogeman@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)
2016-05-01
Purpose: We aimed to derive a “robustness recipe” giving the range robustness (RR) and setup robustness (SR) settings (ie, the error values) that ensure adequate clinical target volume (CTV) coverage in oropharyngeal cancer patients for given gaussian distributions of systematic setup, random setup, and range errors (characterized by standard deviations of Σ, σ, and ρ, respectively) when used in minimax worst-case robust intensity modulated proton therapy (IMPT) optimization. Methods and Materials: For the analysis, contoured computed tomography (CT) scans of 9 unilateral and 9 bilateral patients were used. An IMPT plan was considered robust if, for at least 98% of the simulated fractionated treatments, 98% of the CTV received 95% or more of the prescribed dose. For fast assessment of the CTV coverage for given error distributions (ie, different values of Σ, σ, and ρ), polynomial chaos methods were used. Separate recipes were derived for the unilateral and bilateral cases using one patient from each group, and all 18 patients were included in the validation of the recipes. Results: Treatment plans for bilateral cases are intrinsically more robust than those for unilateral cases. The required RR only depends on the ρ, and SR can be fitted by second-order polynomials in Σ and σ. The formulas for the derived robustness recipes are as follows: Unilateral patients need SR = −0.15Σ{sup 2} + 0.27σ{sup 2} + 1.85Σ − 0.06σ + 1.22 and RR=3% for ρ = 1% and ρ = 2%; bilateral patients need SR = −0.07Σ{sup 2} + 0.19σ{sup 2} + 1.34Σ − 0.07σ + 1.17 and RR=3% and 4% for ρ = 1% and 2%, respectively. For the recipe validation, 2 plans were generated for each of the 18 patients corresponding to Σ = σ = 1.5 mm and ρ = 0% and 2%. Thirty-four plans had adequate CTV coverage in 98% or more of the simulated fractionated treatments; the remaining 2 had adequate coverage in 97.8% and 97.9%. Conclusions: Robustness recipes were derived that can
Renormalization group and asymptotic freedom
International Nuclear Information System (INIS)
Morris, J.R.
1978-01-01
Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions
A Minimax Network Flow Model for Characterizing the Impact of Slot Restrictions
Lee, Douglas W.; Patek, Stephen D.; Alexandrov, Natalia; Bass, Ellen J.; Kincaid, Rex K.
2010-01-01
This paper proposes a model for evaluating long-term measures to reduce congestion at airports in the National Airspace System (NAS). This model is constructed with the goal of assessing the global impacts of congestion management strategies, specifically slot restrictions. We develop the Minimax Node Throughput Problem (MINNTHRU), a multicommodity network flow model that provides insight into air traffic patterns when one minimizes the worst-case operation across all airports in a given network. MINNTHRU is thus formulated as a model where congestion arises from network topology. It reflects not market-driven airline objectives, but those of a regulatory authority seeking a distribution of air traffic beneficial to all airports, in response to congestion management measures. After discussing an algorithm for solving MINNTHRU for moderate-sized (30 nodes) and larger networks, we use this model to study the impacts of slot restrictions on the operation of an entire hub-spoke airport network. For both a small example network and a medium-sized network based on 30 airports in the NAS, we use MINNTHRU to demonstrate that increasing the severity of slot restrictions increases the traffic around unconstrained hub airports as well as the worst-case level of operation over all airports.
Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation
International Nuclear Information System (INIS)
Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi
2015-01-01
Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM
Asymptotic behaviour of Feynman integrals
International Nuclear Information System (INIS)
Bergere, M.C.
1980-01-01
In these lecture notes, we describe how to obtain the asymptotic behaviour of Feynman amplitudes; this technique has been already applied in several cases, but the general solution for any kind of asymptotic behaviour has not yet been found. From the mathematical point of view, the problem to solve is close to the following problem: find the asymptotic expansion at large lambda of the integral ∫...∫ [dx] esup(-LambdaP[x]) where P[x] is a polynomial of several variables. (orig.)
Asymptotic Parachute Performance Sensitivity
Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.
2006-01-01
In 2010, the Mars Science Laboratory mission will pioneer the next generation of robotic Entry, Descent, and Landing systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than any other mission to Mars, Mars Science Laboratory will also provide scientists with unprecedented access to regions of Mars that have been previously unreachable. By providing an Entry, Descent, and Landing system capable of landing at altitudes as high as 2 km above the reference gravitational equipotential surface, or areoid, as defined by the Mars Orbiting Laser Altimeter program, Mars Science Laboratory will demonstrate sufficient performance to land on 83% of the planet s surface. By contrast, the highest altitude landing to date on Mars has been the Mars Exploration Rover at 1.3 km below the areoid. The coupling of this improved altitude performance with latitude limits as large as 60 degrees off of the equator and a precise delivery to within 10 km of a surface target, will allow the science community to select the Mars Science Laboratory landing site from thousands of scientifically interesting possibilities. In meeting these requirements, Mars Science Laboratory is extending the limits of the Entry, Descent, and Landing technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Specifically, the drag deceleration provided by a Viking-heritage 16.15 m supersonic Disk-Gap-Band parachute in the thin atmosphere of Mars is insufficient, at the altitudes and ballistic coefficients under consideration by the Mars Science Laboratory project, to maintain necessary altitude performance and timeline margin. This paper defines and discusses the asymptotic parachute performance observed in Monte Carlo simulation and performance analysis and its effect on the Mars Science Laboratory Entry, Descent, and Landing architecture.
Asymptotic structure of isolated systems
International Nuclear Information System (INIS)
Schmidt, B.G.
1979-01-01
The main methods to formulate asymptotic flatness conditions are introduced and motivation and basic ideas are emphasized. Any asymptotic flatness condition proposed up to now describes space-times which behave somehow like Minkowski space, and a very explicit exposition of the structure at infinity of Minkowski space is given. This structure is used to describe the asymptotic behaviour of fields on Minkowski space in a frame-dependent way. The definition of null infinity for curved space-time according to Penrose is given and attempts to define spacelike infinity are outlined. The conformal bundle approach to the formulation of asymptotic behaviour is described and its relation to null and spacelike infinity is given, as far as known. (Auth.)
Nonminimal hints for asymptotic safety
Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran
2018-01-01
In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.
Generating asymptotically plane wave spacetimes
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund
2003-01-01
In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)
Polynomial Asymptotes of the Second Kind
Dobbs, David E.
2011-01-01
This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…
Asymptotic conditions and conserved quantities
International Nuclear Information System (INIS)
Koul, R.K.
1990-01-01
Two problems have been investigated in this dissertation. The first one deals with the relationship between stationary space-times which are flat at null infinity and stationary space-times which are asymptotic flat at space-like infinity. It is shown that the stationary space-times which are asymptotically flat, in the Penrose sense, at null infinity, are asymptotically flat at space-like infinity in the Geroch sense and metric at space like infinity is at least C 1 . In the converse it is shown that the stationary space-times which are asymptotically flat at space like infinity, in the Beig sense, are asymptotically flat at null infinity in the Penrose sense. The second problem addressed deals with the theories of arbitrary dimensions. The theories treated are the ones which have fiber bundle structure, outside some compact region. For these theories the criterion for the choice of the background metric is specified, and the boundary condition for the initial data set (q ab , P ab ) is given in terms of the background metric. Having these boundary conditions it is shown that the symplectic structure and the constraint functionals are well defined. The conserved quantities associated with internal Killing vector fields are specified. Lastly the energy relative to a fixed background and the total energy of the theory have been given. It is also shown that the total energy of the theory is independent of the choice of the background
Global asymptotic behavior in a Lotka–Volterra competition system with spatio-temporal delays
International Nuclear Information System (INIS)
Zhang, Jia-Fang; Chen, Heshan
2014-01-01
This paper is concerned with a Lotka–Volterra competition system with spatio-temporal delays. By using the linearization method, we show the local asymptotic behavior of the nonnegative steady-state solutions. Especially, the global asymptotic stability of the positive steady-state solution is investigated by the method of upper and lower solutions. The result of global asymptotic stability implies that the system has no nonconstant positive steady-state solution
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Asymptotically free SU(5) models
International Nuclear Information System (INIS)
Kogan, Ya.I.; Ter-Martirosyan, K.A.; Zhelonkin, A.V.
1981-01-01
The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles [ru
Consolidation of a WSN and Minimax Method to Rapidly Neutralise Intruders in Strategic Installations
Directory of Open Access Journals (Sweden)
Angela Ribeiro
2012-03-01
Full Text Available Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN. The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders’ behaviour is inferred through sequences of sensors’ activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final
Conesa-Muñoz, Jesus; Ribeiro, Angela
2012-01-01
Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN). The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders' behaviour is inferred through sequences of sensors' activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final state of the intruders
DEFF Research Database (Denmark)
Feng, Ju; Ying, Zu-Guang; Zhu, Wei-Qiu
2012-01-01
A minimax stochastic optimal semi-active control strategy for stochastically excited quasi-integrable Hamiltonian systems with parametric uncertainty by using magneto-rheological (MR) dampers is proposed. Firstly, the control problem is formulated as an n-degree-of-freedom (DOF) controlled, uncer...
Black hole thermodynamics from a variational principle: asymptotically conical backgrounds
Energy Technology Data Exchange (ETDEWEB)
An, Ok Song [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy); Department of Physics, Kim Il Sung University,Ryongnam Dong, TaeSong District, Pyongyang, D.P.R. (Korea, Republic of); ICTP,Strada Costiera 11, 34014 Trieste (Italy); Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,209 S 33rd St, Philadelphia, PA 19104 (United States); Center for Applied Mathematics and Theoretical Physics, University of Maribor,Mladinska 3, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)
2016-03-14
The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...
Asymptotic Expansions - Methods and Applications
International Nuclear Information System (INIS)
Harlander, R.
1999-01-01
Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)
Naturalness of asymptotically safe Higgs
DEFF Research Database (Denmark)
Pelaggi, Giulio M.; Sannino, Francesco; Strumia, Alessandro
2017-01-01
that the scalars can be lighter than Λ. Although we do not have an answer to whether the Standard Model hypercharge coupling growth toward a Landau pole at around Λ ~ 1040GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful...
Thermodynamics of asymptotically safe theories
DEFF Research Database (Denmark)
Rischke, Dirk H.; Sannino, Francesco
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...
Systematic assignment of Feshbach resonances via an asymptotic bound state model
Goosen, M.; Kokkelmans, SJ.J.M.F.
2008-01-01
We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the
International Nuclear Information System (INIS)
Ammari, Zied
2000-01-01
Scattering theory for the Nelson model is studied. We show Rosen estimates and we prove the existence of a ground state for the Nelson Hamiltonian. Also we prove that it has a locally finite pure point spectrum outside its thresholds. We study the asymptotic fields and the existence of the wave operators. Finally we show asymptotic completeness for the Nelson Hamiltonian
Dynamic model of minimax control over economic security state of the region in the presence of risks
Directory of Open Access Journals (Sweden)
Andrey Fedorovich Shorikov
2012-06-01
Full Text Available Investigation and solution of management of economic security state in the region (MESSR requires development of a dynamic economic-mathematical model that takes into account the presence of control actions, uncontrolled parameters (risk modeling errors, etc. and availability of information deficit. At the same time, the existing approaches to solving such problems are based primarily on static models and the use of stochastic modeling of the device, which is required for the application of knowledge of the probability characteristics of the main model parameters and special conditions for the realization of the process. We should note that to use the apparatus of stochastic modeling, very strict conditions are required, which in practice are usually not feasible in advance In this paper, we propose to use a deterministic approach for modeling and solving the original problem in the form of a dynamic programming problem of minimax control (optimization of a guaranteed result MESSR at the determined point of time, taking into account the availability of risks of deterministic and stochastic nature (combined risks model. At thesametime, under therisks in thesocial and economic system we understand thefactors that negatively catastrophically affect the results of the reviewed processes inside it. For an effective use, a technique of prediction and assessment of time rows and stochastic risks in MESSR optimization process is presented, which can serve as a basis for the development of appropriate computer software. To solve the problem of program minimax control MESSR in the presence of risks, we propose a method which is reduced to the realization of a finite number of solutions of linear and convex mathematical programming and discrete optimization problem. The proposed method makes it possible to develop efficient numerical procedures to implement computer simulation of the dynamics of the problem, build program minimax control and gain optimal
Asymptotic inference for jump diffusions with state-dependent intensity
Becheri, Gaia; Drost, Feico; Werker, Bas
2016-01-01
We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to
Penrose inequality for asymptotically AdS spaces
International Nuclear Information System (INIS)
Itkin, Igor; Oz, Yaron
2012-01-01
In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.
Penrose inequality for asymptotically AdS spaces
Energy Technology Data Exchange (ETDEWEB)
Itkin, Igor [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Oz, Yaron, E-mail: yaronoz@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)
2012-02-28
In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.
New rigorous asymptotic theorems for inverse scattering amplitudes
International Nuclear Information System (INIS)
Lomsadze, Sh.Yu.; Lomsadze, Yu.M.
1984-01-01
The rigorous asymptotic theorems both of integral and local types obtained earlier and establishing logarithmic and in some cases even power correlations aetdeen the real and imaginary parts of scattering amplitudes Fsub(+-) are extended to the inverse amplitudes 1/Fsub(+-). One also succeeds in establishing power correlations of a new type between the real and imaginary parts, both for the amplitudes themselves and for the inverse ones. All the obtained assertions are convenient to be tested in high energy experiments when the amplitudes show asymptotic behaviour
Asymptotic functions and multiplication of distributions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-01-01
Considered is a new type of generalized asymptotic functions, which are not functionals on some space of test functions as the Schwartz distributions. The definition of the generalized asymptotic functions is given. It is pointed out that in future the particular asymptotic functions will be used for solving some topics of quantum mechanics and quantum theory
Energy Technology Data Exchange (ETDEWEB)
Shorikov, A. F. [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia and Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)
2014-11-18
We consider a discrete-time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector linear or convex discrete-time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solution.
Directory of Open Access Journals (Sweden)
A. A. Kovylin
2013-01-01
Full Text Available The article describes the problem of searching for binary pseudo-random sequences with quasi-ideal autocorrelation function, which are to be used in contemporary communication systems, including mobile and wireless data transfer interfaces. In the synthesis of binary sequences sets, the target set is manning them based on the minimax criterion by which a sequence is considered to be optimal according to the intended application. In the course of the research the optimal sequences with order of up to 52 were obtained; the analysis of Run Length Encoding was carried out. The analysis showed regularities in the distribution of series number of different lengths in the codes that are optimal on the chosen criteria, which would make it possible to optimize the searching process for such codes in the future.
Scalar hairy black holes and solitons in asymptotically flat spacetimes
International Nuclear Information System (INIS)
Nucamendi, Ulises; Salgado, Marcelo
2003-01-01
A numerical analysis shows that the Einstein field equations allow static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. When regularity at the origin is imposed (i.e., in the absence of a horizon) globally regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(φ) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture
Asymptotic structure of isolated systems
International Nuclear Information System (INIS)
Beig, R.
1988-01-01
I discuss the general ideas underlying the subject of ''asymptotics'' in general relativity and describe the current status of the concepts resulting from these ideas. My main concern will be the problem of consistency. By this I mean the question as to whether the geometric assumptions inherent in these concepts are compatible with the dynamics of the theory, as determined by Einstein's equations. This rather strong bias forces me to leave untouched several issues related to asymptotics, discussed in the recent literature, some of which are perhaps thought equally, or more important, by other workers in the field. In addition I shall, for coherence of presentation, mainly consider Einstein's equations in vacuo. When attention is confined to small neighbourhoods of null and spacelike infinity, this restriction is not important, but is surely relevant for more global issues. (author)
Asymptotic freedom and Zweig's rule
International Nuclear Information System (INIS)
Appelquist, Th.
1977-01-01
Some theoretical aspects of applying short distance physics (asymptotic freedom) are discussed to prove the correctness of the quantum chromodynamics. Properties of new particles that depend only on short distance physics can be dealt with perturbatively. The new mesons are assumed to be CantiC bound states, where C is a new heavy quark. With this in mind some comments are made on the calculation of total widths for the direct decay of different CantiC states into ordinary hadrons
Asymptotic integration of differential and difference equations
Bodine, Sigrun
2015-01-01
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...
Asymptotics for Associated Random Variables
Oliveira, Paulo Eduardo
2012-01-01
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting
Numerical relativity and asymptotic flatness
International Nuclear Information System (INIS)
Deadman, E; Stewart, J M
2009-01-01
It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.
Asymptotic twistor theory and the Kerr theorem
International Nuclear Information System (INIS)
Newman, Ezra T
2006-01-01
We first review asymptotic twistor theory with its real subspace of null asymptotic twistors: a five-dimensional CR manifold. This is followed by a description of the Kerr theorem (the identification of shear-free null congruences, in Minkowski space, with the zeros of holomorphic functions of three variables) and an asymptotic version of the Kerr theorem that produces regular asymptotically shear-free null geodesic congruences in arbitrary asymptotically flat Einstein or Einstein-Maxwell spacetimes. A surprising aspect of this work is the role played by analytic curves in H-space, each curve generating an asymptotically flat null geodesic congruence. Also there is a discussion of the physical space realizations of the two associated five- and three-dimensional CR manifolds
Asymptotic density and effective negligibility
Astor, Eric P.
In this thesis, we join the study of asymptotic computability, a project attempting to capture the idea that an algorithm might work correctly in all but a vanishing fraction of cases. In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of Jockusch and Schupp, we introduce dense computation, the weakest notion of asymptotic computability (requiring only that the correct answer is produced on a set of density 1), and effective dense computation, where every computation halts with either the correct answer or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise the relationship between these notions and work already done with Jockusch and Schupp's original definitions of coarse and generic computability. For all four types of asymptotic computation, including generic computation, we demonstrate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt, Jockusch, Kuyper, and Schupp in which they establish this for coarse computation. Their result transfers to yield a minimal pair for relative coarse computation; we generalize their method and extract a similar result for relative dense computation (and thus for its corresponding reducibility). However, all of these notions of near-computation treat a set as negligible iff it has asymptotic density 0. Noting that this definition is not computably invariant, this produces some failures of intuition and a break with standard expectations in computability theory. For instance, as shown by Hamkins and Miasnikov, the halting problem is (in some formulations) effectively densely computable, even in polynomial time---yet this result appears fragile, as indicated by Rybalov. In independent work, we respond to this by strengthening the approach of Jockusch and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic asymptotic density, invariant under computable permutation, with rich relations to both
Asymptotic safety, emergence and minimal length
International Nuclear Information System (INIS)
Percacci, Roberto; Vacca, Gian Paolo
2010-01-01
There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.
Lattice quantum gravity and asymptotic safety
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2017-09-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.
Numerical Asymptotic Solutions Of Differential Equations
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
Asymptotic behaviour in field theory
Energy Technology Data Exchange (ETDEWEB)
Banerjee, H.
1980-07-01
Asymptotic behaviour in field theory has been studied and the anomalies are pointed out in two specific cases, (i) the infrared and fixed angle high energy behaviour in the non-trivial case of the 'box' amplitude in a scalar-scalar theory and (ii) high energy behaviour of a sixth order Yang-Mills diagram. A set of rules are presented for writing down the precise leading infrared behaviour of an arbitrary generalised ladder diagram (GLD) in QED. These rules are the final result of a detailed analysis of the relevant amplitudes in the Feynman parameter space. The connection between the infrared and fixed angle high energy limits of generalised ladder diagrams is explained. It is argued that the same set of rules yield the fixed angle high energy limit.
Kirshen, P. H.; Hecht, J. S.; Vogel, R. M.
2015-12-01
Prescribing long-term urban floodplain management plans under the deep uncertainty of climate change is a challenging endeavor. To address this, we have implemented and tested with stakeholders a parsimonious multi-stage mixed integer programming (MIP) model that identifies the optimal time period(s) for implementing publicly and privately financed adaptation measures. Publicly funded measures include reach-scale flood barriers, flood insurance, and buyout programs to encourage property owners in flood-prone areas to retreat from the floodplain. Measures privately funded by property owners consist of property-scale floodproofing options, such as raising building foundations, as well as investments in flood insurance or retreat from flood-prone areas. The objective function to minimize the sum of flood control and damage costs in all planning stages for different property types during floods of different severities. There are constraints over time for flow mass balances, construction of flood management alternatives and their cumulative implementation, budget allocations, and binary decisions. Damages are adjusted for flood control investments. In recognition of the deep uncertainty of GCM-derived climate change scenarios, we employ the minimax regret criterion to identify adaptation portfolios robust to different climate change trajectories. As an example, we identify publicly and privately funded adaptation measures for a stylized community based on the estuarine community of Exeter, New Hampshire, USA. We explore the sensitivity of recommended portfolios to different ranges of climate changes, and costs associated with economies of scale and flexible infrastructure design as well as different municipal budget constraints.
Directory of Open Access Journals (Sweden)
Ling Wen Choong
2018-01-01
Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.
Stark resonances: asymptotics and distributional Borel sum
International Nuclear Information System (INIS)
Caliceti, E.; Grecchi, V.; Maioli, M.
1993-01-01
We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)
Asymptotics of Laplace-Dirichlet integrals
International Nuclear Information System (INIS)
Kozlov, S.M.
1990-01-01
Here we consider the problem of the asymptotic expansion of the Laplace-Dirichlet integral. In homogenization theory such an integral represents the energy, and in general depends on the cohomology class. Here the asymptotic behaviour of this integral is found. The full text will appear in Functional Analysis and Applications, 1990, No.2. (author). 3 refs
A method for summing nonalternating asymptotic series
International Nuclear Information System (INIS)
Kazakov, D.I.
1980-01-01
A method for reconstructing a function from its nonalternating asymptotic series is proposed. It can also be applied when only a limited number of coefficients and their high order asymptotic behaviour are known. The method is illustrated by examples of the ordinary simple integral simulating a functional integral in a theory with degenerate minimum and of the double-well unharmonic oscillator
Wijsman Orlicz Asymptotically Ideal -Statistical Equivalent Sequences
Directory of Open Access Journals (Sweden)
Bipan Hazarika
2013-01-01
in Wijsman sense and present some definitions which are the natural combination of the definition of asymptotic equivalence, statistical equivalent, -statistical equivalent sequences in Wijsman sense. Finally, we introduce the notion of Cesaro Orlicz asymptotically -equivalent sequences in Wijsman sense and establish their relationship with other classes.
8. Asymptotically Flat and Regular Cauchy Data
Dain, Sergio
I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.
Journal Afrika Statistika ISSN 0852-0305 Asymptotic representation ...
African Journals Online (AJOL)
Asymptotic representation theorems for poverty indices ... Statistical asymptotic laws for these indices, particularly asymptotic normality, on which statistical inference on the ... population of individuals, each of which having a random income or ...
The unitary conformal field theory behind 2D Asymptotic Safety
Energy Technology Data Exchange (ETDEWEB)
Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)
2016-02-25
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.
Experimental tests of asymptotic freedom
International Nuclear Information System (INIS)
Bethke, S.
1996-09-01
Measurements which probe the energy dependence of α s , the coupling strength of the strong interaction, are reviewed. Jet counting in e + e - annihilation, combining results obtained in the centre of mass energy range from 22 to 133 GeV, provides direct evidence for an asymptotically free coupling, without the need to determine explicit values of α s . Recent results from jet production in e p and in p p collisions, obtained in single experiments spanning large ranges of momentum transfer, Q 2 , are in good agreement with the running of α s as predicted by QCD. Mass spectra of hadronic decays of τ-leptons are analysed to probe the running α s in the very low energy domain, 0.7 GeV 2 2 2 τ . An update of the world summary of measurements of α s (Q 2 ) consistently proves the energy dependence of α s and results in a combined average of α s (M Z 0 =0.118±0.006). (orig.)
Asymptotic state discrimination and a strict hierarchy in distinguishability norms
Energy Technology Data Exchange (ETDEWEB)
Chitambar, Eric [Department of Physics and Astronomy, Southern Illinois University, Carbondale, Illinois 62901 (United States); Hsieh, Min-Hsiu [Centre for Quantum Computation and Intelligent Systems (QCIS), Faculty of Engineering and Information Technology (FEIT), University of Technology Sydney - UTS, NSW 2007 (Australia)
2014-11-15
In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational advantage of using two-way classical communication over one-way communication in LOCC processing. With a simple two-qubit product state ensemble, we demonstrate a strict majorization of the two-way LOCC norm over the one-way norm.
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
A mutually profitable alliance - Asymptotic expansions and numerical computations
Euvrard, D.
Problems including the flow past a wing airfoil at Mach 1, and the two-dimensional flow past a partially immersed body are used to show the advantages of coupling a standard numerical method for the whole domain where everything is of the order of 1, with an appropriate asymptotic expansion in the vicinity of some singular point. Cases more closely linking the two approaches are then considered. In the localized finite element method, the asymptotic expansion at infinity becomes a convergent series and the problem reduces to a variational form. Combined analytical and numerical methods are used in the singularity distribution method and in the various couplings of finite elements and a Green integral representation to design a subroutine to compute the Green function and its derivatives.
Asymptotic boundary conditions for dissipative waves: General theory
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Asymptotic boundary conditions for dissipative waves - General theory
Hagstrom, Thomas
1991-01-01
An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Asymptotic Conservation Laws in Classical Field Theory
International Nuclear Information System (INIS)
Anderson, I.M.; Torre, C.G.
1996-01-01
A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society
Asymptotic work distributions in driven bistable systems
International Nuclear Information System (INIS)
Nickelsen, D; Engel, A
2012-01-01
The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.
Directory of Open Access Journals (Sweden)
Ghasem Alizadeh Afrouzi
2006-10-01
Full Text Available In this paper, we establish an equivalent statement to minimax inequality for a special class of functionals. As an application, we prove the existence of three solutions to the Dirichlet problem $$displaylines{ -u''(x+m(xu(x =lambda f(x,u(x,quad xin (a,b,cr u(a=u(b=0, }$$ where $lambda>0$, $f:[a,b]imes mathbb{R}o mathbb{R}$ is a continuous function which changes sign on $[a,b]imes mathbb{R}$ and $m(xin C([a,b]$ is a positive function.
The theory of asymptotic behaviour
International Nuclear Information System (INIS)
Ward, B.F.L.; Purdue Univ., Lafayette, IN
1978-01-01
The Green's functions of renormalizable quantum field theory are shown to violate, in general, Euler's theorem on homogeneous functions, that is to say, to violate naive dimensional analysis. The respective violations are established by explicit calculation with Feynman diagrams. These violations, when incorporated into the renormalization group, then provide the basis for an entirely new approach to asymptotic behaviour in renormalizable field theory. Specifically, the violations add new delta-function sources to the usual partial differential equations of the group when these equations are written in terms of the external momenta of the respective Green's functions. The effect of these sources is illustrated by studying the real part, Re GAMMA 6 (lambda p), of the six-point 1PI vertex of the massless scalar field with quartic self-coupling - the simplest of ranormalizable situations. Here, lambda p is symbolic for the six-momenta of GAMMA 6 . Briefly, it is found that the usual theory of characteristics is unable to satisfy the boundary condition attendant to the respective dimensional-analysis-violating sources. Thus, the method of characteristics is completely abandonded in favour of the method of separation of variables. A complete solution which satisfies the inhomogeneous group equation and all boundary conditions is then explicitly constructed. This solution possesses Laurent expansions in the scale lambda of its momentum arguments for all real values of lambda 2 except lambda 2 = 0. For |lambda 2 |→ infinity and |lambda 2 |→ 0, the solution's leading term in its respective Laurent series is proportional to lambda -2 . The limits lambda 2 →0sub(+) and lambda 2 →0sup(-) of lambda 2 ReGAMMA 6 are both nonzero and unequal. The value of the solution at lambda 2 = 0 is not simply related to the value of either of these limits. The new approach would appear to be operationally established
Asymptotic Likelihood Distribution for Correlated & Constrained Systems
Agarwal, Ujjwal
2016-01-01
It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.
Asymptotic Poincare lemma and its applications
International Nuclear Information System (INIS)
Ziolkowski, R.W.; Deschamps, G.A.
1984-01-01
An asymptotic version of Poincare's lemma is defined and solutions are obtained with the calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidimensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincare lemma are used to generate a general representation of the Leray form. All of the (differential form) expressions presented are generalizations of known (vector calculus) results. 14 references, 4 figures
EMC effect: asymptotic freedom with nuclear targets
International Nuclear Information System (INIS)
West, G.B.
1984-01-01
General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references
Spectral asymptotic in the large coupling limit
Bruneau, V
2002-01-01
In this paper, we study a singular perturbation of an eigenvalues problem related to supra-conductor wave guides. Using boundary layer tools we perform a complete asymptotic expansion of the eigenvalues as the conductivity tends to $+\\infty$.
Asymptotic expansion of the Keesom integral
International Nuclear Information System (INIS)
Abbott, Paul C
2007-01-01
The asymptotic evaluation and expansion of the Keesom integral, K(a), is discussed at some length in Battezzati and Magnasco (2004 J. Phys. A: Math. Gen. 37 9677; 2005 J. Phys. A: Math. Gen. 38 6715). Here, using standard identities, it is shown that this triple integral can be reduced to a single integral from which the asymptotic behaviour is readily obtained using Laplace's method. (comment)
Composite asymptotic expansions and scaling wall turbulence.
Panton, Ronald L
2007-03-15
In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.
AGB [asymptotic giant branch]: Star evolution
International Nuclear Information System (INIS)
Becker, S.A.
1987-01-01
Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs
Trinucleon asymptotic normalization constants including Coulomb effects
International Nuclear Information System (INIS)
Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.
1982-01-01
Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects
Asymptotic Value Distribution for Solutions of the Schroedinger Equation
International Nuclear Information System (INIS)
Breimesser, S. V.; Pearson, D. B.
2000-01-01
We consider the Dirichlet Schroedinger operator T=-(d 2 /d x 2 )+V, acting in L 2 (0,∞), where Vis an arbitrary locally integrable potential which gives rise to absolutely continuous spectrum. Without any other restrictive assumptions on the potential V, the description of asymptotics for solutions of the Schroedinger equation is carried out within the context of the theory of value distribution for boundary values of analytic functions. The large x asymptotic behaviour of the solution v(x,λ) of the equation Tf(x,λ)=λf(x,λ), for λ in the support of the absolutely continuous part μ a.c. of the spectral measure μ, is linked to the spectral properties of this measure which are determined by the boundary value of the Weyl-Titchmarsh m-function. Our main result (Theorem 1) shows that the value distribution for v'(N,λ)/v(N,λ) approaches the associated value distribution of the Herglotz function m N (z) in the limit N → ∞, where m N (z) is the Weyl-Titchmarsh m-function for the Schroedinger operator -(d 2 /d x 2 )+Vacting in L 2 (N,∞), with Dirichlet boundary condition at x=N. We will relate the analysis of spectral asymptotics for the absolutely continuous component of Schroedinger operators to geometrical properties of the upper half-plane, viewed as a hyperbolic space
Asymptotic theory of two-dimensional trailing-edge flows
Melnik, R. E.; Chow, R.
1975-01-01
Problems of laminar and turbulent viscous interaction near trailing edges of streamlined bodies are considered. Asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds numbers are used to describe the local solution near the trailing edge of cusped or nearly cusped airfoils at small angles of attack in compressible flow. A complicated inverse iterative procedure, involving finite-difference solutions of the triple-deck equations coupled with asymptotic solutions of the boundary values, is used to accurately solve the viscous interaction problem. Results are given for the correction to the boundary-layer solution for drag of a finite flat plate at zero angle of attack and for the viscous correction to the lift of an airfoil at incidence. A rational asymptotic theory is developed for treating turbulent interactions near trailing edges and is shown to lead to a multilayer structure of turbulent boundary layers. The flow over most of the boundary layer is described by a Lighthill model of inviscid rotational flow. The main features of the model are discussed and a sample solution for the skin friction is obtained and compared with the data of Schubauer and Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Subexponential loss rate asymptotics for Lévy processes
DEFF Research Database (Denmark)
Andersen, Lars Nørvang
2011-01-01
We consider a Lévy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotic...... for the loss rate when K tends to infinity, when the mean of the Lévy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula....
Asymptotic convergence for iterative optimization in electronic structure
International Nuclear Information System (INIS)
Lippert, Ross A.; Sears, Mark P.
2000-01-01
There have recently been a number of proposals for solving large electronic structure problems (local-density approximation, Hartree-Fock, and tight-binding methods) iteratively with a computational effort proportional to the size of the system. The effort needed to perform a single iteration in these schemes is well understood but the convergence rate has been an empirical matter. This paper will show that many of the proposed methods have a single underlying geometrical structure, which has a specific asymptotic convergence behavior, and that behavior can be understood in terms of some simple condition numbers based on the spectrum of the Hamiltonian. (c) 2000 The American Physical Society
Directory of Open Access Journals (Sweden)
G. M. N’Guérékata
2018-01-01
Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.
ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2017-11-01
Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.
Directory of Open Access Journals (Sweden)
Abílio Amiguinho
2005-01-01
Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.
A quantum kinematics for asymptotically flat gravity
Campiglia, Miguel; Varadarajan, Madhavan
2015-07-01
We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.
Asymptotic stability of a catalyst particle
DEFF Research Database (Denmark)
Wedel, Stig; Michelsen, Michael L.; Villadsen, John
1977-01-01
The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...
Directions for model building from asymptotic safety
Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.
2017-08-01
Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.
On the asymptotics of dimers on tori
Kenyon, Richard W.; Sun, Nike; Wilson, David B.
2013-01-01
We study asymptotics of the dimer model on large toric graphs. Let $\\mathbb L$ be a weighted $\\mathbb{Z}^2$-periodic planar graph, and let $\\mathbb{Z}^2 E$ be a large-index sublattice of $\\mathbb{Z}^2$. For $\\mathbb L$ bipartite we show that the dimer partition function on the quotient $\\mathbb{L}/(\\mathbb{Z}^2 E)$ has the asymptotic expansion $\\exp[A f_0 + \\text{fsc} + o(1)]$, where $A$ is the area of $\\mathbb{L}/(\\mathbb{Z}^2 E)$, $f_0$ is the free energy density in the bulk, and $\\text{fsc...
Derivative analyticity relations and asymptotic energies
International Nuclear Information System (INIS)
Fischer, J.
1976-01-01
On the basis of general principles of the S-matrix theory theorems are derived showing that derivative analyticity relations analogous to those of Bronzen, Kane and Sukhatme hold at asymptotic energies if the high-energy limits of certain physical quantities exist
Stationary solutions and asymptotic flatness I
International Nuclear Information System (INIS)
Reiris, Martin
2014-01-01
In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
The asymptotic expansion method via symbolic computation
Navarro, Juan F.
2012-01-01
This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
The Asymptotic Expansion Method via Symbolic Computation
Directory of Open Access Journals (Sweden)
Juan F. Navarro
2012-01-01
Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
Large degree asymptotics of generalized Bessel polynomials
J.L. López; N.M. Temme (Nico)
2011-01-01
textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian U...
Asymptotic Translation Length in the Curve Complex
Valdivia, Aaron D.
2013-01-01
We show that when the genus and punctures of a surface are directly proportional by some rational number the minimal asymptotic translation length in the curve complex has behavior inverse to the square of the Euler characteristic. We also show that when the genus is fixed and the number of punctures varies the behavior is inverse to the Euler characteristic.
Asymptotic inversion of the Erlang B formula
Leeuwaarden, van J.S.H.; Temme, N.M.
2008-01-01
The Erlang B formula represents the steady-state blocking probability in the Erlang loss model or M=M=s=s queue. We derive asymptotic expansions for the offered load that matches, for a given number of servers, a certain blocking probability. In addressing this inversion problem we make use of
Asymptotic analysis of the Forward Search
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Bent
The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...
On iterative procedures of asymptotic inference
K.O. Dzhaparidze (Kacha)
1983-01-01
textabstractAbstract An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then
Asymptotic evolution of quantum Markov chains
Energy Technology Data Exchange (ETDEWEB)
Novotny, Jaroslav [FNSPE, CTU in Prague, 115 19 Praha 1 - Stare Mesto (Czech Republic); Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)
2012-07-01
The iterated quantum operations, so called quantum Markov chains, play an important role in various branches of physics. They constitute basis for many discrete models capable to explore fundamental physical problems, such as the approach to thermal equilibrium, or the asymptotic dynamics of macroscopic physical systems far from thermal equilibrium. On the other hand, in the more applied area of quantum technology they also describe general characteristic properties of quantum networks or they can describe different quantum protocols in the presence of decoherence. A particularly, an interesting aspect of these quantum Markov chains is their asymptotic dynamics and its characteristic features. We demonstrate there is always a vector subspace (typically low-dimensional) of so-called attractors on which the resulting superoperator governing the iterative time evolution of quantum states can be diagonalized and in which the asymptotic quantum dynamics takes place. As the main result interesting algebraic relations are presented for this set of attractors which allow to specify their dual basis and to determine them in a convenient way. Based on this general theory we show some generalizations concerning the theory of fixed points or asymptotic evolution of random quantum operations.
Infrared studies of asymptotic giant branch stars
International Nuclear Information System (INIS)
Willems, F.J.
1987-01-01
In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs
Asymptotic behaviour of firmly non expansive sequences
International Nuclear Information System (INIS)
Rouhani, B.D.
1993-04-01
We introduce the notion of firmly non expansive sequences in a Banach space and present several results concerning their asymptotic behaviour extending previous results and giving an affirmative answer to an open question raised by S. Reich and I. Shafir. Applications to averaged mappings are also given. (author). 16 refs
An asymptotic problem in renewal theory
Klamkin, M.S.; van Lint, J.H.
1972-01-01
A special problem in renewal theory is considered. The asymptotic behavior of the renewal function was studied by W. L. Smith. Here we show that his result with an exponentially small remainder term follows from a theorem of De Bruijn on Volterra integral equations.
Asymptotics for the minimum covariance determinant estimator
Butler, R.W.; Davies, P.L.; Jhun, M.
1993-01-01
Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown
Behavior of asymptotically electro-Λ spacetimes
Saw, Vee-Liem
2017-04-01
We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .
Asymptotically Safe Standard Model via Vectorlike Fermions
Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.
2017-12-01
We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.
Dem'yanov, V F; Louvish, D
2014-01-01
This user-friendly text offers a thorough introduction to the part of optimization theory that lies between approximation theory and mathematical programming, both linear and nonlinear. Written by two distinguished mathematicians, the expert treatment covers the essentials, incorporating important background materials, examples, and extensive notes.Geared toward advanced undergraduate and graduate students of mathematical programming, the text explores best approximation by algebraic polynomials in both discrete and continuous cases; the discrete problem, with and without constraints; the gene
Asymptotic symmetries, holography and topological hair
Mishra, Rashmish K.; Sundrum, Raman
2018-01-01
Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons
International Nuclear Information System (INIS)
Shorikov, A. F.
2015-01-01
This article discusses a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding vector nonlinear discrete-time recurrent vector equations and its control system consist from two levels: basic (control level I) that is dominating and subordinate level (control level II). Both levels have different criterions of functioning and united a priori by determined informational and control connections defined in advance. In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we proposed in this work an economical and mathematical model of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks and the general scheme for its solving
Energy Technology Data Exchange (ETDEWEB)
Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)
2015-11-30
This article discusses a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding vector nonlinear discrete-time recurrent vector equations and its control system consist from two levels: basic (control level I) that is dominating and subordinate level (control level II). Both levels have different criterions of functioning and united a priori by determined informational and control connections defined in advance. In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we proposed in this work an economical and mathematical model of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks and the general scheme for its solving.
Local asymptotic stability of a modified mathematical defense model ...
African Journals Online (AJOL)
The Runge–Kutta–Fehlberg order 4 and 5 numerical method is employed using MATLAB to solve the system ofordinary differential equations and to simulate the system. The issues and concerns about security in the cyber-world make it overly necessary to invest research efforts so as to provide countermeasures for virus ...
On asymptotics and resurgent structures of enumerative Gromov-Witten invariants
Energy Technology Data Exchange (ETDEWEB)
Couso-Santamaria, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); Schiappa, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); Geneve Univ. (Switzerland). Dept. de Physique Theoretique et Section de Mathematiques; Vaz, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); DESY Hamburg (Germany). Theory Group
2016-05-15
Making use of large-order techniques in asymptotics and resurgent analysis, this work addresses the growth of enumerative Gromov-Witten invariants - in their dependence upon genus and degree of the embedded curve - for several different threefold Calabi-Yau toric-varieties. In particular, while the leading asymptotics of these invariants at large genus or at large degree is exponential, at combined large genus and degree it turns out to be factorial. This factorial growth has a resurgent nature, originating via mirror symmetry from the resurgent-transseries description of the B-model free energy. This implies the existence of nonperturbative sectors controlling the asymptotics of the Gromov-Witten invariants, which could themselves have an enumerative-geometry interpretation. The examples addressed include: the resolved conifold; the local surfaces local P{sup 2} and local P{sup 1} x P{sup 1}; the local curves and Hurwitz theory; and the compact quintic. All examples suggest very rich interplays between resurgent asymptotics and enumerative problems in algebraic geometry.
Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift
Kamphorst, B.; Zwart, B.
2015-01-01
This paper addresses heavy-tailed asymptotics of functionals of a class of spectrally one-sided L\\'evy process that remain valid in a near-critical regime. This complements recent similar results that have been obtained for the all-time supremum of such processes. Specifically, we consider local
On asymptotics and resurgent structures of enumerative Gromov-Witten invariants
International Nuclear Information System (INIS)
Couso-Santamaria, Ricardo; Schiappa, Ricardo; Geneve Univ.; Vaz, Ricardo; DESY Hamburg
2016-05-01
Making use of large-order techniques in asymptotics and resurgent analysis, this work addresses the growth of enumerative Gromov-Witten invariants - in their dependence upon genus and degree of the embedded curve - for several different threefold Calabi-Yau toric-varieties. In particular, while the leading asymptotics of these invariants at large genus or at large degree is exponential, at combined large genus and degree it turns out to be factorial. This factorial growth has a resurgent nature, originating via mirror symmetry from the resurgent-transseries description of the B-model free energy. This implies the existence of nonperturbative sectors controlling the asymptotics of the Gromov-Witten invariants, which could themselves have an enumerative-geometry interpretation. The examples addressed include: the resolved conifold; the local surfaces local P 2 and local P 1 x P 1 ; the local curves and Hurwitz theory; and the compact quintic. All examples suggest very rich interplays between resurgent asymptotics and enumerative problems in algebraic geometry.
Cosmic censorship, persistent curvature and asymptotic causal pathology
International Nuclear Information System (INIS)
Newman, R.P.A.C.
1984-01-01
The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)
Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence
International Nuclear Information System (INIS)
Zhang Tailei; Teng Zhidong
2008-01-01
In this paper, the asymptotic behavior of solutions of an autonomous SEIRS epidemic model with the saturation incidence is studied. Using the method of Liapunov-LaSalle invariance principle, we obtain the disease-free equilibrium is globally stable if the basic reproduction number is not greater than one. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions of locally and globally asymptotically stable convergence to an endemic equilibrium are obtained base on the permanence
Criteria for exponential asymptotic stability in the large of ...
African Journals Online (AJOL)
The purpose of this study is to provide necessary and sufficient conditions for exponential asymptotic stability in the large and uniform asymptotic stability of perturbations of linear systems with unbounded delays. A strong relationship is established between the two types of asymptotic stability. It is found that if the ...
Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2004-01-01
We consider a self-interacting scalar field whose mass saturates the Breitenlohner-Freedman bound, minimally coupled to Einstein gravity with a negative cosmological constant in D≥3 dimensions. It is shown that the asymptotic behavior of the metric has a slower fall-off than that of pure gravity with a localized distribution of matter, due to the back-reaction of the scalar field, which has a logarithmic branch decreasing as r -(D-1)/2 ln r for large radius r. We find the asymptotic conditions on the fields which are invariant under the same symmetry group as pure gravity with negative cosmological constant (conformal group in D-1 dimensions). The generators of the asymptotic symmetries are finite even when the logarithmic branch is considered but acquire, however, a contribution from the scalar field
Globally asymptotically stable analysis in a discrete time eco-epidemiological system
International Nuclear Information System (INIS)
Hu, Zengyun; Teng, Zhidong; Zhang, Tailei; Zhou, Qiming; Chen, Xi
2017-01-01
Highlights: • Dynamical behaviors of a discrete time eco-epidemiological system are discussed. • Global asymptotical stability of this system is obtained by an iteration scheme which can be expended to general dimensional discrete system. • More complex dynamical behaviors are obtained by numerical simulations. - Abstract: In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this system is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for general three dimensional discrete systems.
Asymptotic sequences over ideals and projectively equivalent ideals with respect to modules
International Nuclear Information System (INIS)
Naghipour, R.; Sedghi, M.
2007-09-01
Let R be a commutative Noetherian ring, and let N be a non-zero finitely generated R-module. The purpose of this paper is to show that if I and J are projectively equivalent ideals w.r.t. N, then a sequence x := x 1 , . . . , x n of elements of R is an asymptotic sequence over I w.r.t. N if and only if it is an asymptotic sequence over J w.r.t. N. Also, it is shown that if R is local, then the lengths of all maximal asymptotic sequences over an ideal I w.r.t. N are the same. As a consequence we derive a generalization of Rees' theorem. (author)
Fisher information and asymptotic normality in system identification for quantum Markov chains
International Nuclear Information System (INIS)
Guta, Madalin
2011-01-01
This paper deals with the problem of estimating the coupling constant θ of a mixing quantum Markov chain. For a repeated measurement on the chain's output we show that the outcomes' time average has an asymptotically normal (Gaussian) distribution, and we give the explicit expressions of its mean and variance. In particular, we obtain a simple estimator of θ whose classical Fisher information can be optimized over different choices of measured observables. We then show that the quantum state of the output together with the system is itself asymptotically Gaussian and compute its quantum Fisher information, which sets an absolute bound to the estimation error. The classical and quantum Fisher information are compared in a simple example. In the vicinity of θ=0 we find that the quantum Fisher information has a quadratic rather than linear scaling in output size, and asymptotically the Fisher information is localized in the system, while the output is independent of the parameter.
Asymptotic symmetries in de Sitter and inflationary spacetimes
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S., E-mail: ferreira@cp3.sdu.dk, E-mail: sandora@cp3.sdu.dk, E-mail: sloth@cp3.sdu.dk [CP3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2017-04-01
Soft gravitons produced by the expansion of de Sitter can be viewed as the Nambu-Goldstone bosons of spontaneously broken asymptotic symmetries of the de Sitter spacetime. We explicitly construct the associated charges, and show that acting with the charges on the vacuum creates a new state equivalent to a change in the local coordinates induced by the soft graviton. While the effect remains unobservable within the domain of a single observer where the symmetry is unbroken, this change is physical when comparing different asymptotic observers, or between a transformed and un-transformed initial state, consistent with the scale-dependent statistical anisotropies previously derived using semiclassical relations. We then compute the overlap, (0| 0'), between the unperturbed de Sitter vacuum |0), and the state | 0') obtained by acting N times with the charge. We show that when N→ M {sub p} {sup 2}/ H {sup 2} this overlap receives order one corrections and 0(0| 0')→ , which corresponds to an infrared perturbative breakdown after a time t {sub dS} ∼ M {sub p} {sup 2}/ H {sup 3} has elapsed, consistent with earlier arguments in the literature arguing for a perturbative breakdown on this timescale. We also discuss the generalization to inflation, and rederive the 3-point and one-loop consistency relations.
The Asymptotic Safety Scenario in Quantum Gravity.
Niedermaier, Max; Reuter, Martin
2006-01-01
The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.
Asymptotic properties of a simple random motion
International Nuclear Information System (INIS)
Ravishankar, K.
1988-01-01
A random walker in R/sup N/ is considered. At each step the walker picks a point in R/sup N/ from a fixed finite set of destination points. Having chosen the point, the walker moves a fraction r (r < 1) of the distance toward the point along a straight line. Assuming that the successive destination points are chosen independently, it is shown that the asymptotic distribution of the walker's position has the same mean as the destination point distribution. An estimate is obtained for the fraction of time the walker stays within a ball centered at the mean value for almost every destination sequence. Examples show that the asymptotic distribution could have intricate structure
Asymptotic mass degeneracies in conformal field theories
International Nuclear Information System (INIS)
Kani, I.; Vafa, C.
1990-01-01
By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)
Asymptotic normalization coefficients and astrophysical factors
International Nuclear Information System (INIS)
Mukhamedzhanov, A.M.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.-W.; Sattarov, A.; Trache, L.; Tribble, R.E.; Burjan, V.; Kroha, V.; Carstoiu, F.
2000-01-01
The S factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients (ANC's) which provide the normalization of the tails of the overlap functions for 8 B → 7 Be + p. Peripheral transfer reactions offer a technique to determine these ANC's. Using this technique, the 10 B( 7 Be, 8 B) 9 Be and 14 N( 7 Be, 8 B) 13 C reactions have been used to measure the asymptotic normalization coefficient for 7 Be(p, γ) 8 B. These results provide an indirect determination of S 17 (0). Analysis of the existing 9 Be(p, γ) 10 B experimental data within the framework of the R-matrix method demonstrates that experimentally measured ANC's can provide a reasonable determination of direct radiative capture rates. (author)
The Asymptotic Safety Scenario in Quantum Gravity
Directory of Open Access Journals (Sweden)
Niedermaier Max
2006-12-01
Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.
Asymptotic adaptive bipartite entanglement-distillation protocol
International Nuclear Information System (INIS)
Hostens, Erik; Dehaene, Jeroen; De Moor, Bart
2006-01-01
We present an asymptotic bipartite entanglement-distillation protocol that outperforms all existing asymptotic schemes. This protocol is based on the breeding protocol with the incorporation of two-way classical communication. Like breeding, the protocol starts with an infinite number of copies of a Bell-diagonal mixed state. Breeding can be carried out as successive stages of partial information extraction, yielding the same result: one bit of information is gained at the cost (measurement) of one pure Bell state pair (ebit). The basic principle of our protocol is at every stage to replace measurements on ebits by measurements on a finite number of copies, whenever there are two equiprobable outcomes. In that case, the entropy of the global state is reduced by more than one bit. Therefore, every such replacement results in an improvement of the protocol. We explain how our protocol is organized as to have as many replacements as possible. The yield is then calculated for Werner states
The positive action conjecture and asymptotically euclidean metrics in quantum gravity
International Nuclear Information System (INIS)
Gibbons, G.W.; Pope, C.N.
1979-01-01
The positive action conjecture requires that the action of any asymptotically Euclidean 4-dimensional Riemannian metric be positive, vanishing if and only if the space is flat. Because any Ricci flat, asymptotically Euclidean metric has zero action and is local extremum of the action which is a local minimum at flat space, the conjecture requires that there are no Ricci flat asymptotically Euclidean metrics other than flat space, which would establish that flat space is the only local minimum. We prove this for metrics on R 4 and a large class of more complicated topologies and for self-dual metrics. We show that if Rsupμsubμ >= 0 there are no bound states of the Dirac equation and discuss the relevance to possible baryon non-conserving processes mediated by gravitational instantons. We conclude that these are forbidden in the lowest stationary phase approximation. We give a detailed discussion of instantons invariant under an SU(2) or SO(3) isometry group. We find all regular solutions, none of which is asymptotically Euclidean and all of which possess a further Killing vector. In an appendix we construct an approximate self-dual metric on K3 - the only simply connected compact manifold which admits a self-dual metric. (orig.) [de
Optimization of Parameters of Asymptotically Stable Systems
Directory of Open Access Journals (Sweden)
Anna Guerman
2011-01-01
Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.
Theorems for asymptotic safety of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)
Mass loss on the Asymptotic Giant Branch
Zijlstra, Albert
2006-01-01
Mass loss on the Asymptotic Giant Branch provides the origin of planetary nebulae. This paper reviews several relevant aspects of AGB evolution: pulsation properties, mass loss formalisms and time variable mass loss, evidence for asymmetries on the AGB, binarity, ISM interaction, and mass loss at low metallicity. There is growing evidence that mass loss on the AGB is already asymmetric, but with spherically symmetric velocity fields. The origin of the rings may be in pulsational instabilities...
Asymptotic elastic energy in simple metals
International Nuclear Information System (INIS)
Khalifeh, J.M.
1983-07-01
The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)
Asymptotic safety of gravity with matter
Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel
2018-05-01
We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.
Chiral symmetry breaking in asymptotically free and non-asymptotically free gauge theories
International Nuclear Information System (INIS)
Gusynin, V.P.; Miranskij, V.A.
1986-01-01
An essential distinction in the realization of the PCAC-dynamics in vector-like asymptotically free and non-asymptotically free (with a non-trival ultraviolet stable fixed point) gauge theories is revealed. For the latter theories an analytical expression for the condensate is obtained in the two-loop approximation and the arguments in support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed
Asymptotic problems for stochastic partial differential equations
Salins, Michael
Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.
Lectures on the asymptotic theory of ideals
Rees, D
1988-01-01
In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work
Asymptotic density and the Ershov hierarchy
Downey, Rod; Jockusch, Carl; McNicholl, Timothy H.; Schupp, Paul
2013-01-01
We classify the asymptotic densities of the $\\Delta^0_2$ sets according to their level in the Ershov hierarchy. In particular, it is shown that for $n \\geq 2$, a real $r \\in [0,1]$ is the density of an $n$-c.e.\\ set if and only if it is a difference of left-$\\Pi_2^0$ reals. Further, we show that the densities of the $\\omega$-c.e.\\ sets coincide with the densities of the $\\Delta^0_2$ sets, and there are $\\omega$-c.e.\\ sets whose density is not the density of an $n$-c.e. set for any $n \\in \\ome...
Asymptotic freedom in extended conformal supergravities
International Nuclear Information System (INIS)
Fradkin, E.S.; Tseytlin, A.A.
1982-01-01
We present the calculation of the one-loop β-function in extended conformal supergravities. N = 1, 2, 3 theories (free or coupled to the Einstein supergravities) are found to the asymptotically free (like the N = 0 Weyl theory) while the N = 4 theory becomes finite under some plausible hypothesis. The results support the possibility to solve the problem of ghosts in these theories. The obtained sequence of SU(N) β-functions appears to be in remarkable correspondence with that for gauged O(N) supergravity theories. (orig.)
Asymptotically Free Natural Supersymmetric Twin Higgs Model
Badziak, Marcin; Harigaya, Keisuke
2018-05-01
Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.
Asymptotics with a positive cosmological constant II
Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice
2015-04-01
The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.
Integrable theories that are asymptotically CFT
Evans, J M; Jonathan M Evans; Timothy J Hollowood
1995-01-01
A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan
2014-01-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.
2014-03-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Yang, Lei; Yan, Hongyong; Liu, Hong
2017-03-01
Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2014-01-01
We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Asymptotic Theory for Regressions with Smoothly Changing Parameters
DEFF Research Database (Denmark)
Hillebrand, Eric Tobias; Medeiros, Marcelo C.; Xu, Junyue
We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual square-root-of-T rate...... and has an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....
Asymptotic theory for regressions with smoothly changing parameters
DEFF Research Database (Denmark)
Hillebrand, Eric; Medeiros, Marcelo; Xu, Junyue
2013-01-01
We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual pT-rate and has...... an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....
On maximal surfaces in asymptotically flat space-times
International Nuclear Information System (INIS)
Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.
1990-01-01
Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)
Asymptotic theory of double layer and shielding of electric field at the edge of illuminated plasma
Energy Technology Data Exchange (ETDEWEB)
Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal); Thomas, D. M. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)
2014-04-15
The method of matched asymptotic expansions is applied to the problem of a collisionless plasma generated by UV illumination localized in a central part of the plasma in the limiting case of small Debye length λ{sub D}. A second-approximation asymptotic solution is found for the double layer positioned at the boundary of the illuminated region and for the un-illuminated plasma for the plane geometry. Numerical calculations for different values of λ{sub D} are reported and found to confirm the asymptotic results. The net integral space charge of the double layer is asymptotically small, although in the plane geometry it is just sufficient to shield the ambipolar electric field existing in the illuminated region and thus to prevent it from penetrating into the un-illuminated region. The double layer has the same mathematical nature as the intermediate transition layer separating an active plasma and a collisionless sheath, and the underlying physics is also the same. In essence, the two layers represent the same physical object: a transonic layer.
Delay-dependent asymptotic stability of a two-neuron system with different time delays
International Nuclear Information System (INIS)
Tu Fenghua; Liao Xiaofeng; Zhang Wei
2006-01-01
In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results
Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays
Directory of Open Access Journals (Sweden)
Xiaofeng Liao
2007-01-01
Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
On the asymptotic form of the recursion method basis vectors for periodic Hamiltonians
International Nuclear Information System (INIS)
O'Reilly, E.P.; Weaire, D.
1984-01-01
The authors present the first detailed study of the recursion method basis vectors for the case of a periodic Hamiltonian. In the examples chosen, the probability density scales linearly with n as n → infinity, whenever the local density of states is bounded. Whenever it is unbounded and the recursion coefficients diverge, different scaling behaviour is found. These findings are explained and a scaling relationship between the asymptotic forms of the recursion coefficients and basis vectors is proposed. (author)
From asymptotic safety to dark energy
International Nuclear Information System (INIS)
Ahn, Changrim; Kim, Chanju; Linder, Eric V.
2011-01-01
We consider renormalization group flow applied to the cosmological dynamical equations. A consistency condition arising from energy-momentum conservation links the flow parameters to the cosmological evolution, restricting possible behaviors. Three classes of cosmological fixed points for dark energy plus a barotropic fluid are found: a dark energy dominated universe, which can be either accelerating or decelerating depending on the RG flow parameters, a barotropic dominated universe where dark energy fades away, and solutions where the gravitational and potential couplings cease to flow. If the IR fixed point coincides with the asymptotically safe UV fixed point then the dark energy pressure vanishes in the first class, while (only) in the de Sitter limit of the third class the RG cutoff scale becomes the Hubble scale.
Asymptotic theory of weakly dependent random processes
Rio, Emmanuel
2017-01-01
Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Asymptotic stability of steady compressible fluids
Padula, Mariarosaria
2011-01-01
This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...
Asymptotic representation of relaxation oscillations in lasers
Grigorieva, Elena V
2017-01-01
In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.
Asymptotically safe non-minimal inflation
Energy Technology Data Exchange (ETDEWEB)
Tronconi, Alessandro, E-mail: Alessandro.Tronconi@bo.infn.it [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46,40126 Bologna (Italy)
2017-07-01
We study the constraints imposed by the requirement of Asymptotic Safety on a class of inflationary models with an inflaton field non-minimally coupled to the Ricci scalar. The critical surface in the space of theories is determined by the improved renormalization group flow which takes into account quantum corrections beyond the one loop approximation. The combination of constraints deriving from Planck observations and those from theory puts severe bounds on the values of the parameters of the model and predicts a quite large tensor to scalar ratio. We finally comment on the dependence of the results on the definition of the infrared energy scale which parametrises the running on the critical surface.
UV conformal window for asymptotic safety
Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom
2018-02-01
Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.
Quantum defect theory and asymptotic methods
International Nuclear Information System (INIS)
Seaton, M.J.
1982-01-01
It is shown that quantum defect theory provides a basis for the development of various analytical methods for the examination of electron-ion collision phenomena, including di-electronic recombination. Its use in conjuction with ab initio calculations is shown to be restricted by problems which arise from the presence of long-range non-Coulomb potentials. Empirical fitting to some formulae can be efficient in the use of computer time but extravagant in the use of person time. Calculations at a large number of energy points which make no use of analytical formulae for resonance structures may be made less extravagant in computer time by the development of more efficient asymptotic methods. (U.K.)
Grassmann scalar fields and asymptotic freedom
Energy Technology Data Exchange (ETDEWEB)
Palumbo, F [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1996-03-01
The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.
Asymptotic methods in mechanics of solids
Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi
2015-01-01
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...
Asymptotic Sharpness of Bounds on Hypertrees
Directory of Open Access Journals (Sweden)
Lin Yi
2017-08-01
Full Text Available The hypertree can be defined in many different ways. Katona and Szabó introduced a new, natural definition of hypertrees in uniform hypergraphs and investigated bounds on the number of edges of the hypertrees. They showed that a k-uniform hypertree on n vertices has at most (nk−1$\\left( {\\matrix{n \\cr {k - 1} } } \\right$ edges and they conjectured that the upper bound is asymptotically sharp. Recently, Szabó verified that the conjecture holds by recursively constructing an infinite sequence of k-uniform hypertrees and making complicated analyses for it. In this note we give a short proof of the conjecture by directly constructing a sequence of k-uniform k-hypertrees.
Asymptotic safety, singularities, and gravitational collapse
International Nuclear Information System (INIS)
Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz
2011-01-01
Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.
Asymptotic limits of a statistical transport description
International Nuclear Information System (INIS)
Malvagi, F.; Levermore, C.D.; Pomraning, G.C.; Department of Mathematics, University of Arizona, Tucson, AZ 85721)
1989-01-01
We consider three different asymptotic limits of a model describing linear particle transport in a stochastic medium consisting of two randomly mixed immiscible fluids. These three limits are: (1) the fluid packets are small compared to the particle mean free path in the packet; (2) a small amount of large cross section fluid is admixed with a large amount of small cross section fluid; and (3) the angular dependence of the intensity (angular flux) is nearly isotropic. The first two limits reduce the underlying model, which consists of two coupled transport equations, to a single transport equation of the usual form. The third limit yields a two-equation diffusion approximation, and a boundary layer analysis gives boundary conditions for these two coupled diffusion equations
Charge exchange with ion excitation: asymptotic theory
International Nuclear Information System (INIS)
Ivakin, I.A.; Karbovanets, M.I.; Ostrovskii, V.N.
1987-01-01
There is developed an asymptotic (with respect to the large internuclear separation R) theory for computing the matrix element of the exchange interaction between states of quasimolecules, which is responsible for charge transfer with ion excitation: B + +A→B+A + *. A semiclassical approximation is used, which enables one to apply the theory to processes with the participation of multiply charged ions. The case of s--s transitions for excitation of the ion A + →A + *, where it is appropriate to take into account the distortion of the wave functions of the ion A + by the particle B, is treated separately. Calculations of cross sections and comparison with the results of experiments for He + --Cd and Ne + --Mg collisions at thermal energies are given. It is shown that it is impossible to explain the experimental data by the interaction of terms of the quasimolecules at large R only, and a possible mechanism for populating at small R is proposed
Methods in half-linear asymptotic theory
Directory of Open Access Journals (Sweden)
Pavel Rehak
2016-10-01
Full Text Available We study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation $$ (r(t|y'|^{\\alpha-1}\\hbox{sgn} y''=p(t|y|^{\\alpha-1}\\hbox{sgn} y, $$ where r(t and p(t are positive continuous functions on $[a,\\infty$, $\\alpha\\in(1,\\infty$. The aim of this article is twofold. On the one hand, we show applications of a wide variety of tools, like the Karamata theory of regular variation, the de Haan theory, the Riccati technique, comparison theorems, the reciprocity principle, a certain transformation of dependent variable, and principal solutions. On the other hand, we solve open problems posed in the literature and generalize existing results. Most of our observations are new also in the linear case.
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang; Sun, Xiang; Huang, Di; Morvan, Jean-Marie; Wang, Yunhong; Chen, Liming
2015-01-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang
2015-05-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
Numerical algorithms for uniform Airy-type asymptotic expansions
N.M. Temme (Nico)
1997-01-01
textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing
H. David Politzer, Asymptotic Freedom, and Strong Interaction
dropdown arrow Site Map A-Z Index Menu Synopsis H. David Politzer, Asymptotic Freedom, and Strong Interaction Resources with Additional Information H. David Politzer Photo Credit: California Institute of Technology H. David Politzer has won the 2004 Nobel Prize in Physics 'for the discovery of asymptotic freedom
Conformal Phase Diagram of Complete Asymptotically Free Theories
DEFF Research Database (Denmark)
Pica, Claudio; Ryttov, Thomas A.; Sannino, Francesco
2017-01-01
function. We provide the general conditions that the beta function coefficients must abide for the theory to be completely asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special trajectories in coupling space along which some couplings are both...... asymptotically safe and infrared conformal....
Regge asymptotics of scattering with flavour exchange in QCD
International Nuclear Information System (INIS)
Kirschner, R.
1994-06-01
The contribution to the perturbative Regge asymptotics of the exchange of two reggeized fermions with opposite helicity is investigated. The methods of conformal symmetry known for the case of gluon exchange are extended to this case where double-logarithmic contributions dominate the asymptotics. The Regge trajectories at large momentum transfer are calculated. (orig.)
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan
2015-01-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Error estimates in horocycle averages asymptotics: challenges from string theory
Cardella, M.A.
2010-01-01
For modular functions of rapid decay, a classical result connects the error estimate in their long horocycle average asymptotic to the Riemann hypothesis. We study similar asymptotics, for modular functions with not that mild growing conditions, such as of polynomial growth and of exponential growth
An asymptotic formula of the divergent bilateral basic hypergeometric series
Morita, Takeshi
2012-01-01
We show an asymptotic formula of the divergent bilateral basic hypergeometric series ${}_1\\psi_0 (a;-;q,\\cdot)$ with using the $q$-Borel-Laplace method. We also give the limit $q\\to 1-0$ of our asymptotic formula.
Asymptotic representation theorems for poverty indices | Lo | Afrika ...
African Journals Online (AJOL)
Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...
Some asymptotic properties of functions holomorphic in tubular domains
International Nuclear Information System (INIS)
Zavialov, B.I.
1988-10-01
For the function holomorphic in curved tubular domain the connection between asymptotic behaviour of real part of its boundary value at a given point of base manifold and asymptotic behaviour of the whole function from the inside of this domain is studied. (author). 3 refs
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.
2015-03-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Asymptotic time dependent neutron transport in multidimensional systems
International Nuclear Information System (INIS)
Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.
1983-01-01
A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated
Inverted hierarchy and asymptotic freedom in grand unified supersymmetric theories
International Nuclear Information System (INIS)
Aratyn, H.
1983-01-01
The interrelation between an inverted hierarchy mechanism and asymptotic freedom in supersymmetric theories is analyzed in two models for which we performed a detailed analysis of the effective potentials and effective couplings. We find it difficult to accommodate an inverted hierarchy together with asymptotic freedom for the matter-Yukawa couplings. (orig.)
Szegö Kernels and Asymptotic Expansions for Legendre Polynomials
Directory of Open Access Journals (Sweden)
Roberto Paoletti
2017-01-01
Full Text Available We present a geometric approach to the asymptotics of the Legendre polynomials Pk,n+1, based on the Szegö kernel of the Fermat quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [-1,1].
Cookbook asymptotics for spiral and scroll waves in excitable media.
Margerit, Daniel; Barkley, Dwight
2002-09-01
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.
On asymptotic continuity of functions of quantum states
International Nuclear Information System (INIS)
Synak-Radtke, Barbara; Horodecki, Michal
2006-01-01
A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this letter, we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called robustness under admixture. This allows us to show that relative entropy distance from a convex set including a maximally mixed state is asymptotically continuous. Subsequently, we consider arrowing-a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples. (letter to the editor)
Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.
2017-11-01
Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.
Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang
2014-01-01
We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.
Directory of Open Access Journals (Sweden)
Tao Ren
2014-01-01
Full Text Available We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.
Asymptotics of quantum weighted Hurwitz numbers
Harnad, J.; Ortmann, Janosch
2018-06-01
This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.
Asymptotic Solutions of Serial Radial Fuel Shuffling
Directory of Open Access Journals (Sweden)
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS
International Nuclear Information System (INIS)
Lyubarsky, Yuri
2009-01-01
In relativistic, Poynting-dominated outflows, acceleration and collimation are intimately connected. An important point is that the Lorentz force is nearly compensated by the electric force; therefore the acceleration zone spans a large range of scales. We derived the asymptotic equations describing relativistic, axisymmetric magnetohydrodynamic flows far beyond the light cylinder. These equations do not contain either intrinsic small scales (like the light cylinder radius) or terms that nearly cancel each other (like the electric and magnetic forces); therefore they could be easily solved numerically. They also suit well for qualitative analysis of the flow and, in many cases, they could even be solved analytically or semianalytically. We show that there are generally two collimation regimes. In the first regime, the residual of the hoop stress and the electric force is counterbalanced by the pressure of the poloidal magnetic field so that, at any distance from the source, the structure of the flow is the same as the structure of an appropriate cylindrical equilibrium configuration. In the second regime, the pressure of the poloidal magnetic field is negligibly small so that the flow could be conceived as composed from coaxial magnetic loops. In the two collimation regimes, the flow is accelerated in different ways. We study in detail the structure of jets confined by the external pressure with a power-law profile. In particular, we obtained simple scalings for the extent of the acceleration zone, for the terminal Lorentz factor, and for the collimation angle.
Asymptotic laws for random knot diagrams
Chapman, Harrison
2017-06-01
We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.
Asymptotic estimation of reactor fueling optimal strategy
International Nuclear Information System (INIS)
Simonov, V.D.
1985-01-01
The problem of improving the technical-economic factors of operating. and designed nuclear power plant blocks by developino. internal fuel cycle strategy (reactor fueling regime optimization), taking into account energy system structural peculiarities altogether, is considered. It is shown, that in search of asymptotic solutions of reactor fueling planning tasks the model of fuel energy potential (FEP) is the most ssuitable and effective. FEP represents energy which may be produced from the fuel in a reactor with real dimensions and power, but with hypothetical fresh fuel supply, regime, providing smilar burnup of all the fuel, passing through the reactor, and continuous overloading of infinitely small fuel portion under fule power, and infinitely rapid mixing of fuel in the reactor core volume. Reactor fuel run with such a standard fuel cycle may serve as FEP quantitative measure. Assessment results of optimal WWER-440 reactor fresh fuel supply periodicity are given as an example. The conclusion is drawn that with fuel enrichment x=3.3% the run which is 300 days, is economically justified, taking into account that the cost of one energy unit production is > 3 cop/KW/h
Wall roughness induces asymptotic ultimate turbulence
Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef
2018-04-01
Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.
Qualitative and Asymptotic Theory of Detonations
Faria, Luiz
2014-11-09
Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.
Asymptotics of Heavy-Meson Form Factors
Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias
1997-01-01
Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...
Asymptotic scalings of developing curved pipe flow
Ault, Jesse; Chen, Kevin; Stone, Howard
2015-11-01
Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.
Asymptotic conformal invariance in a non-Abelian Chern-Simons-matter model
Energy Technology Data Exchange (ETDEWEB)
Acebal, J.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Campos e Particulas]. E-mail: acebal@cbpf.br
2002-08-01
One shows here the existence of solutions to the Callan-Symanzik equation for the non-Abelian SU(2) Chern-Simons-matter model which exhibits asymptotic conformal invariance to every order in perturbative theory. The conformal symmetry in the classical domain is shown to hold by means of a local criteria based on the trace of the energy-momentum tensor. By using recently exhibited regimes for the dependence between the several couplings in which the set of {beta}-functions vanish, the asymptotic conformal invariance of the model appears to be valid in the quantum domain. By considering the SU (n) case the possible non validity of the proof for a particular {eta} would be merely accidental. (author)
Black holes and asymptotics of 2+1 gravity coupled to a scalar field
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2002-01-01
We consider 2+1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the asymptotic symmetry group remains the same as in pure gravity (i.e., the conformal group). The generators of the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the canonical generators possesses the standard central extension. In this context, new massive black hole solutions with a regular scalar field are found for a one-parameter family of potentials. These black holes are continuously connected to the standard zero mass black hole
Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2011-01-01
Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.
Asymptotic analysis to the effect of temperature gradient on the propagation of triple flames
Al-Malki, Faisal
2018-05-01
We study asymptotically in this paper the influence of the temperature gradient across the mixing layer on the propagation triple flames formed inside a porous wall channel. The study begins by formulating the problem mathematically using the thermo-diffusive model and then presents a thorough asymptotic analysis of the problem in the limit of large activation energy and thin flames. Analytical formulae for the local burning speed, the flame shape and the propagation speed in terms of the temperature gradient parameter have been derived. It was shown that varying the feed temperatures can significantly enhance the burning of the reactants up to a critical threshold, beyond which no solutions can be obtained. In addition, the study showed that increasing the temperature at the boundaries will modify the usual triple structure of the flame by inverting the upper premixed branch and extending it to the boundary, which may have great implications on the safety of the adopted combustion chambers.
Symmetry breaking and asymptotic freedom in colour SU(3) gauge models
International Nuclear Information System (INIS)
Ma, E.
1976-01-01
A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)
Fixed point theorems in locally convex spacesÃ¢Â€Â”the Schauder mapping method
Directory of Open Access Journals (Sweden)
S. Cobzaş
2006-03-01
Full Text Available In the appendix to the book by F. F. Bonsal, Lectures on Some Fixed Point Theorems of Functional Analysis (Tata Institute, Bombay, 1962 a proof by Singbal of the Schauder-Tychonoff fixed point theorem, based on a locally convex variant of Schauder mapping method, is included. The aim of this note is to show that this method can be adapted to yield a proof of Kakutani fixed point theorem in the locally convex case. For the sake of completeness we include also the proof of Schauder-Tychonoff theorem based on this method. As applications, one proves a theorem of von Neumann and a minimax result in game theory.
FLUORINE IN ASYMPTOTIC GIANT BRANCH CARBON STARS REVISITED
International Nuclear Information System (INIS)
Abia, C.; Dominguez, I.; Recio-Blanco, A.; De Laverny, P.; Cristallo, S.; Straniero, O.
2009-01-01
A re-analysis of the fluorine abundance in three Galactic asymptotic giant branch (AGB) carbon stars (TX Psc, AQ Sgr, and R Scl) has been performed from the molecular HF (1-0) R9 line at 2.3358 μm. High resolution (R ∼ 50,000) and high signal-to-noise spectra obtained with the CRIRES spectrograph and the VLT telescope or from the NOAO archive (for TX Psc) have been used. Our abundance analysis uses the latest generation of MARCS model atmospheres for cool carbon-rich stars. Using spectral synthesis in local thermodynamic equilibrium, we derive for these stars fluorine abundances that are systematically lower by ∼0.8 dex in average with respect to the sole previous estimates by Jorissen et al. The possible reasons of this discrepancy are explored. We conclude that the difference may rely on the blending with C-bearing molecules (CN and C 2 ) that were not properly taken into account in the former study. The new F abundances are in better agreement with the prediction of full network stellar models of low-mass AGB stars. These models also reproduce the s-process elements distribution in the sampled stars. This result, if confirmed in a larger sample of AGB stars, might alleviate the current difficulty to explain the largest [F/O] ratios found by Jorissen et al. In particular, it may not be necessary to search for alternative nuclear chains affecting the production of F in AGB stars.
Bulk viscous matter-dominated Universes: asymptotic properties
Energy Technology Data Exchange (ETDEWEB)
Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)
2013-08-01
By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
Global asymptotic stability of density dependent integral population projection models.
Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart
2012-02-01
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.
Asymptotically double lacunry equivalent sequences defined by Orlicz functions
Directory of Open Access Journals (Sweden)
Ayhan Esi
2014-04-01
Full Text Available This paper presents the following definition which is natural combition of the definition for asymptotically equivalent and Orlicz function. The two nonnegative double sequences x=(x_{k,l} and y=(y_{k,l} are said to be M-asymptotically double equivalent to multiple L provided that for every ε>0, P-lim_{k,l}M(((|((x_{k,l}/(y_{k,l}-L|/ρ=0, for some ρ>0, (denoted by x∽y and simply M-asymptotically double equivalent if L=1. Also we give some new concepts related to this definition and some inclusion theorems.
Asymptotic failure rate of a continuously monitored system
International Nuclear Information System (INIS)
Grall, A.; Dieulle, L.; Berenguer, C.; Roussignol, M.
2006-01-01
This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy
Asymptotic failure rate of a continuously monitored system
Energy Technology Data Exchange (ETDEWEB)
Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr
2006-02-01
This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.
On asymptotic analysis of spectral problems in elasticity
Directory of Open Access Journals (Sweden)
S.A. Nazarov
Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.
Asymptotics for the Kummer function of Bose plasmas
International Nuclear Information System (INIS)
Kowalenko, V.; Frankel, N.E.
1993-01-01
The asymptotic expansions for the Kummer function obtained in the study of the linear response of magnetised Bose plasmas at T = 0 K are presented for large and small values of its parameter, thereby displaying the function's asymptotic non-uniformity. The large parameter expansion plays a determining role in the behaviour of these Bose systems in the limit that the external magnetic field B →0. This particular expansion is generalised herein and its validity tested by determining the asymptotic expansion for the Hurwitz zeta function. 18 refs., 1 tab., 2 figs
Asymptotic theory of circular polarization memory.
Dark, Julia P; Kim, Arnold D
2017-09-01
We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.
On approach to double asymptotic scaling at low x
International Nuclear Information System (INIS)
Choudhury, D.K.
1994-10-01
We obtain the finite x correlations to the gluon structure function which exhibits double asymptotic scaling at low x. The technique used is the GLAP equation for gluon approximated at low x by a Taylor expansion. (author). 27 refs
Asymptotically anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2009-01-01
We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.
Confinement and asymptotic freedom seen with a golden eye
International Nuclear Information System (INIS)
Elokaby, A.
2009-01-01
The present short note is an attempt to reconcile the current conventional understanding of quarks confinement and asymptotic freedom with the results found by El Naschie using the exact renormalization equation of his quantum golden field theory.
Asymptotic distribution of products of sums of independent random ...
Indian Academy of Sciences (India)
integrable random variables (r.v.) are asymptotically log-normal. This fact ... the product of the partial sums of i.i.d. positive random variables as follows. .... Now define ..... by Henan Province Foundation and Frontier Technology Research Plan.
Preheating in an asymptotically safe quantum field theory
DEFF Research Database (Denmark)
Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert
2016-01-01
. High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance...... fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F......We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J...
Pseudo-random number generator based on asymptotic deterministic randomness
Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming
2008-06-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.
Pseudo-random number generator based on asymptotic deterministic randomness
International Nuclear Information System (INIS)
Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming
2008-01-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks
Asymptotic series and functional integrals in quantum field theory
International Nuclear Information System (INIS)
Shirkov, D.V.
1979-01-01
Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)
Asymptotically Almost Periodic Solutions of Evolution Equations in Banach Spaces
Ruess, W. M.; Phong, V. Q.
Tile linear abstract evolution equation (∗) u'( t) = Au( t) + ƒ( t), t ∈ R, is considered, where A: D( A) ⊂ E → E is the generator of a strongly continuous semigroup of operators in the Banach space E. Starting from analogs of Kadets' and Loomis' Theorems for vector valued almost periodic Functions, we show that if σ( A) ∩ iR is countable and ƒ: R → E is [asymptotically] almost periodic, then every bounded and uniformly continuous solution u to (∗) is [asymptotically] almost periodic, provided e-λ tu( t) has uniformly convergent means for all λ ∈ σ( A) ∩ iR. Related results on Eberlein-weakly asymptotically almost periodic, periodic, asymptotically periodic and C 0-solutions of (∗), as well as on the discrete case of solutions of difference equations are included.
Asymptotic behavior of quark masses induced by instantons
International Nuclear Information System (INIS)
Carneiro, C.E.I.; Frenkel, J.
1984-02-01
A simple argument which shows that the dynamical mass induced by interactions of massless quarks with pseudo-particle configurations, behaves like p -6 for asymptotically large quark momenta is presented. (Author) [pt
Robust methods and asymptotic theory in nonlinear econometrics
Bierens, Herman J
1981-01-01
This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...
Asymptotically Safe Standard Model Extensions arXiv
Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro
We consider theories with a large number NF of charged fermions and compute the renormalisation group equations for the gauge, Yukawa and quartic couplings resummed at leading order in NF. We construct extensions of the Standard Model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Ravi P. Agarwal
2007-04-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order PoincarÃƒÂ© difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2007-01-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Asymptotical behaviour of pion electromagnetic form factor in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1978-01-01
In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory
Non-Asymptotic Confidence Sets for Circular Means
Directory of Open Access Journals (Sweden)
Thomas Hotz
2016-10-01
Full Text Available The mean of data on the unit circle is defined as the minimizer of the average squared Euclidean distance to the data. Based on Hoeffding’s mass concentration inequalities, non-asymptotic confidence sets for circular means are constructed which are universal in the sense that they require no distributional assumptions. These are then compared with asymptotic confidence sets in simulations and for a real data set.
Global asymptotic stability of delayed Cohen-Grossberg neural networks
International Nuclear Information System (INIS)
Wu Wei; Cui Baotong; Huang Min
2007-01-01
In this letter, the global asymptotic stability of a class of Cohen-Grossberg neural networks with time-varying delays is discussed. A new set of sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence. Our criteria represent an extension of the existing results in literatures. An example is also presented to compare our results with the previous results
Asymptotic freedom and the symplectic and G2 groups
International Nuclear Information System (INIS)
Chaichian, M; Kolmakov, Yu. N.; Nelipa, N. F.
1978-01-01
It is shown that the symplectic Sp(4), Sp(6) and the exceptional G 2 gauge field theories with complete Spontaneous symmetry breaking through the Higgs mechanism are not asymptotically free. This, together with earlier results for other groups, hints at the existence of a general theorem according to which it would no longer be possible for asymptotic freedom to coexist with the absence of infrared divergences. (author)
Discrete Weighted Pseudo Asymptotic Periodicity of Second Order Difference Equations
Directory of Open Access Journals (Sweden)
Zhinan Xia
2014-01-01
Full Text Available We define the concept of discrete weighted pseudo-S-asymptotically periodic function and prove some basic results including composition theorem. We investigate the existence, and uniqueness of discrete weighted pseudo-S-asymptotically periodic solution to nonautonomous semilinear difference equations. Furthermore, an application to scalar second order difference equations is given. The working tools are based on the exponential dichotomy theory and fixed point theorem.
Asymptotic stability of a genetic network under impulsive control
International Nuclear Information System (INIS)
Li Fangfei; Sun Jitao
2010-01-01
The study of the stability of genetic network is an important motif for the understanding of the living organism at both molecular and cellular levels. In this Letter, we provide a theoretical method for analyzing the asymptotic stability of a genetic network under impulsive control. And the sufficient conditions of its asymptotic stability under impulsive control are obtained. Finally, an example is given to illustrate the effectiveness of the obtained method.
Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems
International Nuclear Information System (INIS)
Aptekarev, A I; Lopez, Guillermo L; Rocha, I A
2005-01-01
The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
arXiv Asymptotically Safe Standard Model Extensions?
Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro
2018-05-15
We consider theories with a large number NF of charged fermions and compute the renormalization group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1/NF. We construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.
The asymptotic variance of departures in critically loaded queues
Al Hanbali, Ahmad; Mandjes, M.R.H.; Nazarathy, Y.; Whitt, W.
2011-01-01
We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1 - 2 / π)(ca2 +
Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns
Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro
2017-05-01
The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.
STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS
International Nuclear Information System (INIS)
Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.
2009-01-01
The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ∼ 0.008 (0.6 x solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ∼ 0.004. Masses of AGB stars that produce C-rich dust are in the range
Loop quantum gravity in asymptotically flat spaces
International Nuclear Information System (INIS)
Arnsdorf, M.
2000-01-01
This thesis describes applications and extensions of the loop variable approach to non-perturbative quantum gravity. The common theme of the work presented, is the need to generalise loop quantum gravity to be applicable in cases where space is asymptotically flat, and no longer compact as is usually assumed. This is important for the study of isolated gravitational systems. It also presents a natural context in which to search for the semi-classical limit, one of the main outstanding problems in loop quantum gravity. In the first part of the thesis we study how isolated gravitational systems can be attributed particle-like properties. In particular, we show how spinorial states can arise in pure loop quantum gravity if spatial topology is non-trivial, thus confirming an old conjecture of Friedman and Sorkin. Heuristically, this corresponds to the idea that we can rotate isolated regions of spatial topology relative to the environment at infinity, and that only a 4π-rotation will take us back to the original configuration. To do this we extend the standard loop quantum gravity formalism by introducing a compactification of our non-compact spatial manifold, and study the knotting of embedded graphs. The second part of the thesis takes a more systematic approach to the study of loop quantum gravity on non-compact spaces. We look for new representations of the loop algebra, which give rise to quantum theories that are inequivalent to the standard one. These theories naturally describe excitations of a fiducial background state, which is specified via the choice of its vacuum expectation values. In particular, we can choose background states that describe the geometries of non-compact manifolds. We also discuss how suitable background states can be constructed that can approximate classical phase space data, in our case holonomies along embedded paths and geometrical quantities related to areas and volumes. These states extend the notion of the weave and provide a
Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.
Directory of Open Access Journals (Sweden)
Richard B King
Full Text Available Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females and annual growth increments of individuals of unknown age (1,152 males, 730 females. We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further
Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size
King, Richard B.
2016-01-01
Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID
Asymptotics of bivariate generating functions with algebraic singularities
Greenwood, Torin
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
Cortazar, C.; Elgueta, M.; Quiros, F.; Wolanski, N.
2011-01-01
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, $u_t=J*u-u:=Lu$, in an exterior domain, $\\Omega$, which excludes one or several holes, and with zero Dirichlet data on $\\mathbb{R}^N\\setminus\\Omega$. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves...
Jiao, Yong; Wakakuwa, Eyuri; Ogawa, Tomohiro
2018-02-01
We consider asymptotic convertibility of an arbitrary sequence of bipartite pure states into another by local operations and classical communication (LOCC). We adopt an information-spectrum approach to address cases where each element of the sequences is not necessarily a tensor power of a bipartite pure state. We derive necessary and sufficient conditions for the LOCC convertibility of one sequence to another in terms of spectral entropy rates of entanglement of the sequences. Based on these results, we also provide simple proofs for previously known results on the optimal rates of entanglement concentration and dilution of general sequences of bipartite pure states.
Large gauge symmetries and asymptotic states in QED
Energy Technology Data Exchange (ETDEWEB)
Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)
2016-12-19
Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.
Asymptotic strength of thermal pulses in the helium shell burning
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, M Y [Niigata Univ. (Japan); Sugimoto, D
1979-03-01
Secular growth in the strength of the recurrent thermal pulses of helium shell burning is discussed for the purpose of determining its asymptotic strength. It is shown that the pulse grows stronger if the helium zone has been cooled more before the initiation of the pulse. The secular growth of the pulse is related with the increasing degree of cooling. Thermal pulses are computed for an initial model corresponding to the maximum possible cooling, i.e., for a model in which the steady-state entropy distribution was realized in the helium zone. Such thermal pulses are shown to give an upper bound to the asymptotic strength, which is close enough to the asymptotic strength itself for relatively large core masses. Numerical results are given for the core mass of 1.07 M sub(sun), for which the asymptotic strength is found to be 9 x 10/sup 6/ L sub(sun). Thermal pulses are also computed for an initial model which has been cooled artificially more than the steady-state model. The first pulse results in a much greater strength than in the normal model, but a later pulse approaches the normal asymptotic value. Such models are also discussed in relation to the shell flashes on accreting white dwarfs.
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
Contact mechanics of articular cartilage layers asymptotic models
Argatov, Ivan
2015-01-01
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...
Heat Kernel Asymptotics of Zaremba Boundary Value Problem
Energy Technology Data Exchange (ETDEWEB)
Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu
2004-03-15
The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.
Asymptotic chaos expansions in finance theory and practice
Nicolay, David
2014-01-01
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...
Asymptotic Analysis in MIMO MRT/MRC Systems
Directory of Open Access Journals (Sweden)
Zhou Quan
2006-01-01
Full Text Available Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC systems. One is the asymptotic error performance (in terms of SNR in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.
Watermelon configurations with wall interaction: exact and asymptotic results
Energy Technology Data Exchange (ETDEWEB)
Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)
2006-06-15
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.
Watermelon configurations with wall interaction: exact and asymptotic results
International Nuclear Information System (INIS)
Krattenthaler, C
2006-01-01
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature
Watermelon configurations with wall interaction: exact and asymptotic results
Krattenthaler, C.
2006-06-01
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.
On the asymptotic stability of nonlinear mechanical switched systems
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
The unusual asymptotics of three-sided prudent polygons
International Nuclear Information System (INIS)
Beaton, Nicholas R; Guttmann, Anthony J; Flajolet, Philippe
2010-01-01
We have studied the area-generating function of prudent polygons on the square lattice. Exact solutions are obtained for the generating function of two-sided and three-sided prudent polygons, and a functional equation is found for four-sided prudent polygons. This is used to generate series coefficients in polynomial time, and these are analysed to determine the asymptotics numerically. A careful asymptotic analysis of the three-sided polygons produces a most surprising result. A transcendental critical exponent is found, and the leading amplitude is not quite a constant, but is a constant plus a small oscillatory component with an amplitude approximately 10 -8 times that of the leading amplitude. This effect cannot be seen by any standard numerical analysis, but it may be present in other models. If so, it changes our whole view of the asymptotic behaviour of lattice models. (fast track communication)
Polymers and Random graphs: Asymptotic equivalence to branching processes
International Nuclear Information System (INIS)
Spouge, J.L.
1985-01-01
In 1974, Falk and Thomas did a computer simulation of Flory's Equireactive RA/sub f/ Polymer model, rings forbidden and rings allowed. Asymptotically, the Rings Forbidden model tended to Stockmayer's RA/sub f/ distribution (in which the sol distribution ''sticks'' after gelation), while the Rings Allowed model tended to the Flory version of the RA/sub f/ distribution. In 1965, Whittle introduced the Tree and Pseudomultigraph models. We show that these random graphs generalize the Falk and Thomas models by incorporating first-shell substitution effects. Moreover, asymptotically the Tree model displays postgelation ''sticking.'' Hence this phenomenon results from the absence of rings and occurs independently of equireactivity. We also show that the Pseudomultigraph model is asymptotically identical to the Branching Process model introduced by Gordon in 1962. This provides a possible basis for the Branching Process model in standard statistical mechanics
Minimax bounds for active learning
Castro, R.M.; Nowak, R.
2008-01-01
This paper analyzes the potential advantages and theoretical challenges of "active learning" algorithms. Active learning involves sequential sampling procedures that use information gleaned from previous samples in order to focus the sampling and accelerate the learning process relative to "passive
International Nuclear Information System (INIS)
Thapliyal, Ashish V.; Smolin, John A.
2003-01-01
Reversible state transformations under entanglement nonincreasing operations give rise to entanglement measures. It is well known that asymptotic local operations and classical communication (LOCC) are required to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and multipartite pure states it is likely that a more powerful class of operations will be needed. To this end more powerful versions of state transformations (or reducibilities), namely, LOCCq (asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC (asymptotic LOCC with catalysis) have been considered in the literature. In this paper we show that LOCCq state transformations are only as powerful as asymptotic LOCC state transformations for multipartite pure states. The basic tool we use is multipartite entanglement gambling: Any pure multipartite entangled state can be transformed to an Einstein-Podolsky-Rosen pair shared by some pair of parties and any irreducible m-party pure state (m≥2) can be used to create any other state (pure or mixed) using LOCC. We consider applications of multipartite entanglement gambling to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. We briefly consider generalizations of this result to mixed states by defining the class of cat-distillable states, i.e., states from which cat states (vertical bar 0 xm >+vertical bar 1 xm >) may be distilled
ADM Mass for Asymptotically de Sitter Space-Time
International Nuclear Information System (INIS)
Huang Shiming; Yue Ruihong; Jia Dongyan
2010-01-01
In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)
Selected asymptotic methods with applications to electromagnetics and antennas
Fikioris, George; Bakas, Odysseas N
2013-01-01
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som
Asymptotic solutions of diffusion models for risk reserves
Directory of Open Access Journals (Sweden)
S. Shao
2003-01-01
Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.
Convergence Theorem for Finite Family of Total Asymptotically Nonexpansive Mappings
Directory of Open Access Journals (Sweden)
E.U. Ofoedu
2015-11-01
Full Text Available In this paper we introduce an explicit iteration process and prove strong convergence of the scheme in a real Hilbert space $H$ to the common fixed point of finite family of total asymptotically nonexpansive mappings which is nearest to the point $u \\in H$. Our results improve previously known ones obtained for the class of asymptotically nonexpansive mappings. As application, iterative method for: approximation of solution of variational Inequality problem, finite family of continuous pseudocontractive mappings, approximation of solutions of classical equilibrium problems and approximation of solutions of convex minimization problems are proposed. Our theorems unify and complement many recently announced results.
Centrally extended symmetry algebra of asymptotically Goedel spacetimes
International Nuclear Information System (INIS)
Compere, Geoffrey; Detournay, Stephane
2007-01-01
We define an asymptotic symmetry algebra for three-dimensional Goedel spacetimes supported by a gauge field which turns out to be the semi-direct sum of the diffeomorphisms on the circle with two loop algebras. A class of fields admitting this asymptotic symmetry algebra and leading to well-defined conserved charges is found. The covariant Poisson bracket of the conserved charges is then shown to be centrally extended to the semi-direct sum of a Virasoro algebra and two affine algebras. The subsequent analysis of three-dimensional Goedel black holes indicates that the Virasoro central charge is negative
Asymptotic inverse periods of reflected reactors above prompt critical
International Nuclear Information System (INIS)
Spriggs, G.D.; Busch, R.D.
1995-01-01
It is commonly assumed that the kinetic behavior of reflected and unreflected reactors is identical. In particular, it is often accepted that a given reactivity change in either type of system will result in an identical asymptotic inverse period. This is generally true for reactivities below prompt critical. For reactivities above prompt critical, however, the asymptotic inverse period can vary in a highly nonlinear fashion with system reactivity depending on the reflector return fraction, the neutron lifetime in the core, and the neutron lifetime in the reflector
Self similar asymptotics of the drift ion acoustic waves
International Nuclear Information System (INIS)
Taranov, V.B.
2004-01-01
A 3D model for the coupled drift and ion acoustic waves is considered. It is shown that self-similar solutions can exist due to the symmetry extension in asymptotic regimes. The form of these solutions is determined in the presence of the magnetic shear as well as in the shear less case. Some of the most symmetric exact solutions are obtained explicitly. In particular, solutions describing asymptotics of zonal flow interaction with monochromatic waves are presented and corresponding frequency shifts are determined
Gravitational charges of transverse asymptotically AdS spacetimes
International Nuclear Information System (INIS)
Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram
2006-01-01
Using Killing-Yano symmetries, we construct conserved charges of spacetimes that asymptotically approach to the flat or anti-de Sitter spaces only in certain directions. In D dimensions, this allows one to define gravitational charges (such as mass and angular momenta densities) of p-dimensional branes/solitons or any other extended objects that curve the transverse space into an asymptotically flat or AdS one. Our construction answers the question of what kind of charges the antisymmetric Killing-Yano tensors lead to
Generalized heat kernel coefficients for a new asymptotic expansion
International Nuclear Information System (INIS)
Osipov, Alexander A.; Hiller, Brigitte
2003-01-01
The method which allows for asymptotic expansion of the one-loop effective action W = lndetA is formulated. The positively defined elliptic operator A = U + M2 depends on the external classical fields taking values in the Lie algebra of the internal symmetry group G. Unlike the standard method of Schwinger - DeWitt, the more general case with the nongenerate mass matrix M = diag(m1, m2, ...) is considered. The first coefficients of the new asymptotic series are calculated and their relationship with the Seeley - DeWitt coefficients is clarified
Global Asymptotic Stability of Switched Neural Networks with Delays
Directory of Open Access Journals (Sweden)
Zhenyu Lu
2015-01-01
Full Text Available This paper investigates the global asymptotic stability of a class of switched neural networks with delays. Several new criteria ensuring global asymptotic stability in terms of linear matrix inequalities (LMIs are obtained via Lyapunov-Krasovskii functional. And here, we adopt the quadratic convex approach, which is different from the linear and reciprocal convex combinations that are extensively used in recent literature. In addition, the proposed results here are very easy to be verified and complemented. Finally, a numerical example is provided to illustrate the effectiveness of the results.
Non-pionic effects in deuteron asymptotic observables
International Nuclear Information System (INIS)
Ballot, J.L.; Robilotta, M.R.
1991-01-01
It is well known that pion dynamics dominates deuteron asymptotic observables, especially η, the D/S ratio and Q, the quadrupole moment. A procedure has been discussed earlier that allows the unambiguous determination of the pion contribution to these observables as function of the pion-nucleon coupling constant. This problem is discussed in the framework of a specific model for the nucleon-nucleon interaction, namely the potential developed by the Tourreil, Rouben and Sprung. The contribution of non-pionic dynamics to deuteron asymptotic observables is investigated. It is shown that effects due to ρ and ω exchanges are negligible. (K.A.) 8 refs., 1 fig., 1 tab
Vacuum energy in asymptotically flat 2 + 1 gravity
Energy Technology Data Exchange (ETDEWEB)
Miskovic, Olivera, E-mail: olivera.miskovic@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago (Chile); Roy, Debraj, E-mail: roy.debraj@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)
2017-04-10
We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.
Vacuum energy in asymptotically flat 2 + 1 gravity
International Nuclear Information System (INIS)
Miskovic, Olivera; Olea, Rodrigo; Roy, Debraj
2017-01-01
We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.
Asymptotic analysis of spatial discretizations in implicit Monte Carlo
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2009-01-01
We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.
International Nuclear Information System (INIS)
Misguich, J.H.
1978-09-01
The physical meaning of perturbed trajectories in turbulent fields is analysed. Special care is devoted to the asymptotic description of average trajectories for long time intervals, as occuring in many recent plasma turbulence theories. Equivalence is proved between asymptotic average trajectories described as well (i) by the propagators V(t,t-tau) for retrodiction and Wsub(J)(t,t+tau) for prediction, and (ii) by the long time secular behavior of the solution of the equations of motion. This confirms the equivalence between perturbed orbit theories and renormalized theories, including non-Markovian contributions
Asymptotics for a special solution to the second member of the Painleve I hierarchy
International Nuclear Information System (INIS)
Claeys, T
2010-01-01
We study the asymptotic behavior of a special smooth solution y(x, t) to the second member of the Painleve I hierarchy. This solution arises in random matrix theory and in the study of the Hamiltonian perturbations of hyperbolic equations. The asymptotic behavior of y(x, t) if x → ±∞ (for fixed t) is known and relatively simple, but it turns out to be more subtle when x and t tend to infinity simultaneously. We distinguish a region of algebraic asymptotic behavior and a region of elliptic asymptotic behavior, and we obtain rigorous asymptotics in both regions. We also discuss two critical transitional asymptotic regimes.
Parabolic cyclinder functions : examples of error bounds for asymptotic expansions
R. Vidunas; N.M. Temme (Nico)
2002-01-01
textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.
Asymptotic behaviour near extinction of continuous-state branching processes
Berzunza, Gabriel; Pardo, Juan Carlos
2016-01-01
In this note, we study the asymptotic behaviour near extinction of (sub-) critical continuous state branching processes. In particular, we establish an analogue of Khintchin's law of the iterated logarithm near extinction time for a continuous state branching process whose branching mechanism satisfies a given condition and its reflected process at its infimum.
The least weighted squares II. Consistency and asymptotic normality
Czech Academy of Sciences Publication Activity Database
Víšek, Jan Ámos
2002-01-01
Roč. 9, č. 16 (2002), s. 1-28 ISSN 1212-074X R&D Projects: GA AV ČR KSK1019101 Grant - others:GA UK(CR) 255/2000/A EK /FSV Institutional research plan: CEZ:AV0Z1075907 Keywords : robust regression * consistency * asymptotic normality Subject RIV: BA - General Mathematics
Small Bandwidth Asymptotics for Density-Weighted Average Derivatives
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael
This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels and the standard errors...
TAIL ASYMPTOTICS OF LIGHT-TAILED WEIBULL-LIKE SUMS
DEFF Research Database (Denmark)
Asmussen, Soren; Hashorva, Enkelejd; Laub, Patrick J.
2017-01-01
We consider sums of n i.i.d. random variables with tails close to exp{-x(beta)} for some beta > 1. Asymptotics developed by Rootzen (1987) and Balkema, Kluppelberg, and Resnick (1993) are discussed from the point of view of tails rather than of densities, using a somewhat different angle...
Asymptotic expansions of Mathieu functions in wave mechanics
International Nuclear Information System (INIS)
Hunter, G.; Kuriyan, M.
1976-01-01
Solutions of the radial Schroedinger equation containing a polarization potential r -4 are expanded in a form appropriate for large values of r. These expansions of the Mathieu functions are used in association with the numerical solution of the Schroedinger equation to impose the asymptotic boundary condition in the case of bound states, and to extract phase shifts in the case of scattering states
On asymptotic isotropy for a hydrodynamic model of liquid crystals
Czech Academy of Sciences Publication Activity Database
Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.
2016-01-01
Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic-analysis/asy1348
Asymptotic behavior of tidal damping in alluvial estuaries
Cai, H.; Savenije, H.H.G.
2013-01-01
Tidal wave propagation can be described analytically by a set of four implicit equations, i.e., the phase lag equation, the scaling equation, the damping equation, and the celerity equation. It is demonstrated that this system of equations has an asymptotic solution for an infinite channel,
Asymptotics for Estimating Equations in Hidden Markov Models
DEFF Research Database (Denmark)
Hansen, Jørgen Vinsløv; Jensen, Jens Ledet
Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...
The Asymptotic Solution for the Steady Variable-Viscosity Free ...
African Journals Online (AJOL)
Under an arbitrary time-dependent heating of an infinite vertical plate (or wall), the steady viscosity-dependent free convection flow of a viscous incompressible fluid is investigated. Using the asymptotic method of solution on the governing equations of motion and energy, the resulting Ordinary differential equations were ...
From A to Z : Asymptotic expansions by van Zwet
Albers, Willem/Wim; de Gunst, Mathisca; Klaasen, Chris; van der Vaart, Aad
2001-01-01
Refinements of first order asymptotic results axe reviewed, with a number of Ph.D. projects supervised by van Zwet serving as stepping stones. Berry-Esseen bounds and Edgeworth expansions are discussed for R-, L- and [/-statistics. After these special classes, the question about a general second
Conformal techniques for OPE in asymptotically free quantum field theory
International Nuclear Information System (INIS)
Craigie, N.S.; Dobrev, V.K.
1982-06-01
We discuss the relationship between the short-distance behaviour of vertex functions and conformal invariance in asymptotically free theories. We show how conformal group techniques can be used to derive spectral representations of wave functions and vertex functions in QCD. (author)
Asymptotics of sums of lognormal random variables with Gaussian copula
DEFF Research Database (Denmark)
Asmussen, Søren; Rojas-Nandayapa, Leonardo
2008-01-01
Let (Y1, ..., Yn) have a joint n-dimensional Gaussian distribution with a general mean vector and a general covariance matrix, and let Xi = eYi, Sn = X1 + ⋯ + Xn. The asymptotics of P (Sn > x) as n → ∞ are shown to be the same as for the independent case with the same lognormal marginals. In part...
The running QCD coupling in the pre-asymptotic region
Energy Technology Data Exchange (ETDEWEB)
Burgio, G.; Di Renzo, F.; Parrinello, C.; Pittori, C
1999-03-01
We study deviations from the perturbative asymptotic behaviour in the running QCD coupling by analysing non-perturbative measurements of {alpha}{sub s}(p) at low momenta (p {approx} 2 GeV) as obtained from the lattice three-gluon vertex. Our exploratory study provides some evidence for power corrections to the perturbative running proportional to 1/p{sup 2}.
Asymptotic analysis of methane-hydrogen-air mixtures
Hermanns, R.T.E.; Bastiaans, R.J.M.; Goey, de L.P.H.
2005-01-01
In this paper an asymptotic analysis of de Goey et al.concerning premixed stoichiometric methane-hydrogen-air flames is analyzed in depth. The analysis is performed with up to 50 mole percent of hydrogen in the fuel, at gas inlet temperatures ranging from 300 K to 650 K and pressures from 1 to 15
Asymptotic behaviour of a rescattering series for nonlinear reggeons
International Nuclear Information System (INIS)
Akkelin, S.V.; Martynov, E.S.
1990-01-01
A series of elastic re-scattering (both quasi-eikonal and U-matrix ones) for reggeons with nonlinear trajectories are estimated asymptotically. The calculations are performed for models of supercritical and dipole pomerons. A weak dependence of the series of re-scattering on reggeon trajectory nonlinearity is revealed. 13 refs.; 3 figs
Asymptotics and Numerics for Laminar Flow over Finite Flat Plate
Dijkstra, D.; Kuerten, J.G.M.; Kaper, Hans G.; Garbey, Mare; Pieper, Gail W.
1992-01-01
A compilation of theoretical results from the literature on the finite flat-plate flow at zero incidence is presented. This includes the Blasius solution, the Triple Deck at the trailing edge, asymptotics in the wake, and properties near the edges of the plate. In addition, new formulas for skin
Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations
Czech Academy of Sciences Publication Activity Database
Klein, O.; Krejčí, Pavel
2003-01-01
Roč. 4, č. 5 (2003), s. 755-785 ISSN 1468-1218 Keywords : hysteresis operators * Prandtl-Ishlinskii operator * asymptotic behaviour Subject RIV: BA - General Mathematics Impact factor: 0.257, year: 2003 http://www.wias-berlin.de/preprint/748/wias_preprints_748.pdf
Asymptotic Structure of the Seismic Radiation from an Explosive Column
Directory of Open Access Journals (Sweden)
Marco Rosales-Vera
2018-01-01
Full Text Available We study the structure of the seismic radiation in the far field produced by an explosive column. Using an asymptotic solution for the far field of vibration (Heelan’s solution, we find analytical expressions to the peak particle velocity (PPV diagrams. These results are extended to the case of a charge with finite velocity of detonation.
Level shift and charm mass: a test of asymptotic planarity
International Nuclear Information System (INIS)
Palmer, W.F.; Pinsky, S.S.; Shi, C.C.
1976-01-01
Level shifts and mixings away from exact exchange degeneracy are examined with respect to the ''asymptotic planarity'' predictions of Chew and Rosenzweig. It is found that the data in the J/sup P/ = 0 - , 1 - , and 2 + multiplets support neither the general shape nor the special relation proposed by Chew and Rosenzweig for the tensor and vector ''cylinder'' corrections
Asymptotic Expansions of Generalized Nevanlinna Functions and their Spectral Properties
Derkach, Vladimir; Hassi, Seppo; de Snoo, Hendrik
2007-01-01
Asymptotic expansions of generalized Nevanlinna functions Q are investigated by means of a factorization model involving a part of the generalized zeros and poles of nonpositive type of the function Q. The main results in this paper arise from the explicit construction of maximal Jordan chains in
High energy asymptotics of the scattering amplitude for the ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Keywords. Scattering matrix; asymptotic expansion; high energy; diagonal singula- ..... (see subsection 2 of § 3) with functions of the generator of dilations. A = 1. 2 d ..... ness in quantum scattering theory, Ann. Inst. Henri Poincaré, Phys. Théor.
Asymptotics of the filtration problem for suspension in porous media
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2015-01-01
Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.
Models of Regge behaviour in an asymptotically free theory
International Nuclear Information System (INIS)
Polkinghorne, J.C.
1976-01-01
Two simple Feynman integral models are presented which reproduce the features expected to be of physical importance in the Regge behaviour of asymptotically free theories. Analysis confirms the result, expected on general grounds, that phi 3 in six dimensions has an essential singularity at l=-1. The extension to gauge theories is discussed. (Auth.)
On some asymptotic relations in the Boltzmann-Enskog model
International Nuclear Information System (INIS)
Sadovnikov, B.I.; Inozemtseva, N.G.
1977-04-01
The coefficients in the tsup(-3/2) asymptotics of the time autocorrelation functions are successively determined in the framework of the non-linear Boltzmann-Enskog model. The left and right eigenfunction systems are constructed for the Boltzmann-Enskog operator
Asymptotics of the QMLE for General ARCH(q) Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbek, Anders Christian
2009-01-01
-ARCH -- are derived. Strong consistency is established under the assumptions that the ARCH process is geometrically ergodic, the conditional variance function has a finite log-moment, and finite second moment of the rescaled error. Asymptotic normality of the estimator is established under the additional assumption...
Some asymptotic theory for variance function smoothing | Kibua ...
African Journals Online (AJOL)
Simple selection of the smoothing parameter is suggested. Both homoscedastic and heteroscedastic regression models are considered. Keywords: Asymptotic, Smoothing, Kernel, Bandwidth, Bias, Variance, Mean squared error, Homoscedastic, Heteroscedastic. > East African Journal of Statistics Vol. 1 (1) 2005: pp. 9-22 ...
Pointwise asymptotic convergence of solutions for a phase separation model
Czech Academy of Sciences Publication Activity Database
Krejčí, Pavel; Zheng, S.
2006-01-01
Roč. 16, č. 1 (2006), s. 1-18 ISSN 1078-0947 Institutional research plan: CEZ:AV0Z10190503 Keywords : phase-field system * asymptotic phase separation * energy Subject RIV: BA - General Mathematics Impact factor: 1.087, year: 2006 http://aimsciences.org/journals/pdfs.jsp?paperID=1875&mode=full
Asymptotic behavior of second-order impulsive differential equations
Directory of Open Access Journals (Sweden)
Haifeng Liu
2011-02-01
Full Text Available In this article, we study the asymptotic behavior of all solutions of 2-th order nonlinear delay differential equation with impulses. Our main tools are impulsive differential inequalities and the Riccati transformation. We illustrate the results by an example.
A convergence theorem for asymptotic expansions of Feynman amplitudes
International Nuclear Information System (INIS)
Mabouisson, A.P.C.
1999-06-01
The Mellin representations of Feynman integrals is revisited. From this representation, and asymptotic expansion for generic Feynman amplitudes, for any set of invariants going to zero or to ∞, may be obtained. In the case of all masses going to zero in Euclidean metric, we show that the truncated expansion has a rest compatible with convergence of the series. (author)
Tail asymptotics for dependent subexponential diﬀerences
DEFF Research Database (Denmark)
Albrecher, H; Asmussen, Søren; Kortschak, D.
We study the asymptotic behavior of P(X − Y > u) as u → ∞, where X is subexponential and X, Y are positive random variables that may be dependent. We give criteria under which the subtraction of Y does not change the tail behavior of X. It is also studied under which conditions the comonotonic co...
Asymptotic absolute continuity for perturbed time-dependent ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
We study the notion of asymptotic velocity for a class of perturbed time- ... for Mathematical Physics and Stochastics, funded by a grant from the Danish National Research Foun- .... Using (2.4) we can readily continue α(t) to the whole half-axis.
Technicolor and the asymptotic behavior of dynamically generated masses
International Nuclear Information System (INIS)
Natale, A.A.
1984-01-01
Arguments are given in favor of a hard asymptotic behavior of dynamically generated masses, its consequences for technicolor models are analyzed and a model is proposed, where effects of flavor changing neutral currents are highly supressed and pseudo Goldstone bosons get masses of O(30-90) GeV. (Author) [pt
Ergodic Retractions for Families of Asymptotically Nonexpansive Mappings
Directory of Open Access Journals (Sweden)
Saeidi Shahram
2010-01-01
Full Text Available We prove some theorems for the existence of ergodic retractions onto the set of common fixed points of a family of asymptotically nonexpansive mappings. Our results extend corresponding results of Benavides and Ramírez (2001, and Li and Sims (2002.
Formal matched asymptotics for degenerate Ricci flow neckpinches
International Nuclear Information System (INIS)
Angenent, Sigurd B; Isenberg, James; Knopf, Dan
2011-01-01
Gu and Zhu (2008 Commun. Anal. Geom. 16 467–94) have shown that type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on S n+1 (n≥2). In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile and rate of curvature blow-up that we predict such solutions exhibit
Deep inelastic scattering in an asymptotically free gauge theory
International Nuclear Information System (INIS)
Fujiwara, Tsutomu
1977-01-01
This paper reviews the success of the asymptotically free gauge theory which describes the deep inelastic lepton-hadron scattering. The asymptotically free gauge theory was discussed as well as the reason why the parton has the nature like free particles by the aid of the field theory. The asymptotically free gauge theory (AFGT) gives the prediction that the Bjorken scaling gives rise to logarithmic violation. The theory was applied to the exchange processes of single photon and two photons. First, this paper describes the approaches to the Bjorken scaling. The approaches are the discussion of the scaling law dependent on the model and the discussion of the scaling law independent of the model. The field theoretical treatment in described. This is called the method of the renormalization group introduced by Wilson. The asymptotically free gauge theory was formed on the basis of the Callan-Symanzik equation (CSE) and of the Weinberg's power counting theorem. The exact Bjorken scaling does not hold in the quantum field theory, at least there must be logarithmic violation. The pattern of the scaling violation cannot be clarified by the present data. Discussions concerning two gamma process are presented. The measurement of the photon-photon scattering process will give the judgement whether the prediction of the AFGT is correct or not. (Kato, T.)
Gap asymptotics in a weakly bent leaky quantum wire
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Kondej, S.
2015-01-01
Roč. 48, č. 49 (2015), s. 495301 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : singular Schroedinger operators * delta interaction * leaky quantum wires * weak perturbation * asymptotic expansion Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015
Chemical Analysis of Asymptotic Giant Branch Stars in M62
Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.
2015-01-01
We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).
On asymptotic isotropy for a hydrodynamic model of liquid crystals
Czech Academy of Sciences Publication Activity Database
Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.
2016-01-01
Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic- analysis /asy1348
Asymptotic behaviour of unbounded non expansive sequences in Banach spaces
International Nuclear Information System (INIS)
Djafari Rouhani, B.
1990-08-01
Let x be a real Banach space and C a subset of x. We consider a non expansive map t from an arbitrary subset C of x into itself, and for x is an element of C, we study the asymptotic behaviour of the sequence x T x n in x. 20 refs
Asymptotic performance modelling of DCF protocol with prioritized channel access
Choi, Woo-Yong
2017-11-01
Recently, the modification of the DCF (Distributed Coordination Function) protocol by the prioritized channel access was proposed to resolve the problem that the DCF performance worsens exponentially as more nodes exist in IEEE 802.11 wireless LANs. In this paper, an asymptotic analytical performance model is presented to analyze the MAC performance of the DCF protocol with the prioritized channel access.
Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes
Caldeira Costa, R.N.
2012-01-01
In this work we elaborate on an extension of the AdS/CFT framework to a sub-class of gravitational theories with vanishing cosmological constant. By building on earlier ideas, we construct a correspondence between Ricci-flat spacetimes admitting asymptotically hyperbolic hypersurfaces and a family
The P(phi)2 Green's functions; asymptotic perturbation expansion
International Nuclear Information System (INIS)
Dimock, J.
1976-01-01
The real time Green's functions in the P(phi) 2 quantum field theory are infinitely differentiable functions of the coupling constant lambda up to and including lamba=0. It follows that the perturbation series are asymptotic as lambda→0 + . (Auth.)
A Review on asymptotic normality of sums of associated random ...
African Journals Online (AJOL)
Association between random variables is a generalization of independence of these random variables. This concept is more and more commonly used in current trends in any research elds in Statistics. In this paper, we proceed to a simple, clear and rigorous introduction to it. We will present the fundamental asymptotic ...
Caustics, counting maps and semi-classical asymptotics
International Nuclear Information System (INIS)
Ercolani, N M
2011-01-01
This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z 0 (t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain
Caustics, counting maps and semi-classical asymptotics
Ercolani, N. M.
2011-02-01
This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z0(t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain
Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions
International Nuclear Information System (INIS)
Dolan, Brian P
2014-01-01
Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)
Asymptotic behaviour of two-point functions in multi-species models
Directory of Open Access Journals (Sweden)
Karol K. Kozlowski
2016-05-01
Full Text Available We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU(3-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.
On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability
Directory of Open Access Journals (Sweden)
Işık Mahmut
2017-01-01
Full Text Available In this study, we introduce and examine the concepts of asymptotically lacunary statistical equivalent of order α in probability and strong asymptotically lacunary equivalent of order α in probability. We give some relations connected to these concepts.
White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R
2017-06-14
Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).
International Nuclear Information System (INIS)
Hill, H.A.; Gao, Qiang; Rosenwald, R.D.
1988-01-01
The fine structure found by Gu, Hill and Rosenwald between asymptotic theory eigenfrequencies and the observed eigenfrequencies reported by Hill and Gu is interpreted as the result of conditions not being met for the applicability of asymptotic theory at one or more radii in the solar interior. From an inversion of the observed fine structure, reasonably good agreement is obtained between observation and theory for either a localized perturbation in internal structure at r/R ∼ 0.06 or at r/R ∼ 0.23. The latter solution is, however, the better one. The amplitude of the perturbation in the mean molecular weight required to produce the fine structure is also inferred. 11 refs., 2 figs
Exact asymptotic expansions for solutions of multi-dimensional renewal equations
International Nuclear Information System (INIS)
Sgibnev, M S
2006-01-01
We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles
Large time asymptotics of solutions of the equations of principal chiral field
International Nuclear Information System (INIS)
Sukhanov, V.V.
1990-01-01
Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation
Asymptotic structure of space-time with a positive cosmological constant
Kesavan, Aruna
In general relativity a satisfactory framework for describing isolated systems exists when the cosmological constant Lambda is zero. The detailed analysis of the asymptotic structure of the gravitational field, which constitutes the framework of asymptotic flatness, lays the foundation for research in diverse areas in gravitational science. However, the framework is incomplete in two respects. First, asymptotic flatness provides well-defined expressions for physical observables such as energy and momentum as 'charges' of asymptotic symmetries at null infinity, [special character omitted] +. But the asymptotic symmetry group, called the Bondi-Metzner-Sachs group is infinite-dimensional and a tensorial expression for the 'charge' integral of an arbitrary BMS element is missing. We address this issue by providing a charge formula which is a 2-sphere integral over fields local to the 2-sphere and refers to no extraneous structure. The second, and more significant shortcoming is that observations have established that Lambda is not zero but positive in our universe. Can the framework describing isolated systems and their gravitational radiation be extended to incorporate this fact? In this dissertation we show that, unfortunately, the standard framework does not extend from the Lambda = 0 case to the Lambda > 0 case in a physically useful manner. In particular, we do not have an invariant notion of gravitational waves in the non-linear regime, nor an analog of the Bondi 'news tensor', nor positive energy theorems. In addition, we argue that the stronger boundary condition of conformal flatness of intrinsic metric on [special character omitted]+, which reduces the asymptotic symmetry group from Diff([special character omitted]) to the de Sitter group, is insufficient to characterize gravitational fluxes and is physically unreasonable. To obtain guidance for the full non-linear theory with Lambda > 0, linearized gravitational waves in de Sitter space-time are analyzed in
Universal dual amplitudes and asymptotic expansions for gg→ H and H→ γ γ in four dimensions
Driencourt-Mangin, Félix; Rodrigo, Germán; Sborlini, Germán F. R.
2018-03-01
Though the one-loop amplitudes of the Higgs boson to massless gauge bosons are finite because there is no direct interaction at tree level in the Standard Model, a well-defined regularization scheme is still required for their correct evaluation. We reanalyze these amplitudes in the framework of the four-dimensional unsubtraction and the loop-tree duality (FDU/LTD), and show how a local renormalization solves potential regularization ambiguities. The Higgs boson interactions are also used to illustrate new additional advantages of this formalism. We show that LTD naturally leads to very compact integrand expressions in four space-time dimensions of the one-loop amplitude with virtual electroweak gauge bosons. They exhibit the same functional form as the amplitudes with top quarks and charged scalars, thus opening further possibilities for simplifications in higher-order computations. Another outstanding application is the straightforward implementation of asymptotic expansions by using dual amplitudes. One of the main benefits of the LTD representation is that it is supported in a Euclidean space. This characteristic feature naturally leads to simpler asymptotic expansions.
Inverse curvature flows in asymptotically Robertson Walker spaces
Kröner, Heiko
2018-04-01
In this paper we consider inverse curvature flows in a Lorentzian manifold N which is the topological product of the real numbers with a closed Riemannian manifold and equipped with a Lorentzian metric having a future singularity so that N is asymptotically Robertson Walker. The flow speeds are future directed and given by 1 / F where F is a homogeneous degree one curvature function of class (K*) of the principal curvatures, i.e. the n-th root of the Gauss curvature. We prove longtime existence of these flows and that the flow hypersurfaces converge to smooth functions when they are rescaled with a proper factor which results from the asymptotics of the metric.
Hadronic Form Factors in Asymptotically Free Field Theories
Gross, D. J.; Treiman, S. B.
1974-01-01
The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.
Asymptotic analysis of multicell massive MIMO over Rician fading channels
Sanguinetti, Luca; Kammoun, Abla; Debbah, Merouane
2017-01-01
This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.
Asymptotic analysis of multicell massive MIMO over Rician fading channels
Sanguinetti, Luca
2017-06-20
This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.
Asymptotic size determines species abundance in the marine size spectrum
DEFF Research Database (Denmark)
Andersen, Ken Haste; Beyer, Jan
2006-01-01
The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory......, where population structure is derived from physiology and simple arguments regarding the predator-prey interaction. Using a hypothesis of constant satiation, which states that the average degree of satiation is independent of the size of an organism, the number of individuals with a given size is found...... to be proportional to the weight raised to the power -2.05, independent of the predator/prey size ratio. This is the first time the spectrum exponent has been derived solely on the basis of processes at the individual level. The theory furthermore predicts that the parameters in the von Bertalanffy growth function...
Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions
Energy Technology Data Exchange (ETDEWEB)
Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)
2010-05-15
In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)
Ghost anomalous dimension in asymptotically safe quantum gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid; Gies, Holger
2010-01-01
We compute the ghost anomalous dimension within the asymptotic-safety scenario for quantum gravity. For a class of covariant gauge fixings and using a functional renormalization group scheme, the anomalous dimension η c is negative, implying an improved UV behavior of ghost fluctuations. At the non-Gaussian UV fixed point, we observe a maximum value of η c ≅-0.78 for the Landau-deWitt gauge within the given scheme and truncation. Most importantly, the backreaction of the ghost flow onto the Einstein-Hilbert sector preserves the non-Gaussian fixed point with only mild modifications of the fixed-point values for the gravitational coupling and cosmological constant and the associated critical exponents; also their gauge dependence is slightly reduced. Our results provide further evidence for the asymptotic-safety scenario of quantum gravity.
Molten salt reactor as asymptotic safety nuclear system
International Nuclear Information System (INIS)
Novikov, V.M.; Ignatyev, V.V.
1989-01-01
Safety is becoming the main and priority problem of the nuclear power development. An increase of the active safety measures could hardly be considered as the proper way to achieve the asymptotically high level of nuclear safety. It seem that the more realistic way to achieve such a goal is to minimize risk factors and to maximize the use of inherent and passive safety properties. The passive inherent safety features of the liquid fuel molten salt reactor (MSR) technology are making it attractive for future energy generation. The achievement of the asymptotic safety in MSR is being connected with the minimization of such risk factors as a reactivity excess, radioactivity stored, decay heat, non nuclear energy stored in core. In this paper safety peculiarities of the different MSR concepts are discussed
Asymptotic solutions and spectral theory of linear wave equations
International Nuclear Information System (INIS)
Adam, J.A.
1982-01-01
This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)
Higher order corrections to asymptotic-de Sitter inflation
Mohsenzadeh, M.; Yusofi, E.
2017-08-01
Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.
The Barrett–Crane model: asymptotic measure factor
International Nuclear Information System (INIS)
Kamiński, Wojciech; Steinhaus, Sebastian
2014-01-01
The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V −1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett–Crane model in the large internal spin regime. (paper)
The Barrett-Crane model: asymptotic measure factor
Kamiński, Wojciech; Steinhaus, Sebastian
2014-04-01
The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V-1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett-Crane model in the large internal spin regime.
Asymptotic dynamics in perturbative quantum gravity and BMS supertranslations
Choi, Sangmin; Kol, Uri; Akhoury, Ratindranath
2018-01-01
Recently it has been shown that infrared divergences in the conventional S-matrix elements of gauge and gravitational theories arise from a violation of the conservation laws associated with large gauge symmetries. These infrared divergences can be cured by using the Faddeev-Kulish (FK) asymptotic states as the basis for S-matrix elements. Motivated by this connection, we study the action of BMS supertranslations on the FK asymptotic states of perturbative quantum gravity. We compute the BMS charge of the FK states and show that it characterizes the superselection sector to which the state belongs. Conservation of the BMS charge then implies that there is no transition between different superselection sectors, hence showing that the FK graviton clouds implement the necessary transition induced by the scattering process.
Mass loss by stars on the asymptotic giant branch
International Nuclear Information System (INIS)
Frantsman, Yu.L.
1986-01-01
The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age
Asymptotics of empirical eigenstructure for high dimensional spiked covariance.
Wang, Weichen; Fan, Jianqing
2017-06-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.
Detailed treatment of scaling violations in asymptotically free gauge theories
International Nuclear Information System (INIS)
Hinchliffe, I.; Llewellyn Smith, C.H.
1977-01-01
Scaling violations in lepto-production are discussed on the basis of asymptotically free gauge theories. Detailed attention is given to the problems of operator mixing and data parametrisation. All the electro-/muo-production data for F 2 can be accommodated. The calculated values for Fsub(L) are also compatible with the data in the region where the theory may be trusted. It is shown that the FNAL data for sigmasup(anti γ)/sigmasup(γ) and sup(anti γ) can be explained if the freedom to input rather large amounts of antiquarks is exploited. It is therefore premature to conclude that new flavours are required. Predictions are given for very high energies which are relevant for possible new experimental facilities. The consequences of a conjecture about the possible pattern of scaling violations in the production of W's, Z's and μ-pairs are explored. Some theoretical problems and uncertainties in testing asymptotic freedom are discussed. (Auth.)
Asymptotic matching of the solar-system gravitational yields
International Nuclear Information System (INIS)
Kopejkin, S.M.
1989-01-01
In the framework of the general relativity, the structure of the Solar-system gravitational fields is investigated and the relativistic formulae of transformation between nonrotating in the dynamical sense harmonic reference systems - barycentric, planetocentric and topocentric (satelite) ones - are derived by the method of the asymptotic mathing of components of the metric tensor. The derived formulae generalize the linear Poincare transformation in the case of curved space-time. With the help of the asymptotic matching formulae, the relationships between relativistic time scales inside the Solar system have been established, the equations of relativistic precession of the space axis of one reference system with respect to another one have been derived, the equations of translational motion of the center-of-mass of planets (the Sun) and their satellites have been obtained
Power corrections to the asymptotics of the pion electromagnetic formfactor
International Nuclear Information System (INIS)
Gorsky, A.S.
1984-01-01
The first power correction to the pion electromagnetic form factor is derived. A few asymptotic wave functions corresponding to the different series of operators and matrix elements of four-particle operators in pion have been found. The large scale of the first power correction approximately 10 2 (GeV 2 )/Q 2 where Q 2 is the momentum transfer indicates that at low energies the whole series of power corrections seems to be taken into account
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....
Asymptotics of the information entropy of the Airy function
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Moreno, P [Departamento de Fisica Moderna, Universidad de Granada, Granada (Spain); Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain); Yanez, R J [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain); Departamento de Matematica Aplicada, Universidad de Granada, Granada (Spain); Buyarov, V [Moscow State University (Russian Federation)
2005-11-18
The Boltzmann-Shannon information entropy of linear potential wavefunctions is known to be controlled by the information entropy of the Airy function Ai(x). Here, the entropy asymptotics is analysed so that the first two leading terms (previously calculated in the WKB approximation) as well as the following term (already conjectured) are derived by using only the specific properties of the Airy function.
Evidence for asymptotic safety from lattice quantum gravity.
Laiho, J; Coumbe, D
2011-10-14
We calculate the spectral dimension for nonperturbative quantum gravity defined via Euclidean dynamical triangulations. We find that it runs from a value of ∼3/2 at short distance to ∼4 at large distance scales, similar to results from causal dynamical triangulations. We argue that the short-distance value of 3/2 for the spectral dimension may resolve the tension between asymptotic safety and the holographic principle.
Framework for an asymptotically safe standard model via dynamical breaking
DEFF Research Database (Denmark)
Abel, Steven; Sannino, Francesco
2017-01-01
We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....
Asymptotic behavior of Maxwell fields in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2014-01-01
Roč. 90, č. 12 (2014), s. 124020 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.124020
Asymptotic behaviour of the Weyl tensor in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravdová, Alena
2014-01-01
Roč. 90, č. 10 (2014), s. 104011 ISSN 1550-7998 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.104011
Airy asymptotics: the logarithmic derivative and its reciprocal
International Nuclear Information System (INIS)
Kearney, Michael J; Martin, Richard J
2009-01-01
We consider the asymptotic expansion of the logarithmic derivative of the Airy function Ai'(z)/Ai(z), and also its reciprocal Ai(z)/Ai'(z), as |z| → ∞. We derive simple, closed-form solutions for the coefficients which appear in these expansions, which are of interest since they are encountered in a wide variety of problems. The solutions are presented as Mellin transforms of given functions; this fact, together with the methods employed, suggests further avenues for research.
Bounds and asymptotics for orthogonal polynomials for varying weights
Levin, Eli
2018-01-01
This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals. Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics. This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .
Asymptotically flat structure of hypergravity in three spacetime dimensions
Energy Technology Data Exchange (ETDEWEB)
Fuentealba, Oscar [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2015-10-02
The asymptotic structure of three-dimensional hypergravity without cosmological constant is analyzed. In the case of gravity minimally coupled to a spin-5/2 field, a consistent set of boundary conditions is proposed, being wide enough so as to accommodate a generic choice of chemical potentials associated to the global charges. The algebra of the canonical generators of the asymptotic symmetries is given by a hypersymmetric nonlinear extension of BMS{sub 3}. It is shown that the asymptotic symmetry algebra can be recovered from a subset of a suitable limit of the direct sum of the W{sub (2,4)} algebra with its hypersymmetric extension. The presence of hypersymmetry generators allows to construct bounds for the energy, which turn out to be nonlinear and saturate for spacetimes that admit globally-defined “Killing vector-spinors”. The null orbifold or Minkowski spacetime can then be seen as the corresponding ground state in the case of fermions that fulfill periodic or antiperiodic boundary conditions, respectively. The hypergravity theory is also explicitly extended so as to admit parity-odd terms in the action. It is then shown that the asymptotic symmetry algebra includes an additional central charge, being proportional to the coupling of the Lorentz-Chern-Simons form. The generalization of these results in the case of gravity minimally coupled to arbitrary half-integer spin fields is also carried out. The hypersymmetry bounds are found to be given by a suitable polynomial of degree s+(1/2) in the energy, where s is the spin of the fermionic generators.
Asymptotic stability boundaries of ballooning modes in circular tokamaks
International Nuclear Information System (INIS)
Chen, L.; Bondeson, A.; Chance, M.S.
1987-06-01
The model ballooning mode equation of Connor, Hastie, and Taylor for large-aspect-ratio circular tokamaks is analyzed in the limit of large pressure gradient, and corresponding expressions for stability boundaries are derived. In particular, it is found that for a fixed radial wave number, there exists an infinite sequence of unstable bands, and that minimizing over the radial wave numbers leads to asymptotic merging between the neighboring bands
Asymptotic behavior of Maxwell fields in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2014-01-01
Roč. 90, č. 12 (2014), s. 124020 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals. aps .org/prd/abstract/10.1103/PhysRevD.90.124020
Asymptotic behaviour of the Weyl tensor in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravdová, Alena
2014-01-01
Roč. 90, č. 10 (2014), s. 104011 ISSN 1550-7998 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals. aps .org/prd/abstract/10.1103/PhysRevD.90.104011
The discovery of asymptotic freedom and the emergence of QCD
International Nuclear Information System (INIS)
Gross, D.J.
2005-01-01
The paper is the lecture of one of the Nobel prize winners D.J. Gross delivered 8 December 2004. The lecture has two-sided aspect. The first one - autobiography of D.J. Gross as a specialist in the elementary particles physics. The second one describes the way to discovery of the asymptotic freedom and its consequences in the quantum field theory, in the Universe development and in creation of the unified theory, including gravitation [ru
LSZ asymptotic condition and dynamic equations in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.; Savrin, V.I.
1983-01-01
Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation
Asymptotic expansion and statistical description of turbulent systems
International Nuclear Information System (INIS)
Hagan, W.K. III.
1986-01-01
A new approach to studying turbulent systems is presented in which an asymptotic expansion of the general dynamical equations is performed prior to the application of statistical methods for describing the evolution of the system. This approach has been applied to two specific systems: anomalous drift wave turbulence in plasmas and homogeneous, isotropic turbulence in fluids. For the plasma case, the time and length scales of the turbulent state result in the asymptotic expansion of the Vlasov/Poisson equations taking the form of nonlinear gyrokinetic theory. Questions regarding this theory and modern Hamiltonian perturbation methods are discussed and resolved. A new alternative Hamiltonian method is described. The Eulerian Direct Interaction Approximation (EDIA) is slightly reformulated and applied to the equations of nonlinear gyrokinetic theory. Using a similarity transformation technique, expressions for the thermal diffusivity are derived from the EDIA equations for various geometries, including a tokamak. In particular, the unique result for generalized geometry may be of use in evaluating fusion reactor designs and theories of anomalous thermal transport in tokamaks. Finally, a new and useful property of the EDIA is pointed out. For the fluid case, an asymptotic expansion is applied to the Navier-Stokes equation and the results lead to the speculation that such an approach may resolve the problem of predicting the Kolmogorov inertial range energy spectrum for homogeneous, isotropic turbulence. 45 refs., 3 figs
Asymptotic kinetic theory of magnetized plasmas: quasi-particle concept
International Nuclear Information System (INIS)
Sosenko, P.P.; Zagorodny, A.H.
2004-01-01
The asymptotic kinetic theory of magnetized plasmas is elaborated within the context of general statistical approach and asymptotic methods, developed by M. Krylov and M. Bohol'ubov, for linear and non-linear dynamic systems with a rapidly rotating phase. The quasi-particles are introduced already on the microscopic level. Asymptotic expansions enable to close the description for slow processes, and to relate consistently particles and guiding centres to quasi-particles. The kinetic equation for quasi-particles is derived. It makes a basis for the reduced description of slow collective phenomena in the medium. The kinetic equation for quasi-particles takes into account self-consistent interaction fields, quasi-particle collisions and collective-fluctuation-induced relaxation of quasi-particle distribution function. The relationships between the distribution functions for particles, guiding centres and quasi-particles are derived taking into account fluctuations, which can be especially important in turbulent states. In this way macroscopic (statistical) particle properties can be obtained from those of quasi-particles in the general case of non-equilibrium. (authors)
Modeling broadband poroelastic propagation using an asymptotic approach
Energy Technology Data Exchange (ETDEWEB)
Vasco, Donald W.
2009-05-01
An asymptotic method, valid in the presence of smoothly-varying heterogeneity, is used to derive a semi-analytic solution to the equations for fluid and solid displacements in a poroelastic medium. The solution is defined along trajectories through the porous medium model, in the manner of ray theory. The lowest order expression in the asymptotic expansion provides an eikonal equation for the phase. There are three modes of propagation, two modes of longitudinal displacement and a single mode of transverse displacement. The two longitudinal modes define the Biot fast and slow waves which have very different propagation characteristics. In the limit of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence a transient pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse mode are modified elastic waves. At intermediate frequencies the wave characteristics of the longitudinal modes are mixed. A comparison of the asymptotic solution with analytic and numerical solutions shows reasonably good agreement for both homogeneous and heterogeneous Earth models.
Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions
Ablowitz, Mark J.
2009-09-01
Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.
Holography in asymptotically flat spacetimes and the BMS group
International Nuclear Information System (INIS)
Arcioni, Giovanni; Dappiaggi, Claudio
2004-01-01
In a previous paper (Arcioni G and Dappiaggi C 2003 Preprint hep-th/0306142) we have started to explore the holographic principle in the case of asymptotically flat spacetimes and analysed, in particular, different aspects of the Bondi-Metzner-Sachs (BMS) group, namely the asymptotic symmetry group of any asymptotically flat spacetime. We continue this investigation in this paper. Having in mind an S-matrix approach with future and past null infinity playing the role of holographic screens on which the BMS group acts, we connect the IR sectors of the gravitational field with the representation theory of the BMS group. We analyse the (complicated) mapping between bulk and boundary symmetries pointing out differences with respect to the anti-de Sitter (AdS)/CFT set up. Finally, we construct a BMS phase space and a free Hamiltonian for fields transforming with respect to BMS representations. The last step is supposed to be an explorative investigation of the boundary data living on the degenerate null manifold at infinity
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Asymptotics with a positive cosmological constant: I. Basic framework
Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna
2015-01-01
The asymptotic structure of the gravitational field of isolated systems has been analyzed in great detail in the case when the cosmological constant Λ is zero. The resulting framework lies at the foundation of research in diverse areas in gravitational science. Examples include: (i) positive energy theorems in geometric analysis; (ii) the coordinate invariant characterization of gravitational waves in full, nonlinear general relativity; (iii) computations of the energy-momentum emission in gravitational collapse and binary mergers in numerical relativity and relativistic astrophysics; and (iv) constructions of asymptotic Hilbert spaces to calculate S-matrices and analyze the issue of information loss in the quantum evaporation of black holes. However, by now observations have led to a strong consensus that Λ is positive in our universe. In this paper we show that, unfortunately, the standard framework does not extend from the Λ =0 case to the Λ \\gt 0 case in a physically useful manner. In particular, we do not have positive energy theorems, nor an invariant notion of gravitational waves in the nonlinear regime, nor asymptotic Hilbert spaces in dynamical situations of semi-classical gravity. A suitable framework to address these conceptual issues of direct physical importance is developed in subsequent papers.
Asymptotic behavior of the warm inflation scenario with viscous pressure
International Nuclear Information System (INIS)
Mimoso, Jose P.; Nunes, Ana; Pavon, Diego
2006-01-01
We analyze the dynamics of models of warm inflation with general dissipative effects. We consider phenomenological terms both for the inflaton decay rate and for viscous effects within matter. We provide a classification of the asymptotic behavior of these models and show that the existence of a late-time scaling regime depends not only on an asymptotic behavior of the scalar field potential, but also on an appropriate asymptotic behavior of the inflaton decay rate. There are scaling solutions whenever the latter evolves to become proportional to the Hubble rate of expansion regardless of the steepness of the scalar field exponential potential. We show from thermodynamic arguments that the scaling regime is associated with a power-law dependence of the matter-radiation temperature on the scale factor, which allows a mild variation of the temperature of the matter/radiation fluid. We also show that the late-time contribution of the dissipative terms alleviates the depletion of matter, and increases the duration of inflation
International Nuclear Information System (INIS)
Gusynin, V.P.; Miranskij, V.A.
1987-01-01
An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemí
2012-08-01
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, u t = J* u- u := Lu, in an exterior domain, Ω, which excludes one or several holes, and with zero Dirichlet data on {R^NsetminusΩ} . When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation.
Power correction to the asymptotics of the pion electromagnetic form factor
International Nuclear Information System (INIS)
Geshkenbein, B.V.; Terentyev, M.V.
1982-01-01
The contribution of the power correction approximately (μ 2 /Q 2 ) 2 enhanced by the factor approximately μ 2 /anti m 2 , to the pion form factor (FF) is calculated (here μ is the pion mass, anti m=1/2(msub(u)+msub(α)) is the mean value of the u- and d-quark masses, Q 2 =-(p-p') 2 > 0, where p, p' are meson momenta at initial and final state. It is shown that the only source of large corrections is due to the contribution of the local pseudoscalar current. The main (approximately 1/Q 2 ) asymptotics of FF associated with the axial current contribution, is derived. The contribution (approximately 1/Q 4 ) of the pseudoscalar current is calculated
Binary black hole initial data from matched asymptotic expansions
International Nuclear Information System (INIS)
Yunes, Nicolas; Owen, Benjamin J.; Tichy, Wolfgang; Bruegmann, Bernd
2006-01-01
We present an approximate metric for a binary black-hole spacetime to construct initial data for numerical relativity. This metric is obtained by asymptotically matching a post-Newtonian metric for a binary system to a perturbed Schwarzschild metric for each hole. In the inner zone near each hole, the metric is given by the Schwarzschild solution plus a quadrupolar perturbation corresponding to an external tidal gravitational field. In the near zone, well outside each black hole but less than a reduced wavelength from the center of mass of the binary, the metric is given by a post-Newtonian expansion including the lowest-order deviations from flat spacetime. When the near zone overlaps each inner zone in a buffer zone, the post-Newtonian and perturbed Schwarzschild metrics can be asymptotically matched to each other. By demanding matching (over a 4-volume in the buffer zone) rather than patching (choosing a particular 2-surface in the buffer zone), we guarantee that the errors are small in all zones. The resulting piecewise metric is made formally C ∞ with smooth transition functions so as to obtain the finite extrinsic curvature of a 3-slice. In addition to the metric and extrinsic curvature, we present explicit results for the lapse and the shift, which can be used as initial data for numerical simulations. This initial data is not accurate all the way to the asymptotically flat ends inside each hole, and therefore must be used with evolution codes which employ black hole excision rather than puncture methods. This paper lays the foundations of a method that can be straightforwardly iterated to obtain initial data to higher perturbative order
Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio
International Nuclear Information System (INIS)
Aliev, Alikram N.
2008-01-01
In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4
On extracting physical content from asymptotically flat spacetime metrics
International Nuclear Information System (INIS)
Kozameh, C; Newman, E T; Silva-Ortigoza, G
2008-01-01
A major issue in general relativity, from its earliest days to the present, is how to extract physical information from any solution or class of solutions to the Einstein equations. Though certain information can be obtained for arbitrary solutions, e.g., via geodesic deviation, in general, because of the coordinate freedom, it is often hard or impossible to do. Most of the time information is found from special conditions, e.g. degenerate principle null vectors, weak fields close to Minkowski space (using coordinates close to Minkowski coordinates), or from solutions that have symmetries or approximate symmetries. In the present work, we will be concerned with asymptotically flat spacetimes where the approximate symmetry is the Bondi-Metzner-Sachs group. For these spaces the Bondi 4-momentum vector and its evolution, found from the Weyl tensor at infinity, describes the total energy-momentum of the interior source and the energy-momentum radiated. By generalizing the structures (shear-free null geodesic congruences) associated with the algebraically special metrics to asymptotically shear-free null geodesic congruences, which are available in all asymptotically flat spacetimes, we give kinematic meaning to the Bondi 4-momentum. In other words, we describe the Bondi vector and its evolution in terms of a center of mass position vector, its velocity and a spin vector, all having clear geometric meaning. Among other items, from dynamic arguments, we define a unique (at our level of approximation) total angular momentum and extract its evolution equation in the form of a conservation law with an angular momentum flux
Determining the asymptotic buckling for the reference RB reactor lattice
International Nuclear Information System (INIS)
Martinc, R.; Sotic, O.
1969-01-01
Material buckling was measured for reference lattice of the heavy water reflected system with 2% enriched uranium fuel. Experiments were done for cores with lattice pitch values: 8, 8√2, i 16 cm. Each of these cores had heavy water reflector, as well as active reflector - heavy water lattice with natural uranium fuel. The core was reflected by natural uranium lattice in order to approach asymptotic regime in the central zone. Buckling values obtained with the natural uranium lattice as reflector are, as a rule, lower then in case of heavy water reflector [sr
Asymptotics of Rydberg states for the hydrogen atom
International Nuclear Information System (INIS)
Thomas, L.E.
1997-01-01
The asymptotics of Rydberg states, i.e., highly excited bound states of the hydrogen atom Hamiltonian, and various expectations involving these states are investigated. We show that suitable linear combinations of these states, appropriately rescaled and regarded as functions either in momentum space or configuration space, are highly concentrated on classical momentum space or configuration space Kepler orbits respectively, for large quantum numbers. Expectations of momentum space or configuration space functions with respect to these states are related to time-averages of these functions over Kepler orbits. (orig.)
Asymptotic Ergodic Capacity Analysis of Composite Lognormal Shadowed Channels
Ansari, Imran Shafique
2015-05-01
Capacity analysis of composite lognormal (LN) shadowed links, such as Rician-LN, Gamma-LN, and Weibull-LN, is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single composite link transmission system is presented in terms of well- known elementary functions. Capitalizing on these new moments expressions, we present asymptotically tight lower bounds for the ergodic capacity at high SNR. All the presented results are verified via computer-based Monte-Carlo simulations. © 2015 IEEE.
On selfdual spin-connections and asymptotic safety
Energy Technology Data Exchange (ETDEWEB)
Harst, U., E-mail: harst@thep.physik.uni-mainz.de; Reuter, M., E-mail: reuter@thep.physik.uni-mainz.de
2016-02-10
We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG) equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-)selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein–Cartan gravity without the selfduality condition.
Stable Asymptotically Free Extensions (SAFEs) of the Standard Model
International Nuclear Information System (INIS)
Holdom, Bob; Ren, Jing; Zhang, Chen
2015-01-01
We consider possible extensions of the standard model that are not only completely asymptotically free, but are such that the UV fixed point is completely UV attractive. All couplings flow towards a set of fixed ratios in the UV. Motivated by low scale unification, semi-simple gauge groups with elementary scalars in various representations are explored. The simplest model is a version of the Pati-Salam model. The Higgs boson is truly elementary but dynamical symmetry breaking from strong interactions may be needed at the unification scale. A hierarchy problem, much reduced from grand unified theories, is still in need of a solution.
Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics
Engliš, Miroslav; Ali, S. Twareque
2015-07-01
Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.
Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
Directory of Open Access Journals (Sweden)
Golovaty Yuriy
2017-04-01
Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.
Asymptotic behavior of observables in the asymmetric quantum Rabi model
Semple, J.; Kollar, M.
2018-01-01
The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.
Pushing the asymptotics of the 6j-symbol further
International Nuclear Information System (INIS)
Dupuis, Maiete; Livine, Etera R.
2009-01-01
In the context of spin-foam models for quantum gravity, we investigate the asymptotical behavior of the (6j)-symbol at next-to-leading order. This gives the first quantum gravity correction to the (3d) Regge action. We compute it analytically and check our results against numerical calculations. The (6j)-symbol is the building block of the Ponzano-Regge amplitudes for 3d quantum gravity, and the present analysis is directly relevant to deriving the quantum corrections to gravitational correlations in the spin-foam formalism.
Asymptotic states and infrared divergences in gauge theories
International Nuclear Information System (INIS)
Butler, D.R.
1981-01-01
The gauge theories, Gravity and QCD are shown to be infrared finite to a non-trival order by a generalization of the coherent state approach. The asymptotic Hamiltonian operator is used, along with a mathematical theorem by Magnus, to specify a S-operator and to show cancellation of infrared divergences at the amplitude level. This procedure is exemplified in Gravity to third order and applied to QCD for leading order divergences to fifth order in the coupling constant. Dimensional regularization is used to isolate the infrared singularities in QCD. The sections on Gravity include a derivation of the infrared structure of the propagators for a massive particle and the graviton
Joint Asymptotic Distributions of Smallest and Largest Insurance Claims
Directory of Open Access Journals (Sweden)
Hansjörg Albrecher
2014-07-01
Full Text Available Assume that claims in a portfolio of insurance contracts are described by independent and identically distributed random variables with regularly varying tails and occur according to a near mixed Poisson process. We provide a collection of results pertaining to the joint asymptotic Laplace transforms of the normalised sums of the smallest and largest claims, when the length of the considered time interval tends to infinity. The results crucially depend on the value of the tail index of the claim distribution, as well as on the number of largest claims under consideration.
An asymptotic formula for Weyl solutions of the dirac equations
International Nuclear Information System (INIS)
Misyura, T.V.
1995-01-01
In the spectral analysis of differential operators and its applications an important role is played by the investigation of the behavior of the Weyl solutions of the corresponding equations when the spectral parameter tends to infinity. Elsewhere an exact asymptotic formula for the Weyl solutions of a large class of Sturm-Liouville equations has been obtained. A decisve role in the proof of this formula has been the semiboundedness property of the corresponding Sturm-Liouville operators. In this paper an analogous formula is obtained for the Weyl solutions of the Dirac equations
Asymptotic Reissner–Nordström black holes
International Nuclear Information System (INIS)
Hendi, S.H.
2013-01-01
We consider two types of Born–Infeld like nonlinear electromagnetic fields and obtain their interesting black hole solutions. The asymptotic behavior of these solutions is the same as that of a Reissner–Nordström black hole. We investigate the geometric properties of the solutions and find that depending on the value of the nonlinearity parameter, the singularity covered with various horizons. -- Highlights: •We investigate two types of the BI-like nonlinear electromagnetic fields in the Einsteinian gravity. •We analyze the effects of nonlinearity on the electromagnetic field. •We examine the influences of the nonlinearity on the geometric properties of the black hole solutions
Very proton-rich nuclei with N asymptotically equals 82
International Nuclear Information System (INIS)
Nolte, E.
1984-01-01
The proton-rich nuclei with N asymptotically equals 82 show beautifully properties, which are perfectly described by the nuclear shell model. Some of these properties are the occurrence of seniority isomerism in the proton-rich N=82 isotones and the perfect description of the corresponding life times by the seniority scheme as well as the observation of favoured Gamow-Teller β transitions in this nuclear region and the dependence of the corresponding ft values on the number of the envolved nucleons. (author)
Nontrivial asymptotically nonfree gauge theories and dynamical unification of couplings
International Nuclear Information System (INIS)
Kubo, J.
1995-01-01
Evidence for the nontriviality of asymptotically nonfree (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of the dynamical unification of couplings (DUC). The second-order reduction of couplings in the ANF SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC
Application of the Asymptotic Taylor Expansion Method to Bistable Potentials
Directory of Open Access Journals (Sweden)
Okan Ozer
2013-01-01
Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.
Revisiting r > g-The asymptotic dynamics of wealth inequality
Berman, Yonatan; Shapira, Yoash
2017-02-01
Studying the underlying mechanisms of wealth inequality dynamics is essential for its understanding and for policy aiming to regulate its level. We apply a heterogeneous non-interacting agent-based modeling approach, solved using iterated maps to model the dynamics of wealth inequality based on 3 parameters-the economic output growth rate g, the capital value change rate a and the personal savings rate s and show that for a income distribution. If a > g, the wealth distribution constantly becomes more and more inegalitarian. We also show that when a economic output, which also implies that the wealth-disposable income ratio asymptotically converges to s /(g - a) .
Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer
Energy Technology Data Exchange (ETDEWEB)
Ramazanov, M D [Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa (Russian Federation)
2013-07-31
This paper describes a new algorithm for constructing lattice cubature formulae with bounded boundary layer. These formulae are unsaturated (in the sense of Babenko) both with respect to the order and in regard to the property of asymptotic optimality on W{sub 2}{sup m}-spaces, m element of (n/2,∞). Most of the results obtained apply also to W{sub 2}{sup μ}(R{sup n})-spaces with a hypoelliptic multiplier of smoothness μ. Bibliography: 6 titles.
Asymptotic Ergodic Capacity Analysis of Composite Lognormal Shadowed Channels
Ansari, Imran Shafique; Alouini, Mohamed-Slim
2015-01-01
Capacity analysis of composite lognormal (LN) shadowed links, such as Rician-LN, Gamma-LN, and Weibull-LN, is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single composite link transmission system is presented in terms of well- known elementary functions. Capitalizing on these new moments expressions, we present asymptotically tight lower bounds for the ergodic capacity at high SNR. All the presented results are verified via computer-based Monte-Carlo simulations. © 2015 IEEE.
Neutronics equations: Positiveness; compactness; spectral theory; time asymptotic behavior
International Nuclear Information System (INIS)
Mokhtar-Kharroubi, M.
1987-12-01
Neutronics equations are studied: the continuous model (with and without delayed neutrons) and the multigroup model. Asymptotic descriptions of these equations (t→+∞) are obtained, either by the Dunford method or by using semigroup perturbation techniques, after deriving the spectral theory for the equations. Compactness problems are reviewed, and a general theory of compact injection in neutronic functional space is derived. The effects of positiveness in neutronics are analyzed: the irreducibility of the transport semigroup, and the properties of the main eigenvalue (existence, nonexistence, frame, strict dominance, strict monotony in relation to all the parameters). A class of transport operators whose real spectrum can be completely described is shown [fr
Asymptotic fermion propagator in massless three-dimensional QED
International Nuclear Information System (INIS)
Hand, B.J.
1993-01-01
Massless quantum electrodynamics in two spatial and one time dimensions has a logarithmically confining static Coulomb potential, and thus nontrivial infrared behavior. We apply a technique developed for ordinary four-dimensional quantum electrodynamics in which the charged asymptotic states in the theory are dressed with soft vector bosons, in order to improve the representation of the infrared dynamics in perturbation theory. The resulting modification to the mass-shell behavior of the fermion propagator is determined, with the result that the propagator no longer possesses a mass-shell singularity
Asymptotic shape of solutions to the perturbed simple pendulum problems
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2007-05-01
Full Text Available We consider the positive solution of the perturbed simple pendulum problem $$ u''(r + frac{N-1}{r}u'(r - g(u(t + lambda sin u(r = 0, $$ with $0 < r < R$, $ u'(0 = u(R = 0$. To understand well the shape of the solution $u_lambda$ when $lambda gg 1$, we establish the leading and second terms of $Vert u_lambdaVert_q$ ($1 le q < infty$ with the estimate of third term as $lambda o infty$. We also obtain the asymptotic formula for $u_lambda'(R$ as $lambda o infty$.
Exact results for integrable asymptotically-free field theories
Evans, J M; Evans, Jonathan M; Hollowood, Timothy J
1995-01-01
An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).
Asymptotic Limits for Transport in Binary Stochastic Mixtures
Energy Technology Data Exchange (ETDEWEB)
Prinja, A. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-05-01
The Karhunen-Loeve stochastic spectral expansion of a random binary mixture of immiscible fluids in planar geometry is used to explore asymptotic limits of radiation transport in such mixtures. Under appropriate scalings of mixing parameters - correlation length, volume fraction, and material cross sections - and employing multiple- scale expansion of the angular flux, previously established atomic mix and diffusion limits are reproduced. When applied to highly contrasting material properties in the small cor- relation length limit, the methodology yields a nonstandard reflective medium transport equation that merits further investigation. Finally, a hybrid closure is proposed that produces both small and large correlation length limits of the closure condition for the material averaged equations.
On hierarchy in asymptotic reconstruction of spontaneously broken isotopic symmetry
International Nuclear Information System (INIS)
Ermolaev, B.I.
1978-01-01
The isotopic features of the effective current-current lagrangian of the Lsub(eff) electromagnetic-weak interaction between elementary particles are treated at large momentum transfers using the Weinberg-Salam model. Transition to other models may be made by analogy. It is shown that when the collision energies of elementary particles exceed 90 GeV one may expect the hierarchy in the asymptotic reconstruction of the isotopic symmetry. Such hierarchy could be observed, in particular, in experiments on elastic leptonic collisions at high energies
Asymptotic angular dependences of exclusive hadron large-angle scattering
International Nuclear Information System (INIS)
Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.
1979-01-01
Asymptotic approach to the description of the large-angle scattering amplitudes of the meson-nucleon and nucleon-nucleon scattering is studied. The paper is based on the Mandelstam representation and quark counting rules. The crossing summetry, SU-3 symmetry and spin effects are taken into account. Formulae obtained are used for the description of the differential cross sections of πsup(+-)p, pp and pn scattering. The predictions about ksup(+-)p and p anti p scattering are made. It is shown that formulae provide quantitative description of experimental data for the considered reactions
Nonlocality and Multipartite Entanglement in Asymptotically Flat Space-Times
International Nuclear Information System (INIS)
Moradi, Shahpoor; Amiri, Firouz
2016-01-01
We study the Bell's inequality and multipartite entanglement generation for initially maximally entangled states of free Dirac field in a non inertial frame and asymptotically flat Robertson–Walker space-time. For two qubit case, we show that the Bell's inequality always is violated as measured by the accelerated observers which are in the causally connected regions. On the other hand, for those observers in the causally disconnected regions inequality is not violated for any values of acceleration. The generated three qubit state from two qubit state due to acceleration of one parties has a zero 3-tangle. For a three qubit state, the inequality violated for measurements done by both causally connected and disconnected observers. Initially GHZ state with non zero 3-tangle, in accelerated frame, transformed to a four qubit state with vanishing 4-tangle value. On the other hand, for a W-state with zero 3-tangle, in non inertial frame, transformed to a four qubit state with a non-zero 4-tangle acceleration dependent. In an expanding space-time with asymptotically flat regions, for an initially maximally entangled state, the maximum value of violation of Bell's inequality in the far past decreased in the far future due to cosmological particle creation. For some initially maximally entangled states, the generated four qubit state due to expansion of space-time, has non vanishing 4-tangle. (paper)
Asymptotic behavior for a quadratic nonlinear Schrodinger equation
Directory of Open Access Journals (Sweden)
Pavel I. Naumkin
2008-02-01
Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.
Asymptotic behaviour of pion-pion total cross-sections
International Nuclear Information System (INIS)
Greynat, David; Rafael, Eduardo de; Vulvert, Grégory
2014-01-01
We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log 2 s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π + π − , π ± π 0 and π 0 π 0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N c and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N c QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ π ± π 0 total (s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections
Asymptotic stabilization of nonlinear systems using state feedback
International Nuclear Information System (INIS)
D'Attellis, Carlos
1990-01-01
This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es
An asymptotic model of seismic reflection from a permeable layer
Energy Technology Data Exchange (ETDEWEB)
Silin, D.; Goloshubin, G.
2009-10-15
Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.
Asymptotic optimality of RESTART estimators in highly dependable systems
International Nuclear Information System (INIS)
Villén-Altamirano, J.
2014-01-01
We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multi-component systems in reliability settings. Repair times and component lifetimes are random variables that follow a general distribution, and the repair service adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and other reliability measures. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty involved in applying this method is finding a suitable function, called the importance function, to define the regions. In this paper we introduce an importance function which, for unbalanced systems, represents a great improvement over the importance function used in previous papers. We also demonstrate the asymptotic optimality of RESTART estimators in these models. Several examples are presented to show the effectiveness of the new approach, and probabilities up to the order of 10 −42 are accurately estimated with little computational effort. - Highlights: • Rare event probabilities of highly reliable systems are estimated by simulation. • The asymptotic optimality of the application is proved. • A better importance function for highly reliable systems is provided in the paper
Asymptotically simple spacetimes and mass loss due to gravitational waves
Saw, Vee-Liem
The cosmological constant Λ used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of Λ or Λ being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on Λ: null infinity ℐ is a spacelike, null, or timelike hypersurface, if Λ > 0, Λ = 0, or Λ 0 in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of ℐ, is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with Λ > 0 has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.
Asymptotic safety of quantum gravity beyond Ricci scalars
Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph
2018-04-01
We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.
Mass, entropy, and holography in asymptotically de Sitter spaces
International Nuclear Information System (INIS)
Balasubramanian, Vijay; Boer, Jan de; Minic, Djordje
2002-01-01
We propose a novel prescription for computing the boundary stress tensor and charges of asymptotically de Sitter (dS) spacetimes from data at early or late time infinity. If there is a holographic dual to dS spaces, defined analogously to the AdS/conformal field theory correspondence, our methods compute the (Euclidean) stress tensor of the dual. We compute the masses of Schwarzschild-de Sitter black holes in four and five dimensions, and the masses and angular momenta of Kerr-de Sitter spaces in three dimensions. All these spaces are less massive than de Sitter space, a fact which we use to qualitatively and quantitatively relate de Sitter entropy to the degeneracy of possible dual field theories. Our results in general dimensions lead to a conjecture: Any asymptotically de Sitter spacetime with mass greater than de Sitter space has a cosmological singularity. Finally, if a dual to de Sitter space exists, the trace of our stress tensor computes the renormalized group (RG) equation of the dual field theory. Cosmological time evolution corresponds to RG evolution in the dual. The RG evolution of the c function is then related to changes in accessible degrees of freedom in an expanding universe
Asymptotic techniques in elastic-plastic analysis of structures
International Nuclear Information System (INIS)
Sayir, M.
1983-01-01
Elastic-plastic structures can nowadays be analyzed with the powerful numerical procedures of the finite element method. Nevertheless, in many engineering applications, analytical expressions capable of predicting with sufficient accuracy the stress distributions, the extent of the plastic zones and the load displacement behaviour could be of great practical value. For simple structures and loading stages not too far from the elastic limit, such analytical expressions may be obtained by using perturbation methods and asymptotic expansions. A small dimensionless parameter epsilon is defined as the ratio of a length characterizing the extent of the narrow plastic zone, to a conveniently chosen typical dimension of the structure. Stresses and displacements are formally expanded as asymptotic series in terms of powers of epsilon. For each order of magnitude, the exact basic relations lead to a separate set of simplified differential equations which can be integrated analytically or numerically by using standard procedures. The method is very general and can be applied to several classes of plastic behaviour and of structural problems. Three examples of very simple structures are chosen in particular to illustrate the applicability of the perturbation method to engineering problems. (orig./RW)