WorldWideScience

Sample records for local anodic dissolution

  1. Dissolution of anodic zirconium dioxide films in aqueous media

    International Nuclear Information System (INIS)

    Merati, A.; Cox, B.

    1999-01-01

    Zirconium with a low thermal neutron cross section, good corrosion resistance in high-temperature water, and high thermal conductivity is an ideal material for nuclear reactors. Its good resistance to water and steam at reactor temperatures is of the greatest interest to nuclear fuel designers. Dissolution of zirconium dioxide (ZrO 2 ) films in aggressive media was investigated. The extent of uniform and localized dissolution was measured by ultraviolet-visible (UV-VIS) spectrometry and an alternating current (AC) impedance test, respectively. Scanning electron microscopy (SEM) showed the extent of dissolution of ZrO 2 was a function only of the fluoride ion content and pH of the medium. Cathodic polarization was used to identify the preferred sites for localized dissolution of the oxide film. In 0.1 M potassium bifluoride (KHF 2 ), both uniform thinning and local breakdown of the oxide were observed. Within the limits of the investigating techniques, no evidence of dissolution was observed in the other solutions tested: 0.5 M sulfuric acid (H 2 SO 4 ). 1.0 M nitric acid (HNO 3 ), 5 M hydrochloric acid (HCl), or 0.1 M potassium fluoride (KF). In areas around iron-containing particles, fine cracks in the anodic oxide at prior metal grain boundaries and arrays of cracks in the oxide associated with residual scratches from the initial specimen preparation were the preferred spots for localized dissolution of the oxide film. Iron precipitates immediately below the surface of the oxide layer increased the local electrical conductivity. Enrichment of iron in the oxide matrix around these precipitates during the anodization process appeared to cause prospective spots, acting as anodic sites for pH formation

  2. A Study on the Anodic Dissolution of Aluminum(II)

    International Nuclear Information System (INIS)

    Nam, C. W.; Park, C. S.; Park, C. S.

    1978-01-01

    In many cases oxide films formed on metals in atmosphere or aqueous solution are chemically inactive, especially it is the case with aluminum. In this study, anodic dissolution of aluminum was done using various electrolyte and cathode, mechanism of which was examined. As a consequence, oxide film on aluminum surface was dissolved together with the dissolution reaction of metal by the anodic current. It was shown that the dissolution reaction due to the contact between electrolyte and metal happened in the same time

  3. Plant-scale anodic dissolution of unirradiated IFR fuel pins

    International Nuclear Information System (INIS)

    Gay, E.C.; Tomczuk, Z.; Miller, W.E.

    1993-01-01

    This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500 degrees C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated

  4. The kinetics of anodic dissolution of rhenium in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    Atanasyants, A.G.; Kornienko, V.A.

    1986-01-01

    The kinetics of anodic rhenium dissolution was investigated by means of potentiodynamic and potentiostatic polarization curves recorded at temperature from 293 to 333 K in different media (NaOH, KOH, NaCl, NaBr, HCl, H 2 SO 4 ) using the rotating disc technique. It is shown that the kinetics of anodic rhenium dissolution and effective activation energy depend not only on the composition and pH value of the solutions but also on the structure of the dissolving rhenium surface. The investigation of the anodic behaviour of the rhenium monocrystal revealed the existence of anisotropy of the monocrystal electrochemical properties. The experimental results point to an important role of adsorption processes in anodic rhenium dissolution. Rhenium dissolution proceeds with formation of intermediate surface adsorption complexes between the metal and the components of the solution

  5. Effect of nickel content on the anodic dissolution and passivation of ...

    Indian Academy of Sciences (India)

    The effect of systematic increase of Ni on the anodic dissolution and passivation of Zn–Ni alloys in various concentrations of KOH solution (0.1–1 M) was investigated. The anodic dissolution and passivation behaviour for each pure Zn and Ni in the same studied solutions was also investigated, and the obtained data were ...

  6. Anodic dissolution of samarium in acetonitrile solution of acetylacetone

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Trebnikov, A.G.; Shirokij, V.L.

    2003-01-01

    Electrochemical dissolution of metal samarium in acetonitrile medium in the presence of 0.1 M tetraethylammoniumbromide and 0.9 M acetylacetone (HAA) in argon atmosphere under a voltage of 3 V was considered for studying feasibility of electrochemical synthesis of samarium β-diketonates. Using IR and mass spectrometry, thermal and elementary analyses it was ascertained that, depending on cathode and anode areas ratio, anodic dissolution of samarium can give rise to formation of complexes of bi- and trivalent samarium featuring the composition Sm 4 (AA) 8 · 3HAA, Sm(AA) 3 · HAA and Sm(AA) 3 · 4HAA [ru

  7. Anodic dissolution and corrosion of alloy Cu30Ni in chloride solutions

    International Nuclear Information System (INIS)

    Zolotarev, E.I.

    1989-01-01

    The anodic and corrosion behavior of alloy Cu30Ni is studied in a solution of 3 N NaCl + 0.01 N HCl by a radiometric method using gamma isotopes of 58 Co (as a marker for Ni) and 64 Cu in combination with electrochemical measurements. It was established that under stationary conditions there was uniform dissolution of the alloy both during free corrosion and anodic polarization. The authors obtained partial anodic dissolution curves for the components of the alloy. It was shown that the dissolution kinetics differed from the mechanisms controlling dissolution of the corresponding pure metals. During corrosion of the alloy in an oxygen atmosphere a back precipitation of copper on the surface of the alloy was not observed. The characteristics observed in the corrosion-electrochemical behavior of the alloy in concentrated chloride solutions can be explained by the presence of Ni on the surface of the dissolving alloy

  8. Anodic dissolution of UO2 in slightly alkaline sodium perchlorate solutions

    International Nuclear Information System (INIS)

    Sunder, S.; Strandlund, L.K.; Shoesmith, D.W.

    1996-04-01

    The anodic dissolution of UO 2 has been studied in aqueous sodium perchlorate solutions at pH ∼ 9.5. Under potentiostatic conditions two distinct regions of oxidation/dissolution behaviour were observed. In the potential (E) range 0.100 V A , Q C respectively) obtained by integration of the anodic current-time plots (Q A ) and cathodic potential scans to reduce accumulated oxidized surface films (Q C ), it was shown that > ∼ 90% of the anodic oxidation current went to produce these films. For E > ∼ 0.350 V, steady-state currents were obtained and measurements of Q A and Q C showed the majority of the current went to produce soluble species. The film blocking anodic dissolution appeared to be either UO 2.27 or, more probably, UO 3 .2H 2 O located primarily at grain boundaries. It is proposed that, at the higher potentials, rapid oxidation and dissolution followed by the hydrolysis of dissolved uranyl species leads to the development of acidic conditions in the grain boundaries. At these lower pH values the UO 3 .2H 2 O is soluble and therefore does not accumulate. Alternatively, if this oxide has been formed by prior oxidation at a lower potential, the formation of protons on oxidizing at E > ∼ 0.350V causes its redissolution, allowing the current to rise to a steady-state value. On the basis of Tafel slopes, an attempt was made to demonstrate that the observed behaviour was consistent with dissolution under acidic conditions. This analysis was only partially successful. (author) 34 refs. 11 figs

  9. Factors Affecting Dissolution Resistance of AC Anodizing Al in Sodium Carbonate Solution

    International Nuclear Information System (INIS)

    Abou-Krisha, M.

    2001-01-01

    Studies were performed to determine the effect of different factors on the properties and so the dissolution resistance of the anodic film of Al. Conductance and thermometric measurements were applied to evaluate the dissolution rate. The effect of applied AC voltage concentration of sodium carbonate solution, the anodization time and the temperature of sodium carbonate solutions show a parallel increase in the dissolution resistance of studied Al in hydrochloride acid. The results show that films formed by sodium carbonate solution were of porous type and have pronounced high resistance. Scanning electron microscope and x-ray diffraction further examined the films. The anodic and cathodic behavior and the effect of the scanning rate on the polarization of Al in sodium carbonate solution were studied. The regression analysis was applied to all results. (Author)

  10. An electrochemical investigation on the dissolution of bilayered porous anodic alumina

    International Nuclear Information System (INIS)

    Liao, Jinfu; Ling, Zhiyuan; Li, Yi; Hu, Xing

    2015-01-01

    Highlights: • Pulse polarization was introduced to investigate the dissolution of PAA. • Electric field within the bilayers was estimated. • The formation of the barrier layer involves mainly solid-state processes. • The structure should be the determining factor in the dissolution of the bilayers. - Abstract: Anodic alumina attracts much research interest in many disciplines for its versatility. Meanwhile, some aspects regarding its growth are still not well-understood, such as the formation and properties of its bilayer structure. In this paper, along with capacitance measurement, pulse polarization is introduced to study the dissolution of bilayered porous anodic alumina (PAA). Combined with electron microscope observation, the electric field in the outer layer is estimated to be slightly higher than that in the inner layer. By comparing with (oxy-)hydroxide layers, the electric field distribution within barrier layer of PAA confirms that the bilayers are compact and are formed mainly by solid-state ionic migration. The changes of dissolution rates after annealing and application of electric pulses suggest that structure may be a determining factor for the dissolution behaviors of the bilayers.

  11. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  12. Preparation of iron metal nano solution by anodic dissolution with high voltage

    International Nuclear Information System (INIS)

    Nguyen Duc Hung; Do Thanh Tuan

    2012-01-01

    Iron nano metal solution is prepared from anodic dissolution process with ultra- high Dc voltage. The size and shape of iron nanoparticles determined by Tem images and particle size distribution on the device LA-950 Laser Scattering Particle Distribution Analyzer V2. The concentration of nano-iron solution was determined by the analytical methods AAS atomic absorption spectrometry and Faraday's law. The difference in concentration of both methods demonstrated outside the anodic dissolution process has created the water electrolysis to form H 2 and O 2 gases and heating the solution. (author)

  13. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  14. The effect of antimony presence in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Z.D.

    2008-01-01

    Full Text Available The influence of the presence of Sb atoms, as foreign metal atoms in anode copper, on kinetics, and, on the mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution has been investigated. The galvanostatic single-pulse method has been used. Results indicate that presence of Sb atoms in anode copper increase the exchange current density as determined from the Tafel analysis of the electrode reaction. It is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  15. Effect of solvent composition on the limiting current of anodic dissolution of tungsten in aqueous-ethanol solutions of alkali

    International Nuclear Information System (INIS)

    Konoplyantseva, N.A.; L'vova, L.A.; Davydov, A.D.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1987-01-01

    The effect of quantitative composition of solvent on tungsten anodic dissolution in aqueous-ethanol solutions of KOH is studied. It is shown that with an increase in ethanol content in aqueous-ethanol solutions of alkali the limiting current of tungsten anodic dissolution decreases. An increase in KOH concentration in certain limits (in ethanol solutions it is the range between 0.75 and 1.0 M KOH) results in the increase of the limiting current; with further increase in solution concentration the limiting current decreases, which can be related to the change of the limiting stage. An assumption is made that total reaction of tungsten anodic dissolution and the main reasons for the limiting current appearance do not change from aqueous to aqueous-ethanol and ethanol solutions of alkali

  16. Analysis of chemical dissolution of the barrier layer of porous oxide on aluminum thin films using a re-anodizing technique

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus)]. E-mail: nil-4-2@bsuir.edu.by; Parkoun, V. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus); Sokol, V. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus); Schreckenbach, J. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany)

    2005-09-30

    Chemical dissolution of the barrier layer of porous oxide formed on thin aluminum films (99.9% purity) in the 4% oxalic acid after immersion in 2 mol dm{sup -3} sulphuric acid at 50 deg. C has been studied. The barrier layer thickness before and after dissolution was calculated using a re-anodizing technique. It has been shown that above 57 V the change in the growth mechanism of porous alumina films takes place. As a result, the change in the amount of regions in the barrier oxide with different dissolution rates is observed. The barrier oxide contains two layers at 50 V: the outer layer with the highest dissolution rate and the inner layer with a low dissolution rate. Above 60 V the barrier oxide contains three layers: the outer layer with a high dissolution rate, the middle layer with the highest dissolution rate and the inner layer with a low dissolution rate. We suggest that the formation of the outer layer of barrier oxide with a high dissolution rate is linked with the injection of protons or H{sub 3}O{sup +} ions from the electrolyte into the oxide film at the anodizing voltages above 57 V.

  17. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electrorefiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electrorefiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electrorefiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour

  18. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electro-refiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electro-refiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electro-refiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour. (author)

  19. Study of anodic dissolution of Fe-Ru alloy with the aid of mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Khlystov, A.S.; Fasman, A.B.; Kil'dibekova, G.A.

    1986-01-01

    This paper uses Fe 57 Mossbauer spectroscopy, whereby iron compounds may be identified quantitatively and their composition and structure can be determined, for the study of the relationships of slime formation from Fe-Ru binary alloys. Both the products of dissolution and the composition and state of intermediate phases formed at various stages of anodic dissolution were studied simultaneously. It was found that the slimes formed both during chemical and during electrochemical destruction of ruthenium-iron alloys are finely dispersed systems of complex composition, analogous to those formed in the course of electrochemical dissolution of Ni-Ru alloys, which were found to contain oxide phases of ruthenium (by x-ray spectroscopy and ESCA) and of nickel (by x-ray phase analysis). The difference between the slime compositions is determined mainly by kinetic factors

  20. Anodic behaviours, dissolution and passivation of iron-nickel alloys in sulphuric environment. Influence of friction

    International Nuclear Information System (INIS)

    Ponthiaux, Pierre

    1990-01-01

    This research thesis reports the study of anodic dissolution and passivation of iron-nickel alloys (10, 20 and 31 pc nickel) in a sulphuric environment, with or without friction, by using anodic polarization curves. Without friction, the three alloys have a similar behaviour as pure iron. The analysis reveals different dissolution and passivation mechanisms with pure iron, and highlights the influence of nickel content on corresponding kinetics. The influence of cyclic plane-on-plane friction has been studied for the 31 pc nickel alloy which has an unsteady austenitic structure. Fretting results in some modifications of polarization curves. These modifications are analysed with respect to fretting parameters (relative speed of antagonist surfaces, contact pressure). They reveal the specific influence of the following phenomena: material strain hardening, martensitic transformation induced by strain hardening, partial destruction of adsorbates and/or of the passive film. Modifications of polarization curves give also information on the evolution of friction characteristics with respect to speed (a phenomenon of lubrication by the electrolyte occurs) [fr

  1. The anodic dissolution of SIMFUEL (UO2) in slightly alkaline sodium carbonate/bicarbonate solutions

    International Nuclear Information System (INIS)

    Keech, P.G.; Goldik, J.S.; Qin, Z.; Shoesmith, D.W.

    2011-01-01

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U VI corrosion product, [UO 2 ] 2+ . As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO 2 ) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U IV → U V → U VI ). At low potentials (≤250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U VI O 2 CO 3 surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  2. Application of in situ digital holography to the study of the effect of a magnetic field on the anodic dissolution of iron in thichloroacetic acid

    Directory of Open Access Journals (Sweden)

    XUEGENG YANG

    2006-01-01

    Full Text Available The effect of a magnetic field on the anodic dissolution of iron in 1.0 mol dm-3 trichloroacetic acid solution was studied by the potentiodynamic polarization method and in situ digital holography. It was found that the magnetohydrodynamic force increased the mass transport, which resulted in a faster anodic dissolution of iron. The effect of the magnetic field was analyzed by holograms and is discussed in terms of the magnetohydrodynamic force.

  3. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu; Santamarina, Carlos

    2016-01-01

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  4. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu

    2016-06-11

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  5. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen

    2013-01-01

    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because...... the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two models are envisaged, the most stable (0001) surface and a kink surface. The kink model proves to be more....... The applied methodology provides new insight into computational modelling and design of secondary metal-air batteries....

  6. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    Science.gov (United States)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  7. Local deposition of polypyrrole on aluminum by anodizing, laser irradiation, and electrolytic polymerization and its application to the fabrication of micro-actuators

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Kikuchi, T. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan)]. E-mail: kiku@elechem1-mc.eng.hokudai.ac.jp; Ueda, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Iida, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Sakairi, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan)

    2006-06-15

    Polypyrrole was deposited at selected areas on aluminum by anodizing, laser irradiation, and electrolytic polymerization, and the application of the technique for fabricating micro-actuators was attempted. Aluminum specimens covered with porous type anodic oxide films were irradiated with a pulsed Nd-YAG laser to remove the oxide films locally, and then thin Ni layers were deposited at areas where film had been removed. Polypyrrole could be successfully deposited only on the Ni layer by anodic polarization of the specimens in pyrrole monomer solution, and a polypyrrole/Ni bilayer structure could be obtained by dissolution of the aluminum substrate and anodic oxide film in NaOH solutions. The bilayer structure was found to be inactive to doping and dedoping of ions during anodic and cathodic polarization. A three-layer structure, nitrocellulose/Ni/polypyrrole, fabricated by electrolytic polymerization after nitrocellulose coating on a Ni layer detached from the aluminum substrate, showed ion-doping and -dedoping activity, suggesting the possibility of fabricating micro-actuators in this manner.

  8. The anodic dissolution of SIMFUEL (UO{sub 2}) in slightly alkaline sodium carbonate/bicarbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Keech, P.G.; Goldik, J.S.; Qin, Z. [Department of Chemistry, University of Western Ontario, 1151 Richmond St, London ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Department of Chemistry, University of Western Ontario, 1151 Richmond St, London ON, N6A 5B7 (Canada)

    2011-09-30

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U{sup VI} corrosion product, [UO{sub 2}]{sup 2+}. As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO{sub 2}) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U{sup IV} {yields} U{sup V} {yields} U{sup VI}). At low potentials ({<=}250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U{sup VI}O{sub 2}CO{sub 3} surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  9. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    Science.gov (United States)

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Quantitative relationship between nanotube length and anodizing current during constant current anodization

    International Nuclear Information System (INIS)

    Zhang, Yulian; Cheng, Weijie; Du, Fei; Zhang, Shaoyu; Ma, Weihua; Li, Dongdong; Song, Ye; Zhu, Xufei

    2015-01-01

    Highlights: • Ti anodization was performed by constant current rather than constant voltage. • The nanotube length was controlled by ionic current rather than dissolution current. • Electronic current can be estimated by the nanotube length and the anodizing current. • Dissolution reaction hardly contributes electric current across the barrier layer. - Abstract: The growth kinetics of anodic TiO 2 nanotubes (ATNTs) still remains unclear. ATNTs are generally fabricated under potentiostatic conditions rather than galvanostatic ones. The quantitative relationship between nanotube length and anodizing current (J total ) is difficult to determine, because the variable J total includes ionic current (J ion ) (also called oxide growth current J grow =J ion ) and electronic current (J e ), which cannot be separated from each other. One successful approach to achieve this objective is to use constant current anodization rather than constant voltage anodization, that is, through quantitative comparison between the nanotube length and the known J total during constant current anodization, we can estimate the relative magnitudes of J grow and J e . The nanotubes with lengths of 1.24, 2.23, 3.51 and 4.70 μm, were formed under constant currents (J total ) of 15, 20, 25 and 30 mA, respectively. The relationship between nanotube length (y) and anodizing current (x =J total =J grow +J e ) can be expressed by a fitting equation: y=0.23(x-10.13), from which J grow (J grow = x -10.13) and J e (∼10.13 mA) could be inferred under the present conditions. Meanwhile, the same conclusion could also be deduced from the oxide volume data. These results indicate that the nanotube growth is attributed to the oxide growth current rather than the dissolution current.

  11. Electrochemical Degradation of Phenol and Resorcinol Molecules through the Dissolution of Sacrificial Anodes of Macro-Corrosion Galvanic Cells

    Directory of Open Access Journals (Sweden)

    Boguslaw Pierozynski

    2018-06-01

    Full Text Available This paper reports on the processes of phenol and resorcinol electrodegradation carried-out through continuous anodic dissolution of aluminum alloy and carbon steel sacrificial anodes for artificially aerated Cu-Al alloy and Cu-Fe-based galvanic (macro-corrosion cells and synthetically prepared wastewater solutions. Electrochemical experiments were carried-out by means of a laboratory size, PMMA (Poly-methyl methacrylate-made electrolyser unit, where significant degrees of phenol (10–89% and resorcinol (13–37% decomposition were obtained and visualized through the respective chemical/spectroscopy analyses. In addition, quantitative determination of phenol, as well as resorcinol (and possible electrodegradation products for the selected experimental conditions was performed by means of instrumental high-performance liquid chromatography/mass spectrometry analysis.

  12. Corrosion behaviour of dimensionally stable anodes in chlorine electrolysis

    International Nuclear Information System (INIS)

    Evdokimov, S.V.

    2000-01-01

    Dependence of ruthenium anodic dissolution rate in active coating of oxide ruthenium-titanium anodes on time both in chloride and perchlorate solutions was studied using radiometric methods. It is shown that i chloride solutions effect of a high and long-term decrease in ruthenium dissolution rate takes place. The data confirm the previously made conclusion that adsorbed chlorine produces inhibiting effect on anodic dissolution of a precious metal. Influence of pH on steady-state rate of the anode corrosion is considered. Effect of abrupt increase in corrosion rate with pH increase from 2 to 4 with its subsequent slow decrease to the values characteristic of the process rate in solutions with pH 2 is revealed [ru

  13. The role of anodic dissolution in the stress corrosion cracking of Al-Li-Cu alloy 2090

    International Nuclear Information System (INIS)

    Buchheit, R.G. Jr.; Wall, F.D.; Stoner, G.E.; Moran, J.P.

    1991-01-01

    The short-transverse (S-T) stress corrosion cracking (SCC) behavior of Al-Li-CU alloy 2090 was studied using a static load SCC test technique. Time to failure was measured as a function of applied potential in several different environments. Rapid SCC failures ( br, T1 applied br, matrix where potentials refer to the breakaway potentials of the subgrain boundary T 1 (Al 2 CuLi) phase and the α-Al matrix phase. E br values were measured using potentiodynamic polarization of bulk materials intended to simulate the individual phases found in the subgrain boundary region. Results strongly suggest an anodic dissolution based SCC mechanism for this alloy where selective dissolution of T 1 on the subgrain boundary is a critical step. The unusual pre-exposure embrittlement phenomenon demonstrated by Al- Li alloys is also shown to be consistent with these simple SCC criteria. 21 refs., 9 figs., 6 tabs

  14. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    Science.gov (United States)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  15. Chemical stability of conductive ceramic anodes in LiCl–Li{sub 2}O molten salt for electrolytic reduction in pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Wook; Kang, Hyun Woo; Jeon, Min Ku; Lee, Sang Kwon; Choi, Eun Young; Park, Woo Shin; Hong, Sun Seok; Oh, Seung Chul; Hur, Jin Mok [Nuclear Fuel Cycle Process Development Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive La{sub 0.33}Sr{sub 0.67}MnO{sub 3} in LiCl–Li{sub 2}O molten salt at 650°C was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the La{sub 0.33}Sr{sub 0.67}MnO{sub 3} anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

  16. Electrochemical and CMT measurements of the anomalous dissolution of nickel in solutions containing oxygen

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; de Fontenay, Frank; Poulsen, Henning

    1997-01-01

    In addition to single nickel crystals also nickel samples produced by dc and pr (pulse-reversal) plating were examined. As previously reported the true rate of dissolution of nickel in solutions containing oxygen was found to be as much as three times the electrochemical rate at the corrosion...... potential. When passivation was approached (spontaneously or by anodic polarization) the true rate of dissolution approached the rate of anodic reaction. During cathodic polarization there was still a significant rate of dissolution. The true rate of dissolution was determined by CMT measurements (Corrosion...

  17. Hydrogen effects in anodic grinding of WC-Co sintered alloy

    International Nuclear Information System (INIS)

    Lunarska, E.; Zaborski, St.

    2001-01-01

    The effects of anodic polarization applied in grinding of sintered WC C o alloy on properties of surface layer, quality of ground surface and efficiency of the treatment were studied. The nonmonotonical change of the surface roughness, the energy consumption and the wear of tool was stated at increasing anodic polarization. The optimum values of above parameters were achieved at application of anodic polarization at which the Co selective dissolution and hydrogen ingress into the ground metal. affecting the internal friction spectra were stated. The assistance of hydrogen induced deterioration and Co selective dissolution in the surface layer in the anodic grinding of WC-Co alloy has been discussed. (author)

  18. Recovery of plutonium from electrorefining anode heels at Savannah River

    International Nuclear Information System (INIS)

    Gray, J.H.; Gray, L.W.; Karraker, D.G.

    1987-03-01

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control

  19. Local electron flow to the anode in a magnetically insulated diode

    International Nuclear Information System (INIS)

    Maron, Y.

    1984-01-01

    Local electron flux to the anode of a magnetically insulated diode is monitored. Intense electron burst to the anode and slow variations in the electron flux are observed. Unlike the slow signals the bursts are accompanied by sharp increases in microwave emission and by increases in the ion current density. The electron bursts are not affected by the presence of the anode plasma. Indications suggest that the bursts are initiated by processes in the cathode plasma

  20. Electronic properties of electrolyte/anodic alumina junction during porous anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka Street, Minsk 220013 (Belarus)]. E-mail: nil-4-2@bsuir.edu.by; Jagminas, A. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Schreckenbach, J. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany); InnoMat GmbH, Chemnitz (Germany); Goedel, Werner A. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany)

    2007-03-15

    The growth of porous oxide films on aluminum (99.99% purity), formed in 4% phosphoric acid was studied as a function of the anodizing voltage (23-53 V) using a re-anodizing technique and transmission electron microscopy (TEM) study. The chemical dissolution behavior of freshly anodized and annealed at 200 deg. C porous alumina films was studied. The obtained results indicate that porous alumina has n-type semiconductive behavior during anodizing in 4% phosphoric acid. During anodising, up to 39 V in the barrier layer of porous films, one obtains an accumulation layer (the thickness does not exceed 1 nm) where the excess electrons have been injected into the solid producing a downward bending of the conductive and valence band towards the interface. The charge on the surface of anodic oxide is negative and decreases with growing anodizing voltage. At the anodizing voltage of about 39 V, the charge on the surface of anodic oxide equals to zero. Above 39 V, anodic alumina/electrolyte junction injects protons from the electrolyte. These immobile positive charges in the surface layer of oxide together with an ionic layer of hydroxyl ions concentrated near the interface create a field, which produces an upward bending of the bands.

  1. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  2. Structural study of anodic films formed on aluminum in nitric acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, N.M.; Anicai, L.; Yakovlev, A.N.; Dima, L.; Khanina, E.Ya.; Buda, M.; Chupakhina, E.A

    2002-09-02

    The paper presents the results of investigations of porous Al anodic films formed in HNO{sub 3} electrolytes carried out by means of electrochemical techniques and X-ray diffraction as well as scanning electron microscopy (SEM). It was assumed that both electrochemical formation of a porous oxide and anodic dissolution of metal take place at Al/oxide interface at the same time. The analysis of short-range order (SRO) parameters for relatively high current density, 1x10{sup 3} A/m{sup 2}, and anodizing time, 10 min, leads to the conclusion that films mainly consist of amorphous alumina with {gamma}'-Al{sub 2}O{sub 3}-like SRO and a small amount ({approx}10%) of amorphous aluminum oxyhydroxide. SEM investigation of the films revealed strong dependence of the surface relief on different applied forming conditions. This marked change in the surface relief is discussed taking into account the relatively complex behavior of Al during anodization in HNO{sub 3} electrolytes, that involves both electrochemical growth and dissolution processes of anodic film associated with an electrochemical dissolution of aluminum substrate.

  3. Structural study of anodic films formed on aluminum in nitric acid electrolyte

    International Nuclear Information System (INIS)

    Yakovleva, N.M.; Anicai, L.; Yakovlev, A.N.; Dima, L.; Khanina, E.Ya.; Buda, M.; Chupakhina, E.A.

    2002-01-01

    The paper presents the results of investigations of porous Al anodic films formed in HNO 3 electrolytes carried out by means of electrochemical techniques and X-ray diffraction as well as scanning electron microscopy (SEM). It was assumed that both electrochemical formation of a porous oxide and anodic dissolution of metal take place at Al/oxide interface at the same time. The analysis of short-range order (SRO) parameters for relatively high current density, 1x10 3 A/m 2 , and anodizing time, 10 min, leads to the conclusion that films mainly consist of amorphous alumina with γ'-Al 2 O 3 -like SRO and a small amount (∼10%) of amorphous aluminum oxyhydroxide. SEM investigation of the films revealed strong dependence of the surface relief on different applied forming conditions. This marked change in the surface relief is discussed taking into account the relatively complex behavior of Al during anodization in HNO 3 electrolytes, that involves both electrochemical growth and dissolution processes of anodic film associated with an electrochemical dissolution of aluminum substrate

  4. Initial results for electrochemical dissolution of spent EBR-II fuel

    International Nuclear Information System (INIS)

    Li, S. X.

    1998-01-01

    Initial results are reported for the anode behavior of spent metallic nuclear fuel in an electrorefining process. The anode behavior has been characterized in terms of the initial spent fuel composition and the final composition of the residual cladding hulls. A variety of results have been obtained depending on the experimental conditions. Some of the process variables considered are average and maximum cell voltage, average and maximum anode voltage, amount of electrical charge passed (coulombs or amp-hours) during the experiment, and cell resistance. The main goal of the experiments has been the nearly complete dissolution of uranium with the retention of zirconium and noble metal fission products in the cladding hulls. Analysis has shown that the most indicative parameters for determining an endpoint to the process, recognizing the stated goal, are the maximum anode voltage and the amount of electrical charge passed. For the initial experiments reported here, the best result obtained is greater than 98% uranium dissolution with approximately 50% zirconium retention. Noble metal fission product retention appears to be correlated with zirconium retention

  5. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  6. Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications

    International Nuclear Information System (INIS)

    Yoo, Jeong Eun; Park, Jiyoung; Cha, Gihoon; Choi, Jinsub

    2013-01-01

    The anodization of niobium in an aqueous mixture of H 3 PO 4 and HF in the potential range from 2.5 to 30 V for 2 h at 5 °C was performed, demonstrating that anodic porous niobium oxide film with a thickness of up to 2000 nm, including a surface dissolution layer, can be obtained by controlling the applied potential and composition of the electrolytes. Specifically, surface dissolution-free porous niobium oxide film with a thickness of 800 nm can be prepared in a low electrolyte concentration. The surface dissolution is observed when the concentration ratio of HF (wt.%):H 3 PO 4 (M) was more than 2:1. The discontinuous layers in the niobium oxide film were observed when the thickness was higher than 500 nm, which was ascribed to the large volume expansion of the niobium oxide grown from the niobium metal. The anodic porous niobium oxide film was used as the cathode for lithium-ion batteries in the potential range from 1.2 to 3.0 V at a current density of 7.28 × 10 − 6 A cm −2 . The first discharge capacity of ca. 53 μA h cm − 2 was obtained in 800 nm thick niobium oxide without a surface dissolution layer. - Highlights: ► Anodic porous niobium oxide film with a thickness of 2000 nm was obtained. ► Surface dissolution-free porous niobium oxide film was prepared. ► The niobium oxide film was used as the cathode for lithium-ion batteries

  7. Pore development in anodic alumina in sulphuric acid and borax electrolytes

    International Nuclear Information System (INIS)

    Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Habakaki, H.

    2007-01-01

    The formation of porous anodic films on an Al-3.5 at.%W alloy is compared in sulphuric acid and borax electrolytes in order to investigate pore development processes. The findings disclose that for anodizing in sulphuric acid, the pores develop mainly due to the influences of field-induced plasticity of the film and growth stresses; in borax, field-assisted dissolution dominates. The films formed in sulphuric acid are consequently much thicker than the layer of oxidized alloy and tungsten species are retained in the film. In contrast, with borax, the films and oxidized alloy layers are of similar thickness and tungsten species are lost to the electrolyte. Efficiencies of film growth are also significantly different, about 65% in sulphuric acid and about 52% in borax. The retention of tungsten species during anodizing in sulphuric acid is due to the localization of tungsten in the inner regions of the barrier layer and cell walls, with a layer of anodic alumina separating the tungsten-containing regions from the electrolyte. For borax, the tungsten is distributed more uniformly through the film material, enabling loss of tungsten species to the electrolyte from the pore base

  8. Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments

    International Nuclear Information System (INIS)

    Sakairi, M.; Shimoyama, Y.; Nagasawa, D.

    2008-01-01

    A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in 0.5 kmol/m 3 H 3 BO 4 /0.05 kmol/m 3 Na 2 B 4 O 7 with 0.01 kmol/m 3 NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion

  9. Porous anodic film formation on an Al-3.5 wt% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Paez, M.A.; Bustos, O.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Wood, G.C.

    2000-03-01

    Anodic film growth has been undertaken on an electropolished Al-3.5 wt % Cu alloy to determine the influence of copper in solid solution on the anodizing behavior. At the commencement of anodizing of the electropolished alloy, in the presence of interfacial enrichment of copper, Al{sup 3+} and Cu{sup 2+} ions egress and O{sup 2{minus}} ion ingress proceed; film growth occurs at the alloy/film interface though O{sup 2{minus}} ion ingress, with outwardly mobile Al{sup 3+} and Cu{sup 2+} ions ejected at the film/electrolyte interface, and field-assisted dissolution proceeding at the bases of pores. Oxidation of copper, in the presence of the enriched layer, is also associated with O{sub 2} gas generation, leading to development of oxygen-filled voids. As a result of significant pressures in the voids, film rupture proceeds, with electrolyte access to the alloy, dissolution of the enriched interfacial layer and re-anodizing. The consequence of such processes in the development of anodic films of increased porosity and reduced efficiency of film formation compared with anodizing of superpure aluminum under similar conditions.

  10. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    OpenAIRE

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-01-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The de...

  11. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  12. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  13. Inhibition of cobalt active dissolution by benzotriazole in slightly alkaline bicarbonate aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Gallant, Danick [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: danick.gallant.1@ulaval.ca; Pezolet, Michel [Departement de Chimie, Universite Laval, Quebec (Canada)]. E-mail: michel.pezolet@chm.ulaval.ca; Simard, Stephan [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: stephan_simard@uqar.qc.ca

    2007-04-20

    The efficiency of benzotriazole as inhibiting agent for the corrosion of cobalt was probed at pH ranging from 8.3 to 10.2 in a sodium bicarbonate solution, chosen to simulate mild natural environments. From electrochemical, Raman spectroscopy, atomic force microscopy and ellipsometry experiments, we have demonstrated that benzotriazole markedly affects the electrodissolution reactions, which become modeled by the formation of a [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film according to two different mechanisms. Surface-enhanced Raman spectroscopy has shown that the polarization of a cobalt electrode at cathodic potentials with respect to its potential of zero charge allows a mechanism of specific adsorption of the neutral form of benzotriazole to take place through a suspected metal-to-molecule electron transfer and which follows Frumkin's adsorption isotherms. At the onset of the anodic dissolution, some experimental evidence suggests that these adsorbed neutral benzotriazole molecules deprotonate to yield a very thin [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} polymer-like and water-insoluble protective film, responsible for the inhibition of active dissolution processes occurring at slightly more anodic potentials. In the anodic dissolution region, deprotonated benzotriazole species present in the bulk solution favors the formation of a multilayered [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film, which also contributes to the inhibition of any further cobalt dissolution usually observed at higher electrode potentials.

  14. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    Science.gov (United States)

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery.

  15. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature

    International Nuclear Information System (INIS)

    Chung, C K; Zhou, R X; Chang, W T; Liu, T Y

    2009-01-01

    Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 deg. C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.

  16. In situ monitoring of the electrochemical dissolution of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Krebsz, Melinda [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Kollender, Jan Philipp [Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria); Hassel, Achim Walter [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria)

    2017-09-15

    In the present work, which is aimed to monitor in situ the electrochemical dissolution of tungsten by using a Flow-Type Scanning Droplet Cell Microscope (FT-SDCM) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), novel results are reported. The anodic oxide growth and its dissolution on the surface of W have been monitored in situ. The results of this current study show the importance of coupling electrochemical experiments to ICP-MS. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The electrochemical properties and mechanism of formation of anodic oxide films on Mg-Al alloys

    International Nuclear Information System (INIS)

    Kim, Seong Jong; Okido, Masazumi

    2003-01-01

    The electronchemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH) 2 in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH) 2 was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the β phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in β phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in α phase, which had a lower Al content. In the anodic polarization test in 0.017 mol·dm -3 NaCl and 0.1 mol·dm -3 Na 2 SO 4 at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the α phase is a non-compacted film. The anodic film on the α phase at 30 min was a compact film as compared with that at 10 min

  18. Selective anodic dissolution of cerium from aluminium alloys under potentiostatic conditions

    International Nuclear Information System (INIS)

    Gol'dshtejn, S.L.; Raspopin, S.P.; Seleznev, V.D.; Tunin, A.V.; Fedorov, V.A.

    1975-01-01

    A study was made of selective anodic dissolution of aluminum alloys containing cerium in concentrations from 0.5 to 10% by mass. The electropurification was carried out with the aid of a potentiostatic setup at 700 deg C in atmosphere of purified argon. Liquid aluminum served as the cathode, with chlorine half-cell as reference electrode and the melt of equimolar KCl-NaCl mixture as the electrolyte. The ''current-time'' plots are presented for selective ionization of cerium from aluminum alloys at preset potential values on the installation. For PHIsub(preset)=-2.04 v the current of potentiostatic electrolysis fades out to that of the supporting electrolyte, and the process itself proceeds at a rate that provides maximal extraction of cerium from the alloy (csub9finite)approximately equal to 0.002% by mass) at minimal ionization of the metalsolvent (Δ Msub(Al)approximately equal to 0.2). Alloys containing not less then 1% by mass of Ce exhibit a characteristic abrupt change of the attenuation coefficient apparently owing to nonlinear dependence of unbalance (ΔE) of signals at the input of the potentiostat. The ''ΔE-c'' function for Al alloy containing 0.5% by mass of Ce can be approximated by linear function. In this case the current of potentiostatic electrolysis approaches the value of the limiting diffusion current. To obtain the relationship between the magnitude of the limiting current of Ce ionization and the initial composition of the dissolving alloy, measurements were made under potentiodynamic conditions at a scanning rate of approximately equal to 500 mv/min. The results indicate that isub(intermediate) is directly proportional to csub(initial). It was shown that under the conditions employed, practically complete (csub(finite)<=0.004% by mass) extraction of the electronegative component is possible without noticeable ionization of the metal-solvent

  19. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Science.gov (United States)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  20. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuya [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: kiku@eng.hokudai.ac.jp; Sakairi, Masatoshi [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, Hideaki [Asahikawa National College of Technology, Syunkohdai, 2-2, 1-6, Asahikawa 071-8142 (Japan)

    2009-11-30

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-{mu}m wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  1. Anodic behavior of Mg in acidic AlCl3–1-ethyl-3-methyl-imidazolium chloride ionic liquid

    International Nuclear Information System (INIS)

    Xu, Bajin; Qu, Rui; Ling, Guoping

    2014-01-01

    Highlights: • A viscous layer formed at Mg/ionic liquid interface after the dissolution of Mg. • As direct evidence, photo of viscous layer at the interface was presented. • Viscous layer was resulted from accumulation of dissolved Mg(II) at interface. • Formation of viscous layer resulted in a homogenous etched Mg surface. • Dissolution model of Mg and formation mechanism of viscous layer was discussed. - Abstract: In this paper, anodic behavior of Mg in acidic AlCl 3 –1-ethyl-3-methyl-imidazolium chloride (AlCl 3 –EMIC) ionic liquid was investigated by conducting linear sweep voltammetry, chronoamperometry and chonopotentiometry. The viscosity of Mg dissolved ionic liquid and the surface morphologies of Mg were characterized using an Ostwald viscometer and a scanning electron microscopy, respectively. The results showed that the oxide film on the surface of Mg had great effects on the anodic behavior. The dissolution of Mg under anodic polarization occurred after the breakdown of oxide film. A viscous layer was observed forming at the interface of Mg/ionic liquid during the dissolution process. The formation of viscous layer was attributed to the accumulation of Mg dissolved AlCl 3 –EMIC ionic liquid at the interface, which was of high viscosity. With a viscous layer formed in the anodic process, the etched surface of Mg anode was homogeneous and flat without any etching pits. Otherwise, the Mg showed a morphology of pitting on the surface

  2. Impedance spectroscopy for the study of anodic copper dissolution in sulfuric acid in presence of benzotriazole

    International Nuclear Information System (INIS)

    Clerc, C.; Alkire, R.C.

    1988-01-01

    The presence of an anodic surface film dramatically affects the electrochemical behavior of dissolving electrode in processes like corrosion inhibition, passivity, electropolishing or pitting. The present study was initiated to learn more about the physical properties of the surface films present at the surface of a copper electrode during anodic dissolution in 0.5 SM sulfuric acid and 40 mM benzotriazole (BTA) at 25 0 C. This study is of practical importance because this organic compound is widely used for corrosion inhibition and as etching additive. The impedance spectra measured after 10 min of polarization (with a SOLARTRAN 1250 Frequency Response Analyzer and a SOLARTRON 1286 Electrochemical Interface) were analyzed by comparison with a physical model of the electrochemical interface in which the passive electrode is covered with a barrier layer. The main assumptions are that this barrier layer is a good electronic insulator of stoichiometric composition and that charge transfer reactions and double layer charging occur at both metal-barrier layer and barrier layer-electrolyte interphases. This model also considers the change in the barrier layer thickness under the influence of the applied potential. Least squares fitting of measured impedance spectra yield physical parameters of reasonable order of magnitude to support the proposed model. As predicted it was found that the barrier layer is itself covered by an outer porous film of corrosion products and that the metallic ions transfer through the barrier layer under high field conduction. By comparing the crystallographic lattice parameters and the dielectric constants of different copper compounds, the jump distance was determined to be about 5.5 A, indicating that the barrier layer is likely to be an hydrated copper sulfate (CuSO/sub 4/ 5H/sub 2/O)

  3. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.; Aoki, Y. [Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Habazaki, H., E-mail: habazaki@eng.hokudai.ac.jp [Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-07-15

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm{sup -3} K{sub 2}HPO{sub 4} and 0.2 mol dm{sup -3} K{sub 3}PO{sub 4} in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  4. The electrochemical properties and mechanism of formation of anodic oxide films on Mg-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jong; Okido, Masazumi [Nagoya Univ., Nagoya (Japan)

    2003-07-01

    The electronchemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH){sub 2} in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH){sub 2} was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the {beta} phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in {beta} phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in {alpha} phase, which had a lower Al content. In the anodic polarization test in 0.017 mol{center_dot}dm{sup -3} NaCl and 0.1 mol{center_dot}dm{sup -3} Na{sub 2}SO{sub 4} at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the {alpha} phase is a non-compacted film. The anodic film on the {alpha} phase at 30 min was a compact film as compared with that at 10 min.

  5. Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism

    Science.gov (United States)

    Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping

    2017-06-01

    A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.

  6. The anodic dissolution of zinc and zinc alloys in alkaline solution. II. Al and Zn partial dissolution from 5% Al–Zn coatings

    International Nuclear Information System (INIS)

    Vu, T.N.; Mokaddem, M.; Volovitch, P.; Ogle, K.

    2012-01-01

    Graphical abstract: - Abstract: The polarization behavior of a 5 wt% Al–Zn steel coating (Galfan™) has been investigated in alkaline solution using atomic emission spectroelectrochemistry (AESEC). The instantaneous Zn and Al dissolution rates were measured as a function of time during a linear scan and potential step transients. The formation rate of insoluble oxides was determined from the difference between the convoluted total current and the sum of the elemental dissolution currents. It was found that, over a wide potential range, the zinc and aluminum partial currents behaved in a similar way to pure zinc and pure aluminum independently. However, during the period in which zinc was active, aluminum dissolution was inhibited. This is attributed to the inhibitive effect of the first and/or the second states of zinc oxide that are formed during the active potential domain. The third form of zinc oxide, observed at higher potential and responsible for the passivation of zinc dissolution, does not have a measurable effect on the Al dissolution rate.

  7. Electrochemical impedance spectroscopy of nanoporous anodic alumina template

    International Nuclear Information System (INIS)

    Shahzad, K.

    2010-01-01

    Room temperature EIS characterization of nanoporous anodic alumina prepared at 40 V and 60 V has been done in 0.3 M oxalic acid solution. Rapid decrease in impedance was observed for the template prepared at 40 V. EIS study of porous anodic alumina template prepared in 0.3 M oxalic acid has been done in different electrolytes. Templates prepared in 0.3 M sulfuric acid solution were also characterized for comparison. Rapid decrease in the thickness of nonporous anodic film was observed with an increase of aggressiveness of electrolyte. Temperature based systematic study of EIS measurement has been done for porous anodic alumina template at different temperatures. Formation of micropores was observed in the nanoporous anodic alumina film formed on aluminum in 0.3 M oxalic acid solution which accelerates the dissolution rate with increase of measurement temperature. In addition to these, electropolishing behavior of pure aluminum has also been studied in different electrolytes and it was observed that electropolishing conditions prior to anodization are extremely important. (author)

  8. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  9. Anodic oxidation of InP in pure water

    International Nuclear Information System (INIS)

    Robach, Y.; Joseph, J.; Bergignat, E.; Hollinger, G.

    1989-01-01

    It is shown that thin InP native oxide films can be grown by anodization of InP in pure water. An interfacial phosphorus-rich In(PO 3 ) 3 -like condensed phosphate is obtained this way. This condensed phosphate has good passivating properties and can be used in electronic device technology. The chemical composition of these native oxides was found similar to that of an anodic oxide grown in an anodization in glycol and water (AGW) electrolyte. From the similarity between the two depth profiles observed in pure water and AGW electrolyte, they can conclude that dissolution phenomena do not seem to play a major role. The oxide growth seems to be controlled by the drift of ionic species under the electric field

  10. Anodic solution of alkali earth alloys in potassium chloride-sodium chloride melts

    International Nuclear Information System (INIS)

    Volkovich, A.V.

    1997-01-01

    Generalized results of studying the process of anodic dissolution of alkaline-earth metal alloys with zinc, aluminium and copper in the melts of KCl-NaCl equimolar mixture containing alkaline-earth metal chlorides, are presented. It is shown that during dissolution of both pure liquid metals and their alloys there is no electrode polarization in the range of the current densities lower or comparable in their values to corrosion current

  11. Effect of ageing in the electrolyte and water on porous anodic films on zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, F.; Hashimoto, T.; Skeldon, P., E-mail: peter.skeldon@manchester.ac.uk; Thompson, G.E.

    2011-06-15

    Highlights: Porous anodic films are formed on zirconium consisting of nanotubes embedded in a fluoride-rich matrix. {yields}Ageing in the formation electrolyte transforms the films from porous to nanotubular. Ageing causes losses of zirconium and fluorine, due to dissolution of the matrix. Ageing in water has negligible influence on the film composition and the film morphology. - Abstract: The present study demonstrates the significant influence of ageing in the formation electrolyte on the morphology and composition of anodic films grown on zirconium in 0.35 M ammonium fluoride in glycerol. Ageing after anodizing, by immersion in the electrolyte for 1 h, is shown to promote a transition from a porous to a nanotubular morphology, due to the dissolution of the fluoride-rich intratubular material in which the nanotubes are embedded. The morphological change is accompanied by a significant loss of zirconium and fluorine from the film. In contrast, ageing in deionized water has little influence on the films.

  12. Electrocnecical behaviour of zirconium during its anodic polarization in nitrate solutions

    International Nuclear Information System (INIS)

    Stabrovskij, A.I.; Karasev, A.F.

    1983-01-01

    Electrochemical behaviour of zirconium during its anodic polarization in nitrate solutions is investigated in detail to find the method of its complete dissolution. A study has been made of the influence of varioUs factors: current density electric potential, composition and temperature of the solution, anodic polarization duration on the Zr anodic polarization in nitric acid, on the maximum permissible current density and on the zirconium yield to the solution. The zirconium polarization decreases with an acid concentration and temperature increase and increases with the current density. Iron nitrate additions to nitric acid decrease, while ammonium fluoride additions increase zirconium yield into the solution

  13. Anodic polarization behavior of pure copper in carbonate solutions

    International Nuclear Information System (INIS)

    Kawasaki, Manabu; Taniguchi, Naoki; Naitou, Morimasa

    2008-03-01

    Copper is one of the candidate materials for overpacks. The redox condition at the early stage of the post closure will be oxidizing. In order to understand the influence of environmental factors on the corrosion behavior of copper in such oxidizing environment, anodic polarization tests were performed in carbonate aqueous solution with varying the concentration of representative chemical species in groundwater. As the results of potentiodynamic and potentiostatic tests, anodic polarization behavior of pure copper was summarized as follows; Carbonate ion and bicarbonate ion promoted the passivation of pure copper, and suppressed the initiation of film breakdown. Chloride ion promoted both the active dissolution and initiation of film breakdown of pure copper. The influence of sulfate ion and pH was small, but the action of sulfate ion to the pure copper was similar to that of chloride ion, and the increase of pH was likely to promote the passivation and suppress the initiation of film breakdown. The film breakdown potential, Eb, was represented as a function of the ratio of aggressive ion and inhibiting ion such as [Cl - ]/[HCO 3 - ], [SO 4 2- ]/[HCO 3 - ]. When the ratio exceeds a certain value, the anodic polarization curve becomes active dissolution type so that no macroscopic film breakdown can not be occurred. The lower limit of Eb in passive type region was estimated to be about -200 mV vs. SCE. As the results of potentio static tests, the corrosion form near the Eb was uniform dissolution over the surface, but pitting corrosion and non-uniform corrosion occurred according to the condition of the test solution. Neither pitting corrosion nor non-uniform corrosion occurred at the potential below Eb in every test cases. (author)

  14. Resistometric studies of anodic dissolution and passivation of chromium in weakly acid solutions

    International Nuclear Information System (INIS)

    Shlepakov, M.N.; Sukhotin, A.M.

    1984-01-01

    The method of calculating the rate of Cr anodic solution according to the change of electric resistance of chromium anodes under the effect of potentiostatic polarization, is applied. The maximum corresponding to ranges of active-passive transition is absent in weakly acid solutions with pH>3. The range of existence of active-passive transition is expanded to pH approximately 5.2. The existence of a dissolving section in Cr in the chemical mechanism is proved. Cr passivation mechanism with the formation of passivating oxide of a complex composition is suggested

  15. A critical evaluation of the local-equilibrium assumption in modeling NAPL-pool dissolution

    Science.gov (United States)

    Seagren, Eric A.; Rittmann, Bruce E.; Valocchi, Albert J.

    1999-07-01

    An analytical modeling analysis was used to assess when local equilibrium (LE) and nonequilibrium (NE) modeling approaches may be appropriate for describing nonaqueous-phase liquid (NAPL) pool dissolution. NE mass-transfer between NAPL pools and groundwater is expected to affect the dissolution flux under conditions corresponding to values of Sh'St (the modified Sherwood number ( Lxkl/ Dz) multiplied by the Stanton number ( kl/ vx))≈400, the NE and LE solutions converge, and the LE assumption is appropriate. Based on typical groundwater conditions, many cases of interest are expected to fall in this range. The parameter with the greatest impact on Sh'St is kl. The NAPL pool mass-transfer coefficient correlation of Pfannkuch [Pfannkuch, H.-O., 1984. Determination of the contaminant source strength from mass exchange processes at the petroleum-ground-water interface in shallow aquifer systems. In: Proceedings of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water—Prevention, Detection, and Restoration, Houston, TX. Natl. Water Well Assoc., Worthington, OH, Nov. 1984, pp. 111-129.] was evaluated using the toluene pool data from Seagren et al. [Seagren, E.A., Rittmann, B.E., Valocchi, A.J., 1998. An experimental investigation of NAPL-pool dissolution enhancement by flushing. J. Contam. Hydrol., accepted.]. Dissolution flux predictions made with kl calculated using the Pfannkuch correlation were similar to the LE model predictions, and deviated systematically from predictions made using the average overall kl=4.76 m/day estimated by Seagren et al. [Seagren, E.A., Rittmann, B.E., Valocchi, A.J., 1998. An experimental investigation of NAPL-pool dissolution enhancement by flushing. J. Contam. Hydrol., accepted.] and from the experimental data for vx>18 m/day. The Pfannkuch correlation kl was too large for vx>≈10 m/day, possibly because of the relatively low Peclet number data used by Pfannkuch [Pfannkuch, H.-O., 1984. Determination

  16. Electrochemical characterization of anode passivation mechanisms in copper electrorefining

    Science.gov (United States)

    Moats, Michael Scott

    Anode passivation can decrease productivity and quality while increasing costs in modern copper electrorefineries. This investigation utilized electrochemical techniques to characterize the passivation behavior of anode samples from ten different operating companies. It is believed that this collection of anodes is the most diverse set ever to be assembled to study the effect of anode composition on passivation. Chronopotentiometry was the main electrochemical technique, employing a current density of 3820 A m-2. From statistical analysis of the passivation characteristics, increasing selenium, tellurium, silver, lead and nickel were shown to accelerate passivation. Arsenic was the only anode impurity that inhibited passivation. Oxygen was shown to accelerate passivation when increased from 500 to 1500 ppm, but further increases did not adversely affect passivation. Nine electrolyte variables were also examined. Increasing the copper, sulfuric acid or sulfate concentration of the electrolyte accelerated passivation. Arsenic in the electrolyte had no effect on passivation. Chloride and optimal concentrations of thiourea and glue delayed passivation. Linear sweep voltammetry, cyclic voltammetry, and impedance spectroscopy provided complementary information. Analysis of the electrochemical results led to the development of a unified passivation mechanism. Anode passivation results from the formation of inhibiting films. Careful examination of the potential details, especially those found in the oscillations just prior to passivation, demonstrated the importance of slimes, copper sulfate and copper oxide. Slimes confine dissolution to their pores and inhibit diffusion. This can lead to copper sulfate precipitation, which blocks more of the surface area. Copper oxide forms because of the resulting increase in potential at the interface between the copper sulfate and anode. Ultimate passivation occurs when the anode potential is high enough to stabilize the oxide film in

  17. Effect of Manganese Content on the Fabrication of Porous Anodic Alumina

    Directory of Open Access Journals (Sweden)

    C. H. Voon

    2012-01-01

    Full Text Available The influence of manganese content on the formation of well-ordered porous anodic alumina was studied. Porous anodic alumina has been produced on aluminium substrate of different manganese content by single-step anodizing at 50 V in 0.3 M oxalic acid at 15°C for 60 minutes. The well-ordered pore and cell structure was revealed by subjecting the porous anodic alumina to oxide dissolution treatment in a mixture of chromic acid and phosphoric acid. It was found that the manganese content above 1 wt% impaired the regularity of the cell and pore structure significantly, which can be attributed to the presence of secondary phases in the starting material with manganese content above 1 wt%. The pore diameter and interpore distance decreased with the addition of manganese into the substrates. The time variation of current density and the thickness of porous anodic alumina also decreased as a function of the manganese content in the substrates.

  18. Effect of the local electric field on the formation of an ordered structure in porous anodic alumina

    Science.gov (United States)

    Lazarouk, S. K.; Katsuba, P. S.; Leshok, A. A.; Vysotskii, V. B.

    2015-09-01

    Experimental data and a model are presented, and the electric field that appears in porous alumina during electrochemical anodic oxidation of aluminum in electrolytes based on an aqueous solution of oxalic acid at a voltage of 90-250 V is calculated. It is found that the electric field in the layers with a porosity of 1-10% in growing alumina reaches 109-1010 V/m, which exceeds the electric strength of the material and causes microplasma patterns emitting visible light at the pore bottom, the self-organization of the structure of porous alumina, and the anisotropy of local porous anodizing. Moreover, other new effects are to be expected during aluminum anodizing under the conditions that ensure a high electric field inside the barrier layer of porous oxide.

  19. A Study on Sealing Process of Anodized Al Alloy Film

    Science.gov (United States)

    Tsujita, Takeshi; Sato, Hiroshi; Tsukahara, Sonoko; Ishikawa, Yuuichi

    Since sealing is an important process to improve the corrosion resistance in practical application of anodized aluminum, we prepared anodic oxide films on A5052 alloy in an oxalic acid bath and a sulfuric acid bath, sealed them at various conditions, and analyzed them by scanning electron microscopy, acid-dissolution examination, admittance measurements and infrared spectroscopy. The pore radius of the oxalic acid anodized film was about 5 times larger than that of sulfuric acid anodized film, while the corrosion resistance of the former showed about 2 times higher value than the latter with the same sealed state and amount of hydroxide formed by sealing process of the former was 6 times larger than the latter, respectively. Steam sealing formed dense hydroxide and boiling water sealing formed big coral-like hydroxide, whereas the corrosion resistance of the film sealed by the former showed about 1.5 times higher value than that sealed by the latter, respectively. Thus microstructure of anodic oxide films and their surface morphology after sealing process clearly depended on their anodizing solution and the sealing condition and showed obvious relation to electric and corrosive properties.

  20. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    Science.gov (United States)

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  1. Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability

    International Nuclear Information System (INIS)

    Oikawa, Y.; Minami, T.; Mayama, H.; Tsujii, K.; Fushimi, K.; Aoki, Y.; Skeldon, P.; Thompson, G.E.; Habazaki, H.

    2009-01-01

    Porous anodic niobium oxide with a pore size of ∼10 nm was formed at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2 HPO 4 and 0.2 mol dm -3 K 3 PO 4 at 433 K. After prolonged anodizing for 5.4 ks, niobium oxide microcones develop on the surface. X-ray diffraction patterns of the anodized specimens revealed that the initially formed anodic oxide is amorphous, but an amorphous-to-crystalline transition occurs during anodizing. As a consequence of the preferential chemical dissolution of the initially formed amorphous oxide, due to different solubility of the amorphous and crystalline oxides, crystalline oxide microcones appear on the film surface after prolonged anodizing. The surface is superhydrophilic. After coating with fluorinated alkylsilane, the surface becomes superhydrophobic with a contact angle of 158 o for water. The surface is also oil repellent, with a contact angle as high as 140 o for salad oil.

  2. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  3. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    Science.gov (United States)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  4. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  5. Effect of Silica Sol on Boric-sulfuric Acid Anodic Oxidation of LY12CZ Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    LIU Hui-cong

    2016-07-01

    Full Text Available Aluminum alloy anodizing coatings were prepared for LY12CZ in the boric-sulfuric acid solution (45g/L sulfuric acid,8g/L boric acid with the addition of 10%,20%,30% (volume fractionsilica sol,with the gradient voltage of 15V. The current and voltage transients of the anodizing process were collected by data collection instrument. The surface morphologies,microstructure and chemical composition of the anodic coatings were characterized by scanning electron microscopy (SEM. The corrosion resistance was examined by neutral salt spray,electrochemical impedance spectroscopy (EIS test and titrating test. The results show that the different concentration of silica sol addition can influence the forming and dissolution of anodizing coatings,improve the compactness smoothness and corrosion resistance during the anodizing process in the boric-sulfuric acid solution.

  6. Dynamic Sensing of Localized Corrosion at the Metal/Solution Interface

    Directory of Open Access Journals (Sweden)

    Shenhao Chen

    2012-04-01

    Full Text Available A Mach-Zehnder interferometer is employed to detect localized corrosion at the metal/solution interface in the potentiodynamic sweep of the iron electrode in solutions. During the electrochemical reactions, local variations of the electrolyte’s refractive index, which correlate with the concentration of dissolved species, change the optical path length (OPL of the object beam when the beam passes through the electrolyte. The distribution of the OPL difference was obtained to present the concentration change of the metal ions visually, which enable direct evidence of corrosion processes. The OPL difference distribution shows localized and general corrosion during the anodic dissolution of the iron electrode in solutions with and without chloride ions, respectively. This method provides an approach for dynamic detection of localized corrosion at the metal/solution interface.

  7. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, D., E-mail: danmareci@yahoo.com [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Bolat, G. [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Izquierdo, J. [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Crimu, C.; Munteanu, C. [Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Antoniac, I. [Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania)

    2016-03-01

    Biodegradable magnesium–calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg–0.63Ca and Mg–0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. - Highlights: • Spontaneous degradation of MgCa alloys in Ringer's solution characterized at 37 °C • Reactivity differences between Mg0.63Ca and Mg0.89Ca are evidenced using multiscale electrochemical characterization. • Electrochemical activation occurs heterogeneously on the alloy surface. • Metal dissolution is accompanied by local pH changes. • Mg0.63Ca degrades faster

  8. Effect of alkali metal cations on anodic dissolution of gold in cyanide solutions. Potentiodynamic measurement

    International Nuclear Information System (INIS)

    Bek, R.Yu.; Rogozhnikov, N.A.; Kosolapov, G.V.

    1998-01-01

    It is shown that gold dissolution rate in cyanic solutions in Li + , Na + , K + , Cs + cation series increases basically and decreases under cation concentration increasing. Cation effect on current value is caused by cations drawing in dense layer. A model of dense part of double layer with two Helmholtz planes (anion and cation) is suggested. Effect of nature and concentration of alkali metal cations on gold dissolution rate is explained on the base of the model [ru

  9. Method for providing uranium articles with a corrosion resistant anodized coating

    International Nuclear Information System (INIS)

    Waldrop, F.B.; Washington, C.A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75 degrees C. With a current flow of less than about 0.036 A/cm2 of surface area while the Ph of the solution is maintained in a range of about 2 to 11.5. The Ph values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating

  10. Anodic behaviour of iron electrode in complexing media for a application in coulometric analysis

    International Nuclear Information System (INIS)

    Kostromin, A.I.; Makarova, L.L.

    1977-01-01

    Anodic behaviour is studied of the iron electrode in phosphate solutions (pH 4.88-8.40) in the presence of 0.01 M complexone 3 and in the alcaline environment of triethanolamine with the addition of potassium chloride. The product of anodic dissolution will be iron (2). The d.c. electrogenerated iron (2) was used for the coulometric determination of copper (2), silver (1), VO 2+ , UO 2 2+ in artificial solutions, and also for the determination of silver in motion picture and photographic films of various types

  11. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    International Nuclear Information System (INIS)

    Lee, W; Nielsch, K; Goesele, U

    2007-01-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H 4 C 3 O 4 ) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ∼100 mA cm -2 . Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D int ) for a given anodization potential (U) during malonic acid anodization

  12. Voltammetric and impedance study of the influence of the anode composition on the electrochemical ferrate(VI) production in molten NaOH

    International Nuclear Information System (INIS)

    Hrnčiariková, Lucia; Gál, Miroslav; Kerekeš, Kamil; Híveš, Ján

    2013-01-01

    Three typical anode materials: pure iron (Fe), silicon-rich steel (FeSi) and white cast iron (FeC) electrodes were used in the process of electrochemical ferrate(VI) synthesis in the molten sodium hydroxide. The voltammetric peak current densities corresponding to the first and second step of the anode dissolution in the case of FeC as well as FeSi electrode are higher compared to the pure iron electrode. After passivity region subsequently the transpassive iron dissolution, including ferrate(VI) formation together with an oxygen evolution occurs and the current shoulder is visible for all electrodes used. Measured electrochemical impedance spectra confirm the physical model of the polarized surface based on the concept of two macrohomogeneous surface layers. In all cases the resistance of both inner and outer layer decrease with increasing applied potential. With increasing temperature the resistance of inner and outer layer decreases. The capacity of inner and outer layer increases with increasing potential. This is in agreement with decrease of the resistances of both layers: layers are getting thinner or more disintegrated by oxygen evolution or strong anodic dissolution. The number of exchanged electrons calculated from a static polarization curve at the potentials in ferrate(VI) formation region is z = 3 for all electrode materials used

  13. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  14. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles

    Science.gov (United States)

    Jiang, Chuanjia; Aiken, George R.; Hsu-Kim, Heileen

    2015-01-01

    The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L–1) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.

  15. Electrotransport of Uranium from a Liquid Cadmium Anode to a Solid Cathode

    International Nuclear Information System (INIS)

    Ahluwalia, Rajesh K.; Hua, Thanh Q.

    2002-01-01

    During anodic dissolution of irradiated binary Experimental Breeder Reactor-II fuel, a portion of the electrorefined uranium collects in the underlying cadmium pool. It is periodically recovered by setting up a cell configuration in which the pool is made the anode and uranium is electrodeposited on a solid cathode mandrel. A theoretical model is used to determine the current structure of the liquid cadmium anode. The model is validated by comparing against the measured composition of the cathode deposits. Multinodal simulations are conducted to explain the bell shape of deposits observed with this mode of electrotransport. The simulations also determine the dependence of collection efficiency on the electrical charge passed that is functionally consistent with the experimental data. Finally, a simplified operating map of the electrorefiner is presented that can be used to determine the conditions for growing cathode deposits of target composition

  16. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.

  17. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    OpenAIRE

    Yuhki Yui; Masahiko Hayashi; Jiro Nakamura

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called ?dead sodium? broke a...

  18. On prediction of inhibiting properties of o-aryl-carboxylates in local dissolution of iron

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Kerbeleva, I.Ya.; Brusnikina, V.M.; Rozenfel'd, I.L.

    1979-01-01

    The anodic behaviour of Armco iron in the borate buffer (ph 7.4), containing sulphates as agressive anions and inhibiting substances - aryl carboxilates is studied. The possibility of using the principle of free energy linearity for quantitative prediction of protective properties of aryl carboxilates at the metal local solution is shown. The latter characterized by the pitting formation potential (phi sub(pf)), the inhibiting criterion being Δphi=phisub(pf)sup(R)-phisub(pf)sup(H). The linear correlation between Δphi and delta constants, reflecting the summary electron effects of substituent induction and mesomeric effects have been found

  19. Analysis of physical factors on chosen properties of anodic alumina oxide (AAO layers and environment

    Directory of Open Access Journals (Sweden)

    M. Gombár

    2016-10-01

    Full Text Available In the contribution is evaluated an impact of physical factors of anodizing process, namely the temperature of an electrolyte, anodizing time and voltage, on the change of values of Vickers microhardness and thickness of formed layer of experimental materials Al99∙5. By increasing of electrolyte temperature, the values of layer microhardness and thickness layer increase, namely about 0.78 % at the increasing of electrolyte temperature by 1 °C. By lengthening of anodizing time grows the value of layer thickness, but only to the value of the critical deposition time, when chemical dissolution of the layer start to be more prominent. By voltage increasing, values of layer thickness and micro-hardness are increased in the range of the used experimental values.

  20. Structure determination of electrodeposited zinc-nickel alloys: thermal stability and quantification using XRD and potentiodynamic dissolution

    International Nuclear Information System (INIS)

    Fedi, B.; Gigandet, M.P.; Hihn, J-Y; Mierzejewski, S.

    2016-01-01

    Highlights: • Quantification of zinc-nickel phases between 1,2% and 20%. • Coupling XRD to partial potentiodynamic dissolution. • Deconvolution of anodic stripping curves. • Phase quantification after annealing. - Abstract: Electrodeposited zinc-nickel coatings obtained by electrodeposition reveal the presence of metastable phases in various quantities, thus requiring their identification, a study of their thermal stability, and, finally, determination of their respective proportions. By combining XRD measurement with partial potentiodynamic dissolution, anodic peaks were indexed to allow their quantification. Quantification of electrodeposited zinc-nickel alloys approximately 10 μm thick was thus carried out on nickel content between 1.2% and 20%, and exhibited good accuracy. This method was then extended to the same set of alloys after annealing (250 °C, 2 h), thus bringing the structural organization closer to its thermodynamic equilibrium. The result obtained ensures better understanding of crystallization of metastable phases and of phase proportion evolution in a bi-phasic zinc-nickel coating. Finally, the presence of a monophase γ and its thermal stability in the 12% to 15% range provides important information for coating anti-corrosion behavior.

  1. Magnesium sacrificial anode behavior at elevated temperature

    International Nuclear Information System (INIS)

    Othman, Mohsen Othman

    2006-01-01

    Magnesium sacrificial anode coupled to mild steel was tasted in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified. This was partly due to low conductivity of this medium. The temperature factor did not help to activate the anode in this medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. The weight loss was high for magnesium in sodium chloride environment particularly beyond 60 degree centigrade. In tap water environment the weight loss was negligible for the anode. It also suffered localized shallow pitting corrosion. Magnesium anode cannot be utilized where high temperature is involved particularly in high conductivity mediums. Protection of structures containing high resistivity waters is not feasible using sacrificial anode system. (author)

  2. Copper corrosion in irradiated environments: The influence of H2O2 on the electrochemistry of copper dissolution in HCl electrolyte

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Bell, B.T.; Atanasoski, R.T.; Glass, R.S.

    1986-12-01

    The anodic dissolution of copper was examined in deaerated, 0.1 M HCl aqueous solution in the presence of H 2 O 2 . Concentrations of H 2 O 2 up to 0.2 M were studied at a rotating copper disk-platinum ring electrode. The open circuit potential (OCP) of copper was found to depend on both peroxide concentration and rotation rate. The OCP shifts towards more positive values with increasing H 2 O 2 concentration (C) and decreasing rotation rate. The current-voltage curves for anodic dissolution of copper were also influenced by the presence of peroxide. The curves recorded with the potential scanned in the positive direction showed the expected 60 mV slope, but the reverse scans showed significant departures. At a given potential scan rate, hysteresis was observed which was larger for higher H 2 O 2 concentrations, lower rotation rates, and more positive anodic potential limits. Monitoring the cuprous ions at the outer Pt ring revealed that there was a complex set of events taking place at the copper surface, including film formation and the appearance of cupric ions. 13 refs., 7 figs

  3. Anode plasma and focusing reb diodes

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Swain, D.W.; Hadley, G.R.; Mix, L.P.

    1975-01-01

    The use of electrical, optical, x-ray, and particle diagnostics to characterize the production of anode plasma and to monitor its influence on beam generation and focusing is reviewed. Studies using the Nereus accelerator show that after cathode turn-on, deposition of several kJ/gm on the anode is necessary before ions from hydrocarbons, adsorbed gases, and heavier metallic species are detected. The actual time at which ions are liberated depends on several factors, one of which is the specific heat of the anode substrate. Once formed, anode ions cross the A-K gap (with an energy equal to the diode voltage) and interact with the cathode to produce an axially peaked beam profile, a ''pinch'' which does not follow the critical current criterion. Experiments with externally generated anode plasma show that this type of pinch can be attracted to localized areas on the anode. Preliminary observations on Hydra indicate the anode plasma composition is similar to that on Nereus. The effect of this plasma on pinch dynamics currently is under investigation

  4. Polymer nanoimprinting using an anodized aluminum mold for structural coloration

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-06-01

    Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.

  5. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jerden, James L., E-mail: jerden@anl.gov [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Frey, Kurt [University of Notre Dame, Notre Dame, IN 46556 (United States); Ebert, William [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • This model accounts for chemistry, temperature, radiolysis, U(VI) minerals, and hydrogen effect. • The hydrogen effect dominates processes determining spent fuel dissolution rate. • The hydrogen effect protects uranium oxide spent fuel from oxidative dissolution. - Abstract: The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO{sub 2} and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO{sub 2} and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO{sub 2} and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H{sub 2}O{sub 2} and O{sub 2}). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit

  6. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Science.gov (United States)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  7. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Nan; Gao, Nong, E-mail: N.Gao@soton.ac.uk; Starink, Marco J.

    2016-11-30

    Highlights: • HPT has substantially improved the UTS and Hv of pure Ti. • TNT layers was fabricated on UFG Ti made by HPT. • Influence of sample preparation on TNT layers was systematically studied. • Oxide dissolution was accelerated when TNTs formed on the HPT sample. - Abstract: Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH{sub 4}F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  8. Determining localized anode condition to maintain effective corrosion protection.

    Science.gov (United States)

    2010-01-01

    Thermal sprayed zinc anodes used for impressed current cathodic protection of reinforced concrete deteriorate over time. : Two different technologies, ultrasound and electrical circuit resistance combined with water permeability, were : investigated ...

  9. Effect of heat treatment on anodic activation of aluminium by trace element indium

    Energy Technology Data Exchange (ETDEWEB)

    Graver, Brit [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Helvoort, Antonius T.J. van [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nisancioglu, Kemal, E-mail: kemal.nisancioglu@material.ntnu.n [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2010-11-15

    Research highlights: {yields} Indium segregation activates AlIn alloy surface anodically in chloride solution. {yields} Enrichment of In on Al surface can occur thermally by heat treatment at 300 {sup o}C. {yields} Increasing temperature homogenises indium in aluminium reducing anodic activation. {yields} Indium can activate AlIn surface by segregating through dealloying of aluminium. {yields} Anodic activation is caused by AlIn amalgam formation at aluminium surface. - Abstract: The presence of trace elements in Group IIIA-VA is known to activate aluminium anodically in chloride environment. The purpose of this paper is to investigate the surface segregation of trace element In by heat treatment and resulting surface activation. Model binary AlIn alloys, containing 20 and 1000 ppm by weight of In, were characterized after heat treatment at various temperatures by use of glow discharge optical emission spectroscopy, electron microscopy and electrochemical polarization. Heat treatment for 1 h at 300 {sup o}C gave significant segregation of discrete In particles (thermal segregation), which activated the surface. Indium in solid solution with aluminium, obtained by 1 h heat treatment at 600 {sup o}C, also activated by surface segregation of In on alloy containing 1000 ppm In, resulting from the selective dissolution of the aluminium component during anodic oxidation (anodic segregation). The effect of anodic segregation was reduced by decreasing indium concentration in solid solution; it had negligible effect at the 20 ppm level. The segregated particles were thought to form a liquid phase alloy with aluminium during anodic polarization, which in turn, together with the chloride in the solution destabilized the oxide.

  10. Influence of the oral dissolution time on the absorption rate of locally administered solid formulations for oromucosal use: the flurbiprofen lozenges paradigm.

    Science.gov (United States)

    Imberti, Roberto; De Gregori, Simona; Lisi, Lucia; Navarra, Pierluigi

    2014-01-01

    Flurbiprofen is a nonsteroidal anti-inflammatory agent preferentially used for local oromucosal treatment of painful and/or inflammatory conditions of the oropharynx such as gingivitis, stomatitis, periodontitis, pharyngitis and laryngitis. In this study, we have investigated the bioavailability of a new generic formulation of flurbiprofen lozenges developed by Epifarma Srl, compared to the originator Benactiv Gola® taken as reference. Within the framework of a formal bioequivalence study, we investigated in particular the putative influence of oral dissolution time (i.e. the time spent suckling the lozenge from its intake to complete dissolution) on the absorption rate, and the contribution of this factor to the total variability of plasma flurbiprofen during absorption. We found that the amount of flurbiprofen absorbed into the systemic circulation is not significantly higher for the test drug compared to that of the reference product. We observed that the length of oral dissolution time is inversely correlated to 10-min flurbiprofen plasma levels in the test but not in the reference formulation. We estimated that oral dissolution time accounts for about 14% of overall variability in flurbiprofen plasma 10 min after test drug administration. © 2014 S. Karger AG, Basel.

  11. Research progress in formation mechanism of anodizing aluminum oxide

    Science.gov (United States)

    Lv, Yudong

    2017-12-01

    The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.

  12. The influence of humidity on the kinetics of local anodic oxidation

    International Nuclear Information System (INIS)

    BartosIk, M; Skoda, D; Tomanec, O; Kalousek, R; Jansky, P; Zlamal, J; Spousta, J; Sikola, T

    2007-01-01

    In this paper the influence of relative humidity on fabrication of nanostructures at GaAs (100) surfaces by local anodic oxidation (LAO) is reported. The attention was paid both to the dimensions of oxide nanolines prepared at different relative humidities for tip-surface voltages of 6 - 9 V and tip speeds of 10 - 200 nm/s, and to the profiles corresponding to line trenches (etched in HCl after the nanoxidation). Contrary to the expectations the height and the half-width of oxide nanolines did not increase with relative humidity in the whole interval from 35% to 90%, but for lower relative humidities (< 50%) the lines were comparable in size to those prepared at 90%. However, this was accompanied with instabilities in the oxidation process resulting most probably from enhanced size variations of the water meniscus between the tip and the surface at these low humidities

  13. Effect of dissolution on the load–settlement behavior of shallow foundations

    KAUST Repository

    Cha, Minsu

    2016-03-10

    Mineral dissolution and solid-liquid phase change may cause settlement or affect the bearing capacity of shallow foundations. The effect of gradual grain dissolution on small-scale shallow foundation behavior is investigated using the discrete element method. Results show that dissolution is most detrimental during early stages, as initially contacting particles shrink and force chains must reform throughout the medium. Porosity tends to increase during dissolution and force chains evolve into strong localized forces with a honeycomb topology. Higher settlements are required to mobilize bearing resistance in postdissolution sediments than in pre-dissolution ones. Subsurface mineral dissolution beneath a footing under load is the worst condition; in fact, settlements in such cases are higher than when a foundation load is applied on a sediment that has already experienced dissolution. © the author(s) or their institution(s).

  14. Effect of dissolution on the load–settlement behavior of shallow foundations

    KAUST Repository

    Cha, Minsu; Santamarina, Carlos

    2016-01-01

    Mineral dissolution and solid-liquid phase change may cause settlement or affect the bearing capacity of shallow foundations. The effect of gradual grain dissolution on small-scale shallow foundation behavior is investigated using the discrete element method. Results show that dissolution is most detrimental during early stages, as initially contacting particles shrink and force chains must reform throughout the medium. Porosity tends to increase during dissolution and force chains evolve into strong localized forces with a honeycomb topology. Higher settlements are required to mobilize bearing resistance in postdissolution sediments than in pre-dissolution ones. Subsurface mineral dissolution beneath a footing under load is the worst condition; in fact, settlements in such cases are higher than when a foundation load is applied on a sediment that has already experienced dissolution. © the author(s) or their institution(s).

  15. Formation of self-assembled stripes on the anodic aluminum oxide

    International Nuclear Information System (INIS)

    Liu Hongwen; Guo Haiming; Wang Yeliang; Shen Chengmin; Yang Haitao; Wang Yutian; Wei Long

    2004-01-01

    Non-polished aluminum sheets were anodized and the coexistence of self-assembled stripes and porous arrays on the Al surface was observed. The nanostructures were investigated in details using an atomic force microscope. And the formation mechanism of the stripes was discussed and simulated using Brusselator model in this work. The authors demonstrated that the self-assembled patterns on the Al surface were governed by the competition of formation and dissolution of alumina film during the reaction process. Moreover, this type of ordered structure could only form in certain conditions

  16. Dissolution processes

    International Nuclear Information System (INIS)

    Silver, G.L.

    1976-01-01

    This review contains more than 100 observations and 224 references on the dissolution phenomenon. The dissolution processes are grouped into three categories: methods of aqueous attack, fusion methods, and miscellaneous observations on phenomena related to dissolution problems

  17. Nanotribological properties of precision-controlled regular nanotexture on H-passivated Si surface by current-induced local anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Mo Yufei; Zhao Wenjie; Huang Deming; Zhao Fei [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Bai Mingwu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: mwbai@LZB.ac.cn

    2009-02-15

    Nano-sized textures resulted from localized electrochemical oxidation by using atomic force microscopy (AFM) were fabricated on H-passivated Si surface. In this paper, the fabrication and nanotribological properties of nanotexture by local anodic oxidation (LAO) on H-passivated Si surface are presented. A special attention is paid to find the relation between the size of oxide nanotexture and operational parameters such as tip-sample pulsed bias voltage, pulsewidth, and relative humidity to fabricate oxide nanotexture. The nanotribological properties were investigated by a colloidal probe. The results indicate that the nanotextures exhibited low adhesion and greatly reduced friction force at nanometer scale.

  18. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  19. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  20. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution.

    Science.gov (United States)

    Mareci, D; Bolat, G; Izquierdo, J; Crimu, C; Munteanu, C; Antoniac, I; Souto, R M

    2016-03-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg-0.63Ca and Mg-0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... dark to greyish white. This is attributed to the localized microstructural and morphological differences around the metal oxide particles incorporated into the anodic alumina matrix. The metal oxide particles in the FSP zone electrochemically shadowed the underlying Al matrix and modified the local...

  2. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  3. Alloying effects on dissolution rate of crevice corrosion for austenitic stainless steels in 3% NaCl solution at 80 C

    International Nuclear Information System (INIS)

    Chen, P.; Shinohara, Tadashi; Tsujikawa, Shigeo

    1996-01-01

    Chloride stress corrosion cracking (SCC) has been a problem for austenitic stainless steel in aqueous environments containing chlorides. Studies have found that SCC initiates only from a dissolving surface and under the condition that the crack growth rate is higher than the dissolution rate of the dissolving surface. Research conducted to improve the resistance to SCC for Type 304 steels (UNS S30400) have revealed that while molybdenum and phosphorus are unfavored, the combined alloying of 3% aluminum with 2% copper can almost nullify their detrimental effect. Based on the mentioned criteria, this study was dedicated to clarify the mechanism behind these alloying effects by examining the relationship between the measured enhancements on SCC resistance and the dissolution rate observed via the moire technique. It was found that the addition of both molybdenum and phosphorus reduces the dissolution rate and therefore impaired SCC resistance; the addition of copper increases the dissolution rate of steady growth stage where crevice corrosion proceeds at a constant rate. Moreover this dissolution rate could further be increased when combined with the alloying of aluminum. These observed results correspond well to that of the measured behavior of the SCC critical temperature, T c , suggesting that the SCC susceptibility is influenced by anodic dissolution

  4. Effects of current density and electrolyte temperature on the volume expansion factor of anodic alumina formed in oxalic acid

    International Nuclear Information System (INIS)

    Zhou, F.; Baron-Wiecheć, A.; Garcia-Vergara, S.J.; Curioni, M.; Habazaki, H.; Skeldon, P.; Thompson, G.E.

    2012-01-01

    The formation of porous anodic alumina in 0.4 M oxalic acid is investigated over a range of current density and electrolyte temperature using sputtering-deposited substrates containing tungsten tracer layers. The findings reveal volume expansion factors and efficiencies of film growth that increase with the increase of the current density and decrease of the temperature. Pore generation by the flow of the anodic alumina in the barrier layer toward the pore walls is proposed to dominate at relatively high current densities (above ∼2 mA cm −2 ), with tungsten tracer species being retained within films. Conversely, losses of tungsten species occur at lower current densities, possibly due to increased field-assisted ejection of Al 3+ ions and/or field-assisted dissolution of the anodic alumina.

  5. Dissolution of aluminium

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Pereira Sanchez, G.

    1968-01-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  6. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru [Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration

  7. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    International Nuclear Information System (INIS)

    Li, Weiping; Li, Wen; Zhu, Liqun; Liu, Huicong; Wang, Xiaofang

    2013-01-01

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg 2 SiO 4 with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na 2 SiO 3 ·9H 2 O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg 2 SiO 4 with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction

  8. An iridium oxide microelectrode for monitoring acute local pH changes of endothelial cells.

    Science.gov (United States)

    Ng, Shu Rui; O'Hare, Danny

    2015-06-21

    pH sensors were fabricated by anodically electrodepositing iridium oxide films (AEIROFs) onto microelectrodes on chips and coated with poly(ethyleneimine) (PEI) for mechanical stability. These demonstrate super-Nernstian response to pH from pH 4.0 to 7.7 in chloride-free phosphate buffer. The surface of the chip was coated with fibronectin for the attachment of porcine aortic endothelial cells (PAECs). The working capability of the pH sensor for monitoring acute local pH changes was investigated by stimulating the PAECs with thrombin. Our results show that thrombin induced acute extracellular acidification of PAECs and dissolution of fibronectin, causing the local pH to decrease. The use of PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, reduced extracellular acidification and an increase in local pH was observed. This study shows that our pH sensors can facilitate the investigation of acute cellular responses to stimulation by monitoring the real-time, local pH changes of cells attached to the sensors.

  9. Growth and Breakdown of Surface Films and Localized Corrosion of Aluminum in Concentrated Chloride Media

    National Research Council Canada - National Science Library

    Lee, Jiajing

    1994-01-01

    ...) and mechanical stress for aluminum and titanium alloys in aggressive corrosion environments. This report presents results of some very preliminary experiments on aluminum alloys and titanium during anodic dissolution in chloride media...

  10. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    Energy Technology Data Exchange (ETDEWEB)

    Gelis, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wiedmeyer, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO42- from the fission products, since most of the interfering anions (e.g., CO32-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retain and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.

  11. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  12. Humidity effect on nanoscale electrochemistry in solid silver ion conductors and the dual nature of its locality.

    Science.gov (United States)

    Yang, Sang Mo; Strelcov, Evgheni; Paranthaman, M Parans; Tselev, Alexander; Noh, Tae Won; Kalinin, Sergei V

    2015-02-11

    Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically nonlocal cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor. We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and nonlocal) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.

  13. Modeling of the anode side of a direct methanol fuel cell with analytical solutions

    International Nuclear Information System (INIS)

    Mosquera, Martin A.; Lizcano-Valbuena, William H.

    2009-01-01

    In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density, by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus (φ 2 ) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit function of the position in the layer. In spite of this, the equations presented here for the anodic overpotential allow the derivation of new semi-empirical equations

  14. Influence of Substrates on the Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Berg, Rolf W.

    1991-01-01

    The deposition and dissolution of aluminum in NaAlCl4 melts saturated with NaCl have been investigated by voltammetryand potentiometry for different electrode materials at 175°C. The tungsten and glassy carbon electrodes are shownto be electrochemically inert in the melts, whereas copper is elect......The deposition and dissolution of aluminum in NaAlCl4 melts saturated with NaCl have been investigated by voltammetryand potentiometry for different electrode materials at 175°C. The tungsten and glassy carbon electrodes are shownto be electrochemically inert in the melts, whereas copper...... is electrochemically active; it dissolves into the melts at a lowanodic potential. On a nickel substrate, nickel dichloride will be formed at a potential of ca. 1.0 V vs. an aluminum referenceelectrode. The reversibility (of deposition and dissolution of aluminum) is found to be strongly affected by currentdensity...... investigated. Nickel and, to some extent,tungsten electrodes proved to be appropriate as working anodes in the Al/NaCl-AlCl3/Ni battery system....

  15. Electrochemical mechanism of uranium mononitride dissolution in aqueous solutions of nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, Boris G. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry

    2017-09-01

    It was shown that the dissolution of UN with metallic conduction follows an electrochemical mechanism when it proceeds in contact with an electrically conductive medium (HNO{sub 3} solution). According to this mechanism, the oxidation of UN (at the anode) passes an electron into the UN matrix, which is a conductor, and can then reduce nitric acid in a parallel reaction a short distance away at another exposed surface of the UN (at the cathode). As a result, the reduction of HNO{sub 3} affords NO and NO{sub 2}, while oxidation of uranium mononitride affords NH{sub 3}, N{sub 2}, and N{sub 2}O. The occurrence of these two separate processes accounts for the composition and yields of the products formed from UN and HNO{sub 3} as well as for the nitrogen isotope distribution between them when UN and HNO{sub 3} were labeled with {sup 14} N or {sup 15}N. A mathematical equation describing the dependence of N{sub 2} and N{sub 2}O yields on HNO{sub 3} concentration was derived. It was also shown that the calculated value of standard electromotive force of the galvanic pair formed on the UN surface during its dissolution in HNO{sub 3} is high enough to initiate and support the electrochemical mechanism of its dissolution in nitric acid.

  16. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  17. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  18. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiping, E-mail: liweiping@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Wen [AVIC Beijing Aeronautical Manufacturing Technology Research Institue, Beijing 100024 (China); Zhu, Liqun; Liu, Huicong; Wang, Xiaofang [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-04-20

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg{sub 2}SiO{sub 4} with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na{sub 2}SiO{sub 3}·9H{sub 2}O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg{sub 2}SiO{sub 4} with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction.

  19. Copper corrosion in irradiated environments. The influence of H2O2 on the electrochemistry of copper dissolution in HC1 electrolyte

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Bell, B.T.; Atanasoski, R.T.; Glass, R.S.

    1987-01-01

    The anodic dissolution of copper has been examined in deaerated, 0.1 M HCl aqueous solution in the presence of H 2 O 2 . Concentrations of H 2 O 2 up to 0.2 M were studied at a rotating copper disk-platinum ring electrode. The open circuit potential (OCP) of copper was found to depend on both peroxide concentration and rotation rate. The OCP shifts towards more positive values with increasing H 2 O 2 concentration (C) and decreasing rotation rate (Omega). The dependence of OCP on (C/Omega/sup 1/2/) was the same as for oxygenated solutions reported earlier [1], at small values of (C/Omega/sup 1/2/). At higher values of (C/Omega/sup 1/2/), departure from the expected behavior was observed. The current-voltage curves for anodic dissolution of copper were also influenced by the presence of peroxide. The curves recorded with the potential scanned in the positive direction showed the expected 60 mV slope, but the reverse scans showed significant departures. At a given potential scan rate, hysteresis was observed which was larger for higher H 2 O 2 concentrations, lower rotation rates, and more positive anodic potential limits. Monitoring the cuprous ions at the outer Pt ring revealed that there was a complex set of events taking place at the copper surface, including film formation and the appearance of cupric ions. 13 references, 7 figures

  20. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  1. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    International Nuclear Information System (INIS)

    Sasson, Moshe Ben; Calmano, Wolfgang; Adin, Avner

    2009-01-01

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m 2 ). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe 2+ (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe 2+ (ferrous) to Fe 3+ (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  2. The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid

    International Nuclear Information System (INIS)

    Shahrabi, T.

    2004-01-01

    The anodic behaviour of high purity stainless steels, based on a 316L composition, has been studied at room temperature in HCl solutions from 1 to 6 M. For all acid concentrations, the presence of 0.22% nitrogen has little or no effect on the active dissolution kinetics at low over-potentials. The effect on the critical current density for passivation is also small for low HCl concentrations ( 4.5 M), no passivation occurs and again nitrogen has little effect. However, for HCl concentrations around 4 M nitrogen reversibly impedes active dissolution at a few hundred mA cm -2 . The effect does not appear to be an oxide passivation, but is more likely to be due to surface enrichment of nitrogen atoms. Implications for localized corrosion are discussed. An effect similar to that of nitrogen alloying is reproduced on a nitrogen free alloy by adding 2 M NaNO 3 to a 4M HCl solution. This effect is distinct from the passivation of salt-covered surfaces and may be preferable to the latter as an explanation of the increase in pitting potential by nitrate additions to NaCl solutions. Passivation under a salt film is retained to explain the passivation of growing pits above the inhibition potential. (authors)

  3. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  4. Fabrication of Anodic Porous Alumina by Squaric Acid Anodizing

    OpenAIRE

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-01-01

    The growth behavior of anodic porous alumina formed via anodizing in a new electrolyte, squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), is reported for the first time. A high-purity aluminum foil was anodized in a 0.1 M squaric acid solution at 293 K and a constant applied potential of 100-150 V. Anodic oxides grew on the aluminum foil at applied potentials of 100-120 V, but a burned oxide film was formed at higher voltage. Anodic porous alumina with a cell size of approximately 200-400...

  5. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries

    Science.gov (United States)

    Cha, Eunho; Patel, Mumukshu D.; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong

    2018-04-01

    Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher ( 2,600 Wh kg-1). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that 10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS2-coated Li-metal cell operates at a current density of 10 mA cm-2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS2-coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of 589 Wh kg-1 and a Coulombic efficiency of 98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.

  6. Role of the tip induced local anodic oxidation in the conductive atomic force microscopy of mixed phase silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Vetushka, Aliaksi; Fejfar, Antonín; Ledinský, Martin; Rezek, Bohuslav; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 7, 3-4 (2010), s. 728-731 ISSN 1862-6351 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : local anodic oxidation (LAO) * conductive atomic force microscopy (C-AFM) Subject RIV: BM - Solid Matter Physics ; Magnetism http://www3.interscience.wiley.com/journal/123289759/abstract

  7. Dissolution and alteration of uraninite under reducing conditions

    International Nuclear Information System (INIS)

    Janeczek, J.; Ewing, R.C.

    1992-01-01

    The behavior of uraninite under hydrothermal, reducung conditions is discussed on the basis of data in the literature and the authors' investigation of samples from two natural analogue sites: Oklo, Gabon and Cigar Lake, Canada. Uraninite under reducing conditions, in the presence of saline hydrothermal solutions may be altered through dissolution, preferential loss of lead and/or Y + HREE, and coffinitization. Textural features indicative of dissolution or uraninite include embayed grain boundaries, corroded relicts of uraninite embedded in a clay matrix, and replacement of uraninite by clays and sulfides. The alteration textures and phase chemistries at Oklo and Cigar Lake are remarkably similar. Dissolution of uraninite at Cigar Lake and Oklo was associated with the precipitation or illite and was probably caused by saline, uraninite moderately acidic solutions at approximately 200deg C. Increased oxygen fugacity may have occured locally due to release of excess oxygen from uraninite during dissolution or by α-radiolysis of the solution. The formation of Pb-rich (up to 18 wt% Pb, uraninite-I) and Pb-depleted (approximately 7-8 wt% Pb, uraninite-II) uraninites at both Oklo and Cigar Lake resulted from the loss of Pb due to predominantly episodic volume diffusion related to regional geologic events. Lead loss was not associated with U mobilization. In addition to uraninite dissolution, coffinitization resulted in U, Pb and REE release. (orig.)

  8. Vacuum arc anode plasma. I. Spectroscopic investigation

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1975-01-01

    A spectroscopic investigation was made of the anode plasma of a pulsed vacuum arc with an aluminum anode and a molybdenum cathode. The arc was triggered by a third trigger electrode and was driven by a 150-A 10-μs current pulse. The average current density at the anode was sufficiently high that anode spots were formed; these spots are believed to be the source of the aluminum in the plasma investigated in this experiment. By simultaneously measuring spectral emission lines of Al I, Al II, and Al III, the plasma electron temperature was shown to decrease sequentially through the norm temperatures of Al III, Al II, and Al I as the arc was extinguished. The Boltzmann distribution temperature T/subD/ of four Al III excited levels was shown to be kT/subD//e=2.0plus-or-minus0.5 V, and the peak Al III 4D excited state density was shown to be about 5times10 17 m -3 . These data suggest a non-local-thermodynamic-equilibrium (non-LTE) model of the anode plasma when compared with the Al 3+ production in the plasma. The plasma was theoretically shown to be optically thin to the observed Al III spectral lines

  9. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells.

    Science.gov (United States)

    Chang, Chih-Hung; Lee, Hsin-Chun; Chen, Chia-Chun; Wu, Yi-Hau; Hsu, Yuan-Ming; Chang, Yin-Pen; Yang, Ta-I; Fang, Hsu-Wei

    2012-07-01

    Titanium oxide (TiO(2) ) surface layers with various surface nanostructures (nanotubes and nanowires) have been developed using an anodizing technique. The pore size and length of TiO(2) nanotubes can be tailored by changing the anodizing time and applied voltage. We developed a novel method to transform the upper part of the formed TiO(2) nanotubes into a nanowire-like structure by rotating the titanium anode during anodizing process. The transformation of nanotubes contributed to the preferential chemical dissolution of TiO(2) on the areas with intense interface tension stress. Furthermore, we further compared the effect of various TiO(2) surface nanostructures including flat, nanotubes, and nanowires on bioactive applications. The MG-63 osteoblastic cells cultured on the TiO(2) nanowires exhibited a polygonal shape with extending filopodia and showed highest levels of cell viability and alkaline phosphatase activity (ALP). The TiO(2) nanowire structure formed by our novel method can provide beneficial effects for MG-63 osteoblastic cells in attachment, proliferation, and secretion of ALP on the TiO(2) surface layer. Copyright © 2012 Wiley Periodicals, Inc.

  10. Low voltage aluminium anodes. Optimization of the insert-anode bond

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Herve; Debout, Valerie; Grolleau, Anne-Marie [DCN Cherbourg, Departement 2EI, Place Bruat, BP 440, 50104 Cherbourg-Octeville (France); Pautasso, Jean-Pierre [DGA/CTA 16 bis, avenue Prieur de la Cote D' Or, 94 114 Arcueil Cedex (France)

    2004-07-01

    Zinc or Al/Zn/In sacrificial anodes are widely used to protect submerged marine structures from corrosion. Their Open Circuit Potential range from - 1 V vs. Ag/AgCl for Zn anodes to -1.1 V vs. Ag/AgCl for Al/Zn/In. These potentials are sufficiently electronegative as to reduce the threshold for stress corrosion cracking and/or hydrogen embrittlement, KISCC, especially in the presence of high strength alloys. In the 90's, an extensive research programme was initiated by DGA/DCN to implement a new low voltage material. Laboratory and full scale marine tests performed on industrial castings, as previously reported, led to the development of a new patented Al- 0.1%Ga alloy having a working potential of - 0.80 to - 0.83 V vs. Ag/AgCl. This alloy was also evaluated at full scale at the Naval Research Laboratory anode qualification site in Key West, Fl, and gave satisfactory results. Around 500 cylindrical AlGa anodes were then installed on a submerged marine structure replacing the classical zinc anode. A first inspection, carried out after a few months of service, showed that some of the anodes had not operated as expected, which led to further investigations. The examinations performed indicated that the problem was due to a bad metallurgical compatibility between the insert and the sacrificial materials inducing a poor bond between the anode and the plain rod insert. Progressive loss of contact between the anode and the structure to be protected was then induced by penetration of sea water and corrosion at the anode-insert interface. This phenomenon was aggravated by seawater pressure. Additional studies were therefore launched with two aims: (1) find temporary remedies for the anodes already installed on the structure; (2) correct the anode original design and/or manufacturing process to achieve the maximum performance on new anodes lots. This paper describes the various solutions investigated to improve the insert-anode bond: design of the anode, rugosity and

  11. Solubility limits on radionuclide dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  12. New approach to local anodic oxidation of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Martaus, Jozef; Gregusova, Dagmar; Cambel, Vladimir; Kudela, Robert; Soltys, Jan

    2008-01-01

    We have experimentally explored a new approach to local anodic oxidation (LAO) of a semiconductor heterostructures by means of atomic force microscopy (AFM). We have applied LAO to an InGaP/AlGaAs/GaAs heterostructure. Although LAO is usually applied to oxidize GaAs/AlGaAs/GaAs-based heterostructures, the use of the InGaP/AlGaAs/GaAs system is more advantageous. The difference lies in the use of different cap layer materials: Unlike GaAs, InGaP acts like a barrier material with respect to the underlying AlGaAs layer and has almost one order of magnitude lower density of surface states than GaAs. Consequently, the InGaP/AlGaAs/GaAs heterostructure had the remote Si-δ doping layer only 6.5 nm beneath the surface and the two-dimensional electron gas (2DEG) was confined only 23.5 nm beneath the surface. Moreover, InGaP unaffected by LAO is a very durable material in various etchants and allows us to repeatedly remove thin portions of the underlying AlGaAs layer via wet etching. This approach influences LAO technology fundamentally: LAO was used only to oxidize InGaP cap layer to define very narrow (∼50 nm) patterns. Subsequent wet etching was used to form very narrow and high-energy barriers in the 2DEG patterns. This new approach is promising for the development of future nano-devices operated both at low and high temperatures

  13. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  14. Atomic emission spectroelectrochemistry applied to dealloying phenomena II. Selective dissolution of iron and chromium during active-passive cycles of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Ogle, K.; Mokaddem, M.; Volovitch, P.

    2010-01-01

    Atomic emission spectroelectrochemistry was used to investigate selective dissolution of a 304 austenitic stainless steel sample in 2 M H 2 SO 4 . The partial dissolution rates of Fe, Cr, Ni, Mn, Mo, and Cu were measured as function of time during a series of potentiostatic triggered activation/passivation cycles. When first exposed to sulfuric acid solution, the steel sample was in a passive state with a total steady state ionic dissolution rate expressed as an equivalent current density of 10 μA cm -2 . A transition into the active and passive state could be triggered by cathodic (-700 mV vs. Ag/AgCl) and anodic (+400 to +700 mV vs. Ag/AgCl) potentiostatic pulses respectively of variable time. Excess Cr dissolution was observed during the activation cycle as compared to Fe and a depletion of Cr dissolution was observed during the passivation cycle. These results are interpreted in terms of the dissolution of a Cr rich passive layer during activation and selective dissolution of Fe, Mn, Ni and other elements to form a Cr rich passive layer during passivation. Quantitative analysis of the excess Cr showed that the residual film contained approximately 0.38 μg Cr/cm 2 . Fe does not appear to be incorporated into the film at this early stage of passive film growth. Residual films of metallic nickel and copper were formed on the surface during the active period that subsequently dissolved during passivation.

  15. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  16. ORDERED POROUS ANODIC ALUMINUM OXIDE FILMS MADE BY TWO-STEP ANODIZATION

    OpenAIRE

    HANSONG XUE; HUAJI LI; YU YI; HUIFANG HU

    2007-01-01

    Porous Anodic Aluminum Oxide (AAO) films were prepared by two-step anodizing in sulfuric and oxalic acid solutions and observed by transmission electron microscope (TEM) and X-ray diffraction. The results show that the form of AAO film is affected by the varieties and concentrations of electrolyte, anodizing voltage, and the anodizing time; the formation and evolution processes of the AAO film are relative with the anodizing voltage severely, and the appropriate voltage is helpful to the orde...

  17. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks

    Science.gov (United States)

    Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.

  18. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Jensen, Henrik; Larsen, Susan W

    2014-01-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate...... in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved....... Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing....

  19. Note: Anodic bonding with cooling of heat-sensitive areas

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Anodic bonding of silicon to glass always involves heating the glass and device to high temperatures so that cations become mobile in the electric field. We present a simple way of bonding thin silicon samples to borosilicate glass by means of heating from the glass side while locally cooling hea......-sensitive areas from the silicon side. Despite the high thermal conductivity of silicon, this method allows a strong anodic bond to form just millimeters away from areas essentially at room temperature....

  20. Compaction of porous rock by dissolution on discrete stylolites

    DEFF Research Database (Denmark)

    Angheluta, Luiza; Mathiesen, Joachim; Aharonov, Einat

    2012-01-01

    Compaction of sedimentary porous rock by dissolution and precipitation is a complex deformation mechanism, that is often localized on stylolites and pressure solution seams. We consider a one-dimensional model of compaction near a thin clay-rich stylolite embedded in a porous rock. Under...

  1. Dissolution Methods Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — For a drug product that does not have a dissolution test method in the United States Pharmacopeia (USP), the FDA Dissolution Methods Database provides information on...

  2. New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Holtstiege, Florian; Schmuch, Richard; Winter, Martin; Brunklaus, Gunther; Placke, Tobias

    2018-02-01

    Pre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.

  3. Fabrication of porous anodic alumina films by using two-step anodization process

    International Nuclear Information System (INIS)

    Xu Zhan; Zhou Bin; Xu Xiang; Wang Xiaoli; Wu Di; Shen Jun

    2006-01-01

    This article introduces the fabrication of the porous anodic alumina films which have ordered pore arrangement by using a two-step anodization process. The films have a parallel channel structure which nanopore diameter can be 20-100 nm, and depth can reach 50 μm. The change of pore structure in the first and second anodization, moving the alumina layer, widening process was analysed. The effect of the parameters such as different electrolytes, anodization temperature and the voltage on the nanopore structure was studied. The surface and profile structure through FE-SEM (field emission scanning electron microscope), the element composition in tiny area of the anodic aluminum oxide (AAO) surface were studied. The result indicates the pore diameter of AAO which is anodized in oxalic acid solution is larger than which anodized in sulfuric acid solution. The anodization temperature and voltage can enlarge the nanopore diameter of AAO in a range. (authors)

  4. Embrittlement and anodic process in stress corrosion cracking: study of the influent micro-mechanical parameters; Fragilisation et processus anodiques en corrosion sous contrainte: etude des parametres micro-mecaniques influents

    Energy Technology Data Exchange (ETDEWEB)

    Tinnes, J.Ph

    2006-11-15

    We study the influence of local mechanical parameters on crack propagation in Stress Corrosion Cracking, at the scale of the microstructure. Two systems are compared: the CuAl{sub 9}Ni{sub 3}Fe{sub 2} copper-aluminium alloy in synthetic sea water under cathodic polarization, where the crack propagation mechanism is related to strain-assisted anodic dissolution, and the 316L austenitic stainless steel in MgCl{sub 2} solution, where embrittlement mechanisms related to hydrogen effects prevail. We use micro-notched tensile specimen that allow to study isolated short cracks. These experiments are modelled by means of finite elements calculations, and further characterized by Electron Back scattered Diffraction (EBSD) in the case of the 316L alloy. In terms of the local mechanical parameters that control propagation, fundamental differences are outlined between the two systems. They are discussed from the viewpoint of the available models of Stress Corrosion Cracking. (author)

  5. A kinetic model for borosilicate glass dissolution based on the dissolution affinity of a surface alteration layer

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Peiffer, D.W.; Knauss, K.G.; McKeegan, K.D.; Smith, D.K.

    1989-11-01

    A kinetic model for the dissolution of borosilicate glass is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkali-depleted amorphous surface (gel) layer. Our model predicts that all components concentrated in the surface layer, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations. 10 refs., 5 figs., 1 tab

  6. Temporal patterning of the potential induced by localized corrosion of iron passivity in acid media. Growth and breakdown of the oxide film described in terms of a point defect model.

    Science.gov (United States)

    Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael

    2009-10-21

    This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.

  7. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Ivan Stupák

    2017-11-01

    Full Text Available Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus—Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium, we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  8. Anodic films grown on magnesium and magnesium alloys in fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, S. [Dept. of Applied Chemistry, Kogakuin Univ., Tokyo (Japan); Masuko, N. [Dept. of Metallurgical Engineering, Chiba Inst. of Tech., Narashino, Chiba (Japan)

    2003-07-01

    Formation behavior of anodic oxide films on magnesium in fluoride electrolytes was investigated with attention to the effects of anodizing voltage and aluminum content. In the range of voltage between 2 V and 100 V, porous film was formed in alkaline fluoride solution associated with high current density at around 5 V and at breakdown voltage. The critical voltage of breakdown to allow maximum current flow was approximately 60 V and relatively independent on substrate purity. The films formed at breakdown voltage showed a lava-like porous structure similar to those obtained on aluminum and other valve metals. Barrier films or semi-barrier films, which were composed of hydrated outer layer and relatively dense inner layer, were formed at the other voltages. In the case of AZ91D, the critical voltage increased to 70 V and peculiar phenomenon at 5 V was not observed, so that only barrier films were formed at less than the breakdown voltage. These phenomena can be explained by the effects of aluminum incorporation into the film to prevent dissolution and to promote passivation of magnesium. The depth profiles of constituent elements showed that aluminum distributed in whole depth of the film. (orig.)

  9. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  10. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong; Wu, Feng-Yu; Kumar, Pushpendra; Ming, Jun

    2016-01-01

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery

  11. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  12. Improvement of the current efficiency of an Al-Zn-In anode by heat-treatment

    International Nuclear Information System (INIS)

    Lin, J.C.; Shih, H.C.

    1987-01-01

    Aluminum anodes, each having one of several heat-treatments [namely as-cast (A), furnace-cooled (B), quenched (C), and quenched and aged (D-1)] were electrically coupled to structural steels to provide cathodic protection. The electro-chemical potential of each galvanic couple depended on the type of heat-treatment: anodes A, B, and C exhibited a potential of -1.10V, and anode D-1 was somewhat less negative at -0.95V. Empirical relationships between galvanic current density and area ratio (AR), based on 120h tests, have been established. Surface examination showed that anodes A, B, and C corrode uniformly, whereas anode D-1 dissolves locally. Results showed that the current efficiency of a sacrificial aluminum anode is dependent on its microstructure, which is, in turn, affected by its heat-treatment. Both anodes A and B possessed an equilibrium precipitate of In and the corresponding efficiencies did not vary with time. However, anode C, and especially anode D-1, suffered from aging, and their efficiencies varied with time. The microstructure of anode C contained thermal defects such as dislocation loops, while anode D-1 contained both dislocation loops and microsegregates. Results confirm that as-cast and furnace-cooled anodes have the best efficiencies (94-98%), while quenched and aged anodes have significantly lower efficiencies

  13. Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices

    International Nuclear Information System (INIS)

    Cambel, Vladimir; Martaus, Jozef; Soltys, Jan; Kudela, Robert; Gregusova, Dagmar

    2008-01-01

    The local anodic oxidation (LAO) by the tip of atomic force microscope (AFM) is used for fabrication of nanometer-scaled structures and devices. We study the technology of LAO applied to semiconductor heterostructures, theoretically and experimentally as well. The goal is to improve the LAO process itself, i.e., to create narrow LAO lines that form high-energy barriers in the plane with the 2D electron gas. In the first part we show the electric field distribution in the system tip-sample during LAO. For samples with low-conductive cap layer the maximum electric field is shifted apart the tip apex, which leads to wide oxide lines. Our Monte Carlo (MC) calculations show how the height of the energy barrier in the system depends on the geometry of the created lines (trenches), and on voltage applied to the structure. Based on the calculations, we have proposed a novel LAO technology and applied it to InGaP/AlGaAs/GaAs heterostructure with doping layer only 6 nm beneath the surface. The doping layer can be oxidized easily by the AFM tip in this case, and the oxide objects can be removed by several etchants. This approach to the LAO technology leads to narrow LAO trenches (∼60 nm) and to energy barriers high enough for room- and low-temperature applications

  14. Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anawati, Anawati; Asoh, Hidetaka; Ono, Sachiko [Kogakuin University, Tokyo (Japan)

    2016-06-15

    The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in 0.5 mol dm{sup -3} Na{sub 3}PO{sub 4} solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase Al2Ca. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of Al2Ca phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range 30 - 40 μm. The heat resistant phase of Al{sub 2}Ca was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

  15. Anodic behaviour of the stainless steel AISI 430 in aqueous solutions of chloride and sulphate ions

    International Nuclear Information System (INIS)

    Sebrao, M.Z.

    1982-01-01

    The kinetics of the dissolution of stainless steel AISI 430 in the presence of chloride and sulphate ions has been studied in terms of the ion concentration, the pH variation, and the velocity of the working electrode. The experimental method utilized was the potentiostatic anodic polarization, and the reactants used were NaCl and Na 2 SO 4 at room temperature. Atomic Absorption spectrophotometry and Auger Electrons spectroscopy (AES) analyses were made in order to support the interpretation of results obtained by means of the potentiostatic polarization method. (author)

  16. Dissolution of nuclear fuels

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Rainey, R.

    1968-01-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO 2 , PuO 2 and PuO 2 -UO 2 pellets in boiling nitric acid alone and with additives. The uranium metal and UO 2 dissolved readily in nitric acid alone; PuO 2 dissolved slowly even with the addition of fluoride; PuO 2 -UO 2 pellets containing as much as 35% PuO 2 in UO 2 gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO 2 -UO 2 pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs

  17. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  18. Predicting dissolution patterns in variable aperture fractures: 1. Development and evaluation of an enhanced depth-averaged computational model

    Energy Technology Data Exchange (ETDEWEB)

    Detwiler, R L; Rajaram, H

    2006-04-21

    Water-rock interactions within variable-aperture fractures can lead to dissolution of fracture surfaces and local alteration of fracture apertures, potentially transforming the transport properties of the fracture over time. Because fractures often provide dominant pathways for subsurface flow and transport, developing models that effectively quantify the role of dissolution on changing transport properties over a range of scales is critical to understanding potential impacts of natural and anthropogenic processes. Dissolution of fracture surfaces is controlled by surface-reaction kinetics and transport of reactants and products to and from the fracture surfaces. We present development and evaluation of a depth-averaged model of fracture flow and reactive transport that explicitly calculates local dissolution-induced alterations in fracture apertures. The model incorporates an effective mass transfer relationship that implicitly represents the transition from reaction-limited dissolution to transport-limited dissolution. We evaluate the model through direct comparison to previously reported physical experiments in transparent analog fractures fabricated by mating an inert, transparent rough surface with a smooth single crystal of potassium dihydrogen phosphate (KDP), which allowed direct measurement of fracture aperture during dissolution experiments using well-established light transmission techniques [Detwiler, et al., 2003]. Comparison of experiments and simulations at different flow rates demonstrate the relative impact of the dimensionless Peclet and Damkohler numbers on fracture dissolution and the ability of the computational model to simulate dissolution. Despite some discrepancies in the small-scale details of dissolution patterns, the simulations predict the evolution of large-scale features quite well for the different experimental conditions. This suggests that our depth-averaged approach to simulating fracture dissolution provides a useful approach for

  19. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution.

    Science.gov (United States)

    Takeuchi, Susumu; Tsume, Yasuhiro; Amidon, Gregory E; Amidon, Gordon L

    2014-11-01

    In vitro dissolution tests are performed for new formulations to evaluate in vivo performance, which is affected by the change of gastrointestinal (GI) physiology, in the GI tract. Thus, those environmental changes should be introduced to an in vitro dissolution test. Many studies have successfully shown the improvement of in vitro-in vivo correlations (IVIVC) by introducing those physiological changes into dissolution tests. The gastrointestinal simulator (GIS), a multicompartment in vitro dissolution apparatus, was developed to evaluate in vivo drug dissolution. A gastric-emptying rate along with transit rate are key factors to evaluate in vivo drug dissolution and, hence, drug absorption. Dissolution tests with the GIS were performed with Biopharmaceutical Classification System class I drugs at five different gastric-emptying rates in the fasted state. Computational models were used to determine in vivo gastric-emptying time for propranolol and metoprolol based on the GIS dissolution results. Those were compared with published clinical data to determine the gastric half-emptying time. In conclusion, the GIS is a practical tool to assess dissolution properties and can improve IVIVC. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Gray, J.H.

    1992-01-01

    Several processing options for dissolving plutonium oxide (PuO 2 ) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO 2 typically generated by burning plutonium metal and PuO 2 produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO 2 in canyon dissolvers. The options involve solid solution formation of PuO 2 With uranium oxide (UO 2 ) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO 2 with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO 2 materials may warrant further study

  1. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    Ollila, K.

    1993-11-01

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  2. Anodic dissolution polarography used for the direct determination of metals in uranium

    International Nuclear Information System (INIS)

    Bueno, L.A.O.; Abrao, A.

    1976-01-01

    An electrochemical method of analysis, consisting of pre-concentration and determination of the elements Cd, Pb, Tl, Bi and Cu, present as impurities in uranium salts has been developed. The anodic stripping polarography has been employed using a dropping mercury electrode. The interference of uranium itself in the determination of these elements was eliminated by changing its reduction potential to - 1,0V (with respect to the Ag/AgCl electrode), thus making possible the analysis of the elements that are reduced at more positive potentials. This was achieved by the addition of sufficient amount of K 2 CO 3 to the uranyl chloride solution (in the 4:1 carbonate to uranyl ratio) so as to form the uranyl tricarbonate ([UO 2 (CO 3 ) 3 ] 4- ) complex anion. The supporting electrolyte was the uranyl complex in K 2 CO 3 0,1M. The final concentration of uranium ranged from 2 to 5 g/l. The detection limits for the studied elements varied from 0,08 to 1,27 ppm (μg of the element/gU). This technique has proved to be very convenient since provides sensitivity and precision. The method makes possible the determination of mentioned elements directly in uranium solutions, avoiding any previous chemical separations [pt

  3. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  4. Dissolution of aluminium; Disolucion de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A; Berberana Eizmendi, M; Pereira Sanchez, G

    1968-07-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  5. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  6. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2011-01-01

    -containing intermetallic particles incorporated into the anodic oxide films on industrially pure aluminium (AA1050, 99.5 per cent) has been investigated. AA1050 aluminium was anodized in a 100?ml/l sulphuric acid bath with an applied voltage of 14?V at 20°C ±2°C for 10 or 120?min. The anodic film subsequently was analyzed......Purpose - The purpose of this investigation is to understand the structure of trapped intermetallics particles and localized composition changes in the anodized anodic oxide film on AA1050 aluminium substrates. Design/methodology/approach - The morphology and composition of Fe......-shaped particles were embedded in the anodic oxide film as a thin strip structure and located near the top surface of the film, whereas the round-shaped particles were trapped in the film with a spherical structure, but partially dissolved and were located throughout the thickness of the anodic film. The Fe...

  7. Bending-Tolerant Anodes for Lithium-Metal Batteries.

    Science.gov (United States)

    Wang, Aoxuan; Tang, Shan; Kong, Debin; Liu, Shan; Chiou, Kevin; Zhi, Linjie; Huang, Jiaxing; Xia, Yong-Yao; Luo, Jiayan

    2018-01-01

    Bendable energy-storage systems with high energy density are demanded for conformal electronics. Lithium-metal batteries including lithium-sulfur and lithium-oxygen cells have much higher theoretical energy density than lithium-ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li-dendrite growth can be further aggravated due to bending-induced local plastic deformation and Li-filaments pulverization. Here, the Li-metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r-GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending-tolerant r-GO/Li-metal anode, bendable lithium-sulfur and lithium-oxygen batteries with long cycling stability are realized. A bendable integrated solar cell-battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending-tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.

    Science.gov (United States)

    Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir

    2004-01-01

    Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.

  9. The effect of an auxiliary discharge on anode sheath potentials in a transverse discharge

    International Nuclear Information System (INIS)

    Foster, J.E.; Gallimore, A.D.

    1997-01-01

    A novel scheme that employs the use of an auxiliary discharge has been shown to reduce markedly anode sheath potentials in a transverse discharge. An 8.8 A low-pressure argon discharge in the presence of a transverse magnetic field was used as the plasma source in this study. In such discharges, the transverse flux that is collected by the anode is severely limited due to marked reductions in the transverse diffusion coefficient. Findings of this study indicate that the local electron number density and the transverse flux increase when the auxiliary discharge is operated. Changes in these parameters are reflected in the measured anode sheath voltage. Anode sheath potentials, estimated by using Langmuir probes, were shown to be reduced by over 33% when the auxiliary discharge is operated. These reductions in anode sheath potentials translated into significant reductions in anode power flux as measured using water calorimeter techniques. The reductions in anode power flux also correlate well with changes in the electron transverse flux. Finally, techniques implementing these positive effects in real plasma accelerators are discussed. copyright 1997 American Institute of Physics

  10. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.

    Science.gov (United States)

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H

    2017-04-15

    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Anodic polarization behavior and film breakdown potential of pure copper in the simulated geological environment containing carbonate

    International Nuclear Information System (INIS)

    Kawasaki, Manabu; Taniguchi, Naoki; Naito, Morimasa

    2009-01-01

    In order to clarify the influence of environmental factors on the corrosion behavior of copper overpacks in oxidizing environment, potentiodynamic and potentiostatic anodic polarization tests were performed in carbonate aqueous solutions at 80degC. As the results, the passivation was promoted and film breakdown was suppressed in higher carbonate concentrations, in lower chloride ion concentrations, and in higher pH conditions. The sulfate ion tended to promote the film breakdown of copper. The effects of the composition of the test solutions on the anodic polarization curve of copper in bentonite/sand mixture were quite smaller than those in simple aqueous solution. By comparison with previous data for lower temperature condition, it was clarified that passivation of copper was promoted in higher temperature condition, but breakdown potential, Eb was independent of temperature. The Eb, was expressed as a function of the ratio of aggressive ion and inhibiting ion such as [Cl - ]/[HCO 3 - ] and [SO 4 2- ]/[HCO 3 - ], and it was confirmed that the Eb was lowered with increasing the ratio. When the ratio exceeds a certain value, the Eb was no longer able to be determined since the anodic polarization curve becomes active dissolution type. The lower limit of Eb in passive type region was estimated to be about -200 mV vs. SCE. The results of potentiostatic tests showed that pitting corrosion or non-uniform corrosion was observed at the potentials over Eb or second current peak potentials in anodic polarization curve. (author)

  12. Mathematical modeling of drug dissolution.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  14. Dissolution of two NWCF calcines: Extent of dissolution and characterization of undissolved solids

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    A study was undertaken to determine the dissolution characteristics of two NWCF calcine types. A two-way blended calcine made from 4 parts nonradioactive aluminum nitrate and one part WM-102 was studied to determine the extent of dissolution for aluminum-type calcines. A two-way blend of 3.5 parts fluorinel waste from WM-187 and 1 part sodium waste from WM-185 was used to determine the extent of dissolution for zirconium-type calcines. This study was necessary to develop suitable aqueous separation flowsheets for the partitioning of actinides and fission products from ICPP calcines and to determine the disposition of the resulting undissolved solids (UDS). The dissolution flowsheet developed by Herbst was used to dissolve these two NWCF calcine types. Results show that greater than 95 wt% of aluminum and zirconium calcine types were dissolved after a single batch contact with 5 M HNO 3 . A characterization of the UDS indicates that the weight percent of TRU elements in the UDS resulting from both calcine type dissolutions increases by approximately an order of magnitude from their concentrations prior to dissolution. Substantial activities of cesium and strontium are also present in the UDS resulting from the dissolution of both calcine types. Multiple TRU, Cs, and Sr analyses of both UDS types show that these solids are relatively homogeneous. From this study, it is estimated that between 63.5 and 635 cubic meters of UDS will be generated from the dissolution of 3800 M 3 of calcine. The significant actinide and fission product activities in these UDS will preclude their disposal as low-level waste. If the actinide and fission activity resulting from the UDS is the only considered source in the dissolved calcine solutions, an estimated 99.9 to 99.99 percent of the solids must be removed from this solution for it to meet non-TRU Class A low-level waste

  15. Analyzing the anodic reactions for iron surface with a porous Al2O3 cluster with the scanning vibrating electrode

    Science.gov (United States)

    Eliyan, Faysal Fayez

    2017-09-01

    The Scanning Vibrating Electrode Technique (SVET) was used to analyze the anodic reactions inside and around a porous Al2O3 cluster embedded onto an iron foil. The tests were carried out at -0.7 V vs. Saturated Calomel Electrode, in naturally aerated solutions of 0.1, 0.2, 0.35, and 0.5 M bicarbonate concentration. During 10 h of testing, the SVET showed evidence for a formation of a passive film in and around the cluster, in the scanning area shown in the graphical abstract. In the dilute 0.1 and 0.2 M solutions, the passive films formed slower than those in 0.35 and 0.5 M solutions. In the SVET maps, the passive films showed that they could suppress dissolution to currents comparable to those of slower dissolution under the porous Al2O3 cluster.

  16. Hydrothermal alteration of deep fractured granite: Effects of dissolution and precipitation

    Science.gov (United States)

    Nishimoto, Shoji; Yoshida, Hidekazu

    2010-03-01

    This paper investigates the mineralogical effects of hydrothermal alteration at depth in fractures in granite. A fracture accompanied by an alteration halo and filled with clay was found at a depth of 200 m in a drill core through Toki granite, Gifu, central Japan. Microscopic observation, XRD, XRF, EPMA and SXAM investigations revealed that the microcrystalline clays consist of illite, quartz and pyrite and that the halo round the fracture can be subdivided into a phyllic zone adjacent to the fracture, surrounded by a propylitic zone in which Fe-phyllosilicates are present, and a distinctive outer alteration front characterized by plagioclase breakdown. The processes that result in these changes took place in three successive stages: 1) partial dissolution of plagioclase with partial chloritization of biotite; 2) biotite dissolution and precipitation of Fe-phyllosilicate in the dissolution pores; 3) dissolution of K-feldspar and Fe-phyllosilicate, and illite precipitation associated with development of microcracks. These hydrothermal alterations of the granite proceed mainly by a dissolution-precipitation process resulting from the infiltration of hydrothermal fluid along microcracks. Such infiltration causes locally high mobility of Al and increases the ratio of fluid to rock in the alteration halo. These results contribute to an understanding of how granitic rock becomes altered in orogenic fields such as the Japanese island arc.

  17. UO2 dissolution rates: A review

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-09-01

    This report reviews literature data on UO 2 dissolution kinetics and provides a framework for guiding future experimental studies as well as theoretical modeling studies. Under oxidizing conditions, UO 2 dissolution involves formation of an oxidized surface layer which is then dissolved by formation of aqueous complexes. Higher oxygen pressures or other oxidants are required at higher temperatures to have dissolution rates independent of oxygen pressure. At high oxygen pressures (1-5 atm, 25-70 C), the dissolution rate has a one-half order dependence on oxygen pressure, whereas at oxygen pressures below 0.2 atm, Grandstaff (1976), but nobody else, observed a first-order dependence on dissolution rate. Most people found a first-order dependence on carbonate concentration; Posey-Dowty (1987) found independence of carbonate at pH 7 to 8.2. Dissolution rates increase with temperature except in experiments involving granitic groundwater. Dissolution rates were generally greater under acid or basic conditions than near neutral pH

  18. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  19. Pore-scale investigation of mass transport and electrochemistry in a solid oxide fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Grew, Kyle N.; Joshi, Abhijit S.; Peracchio, Aldo A.; Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 (United States)

    2010-04-15

    The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure. (author)

  20. The dissolution phenomenon of lysozyme crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Ulrich, J. [Martin Luther University Halle-Wittenberg, Department of Thermal Separation Processes, Centre of Engineering Science, Halle/Saale (Germany)

    2012-02-15

    Dissolution studies on lysozyme crystals were carried out since the observed dissolution pattern look different from non-protein dissolved crystals. The Tetragonal, High Temperature and Low Temperature Orthorhombic morphologies, crystallized using sodium chloride, were chosen and the influence of different pH, salt and protein concentration on their dissolution was investigated. An increase in pH and/or salt concentration can modify the dissolution behaviour. The pattern of the crystals during the dissolution process will, therefore, develop differently. Frequently a skeleton like crystal pattern followed by a falling apart of the crystals is observed. The multi-component character of the lysozyme crystal (protein, water, buffer, salt) as well as ''solvatomorphism'' gives first insights in the phenomena happening in the dissolution process. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Carbonate fuel cell anodes

    Science.gov (United States)

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  2. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  3. Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.

    Science.gov (United States)

    Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II

    2017-01-01

    Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

  4. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  5. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Evaluation of the effect of anode groove pitch to ion beam focusibility on spherical plasma focus diode

    Energy Technology Data Exchange (ETDEWEB)

    Imanari, K [Oyama National College of Technology (Japan). Department of Electrical Engineering; Jiang, W; Masugata, K; Yatsui, K [Nagaoka Univ. of Technology (Japan). Laboratory of Beam Technology

    1997-12-31

    A new PIC simulation code was developed to evaluate the effect of anode plasma nonuniformity on LIB focusibility. The plasma nonuniformity was modelled by inducing anode grooves in the code. In the experimental conditions, groove pitch about 2.2 mm and groove width of 1.0 mm, the simulation results are in a good agreement with the observed data. At a groove pitch of 2.4 mm, the local divergence was very small, although the focal length was very long. It was inferred that the focusibility of SPFD will be determined by the z-deflection angle rather than the local divergence angle. Modification of the anode curvature may be advantageous to get a higher power density on the focal point. (author). 6 figs., 3 refs.

  7. Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

    International Nuclear Information System (INIS)

    Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.; Smirnov, V. A.; Solodovnik, M. S.; Tsukanova, O. G.

    2016-01-01

    The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO_2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti_2O_3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

  8. Modelling of the UO2 dissolution mechanisms in synthetic groundwater solutions. Dissolution experiments carried out under oxic conditions

    International Nuclear Information System (INIS)

    Cera, E.; Grive, M.; Bruno, J.; Ollila, K.

    2001-02-01

    The analytical data generated during the last three years within the 4th framework program of the European Community at VTT Chemical Technology concerning UO 2 dissolution under oxidising conditions have been modelled in the present work. The modelling work has been addressed to perform a kinetic study of the dissolution data generated by Ollila (1999) under oxidising conditions by using unirradiated uranium dioxide as solid sample. The average of the normalised UO 2 dissolution rates determined by using the initial dissolution data generated in all the experimental tests is (6.06 ± 3.64)* 10 -7 mol m -2 d -1 . This dissolution rate agrees with most of the dissolution rates reported in the literature under similar experimental conditions. The results obtained in this modelling exercise show that the same bicarbonate promoted oxidative dissolution processes operate for uranium dioxide, as a chemical analogue of the spent fuel matrix, independently of the composition of the aqueous solution used. (orig.)

  9. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  10. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics

    Science.gov (United States)

    Jeschke, Alexander A.; Vosbeck, Katrin; Dreybrodt, Wolfgang

    2001-01-01

    The effective dissolution rates of gypsum are determined by mixed kinetics, where the rate constants of dissolution at the surface and the transport constant of molecular diffusion of dissolved material are similar. To obtain the surface reaction rate law it is necessary to know the transport constant. We have determined the surface rate law for monocrystalline selenite by using a rotating disc set-up, where the transport coefficients are well known. As a result, up to a calcium concentration of 0.6 · ceq, we find a nearly linear rate law Rs = ksl (1- cs/ ceq) n1, where cs is the total calcium concentration at the surface and ceq the equilibrium concentration with respect to gypsum, n1 = 1.2 ± 0.2, and ksl = 1.1 · 10 -4 mmol cm -2 s -1 ± 15%. We also employed batch-experiments for selenite, alabaster and gypsum rock samples. The result of these experiments were interpreted by using a transport constant determined by NaCl dissolution experiments under similar physical conditions. The batch experiments reveal a dissolution rate law Rs = ksl (1- cs/ ceq) n1, ksl = 1.3 · 10 -4 mmol · cm -2 s -1, n1 = 1.2 ± 0.2 for c ≤ 0.94 · ceq. Close to equilibrium a nonlinear rate law, Rs = ks2 (1- cs/ ceq) n2, is observed, where ks2 is in the order of 10 mmol · cm -2 s -1 and n2 ≈ 4.5. The experimentally observed gypsum dissolution rates from the batch experiments could be accurately fitted, with only minor variations of the surface reaction constant obtained from the rotating disk experiment and the transport coefficient from the NaCl dissolution batch experiment. Batch experiments on pure synthetic gypsum, reveal a linear rate law up to equilibrium. This indicates inhibition of dissolution in natural samples close to equilibrium, as is known also for calcite minerals.

  11. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Science.gov (United States)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  12. MRI studies of the hydrodynamics in a USP 4 dissolution testing cell.

    Science.gov (United States)

    Shiko, G; Gladden, L F; Sederman, A J; Connolly, P C; Butler, J M

    2011-03-01

    We present a detailed study of hydrodynamics inside the flow-through dissolution apparatus when operated according to USP recommendations. The pulsatile flow inside the flow-through cell was measured quantitatively using magnetic resonance imaging (MRI) at a spatial resolution of 234 × 234 μm(2) and slice thickness of 1 mm. We report the experimental protocols developed for in situ MRI studies and the effect that the operating conditions and tablet orientation have on the hydrodynamics inside commercial flow cells. It was found that the flow field inside the dissolution cells was, at most operating conditions, heterogeneous, rather than fully developed laminar flow, and characterised by re-circulation and backward flow. A model tablet was shown to be contacted by a wide distribution of local velocities as a function of position and orientation in the flow cell. The use of 1 mm beads acted as a distributor of the flow but did not suffice to ensure a fully developed laminar flow profile. These results emphasise the necessity to understand the influence of test conditions on dissolution behaviour in defining robust flow-through dissolution methods. Copyright © 2010 Wiley-Liss, Inc.

  13. Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt after dissolution and migration from the Li1[Ni1/3Mn1/3Co1/3]O2 and LiMn1.5 Ni0.5O4 cathode

    Science.gov (United States)

    Schwieters, Timo; Evertz, Marco; Fengler, Alexander; Börner, Markus; Dagger, Tim; Stenzel, Yannick; Harte, Patrick; Winter, Martin; Nowak, Sascha

    2018-03-01

    In this study, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is applied to previously aged carbonaceous anodes from lithium ion batteries (LIBs). These electrodes are treated by cyclic aging in a lithium ion cell set-up against Li1[Ni1/3Mn 1/3Co1/3]O2 = NMC111 to elucidate factors that influence transition metal dissolution (TMD) of the cathode and subsequent deposition on the anode. The investigations are carried out by qualitatively visualizing the 7Li and TM patterns (60Ni, 55Mn and 59Co) of whole coin and pouch-bag electrodes. The lithium, as well as the TM amount, found on the anode, is directly correlated to the applied upper cut-off voltage (4.6, 4.7, 4.8 and 4.9 V) showing more deposition of Li and TMs at elevated voltages. While 7Li shows a more homogeneous pattern, the TM distribution is inhomogeneous but showing a similar pattern for all TMs of the same sample. An unequal pressure distribution, resulting in a nonparallel electrode alignment, on the electrode stack is identified to be responsible for the inhomogeneous TM deposition pattern. This uneven electrode orientation results in different diffusion pathways for the TM migration with regard to the spatial distances.

  14. Dissolution of minerals with rough surfaces

    Science.gov (United States)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate

  15. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    , the liquid composition at the interface is concentrated in the refractory species. During the transient, the interface temperature is equal to the liquidus temperature corresponding to the local and instantaneous composition of the liquid at the interface. Regarding the design of a protective layer made of refractory materials, we can answer the question of how much ceramic can be dissolved and its impact on melt temperature evolution during the dissolution process. It also impacts on subsequent corium solidification since the additional mass of dissolved ceramic leads to increased volume of the molten material, significantly increasing the time required for complete solidification. For the long term, ceramic material does not offer better confinement than a crust made of solidified corium. This work served as support to a generalisation of the model of transient evolution of interface temperature in various severe accident situations (Seiler and Combeau, 2014)

  16. Formation of quartz veins by local dissolution and transport of silica

    Energy Technology Data Exchange (ETDEWEB)

    Wangen, Magnus; Munz, Ingrid Anne

    2004-08-01

    A simple model is proposed for the (often) thick quartz veins observed in the Modum Complex in Southern Norway. The formation of these veins cannot easily be explained by silica imported by hot ascending fluids. The proposed model has dissolution in the host rock adjacent to the veins as the source for silica. The suggested process for vein formation is represented by a reaction-diffusion equation, and the process is studied in terms of a Damkoehler number. Estimates for the growth rate of quartz cement are derived. The estimates for the growth rate can be used to constrain poorly known parameters of the vein formation process, like for instance, the degree of supersaturation in the host rock. (Author)

  17. Dissolution process for advanced-PWR-type fuels

    International Nuclear Information System (INIS)

    Black, D.E.; Decker, L.A.; Pearson, L.G.

    1979-01-01

    The new Fluorinel Dissolution Process and Fuel Storage (FAST) Facility at ICPP will provide underwater storage of spent PWR fuel and a new head-end process for fuel dissolution. The dissolution will be two-stage, using HF and HNO 3 , with an intermittent H 2 SO 4 dissolution for removing stainless steel components. Equipment operation is described

  18. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  19. Avalanche localization and its effects in proportional counters

    International Nuclear Information System (INIS)

    Fischer, J.; Okuno, H.; Walenta, A.H.

    1977-11-01

    Avalanche development around the anode wire in a gas proportional counter is investigated. In the region of proportional gas amplification, the avalanche is found to be well localized on one side of the anode wire, where the electrons arrive along the field lines from the point of primary ionization. Induced signals on electrodes surrounding the anode wire are used to measure the azimuthal position of the avalanche on the anode wire. Practical applications of the phenomena such as left-right assignment in drift chambers and measurement of the angular direction of the primary ionization electrons drifting towards the anode wire are discussed

  20. Methods for characterization of wafer-level encapsulation applied on silicon to LTCC anodic bonding

    International Nuclear Information System (INIS)

    Khan, M F; Ghavanini, F A; Enoksson, P; Haasl, S; Löfgren, L; Persson, K; Rusu, C; Schjølberg-Henriksen, K

    2010-01-01

    This paper presents initial results on generic characterization methods for wafer-level encapsulation. The methods, developed specifically to evaluate anodic bonding of low-temperature cofired ceramics (LTCC) to Si, are generally applicable to wafer-level encapsulation. Different microelectromechanical system (MEMS) structures positioned over the whole wafer provide local information about the bond quality. The structures include (i) resonating cantilevers as pressure sensors for bond hermeticity, (ii) resonating bridges as stress sensors for measuring the stress induced by the bonding and (iii) frames/mesas for pull tests. These MEMS structures have been designed, fabricated and characterized indicating that local information can easily be obtained. Buried electrodes to enable localized bonding have been implemented and their effectiveness is indicated from first results of the novel Si to LTCC anodic bonding.

  1. The dissolution of chalcopyrite in chloride media

    International Nuclear Information System (INIS)

    Ibanez, T.; Velasquez, L.

    2013-01-01

    The aim of this investigation is to determinate the effects of parameters and additives on the kinetics of dissolution of chalcopyrite on moderated conditions by means of dissolutions test with chalcopyrite concentrate and pure chalcopyrite in shake flasks and instrumented stirred reactors. A study of the dissolution of chalcopyrite in chloride solutions has demonstrated that the rate of dissolution of chalcopyrite is strongly dependent on the potential of the solution within a range of 540 to 630 mV (versus SHE). Leaching at pH around 2.5 results in increased rates of copper dissolution suggesting the possibility to keep the solution potential within the range. Both pyrite and silver ions enhance the dissolution of chalcopyrite and this effect increases when both species are present. The MnO 2 has a negative effect on the dissolution increasing the solution potential to values where the rate decreases considerably. (Author)

  2. Dissolution glow curve in LLD

    International Nuclear Information System (INIS)

    Haverkamp, U.; Wiezorek, C.; Poetter, R.

    1990-01-01

    Lyoluminescence dosimetry is based upon light emission during dissolution of previously irradiated dosimetric materials. The lyoluminescence signal is expressed in the dissolution glow curve. These curves begin, depending on the dissolution system, with a high peak followed by an exponentially decreasing intensity. System parameters that influence the graph of the dissolution glow curve, are, for example, injection speed, temperature and pH value of the solution and the design of the dissolution cell. The initial peak does not significantly correlate with the absorbed dose, it is mainly an effect of the injection. The decay of the curve consists of two exponential components: one fast and one slow. The components depend on the absorbed dose and the dosimetric materials used. In particular, the slow component correlates with the absorbed dose. In contrast to the fast component the argument of the exponential function of the slow component is independent of the dosimetric materials investigated: trehalose, glucose and mannitol. The maximum value, following the peak of the curve, and the integral light output are a measure of the absorbed dose. The reason for the different light outputs of various dosimetric materials after irradiation with the same dose is the differing solubility. The character of the dissolution glow curves is the same following irradiation with photons, electrons or neutrons. (author)

  3. Anodic Stripping Voltammetry at Nanoelectrodes: Trapping of Mn2+ by Crown Ethers

    International Nuclear Information System (INIS)

    Danis, Laurence; Gateman, Samantha Michelle; Snowden, Michael Edward; Halalay, Ion C.; Howe, Jane Y.; Mauzeroll, Janine

    2015-01-01

    The work presented here describes the development and characterization of platinum-mercury hemispherical nanoelectrodes for the spatially resolved quantitative detection of manganese cations. The electrochemical probes were made by electrodeposition of metallic mercury from a mercuric ion solution onto Pt/quartz laser-pulled concentric disk nanoelectrodes (with disk radii ranging from 3 to 500 nm). The nanoelectrodes were characterized by steady-state voltammetry, scanning electrochemical microscopy, environmental scanning electron microscopy, energy-dispersive X-ray spectroscopy and calibrated with respect to the concentration of Mn 2+ ions using anodic stripping voltammetry. The fully characterized probes were employed for the quantitative detection of Mn 2+ . The technique has been used to evaluate the impact of a novel approach for mitigating the undesirable consequences of manganese dissolution in Li-ion batteries

  4. Dissolution at porous interfaces VI: Multiple pore systems.

    Science.gov (United States)

    Grijseels, H; Crommelin, D J; De Blaey, C J

    1984-12-01

    With the aid of rapidly dissolving sodium chloride particles, cubic pores were made in the surface of a theophylline tablet. The influence of the pores on the dissolution rate of the surface was investigated in a rotating disk apparatus. Like the drilled pores used in earlier studies, downstream on the surface they caused a turbulent flow regimen with the development of a trough due to enhanced erosion. The phenomenon of a critical pore diameter, discovered with single, drilled pores, seems to be applicable to the cubic pores investigated in this study, although a higher degree of surface coverage with pores caused complications, probably due to particles bordering one another and forming larger pores. The behavior of the porous surfaces at different rotation speeds was studied. Due to the presence of pores the laminar character of the boundary layer flow changes to turbulent, which induces locally an increased dissolution flux in the wake of a pore.

  5. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  6. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  7. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  8. The use of commercial microwave dissolution equipment for the fast and reliable dissolution of high-fired POX and MOX samples

    International Nuclear Information System (INIS)

    Tushingham, J.; McInnes, C.; Firkin, S.

    1998-09-01

    The use of commercially available microwave dissolution equipment for the fast and reliable dissolution of high-fired plutonium dioxide (POX) and mixed oxide (MOX) samples has been evaluated for application to Safeguards Analysis. Under the auspices of the UK R and D Support Programme to the IAEA, equipment has been purchased and tested for the high-pressure microwave dissolution of POX samples fired to 1250 deg. C and MOX samples fired to 1600 deg. C, in concentrated nitric acid and hydrofluoric acid mixture. Considerable problems were encountered during development of procedures for microwave dissolution, resulting largely from sudden changes in pressure within dissolution vessels, which resulted in actuation of safety interlocks designed to prevent overpressurisation. These difficulties were alleviated by controlling the microwave power to reduce the reaction temperature and pressure, and also by introducing additional safety valves into the digestion vessels. Using microwave digestion, dissolution times for high fired POX and MOX samples were substantially reduced. Samples which required ca. 10 hours to dissolve by conventional means could be dissolved in ca. 80 minutes by microwave digestion. Whilst a similar performance in terms of plutonium recovery was achieved for some materials by microwave and conventional dissolution, for other materials microwave dissolution gave higher plutonium recoveries but with poorer precision. This suggests the possible presence of some plutonium oxide within high-fired materials which is more difficult to dissolve than the bulk, and which is perhaps dissolved to an additional but variable degree by the current microwave dissolution procedure. Microwave dissolution has been demonstrated to increase the speed of dissolution of high-fired POX and MOX materials, compared with conventional dissolution. However, the technique has not yet proved satisfactory for the complete dissolution of all high-fired materials tested because of

  9. Fault Detection and Diagnosis In Hall-Héroult Cells Based on Individual Anode Current Measurements Using Dynamic Kernel PCA

    Science.gov (United States)

    Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey

    2018-04-01

    Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.

  10. Anodic behavior of Al-Zn-In sacrificial anodes at different concentration of zinc and indium

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, Ahmad [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering; Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saremi, Mohsen [Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saeri, Mohammad Reza [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2012-12-15

    Al-Zn-In anodes show better performance due to the beneficial effects of Zn and In on prevention of aluminum passivity and producing a homogeneous structure for uniform corrosion of the anodes. However, there are different views about the optimum concentration of each element in the anode. In this study, the anodic behavior of Al-Zn-In alloy with different concentrations of zinc from 1 to 6wt.% and indium from 0.01 to 0.05wt.% are studied. The NACE efficiency test and polarization are used in 3wt.% NaCl solution for corrosion characterization. The results showed that zinc and indium change the anode potential to more active potentials and improve the microstructure uniformity of anodes. The latter leads to more uniform corrosion. Optimum concentrations of zinc (5wt.%) and indium (0.02wt.%) were found in this respect. (orig.)

  11. Development of Dissolution Test Method for Drotaverine ...

    African Journals Online (AJOL)

    Development of Dissolution Test Method for Drotaverine ... Methods: Sink conditions, drug stability and specificity in different dissolution media were tested to optimize a dissolution test .... test by Prism 4.0 software, and differences between ...

  12. Mechanistic Basis of Cocrystal Dissolution Advantage.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry.

    Science.gov (United States)

    Jiang, Chuanjia; Hsu-Kim, Heileen

    2014-11-01

    The wide use of metal-based nanomaterials such as zinc oxide (ZnO) nanoparticles (NPs) has generated concerns regarding their environmental and health risks. For ZnO NPs, their toxicity in aquatic systems often depends on the release of dissolved zinc species, and the rate of dissolution is influenced by water chemistry, including the presence of zinc-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This paper reports the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved zinc in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. The effects of the deposition time and the electrochemical potential scan rate on the ASV measurement were consistent with expectations for dissolved phase measurements. The dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79 ± 19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension. Using ASV, the dissolution of ZnO NPs was studied, with or without Suwannee River Fulvic Acid (SRFA). Although SRFA diminished the ASV stripping current, dissolution of 20 nm ZnO NPs was significantly promoted at high fulvic acid to ZnO NP ratios. The ASV method described in this paper provides a useful tool for studying the dissolution kinetics of ZnO NPs in complex environmental matrices.

  14. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  15. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.

    Science.gov (United States)

    Tsume, Yasuhiro; Takeuchi, Susumu; Matsui, Kazuki; Amidon, Gregory E; Amidon, Gordon L

    2015-08-30

    USP apparatus I and II are gold standard methodologies for determining the in vitro dissolution profiles of test drugs. However, it is difficult to use in vitro dissolution results to predict in vivo dissolution, particularly the pH-dependent solubility of weak acid and base drugs, because the USP apparatus contains one vessel with a fixed pH for the test drug, limiting insight into in vivo drug dissolution of weak acid and weak base drugs. This discrepancy underscores the need to develop new in vitro dissolution methodology that better predicts in vivo response to assure the therapeutic efficacy and safety of oral drug products. Thus, the development of the in vivo predictive dissolution (IPD) methodology is necessitated. The major goals of in vitro dissolution are to ensure the performance of oral drug products and the support of drug formulation design, including bioequivalence (BE). Orally administered anticancer drugs, such as dasatinib and erlotinib (tyrosine kinase inhibitors), are used to treat various types of cancer. These drugs are weak bases that exhibit pH-dependent and high solubility in the acidic stomach and low solubility in the small intestine (>pH 6.0). Therefore, these drugs supersaturate and/or precipitate when they move from the stomach to the small intestine. Also of importance, gastric acidity for cancer patients may be altered with aging (reduction of gastric fluid secretion) and/or co-administration of acid-reducing agents. These may result in changes to the dissolution profiles of weak base and the reduction of drug absorption and efficacy. In vitro dissolution methodologies that assess the impact of these physiological changes in the GI condition are expected to better predict in vivo dissolution of oral medications for patients and, hence, better assess efficacy, toxicity and safety concerns. The objective of this present study is to determine the initial conditions for a mini-Gastrointestinal Simulator (mGIS) to assess in vivo

  16. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  17. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  18. Dissolution of uranium oxide TBP-HNO3 complex

    International Nuclear Information System (INIS)

    Mizuno, Mineo; Kosaka, Yuji; Mori, Yukihide; Shimada, Takashi

    2002-12-01

    As a head end process for the pulverization of the spent fuel, the mechanical method (the shredder method) and the pyro-chemical method (oxidisation heat-treatment) have been examined. UO 2 is a main ingredient of Uranium oxide powder by the mechanical method, and U 3 O 8 is that by the pyro-chemical method. Moreover, the particle size of the pulverized powder depend on the conditions of the pulverizing process. As it was considered that the difference of dissolution rates of samples was caused by the difference of sample chemical forms and dissolution temperature, parametric surveys on chemical form and particle size of powder and dissolution temperature were carried out, and the following results were obtained. 1) The remarkable difference of dissolution rate between U 3 O 8 powder (average particle size 3.7 μm) and UO 2 powder (average particle size 2.4 μm) which have comparatively similar particle size was not observed. 2) It was confirmed that the dissolution rate became lower according to the particle size increase (average particle size 2.4 μm-1 mm). And it was considered that dissolution rate had strong dependency on particle size, according to the results that the powder with 1 mm particle size did not dissolute completely after 5 hours test. 3) The temperature dependency of the dissolution rate was confirmed by dissolution test with UO 2 powder (average particle size 2.4 μm-1 mm). The higher dissolution rate was obtained in the higher dissolution temperature, and 11 kcal/mol was obtained as activation energy of dissolution. 4) In the dissolution test of UO 2 powder, the nitric acid concentration started to change earlier than that of U 3 O 8 powder and concentration change range became larger compared with that in the dissolution test of U 3 O 8 powder. It was considered that those differences were caused by difference in mole ratio of Uranium and nitric acid which are consumed in the dissolution reaction (3:7 for U 3 O 8 , 3:8 for UO 2 ). 5) In case

  19. Dissolution rate enhancement of piroxicam by ordered mixing.

    Science.gov (United States)

    Saharan, Vikas Anand; Choudhury, Pratim Kumar

    2012-07-01

    Micronized piroxicam was mixed with lactose, mannitol, sorbitol, maltitol and sodium chloride to produce ordered mixture in a glass vial by manual hand shaking method. The effect of excipients, surfactant, superdisintegrant, drug concentration and carrier particle size on dissolution rate was investigated. Dissolution rate studies of the prepared ordered mixtures revealed that all water soluble excipients increased the dissolution rate of piroxicam when compared to the dissolution rate of piroxicam or its suspension. Ordered mixture formulation PLF4, consisting of lactose as water soluble excipient, SSG (8% w/s) and SLS (1% w/w), released piroxcam at a very fast rate so much so that about 90% of the composition had passed into solution within 2 min. The order of the dissolution rate enhancement for ordered mixtures of various water soluble excipients was: lactose > mannitol > maltitol > sorbitol > sodium chloride. Carrier granules of size 355-710 µm were most effective in increasing the dissolution rate of drug from ordered mixtures. Decreasing the carrier particle size reduced drug dissolution from ordered mixtures. The dissolution rate of ordered mixtures consisting of 1-5% w/w piroxicam was superior to dissolution rate of piroxicam suspension. The dissolution data fitting and the resulting regression parameters indicated Hixson Crowell, cube root law, as the best fit to drug release data of ordered mixtures.

  20. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    Science.gov (United States)

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  1. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    International Nuclear Information System (INIS)

    Pushkarev, A.

    2015-01-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B r external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°

  2. Improvement of database on glass dissolution

    International Nuclear Information System (INIS)

    Hayashi, Maki; Sasamoto, Hiroshi; Yoshikawa, Hideki

    2008-03-01

    In geological disposal system, high-level radioactive waste (HLW) glass is expected to retain radionuclide for the long term as the first barrier to prevent radionuclide release. The advancement of its performance assessment technology leads to the reliability improvement of the safety assessment of entire geological disposal system. For this purpose, phenomenological studies for improvement of scientific understanding of dissolution/alteration mechanisms, and development of robust dissolution/alteration model based on the study outcomes are indispensable. The database on glass dissolution has been developed for supporting these studies. This report describes improvement of the prototype glass database. Also, this report gives an example of the application of the database for reliability assessment of glass dissolution model. (author)

  3. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  4. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    CHEN Gao-hong

    2017-07-01

    Full Text Available Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance spectroscopy. The results show that the protective anodic oxide layers are formed on alclad and unclad 2E12 aluminum alloy. The film thickness increases with anodizing time extending. The copper rich second phase particles lead to more cavity defects and even micro cracks on anodic oxide films of unclad 2E12 aluminum alloy. The anodic oxide films on alclad 2E12 aluminum alloy are thicker and have fewer cavity defects, resulting in better corrosion resistance. The films obtained after 30min and 45min anodic oxidation treatment exhibit lower corrosion current and higher impedance of the porous layer than other anodizing time.

  5. Incorporation of transition metal ions and oxygen generation during anodizing of aluminium alloys

    International Nuclear Information System (INIS)

    Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G.E.

    2004-01-01

    Enrichment of nickel at the alloy/film interface and incorporation of nickel species into the anodic film have been examined for a sputtering-deposited Al-1.2at.%Ni alloy in order to assist understanding of oxygen generation in barrier anodic alumina films. Anodizing of the alloy proceeds in two stages similarly to other dilute aluminium alloys, for example Al-Cr and Al-Cu alloys, where the Gibbs free energies per equivalent for formation of alloying element oxide exceeds the value for alumina. In the first stage, a nickel-free alumina film is formed, with nickel enriching in an alloy layer, 2 nm thick, immediately beneath the anodic oxide film. In the second stage, nickel atoms are oxidized together with aluminium, with oxygen generation forming gas bubbles within the anodic oxide film. This stage commences after accumulation of about 5.4 x 10 15 nickel atoms cm -2 in the enriched alloy layer. Oxygen generation also occurs when a thin layer of the alloy, containing about 2.0 x 10 19 nickel atoms m -2 , on electropolished aluminium, is completely anodized, contrasting with thin Al-Cr and Al-Cu alloy layers on electropolished aluminium, for which oxygen generation is essentially absent. A mechanism of oxygen generation, based on electron impurity levels of amorphous alumina and local oxide compositions, is discussed in order to explain the observations

  6. Dissolution of UO2 in redox conditions

    International Nuclear Information System (INIS)

    Casas, I.; Pablo de, J.; Rovira, M.

    1998-01-01

    The performance assessment of the final disposal of the spent nuclear fuel in geological formations is strongly dependent on the spent fuel matrix dissolution. Unirradiated uranium (IV) dioxide has shown to be very useful for such purposes. The stability of UO 2 is very dependent on vault redox conditions. At reducing conditions, which are expected in deep groundwaters, the dissolution of the UO 2 -matrix can be explained in terms of solubility, while under oxidizing conditions, the UO 2 is thermodynamically unstable and the dissolution is kinetically controlled. In this report the parameters which affect the uranium solubility under reducing conditions, basically pH and redox potential are discussed. Under oxidizing conditions, UO 2 dissolution rate equations as a function of pH, carbonate concentration and oxidant concentration are reported. Dissolution experiments performed with spent fuel are also reviewed. The experimental equations presented in this work, have been used to model independent dissolution experiments performed with both unirradiated and irradiated UO 2 . (Author)

  7. Rotating anode X-ray source

    International Nuclear Information System (INIS)

    Wittry, D.B.

    1979-01-01

    A rotating anode x-ray source is described which consists of a rotary anode disc including a target ring and a chamber within the anode disc. Liquid is evaporated into the chamber from the target ring to cool the target and a method is provided of removing the latent heat of the vapor. (U.K.)

  8. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging

    DEFF Research Database (Denmark)

    Jindal, Utkarsh; Sood, Mehak; Chowdhury, Shubhajit Roy

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate corticospinal excitability. We used near-infrared spectroscopy (NIRS) - electroencephalography (EEG) joint-imaging during and after anodal tDCS to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along...... with changes in the log-transformed mean-power of EEG within 0.5 Hz - 11.25 Hz. In two separate studies, we investigated local post-tDCS alterations from baseline at the site of anodal tDCS using NIRS-EEG/tDCS joint-imaging as well as local post-tDCS alterations in motor evoked potentials (MEP...... that the innovative technologies for portable NIRS-EEG neuroimaging may be leveraged to objectively quantify the progress (e.g., corticospinal excitability alterations) and dose tDCS intervention as an adjuvant treatment during neurorehabilitation....

  9. Understanding anode and cathode behaviour in high-pressure discharge lamps

    Science.gov (United States)

    Flesch, P.; Neiger, M.

    2005-09-01

    High-intensity discharge (HID) lamps have widespread and modern areas of application including general lighting, video/movie projection (e.g. UHP lamp), street/industrial lighting, and automotive headlight lamps (D2/xenon lamp). Even though HID lamps have been known for several decades now, the important plasma-electrode interactions are still not well understood. Because HID lamps are usually operated on ac (electrodes switch alternately from anode to cathode phase), time-dependent simulations including realistic and verified anode and cathode models are essential. Therefore, a recently published investigation of external laser heating of an electrode during anode and cathode phase in an operating HID lamp [28] provided the basis for our present paper. These measurements revealed impressive influences of the external laser heating on electrode fall voltage and electrode temperature. Fortunately, the effects are very different during anode and cathode phase. Thus, by comparing the experimental findings with results from our numerical simulations we can learn much about the principles of electrode behaviour and explain in detail the differences between anode and cathode phase. Furthermore, we can verify our model (which includes plasma column, hot plasma spots in front of the electrodes, constriction zones and near-electrode non-local thermal equilibrium-plasma as well as anode and cathode) that accounts for all relevant physical processes concerning plasma, electrodes and interactions between them. Moreover, we investigate the influence of two different notions concerning ionization and recombination in the near electrode plasma on the numerical results. This improves our physical understanding of near-electrode plasma likewise and further increases the confidence in the model under consideration. These results are important for the understanding and the further development of HID lamps which, due to their small dimensions, are often experimentally inaccessible

  10. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  11. Dissolution rate of BTEX contaminants in water

    International Nuclear Information System (INIS)

    Njobuenwu, D.O.; Amadi, S.A.; Ukpaka, P.C.

    2005-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) and substituted benzenes are the most common aromatic compounds in petroleum. BTEX components are the most soluble and mobile fraction of crude oil and many petroleum products, and frequently enter soil, sediments and aquatic environments because of accidental spills, leaks and improper oil waste disposal practices. The mass transfer process of hydrocarbons in aquatic mediums has received considerable attention in the literature. This paper focused on the molecular mass transfer rate of BTEX in water, with the aim of understanding and predicting contaminant fate and transport. A comprehensive model was developed to simulate the molecular dissolution rate of BTEX in a natural water stream. The model considered the physicochemical properties of the BTEX compounds and physical processes relevant to the spreading of contaminants in the sea. The dissolution rate was a function of oil slick area, dissolution mass transferability and oil solubility in water. The total dissolution rate N was calculated and the dissolution mass transfer coefficient K was given as the point value of mass transfer coefficient. Results for the dissolution rate based on the solubility of the components in the water were compared with analytical solutions from previous studies and showed good agreement. The model showed that benzene had the largest dissolution rate, while o-xylene had the lowest rate because of its lower fraction. Benzene dissolution rate was approximately 2.6, which was 20.6 times that of toluene and ethylbenzene. It was concluded that the model is useful in predicting and monitoring the dissolution rate of BTEX contaminants in soil and water systems. 22 refs., 2 tabs., 3 figs

  12. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    Science.gov (United States)

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Abd-Elnaiem, Alaa M.; Mebed, A.M.; El-Said, Waleed Ahmed; Abdel-Rahim, M.A.

    2014-01-01

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  14. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  15. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  16. Solvent anode for plutonium purification

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Fife, K.W.; Christensen, D.C.

    1986-01-01

    The purpose of this study is to develop a technique to allow complete oxidation of plutonium from the anode during plutonium electrorefining. This will eliminate the generation of a ''spent'' anode heel which requires further treatment for recovery. Our approach is to employ a solvent metal in the anode to provide a liquid anode pool throughout electrorefining. We use molten salts and metals in ceramic crucibles at 700 0 C. Our goal is to produce plutonium metal at 99.9% purity with oxidation and transfer of more than 98% of the impure plutonium feed metal from the anode into the salt and product phases. We have met these criteria in experiments on the 100 to 1000 g scale. We plan to scale our operations to 4 kg of feed plutonium and to optimize the process parameters

  17. Formalization of the kinetics for autocatalytic dissolutions. Focus on the dissolution of uranium dioxide in nitric medium

    International Nuclear Information System (INIS)

    Charlier, F.; Canion, D.; Gravinese, A.; Magnaldo, A.; Lalleman, S.; Borda, G.; Schaer, E.

    2017-01-01

    Uranium dioxide dissolution in nitric acid is a complex reaction. On the one hand, the dissolution produces nitrous oxides (NOX), which makes it a triphasic reaction. On the other hand, one of the products accelerates the kinetic rate; the reaction is hence called autocatalytic.The kinetics for these kinds of reactions need to be formalized in order to optimize and design innovative dissolution reactors. In this work, the kinetics rates have been measured by optical microscopy using a single particle approach. The advantages of this analytical technique are an easier management of species transport in solution and a precise following of the dissolution rate. The global rate is well described by a mechanism considering two steps: a non-catalyzed reaction, where the catalyst concentration has no influence on the dissolution rate, and a catalyzed reaction. The mass transfer rate of the catalyst was quantified in order to discriminate when the reaction was influenced by catalyst accumulated in the boundary layer or uncatalyzed. This first approximation described well the sigmoid dissolution curve profile. Moreover, experiments showed that solutions filled with catalyst proved to lose reactivity over time. Results pointed out that the higher the liquid-gas exchanges, the faster the kinetic rate decreases with time. Thus, it was demonstrated, for the first time, that there is a link between catalyst and nitrous oxides. The outcome of this study leads to new ways for improving the design of dissolvers. Gas-liquid exchanges are indeed a lever to impact dissolution rates. Temperature and catalyst concentration can be optimized to reduce residence times in dissolvers. (authors)

  18. Cathodoluminescence study of anodic nanochannel alumina

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Q.X. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan)]. E-mail: guoq@cc.saga-u.ac.jp; Hachiya, Y. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Tanaka, T. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Nishio, M. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Ogawa, H. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan)

    2006-07-15

    Nanochannel alumina (NCA) templates with highly ordered pore arrays were prepared by anodizing pure aluminum foil in acid solutions. Cathodoluminescence measurements reveal that a blue emission band appears at around 2.8 eV and its energy position depends on measurement temperature and pore size of NCA. The shift of the blue emission band energy with temperature is ascribed to the variations of electron-phonon interactions. X-ray absorption near-edge fine structure results show that the blue emission band shift with pore size is due to the local environment change of atoms in NCA.

  19. Anode pattern formation in atmospheric pressure air glow discharges with water anode

    NARCIS (Netherlands)

    Verreycken, T.; Bruggeman, P.J.; Leys, C.

    2009-01-01

    Pattern formation in the anode layer at a water electrode in atmospheric pressure glow discharges in air is studied. With increasing current a sequence of different anode spot structures occurs from a constricted homogeneous spot in the case of small currents to a pattern consisting of small

  20. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. On-line monitoring of lithium carbonate dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhu; Song, Xingfu; Wang, Jin; Luo, Yan; Yu, Jianguo [National Engineering Research Center for Integrated Utilization Salt Lake Resources, East China University of Science and Technology, Shanghai (China)

    2009-11-15

    Dissolution of lithium carbonate (Li{sub 2}CO{sub 3}) in aqueous solution was investigated using three on-line apparatuses: the concentration of Li{sub 2}CO{sub 3} was measured by electrical conductivity equipment; CLD (Chord Length Distribution) was monitored by FBRM (Focused Beam Reflectance Measurement); crystal image was observed by PVM (Particle Video Microscope). Results show dissolution rate goes up with a decrease of particle size, and with an increase in temperature; stirring speed causes little impact on dissolution; ultrasound facilitates dissolution obviously. The CLD evolution and crystal images of Li{sub 2}CO{sub 3}powders in stirred fluid were observed detailedly by FBRM and PVM during dissolution. Experimental data were fitted to Avrami model, through which the activation energy was found to be 34.35 kJ/mol. PBE (Population Balance Equation) and moment transform were introduced to calculate dissolution kinetics, obtaining correlation equations of particle size decreasing rate as a function of temperature and undersaturation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  3. Effect of the Crevice Former on the Corrosion Behavior of 316L Stainless Steel in Chloride-Containing Synthetic Tap Water

    Science.gov (United States)

    Kim, Seon-Hong; Lee, Ji-Hoon; Kim, Jung-Gu; Kim, Woo-Cheol

    2018-05-01

    To restrain the failure of the plate heat exchanger (PHE) in customer boiler working fluid, the effect of crevice former type on the corrosion behavior of the 316L stainless steel plate was investigated using electrochemical methods and surface analyses in chloride-containing synthetic tap water (60 °C). The localized corrosion under metal-metal crevice condition was initiated more easily than that under the metal-gasket crevice condition due to the restricted mass transport at the gasket crevice mouth. However, the anodic current under the metal-metal crevice condition was lower than that under metal-gasket crevice condition at a higher anodic potential, indicating that that the metal dissolution under EPDM crevice would be higher than that under metal crevice under the accelerated corrosion condition. Because narrow crevice gap that was formed under gasket accelerated the anodic dissolution at the crevice mouth, the perforation tendency under metal-gasket crevice condition is much higher than that under metal-metal crevice condition. As a result, the crevice geometry, especially the crevice gap, mainly affected the corrosion behavior of PHE material.

  4. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  5. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    OpenAIRE

    CHEN Gao-hong; HU Yuan-sen; YU Mei; LIU Jian-hua; LI Guo-ai

    2017-01-01

    Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance ...

  6. Formation and Entrapment of Tris(8-hydroxyquinolinealuminum from 8-Hydroxyquinoline in Anodic Porous Alumina

    Directory of Open Access Journals (Sweden)

    Shohei Yamaguchi

    2016-08-01

    Full Text Available The formation and entrapment of tris(8-hydroxyquinolinealuminum (Alq3 molecules on the surface of anodic porous alumina (APA immersed in an ethanol solution of 8-hydroxyquinoline (HQ were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration on the adsorption and desorption of Alq3 species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq3 adsorption characteristics. The Alq3 content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq3 bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq3 species inside nanovoids and aggregated Alq3 clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq3 species formed from the HQ solution, which quantitatively exceeded the number of the Alq3 species adsorbed from the Alq3 solution. Alq3 molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq3 species because of their smaller sizes, which

  7. Electrochemical synthesis of magnetic nanostructures using anodic aluminum oxide templates

    Science.gov (United States)

    Gong, Jie

    In this dissertation, template electrodeposition was employed to fabricate high quality magnetic nanostructures suited for the reliable investigation of novel spintronics phenomena such as CIMS, BMR, and CPP-GMR. Several critical aspects/steps relating to the synthesis process were investigated in this work. In order to obtain high quality magnetic nanostructures, free-standing and Si-supported anodic aluminum oxide templates with closely controlled pore diameters, lengths, as well as constriction sizes, were synthesized by anodization, followed by appropriate post-processing. The pore opening size on the barrier layer can be controlled down to 5 nm by ion beam etching. After optimization of the compositional, structural, and magnetic properties of homogeneous FeCoNiCu layers electrodeposited under different conditions, the pulsed deposition process of FeCoNI/Cu multilayers on n-Si was studied. The influence of Cu deposition potential and Fe2+ concentration on microstructure, chemical and electrochemical properties, magnetic properties, and hence magnetotransport properties were assessed. The dissolution of the FM layer during potential transition was minimized in order to control interface sharpness. Combined with the systematic sublayer thickness and FM layer composition optimization, unprecedented GMR sensitivity of 0.11%/Oe at 5-15 Oe was obtained. Growth of multilayer nanowires was performed, and contact to a single wire was attempted using an electrochemical technique. We succeeded in addressing a small number of nanowires and measured a CPP-GMR of 17%. Template electrodeposition thus provides a promising way to repeatably fabricate prototypes for spin dependent transport studies.

  8. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lambrinou, Konstantina, E-mail: klambrin@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Charalampopoulou, Evangelia [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van der Donck, Tom [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Delville, Rémi [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Schryvers, Dominique [University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2017-07-15

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10{sup −8} mass%) static liquid lead-bismuth eutectic (LBE) for 253–3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack. - Highlights: •Dissolution corrosion was more severe in cold-deformed than solution-annealed 316L steels. •LBE penetration occurred along preferential paths in the steel microstructure. •The maximum dissolution rate was inversely proportionate to the depth of dissolution.

  9. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    Science.gov (United States)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  10. Monitoring the hydrolyzation of aspirin during the dissolution testing for aspirin delayed-release tablets with a fiber-optic dissolution system

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-10-01

    Full Text Available The purpose of this study was to investigate the hydrolyzation of aspirin during the process of dissolution testing for aspirin delayed-release tablets. Hydrolysis product of salicylic acid can result in adverse effects and affect the determination of dissolution rate assaying. In this study, the technique of differential spectra was employed, which made it possible to monitor the dissolution testing in situ. The results showed that the hydrolyzation of aspirin made the percentage of salicylic acid exceed the limit of free salicylic acid (4.0, and the hydrolyzation may affect the quality detection of aspirin delayed-release tablets. Keywords: Aspirin delayed-release tablets, Drug dissolution test, Fiber-optic dissolution system, UV–vis spectrum

  11. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    the electrolyte to change 3PB kinetics. Compared to Ni, Co doping activates the bulk oxygen more significantly, promoting the reaction at 2PB. The active surface reaction zone is found to be enlarged by the electrolyte with high oxygen activity (SSZ vs. YSZ) when charge transfer is one of the RDS. Due to the larger exchange current for charge transfer in 3PB with SSZ electrolyte, the adsorption gradient zone is broadened, leading to enhanced surface reaction kinetics. The potential application of such finding is demonstrated on SSZ/YSZ/SSZ sandwich, showing largely improved electrode performance, opening a wide door for the utilization of electrolytes that are too expensive, fragile or instable to be used before. The bulk path way in 2PB reaction can be affected by overpotential in terms of local vacancy concentration, built-in electrical field and stability. It is proven that an uneven distribution of lattice oxygen is established under operation conditions with overpotential by both qualitative analysis and analytic solution. An electrostatic field force is present besides the concentration gradient in the anode lattice to control the motion of oxygen ions. Compared to the usual estimation based on chemical diffusion mechanism, the real deviation of ionic defects concentration under polarization from the equilibrium state near electrode/electrolyte interface is smaller with the built-in electrical field. The overpotential is demonstrated to be able to open up or shut down the bulk pathway depending on the ionic defects of electrodes. The analysis on the bulk pathway in terms of local charged species and various potentials provides new insight in anion diffusion and electrode stability.

  12. Use of partial dissolution techniques in geochemical exploration

    Science.gov (United States)

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  13. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    Directory of Open Access Journals (Sweden)

    Webster TJ

    2013-01-01

    Full Text Available Alexandra P Ross, Thomas J WebsterSchool of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Current titanium-based implants are often anodized in sulfuric acid (H2SO4 for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study

  14. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  15. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  16. Aqueous dissolution rates of uranium oxides

    International Nuclear Information System (INIS)

    Steward, S.A.; Mones, E.T.

    1994-10-01

    An understanding of the long-term dissolution of waste forms in groundwater is required for the safe disposal of high level nuclear waste in an underground repository. The main routes by which radionuclides could be released from a geological repository are the dissolution and transport processes in groundwater flow. Because uranium dioxide is the primary constituent of spent nuclear fuel, the dissolution of its matrix in spent fuel is considered the rate-limiting step for release of radioactive fission products. The purpose of our work has been to measure the intrinsic dissolution rates of uranium oxides under a variety of well-controlled conditions that are relevant to a repository and allow for modeling. The intermediate oxide phase U 3 O 8 , triuranium octaoxide, is quite stable and known to be present in oxidized spent fuel. The trioxide, UO 3 , has been shown to exist in drip tests on spent fuel. Here we compare the results of essentially identical dissolution experiments performed on depleted U 3 O 8 and dehyrated schoepite or uranium trioxide monohydrate (UO 3 ·H 2 O). These are compared with earlier work on spent fuel and UO 2 under similar conditions

  17. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    Science.gov (United States)

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  18. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  19. Dissolution of metallic uranium in alkalis

    International Nuclear Information System (INIS)

    Mondino, Angel V.; Wilkinson, Maria V.; Manzini, Alberto C.

    1999-01-01

    The dissolution of U metallic foils has been studied in the framework of the development of an improved 99 Mo-production process. The best conditions for the dissolution of uranium foils of approximately 150 μm are the following: a) NaClO concentrations of 0.20 and 0.23 M with NaOH of 0.27 and 0.31 M respectively; b) temperature of the solution, 70 C degrees; c) volume of the solution, 15 ml / cm 2 of uranium foil; d) dissolution time, 30 minutes. (author)

  20. Development and Validation of a Dissolution Test Method for ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a dissolution test method for dissolution release of artemether and lumefantrine from tablets. Methods: A single dissolution method for evaluating the in vitro release of artemether and lumefantrine from tablets was developed and validated. The method comprised of a dissolution medium of ...

  1. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  2. Low temperature dissolution flowsheet for plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO2 production utilizes boiling HNO3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  3. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    Science.gov (United States)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  4. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn

    2006-07-15

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.

  5. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    International Nuclear Information System (INIS)

    Xue Wenbin

    2006-01-01

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed

  6. Comparison of the Multi-anode PMTs with the old HF PMTs by Studying the Collision Data

    CERN Document Server

    Oz, Yavuz

    2013-01-01

    The Hadron Forward (HF) calorimeter of the CMS detector improves jet detection and missing transverse energy resolution in the high pseudorapidity range. HF employs photomultiplier tubes (PMT) that measure the Cerenkov light emitted by shower products in quartz fibers. Stray muons that hit a PMT window create high energy events that are difficult to reject. To alleviate this problem, the PMTs installed in the CMS will be replaced with those of better performance. From among various candidate PMTs, quad-anode Hamamatsu R7600U-200-M4 were chosen to replace the single-anode Hamamatsu R7525HA PMTs. The quad-anode PMTs offer the possibility to reject window events at the hardware level; muons hitting the window are localized to a single anode, while real events illuminate all four anodes. In 2011, eight such PMTs were installed in the readout boxes corresponding to the coordinates $i\\phi=67$, $i\\eta=29,30,31,32$, which get very few hits on account of their location. The purpose of this thesis is to compare the res...

  7. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Zadorozne, N S; Giordano, C M; Rebak, R B; Ares, A E; Carranza, R M

    2012-01-01

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90 o C, and 1.148 mol/L NaHCO 3 ; 1.148 mol/L NaHCO 3 + 1 mol/L NaCl; 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl, at 90 o C, 75 o C, 60 o C and 25 o C. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  8. Solutal convection induced by dissolution. Influence on erosion dynamics and interface shaping.

    Science.gov (United States)

    Berhanu, Michael; Philippi, Julien; Cohen, Caroline; Derr, Julien; Courrech du Pont, Sylvain

    2017-04-01

    Rock fractures invaded by a water flow, are often subjected to dissolution, which let grow and evolve the initial fracture network, by evacuating the eroded minerals under a solute form. In the case of fast kinetic of dissolution, local erosion rate is set by the advection of the solute. The erosion velocity decreases indeed with the solute concentration at the interface and vanishes when this concentration reaches the saturation value. Even in absence of an imposed or external flow, advection can drive the dissolution, when buoyancy effects due to gravity induce a solutal convection flow, which controls the erosive dynamics and modifies the shape of the dissolving interface. Here, we investigate using model experiments with fast dissolving materials and numerical simulations in simplified situations, solutal convection induced by dissolution. Results are interpreted regarding a linear stability analysis of the corresponding solutal Rayleigh-Benard instability. A dissolving surface is suspended above a water height, initially at rest. In a first step, solute flux is transported through a growing diffusion layer. Then after an onset time, once the layer exceeds critical width, convection flow starts under the form of falling plumes. A dynamic equilibrium results in average from births and deaths of intermittent plumes, setting the size of the solute concentration boundary layer at the interface and thus the erosion velocity. Solutal convection can also induce a pattern on the dissolving interface. We show experimentally with suspended and inclined blocks of salt and sugar, that in a linear stage, the first wavelength of the dissolution pattern corresponds to the wavelength of the convection instability. Then pattern evolves to more complex shapes due to non-linear interactions between the flow and the eroded interface. More generally, we inquire what are the conditions to observe a such solutal convection instability in geological situations and if the properties of

  9. Dissolution rates of DWPF glasses from long-term PCT

    International Nuclear Information System (INIS)

    Ebert, W.L.; Tam, S.W.

    1996-01-01

    We have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 per m at 90 degrees C in tuff groundwater at pH values near 12 for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively

  10. Simfuel dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J.; Sandino, A.; Ollila, K.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwater at 25 deg C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend to congruent dissolution with the SIMFUEL matrix after a higher initial fractional release. Yttrium release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rates of dissolution of uranium has been observed

  11. SIMFUEL dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J; Sandino, A.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwaters at 25 degrees C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend of congruent dissolution with the SIMFUEL matrix after a higher initial fractional release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rate of dissolution of uranium has been observed. (au)

  12. Overview of chemical modeling of nuclear waste glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs

  13. Development and validation of dissolution test for Metoprolol ...

    African Journals Online (AJOL)

    The dissolution method which uses USP apparatus I (Basket) with rotating at 100 rpm, 900 ml of different dissolution medium, ultra violet spectroscopy for quantification was demonstrated to be robust, discriminating and transferable. Dissolution tests conditions were selected after it was demonstrated that the Metoprolol ...

  14. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  15. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    Science.gov (United States)

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment

    Directory of Open Access Journals (Sweden)

    Liwei Wang

    2018-03-01

    Full Text Available Influence of alternating current (AC on pitting corrosion and stress corrosion cracking (SCC behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP was investigated. Both corrosion and SCC are inhibited by −0.775 VSCE CP without AC interference. With the superimposition of AC current (1–10 mA/cm2, the direct current (DC potential shifts negatively under the CP of −0.775 VSCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of −0.95 VSCE and −1.2 VSCE, the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6–2 μm in diameter. AC enhances the SCC susceptibility of X70 steel under −0.775 VSCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm2 can enhance the SCC susceptibility.

  17. Formation and Entrapment of Tris(8-hydroxyquinoline)aluminum from 8-Hydroxyquinoline in Anodic Porous Alumina

    Science.gov (United States)

    Yamaguchi, Shohei; Matsui, Kazunori

    2016-01-01

    The formation and entrapment of tris(8-hydroxyquinoline)aluminum (Alq3) molecules on the surface of anodic porous alumina (APA) immersed in an ethanol solution of 8-hydroxyquinoline (HQ) were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration) on the adsorption and desorption of Alq3 species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq3 adsorption characteristics. The Alq3 content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq3 bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq3 species inside nanovoids and aggregated Alq3 clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq3 species formed from the HQ solution, which quantitatively exceeded the number of the Alq3 species adsorbed from the Alq3 solution. Alq3 molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq3 species because of their smaller sizes, which resulted in higher

  18. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  19. Dissolution testing of orally disintegrating tablets.

    Science.gov (United States)

    Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif

    2012-07-01

    For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  20. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  1. Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template

    Science.gov (United States)

    Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed

    2014-12-01

    Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).

  2. EFFECT OF PHOSPHORIC ACID CONCENTRATION AND ANODIZING TIME ON THE PROPERTIES OF ANODIC FILMS ON TITANIUM

    Directory of Open Access Journals (Sweden)

    DIMAS L. TORRES

    2015-07-01

    Full Text Available In this study, it was investigated the influence of electrolyte concentration and anodizing time on the electrochemical behaviour and morphology of anodic films formed on commercially pure Ti. Electrochemical methods and surface analyses were used to characterize the films. It was found that the electrolyte concentration and anodizing time affect the growth and protective characteristics of films in a physiologic medium. It was possible to observe their non-uniformity on Ti substrates under the tested conditions. In potentiodynamic profiles, it was observed that passivation current values are affected by an anodizing time increase. Variations in impedance spectra were associated with an increase of defects within the film.

  3. Optimum Exploration for the Self-Ordering of Anodic Porous Alumina Formed via Selenic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-01-01

    Improvements of the regularity of the arrangement of anodic porous alumina formed by selenic acid anodizing were investigated under various operating conditions. The oxide burning voltage increased with the stirring rate of the selenic acid solution, and the high applied voltage without oxide burning was achieved by vigorously stirring the solution. The regularity of the porous alumina was improved as the anodizing time and surface flatness increased. Conversely, the purity of the 99.5–99.999...

  4. Dissolution and compaction instabilities in geomaterials

    Science.gov (United States)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  5. Nano-porous anodic aluminium oxide membranes with 6-19 nm pore diameters formed by a low-potential anodizing process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan; Liu Xiaohua; Pan Caofeng; Zhu Jing [Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084 (China); Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2007-08-29

    Self-organized nano-porous anodic aluminium oxide (AAO) membranes with small pore diameters were obtained by applying a low anodizing potential in sulfuric acid solutions. The pore diameters of the as-prepared AAO membranes were in the range of about 6-19 nm and the interpore distances were about 20-58 nm. Low potentials (6-18 V) were applied in anodizing processes to make such small pores. A linear relationship between the anodizing potential (U{sub a}) and the interpore distance (D{sub int}) was also revealed. By carefully monitoring the current density's evolution as a function of time with different U{sub a} (2-18 V) during the anodizing processes, a new formula is proposed to simulate the self-ordering anodizing process.

  6. Effect of a cement buffer on spent fuel dissolution

    International Nuclear Information System (INIS)

    Mennecart, Thierry; Cachoir, Christelle; Lemmens, Karel; Gielen, Ben; Vercauter, Regina

    2012-01-01

    The Belgian agency for radioactive waste has selected the super-container design with an Ordinary Portland Cement (OPC) buffer as the reference design for geological disposal of High-Level Waste (HLW) and Spent Fuel (SF) in the Boom Clay formation. In the super-container design, the canisters of HLW or SF will be enclosed by a 30 mm thick carbon steel overpack and a 700 mm thick concrete buffer. The overpack will prevent contact with the (cementitious) pore water during the thermal phase. On the other hand, once the overpack will be locally perforated, the high pH of the incoming water may have an impact on the lifetime of the waste. Most published data and national programs are related to clayey backfill materials, and few studies are reported in alkaline media. Hence, a set of experiments was conducted to evaluate the behavior of spent fuel (UO 2 dissolution rate and UO 2 solubility) in such an environment. The objective was to estimate the spent fuel dissolution rate in super-container conditions for use in preliminary performance assessment calculations

  7. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media

    DEFF Research Database (Denmark)

    Sunesen, Vibeke Hougaard; Pedersen, Betty Lomstein; Kristensen, Henning Gjelstrup

    2005-01-01

    The purpose of the study was to design dissolution tests that were able to distinguish between the behaviour of danazol under fasted and fed conditions, by using biorelevant media. In vitro dissolution of 100mg danazol capsules was performed using the flow-through dissolution method. Flow rates w...

  8. The occurrence of perchlorate during drinking water electrolysis using BDD anodes

    International Nuclear Information System (INIS)

    Bergmann, M.E. Henry; Rollin, Johanna; Iourtchouk, Tatiana

    2009-01-01

    Electrochemical studies were carried out to estimate the risks of perchlorate formation in drinking water disinfected by direct electrolysis. Boron Doped Diamond (BDD) anodes were used in laboratory and commercially available cells at 20 deg. C. The current density was changed between 50 and 500 A m -2 . For comparison, other anode materials such as platinum and mixed oxide were also tested. It was found that BDD anodes have a thousandfold higher perchlorate formation potential compared with the other electrode materials that were tested. In long-term discontinuous experiments all the chloride finally reacted to form perchlorate. The same result was obtained when probable oxychlorine intermediates (OCl - , ClO 2 - , ClO 3 - ) were electrolysed in synthetic waters in the ppm range of concentrations. The tendency to form perchlorate was confirmed when the flow rate of drinking water was varied between 100 and 300 L h -1 and the temperature increased to 30 deg. C. In a continuous flow mode of operation a higher chloride concentration in the water resulted in a lower perchlorate formation. This can be explained by reaction competition of species near and on the anode surface for experiments both with synthetic and local drinking waters. It is concluded that the use of electrodes producing highly reactive species must be more carefully controlled in hygienically and environmentally oriented applications

  9. Anodic galvanostatic polarization of AA2024-T3 aircraft alloy in conventional mineral acids

    Energy Technology Data Exchange (ETDEWEB)

    Kozhukharov, S., E-mail: stephko1980@abv.bg [Department of Chemical Sciences, University of Chemical Technology and Metallurgy, 8 “Kliment Okhridski” Blvd, 1756, Sofia (Bulgaria); Girginov, Ch. [Department of Chemical Sciences, University of Chemical Technology and Metallurgy, 8 “Kliment Okhridski” Blvd, 1756, Sofia (Bulgaria); Avramova, I. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, 11 “Georgi Bonchev” Str., 1113, Sofia (Bulgaria); Machkova, M. [Department of Chemical Sciences, University of Chemical Technology and Metallurgy, 8 “Kliment Okhridski” Blvd, 1756, Sofia (Bulgaria)

    2016-09-01

    The present study is devoted to the determination of the impact of the anodization of AA2024-T3 alloys in HCl, HNO{sub 3}, H{sub 2}SO{sub 4} or H{sub 3}PO{sub 4} on the samples’ surface morphology and properties. Subsequent systematic assessments were performed by Scanning Electron Microscopy (SEM), Energy Dispersion X-Ray Spectroscopy (EDX) and X-ray Photoelectron Spectroscopy (XPS). These observations were combined with Linear Voltammetry (LVA) and Electrochemical Impedance Spectroscopy (EIS) after 48 and 168 h of exposure to a 3.5% NaCl model corrosive medium. The main result is, that completely different effects were observed in accordance to the acid used. It was established that the monoprotonic acids have a deep destructive effect due to dissolution of the alloy components, whereas the polyprotonic ones possess either indistinguishable influence, or surface film formation. - Highlights: • AA2024 was polarized anodically in 15%{sub wt} acid solutions at 15 mA cm{sup −2} for 2 h. • Four mineral acids were selected for investigation: HCl, HNO{sub 3}, H{sub 2}SO{sub 4} and H{sub 3}PO{sub 4}. • SEM, EDX and XPS were applied for morphological description. • Electrochemical characterizations were performed by EIS and linear voltammetry. • The acid used predetermines completely different interaction with the AA2024 alloy.

  10. Dissolution of FFTF vendor fuel

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone

  11. Dissolution of FFTF vendor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone.

  12. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  13. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  14. Hydrodynamic Impacts on Dissolution, Transport and Absorption from Thousands of Drug Particles Moving within the Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, James G.

    2017-11-01

    Following tablet disintegration, clouds of drug particles 5-200 μm in diameter pass through the intestines where drug molecules are absorbed into the blood. Release rate depends on particle size, drug solubility, local drug concentration and the hydrodynamic environment driven by patterned gut contractions. To analyze the dynamics underlying drug release and absorption, we use a 3D lattice Boltzmann model of the velocity and concentration fields driven by peristaltic contractions in vivo, combined with a mathematical model of dissolution-rate from each drug particle transported through the grid. The model is empirically extended for hydrodynamic enhancements to release rate by local convection and shear-rate, and incorporates heterogeneity in bulk concentration. Drug dosage and solubility are systematically varied along with peristaltic wave speed and volume. We predict large hydrodynamic enhancements (35-65%) from local shear-rate with minimal enhancement from convection. With high permeability boundary conditions, a quasi-equilibrium balance between release and absorption is established with volume and wave-speed dependent transport time scale, after an initial transient and before a final period of dissolution/absorption. Supported by FDA.

  15. Methods for making anodes for lithium ion batteries

    Science.gov (United States)

    Xu, Wu; Canfield, Nathan L.; Zhang, Ji-Guang; Liu, Wei; Xiao, Jie; Wang, Deyu; Yang, Z. Gary

    2015-05-26

    Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein the anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.

  16. In-situ spectroelectrochemical studies of radionuclide- contaminated surface films on metals and the mechanism of their formation and dissolution. 1997 annual progress report

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Mansour, A.N.; Melendres, C.A.; Mini, S.; Papapanayiotou, D.

    1997-01-01

    'The incorporation of radioactive contaminants into corrosion product scales on metals is being investigated using in-situ spectroscopic and electrochemical techniques. To facilitate the study, stable isotopes are used initially, while the corrosion films are simulated by electrodeposition of the appropriate oxide (hydroxide) onto a graphite substrate. Synchrotron x-ray absorption spectroscopy (XAS) is used to determine the structure and composition of the host oxide film, as well as the local structure of the impurity ion. Results on the incorporation of Sr and Ce into surface films of Ni(OH) 2 and NiOOH are reported. Cathodically deposited Ni(OH) 2 was found to be mainly in the α form while anodically prepared NiOOH consists of Ni +2 and Ni +4 phases. Sr in the films consists mainly of Sr 2+ which appears to be coordinated to oxygen atoms and is likely to exist as small domains of co-precipitated material. Ce in Ni(OH) 2 exists mainly as Ce +3 and as a Ce +4 species when co-deposited with NiOOH. The structure of the Ce +4 phase appears similar to a Ce(OH) 4 standard. However, x-ray diffraction and laser Raman measurements indicate that the latter chemical formulation is probably incorrect and that the material is more likely to be a disordered hydrous cerium oxide. Ce chemisorbed on Ni(OH) 2 and NiOOH films is predominantly in the +3 valency state. Iron oxide films prepared by anodic deposition from borate buffer solution containing Fe +2 , has been found by XAS to consist mainly of α FeOOH. The latter has been found by others to be the constituent of the corrosion film on iron; this lends credence to the present simulation approach. Future work will involve studies on the incorporation of radioactive Sr, Ce, and Cs, as well as U, into nickel and iron oxide films. Investigations on the structure and composition of chromium oxide films, the effect of temperature on the energetics and mechanism of incorporation of heavy metal ions, as well as the subsequent

  17. Dissolution of ion exchange resin by hydrogen peroxide

    International Nuclear Information System (INIS)

    Lee, S.C.

    1981-08-01

    The resin dissolution process was conducted successfully in full-scale equipment at the SRL Semiworks. A solution containing 0.001M Fe 2+ , or Fe 3+ , and 3 vol % H 2 O 2 in 0.1M HNO 3 is sufficient to dissolve up to 40 vol % resin slurry (Dowex 50W-X8). Foaming and pressurization can be eliminated by maintaining the dissolution temperature below 99 0 C. The recommended dissolution temperature range is 85 to 90 0 C. Premixing hydrogen peroxide with all reactants will not create a safety hazard, but operating with a continual feed of hydrogen peroxide is recommended to control the dissolution rate. An air sparging rate of 1.0 to 1.5 scfm will provide sufficient mixing. Spent resin from chemical separation contains DTPA (diethylenetriaminepentaacetic acid) residue, and the resin must be washed with 0.1M NH 4 OH to remove excess DTPA before dissolution. Gamma irradiation of resin up to 4 kW-hr/L did not change the dissolution rate significantly

  18. Dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Sanyoshi, H.; Nishina, H.; Toyota, O.; Yamamoto, R.; Nemoto, S.; Okamoto, F.; Togashi, A.; Kawata, T.; Hayashi, S.

    1991-01-01

    At the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the Chemical Processing Facility (CPF) has been continuing operation since 1982 for laboratory scale hot experiments on reprocessing of FBR mixed oxide fuel. As a part of these experiments, dissolution experiments have been performed to define the key parameters affecting dissolution rates such as concentration of nitric acid, temperature and burnup and also to confirm the amount of insoluble residue. The dissolution rate of the irradiated fuel was determined to be in proportion to the 1.7 power of the nitric acid concentration. The activation energy determined from the experiments varied from 6 to 11 kcal/mol depending on the method of dissolution. The dissolution rate decreased as the fuel burnup increased in low nitric acid media below 5 mol/l. However, it was found that the effect of the burnup became negligible in a high concentration of nitric acid media. The amount of insoluble residue and its constituents were evaluated by changing the dissolution condition. (author)

  19. Mathematical methods for quantification and comparison of dissolution testing data.

    Science.gov (United States)

    Vranić, Edina; Mehmedagić, Aida; Hadzović, Sabira

    2002-12-01

    In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methods of analysis described by Moore and Flanner. These authors have described difference factor (f1) and similarity factor (f2), which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations).

  20. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell

    Science.gov (United States)

    Huang, Jianhang; Yang, Zhanhong; Feng, Zhaobin; Xie, Xiaoe; Wen, Xing

    2016-04-01

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with nano silver grain coated with polypyrrole. When evaluated as anode material, the silver grain and polypyrrole layer not only suppress the dissolution of discharge product, but also helps to uniform electrodeposition due to substrate effect and its good conductivity, thus shows better cycling performance than bare ZnO electrode does.

  1. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    Science.gov (United States)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  2. DMFC anode polarization: Experimental analysis and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Marchesi, R. [Dipartimento di Energetica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2008-01-03

    Anode two-phase flow has an important influence on DMFC performance and methanol crossover. In order to elucidate two-phase flow influence on anode performance, in this work, anode polarization is investigated combining experimental and modelling approach. A systematic experimental analysis of operating conditions influence on anode polarization is presented. Hysteresis due to operating condition is observed; experimental results suggest that it arises from methanol accumulation and has to be considered in evaluating DMFC performances and measurements reproducibility. A model of DMFC anode polarization is presented and utilised as tool to investigate anode two-phase flow. The proposed analysis permits one to produce a confident interpretation of the main involved phenomena. In particular, it confirms that methanol electro-oxidation kinetics is weakly dependent on methanol concentration and that methanol transport in gas phase produces an important contribution in anode feeding. Moreover, it emphasises the possibility to optimise anode flow rate in order to improve DMFC performance and reduce methanol crossover. (author)

  3. An investigation on the effect of bleaching environment on pitting corrosion and trans-passive dissolution of 316 stainless steel

    International Nuclear Information System (INIS)

    Moayed, M.H.; Golestanipour, M.

    2004-01-01

    Pitting corrosion and trans-passive dissolution of 316 stainless steel in solution containing five percent of commercial bleaching liquid was investigated by employing potentiodynamic polarization method and recording corrosion potential during immersion. Today commercial bleaching liquids are widely used as cleaner additives, therefore, those house appliances made from stainless steels are in contact with aqueous solution containing bleaching liquid. This may cause sever localized corrosion and trans-passive dissolution. In order to investigate the possibility of trans-passive dissolution of stainless steel by bleaching liquid, potentiodynamic polarization and recording variation of corrosion potential of specimens were carried out in 0.2 M Na 2 SO 4 solution containing 5 %wt. commercial bleaching liquid. A 500 mV drop in trans-passive potential and also instantaneously ennobling corrosion potential revealed the possibility of trans-passive dissolution due to oxidizing effect of the species such as free chlorine and its derivatives in bleaching liquid. Evaluation of the occurrence of localized corrosion at the presence of Cl - and bleaching liquid was investigated by similar electrochemical experiments in 0.2 M Na 2 SO 4 + 0.4M NaCl containing 5%wt. bleaching solution. Initiation of stable pitting at potentials lower than trans-passive potential as well as sharp increasing of corrosion potential in this environment demonstrates the possibility of pitting corrosion. (authors)

  4. Anodization Parameters Influencing the Growth of Titania Nanotubes and Their Photoelectrochemical Response

    Directory of Open Access Journals (Sweden)

    Ying-Chin Lim

    2012-01-01

    Full Text Available TiO2 nanotubes (TNTs were fabricated by electrochemical oxidation of Ti foil in a standard two-electrode cell-containing NH4F. The effects of bath temperature, voltage ramp prior to constant voltage held during anodization and present of complexing agent on the crystalline phase, nanotube growth, and dimensional change of TNT were investigated using XRD and FESEM. The results show that tube length decreases with bath temperature attributed to faster chemical dissolution rate at high temperature. However, nanotubes growth rate was enhanced by ~260% with the addition of EDTA as the complexing agent. Meanwhile, the nanotubes diameter was found to be proportionally dependent on bath temperature but independent of the voltage ramp and addition of EDTA. Photoelectrochemical response under illumination was enhanced by using the calcined TNT and is strongly affected by its dimensional changes. Thus, desired properties of TNT can be obtained by tuning the electrochemical condition for a wide-range application.

  5. Multi-anode deep well radiation detector

    International Nuclear Information System (INIS)

    Rogers, A.H.; Sullivan, K.J.; Mansfield, G.R.

    1984-01-01

    An inner cylindrical cathode and outer cylindrical cathode are concentrically positioned about a vertical center axis. Vertical anode electrodes extend parallel to the center axis and are symmetrically arranged around the inter-cylinder space between the cathodes. The ends of the anode wires are supported by a pair of insulator rings and mounted near the top and bottom of the cathode cylinders. A collection voltage applied to each anode wire for establishing an inward radial E field to the inner cathode cylinder and an outward radial E field to the outer cathode cylinder. The anode-cathode assembly is mounted within a housing containing a conversion gas. A radioactive sample is inserted into the inner cathode which functions as a tubular, deep well radiation window between the sample environment and the conversion gas environment. A portion of the gamma radiations passing through the inter-cylinder region interact with the conversion gas to produce free electrons which are accelerated by the E fields and collected on the anode wires. The extremely small diameter of the anode wires intensifies the electric fields proximate each wire causing avalanche multiplication of the free electrons resulting in a detectable charge pulse. (author)

  6. Effect of Anode Dielectric Coating on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.; Semenov, V.

    2003-01-01

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode

  7. Oxidation and dissolution of UO{sub 2} in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Clarens, F. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Casas, I. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Rovira, M. [CTM Centre Tecnologic, Avda. Bases de Manresa 1. 08240 Manresa (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Bruno, J. [Enresa-Enviros Environmental Science and Waste Management Chair, UPC, Jordi Girona 1-3 B2, 08034 Barcelona (Spain)

    2005-10-15

    The objective of this work is to study the UO{sub 2} oxidation by O{sub 2} and dissolution in bicarbonate media and to extrapolate the results obtained to improve the knowledge of the oxidative dissolution of spent nuclear fuel. The results obtained show that in the studied range the oxygen consumption rate is independent on the bicarbonate concentration while the UO{sub 2} dissolution rate does depend on. Besides, at 10{sup -4} mol dm{sup -3} bicarbonate concentration, the oxygen consumption rate is almost two orders of magnitude higher than the UO{sub 2} dissolution rate. These results suggest that at low bicarbonate concentration (<10{sup -2} mol dm{sup -3}) the alteration of the spent nuclear fuel cannot be directly derived from the measured uranium concentrations in solution. On the other hand, the study at low bicarbonate concentrations of the evolution of the UO{sub 2} surface at nanometric scale by means of the SFM technique shows that the difference between oxidation and dissolution rates is not due to the precipitation of a secondary solid phase on UO{sub 2}.

  8. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Golden, J.L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  9. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  10. Frogging It: A poetic Analysis of Relationship Dissolution

    Directory of Open Access Journals (Sweden)

    Sandra L. Faulkner

    2012-10-01

    Full Text Available Often, themes in work and life intertwine; the author recognized that a cadre of poems she had written during the past several years were about relationship dissolution. The poems concerned romantic and friendship dissolution and the aspects of identity creation and loss this entails. The author presents the poems and makes an explicit connection to interpersonal relationship dissolution literature through the technique of poetic analysis. This analysis serves as an exemplar for how poetry as performative writing offers a valuable addition to interpersonal communication research through the poeticizing of relational dissolution as an everyday relational challenge.

  11. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

    Science.gov (United States)

    Reitman, Nadine G.; Ge, Shemin; Mueller, Karl

    2014-09-01

    Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

  12. Influence of the anodizing process variables on the acidic properties of anodic alumina films

    Directory of Open Access Journals (Sweden)

    D.E. Boldrini

    Full Text Available Abstract In the present work, the effect of the different variables involved in the process of aluminum anodizing on the total surface acidity of the samples obtained was studied. Aluminum foils were treated by the electro-chemical process of anodic anodizing within the following variable ranges: concentration = 1.5-2.5 M; temperature = 303-323 K; voltage = 10-20 V; time = 30-90 min. The total acidity of the samples was characterized by two different methods: acid-base titration using Hammett indicators and potentiometric titration. The results showed that anodizing time, temperature and concentration were the main variables that determined the surface acid properties of the samples, and to a lesser extent voltage. Acidity increased with increasing concentration of the electrolytic bath, whereas the rest of the variables had the opposite effect. The results obtained provide a novel tool for variable selection in order to use synthetized materials as catalytic supports, adding to previous research based on the morphology of alumina layers.

  13. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    International Nuclear Information System (INIS)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-01-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm −2 , 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP–AES, LECO and SEM–EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO 3 concentration

  14. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    Science.gov (United States)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-10-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm-2, 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP-AES, LECO and SEM-EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO3 concentration.

  15. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid.

    Science.gov (United States)

    Rao, K R S Sambasiva; Nagabhushanam, M V; Chowdary, K P R

    2011-03-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid.

  16. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Science.gov (United States)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  17. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    International Nuclear Information System (INIS)

    Reboul, S.; Hay, Michael; Zeigler, Kristine; Stone, Michael

    2009-01-01

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of ∼7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low (∼20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the

  18. Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditions

    DEFF Research Database (Denmark)

    Harthøj, Anders; Alimadadi, Hossein; Holt, Tobias

    2015-01-01

    in phase transformation of the steel and in formation of oxides with a poor electrical conductivity in the anode. In this study, the area specific resistance (ASR) of the steel Crofer 22 APU, in contact with a Ni/YSZ anode with and without a tape casted CeO2 barrier layer was measured in simulated SOFC...... anode conditions at 800◦C. The microstructure in the contact area was characterized using scanning electron microscopy techniques. The ASR was low for the steel in direct contact with the Ni/YSZ anode. Nickel diffusion into the steel resulted in a fine grained zone, which was identified as ferrite...

  19. The behavior of dissolution/passivation and the transformation of passive films during electrocoagulation: Influences of initial pH, Cr(VI) concentration, and alternating pulsed current

    International Nuclear Information System (INIS)

    Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Luo, Yuan-ling; Yang, Xia; Huang, Jing; Wang, Li-ke; Song, Pei-pei

    2015-01-01

    Highlights: • Initial pH, Cr(VI) and APC could affect the behavior of dissolution/passivation in Fe-EC. • A dissolution/passivation region was constructed with different initial pH-Cr(VI). • The film was rich in Fe and Cr at high Cr(VI), whereas with lots of Fe but negligible of Cr at low Cr(VI). • The film was non-protective at long T APC , but became more stable and protective at short T APC . • Behavior of dissolution/passivation and passive film transformation in Fe-EC was elucidated. - Abstract: The passivation behavior of an iron anode for electrocoagulation (EC) was first investigated using response surface methodology (RSM). Tested initial pH range, Cr(VI) concentration and alternating pulsed current (APC) were 4.0 to 8.0, 52 to 520 mg L −1 and 10 to 590 s, respectively. The distance between electrodes was 25 mm, and K 2 SO 4 (1 g L −1 ) was used as the supporting electrolyte in a 2.5 L EC reactor. Results confirmed that initial pH, Cr(VI) concentration, and APC significantly influence the extent of passivation. Then, based on the interaction effect on passivation behavior between initial pH and Cr(VI) in RSM, a pH-Cr(VI)-dissolution/passivation diagram was constructed with galvanostatic measurements. The diagram showed an optimal dissolution region for EC operation. This optimum was characterized by a reasonable final pH for extended precipitation and little passivation. Results of the cyclic voltammetry and X-ray photoelectron spectroscopy revealed a significant difference in the composition and stability of oxide films in the region with more pronounced passivation. Interestingly, the APC had both positive and negative effect on the passivation behavior. Long period of APC (T APC = 590 s) produced a non-protective film, which favored the Fe 0 dissolution. However, a more stable and protective passive film with a uniform structure of Fe and Cr oxides was formed by short T APC (10 s). Based on the above results, this study elucidated the

  20. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  1. Dissolution behaviour of silicon nitride coatings for joint replacements

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Maria [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Bryant, Michael [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Schmidt, Susann [Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping (Sweden); Engqvist, Håkan [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Hall, Richard M. [Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Neville, Anne [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Persson, Cecilia, E-mail: cecilia.persson@angstrom.uu.se [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden)

    2016-05-01

    In this study, the dissolution rate of SiN{sub x} coatings was investigated as a function of coating composition, in comparison to a cobalt chromium molybdenum alloy (CoCrMo) reference. SiN{sub x} coatings with N/Si ratios of 0.3, 0.8 and 1.1 were investigated. Electrochemical measurements were complemented with solution (inductively coupled plasma techniques) and surface analysis (vertical scanning interferometry and x-ray photoelectron spectroscopy). The dissolution rate of the SiN{sub x} coatings was evaluated to 0.2–1.4 nm/day, with a trend of lower dissolution rate with higher N/Si atomic ratio in the coating. The dissolution rates of the coatings were similar to or lower than that of CoCrMo (0.7–1.2 nm/day). The highest nitrogen containing coating showed mainly Si–N bonds in the bulk as well as at the surface and in the dissolution area. The lower nitrogen containing coatings showed Si–N and/or Si–Si bonds in the bulk and an increased formation of Si–O bonds at the surface as well as in the dissolution area. The SiN{sub x} coatings reduced the metal ion release from the substrate. The possibility to tune the dissolution rate and the ability to prevent release of metal ions encourage further studies on SiN{sub x} coatings for joint replacements. - Graphical abstract: Dissolution rates of SiN{sub 0.3}, SiN{sub 0.8}, and SiN{sub 1.1} coatings on CoCrMo compared to uncoated CoCrMo. Dissolution rates were obtained from i) electrochemical measurements of I{sub corr}, ii) the step height between covered and solution-exposed surfaces, measured using VSI, and iii) the ion concentration in the solution, measured with ICP. - Highlights: • The dissolution of SiN{sub x} coatings was investigated in comparison to (bulk) CoCrMo. • The coatings gave a lower or similar dissolution rate to CoCrMo, of 0.2–1.2 nm/day. • An increased nitrogen content in the coatings gave lower dissolution rates. • SiN{sub x} coatings on CoCrMo reduced the metal ion release

  2. Dissolution of nuclear fuels; Disolucion de combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A; Berberana Eizmendi, M; Rainey, R

    1968-07-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO{sub 2}, PuO{sub 2} and PuO{sub 2}-UO{sub 2} pellets in boiling nitric acid alone and with additives. The uranium metal and UO{sub 2} dissolved readily in nitric acid alone; PuO{sub 2} dissolved slowly even with the addition of fluoride; PuO{sub 2}-UO{sub 2} pellets containing as much as 35% PuO{sub 2} in UO{sub 2} gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO{sub 2}-UO{sub 2} pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs.

  3. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.

    Science.gov (United States)

    Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E

    2008-09-01

    Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells.

  4. Dissolution Model Development: Formulation Effects and Filter Complications

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2016-01-01

    This study describes various complications related to sample preparation (filtration) during development of a dissolution method intended to discriminate among different fenofibrate immediate-release formulations. Several dissolution apparatus and sample preparation techniques were tested. The fl....... With the tested drug–formulation combination, the best in vivo–in vitro correlation was found after filtration of the dissolution samples through 0.45-μm hydrophobic PTFE membrane filters....

  5. Catalysed electrolytic metal oxide dissolution processes

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  6. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  7. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  8. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    Science.gov (United States)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  9. Effect of alteration phase formation on the glass dissolution rate

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1997-01-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests

  10. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  11. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  12. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W L [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  13. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    Fetterman, Abe; Raitses, Yevgeny; Keidar, Michael

    2008-01-01

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  14. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  15. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    Science.gov (United States)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations

  16. Chrysotile dissolution rates: Implications for carbon sequestration

    International Nuclear Information System (INIS)

    Thom, James G.M.; Dipple, Gregory M.; Power, Ian M.; Harrison, Anna L.

    2013-01-01

    Highlights: • Uncertainties in serpentine dissolution kinetics hinder carbon sequestration models. • A pH dependent, far from equilibrium dissolution rate law for chrysotile. • F chrysotile (mol/m 2 /s) = 10 −0.21pH−10.57 at 22 °C over pH 2–10. • Laboratory dissolution rates consistent with mine waste weathering observations. • Potential for carbon sequestration in mine tailings and aquifers is assessed. - Abstract: Serpentine minerals (e.g., chrysotile) are a potentially important medium for sequestration of CO 2 via carbonation reactions. The goals of this study are to report a steady-state, far from equilibrium chrysotile dissolution rate law and to better define what role serpentine dissolution kinetics will have in constraining rates of carbon sequestration via serpentine carbonation. The steady-state dissolution rate of chrysotile in 0.1 m NaCl solutions was measured at 22 °C and pH ranging from 2 to 8. Dissolution experiments were performed in a continuously stirred flow-through reactor with the input solutions pre-equilibrated with atmospheric CO 2 . Both Mg and Si steady-state fluxes from the chrysotile surface, and the overall chrysotile flux were regressed and the following empirical relationships were obtained: F Mg =-0.22pH-10.02;F Si =-0.19pH-10.37;F chrysotile =-0.21pH-10.57 where F Mg , F Si , and F chrysotile are the log 10 Mg, Si, and molar chrysotile fluxes in mol/m 2 /s, respectively. Element fluxes were used in reaction-path calculations to constrain the rate of CO 2 sequestration in two geological environments that have been proposed as potential sinks for anthropogenic CO 2 . Carbon sequestration in chrysotile tailings at 10 °C is approximately an order of magnitude faster than carbon sequestration in a serpentinite-hosted aquifer at 60 °C on a per kilogram of water basis. A serpentinite-hosted aquifer, however, provides a larger sequestration capacity. The chrysotile dissolution rate law determined in this study has

  17. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  18. Waste form dissolution in bedded salt

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1980-01-01

    A model was devised for waste dissolution in bedded salt, a hydrologically tight medium. For a typical Spent UnReprocessed Fuel (SURF) emplacement, the dissolution rate wll be diffusion limited and will rise to a steady state value after t/sub eq/ approx. = 250 (1+(1-epsilon 0 ) K/sub D//epsilon 0 ) (years) epsilon 0 is the overpack porosity and K/sub d/ is the overpack sorption coefficient. The steady state dissolution rate itself is dominated by the solubility of UO 2 . Steady state rates between 5 x 10 -5 and .5 (g/year) are achievable by SURF emplacements in bedded salt without overpack, and rates between 5 x 10 -7 and 5 x 10 -3 (g/year) with an overpack having porosity of 10 -2

  19. Anodization of Aluminium using a fast two-step process

    Indian Academy of Sciences (India)

    283.6 eV. Keywords. Anodization; phosphoric acid; anodization time; anodized aluminium oxide; aluminium. ... of anodization.5–7 The AAO layer has a large band gap, good ..... transmittance increases as the anodised membrane is heated to ...

  20. Emotional and Cognitive Coping in Relationship Dissolution

    Science.gov (United States)

    Wrape, Elizabeth R.; Jenkins, Sharon Rae; Callahan, Jennifer L.; Nowlin, Rachel B.

    2016-01-01

    Dissolution of a romantic relationship can adversely affect functioning among college students and represents one primary reason for seeking campus counseling. This study examined the associations among common coping strategies and distress following relationship dissolution. Avoidance and repetitive negative thinking (RNT) were significantly…

  1. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  2. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Tsouris, Costas

    2006-01-01

    Carbon dioxide dissolution at intermediate ocean depths was studied using physical and mass transfer models. Particle density and hydrate layer thickness were determined using existing field data. Pseudo-homogeneous and heterogeneous mass transfer models were proposed to study the dissolution process. Pseudo-homogeneous models do not seem to represent the dissolution process well. Although heterogeneous models interpret the physical behavior better, unresolved issues related to hydrate dissolution still remain. For example, solid hydrate forms on one side of the hydrate film while it dissolves on the other. Dissolution is a complex process that comprises at least two sequential steps. The global process is controlled by mass transfer inside the hydrate layer or by a dissolution reaction at the hydrate-water interface

  3. Correlation Study of Magnetite Dissolution in Hybrid Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon-Byeong; Won, Hui-Jun; Park, Jung-Sun; Park, Sang-Yoon; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the operating plants, the localized corrosion on SG tubes which are transporters of thermal energy to the secondary side lowers the reduction heat transfer efficiency as well as degrades the lifetime of SG. Magnetite, Fe3O4, is a commonly found corrosion product on the inner surface of reactor coolant system. Simply magnetite can be reduced to hematite, Fe{sub 2}O{sub 3}, and further to iron when oxygen is limited or ample reducing agents are supplied. Along this line, number of decontamination processes has been developed since 1970s and most of them contain organic acid and additive chelating agents. However, many reports have pointed out the negative environmental effect of those chemicals, and currently there are new approaches to overcome the limited decontamination efficiency and large volume of secondary waste from other alternate processes without using such those organic chemicals. In present study, we investigated the magnetite dissolution in HyBRID solution as newly developing decontamination process. As a preliminary study for empirical modeling of decontamination by HyBRID solution, simply correlation study between variable and magnetite dissolution was introduced with studied mechanism and experimental results.

  4. Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO2 surfaces

    International Nuclear Information System (INIS)

    Wang, R.

    1981-03-01

    Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO 2 matrix material, specifically with single-crystal UO 2 , to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H 2 O 2 . In addition, the effects of temperature on dissolution of UO 2 were studied in autoclaves at 75 and 150 0 C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO 2 are proposed as follows: The UO 2 surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O 2 , or H 2 O 2 , to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO 3 hydrates. The thickness and porosity of the deposited UO 3 hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties

  5. Vulnerability of the paper Nautilus (Argonauta nodosa) shell to a climate-change ocean: potential for extinction by dissolution.

    Science.gov (United States)

    Wolfe, Kennedy; Smith, Abigail M; Trimby, Patrick; Byrne, Maria

    2012-10-01

    Shell calcification in argonauts is unique. Only females of these cephalopods construct the paper nautilus shell, which is used as a brood chamber for developing embryos in the pelagic realm. As one of the thinnest (225 μm) known adult mollusc shells, and lacking an outer protective periostracum-like cover, this shell may be susceptible to dissolution as the ocean warms and decreases in pH. Vulnerability of the A. nodosa shell was investigated through immersion of shell fragments in multifactorial experiments of control (19 °C/pH 8.1; pCO(2) 419; Ω(Ca) = 4.23) and near-future conditions (24 °C/pH 7.8-7.6; pCO(2) 932-1525; Ω(Ca) = 2.72-1.55) for 14 days. More extreme pH treatments (pH 7.4-7.2; pCO(2) 2454-3882; Ω(Ca) = 1.20-0.67) were used to assess tipping points in shell dissolution. X-ray diffractometry revealed no change in mineralogy between untreated and treated shells. Reduced shell weight due to dissolution was evident in shells incubated at pH 7.8 (projected for 2070) after 14 days at control temperature, with increased dissolution in warmer and lower pH treatments. The greatest dissolution was recorded at 24 °C (projected for local waters by 2100) compared to control temperature across all low-pH treatments. Scanning electron microscopy revealed dissolution and etching of shell mineral in experimental treatments. In the absence of compensatory mineralization, the uncovered female brood chamber will be susceptible to dissolution as ocean pH decreases. Since the shell was a crucial adaptation for the evolution of the argonauts' holopelagic existence, persistence of A. nodosa may be compromised by shell dissolution in an ocean-change world.

  6. Dissolution of the Upper Seven Rivers and Salado salt in the interior Palo Duro Basin, Texas: Revision: Topical report

    International Nuclear Information System (INIS)

    DeConto, R.T.; Murphy, P.J.

    1987-09-01

    The Upper Seven Rivers and Salado Formations contain the uppermost salts within the interior Palo Duro Basin, Stratigraphic and structural evidence based on geophysical well logs indicate that both dissolution and facies change have influenced the thickness of these uppermost salts. The magnitude of vertical salt loss due to dissolution is interminable at this time because original salt thickness is unknown. Gradual thinning of the Upper Seven Rivers Formation is recognized from south to north across the Palo Duro Basin. Anhydrites within the formation pinch out toward the basin margins, indicating that section loss is in part depositionally controlled. Additionally, informal subdivision of the Upper Seven Rivers Formation suggests that salt dissolution has occurred in the uppermost salt. A northeast-trending zone of thin Upper Seven Rivers Formation in portions of Deaf Smith, Randall, Castro, and Parmer Counties is possibly related to Tertiary dissolution. In New Mexico, local thinning of the Upper Seven Rivers Formation may be associated with faulting. Triassic erosion on uplifted fault blocks has affected the Upper Permian section. The Salado salt margin is located within the interior Palo Duro Basin. Geophysical well logs and core evidence indicate that the salt margin has migrated basinward as a result of dissolution. Permian dissolution probably contributed to some salt loss. 106 refs., 31 figs., 2 tabs

  7. Dissolution Threats and Legislative Bargaining

    DEFF Research Database (Denmark)

    Becher, Michael; Christiansen, Flemming Juul

    2015-01-01

    Chief executives in many parliamentary democracies have the power to dissolve the legislature. Despite a well-developed literature on the endogenous timing of parliamentary elections, political scientists know remarkably little about the strategic use of dissolution power to influence policymaking....... To address this gap, we propose and empirically evaluate a theoretical model of legislative bargaining in the shadow of executive dissolution power. The model implies that the chief executive's public support and legislative strength, as well as the time until the next constitutionally mandated election...

  8. Sodium tetraphenylborate solubility and dissolution rates

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.; Swingle, R.F.; Reeves, C.T.

    1995-01-01

    The rate of solid sodium tetraphenylborate (NaTPB) dissolution in In-Tank Precipitation salt solutions has been experimentally determined. The data indicates that the dissolution rate of solid NaTPB is a minor contributor the lag time experienced in the 1983 Salt Decontamination Demonstration Test and should not be considered as the rate determining step. Current analytical models for predicting the time to reach the composite lower flammability limit assume that the lag time is not more than 6 hours, and the data supports this assumption (i.e., dissolution by itself requires much less than 6 hours). The data suggests that another step--such as mass transport, the reaction of a benzene precursor or the mixing behavior--is the rate determining factor for benzene release to the vapor space in Tank 48H. In addition, preliminary results from this program show that the degree of agitation employed is not a significant parameter in determining the rate of NaTPB dissolution. As a result of this study, an improved equation for predicting equilibrium tetraphenylborate solubility with respect to temperature and sodium ion concentration has been determined

  9. Mathematical methods for quantification and comparison of dissolution testing data

    Directory of Open Access Journals (Sweden)

    Edina Vranić

    2002-02-01

    Full Text Available In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolutionoccurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematicalformulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methodsof analysis described by Moore and Flanner. These authors have described difference factor (f1 and similarity factor (f2, which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations.

  10. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  11. Status report on dissolution model development

    International Nuclear Information System (INIS)

    Jackson, D.D.

    1983-07-01

    The computer program PROTOCOL models the dissolution reactions of chemical species in water. It is being developed particularly to study the dissolution of proposed nuclear waste forms and related phases. Experimentally derived leaching rate functions are coupled to thermochemical equilibrium calculations and water flow rates. The program has been developed over a period of years. This report describes improvements that have been done in the past year

  12. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  13. The effect of precipitation on contaminant dissolution and transport: Analytic solutions

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1988-09-01

    We analysed the effect of precipitation on the dissolution and transport rates of a nondecaying contaminant. Precipitation near the waste surface can have a profound effect on dissolution and transport rates. The mass-transfer rate at the waste surface is controlled by the solid-liquid reaction rate to an extent determined by the modified reaction-rate modulus, α. At later times extending to steady state, the mass-transfer rate depends on the location of the precipitation front r/sub p/ and on the solubility ratio C/sub o//C/sub p/. A precipitation front very near the waste surface can change the dissolution mechanism from solubility-diffusion-controlled to chemical-reaction-rate controlled. Precipitation limits the concentration of the contaminant at r > r/sub p/ to C/sub p/, steepening the concentration gradient for dissolution on the waste package side of the front and flattening the gradient for transport in the region outside the front. This increases the rate of contaminant transport from the waste to the front while decreasing the rate of transport away from the front, when compared to the situation without precipitation. The difference in the transport rates at the front is the rate of precipitation. For large changes in solubility, most of the contaminant is immobilized by precipitation, as was observed in a parallel study. The effect of a precipitation front located nearby in surrounding rock is to increase the release rate at the waste surface/rock interface. The increase in release rate at the waste surface is greater the closer the precipitation and the larger the ratio C/sub o//C/sub p/, also observed by others. The release rates of other waste constituents that dissolve congruently with the solubility-controlling matrix can be increased by a local high-solubility region between the waste surface and the precipitation front. 10 refs., 5 figs

  14. 8 Dissolution Kinetics

    African Journals Online (AJOL)

    user

    Experiments measuring the dissolution rates of stilbite (NaCa [Al Si O ].14H O) in pH-buffered ... The rate law was established as R = k (a ) , where k is ... crystalline hydrated aluminosilicate minerals ..... from the crushing process, thin edges or.

  15. Dissolution studies of synthetic soddyite and uranophane

    International Nuclear Information System (INIS)

    Casas, I.; Perez, I.; Torrero, E.; Bruno, J.; Cera, E.; Duro, L.

    1997-09-01

    The dissolution of synthetically obtained soddyite and uranophane has been studied in solutions of low ionic strength. These are the likely final phases of the oxidative alternation pathway of uranium dioxide. The thermodynamic and kinetic dissolution properties of these phases have been determined at different bicarbonate concentrations. The solubilities determined in the experiments with soddyite correspond fairly well to the theoretical model calculated with a log K 0 s0 =3.9±0.7. For uranophane, the best fitting was obtained for a log K 0 s0 =11.7±0.6. The dissolution rate in the presence of bicarbonate gave for soddyite an average value of 6.8(±4.4) 10 -10 mol m -2 s -1 . For uranophane, under the same experimental conditions, the following dissolution rate equation has been derived: r 0 (mol m -2 s -1 )=10 -9±2. [HCO 3 - ] 0.69±0.09 2

  16. Does the dose-solubility ratio affect the mean dissolution time of drugs?

    Science.gov (United States)

    Lánský, P; Weiss, M

    1999-09-01

    To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.

  17. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    Science.gov (United States)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  18. Mechanisms and kinetics laws of inactive R7T7 reference glass dissolution in water at 90 deg C: initial dissolution rate measurements

    International Nuclear Information System (INIS)

    Advocat, T.; Ghaleb, D.; Vernaz, E.

    1993-02-01

    The initial dissolution rate of inactive R7T7 reference glass was measured at 90 deg C in dilute aqueous solutions first at unspecified pH, then with imposed pH values. In distilled water, R7T7 glass corrosion initially involved preferential extraction of boron and network modifier elements (Li, Na, Ca) as long as the solution pH remained acid. When the solution pH became alkaline, glass dissolution was stoichiometric. These two mechanisms were confirmed by dissolution tests in aqueous solutions at imposed pH values under acid and alkaline conditions. The initial dissolution rate r 0 in mole.cm -3 .s -1 also increased significantly in alkaline media when the pH of the aqueous phase increased: in slightly acid media, selective glass dissolution formed a residual, de-alkalinized, hydrated glass that was characterized by transmission electron microscopy and secondary ion mass spectrometry. Under steady-state dissolution conditions, the initial glass corrosion rate (in mole.cm -3 .s -1 ) was: in acid and alkaline media, amorphous and crystallized alteration products formed after complete dissolution of the silicated glass network. The first products formed consisted mainly of Zr, Rare Earths, Fe and Al. (author). 67 refs., 29 figs., 26 tabs., 21 plates

  19. Actor bonds after relationship dissolution

    DEFF Research Database (Denmark)

    Skaates, Maria Anne

    2000-01-01

    Most of the presented papers at the 1st NoRD Workshop can be classified as belonging to the business marketing approach to relationship dissolution. Two papers were conceptual, and the remaining six were empirical studies. The first conceptual study by Skaates (2000) focuses on the nature...... of the actor bonds that remain after a business relationship has ended. The study suggests that an interdisciplinary approach would provide a richer understanding of the phenomenon; this could be achieved by using e.g. Bourdieu's sociological concepts in dissolution research....

  20. Position-sensitive proportional counter with low-resistance metal-wire anode

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which uses a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counther. A pair of specially designed activecapacitance preamplifiers terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, lownoise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at te anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates

  1. Anode baking process optimization through computer modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D.; Lancaster, D.; Crowell, B. [Noranda Aluminum, New Madrid, MO (United States); Ouellet, R.; Jiao, Q. [Noranda Technology Centre, Pointe Claire, PQ (Canada)

    1998-12-31

    Carbon anodes used in aluminum electrolysis are produced in vertical or horizontal type anode baking furnaces. The carbon blocks are formed from petroleum coke aggregate mixed with a coal tar pitch binder. Before the carbon block can be used in a reduction cell it must be heated to pyrolysis. The baking process represents a large portion of the aluminum production cost, and also has a significant effect on anode quality. To ensure that the baking of the anode is complete, it must be heated to about 1100 degrees C. To improve the understanding of the anode baking process and to improve its efficiency, a menu-driven heat, mass and fluid flow simulation tool, called NABSIM (Noranda Anode Baking SIMulation), was developed and calibrated in 1993 and 1994. It has been used since then to evaluate and screen firing practices, and to determine which firing procedure will produce the optimum heat-up rate, final temperature, and soak time, without allowing unburned tar to escape. NABSIM is used as a furnace simulation tool on a daily basis by Noranda plant process engineers and much effort is expended in improving its utility by creating new versions, and the addition of new modules. In the immediate future, efforts will be directed towards optimizing the anode baking process to improve temperature uniformity from pit to pit. 3 refs., 4 figs.

  2. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  3. Impact de la preparation des anodes crues et des conditions de cuisson sur la fissuration dans des anodes denses

    Science.gov (United States)

    Amrani, Salah

    La fabrication de l'aluminium est realisee dans une cellule d'electrolyse, et cette operation utilise des anodes en carbone. L'evaluation de la qualite de ces anodes reste indispensable avant leur utilisation. La presence des fissures dans les anodes provoque une perturbation du procede l'electrolyse et une diminution de sa performance. Ce projet a ete entrepris pour determiner l'impact des differents parametres de procedes de fabrication des anodes sur la fissuration des anodes denses. Ces parametres incluent ceux de la fabrication des anodes crues, des proprietes des matieres premieres et de la cuisson. Une recherche bibliographique a ete effectuee sur tous les aspects de la fissuration des anodes en carbone pour compiler les travaux anterieurs. Une methodologie detaillee a ete mise au point pour faciliter le deroulement des travaux et atteindre les objectifs vises. La majorite de ce document est reservee pour la discussion des resultats obtenus au laboratoire de l'UQAC et au niveau industriel. Concernant les etudes realisees a l'UQAC, une partie des travaux experimentaux est reservee a la recherche des differents mecanismes de fissuration dans les anodes denses utilisees dans l'industrie d'aluminium. L'approche etait d'abord basee sur la caracterisation qualitative du mecanisme de la fissuration en surface et en profondeur. Puis, une caracterisation quantitative a ete realisee pour la determination de la distribution de la largeur de la fissure sur toute sa longueur, ainsi que le pourcentage de sa surface par rapport a la surface totale de l'echantillon. Cette etude a ete realisee par le biais de la technique d'analyse d'image utilisee pour caracteriser la fissuration d'un echantillon d'anode cuite. L'analyse surfacique et en profondeur de cet echantillon a permis de voir clairement la formation des fissures sur une grande partie de la surface analysee. L'autre partie des travaux est basee sur la caracterisation des defauts dans des echantillons d'anodes crues

  4. Laboratory simulation of salt dissolution during waste removal

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended

  5. Investigation of dissolution kinetics of a Nigerian columbite in ...

    African Journals Online (AJOL)

    Investigation of dissolution kinetics of a Nigerian columbite in hydrofluoric acid using the shrinking core model. ... Experimental results indicate that the dissolution rate is chemical reaction controlled, with reaction order of 0.57. Dissolution of over 90 % of the columbite was achieved in 5 h, using 20 M HF at 90 oC with 100 ...

  6. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  7. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  8. Do Workplace Sex Ratios Affect Partnership Formation and Dissolution?

    DEFF Research Database (Denmark)

    Svarer, Michael

    In this paper, I analyse the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios are not ......In this paper, I analyse the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios...

  9. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies

    International Nuclear Information System (INIS)

    Misra, Superb K.; Dybowska, Agnieszka; Berhanu, Deborah; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2012-01-01

    Dissolution of nanoparticles (NPs) is an important property that alters their abundance and is often a critical step in determining safety of nanoparticles. The dissolution status of the NPs in exposure media (i.e. whether they remain in particulate form or dissolve — and to what extent), strongly affects the uptake pathway, toxicity mechanisms and the environmental compartment in which NPs will have the highest potential impact. A review of available dissolution data on NPs demonstrates there is a range of potential outcomes depending on the NPs and the exposure media. For example two nominally identical nanoparticles, in terms of size and composition, could have totally different dissolution behaviours, subject to different surface modifications. Therefore, it is imperative that toxicological studies are conducted in conjunction with dissolution of NPs to establish the true biological effect of NPs and hence, assist in their regulation. -- Graphical abstract: Various physicochemical factors affecting dissolution of nanoparticles. Highlights: ► In this study we discuss dissolution of nanoparticles. ► Physicochemical properties of nanoparticles influence dissolution. ► Measuring dissolution of nanoparticles can help to understand their biological response.

  10. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  11. Crystal modifications and dissolution rate of piroxicam.

    Science.gov (United States)

    Lyn, Lim Yee; Sze, Huan Wen; Rajendran, Adhiyaman; Adinarayana, Gorajana; Dua, Kamal; Garg, Sanjay

    2011-12-01

    Piroxicam is a nonsteroidal anti-inflammatory drug with low aqueous solubility which exhibits polymorphism. The present study was carried out to develop polymorphs of piroxicam with enhanced solubility and dissolution rate by the crystal modification technique using different solvent mixtures prepared with PEG 4000 and PVP K30. Physicochemical characteristics of the modified crystal forms of piroxicam were investigated by X-ray powder diffractometry, FT-IR spectrophotometry and differential scanning calorimetry. Dissolution and solubility profiles of each modified crystal form were studied and compared with pure piroxicam. Solvent evaporation method (method I) produced both needle and cubic shaped crystals. Slow crystallization from ethanol with addition of PEG 4000 or PVP K30 at room temperature (method II) produced cubic crystal forms. Needle forms produced by method I improved dissolution but not solubility. Cubic crystals produced by method I had a dissolution profile similar to that of untreated piroxicam but showed better solubility than untreated piroxicam. Cubic shaped crystals produced by method II showed improved dissolution, without a significant change in solubility. Based on the XRPD results, modified piroxicam crystals obtained by method I from acetone/benzene were cube shaped, which correlates well with the FTIR spectrum; modified needle forms obtained from ethanol/methanol and ethanol/acetone showed a slight shift of FTIR peak that may be attributed to differences in the internal structure or conformation.

  12. Dissolution of cellulose in ionic liquid: A review

    Science.gov (United States)

    Mohd, N.; Draman, S. F. S.; Salleh, M. S. N.; Yusof, N. B.

    2017-02-01

    Dissolution of cellulose with ionic liquids (IL) and deep eutectic solvent (DES) lets the comprehensive dissolution of cellulose. Basically, cellulose can be dissolved, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Chloride based ionic liquids are suitable solvents for cellulose dissolution. Although the ILs is very useful in fine chemical industry, its application in the pharmaceutical and food industry have been very limited due to issues with toxicity, purity, and high cost. Seeing to these limitations, new green alternative solvent which is DES was used. This green solvents, may be definitely treated as the next-generation reagents for more sustainable industrial development. Thus, this review aims to discuss the dissolution of cellulose either with ionic liquids or DES and its application.

  13. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  14. Determination of the dissolution slowness surface by study of etched shapes I. Morphology of the dissolution slowness surface and theoretical etched shapes

    Science.gov (United States)

    Leblois, T.; Tellier, C. R.

    1992-07-01

    We propose a theoretical model for the anisotropic etching of crystals, in order to be applied in the micromachining. The originality of the model is due to the introduction of dissolution tensors to express the representative surface of the dissolution slowness. The knowledge of the equation of the slowness surface allows us to determine the trajectories of all the elements which compose the starting surface. It is then possible to construct the final etched shape by numerical simulation. Several examples are given in this paper which show that the final etched shapes are correlated to the extrema of the dissolution slowness. Since the slowness surface must be determined from experiments, emphasis is placed on difficulties encountered when we correlate theory to experiments. Nous avons modélisé le processus de dissolution anisotrope des cristaux en vue d'une application à la simulation des formes obtenues par photolithogravure chimique. La principale originalité de ce modèle tient à l'introduction de tenseurs de dissolution pour exprimer la surface représentative de la lenteur de dissolution. La connaissance de l'équation de la lenteur de dissolution permet de calculer les trajectoires des différents éléments constituant la surface de départ puis de reconstituer par simulation la forme dissoute. Les simulations démontrent que les formes limites des cristaux dissous sont corrélées aux extrema de la lenteur de dissolution. La détermination de la surface de la lenteur se faisant à partir de mesures expérimetales, nous nous sommes efforcés de montrer toutes les difficultés attachées à cette analyse.

  15. Magnetic resonance imaging of tablet dissolution.

    Science.gov (United States)

    Nott, Kevin P

    2010-01-01

    Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide

    International Nuclear Information System (INIS)

    Danilova, M.G.; Sveshnikova, L.L.; Stavitskaya, T.A.; Repinskij, S.M.

    1991-01-01

    Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide was investigated. Dependences of change of PbTe dissolution rate on concentration of hydrogen peroxide and alkali in the solution were obtained. It is shown that dissolution rate of lead telluride is affected by dissolution rate of lead oxide, representing the product of ReTe dissolution. The obtained regularities can be explained by change of solution structure with increase of KOH concentration and by the state of hydrogen peroxide in the solution

  17. Cadmium plated steel caps seal anodized aluminum fittings

    Science.gov (United States)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  18. The mineralogical characterization of tellurium in copper anodes

    Science.gov (United States)

    Chen, T. T.; Dutrizac, J. E.

    1993-12-01

    A mineralogical study of a «normal» commercial copper anode and six tellurium-rich copper anodes from the CCR Refinery of the Noranda Copper Smelting and Refining Company was carried out to identify the tellurium carriers and their relative abundances. In all the anodes, the major tellurium carrier is the Cu2Se-Cu2Te phase which occurs as a constituent of complex inclusions at the copper grain boundaries. In tellurium-rich anodes, the molar tellurium content of the Cu2Se-Cu2Te phase can exceed that of selenium. Although >85 pct of the tellurium occurs as the Cu2Se-Cu2Te phase, minor amounts are present in Cu-Pb-As-Bi-Sb oxide, Cu-Bi-As oxide, and Cu-Te-As oxide phases which form part of the grain-boundary inclusions. About 1 pct of the tellurium content of silver-rich anodes occurs in various silver alloys, but gold tellurides were never detected. Surprising is the fact that 2 to 8 pct of the total tellurium content of the anodes occurs in solid solution in the copper-metal matrix, and presumably, this form of tellurium dissolves at the anode interface during electrorefining.

  19. Development of 10×10 Matrix-anode MCP-PMT

    Science.gov (United States)

    Yang, Jie; Li, Yongbin; Xu, Pengxiao; Zhao, Wenjin

    2018-02-01

    10×10 matrix-anode is developed by high-temperature co-fired ceramics (HTCC) technology. Based on the new matrix-anode, a new kind of photon counting imaging detector - 10×10 matrix-anode MCP-PMT is developed, and its performance parameters are tested. HTCC technology is suitable for the MCP-PMT's air impermeability and its baking process. Its response uniformity is better than the metal-ceramic or metal-glass sealing anode, and it is also a promising method to realize a higher density matrix-anode.

  20. Investigation of the gas formation in dissolution process of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Zhang Qinfen; Liao Yuanzhong; Chen Yongqing; Sun Shuyun; Fan Yincheng

    1987-12-01

    The gas formation in dissolution process of two kinds of nuclear fuels was studied. The results shows that the maximum volume flow released from dissolution system is composed of two parts. One of them is air remained in dissolver and pushed out by acid vapor. The other is produced in dissolution reaction. The procedure of calculating the gas amount produced in dissolution process has been given. It is based on variation of components of dissolution solution. The gas amount produced in dissolution process of spent UO 2 fuel elements was calculated. The condenser system and loading volume of disposal system of tail gas of dissolution of spent fuel were discussed

  1. Chemical dissolution of spent fuel and cladding using complexed fluoride species

    International Nuclear Information System (INIS)

    Rance, P.J.W.; Freeman, G.A.; Mishin, V.; Issoupov, V.

    2001-01-01

    The dissolution of LWR fuel cladding using two fluoride ion donors, HBF 4 and K 2 ZrF 6 , in combination with nitric acid has been investigated as a potential reprocessing head-end process suitable for chemical decladding and fuel dissolution in a single process step. Maximum zirconium concentrations in the order of 0,75 to 1 molar have been achieved and dissolution found to continue to low F:Zr ratios albeit at ever decreasing rates. Dissolution rates of un-oxidised zirconium based fuel claddings are fast, whereas oxidised materials exhibit an induction period prior to dissolution. Data is presented relating to the rates of dissolution of cladding and UO 2 fuels under various conditions. (author)

  2. Columbia/Willamette Skill Builders Consortium. Final Performance Report. Appendix 5B Anodizing Inc. (Aluminum Extrusion Manufacturing). Basic Measurement Math. Instructors' Reports and Sample Curriculum Materials.

    Science.gov (United States)

    Taylor, Marjorie; And Others

    Anodizing, Inc., Teamsters Local 162, and Mt. Hood Community College (Oregon) developed a workplace literacy program for workers at Anodizing. These workers did not have the basic skill competencies to benefit from company training efforts in statistical process control and quality assurance and were not able to advance to lead and supervisory…

  3. Physical-mechanical and electrical properties of aluminium anodic films

    Energy Technology Data Exchange (ETDEWEB)

    Dima, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania); Anicai, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania)

    1995-11-01

    Mechanical, thermal and electrical properties of aluminium anodic films obtained by continuously anodization of Al wires of 4.5 mm diameter and Al sheets of 40 x 0.2 mm (Al min.99.5% purity), using an electrolyte based on oxalic acid, citric acid, boric acid, isopropilic alcohol, were investigated. The thickness of Al anodic oxide layers was 5 {+-} 1{mu}, 10 {+-} 1{mu}, for Al sheet, respectively 5 {+-} 1{mu}, 10 {+-} 1{mu}, 15 {+-} 1{mu}, for Al wire. To establish the influence of anodic film formation on mechanical parameters, measurements of breaking strength and relative elongation at break for anodized and non-anodized Al conductors, were made. In order to electrically characterize the anodic films, the breakdown voltage for different curvature radii of the conductor, between 50 - 12.5 mm, were measured. The influence of the layer thickness, as well as of the cracking during its bending, was established, too. To test the thermal resistance of the insulating anodic films, the Al conductors were subjected to 1 - 5 cyclic thermal shocks at 500 C. After the experimentals were done, it was found that Al anodic films of 5 {+-} 1{mu} may assure a breakdown voltage of minimum 200 V, for coils having a curvature radius greater than 12.5 mm and operating temperatures up to 500 C. From mechanical point of view, anodic oxide film determines a relatively reinforcing of Al conductor, but it doesn`t influence its functional properties. (orig.)

  4. High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Chandramohan, P.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2016-12-01

    High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe{sub (2−x)}Cr{sub x}O{sub 4} (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N{sub 2}H{sub 4}. Dissolution of oxide was found to be stoichiometric. - Highlights: • Dissolution of NiFe{sub (2−x)}Cr{sub x}O{sub 4} was remarkably increased at 160 °C in NTA medium. • The dissolution was significantly decreasing with the increase in Cr content in the oxide. • Dissolution rate is dependent on the lability of metal-oxo bonds. • The rate of dissolution was not significantly reduced in the presence of N{sub 2}H{sub 4.} • NTA at high temperature is effective for decontamination of stainless steel surfaces.

  5. Towards anode with low indium content as effective anode in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S. [Unite de Physique des Dispositifs a Semi-conducteurs, Universite El Manar Faculte des Sciences de Tunis, Campus Universitaire 2092 (Tunisia); Cattin, L.; Nguyen, D-T. [LUNAM, Universite de Nantes, Institut Jean Rouxel (IMN), UMR 6502, 2 rue de la Houssiniere, BP 92208, Nantes F-44322 (France); Morsli, M. [LUNAM, Universite de Nantes, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44322 (France); Louarn, G. [LUNAM, Universite de Nantes, Institut Jean Rouxel (IMN), UMR 6502, 2 rue de la Houssiniere, BP 92208, Nantes F-44322 (France); Bouteville, A.; Froger, V. [Arts et Metiers Paris Tech Angers, Laboratoire Procedes-Materiaux-Instrumentation, 2, bd du Ronceray, BP 3525, 49035 Angers Cedex (France); Bernede, J.C., E-mail: jean-christian.bernede@univ-nantes.fr [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la Houssiniere, BP 92208, Nantes F-44322 (France)

    2012-01-15

    In{sub 2}O{sub 3} thin films (100 nm thick) have been deposited by reactive evaporation of indium, in an oxygen partial atmosphere. Conductive ({sigma} = 3.5 Multiplication-Sign 10{sup 3} S/cm) and transparent films are obtained using the following experimental conditions: oxygen partial pressure = 1 Multiplication-Sign 10{sup -1} Pa, substrate temperature = 300 Degree-Sign C and deposition rate = 0.02 nm/s. Layers of this In{sub 2}O{sub 3} thick of 5 nm have been introduced in AZO/In{sub 2}O{sub 3} and FTO/In{sub 2}O{sub 3} multilayer anode structures. The performances of organic photovoltaic cells, based on the couple CuPc/C{sub 60}, are studied using the anode as parameter. In addition to these bilayers, other structures have been used as anode: AZO, FTO, AZO/In{sub 2}O{sub 3}/MoO{sub 3}, FTO/In{sub 2}O{sub 3}/MoO{sub 3} and FTO/MoO{sub 3}. It is shown that the use of the In{sub 2}O{sub 3} film in the bilayer structures improves significantly the cell performances. However the open circuit voltage is quite small while better efficiencies are achieved when MoO{sub 3} is present. These results are discussed in the light of surface roughness and surface work function of the different anodes.

  6. Toward a consistent model for glass dissolution

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Bourcier, W.L.

    1994-01-01

    Understanding the process of glass dissolution in aqueous media has advanced significantly over the last 10 years through the efforts of many scientists around the world. Mathematical models describing the glass dissolution process have also advanced from simple empirical functions to structured models based on fundamental principles of physics, chemistry, and thermodynamics. Although borosilicate glass has been selected as the waste form for disposal of high-level wastes in at least 5 countries, there is no international consensus on the fundamental methodology for modeling glass dissolution that could be used in assessing the long term performance of waste glasses in a geologic repository setting. Each repository program is developing their own model and supporting experimental data. In this paper, we critically evaluate a selected set of these structured models and show that a consistent methodology for modeling glass dissolution processes is available. We also propose a strategy for a future coordinated effort to obtain the model input parameters that are needed for long-term performance assessments of glass in a geologic repository. (author) 4 figs., tabs., 75 refs

  7. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  8. The dissolution kinetics of magnetite under regenerative conditions

    International Nuclear Information System (INIS)

    Ranganathan, S.

    2004-01-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H + from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe 3 O 4 in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  9. The dissolution kinetics of magnetite under regenerative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Frederiction (Canada). Dept. of Chemical Engineering; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V. [Water and Steam Chemistry Lab. of Bhabha Atomic Research Centre (BARC) (India)

    2004-07-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H{sup +} from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe{sub 3}O{sub 4} in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  10. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    Science.gov (United States)

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  11. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and laminat......Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...... and lamination will be described. Flexural strength of the reduced cermets measured using three-point bending configuration is 468±37MPa. The graded anode supports are characterized by scanning electron microscope observations, mercury porosimetry intrusion, and resistivity measurements, showing an adequate...... of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying Tg (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the proposed process is a cost-effective method...

  12. Disintegration of highly soluble immediate release tablets: a surrogate for dissolution.

    Science.gov (United States)

    Gupta, Abhay; Hunt, Robert L; Shah, Rakhi B; Sayeed, Vilayat A; Khan, Mansoor A

    2009-01-01

    The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria.

  13. Room Temperature Anodization of Aluminum at Low Voltage

    International Nuclear Information System (INIS)

    Kamal, A.; Abdel-Karim, R.; El-Raghy, S.; EL-Sherif, R.M.; Wheed, A.

    2013-01-01

    Membranes with nanometer-scale features have many applications, such as in optics, electronics, catalysis, selective molecule separation, filtration and purification, bio sensing, and single-molecule detection. Anodization process was conducted using 15, 20, 30 and 35% by volume phosphoric acid. Results showed that Porous Anodized Aluminum (PAA) with ideal nano pore arrays can be fabricated at room temperature by one-step anodization on high purity aluminum foil at 5 V. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The electrochemical behavior of anodized aluminum was studied in 0.1 M Na 2 SO 4 solutions using electrochemical impedance spectroscopy (EIS). The highest resistance of the porous layer (R p ) was detected for the samples anodized in 20% phosphoric acid

  14. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    Science.gov (United States)

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Collective dissolution of microbubbles

    Science.gov (United States)

    Michelin, Sébastien; Guérin, Etienne; Lauga, Eric

    2018-04-01

    A microscopic bubble of soluble gas always dissolves in finite time in an undersaturated fluid. This diffusive process is driven by the difference between the gas concentration near the bubble, whose value is governed by the internal pressure through Henry's law, and the concentration in the far field. The presence of neighboring bubbles can significantly slow down this process by increasing the effective background concentration and reducing the diffusing flux of dissolved gas experienced by each bubble. We develop theoretical modeling of such diffusive shielding process in the case of small microbubbles whose internal pressure is dominated by Laplace pressure. We first use an exact semianalytical solution to capture the case of two bubbles and analyze in detail the shielding effect as a function of the distance between the bubbles and their size ratio. While we also solve exactly for the Stokes flow around the bubble, we show that hydrodynamic effects are mostly negligible except in the case of almost-touching bubbles. In order to tackle the case of multiple bubbles, we then derive and validate two analytical approximate yet generic frameworks, first using the method of reflections and then by proposing a self-consistent continuum description. Using both modeling frameworks, we examine the dissolution of regular one-, two-, and three-dimensional bubble lattices. Bubbles located at the edge of the lattices dissolve first, while innermost bubbles benefit from the diffusive shielding effect, leading to the inward propagation of a dissolution front within the lattice. We show that diffusive shielding leads to severalfold increases in the dissolution time, which grows logarithmically with the number of bubbles in one-dimensional lattices and algebraically in two and three dimensions, scaling respectively as its square root and 2 /3 power. We further illustrate the sensitivity of the dissolution patterns to initial fluctuations in bubble size or arrangement in the case

  16. Kinetics of dissolution of calcium phosphate (Ca-P bioceramics

    Directory of Open Access Journals (Sweden)

    Lukas Brazda

    2008-06-01

    Full Text Available Hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP are widely used bioceramics for surgical or dental applications. This paper is dealing with dissolution kinetics of synthetically prepared β-TCP and four types of HAp granules. Two groups of HAp, treated at different temperatures, each of them with two different granule sizes, were tested. Three corrosive solutions with different pH and simulated body fluid (SBF were used for immersing of the samples. Changes in concentrations of calcium and phosphate ions, pH level and weight changes of the samples were observed. It was found that presence of TRIS buffer enhanced dissolution rate of the β-TCP approximately two times. When exposed to SBF solution, calcium phosphate (most probably hydroxyapatite precipitation predominates over β-TCP dissolution. Results from HAp samples dissolution showed some unexpected findings. Neither heat treatment nor HAp particle size made any major differences in dissolution rate of the same mass of each HAp sample.

  17. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  18. Microbially mediated barite dissolution in anoxic brines

    International Nuclear Information System (INIS)

    Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren; Renock, Devon

    2017-01-01

    Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO_4, has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO_4. The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic

  19. Standard practice for preparation and dissolution of plutonium materials for analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice is a compilation of dissolution techniques for plutonium materials that are applicable to the test methods used for characterizing these materials. Dissolution treatments for the major plutonium materials assayed for plutonium or analyzed for other components are listed. Aliquants of the dissolved samples are dispensed on a weight basis when one of the analyses must be highly reliable, such as plutonium assay; otherwise they are dispensed on a volume basis. 1.2 The treatments, in order of presentation, are as follows: Procedure Title Section Dissolution of Plutonium Metal with Hydrochloric Acid 9.1 Dissolution of Plutonium Metal with Sulfuric Acid 9.2 Dissolution of Plutonium Oxide and Uranium-Plutonium Mixed Oxide by the Sealed-Reflux Technique 9.3 Dissolution of Plutonium Oxide and Uranium-Plutonium Mixed Oxides by Sodium Bisulfate Fusion 9.4 Dissolution of Uranium-Plutonium Mixed Oxides and Low-Fired Plutonium Oxide in Beakers 9.5 1.3 The values stated in SI units are to be re...

  20. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron

    Science.gov (United States)

    Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.

    2017-12-01

    Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.

  1. Atmospheric pressure arc discharge with ablating graphite anode

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2015-01-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement. (paper)

  2. Atmospheric pressure arc discharge with ablating graphite anode

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  3. Efavirenz Dissolution Enhancement I: Co-Micronization

    Directory of Open Access Journals (Sweden)

    Helvécio Vinícius Antunes Rocha

    2012-12-01

    Full Text Available AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV, one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS and polyvinylpyrrolidone (PVP. The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25 proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level.

  4. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.

    Science.gov (United States)

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B

    1997-06-01

    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  5. A new, bright and hard aluminum surface produced by anodization

    Science.gov (United States)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  6. Dissolution rates of over-the-counter painkillers: a comparison among formulations.

    Science.gov (United States)

    Alemanni, Matteo; Gatoulis, Sergio C; Voelker, Michael

    2016-06-01

    We wanted to compare the dissolution profile of several over-the-counter analgesics to understand whether the different formulation techniques employed to enhance absorption were associated with variations in the dissolution rate, a parameter known to affect drug absorption. We considered 5 formulations currently marketed in Italy: aspirin tablets (Aspirina Dolore e Infiammazione®), ibuprofen tablets and liquid capsules (Moment®), ibuprofen lysine tablets (Nurofenimmedia®) and dexketoprofen trometamol tablets (Enantyum®). Dissolution tests were performed according to the current USP/NF monograph dissolution procedure. Drug dissolution was evaluated at 1, 3, 6, 15, and 30 minutes since the start of the test. Dissolution was evaluated at three different pH: 1.2, 4.5 and 6.8. Every test was repeated 12 times. The aspirin formulation was by far the most rapid dissolving formulation, among those tested, with more than 80% of the tablet dissolved at 6 minutes for every pH considered. At pH 1.2 and 4.5, only the dexketoprofen formulation was able to reach the dissolution level of aspirin at 30 minutes, but had lower levels of dissolution at the previous time points. Instead, at pH 6.8, most of the formulations approached aspirin dissolution level, but only after 15 minutes. Ibuprofen capsules had the slowest kinetics, with a lag phase the first 6 minutes. Different formulation strategies can lead to great differences in the dissolution rates even among drugs of the same class, suggesting that enhancements in the formulation of painkillers can lead to improvements in drug absorption, and thus in the onset of analgesia.

  7. Reuse of Anode Slime Generated by the Zinc Industry to Obtain a Liquor for Manufacturing Electrolytic Manganese

    Science.gov (United States)

    Ayala, J.; Fernández, B.

    2013-08-01

    A hydrometallurgical process is proposed in this article to recover manganese from a zinc electrowinning residue. The article describes the digestion-leaching experiments, precipitation, and electrowinning assays to recover Mn from this residue. Anode slime is treated with sulfuric acidic in a furnace within a temperature range of 400-450°C, leached with water, and then filtered. The results show that the dissolution of manganese increases with increasing temperature in the digestion step. The recovery yield of manganese was higher than 90%. As manganese electrolysis requires an electrolyte free of Zn, Ni, Co, and Cu pollutants, the sulfuric acid liquor needs a purification step. Na2S is used to remove pollutants. The results obtained in this study have shown that the proposed process for the recovery of manganese from this type of residue is technically viable.

  8. Anodic electrochemical treatment of amorphous alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.; Osipov, Eh.K.; Isaev, A.V.; Trofimova, E.A.; Vasil'ev, V.Yu.

    1983-01-01

    The aim of the investigation is to reveal peculiarities of the process of anodic oxidation and properties of anode oxide films, formed on the surface of amorphous alloys. Amorphous alloys on the base of rectifying metals of Zr-Ni, Zr-Cu-Ni, Zr-Al-Ni, Zr-Cu-Sn, Zr-Al, Zr-Mo systems are studied. Electrolytes which do not dissolve or weakly dissolve oxide film, such as boric acid electrolyte (40-45 g/l H 3 BO 3 and 18 cm 3 /l of the 25% aqueous NH 4 OH solution) and 20% H 2 SO 4 solution, are used for oxidation. Results of investigations, carried out on amorphous alloys, contaning noticeable quantities of non-rectifying components - Cu, Ni, Sn, Fe, Mo etc - have shown that non-rectifying components harden a process of anodic oxidation and decrease the current efficiency. Amorphous alloys, containing only rectifying components are oxidated in anodic way, the regularities of film growth being similar to those obtained for crystalline materials

  9. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  10. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    Science.gov (United States)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  11. Dissolution of the Mors salt dome

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1982-01-01

    Regardless of the interpretation of the measured salinity profiles above the Mors salt dome, they can at most be the result of dissolution rates of about 0.004 mm per year. This means that it would take more than 2.5 mill. years to dissolve 10 m of salt. Variations in groun water velocity and cap rock porosity will not significantly change this condition. The stability of the Mors salt dome is therefore not affected by dissolution of the dome. (EG)

  12. In vitro acellular dissolution of mineral fibres: A comparative study.

    Science.gov (United States)

    Gualtieri, Alessandro F; Pollastri, Simone; Bursi Gandolfi, Nicola; Gualtieri, Magdalena Lassinantti

    2018-05-04

    The study of the mechanisms by which mineral fibres promote adverse effects in both animals and humans is a hot topic of multidisciplinary research with many aspects that still need to be elucidated. Besides length and diameter, a key parameter that determines the toxicity/pathogenicity of a fibre is biopersistence, one component of which is biodurability. In this paper, biodurability of mineral fibres of social and economic importance (chrysotile, amphibole asbestos and fibrous erionite) has been determined for the first time in a systematic comparative way from in vitro acellular dissolution experiments. Dissolution was possible using the Gamble solution as simulated lung fluid (pH = 4 and at body temperature) so to reproduce the macrophage phagolysosome environment. The investigated mineral fibres display very different dissolution rates. For a 0.25 μm thick fibre, the calculated dissolution time of chrysotile is in the range 94-177 days, very short if compared to that of amphibole fibres (49-245 years), and fibrous erionite (181 years). Diffraction and SEM data on the dissolution products evidence that chrysotile rapidly undergoes amorphization with the formation of a nanophasic silica-rich fibrous metastable pseudomorph as first dissolution step whereas amphibole asbestos and fibrous erionite show minor signs of dissolution even after 9-12 months.

  13. The effect of fuel chemistry on UO{sub 2} dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda, E-mail: amanda.casella@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-25, Richland, WA 99352 (United States); Hanson, Brady, E-mail: brady.hanson@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-27, Richland, WA 99352 (United States); Miller, William [University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2016-08-01

    The dissolution rate of both unirradiated UO{sub 2} and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO{sub 2} under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO{sub 2} and UO{sub 2} doped with varying concentrations of Gd{sub 2}O{sub 3}, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO{sub 2} and had a larger effect on pure UO{sub 2} than on those doped with Gd{sub 2}O{sub 3}. Oxygen dependence was observed in the UO{sub 2} samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO{sub 2} matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O{sub 2} concentrations in the leachate where the rates would typically be elevated. - Highlights: • UO{sub 2} dissolution rates were measured for a matrix of repository relevant conditions. • Dopants in the UO{sub 2} matrix lowered the dissolution rate. • Reduction in rates by dopants were increased at elevated temperature and O{sub 2} levels. • UO{sub 2} may be overly

  14. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  15. Carbon paint anode for reinforced concrete bridges in coastal environments

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Stephen D.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B. (ODOT); Laylor, H.M. (ODOT)

    2002-01-01

    Solvent-based acrylic carbon paint anodes were installed on the north approach spans of the Yaquina Bay Bridge (Newport OR) in 1985. The anodes continue to perform satisfactorily after more than 15 years service. The anodes were inexpensive to apply and field repairs are easily made. Depolarization potentials are consistently above 100 mV with long-term current densities around 2 mA/m 2. Bond strength remains adequate, averaging 0.50 MPa (73 psi). Some deterioration of the anode-concrete interface has occurred in the form of cracks and about 4% of the bond strength measurements indicated low or no bond. Carbon anode consumption appears low. The dominant long-term anode reaction appears to be chlorine evolution, which results in limited further acidification of the anode-concrete interface. Chloride profiles were depressed compared to some other coastal bridges suggesting chloride extraction by the CP system. Further evidence of outward chloride migration was a flat chloride profile between the anode and the outer rebar.

  16. Measurement of the surface charge accumulation using anodic aluminum oxide(AAO) structure in an inductively coupled plasma

    Science.gov (United States)

    Park, Ji-Hwan; Oh, Seung-Ju; Lee, Hyo-Chang; Kim, Yu-Sin; Kim, Young-Cheol; Kim, June Young; Ha, Chang-Seoung; Kwon, Soon-Ho; Lee, Jung-Joong; Chung, Chin-Wook

    2014-10-01

    As the critical dimension of the nano-device shrinks, an undesired etch profile occurs during plasma etch process. One of the reasons is the local electric field due to the surface charge accumulation. To demonstrate the surface charge accumulation, an anodic aluminum oxide (AAO) membrane which has high aspect ratio is used. The potential difference between top electrode and bottom electrode in an anodic aluminum oxide contact structure is measured during inductively coupled plasma exposure. The voltage difference is changed with external discharge conditions, such as gas pressure, input power, and gas species and the result is analyzed with the measured plasma parameters.

  17. Understanding focused ion beam guided anodic alumina nanopore development

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → We study the effect of FIB patterning on pore evolution during anodization. → FIB patterned concaves with 1.5 nm depth can effectively guide nanopore growth. → The edge effect of FIB guided patterns causes nanopores to bend. → Anodization window is enlarged to 50-80 V for 150 nm interpore distance hexagonal arrays. - Abstract: Focused ion beam (FIB) patterning in combination with anodization has shown great promise in creating unique pore patterns. This work is aimed to understand the effect of the FIB patterned sites in guiding anodized pore development. Highly ordered porous anodic alumina has been created with the guidance of FIB created patterns on electropolished aluminum followed by oxalic acid anodization. Shallow concaves created by the FIB with only 1.5 nm depth can effectively guide the growth of ordered nanopore patterns. With the guidance of the FIB pattern, the anodization rate is much faster and the nanopore growth direction bends at the boundary of the FIB patterned and un-patterned regions. FIB patterning also enlarges the anodization window; ordered nanopore arrays with 150 nm interpore distances can be produced under an applied potential from 50 V to 80 V. The fundamental understanding of these unique processes is discussed.

  18. Tungsten anode tubes with K-edge filters for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Beaman, S.; Lillicrap, S.C. (Wessex Regional Medical Physics Service, Bath (UK)); Price, J.L. (Jarvis Screening Centre, Guildford (UK))

    1983-10-01

    Optimum X-ray energies for mammography have previously been calculated using the maximum signal to noise ratio (SNR) per unit dose to the breast, or the minimum exposure for constant SNR. Filters having absorption edges at appropriate energy positions have been used to modify the shape of tungsten anode spectra towards the calculated optimum. The suitability of such spectra for practical use has been assessed by comparing the film image quality and the incident breast dose obtained using a K-edge filtered tungsten anode tube with that obtained using a molybdenum anode. Image quality has been assessed by using a 'random' phantom and by comparing mammograms where one breast was radiographed using a filtered tungsten anode tube and the other using a standard molybdenum anode unit. Relative breast doses were estimated from both ionisation chamber measurements with a phantom and thermoluminescent dosimetry measurements on the breast. Film image quality assessment indicated that the filtered tungsten anode tube gave results not significantly different from those obtained with a molybdenum anode tube for a tissue thickness of about 4 cm and which were better for larger breast thicknesses. Doses could be reduced to between one-half and one-third with the filtered tungsten anode tube.

  19. Tungsten anode tubes with K-edge filters for mammography

    International Nuclear Information System (INIS)

    Beaman, S.; Lillicrap, S.C.; Price, J.L.

    1983-01-01

    Optimum X-ray energies for mammography have previously been calculated using the maximum signal to noise ratio (SNR) per unit dose to the breast, or the minimum exposure for constant SNR. Filters having absorption edges at appropriate energy positions have been used to modify the shape of tungsten anode spectra towards the calculated optimum. The suitability of such spectra for practical use has been assessed by comparing the film image quality and the incident breast dose obtained using a K-edge filtered tungsten anode tube with that obtained using a molybdenum anode. Image quality has been assessed by using a 'random' phantom and by comparing mammograms where one breast was radiographed using a filtered tungsten anode tube and the other using a standard molybdenum anode unit. Relative breast doses were estimated from both ionisation chamber measurements with a phantom and thermoluminescent dosimetry measurements on the breast. Film image quality assessment indicated that the filtered tungsten anode tube gave results not significantly different from those obtained with a molybdenum anode tube for a tissue thickness of abut 4 cm and which were better for larger breast thicknesses. Doses could be reduced to between one-half and one-third with the filtered tungsten anode tube. (U.K.)

  20. Effect of exopolymers on oxidative dissolution of natural rhodochrosite by Pseudomonas putida strain MnB1: An electrochemical study

    International Nuclear Information System (INIS)

    Wang, Huawei; Zhang, Daoyong; Song, Wenjuan; Pan, Xiangliang; Al-Misned, Fahad A.; Golam Mortuza, M.

    2015-01-01

    Highlights: • The biogeochemical behavior of natural rhodochrosite was investigated by electrochemical methods. • Bacterial exopolymers contributed to the increasing dissolution of natural rhodochrosite. • Oxidative dissolution of natural rhodochrosite was well explained by Tafel and EIS analysis. - Abstract: Oxidative dissolution of natural rhodochrosite by the Mn(II) oxidizing bacterium Pseudomonas putida strain MnB1 was investigated based on batch and electrochemical experiments using natural rhodochrosite as the working electrode. Tafel curves and batch experiments revealed that bacterial exopolymers (EPS) significantly increased dissolution of natural rhodochrosite. The corrosion current significantly increased with reaction time for EPS treatment. However, the corrosion process was blocked in the presence of cells plus extra EPS due to formation of the passivation layer. Moreover, the scanning electron microscopy and the energy dispersive spectroscopy (SEM–EDS) results showed that the surface of the natural rhodochrosite was notably changed in the presence of EPS alone or/and bacterial cells. This study is helpful for understanding the role of EPS in bacterially oxidation of Mn(II). It also indicates that the Mn(II) oxidizing bacteria may exert their effects on Mn(II) cycle and other biological and biogeochemical processes much beyond their local ambient environment because of the catalytically dissolution of solid Mn(II) by EPS and the possible long distance transport of the detached EPS

  1. Infrared radiative properties of anodized aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V.C.; Sharma, A.

    1983-10-01

    Measurements of anodic film thicknesses and their total hemispherical thermal emittance for various current densities (0.55-3.85 ampere/dm/sup 2/), anodizing times (1-20 min), and oxalic acid concentrations (1-6 wt.%) show a linear relationship between the film thickness and the total hemispherical thermal emittance (epsilon). Changes in oxalic acid concentration (2-4 wt.%) have no significant effect on the film growth-rate and the rate at which epsilon increases with increasing anodizing time. Measurements of epsilon for wavelengths from 3 to 30 ..mu..m show that the film growth-rate has a marked effect on the I.R. radiative properties of aluminum.

  2. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Dosch, R.G.; Prevender, T.S.

    1975-01-01

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  3. Self-ordered Porous Alumina Fabricated via Phosphonic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2016-01-01

    Self-ordered periodic porous alumina with an undiscovered cell diameter was fabricated via electrochemical anodizing in a new electrolyte, phosphonic acid (H3PO3). High-purity aluminum plates were anodized in phosphonic acid solution under various operating conditions of voltage, temperature, concentration, and anodizing time. Phosphonic acid anodizing at 150-180 V caused the self-ordering behavior of porous alumina, and an ideal honeycomb nanostructure measuring 370-440 nm in cell diameter w...

  4. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    Science.gov (United States)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an

  5. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    Science.gov (United States)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  6. Pilot demonstration of cerium oxide coated anodes

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  7. Development and Validation of Discriminating and Biorelevant Dissolution Test for Lornoxicam Tablets.

    Science.gov (United States)

    Anumolu, P D; Sunitha, G; Bindu, S Hima; Satheshbabu, P R; Subrahmanyam, C V S

    2015-01-01

    The establishment of biorelevant and discriminating dissolution procedure for drug products with limited water solubility is a useful technique for qualitative forecasting of the in vivo behavior of formulations. It also characterizes the drug product performance in pharmaceutical development. Lornoxicam, a BCS class-II drug is a nonsteroidal antiinflammatory drug of the oxicam class, has no official dissolution media available in the literature. The objective of present work was to develop and validate a discriminating and biorelevant dissolution test for lornoxicam tablet dosage forms. To quantify the lornoxicam in dissolution samples, UV spectrophotometric method was developed using 0.01M sodium hydroxide solution as solvent at λma×376 nm. After evaluation of saturation solubility, dissolution, sink conditions and stability of lornoxicam bulk drug in different pH solutions and biorelevant media, the dissolution method was optimized using USP paddle type apparatus at 50 rpm rotation speed and 500 ml simulated intestinal fluid as discriminating and biorelevant dissolution medium. The similarity factor (f2) were investigated for formulations with changes in composition and manufacturing variations, values revealed that dissolution method having discriminating power and method was validated as per standard guidelines. The proposed dissolution method can be effectively applied for routine quality control in vitro dissolution studies of lornoxicam in tablets and helpful to pharmacopoeias.

  8. Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension.

    Science.gov (United States)

    Kakran, Mitali; Sahoo, Nanda Gopal; Li, Lin; Judeh, Zaher

    2010-04-01

    An evaporative precipitation of nanosuspension (EPN) method was used to fabricate composite particles of a poorly water-soluble antimalarial drug, artemisinin, with a hydrophilic polymer, polyethylene glycol (PEG), with the aim of enhancing the dissolution rate of artemisinin. We investigated the effect of polymer concentration on the physical, morphological and dissolution properties of the EPN-prepared artemisinin/PEG composites. The original artemisinin powder, EPN-prepared artemisinin nanoparticles and artemisinin/PEG composites were characterised by scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), dissolution testing and HPLC. The percentage dissolution efficiency, relative dissolution, time to 75% dissolution and mean dissolution time were calculated. The experimental drug dissolution data were fitted to various mathematical models (Weibull, first-order, Korsemeyer-Peppas, Hixson-Crowell cube root and Higuchi models) in order to analyse the release mechanism. The DSC and XRD studies suggest that the crystallinity of the EPN-prepared artemisinin decreased with increasing polymer concentration. The phase-solubility studies revealed an A(L)-type curve, indicating a linear increase in drug solubility with PEG concentration. The dissolution rate of the EPN-prepared artemisinin and artemisinin/PEG composites increased markedly compared with the original artemisinin powder. EPN can be used to prepare artemisinin nanoparticles and artemisinin/PEG composite particles that have a significantly enhanced dissolution rate. The mechanism of drug release involved diffusion and erosion.

  9. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    Science.gov (United States)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  10. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  11. Dissolution process of atmospheric aerosol particles into cloud droplets; Processus de dissolution des aerosols atmospheriques au sein des gouttes d'eau nuageuses

    Energy Technology Data Exchange (ETDEWEB)

    Desboeufs, K

    2001-01-15

    Clouds affect both climate via the role they play in the Earth's radiation balance and tropospheric chemistry since they are efficient reaction media for chemical transformation of soluble species. Cloud droplets are formed in the atmosphere by condensation of water vapour onto aerosol particles, the cloud condensation nuclei (CCN). The water soluble fraction of these CCN governs the cloud micro-physics, which is the paramount factor playing on the radiative properties of clouds. Moreover, this soluble fraction is the source of species imply in the oxidation/reduction reactions in the aqueous phase. Thus, it is of particular importance to understand the process controlling the solubilization of aerosols in the cloud droplets. The main purpose of this work is to investigate experimentally and theoretically the dissolution of particles incorporated in the aqueous phase. From the studies conducted up to now, we have identify several factors playing on the dissolution reaction of aerosols. However, the quantification of the effects of these factors is difficult since the current means of study are not adapted to the complexity of cloud systems. First, this work consisted to perform a experimental system, compound by an open flow reactor, enabling to follow the kinetic of dissolution in conditions representative of cloud. This experimental device is used to a systematic characterisation of the known factors playing on the dissolution, i.e. pH, aerosol nature, aerosol weathering... and also for the identification and the quantification of the effects of other factors: ionic strength, acid nature, clouds processes. These experiments gave quantitative results, which are used to elaborate a simple model of aerosol dissolution in the aqueous phase. This model considers the main factors playing on the dissolution and results in a general mechanism of aerosol dissolution extrapolated to the cloud droplets. (author)

  12. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Segura, Sergi, E-mail: sergigarcia@ub.edu [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Keller, Jürg [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Brillas, Enric [Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Radjenovic, Jelena, E-mail: j.radjenovic@awmc.uq.edu.au [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia)

    2015-02-11

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl{sup −} ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl{sub 2}/HClO/ClO{sup −}), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO{sup −} species led to the production of ClO{sub 3}{sup −} and ClO{sub 4}{sup −} ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment.

  13. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  14. Study of dissolution factors of U, Th and Ta

    International Nuclear Information System (INIS)

    Santos, Maristela; Medeiros, Geiza; Zouain, Felipe; Cunha, Kenya Dias da; Pitassi, Gabriel; Lima, Cintia; Leite, Carlos Vieira Barros; Nascimento, Jose Eduardo; Dalia, Kely Cristina

    2009-01-01

    Air pollution can be a problem in industrial processes, but monitoring and controlling the aerosols in the work place is not enough to estimate the occupational risk due to dust particle inhalation. The solubility in lung fluid is considered to estimate this risk. The aim of this study is to determine in vitro specific dissolution parameters for thorium (Th), uranium (U) and tantalum (Ta) associated to crystal lattice of a niobium mineral (pyrochlore). Th, U and Ta dissolution factors in vitro were obtained using the Gamble solution (Simulant Lung Fluid, SLF), PIXE (Particle Induced X ray Emission) and alpha spectrometry as analytical techniques. Ta, Th and U are present in the pyrochlore crystal lattice as oxide; however they have shown different dissolution parameters. The rapid dissolution fraction (fr), rapid dissolution rate (λr); slow dissolution rate (fs) and slow dissolution fraction ((λs) measured for tantalum oxide were equal to 0.1, 0.45 d -1 and 0.00007 d -1 , respectively; for uranium oxide fr was equal to 0.05, (λr equal to 1.1 d -1 ; (λs equal to 0.000068 d -1 ; for thorium oxide fr was 0.025, (λr was 1.5 d -1 and (λs: 0.000065 d -1 . These results show that chemical behavior of these 3 compounds in the SLF could not be represented by the same parameter. The ratio of uranium concentration in urine and feces samples from workers exposed to pyrochlore dust particle was determined. These values agree with the theoretical values of estimated uranium concentration using specific parameters for uranium oxide present in pyrochlore. (author)

  15. Microbial community composition is unaffected by anode potential

    KAUST Repository

    Zhu, Xiuping

    2014-01-21

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials. © 2013 American Chemical Society.

  16. Microbial community composition is unaffected by anode potential

    KAUST Repository

    Zhu, Xiuping; Yates, Matthew D.; Hatzell, Marta C.; Rao, Hari Ananda; Saikaly, Pascal; Logan, Bruce E.

    2014-01-01

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials. © 2013 American Chemical Society.

  17. Patterned titania nanostructures produced by electrochemical anodization of titanium sheet

    Science.gov (United States)

    Dong, Junzhe; Ariyanti, Dessy; Gao, Wei; Niu, Zhenjiang; Weil, Emeline

    2017-07-01

    A two-step anodization method has been used to produce patterned arrays of TiO2 on the surface of Ti sheet. Hexagonal ripples were created on Ti substrate after removing the TiO2 layer produced by first-step anodization. The shallow concaves were served as an ideal position for the subsequent step anodization due to their low electrical resistance, resulting in novel hierarchical nanostructures with small pits inside the original ripples. The mechanism of morphology evolution during patterned anodization was studied through changing the anodizing voltages and duration time. This work provides a new idea for controlling nanostructures and thus tailoring the photocatalytic property and wettability of anodic TiO2.

  18. Analysis and design of double-anode magnetron injection gun

    International Nuclear Information System (INIS)

    Yang Tie; Niu Xinjian; Liu Yinghui

    2013-01-01

    Based on electro-optical theory and adiabatic compression theory, a double-anode magnetic injection gun for TE 34,19 , 170 GHz gyrotron was analyzed and designed with EGUN software. Concerning with the factors such as positions of anode and magnetic field distance between anodes, we obtained the result that the velocity ratio of electron beam approximated 1.3, and the velocity spread was under 3%. Furthermore, we found that electron beam was sensitive with these factors, such as that the velocity ratio decreased when the distance between anodes increased, while the velocity spread decreased first and then increased. The double-anode magnetic injection gun is employed in the experiments of gyrotron. (authors)

  19. Rapid and gradual modes of aerosol trace metal dissolution in seawater

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2015-01-01

    Full Text Available Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al, cadmium (Cd, cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, nickel (Ni, lead (Pb, and zinc (Zn from natural aerosol samples in seawater over a 7 day period to (1 evaluate the role of extraction time in trace metal dissolution behavior and (2 explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples, to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples. Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples. Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.

  20. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    Science.gov (United States)

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  1. Mongol Warfare in the Pre-Dissolution Period »

    Directory of Open Access Journals (Sweden)

    Timothy May

    2015-01-01

    Full Text Available Although the Mongols used many of the tactics and strategies that steppe nomads had used for centuries, the Mongols refined steppe warfare so that this style of warfare reached its apogee during the Mongol Empire. Furthermore, the Mongols developed a style of warfare that made them possibly the greatest military force in history. This work examines several facets of the pre-dissolution period (1200–1260. With the dissolution of the Mongol Empire, Mongol warfare once again changed. In some areas it remained complex while in others it regressed to traditional forces of steppe warfare, still potent but not as effective as the pre-dissolution period.

  2. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  3. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of

  4. Effect of electrolyte composition on the active-to-passive transition behavior of 2205 duplex stainless steel in H2SO4/HCl solutions

    International Nuclear Information System (INIS)

    Lo, I-H.; Fu Yan; Lin, C.-J.; Tsai, W.-T.

    2006-01-01

    Selective dissolution could occur in duplex stainless steels (DSSs) due to the difference in chemical composition between the two constituent phases. In this study, the effect of H 2 SO 4 /HCl composition on the selective dissolution behavior was investigated. The results indicated that there were two distinct peaks appeared in the active-to-passive transition region in the polarization curve. The peak appeared at a lower potential region was associated with the preferential dissolution of ferrite phase while that for austenite at a higher potential. In the concentration ranges of 0.25-2 M of H 2 SO 4 and 0.25-2 M of HCl, the magnitude of the peak anodic current density and the resolution between these two peaks greatly depended on the composition of H 2 SO 4 /HCl. However, the anodic peaks corresponding to the respective dissolutions of ferrite and austenite became less distinguishable when the concentrations of HCl exceeded 1.2 M. Image analysis using scanning electron microscopy (SEM) was performed to confirm the selective dissolution of each constituent phase after potentiostatic polarization at the respective anodic peak potential

  5. Saltcake dissolution FY 1998 status report

    International Nuclear Information System (INIS)

    HERTING, D.L.

    1999-01-01

    A laboratory scouting study was completed on the dissolution characteristics of Hanford waste from three single-shell waste tanks: 241-BY-102, 241-BY-106, and 241-B-106. Gross dissolution behavior (percent undissolved solids as a function of dilution) is explained in terms of characteristics of individual salts in the waste. The percentage of the sodium inventory retrievable from the tanks by dissolving saltcake at reasonable dilution levels is estimated at 86% of the total sodium for tank BY-102, 98% for BY-106, and 79% for B-106

  6. Dissolution test for glibenclamide tablets

    Directory of Open Access Journals (Sweden)

    Elisabeth Aparecida dos Santos Gianotto

    2007-10-01

    Full Text Available The aim of this work is to develop and validate a dissolution test for glibenclamide tablets. Optimal conditions to carry out the dissolution test are 500 mL of phosphate buffer at pH 8.0, paddles at 75 rpm stirring speed, time test set to 60 min and using equipment with six vessels. The derivative UV spectrophotometric method for determination of glibenclamide released was developed, validated and compared with the HPLC method. The UVDS method presents linearity (r² = 0.9999 in the concentration range of 5-14 µg/mL. Precision and recoveries were 0.42% and 100.25%, respectively. The method was applied to three products commercially available on the Brazilian market.

  7. Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing

    International Nuclear Information System (INIS)

    Sah, Santosh Prasad; Tatsuno, Yasuhiro; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-01-01

    Research highlights: → We examined dielectric breakdown of anodic alumina by single pulse anodizing. → Current transients and morphology of discharge channels are dependent upon electrolyte and voltage. → There is a good correlation between current transient and morphology of discharge channel. → Healing of open discharge pores occurs in alkaline silicate, but not in pentaborate electrolyte. - Abstract: Single pulse anodizing of aluminium micro-electrode has been employed to study the behaviour of dielectric breakdown and subsequent oxide formation on aluminium in alkaline silicate and pentaborate electrolytes. Current transients during applying pulse voltage have been measured, and surface has been observed by scanning electron microscopy. Two types of current transients are observed, depending on the electrolyte and applied voltage. There is a good correlation between the current transient behaviour and the shape of discharge channels. In alkaline silicate electrolyte, circular open pores are healed by increasing the pulse width, but such healing is not obvious in pentaborate electrolyte.

  8. Spectroscopic measurements of anode plasma with cryogenic pulsed ion sources

    International Nuclear Information System (INIS)

    Yoneda, H.; Urata, T.; Ohbayashi, K.; Kim, Y.; Horioka, K.; Kasuya, K.

    1987-01-01

    In ion beam diodes, electromagnetic wave is coupled to ion beam. Ion is extracted from anode plasma, which is produced early in the power pulse. However, exact mechanism of anode plasma production, expansion and ion extraction process is unknown. In particularly, anode plasma expansion is seemed to be one of the reasons of rapid impedance collapse of the diode, which is serious problem in high power experiments. Some experimental results showed that anode plasma expansion velocity was about 5 times larger than that inferred from simple thermal velocity. Several explanations for these results were proposed; for example, electron collisionarity in anode plasma, fast neutral gas particle, diamagnetism. To solve this question, it is necessary to measure the characteristic of anode plasma with space and time resolution. The authors made spectroscopic measurements to investigate variety of electron temperature, electron density, expansion velocity of anode plasma with various ion sources

  9. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  10. Facile Fabrication of Ordered Anodized Aluminum Oxide Membranes with Controlled Pore Size by Improved Hard Anodization.

    Science.gov (United States)

    Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong

    2018-05-01

    We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.

  11. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  12. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings

    Science.gov (United States)

    Singer, F.

    Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.

  13. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  14. Anodic selective functionalization of cyclic amine derivatives

    OpenAIRE

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  15. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  16. Dissolution experiments of unirradiated uranium dioxide pellets

    International Nuclear Information System (INIS)

    Ollila, K.

    1985-01-01

    The purpose of this study was to measure the dissolution rate of uranium from unirradiated uranium dioxide pellets in deionized water and natural groundwater. Moreover, the solubility limit of uranium in natural groundwater was measured. Two different temperatures, 25 and 60 deg C were used. The low oxygen content of deep groundwater was simulated. The dissolution rate of uranium varied from 10 -7 to 10 -8 g cm -2 d -1 . The rate in reionized water was one order of magnitude lower than in groundwater. No great difference was observed between the natural groundwaters with different composition. Temperature seems to have effect on the dissolution rate. The solubility limit of uranium in natural groundwater in reducing conditions, at 25 deg C, varied from 20 to 600 μg/l and in oxidizing conditions, at 60 deg C, from 4 to 17 mg/l

  17. Natural gas anodes for aluminium electrolysis in molten fluorides.

    Science.gov (United States)

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process.

  18. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.

    Science.gov (United States)

    Kent, Ronald D; Vikesland, Peter J

    2012-07-03

    Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.

  19. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    Directory of Open Access Journals (Sweden)

    Enrique Quiroga-González

    2013-10-01

    Full Text Available Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001% over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity as well as the rates of charge flow per nominal area of anode are the highest for the present anode. With regard to applications, the specific parameters per area are more important than the specific gravimetric parameters like the gravimetric capacity, which is good for comparing the capacity between materials but not enough for comparing between anodes.

  20. Dissolution Enhancement of Rosuvastatin Calcium by Liquisolid Compact Technique

    Directory of Open Access Journals (Sweden)

    V. J. Kapure

    2013-01-01

    Full Text Available In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT. The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR analysis, X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.

  1. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  2. 15 CFR 295.23 - Dissolution of joint research and development ventures.

    Science.gov (United States)

    2010-01-01

    ... Development Ventures § 295.23 Dissolution of joint research and development ventures. Upon dissolution of any joint research and development venture receiving funds under these procedures or at a time otherwise... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Dissolution of joint research and...

  3. Frogging It: A Poetic Analysis of Relationship Dissolution

    Science.gov (United States)

    Faulkner, Sandra L.

    2012-01-01

    Often, themes in work and life intertwine; the author recognized that a cadre of poems she had written during the past several years were about relationship dissolution. The poems concerned romantic and friendship dissolution and the aspects of identity creation and loss this entails. The author presents the poems and makes an explicit connection…

  4. Phenol Contaminated Water Treatment on Several Modified Dimensionally Stable Anodes.

    Science.gov (United States)

    Jayathilaka, Pavithra Bhakthi; Hapuhinna, Kushani Umanga Kumari; Bandara, Athula; Nanayakkara, Nadeeshani; Subasinghe, Nalaka Deepal

    2017-08-01

      Phenolic compounds are some of the most common hazardous organics in wastewater. Removal of these pollutants is important. Physiochemical method such as electrochemical oxidation on dimensionally stable anodes is more convenient in removing such organic pollutants. Therefore, this study focuses on development of three different anodes for phenol contaminated water treatment. The performances of steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes were tested and compared. Nearly 50, 76, and 84% of chemical oxygen demand removal efficiencies were observed for steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes, respectively. The formation of intermediates was monitored for three anodes and the Ti/IrO2-Sb2O3 anode showed the most promising results. Findings suggest that the developed anode materials can enhance phenol oxidation efficiency and that mixed metal oxide layer has major influence on the anode. Among the selected metal oxide mixtures IrO2-Sb2O3 was the most suitable under given experimental conditions.

  5. Anodization of cast aluminium alloys produced by different casting methods

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2008-08-01

    Full Text Available In this paper the usability of two casting methods, of sand and high pressure cast for the anodization of AlSi12 and AlSi9Cu3 aluminium cast alloys was investigated. With defined anodization parameters like electrolyte composition and temperature, current type and value a anodic alumina surface layer was produced. The quality, size and properties of the anodic layer was investigated after the anodization of the chosen aluminium cast alloys. The Alumina layer was observed used light microscope, also the mechanical properties were measured as well the abrasive wear test was made with using ABR-8251 equipment. The researches included analyze of the influence of chemical composition, geometry and roughness of anodic layer obtained on aluminum casts. Conducted investigations shows the areas of later researches, especially in the direction of the possible, next optimization anodization process of aluminum casting alloys, for example in the range of raising resistance on corrosion to achieve a suitable anodic surface layer on elements for increasing applications in the aggressive environment for example as materials on working building constructions, elements in electronics and construction parts in air and automotive industry.

  6. Dissolution of oxide films on iron in aqueous solutions containing complexing anions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Lee, W.; Owen, D.G.

    1981-01-01

    The dissolution, in oxalic acid and oxalic acid plus ethylenediaminetetraacetate, of magnetite films grown at high temperature on iron has been studied under varying conditions of pH and temperature. For oxalate concentrations greater than about 2 x 10 -3 mol dm -3 , magnetite dissolves by direct chemical dissolution. The mechanism appears to involve adsorption of oxalate ions at ferric ion sites in the oxide lattice, followed by proton attack and desorption of cationic species. Once metal dissolution starts, β-ferrous oxalate dihydrate is precipitated on the electrode, leading to erratic fluctuations in the electrode potential and eventually to inhibition of metal dissolution. For oxalate concentrations -3 mol dm -3 , the predominant dissolution mechanism appears to involve reduction by the metal. Also, once solution penetration to the underlying metal has occurred, and the electrode has returned to the active state, autoreductive dissolution appears to predominate even at higher oxalate concentrations. This change in mechanism from predominantly chemical dissolution to predominantly autoreductive dissolution may be due, at least in part, to the desorption of oxalate ions at the more negative potentials achieved in the active state. (author)

  7. The Dissolution of Uranium Oxides in HB-Line Phase 1 Dissolvers

    International Nuclear Information System (INIS)

    Gray, J.H.

    2003-01-01

    A series of characterization and dissolution studies has been performed to define flowsheet conditions for the dissolution of uranium oxide materials in dissolvers. The samples selected for analysis were uranium oxide materials. The selection of these uranium oxide materials for characterization and dissolution studies was based on high enriched uranium content and trace levels of plutonium. Test results from the characterization study identified ferric oxide (Fe2O3) and iron/chromium/nickel (Fe/Cr/Ni) particles as impurities along with the tri-uranium oxide (U3O8) and uranium trioxide (UO3). The weight percent uranium in this material was found to vary depending on the impurity content. The trace impurity plutonium appears to be associated with the Fe/Cr/Ni particles. A small amount of absorbed moisture and waters of hydration is present. Most of the uranium oxides easily dissolved in low-molar nitric acid solutions without fluoride within one to two hours at solution temperature s between 60-80 degrees C. A small amount of residue remained following this dissolution step. To assure complete dissolution of uranium from these oxide materials, an additional dissolution step at 90 degrees C to boiling for at least one to two hours has been suggested. Only trace amounts of iron associated with Fe2O3 and Fe/Cr/Ni particles will dissolve during the dissolution steps. Neither hydrogen nor heat will be generated during the dissolution of these uranium oxide materials in nitric acid solutions. Some brown nitrogen dioxide (NO2) fumes will be generated during the dissolution of U3O8

  8. Crevice corrosion propagation on alloy 625 and alloy C276 in natural seawater

    International Nuclear Information System (INIS)

    McCafferty, E.; Bogar, F.D.; Thomas, E.D. II; Creegan, C.A.; Lucas, K.E.; Kaznoff, A.I.

    1997-01-01

    Chemical composition of the aqueous solution within crevices on two different Ni-Cr-Mo-Fe alloys immersed in natural seawater was determined using a semiquantitative thin-layer chromatographic method. Active crevices were found to contain concentrated amounts of dissolved Ni 2+ , Cr 3+ , Mo 3+ , and Fe 2+ ions. Propagation of crevice corrosion for the two alloys was determined from anodic polarization curves in model crevice solutions based upon stoichiometric dissolution or selective dissolution of alloy components. Both alloys 625 (UNS N06625) and C276 (UNS N10276) underwent crevice corrosion in the model crevice electrolytes. For the model crevice solution based upon selective dissolution of alloy constituents, the anodic dissolution rate for alloy 625 was higher than that for alloy C276. This trend was reversed for the model crevice solution based upon uniform dissolution of alloy constituents

  9. Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes

    Science.gov (United States)

    Ngwack, Bernd; Sigg, Laura

    1997-03-01

    The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.

  10. Numerical modelling of glass dissolution: gel layer morphology

    Energy Technology Data Exchange (ETDEWEB)

    Devreux, F. E-mail: fd@pmc.polytechnique.fr; Barboux, P

    2001-09-01

    Numerical simulations of glass dissolution are presented. The glass is modelized as a random binary mixture composed of two species representing silica and soluble oxides, such as boron and alkali oxides. The soluble species are dissolved immediately when they are in contact with the solution. For the species which represents silica, one introduces dissolution and condensation probabilities. It is shown that the morphology and the thickness of the surface hydration layer (the gel) are highly dependent on the dissolution model, especially on the parameter which controls the surface tension. Simulations with different glass surface area to solution volume ratio (S/V) show that this experimental parameter has important effects on both the shrinkage and the gel layer thickness.

  11. In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)

    Science.gov (United States)

    Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.

    2001-01-01

    The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.

  12. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    International Nuclear Information System (INIS)

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO 3 Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90 degrees C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO 4 ) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated

  13. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  14. Dissolution process of atmospheric aerosol particles into cloud droplets; Processus de dissolution des aerosols atmospheriques au sein des gouttes d'eau nuageuses

    Energy Technology Data Exchange (ETDEWEB)

    Desboeufs, K.

    2001-01-15

    Clouds affect both climate via the role they play in the Earth's radiation balance and tropospheric chemistry since they are efficient reaction media for chemical transformation of soluble species. Cloud droplets are formed in the atmosphere by condensation of water vapour onto aerosol particles, the cloud condensation nuclei (CCN). The water soluble fraction of these CCN governs the cloud micro-physics, which is the paramount factor playing on the radiative properties of clouds. Moreover, this soluble fraction is the source of species imply in the oxidation/reduction reactions in the aqueous phase. Thus, it is of particular importance to understand the process controlling the solubilization of aerosols in the cloud droplets. The main purpose of this work is to investigate experimentally and theoretically the dissolution of particles incorporated in the aqueous phase. From the studies conducted up to now, we have identify several factors playing on the dissolution reaction of aerosols. However, the quantification of the effects of these factors is difficult since the current means of study are not adapted to the complexity of cloud systems. First, this work consisted to perform a experimental system, compound by an open flow reactor, enabling to follow the kinetic of dissolution in conditions representative of cloud. This experimental device is used to a systematic characterisation of the known factors playing on the dissolution, i.e. pH, aerosol nature, aerosol weathering... and also for the identification and the quantification of the effects of other factors: ionic strength, acid nature, clouds processes. These experiments gave quantitative results, which are used to elaborate a simple model of aerosol dissolution in the aqueous phase. This model considers the main factors playing on the dissolution and results in a general mechanism of aerosol dissolution extrapolated to the cloud droplets. (author)

  15. Saltcake Dissolution FY 2000 Status Report

    International Nuclear Information System (INIS)

    HERTING, D.L.

    2000-01-01

    Laboratory tests were completed on the dissolution characteristics of Hanford saltcake waste from single-shell waste tanks 241-TX- 113, 241-BY-102, 241-BY-106, 241-A-101, and 241-S-102 (henceforth referred to as TX-113, BY-102, BY-106, A-101, and S-102, respectively). This work was funded by the Tanks Focus Area (EM-50) under Technical Task Plan Number RL0-8-WT-41, ''PHMC Pretreatment--Saltcake Dissolution''. The tests performed on saltcake from tank TX-113 were similar in scope to those completed in previous years on waste from tanks BY-102, BY-106, B-106, A-101, and S-102 (Herting 1998, 1999). In addition to the ''standard'' dissolution tests, new types of tests were performed this year related to feed stability and radionuclide distribution. The River Protection Project (RPP) is tasked with retrieving waste from double-shell and single-shell tanks to provide feed for vitrification. The RPP organization needs chemical and physical data to evaluate technologies for retrieving the waste. Little significant laboratory testing has been done to evaluate in-tank dissolution parameters for the various types of saltcake wastes that exist in single-shell tanks. A computer modeling program known as the Environmental Simulation Program (ESP), produced by OLI Systems, Inc of Morris Plains, New Jersey, is being used by the RPP organization to predict solubilities during dilution and retrieval of all tank waste types. Data from this task are provided to ESP users to support evaluation, refinement, and validation of the ESP model

  16. Aggregation, sedimentation, dissolution and bioavailability of ...

    Science.gov (United States)

    To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly polydispersed. Their sedimentation rates in seawater were measured to be 4–10 mm/day. Humic acid (HA), further increased their size and polydispersity, and slowed sedimentation. Light increased their dissolution and release of dissolved Cd. The ZnS shell also slowed release of Cd ions. With sufficient light, HA increased the dissolution of QDs, while with low light, HA alone did not change their dissolution. The benthic zone in estuarine systems is the most probable long-term destination of QDs due to aggregation and sedimentation. The bioavailability of was evaluated using the mysid Americamysis bahia. The 7-day LC50s of particulate and dissolved QDs were 290 and 23 μg (total Cd)/L, respectively. For mysids, the acute toxicity appears to be from Cd ions; however, research on the effects of QDs should be conducted with other organisms where QDs may be lodged in critical tissues such as gills or filtering apparatus and Cd ions may be released and delivered directly to those tissues. Because of their increasing use and value to society, cadmium-based quantum dots (QDs) will inevitably find their way into marine systems. In an effort to understand the fate and transport of CdSe QDs in estuar

  17. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...

  18. X-ray tube rotating anode

    International Nuclear Information System (INIS)

    Friedel, R.

    1979-01-01

    The anode disk of the X-ray rotating anode is blackened on the surface outside the focal spot tracks in order to improve the heat radiation. In particular the side opposite the focal spot tracks is provided with many small holes, the ratio of depth to cross-section ('pit ratio') being as large as possible: ranging from 2:1 to 10:1. They are arranged so densely that the radiating surface will nearly have the effect of a black body. (RW) [de

  19. Inhibitive Effect of Butyltin Trichloride on Dissolution and Localized Corrosion of Aluminium in Sodium Hydroxide and Hydrochloric Acid

    OpenAIRE

    Mourad, M.Y.; Ibrahim, E.H.; Seliman, S.A.

    1990-01-01

    The dissolution of aluminium in sodium hydroxide and hydrochloric acid in the presence of butyltin trichloride as corrosion inhibitor has been studied by hydrogen evolution and thermometric methods. Experimental findings indicate that the inhibition effect of butyltin trichloride takes place through an adsorption mechanism following the Frumkin's isotherm. Butyltin trichloride acts as a weakly adsorbed inhibitor in NaOH and as a strongly adsorbed inhibitor in hydrochloric acid medium. Wile...

  20. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge

    Science.gov (United States)

    Hou, Guangmei; Ren, Xiaohua; Ma, Xiaoxin; Zhang, Le; Zhai, Wei; Ai, Qing; Xu, Xiaoyan; Zhang, Lin; Si, Pengchao; Feng, Jinkui; Ding, Fei; Ci, Lijie

    2018-05-01

    Lithium metal is considered as the ultimate anode material for high-energy Li battery systems. However, the commercial application of lithium anode is impeded by issues with safety and low coulombic efficiency induced by Li dendrite growth. Herein, a free-standing three-dimensional nitrogen-enriched graphitic carbon sponge with a high nitrogen content is proposed as a multifunctional current collect for Lithium accommodation. The abundant lithiophilic N-containing functional groups are served as preferred nucleation sites to guide a uniform Li deposition. In addition, the nitrogen-enriched graphitic carbon sponge with a high specific surface area can effectively reduce the local current density. As a result of the synergistic effect, the nitrogen-enriched graphitic carbon sponge electrode realizes a long-term stable cycling without dendrites formation. Notably, the as-obtained composite electrode can deliver an ultra-high specific capacity of ∼3175 mA h g-1. The nitrogen-enriched graphitic carbon sponge might provide innovative insights to design a superior matrix for dendrite-free Li anode.