WorldWideScience

Sample records for liquid state application

  1. Applications of liquid state physics to the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1980-01-01

    New results derived for application to the earth's outer core using the modern theory of liquids and the hard-sphere model of liquid structure are presented. An expression derived in terms of the incompressibility and pressure is valid for a high-pressure liquid near its melting point, provided that the pressure is derived from a strongly repulsive pair potential; a relation derived between the melting point and density leads to a melting curve law of essentially the same form as Lindemann's law. Finally, it is shown that the 'core paradox' of Higgins and Kennedy (1971) can occur only if the Gruneisen parameter is smaller than 2/3, and this constant is larger than this value in any liquid for which the pair potential is strongly repulsive.

  2. Liquid-state physical chemistry fundamentals, modeling, and applications

    CERN Document Server

    de With, Gijsbertus

    2013-01-01

    For many processes and applications in science and technology a basic knowledge of liquids and solutions is a must. Gaining a better understanding of the behavior and properties of pure liquids and solutions will help to improve many processes and to advance research in many different areas. This book provides a comprehensive, self-contained and integrated survey of this topic and is a must-have for many chemists, chemical engineers and material scientists,ranging from newcomers in the field to more experienced researchers. The author offers a clear, well-structured didactic approach and pr

  3. Liquid-state physical chemistry fundamentals, modeling, and applications

    CERN Document Server

    de With, Gijsbertus

    2013-01-01

    For many processes and applications in science and technology a basic knowledge of liquids and solutions is a must. Gaining a better understanding of the behavior and properties of pure liquids and solutions will help to improve many processes and to advance research in many different areas. This book provides a comprehensive, self-contained and integrated survey of this topic and is a must-have for many chemists, chemical engineers and material scientists, ranging from newcomers in the field to more experienced researchers. The author offers a clear, well-structured didactic approach and provides an overview of the most important types of liquids and solutions. Special topics include chemical reactions, surfaces and phase transitions. Suitable both for introductory as well as intermediate level as more advanced parts are clearly marked. Includes also problems and solutions.

  4. Liquid lubrication for space applications

    Science.gov (United States)

    Fusaro, Robert L.; Khonsari, Michael M.

    1993-01-01

    Reviewed here is the state of the art of liquid lubrication for space applications. The areas discussed are types of liquid lubrication mechanisms, space environmental effects on lubrication, classification of lubricants, liquid lubricant additives, grease lubrication, mechanism materials, bearing anomalies and failures, lubricant supply techniques, and application types and lubricant needs for those applications.

  5. Application of the CPA equation of state to glycol/hydrocarbons liquid-liquid equilibria

    DEFF Research Database (Denmark)

    Derawi, Samer; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2003-01-01

    The Cubic Plus Association (CPA) equation of state is a thermodynamic model, which combines the well-known cubic SRK (Soave-Redlich-Kwong) equation of state and the association term proposed by Wertheim, typically employed in models like SAFT (statistical associating fluid theory). CPA has been...

  6. Application in pesticide analysis: Liquid chromatography - A review of the state of science for biomarker discovery and identification

    Science.gov (United States)

    Book Chapter 18, titled Application in pesticide analysis: Liquid chromatography - A review of the state of science for biomarker discovery and identification, will be published in the book titled High Performance Liquid Chromatography in Pesticide Residue Analysis (Part of the C...

  7. Liquid marbles: Physics and applications

    Indian Academy of Sciences (India)

    Nachiketa Janardan; Mahesh V Panchagnula; Edward Bormashenko

    2015-05-01

    Liquid marbles are formed by encapsulating microscale volume of liquid in a particulate sheath. The marble thus formed is robust and resists rupture if the particulate layer covers the entire volume of liquid and prevents contact between the liquid and the substrate. Liquid marbles have been objects of study over the past decade. Research has been focused on understanding their formation and properties – both static and dynamic. A range of particulate materials as well as liquids have been employed to make these objects. This paper summarizes the state of the art in this regard and discusses new developments that are being discussed. Finally, some directions are proposed based on lacunae observed in the community’s understanding – both in terms of the science as well as on the application front.

  8. The Knight Shift in Liquid Binary Alloys : An Application of Quantum Chemistry in Liquid- and Solid-state Physics

    NARCIS (Netherlands)

    De Hosson, J. Th. M.; Van Der Lugt, W.

    1979-01-01

    We outline a model for calculating the Knight shifts of Na-23 and Li-7 nuclei in liquid sodium-lithium alloys. The model used for the calculations is based on the "multiple-scattering" model (self-consistent scattered wave). Bearing in mind that there exists an uncertainty of about 5-10% in the valu

  9. Applications of functionalized ionic liquids

    Institute of Scientific and Technical Information of China (English)

    LI; Xuehui; ZHAO; Dongbin; FEI; Zhaofu; WANG; Lefu

    2006-01-01

    Recent developments of the synthesis and applications of functionalized ionic liquids(including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are attracting attention as alternative solvents in green chemistry, but as more functionalized ILs are prepared, a greater number of applications in increasingly diverse fields are found.

  10. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries

    Science.gov (United States)

    Li, Xiaowei; Zhang, Zhengxi; Yin, Kun; Yang, Li; Tachibana, Kazuhiro; Hirano, Shin-ichi

    2015-03-01

    In this work, the ordered mesoporous silica, SBA-15, is chosen as the matrix for the first time to prepare quasi-solid-state electrolytes (QSSEs) with an ionic liquid, LiTFSI salt and PVdF-HFP. The as-obtained QSSEs are evaluated by electrochemical methods. Lithium metal batteries containing these QSSEs exhibit high discharge capacity and good cycle performance at room temperature, indicating successful battery operation.

  11. Heat capacity of associated systems. Experimental data and application of a two-state model to pure liquids and mixtures.

    Science.gov (United States)

    Cerdeiriña, Claudio A; Troncoso, Jacobo; Gonzalez-Salgado, Diego; García-Miaja, Gonzalo; Hernandez-Segura, Gerardo O; Bessières, David; Medeiros, Milton; Romaní, Luis; Costas, Miguel

    2007-02-08

    The predictions from a recently reported (J. Chem. Phys. 2004, 120, 6648) two-state association model (TSAM) have been tested against experimental data. The temperature, T, and pressure, p, dependence of the isobaric heat capacity, C(p), for three pure alcohols and the temperature dependence at atmospheric pressure of the excess heat capacity, C(p)(E), for four alcohol + ester mixtures have been measured. The branched alcohols were 3-pentanol, 3-methyl-3-pentanol, and 3-ethyl-3-pentanol, and the mixtures were 1-butanol and 3-methyl-3-pentanol mixed with propyl acetate and with butyl formate. These data, together with literature data for alcohol + n-alkane and alcohol + toluene mixtures, have been analyzed using the TSAM. The model, originally formulated for the C(p) of pure liquids, has been extended here to account for the C(p)(E) of mixtures. To evaluate its performance, quantum mechanical ab initio calculations for the H-bond energy, which is one of the model parameters, were performed. The effect of pressure on C(p) for pure liquids was elucidated, and the variety of C(p)(E)(T) behaviors was rationalized. Furthermore, from the C(p) data at various pressures, the behavior of the volume temperature derivative, (deltaV/deltaT)(p), was inferred, with the existence of a (deltaV/deltaT)(p) versus T maximum for pure associated liquids such as the branched alcohols being predicted. It is concluded that the TSAM captures the essential elements determining the behavior of the heat capacity for pure liquids and mixtures, providing insight into the macroscopic manifestation of the association phenomena occurring at the molecular level.

  12. Estimating the Energy State of Liquids

    Directory of Open Access Journals (Sweden)

    Lianwen Wang

    2014-12-01

    Full Text Available In contrast to the gaseous and the solid states, the liquid state does not have a simple model that could be developed into a quantitative theory. A central issue in the understanding of liquids is to estimate the energy state of liquids. Here, on the basis of our recent studies on crystal melting, we show that the energy sate of liquids may be reasonably approximated by the energy and volume of a vacancy. Consequently, estimation of the liquid state energy is significantly simplified comparing with previous methods that inevitably invoke many-body interactions. Accordingly, a possible equation for the state for liquids is proposed. On this basis, it seems that a simple model for liquids is in sight.

  13. Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model

    DEFF Research Database (Denmark)

    Maia, Filipa Meireles; Tsivintzelis, Ioannis; Rodriguez, Oscar

    2012-01-01

    -ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([C4mim][NTf2]). The first step was to study an adequate approach for the determination of pure component parameters for the ionic liquids. The parameters were...... obtained by fitting the predictions of the model to experimental vapour pressure and liquid density data. The parameters provide a good description of both experimental vapour pressures and liquid density, with maximum percentage deviations of respectively 8.9 and 1.3% for [C2mim][NTf2] and 5.7 and 0.......5% for [C4mim][NTf2]. Different sets of pure component parameters for each ionic liquid were considered and their suitability to describe the behaviour of ionic liquids was evaluated by modelling the vapour–liquid equilibria (VLE) of mixtures with CO2 and the liquid–liquid equilibria (LLE) with water...

  14. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  15. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  16. Application of ionic liquid in liquid phase microextraction technology.

    Science.gov (United States)

    Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho

    2012-11-01

    Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  18. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    Science.gov (United States)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  19. State of Liquidity Management in Islamic Financial Institutions

    OpenAIRE

    Syed Ali, Salman

    2013-01-01

    Liquidity position and liquidity risk of Islamic financial institutions has been changing over time. Using three measures of liquidity this paper analyses the state of liquidity and the risk management practices of Islamic banks across countries and regions and compares them with conventional banks. It calls for creating new instruments and infrastructure for liquidity risk management and proposes fresh approaches to manage this risk.

  20. State of Liquidity Management in Islamic Financial Institutions

    OpenAIRE

    SYED ALI, SALMAN

    2013-01-01

    Liquidity position and liquidity risk of Islamic financial institutions has been changing over time. Using three measures of liquidity this paper analyses the state of liquidity and the risk management practices of Islamic banks across countries and regions and compares them with conventional banks. It calls for creating new instruments and infrastructure for liquidity risk management and proposes fresh approaches to manage this risk.

  1. The application of the Deiters equation of state to the calculations of the vapour-liquid phase equilibria in systems containing halogenhydrocarbons

    Science.gov (United States)

    Dąbrowska, Barbara

    2000-03-01

    The Deiters equation of state and the Redlich-Kwong equation of state were used for calculations of low-temperature vapour-liquid phase equilibria and related thermodynamic properties in binary systems containing halogenhydrocarbons. In all calculations, standard mixing rules for the Deiters equation of state as well as the modified mixing rules (including the repulsion function and density-dependent weight factors or the repulsion function and modified mean density approximation with density-dependent weight factors) were used. The calculations were done for the following systems: CF 4/CHF 3, CF 3Cl/CF 2Cl 2, CH 4/CHF 2Cl, CH 4/CF 2Cl 2, CHF 3/CFCl 3, N 2/CF 2Cl 2. The best results were achieved with the Deiters equation of state, especially with modified mixing rules. For higher pressures and lower temperatures the Redlich-Kwong equation of state is not able to predict the phase equilibria in halogenhydrocarbon systems accurately. It fails too in the case of strongly polar substances. The best parameter sets for the Redlich-Kwong equation of state and the Deiters equation of state for the systems investigated were collected.

  2. Thermoelectric transport properties of an apparent Fermi liquid: Relation to an analytic anomaly in the density of states and application to hole-doped delafossites

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, S. [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Laboratoire CRISMAT, UMR CNRS-ENSICAEN (ISMRA) 6508, Caen (France); Fresard, R. [Laboratoire CRISMAT, UMR CNRS-ENSICAEN (ISMRA) 6508, Caen (France)

    2012-01-15

    Through the motivation of the recent discovery of dispersionless regions in the band structure of the delafossites, a model density of states of free fermions including a d anomaly is studied. The resulting temperature dependence of the chemical potential is obtained both exactly and by different approximation schemes which are then discussed thoroughly. This includes the introduction of an approximation of the polylogarithm difference which is capable of accessing a parameter range neither covered by Sommerfeld expansion nor by Boltzmann approximation. It is found that the Fermi temperature and several other temperature scales may be very low, giving rise to experimentally observable behaviours differing from the one described by Fermi liquid theory. In particular, two kinds of apparent Fermi liquid behaviour emerge at intermediate temperatures. This behaviour is related to recent transport data reported for CuCr{sub 1-x}Mg{sub x}O{sub 2} [A. Maignan et al., Solid State Commun. 149, 962 (2009)] and CuRh{sub 1-x}Mg{sub x}O{sub 2} [A. Maignan et al., Phys. Rev. B 80, 115103 (2009)] by means of the temperature independent correlation functions ratio approximation. In this way an effective density of states as well as the effective charge carrier density of these materials are determined. Furthermore, conclusions about the specific heat of the latter material are drawn which presents particular effects of the analytical anomaly. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Topologically protected quantum state transfer in a chiral spin liquid.

    Science.gov (United States)

    Yao, N Y; Laumann, C R; Gorshkov, A V; Weimer, H; Jiang, L; Cirac, J I; Zoller, P; Lukin, M D

    2013-01-01

    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the current-carrying edge states associated with the quantum Hall and the quantum spin Hall effects to topologically protected quantum memory and quantum logic operations. Here we propose and analyse a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.

  4. Liquid Crystalline Materials for Biological Applications.

    Science.gov (United States)

    Lowe, Aaron M; Abbott, Nicholas L

    2012-03-13

    Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films.

  5. Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications.

    Science.gov (United States)

    Yin, Peiyuan; Xu, Guowang

    2014-12-29

    Metabolomics, as a part of systems biology, has been widely applied in different fields of life science by studying the endogenous metabolites. The development and applications of liquid chromatography (LC) coupled with high resolution mass spectrometry (MS) greatly improve the achievable data quality in non-targeted metabolic profiling. However, there are still some emerging challenges to be covered in LC-MS based metabolomics. Here, recent approaches about sample collection and preparation, instrumental analysis, and data handling of LC-MS based metabolomics are summarized, especially in the analysis of clinical samples. Emphasis is put on the improvement of analytical techniques including the combination of different LC columns, isotope coded derivatization methods, pseudo-targeted LC-MS method, new data analysis algorithms and structural identification of important metabolites. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  7. Supported ionic liquids fundamentals and applications

    CERN Document Server

    Fehrmann, Rasmus; Haumann, Marco

    2013-01-01

    This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.

  8. Liquid-state nuclear spin comagnetometers

    CERN Document Server

    Ledbetter, Micah; Budker, Dmitry; Romalis, Michael; Blanchard, John; Pines, Alex

    2012-01-01

    We discuss nuclear spin comagnetometers based on ultra-low-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and ${\\rm ^{19}F}$ nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about $5\\times{\\rm 10^{-9} Hz}$, or about $5\\times 10^{-11} {\\rm Hz}$ in $\\approx 1$ day of integration. In a second version, spin precession of protons and ${\\rm ^{129}Xe}$ nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes are discussed.

  9. Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications

    Directory of Open Access Journals (Sweden)

    Y. J. Liu

    2008-01-01

    Full Text Available By combining polymer-dispersed liquid crystal (PDLC and holography, holographic PDLC (H-PDLC has emerged as a new composite material for switchable or tunable optical devices. Generally, H-PDLC structures are created in a liquid crystal cell filled with polymer-dispersed liquid crystal materials by recording the interference pattern generated by two or more coherent laser beams which is a fast and single-step fabrication. With a relatively ideal phase separation between liquid crystals and polymers, periodic refractive index profile is formed in the cell and thus light can be diffracted. Under a suitable electric field, the light diffraction behavior disappears due to the index matching between liquid crystals and polymers. H-PDLCs show a fast switching time due to the small size of the liquid crystal droplets. So far, H-PDLCs have been applied in many promising applications in photonics, such as flat panel displays, switchable gratings, switchable lasers, switchable microlenses, and switchable photonic crystals. In this paper, we review the current state-of-the-art of H-PDLCs including the materials used to date, the grating formation dynamics and simulations, the optimization of electro-optical properties, the photonic applications, and the issues existed in H-PDLCs.

  10. MODELING VAPOR LIQUID EQUILIBRIUM OF IONIC LIQUIDS plus GAS BINARY SYSTEMS AT HIGH PRESSURE WITH CUBIC EQUATIONS OF STATE

    OpenAIRE

    Freitas, ACD; Cunico, LP; M. Aznar; Guirardello,R.

    2013-01-01

    Ionic liquids (IL) have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (v...

  11. Recent development and applications of dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Yan, Hongyuan; Wang, Hui

    2013-06-21

    Dispersive liquid-liquid microextraction (DLLME) is a modern sample pretreatment technique that is regarded as consilient with the current trends of modern analytical chemistry. DLLME is simple, inexpensive, environmentally friendly, and could offer high enrichment factors from a wide gap between acceptor and donor phases. As a consequence, DLLME has attracted considerable attention from researchers and, based on the numerous publications concerning DLLME, has been generally accepted in separation science since the technique's invention in 2006. However, several innate weaknesses of DLLME, which restrict the technique's use in certain fields, have led to various attempts or suggestions to improve this technique. The present review focuses on the recent advances made in DLLME; the selected papers that are discussed in this work represent modifications that fall into three main categories (exploration of new extraction solvents, disperser solvents and combination with other techniques). The recent applications of DLLME in environmental, food and biological samples are also summarised, covering almost all of the publications related to the technology from the beginning. In addition, the feasibility of future trends of DLLME is discussed.

  12. LIQUIDITY ANALYSIS OF STATE BANK OF INDIA

    Directory of Open Access Journals (Sweden)

    Kumar Gandhi R

    2011-12-01

    Full Text Available Modern customer has a high demand for quality of service than he/she had before. There is an urgent need for improving the customer service levels currently provided in the banking industry. Banks need to understand, foresee, the needs and expected levels of customer support which the customer expects when he/she steps into the branch and strive to stand up and excel in providing the service and making banking a truly delightful experience. The banker should change his/her agenda from Customer Satisfaction to Customer delight and then march towards Customer Ecstasy. This will be possible by maintaining the financial soundness of the firm. In this connection it has been given importance through this study. Since most of the Banking slightly deviate into the other areas like insurance, financial services and modern banking services such as Advisory services, Agent for receivables, custodian, instant loan provider, Forfeiter services and factoring services. A conscious attempt has been made to analysis the liquidity of state bank of India (SBI. The present study aimed to understand the financial soundness of the bank, the ratio analysis taken as tool. In this research work the secondary data mainly used, it has been collected in the form of the company manuals, Balance sheets and other documents. The data analyzed by some of the statistical tools such as ANOVA test and Multi variate test is used to analyze the interferences about the operating efficiency.

  13. Levitated liquid hydrogen cryotank for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Bock, J.; Baecker, M.; Brommer, G. [Aventis Research and Technologies, Huerth (DE)] [and others

    2000-07-01

    A critical component for the application of hydrogen technology in automobiles is the storage of liquid hydrogen. Conventional tanks show intolerable evaporation losses. An innovative tank concept based on a superconducting suspension of an inner tank in an outer tank was realized in a functional model. The model shows an evaporation rate lowered by 50% compared to a conventional reference tank. In addition the design of a more compact prototype tank was worked out with a rotational symmetric arrangement. First components for this suspension concept were tested successfully. (author)

  14. A Generalized Equation of State for High-Pressure Liquids

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan-bo; TONG Jing-shan

    2005-01-01

    An equation of state (EOS) for high-pressure liquids, I.e., Tait EOS, is deduced according to isothermal compressibility KT=-1/V·((а)V/(а)p)T·.Based on the equation, a generalized EOS for high pressure-liquids is established by using the reduced state principle and introducing a characteristic parameter-configuration factorξ.Reasonably satisfactory P-V-T data for many organic compounds, including some polar components, were calculated by using the equation.

  15. Application of dot matrix LCD in multi-element portable X-ray fluorescence spectrometry The LCD is stated for Liquid Crystal Display

    CERN Document Server

    Lin Yan Chang; Lai Wan Chang; Zhou Si Chun

    2002-01-01

    Dot matrix LCD based on T6963C is a low power supply module. It needs no complex interface circuits connecting with MCU. Application in text and graphics is easy. Application of this LCD in multi-element portable XRF spectrometry is show. How to use it in Chinese, pull-down menu, spectrum and how to design the interface circuits with embedded computer are shown as well

  16. Modeling Phase Equilibria for Acid Gas Mixtures using the Cubic-Plus-Association Equation of State. 3. Applications Relevant to Liquid or Supercritical CO2 Transport

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios

    2014-01-01

    density data for both CO2 and CO2–water and for vapor–liquid equilibrium for mixtures of CO2 with various compounds present in transport systems. In all of these cases we consider various possibilities for modeling CO2 (inert, self-associating using two-, three-, and four sites) and the possibility...... of cross-association with water. Finally, we evaluate the predictive performance of CPA for multicomponent CO2 mixtures in transport systems which also include water, methane, and H2S. The results are compared to both experimental data and selected other approaches from literature. The results...... of CO2 with water is accounted for or when CO2 is considered to be a self-associating molecule (with three or four sites). The final choice on the best approach requires investigating a much larger set of mixtures including also alcohols and glycols, which will be considered in future works....

  17. The Liquid State and Its Electrical Properties

    Science.gov (United States)

    1988-01-01

    Hg relative to (liquid) Ga (Frumkin and Damaskin , 1974) in the supposed absence of specific chemisorption of solvent dipoles or solute ions. In the...in terms of H-bonded clusters of H20 dipoles at Hg/H20 interfaces, e.g., by Parsons (1975) and Frumkin and Damaskin (1974). 360 Unfortunately, the...U.S.A., 15:400. Frumkin, A.N., and Damaskin , B.B., 1974, Electrochim. Acta, 19:173. Gomer, R., and Swanson, L.W., 1963, J. Chem. Phys., 38:1613

  18. Liquid crystal devices for photonics applications

    Science.gov (United States)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  19. Ionic Liquids Beyond Simple Solvents: Glimpses at the State of the Art in Organic Chemistry.

    Science.gov (United States)

    Kuchenbuch, Andrea; Giernoth, Ralf

    2015-12-01

    Within the last 25 years ionic liquids have written a tremendous success story, which is documented in a nearly uncountable amount of original research papers, reviews, and numerous applications in research and industry. These days, ionic liquids can be considered as a mature class of compounds for many different applications. Frequently, they are used as neoteric solvents for chemical tansformations, and the number of reviews on this field of research is huge. In this focused review, though, we are trying to evaluate the state of the art of ionic liquid chemistry beyond using them simply as solvents for chemical transformations. It is not meant to be a comprehensive overview on the topic; the choice of emphasis and examples rather refects the authors' personal view on the field. We are especially highlighting fields in which we believe the most fundamental developments within the next five years will take place: biomass processing, (chiral) ionic liquids from natural sources, biotransformations, and organic synthesis.

  20. Tunable metasurfaces and optical Tamm states with liquid crystals (Conference Presentation)

    Science.gov (United States)

    Chen, Kuo-Ping; Lin, Meng-Ying

    2016-09-01

    Planar photonics, like metasurfaces and nanoantennas, got immense attention because of the ability controlling the flow of light. The tunability of metasurfaces system could be realized by combining with liquid crystals. In this work, several novel devices, like tunable nanoantennas array with color, diffraction control of binary gratings metasurfaces, and optical Tamm states would be presented. 1. By comparing different dimensions of nanoantennas, the anchoring energy of liquid crystal could be adjusted in nanoscale. The different shapes of nanoantennas show the difference in color or monotone change when applying different voltages. 2. The diffraction ratio of metasurface could be controlled by nematic liquid crystal by controlling the polarization direction by applying voltages. 3. Optical Tamm states could be realized and adjustable by combining liquid photonic crystal with metasurface. All of those ideas are realized in both modeling and experimental, which could give a great impact to the field of future application in tunable metasurfaces.

  1. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    NARCIS (Netherlands)

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an

  2. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals

    Science.gov (United States)

    Sachdev, Subir; Chowdhury, Debanjan

    2016-12-01

    We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.

  3. Coagulation profile of liquid-state plasma.

    Science.gov (United States)

    Gosselin, Robert C; Marshall, Carol; Dwyre, Denis M; Gresens, Chris; Davis, Diana; Scherer, Lynette; Taylor, Douglas

    2013-03-01

    Use of liquid plasma (LP) has been reported as early as the mid 1930s. Unlike fresh-frozen plasma (FFP), LP is maintained at 1 to 6°C for up to 40 days after collection and processing. Despite its approved use by the US Food and Drug Administration, the coagulation profile of LP is incompletely described. In this study we evaluate the coagulation profile of LP stored up to 30 days. LP was prepared by removing plasma from nonleukoreduced whole blood within 24 hours of collection. Three LP units from each ABO group were collected and stored at 1 to 6°C. Plasma aliquots were obtained at Postcollection Days 1 to 5, 10, 15, 20, 25, and 30 and then stored at -70°C. Each aliquot was tested for prothrombin time, activated partial thromboplastin time, and other coagulation and fibrinolytic factors. There was a significant decrease in Factor (F)V, FVII, FVIII, von Willebrand factor (VWF), protein S (PS) activity, and endogenous thrombin potential on Day 15 compared with Day 1. No significant difference was observed for PS antigen, D-dimer, or thrombin-antithrombin complex. At least 50% activity of all measured factors was noted on Day 15, compared to Day 1. Considerable heterogeneity was observed between the different blood groups for FVII, FVIII, and VWF. These data demonstrate that LP maintains at least 50% of factor activity and thrombin-generating capacity up to 15 days of refrigerated storage. It may be more appropriate to limit LP storage and supplement with FFP when used for management of massively bleeding patients. © 2012 American Association of Blood Banks.

  4. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging

    Science.gov (United States)

    Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan

    2016-03-01

    Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM+ on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 +/- 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often

  6. Analytical Applications of Transport Through Bulk Liquid Membranes.

    Science.gov (United States)

    Diaconu, Ioana; Ruse, Elena; Aboul-Enein, Hassan Y; Bunaciu, Andrei A

    2016-07-03

    This review discusses the results of research in the use of bulk liquid membranes in separation processes and preconcentration for analytical purposes. It includes some theoretical aspects, definitions, types of liquid membranes, and transport mechanism, as well as advantages of using liquid membranes in laboratory studies. These concepts are necessary to understand fundamental principles of liquid membrane transport. Due to the multiple advantages of liquid membranes several studies present analytical applications of the transport through liquid membranes in separation or preconcentration processes of metallic cations and some organic compounds, such as phenol and phenolic derivatives, organic acids, amino acids, carbohydrates, and drugs. This review presents coupled techniques such as separation through the liquid membrane coupled with flow injection analysis.

  7. Alignment technology and applications of liquid crystal devices

    CERN Document Server

    Takatoh, Kohki; Hasegawa, Ray; Koden, Mitsushiro; Itoh, Nobuyuki; Hasegawa, Masaki

    2005-01-01

    Alignment phenomena are characteristic of liquid crystalline materials, and understanding them is critically important in understanding the essential features and behavior of liquid crystals and the performance of Liquid Crystal Devices (LCDs). Furthermore, in LCD production lines, the alignment process is of practical importance. Alignment Technologies and Applications of Liquid Crystal Devices demonstrates both the fundamental and practical aspects of alignment phenomena in liquid crystals. The physical basis of alignment phenomena is first introduced in order to aid the understanding of the various physical phenomena observed in the interface between liquid crystalline materials and alignment layer surfaces. Methods for the characterization of surfaces, which induce the alignment phenomena, and of the alignment layer itself are introduced. These methods are useful for the research of liquid crystalline materials and devices in academic research as well as in industry. In the practical sections, the alignme...

  8. Striped spin liquid crystal ground state instability of kagome antiferromagnets.

    Science.gov (United States)

    Clark, Bryan K; Kinder, Jesse M; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  9. High Performance Liquid Chromatography/Video Fluorometry. Part II. Applications.

    Science.gov (United States)

    1981-09-30

    HIGH PERFORMANCE LIQUID CHROMATOGRAPHY /VIDEO FLUOROMETRY. PART...REP«T_N&:-ŗ/ High Performance Liquid Chromatography /Video Fluorometry» Part II. Applications« by | Dennis C./Shelly* Michael P./Vogarty and...Data EnlirtdJ REPORT DOCUMENTATION PAGE t. REPORT NUMBER 2 GOVT ACCESSION NO 4. T1TI.F (and Submit) lP-^fffsyva High Performance Liquid Chromatography

  10. Pairing in Luttinger Liquids and Quantum Hall States

    Science.gov (United States)

    Kane, Charles L.; Stern, Ady; Halperin, Bertrand I.

    2017-07-01

    We study spinless electrons in a single-channel quantum wire interacting through attractive interaction, and the quantum Hall states that may be constructed by an array of such wires. For a single wire, the electrons may form two phases, the Luttinger liquid and the strongly paired phase. The Luttinger liquid is gapless to one- and two-electron excitations, while the strongly paired state is gapped to the former and gapless to the latter. In contrast to the case in which the wire is proximity coupled to an external superconductor, for an isolated wire there is no separate phase of a topological, weakly paired superconductor. Rather, this phase is adiabatically connected to the Luttinger liquid phase. The properties of the one-dimensional topological superconductor emerge when the number of channels in the wire becomes large. The quantum Hall states that may be formed by an array of single-channel wires depend on the Landau-level filling factors. For odd-denominator fillings ν =1 /(2 n +1 ), wires at the Luttinger phase form Laughlin states, while wires in the strongly paired phase form a bosonic fractional quantum Hall state of strongly bound pairs at a filling of 1 /(8 n +4 ). The transition between the two is of the universality class of Ising transitions in three dimensions. For even-denominator fractions ν =1 /2 n , the two single-wire phases translate into four quantum Hall states. Two of those states are bosonic fractional quantum Hall states of weakly and strongly bound pairs of electrons. The other two are non-Abelian quantum Hall states, which originate from coupling wires close to their critical point. One of these non-Abelian states is the Moore-Read state. The transitions between all of these states are of the universality class of Majorana transitions. We point out some of the properties that characterize the different phases and the phase transitions.

  11. QCD Equations of State and the QGP Liquid Model

    CERN Document Server

    Letessier, J

    2003-01-01

    Recent advances in the study of equations of state of thermal lattice Quantum Chromodynamics obtained at non-zero baryon density allow validation of the quark-gluon plasma (QGP) liquid model equations of state (EoS). We study here the properties of the QGP-EoS near to the phase transformation boundary at finite baryon density and show a close agreement with the lattice results.

  12. Electrowetting-actuated liquid metal for RF applications

    Science.gov (United States)

    Diebold, A. V.; Watson, A. M.; Holcomb, S.; Tabor, C.; Mast, D.; Dickey, M. D.; Heikenfeld, J.

    2017-02-01

    Electrowetting is well-established as a fluid manipulation technique in such areas as lab-on-a-chip, visible light optics, and displays, yet has seen far less implementation in the field of radio-frequency (RF) electronics and electromagnetics. This is primarily due to a lack of appropriate materials selection and control in these devices. Low loss RF conductive fluids such as room temperature liquid metals (i.e. Hg, EGaIn, Galinstan) are by far the leading choice of active material due to their superior electrical properties but require high actuating voltages due to their inherently high surface tensions (>400 mN m-1) which often lead to dielectric breakdown. While the toxicity of Hg encourages the pursuit of non-toxic alternatives such as gallium alloys, the native surface oxide formation often prohibits reliable device functionality. Additionally, traditional electrowetting architectures rely on lossy electrode materials which degrade RF transmission efficiencies and result in non-reversible material diffusion at the electrode/liquid metal contact. In this work, we report on approaches to utilize liquid metals in electrowetting on dielectric (EWOD) devices that resolve all of these challenges by judicious choice of novel electrode materials, dielectric fluid, and device architecture. A functional RF device, namely an electromagnetic polarizer, is demonstrated that can be activated on demand through EWOD and provides an average signal attenuation of 12.91 dB in the on state and 1.46 dB in the off state over the range of 8-9.2 GHz, with a switching speed of about 12 ms. These results can be further extended to other RF applications such as tunable antennas, transmission lines, and switchable metasurfaces.

  13. MECHANISM OF LIQUID MEMBRANES AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR

    2002-02-01

    Full Text Available It has been considerably studied on the recycling of waste materials in the source besides of wastewater treatment in the last years. It has been important developments on the using of semiconductor membranes in the recycling of toxic materials such as heavy metals, intensifying the environment protection measures especially in the west countries. Wastewater treatment has been achieved with liquid membranes as it has been achieved with polymeric membrane systems such as ultrafiltration, microfiltration, electrodialysis. At the same time, liquid membranes are used for removal of metal ions in hydrometallurgy. Liquid membranes are also used in biotechnology, medical areas and gas separation process.

  14. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    Science.gov (United States)

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  15. Densities and isothermal compressibilities of ionic liquids - Modelling and application

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    Two corresponding-states forms have been developed for direct correlation function integrals in liquids to represent pressure effects on the volume of ionic liquids over wide ranges of temperature and pressure. The correlations can be analytically integrated from a chosen reference density to pro...

  16. Non-Toxic Ionic Liquid Fuels for Exploration Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and test new, non-toxic ionic liquid fuels for propulsion applications. Vintage propulsion systems frequently use highly toxic...

  17. State Waste Discharge Permit application: 400 Area Septic System

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

  18. Theory of simple liquids with applications to soft matter

    CERN Document Server

    Hansen, Jean-Pierre

    2013-01-01

    Comprehensive coverage of topics in the theory of classical liquids Widely regarded as the standard text in its field, Theory of Simple Liquids gives an advanced but self-contained account of liquid state theory within the unifying framework provided by classical statistical mechanics. The structure of this revised and updated Fourth Edition is similar to that of the previous one but there are significant shifts in emphasis and much new material has been added. Major changes and Key Features in content include: Expansion of existing sections on simulation methods, liquid-vapour coexisten

  19. Application of Peng-Robinson equation of state for calculation of liquid and gas viscosities of hydrocarbons%PR状态方程在烷烃粘度计算中的应用

    Institute of Scientific and Technical Information of China (English)

    曾强; 王利生

    2005-01-01

    本文基于P-V-T-与T-μ-P关系的相似性,结合Peng-Robinson立方型状态方程(PR EOS),建立了一个预测纯烷烃气液相粘度的统一模型.新模型首先运用PR EOS方程来计算指定温度下物质的饱和蒸汽压,然后以温度和饱和蒸汽压为独立变量,计算饱和气液相粘度.采用大量实测数据对新模型进行考核的结果表明,新模型在亚临界和超临界范围内,都有较好的计算结果.%This work presents a viscosity model based on Peng-Robinson (PR) cubic equation of state (EOS) for a better description of viscosity. A viscosity model has been developed based on the similarity between PVTand Tμ (viscosity)P relationship and the PR EOS.At a specified temperature, prediction for the saturated vapor pressure based on the PR EOS with Twu's α-function can be carried out at first, and then using the specified temperature and the predicted vapor pressure as independent variables, the saturated liquid and vapor viscosities of pure hydrocarbons based on the new viscosity model can be calculated. The new viscosity model is applicable to both sub and supercritical regions for pure hydrocarbons.

  20. Recent Applications of Ionic Liquids in Separation Technology

    Directory of Open Access Journals (Sweden)

    Dandan Han

    2010-04-01

    Full Text Available Ionic liquids (ILs have been applied in different areas of separation, such as ionic liquid supported membranes, as mobile phase additives and surface-bonded stationary phases in chromatography separations and as the extraction solvent in sample preparations, because they can be composed from various cations and anions that change the properties and phase behavior of liquids. Although the applications of ILs in separations are still in their early stages, the academic interest in ILs is increasing. An overview of the principle applications of ILs in separation technology is present in this work. Furthermore, the prospects of the ILs in separation techniques are discussed.

  1. Application of the cubic-plus-association equation of state to mixtures with polar chemicals and high pressures

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    The cubic-plus-association (CPA) equation of state has been previously applied to vapor-liquid, liquid-liquid, and solid-liquid equilibria of mixtures containing associating compounds (water, alcohols, glycols, acids, amines). Although some high-pressure applications have been presented, emphasis...

  2. Supramolecular liquid crystal displays : construction and applications

    NARCIS (Netherlands)

    Hoogboom, Joannes Theodorus Valentinus

    2004-01-01

    This thesis describes chemical methodologies, which can be ued to construct alignment layers for liquid crystal display purposes in a non-clean room environment, by making use of supramolecular chemistry. These techniques are subsequently used to attain control over LCD-properties, both pre- and pos

  3. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  4. Applications of the Peng-Robinson Equation of State Using MATLAB[R

    Science.gov (United States)

    Nasri, Zakia; Binous, Housam

    2009-01-01

    A single equation of state (EOS) such as the Peng-Robinson (PR) EOS can accurately describe both the liquid and vapor phase. We present several applications of this equation of state, including estimation of pure component properties and computation of the vapor-liquid equilibrium (VLE) diagram for binary mixtures. We perform high-pressure…

  5. Applications of the Peng-Robinson Equation of State Using MATLAB[R

    Science.gov (United States)

    Nasri, Zakia; Binous, Housam

    2009-01-01

    A single equation of state (EOS) such as the Peng-Robinson (PR) EOS can accurately describe both the liquid and vapor phase. We present several applications of this equation of state, including estimation of pure component properties and computation of the vapor-liquid equilibrium (VLE) diagram for binary mixtures. We perform high-pressure…

  6. Perdeuterated liquid crystals for near infrared applications

    Science.gov (United States)

    Kula, P.; Bennis, N.; Marć, P.; Harmata, P.; Gacioch, K.; Morawiak, P.; Jaroszewicz, L. R.

    2016-10-01

    For majority of Liquid Crystalline compounds the absorption occurs at two spectral regions: ultraviolet UV (due to electronic excitations) and infrared IR (caused by molecular vibrations). Both cause the absorption which deteriorates electro-optical modulation abilities of LC. In the MWIR and LWIR regions, there are many fundamental molecular vibration bands. The most intense are the ones with high anharmonicity, which in the case of LCs corresponds to the Csbnd H bonds, especially present in the aliphatic chains. In the NIR region, overtone molecular vibration bands derived from IR region begin to appear. In the case of Csbnd H bond system, the first overtones are present at 1.6-1.7 μm. To reduce NIR absorptions, perdeuterated Liquid crystal has been proposed. In this paper, we report the physical and optical properties of liquid crystals based on polarimetry measurements method. We also provide a polar decomposition of experimentally measured Mueller matrix in order to determine polarization properties of the device such as depolarization and diattenuation which cannot be obtained from absorption spectra.

  7. State-space analysis of the dynamic characteristics of a variable thrust liquid propellant rocket engine

    Science.gov (United States)

    Zhang, Yu-Lin

    This paper states the application of state-space method to the analysis of the dynamic characteristics of a variable thrust liquid propellant rocket engine and presents a set of state equations for describing the dynamic process of the engine. An efficient numerical method for solving these system equations is developed. The theoretical solutions agree well with the experimental data. The analysis leads to the following conclusion: the set coefficient of the pulse width, the working frequency of the solenoid valves and the deviation of the critical working points of these valves are important parameters for determining the dynamic response time and the control precision of this engine. The methods developed in this paper may be used effectively in the analysis of dynamic characteristics of variable thrust liquid propellant rocket engines.

  8. Recent applications of liquid metals featuring nanoscale surface oxides

    Science.gov (United States)

    Neumann, Taylor V.; Dickey, Michael D.

    2016-05-01

    This proceeding describes recent efforts from our group to control the shape and actuation of liquid metal. The liquid metal is an alloy of gallium and indium which is non-toxic, has negligible vapor pressure, and develops a thin, passivating surface oxide layer. The surface oxide allows the liquid metal to be patterned and shaped into structures that do not minimize interfacial energy. The surface oxide can be selectively removed by changes in pH or by applying a voltage. The surface oxide allows the liquid metal to be 3D printed to form free-standing structures. It also allows for the liquid metal to be injected into microfluidic channels and to maintain its shape within the channels. The selective removal of the oxide results in drastic changes in surface tension that can be used to control the flow behavior of the liquid metal. The metal can also wet thin, solid films of metal that accelerates droplets of the liquid along the metal traces .Here we discuss the properties and applications of liquid metal to make soft, reconfigurable electronics.

  9. Frontiers in poly(ionic liquid)s: syntheses and applications.

    Science.gov (United States)

    Qian, Wenjing; Texter, John; Yan, Feng

    2017-02-20

    We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.

  10. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  11. Density of Ni-Al Alloys in Liquid and Solid-Liquid Coexistence State Measured by a Modified Pycnometric Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Feng XIAO; Zushu LI; Zainan TAO

    2004-01-01

    The density of Ni-Al alloys in both liquid state and solid-liquid coexistence state was measured with a modified pycnometric method. It was found that the density of NI-Al alloys decreases with increasing temperature and Al concentration in the alloys. The molar volume of liquid Ni-Al binary alloys increases with the increase of temperature and Al concentration. The partial molar volume of Al in NI-Al binary alloy was calculated approximately. The molar volume of liquid NI-Al alloy determined in the present work shows a negative deviation from the ideal linear molar volume.

  12. Liquid Metal Engineering by Application of Intensive Melt Shearing

    Science.gov (United States)

    Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun

    In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.

  13. THERMOTROPIC LIQUID CRYSTALLINE COPOLYESTERS-SOLID STATE POLYMORPHISM

    Institute of Scientific and Technical Information of China (English)

    XIE ping; LU Daohui; BAO Jingsheng

    1988-01-01

    This paper offers some new evidence on the polymorphism of solid state of liquid crystalline aromatic copolyesters which were prepared in our laboratory. The effects of different treatment conditions(quenching and annealing) on solid structure have been examined mainly by DSC and X-ray diffraction. The discussion focuses on the supercooled mesophase and low temperature solid-solid transition, the shifting of double melting peaks of annealed samples and the changing of their △H data depending on the treatment temperature, time and thermal scanning rate.

  14. Equation of state measurements in liquid deuterium to 100 GPa

    CERN Document Server

    Knudson, M D; Bailey, J E; Lemke, R W; Hall, C A; Deeney, C; Asay, J R

    2003-01-01

    Using intense magnetic pressure, a method was developed to launch flyer plates to velocities in excess of 20 km s sup - sup 1. This technique was used to perform plate-impact, shock wave experiments on cryogenic liquid deuterium (LD sub 2) to examine its high-pressure equation of state (EOS). Using an impedance matching method, Hugoniot measurements were obtained in the pressure range of 22-100 GPa. The results of these experiments disagree with the previously reported Hugoniot measurements of LD sub 2 in the pressure range above approx 40 GPa, but are in good agreement with first principles, ab initio models for hydrogen and its isotopes.

  15. Adaptive compensation of a direct liquid-cooled solid-state MOPA system

    Science.gov (United States)

    Dong, Lizhi; Chen, Shanqiu; Chen, Xiaojun; Liu, Wenjin; Hu, Ke; Lai, Boheng; Yang, Ping; Wang, Shuai; He, Xing; Xu, Bing; Liu, Le; Liu, Yang; Wang, Zhe; Wang, Gang

    2016-09-01

    Direct liquid-cooling is a promising way of power scaling and heat management for solid-state lasers. A side-pumped direct liquid-cooled solid-state pulsed zigzag MOPA system is established based on this advanced concept. However, its beam quality is degraded by the thermal distortions in the non-zigzag direction and the flowing coolant. We develop an adaptive optics system to improve its beam quality, which primarily includes a low-order aberration compensator and a 59-actuator deformable mirror. The beam is first corrected by the low-order aberration compensator to remove large defocus and astigmatism, and its size is reshaped simultaneously to fulfill the demands of applications. Then the beam is further corrected by the deformable mirror. With collaborative operation of the low-order aberration compensator and the deformable mirror, we have achieved average beam quality of β=2.8.

  16. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    Science.gov (United States)

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement

  17. Vacuum plasma spray applications on liquid fuel rocket engines

    Science.gov (United States)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  18. Coherent states and applications in mathematical physics

    CERN Document Server

    Combescure, Monique

    2012-01-01

    This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...).

  19. Application of Ionic Liquids for Tc Recovery from Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C.; Shkrob, Ilya A.; Vandegrift, George F. [Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Wishart, James F. [Brookhaven National Laboratory (United States); Dietz, Mark L. [University of Wisconsin at Milwaukee (United States)

    2009-06-15

    Removal of technetium (Tc) from spent fuel waste is important because of its high mobility and long half-life. Current method of removal of Tc(VII) from the Tc product stream of the UREX process is a lengthy and complicated process which involves a multi-step chemical reduction of Tc from aqueous solution. Ionic liquids (ILs) have a potential to simplify separation and reduction of Tc from spent fuel streams. Studies of the extraction of actinides and fission products into ILs have demonstrated that these solvents can yield metal ion extraction efficiencies far exceeding those obtained in conventional liquid-liquid systems. Furthermore, ionic liquids are finding an increasing number of applications in electrodeposition of metals as their electrochemical window can reach more than 4 V and thus gives access to a number of elements that can not be electrodeposited from aqueous solutions. These finding suggest that ionic liquids can be used for separation of pertechnetate and subsequent electrodeposition on an electrode, to produce a metallic waste form. In this presentation we will present our progress on examining ionic liquids based extraction media for the separation of Tc(VII) from aqueous ammonia solutions. (authors)

  20. Characterization of POF for liquid level and concentration sensing applications

    Science.gov (United States)

    Lumanta, B. G.; Candidato, R. T., Jr.; Reserva, R. L.

    2015-06-01

    Measuring liquid level and solution concentration play an important role in commercial and technological applications. For years, polymer optical fibers (POFs) have been very attractive for industrial applications because of their unique characteristics. In this work, we created simple, low cost and efficient set-up for sensing liquid level and solution concentration using POFs. We have calculated the acceptance angle of the POF to be 30°from numerical aperture (NA) measurements (NA ≈ 0.500).Images of a single POF showed the presence of impurities within the fiber which can contribute to power loss of the transmitted light. Light leakage was also observed when the fiber was bent to a tight radius, i.e. beyond its minimum bend radius of 15 mm. The experimental results show that as liquid level increases, the output power decreases. Furthermore, when the liquid concentration was increased, its response showed a greater loss of optical power due to the light rays in the submerged region of the POF tend to be refracted out of the fiber instead of being totally internally reflected and transmitted when index of refraction of the surrounding liquid medium is increased.

  1. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  2. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  3. Inferring the equation of state of shocked liquid deuterium

    Science.gov (United States)

    Falk, K.; Murphy, C. D.; Gregori, G.; Regan, S. P.; Radha, P. B.; Boehly, T. R.; Barrios, M. A.; Fratanduono, D. E.; Hu, S. X.; Gericke, D. O.; Vorberger, J.; Glenzer, S. H.; Hicks, D. G.

    2010-11-01

    The equation of state of light elements is essential to understanding the structure of Jovian planets. Here we present a combination of experimental techniques used to characterize warm dense deuterium. The OMEGA laser was used to directly drive a shock wave in a planar liquid-deuterium target. The shocked D2 conditions were diagnosed using VISAR and pyrometry to obtain the shock velocity and temperature. Two shock waves were launched with velocities of 17±0.9 and 23±1.0 km/s, as a result of intensity variations in the staggered laser beam drive. Using a blackbody approximation, a temperature of 0.4 to 0.8 eV range was inferred. Various equation of state models including SESAME, PROPACEOS, DFT-MD and Saumon & Chabrier EOS were used to obtain a range pressures (0.4-0.5 Mbar) and densities (0.65-0.88 g/cc). Differences between models will be discussed. Preliminary data from X-ray scattering, providing a direct measurement of microscopic state of the deuterium for extreme conditions not accessible with VISAR, will also be presented.

  4. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    Science.gov (United States)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  5. Liquid crystalline epoxy nanocomposite material for dental application

    Directory of Open Access Journals (Sweden)

    Yun-Yuan Tai

    2015-01-01

    Conclusion: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.

  6. Nanoscience with liquid crystals from self-organized nanostructures to applications

    CERN Document Server

    Li, Quan

    2014-01-01

    This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active player

  7. Ultrafast laser ablation in liquids for nanomaterials and applications.

    Science.gov (United States)

    Rao, S Venugopal; Podagatlapalli, G Krishna; Hamad, Syed

    2014-02-01

    We present an inclusive overview of the ultrafast ablation technique performed in liquids. Being a comparatively new method, we bring out the recent progress achieved, present the challenges ahead, and outline the future prospects for this technique. The review is conveniently divided into five parts: (a) a succinct preamble to the technique of ultrafast ablation in liquids (ULAL) is provided. A brief introduction to the conventional ns ablation is also presented for the sake of completeness (b) fundamental physical processes involved in this technique are elaborated (c) specific advantages of the technique compared to other physical and chemical methodologies are enumerated (d) applications of this technique in photonics; biomedical and explosives detection [using surface-enhanced Raman scattering (SERS)] is updated (e) future prospects describing the potential of this technique for creating unique nanoparticles (NPs) and nanostructures (NSs) for niche applications. We also discuss some of the recently reported significant results achieved in a variety of materials, especially metals, using this technique. Furthermore, we present some of our own experimental data obtained from ULAL of Ag, Cu, and Zn in a variety of liquids such as acetone, water, acetonitrile etc. The generated NPs (colloidal solutions) and NSs (on substrates) have been successfully utilized for nonlinear optical, SERS, and biomedical applications.

  8. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    Science.gov (United States)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  9. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  10. Emerging Applications of Liquid Crystals Based on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jung Inn Sohn

    2014-03-01

    Full Text Available Diverse functionalities of liquid crystals (LCs offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices.

  11. Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications.

    Science.gov (United States)

    Qiao, Yunxiang; Ma, Wenbao; Theyssen, Nils; Chen, Chen; Hou, Zhenshan

    2017-05-24

    Temperature-responsive ionic liquids (ILs), their fundanmental behaviors, and catalytic applications were introduced, especially the concepts of upper critical solution temperature (UCST) and lower critical solution temperature (LCST). It is described that, during a catalytic reaction, they form a homogeneous mixture with the reactants and products at reaction temperature but separate from them afterward at ambient conditions. It is shown that this behavior offers an effective alternative approach to overcome gas/liquid-solid interface mass transfer limitations in many catalytic transformations. It should be noted that IL-based thermomorphic systems are rarely elaborated until now, especially in the field of catalytic applications. The aim of this article is to provide a comprehensive review about thermomorphic mixtures of an IL with H2O and/or organic compounds. Special focus is laid on their temperature dependence concerning UCST and LCST behavior, including systems with conventional ILs, metal-containing ILs, polymerized ILs, as well as the thermomorphic behavior induced via host-guest complexation. A wide range of applications using thermoregulated IL systems in chemical catalytic reactions as well as enzymatic catalysis were also demonstrated in detail. The conclusion is drawn that, due to their highly attractive behavior, thermoregulated ILs have already and will find more applications, not only in catalysis but also in other areas.

  12. Applications of hydrophobins : current state and perspectives

    OpenAIRE

    Wösten, Han A.B.; Scholtmeijer, Karin

    2015-01-01

    Hydrophobins are proteins exclusively produced by filamentous fungi. They self-assemble at hydrophilic-hydrophobic interfaces into an amphipathic film. This protein film renders hydrophobic surfaces of gas bubbles, liquids, or solid materials wettable, while hydrophilic surfaces can be turned hydrophobic. These properties, among others, make hydrophobins of interest for medical and technical applications. For instance, hydrophobins can be used to disperse hydrophobic materials; to stabilize f...

  13. Systemic Liquidity Shocks and Banking Sector Liquidity Characteristics on the Eve of Liquidity Coverage Ratio Application - The Case of the Czech Republic1

    Directory of Open Access Journals (Sweden)

    Brůna Karel

    2016-01-01

    Full Text Available The paper contains an analysis of the economic and regulatory concept of bank liquidity in the context of systemic liquidity shock. A formal model analysis shows that the application of liquidity coverage ratio (LCR based on Basel III will lead to a significant adaptation of banks liquidity management. LCR causes a change in bank’s liquidity allocation and funding to be less effective and more costly and restrictive for providing credits comparing with economic determinants. It is demonstrated that the application of LCR underestimates actual liquidity position of a bank and leads to allocation ineffectiveness. The empirical part contains simulation of impacts of systemic liquidity shock on the banking sector’s ability to withstand the unfavourable credit shock while solvency is maintained. The results confirm the robustness of the Czech banking system ensuing from the systemic surplus of liquidity, high volume of bank capital and its high profitability. The estimations of the VAR model show that the relations between liquidity characteristics of banks, sources of aggregate liquidity shock, interbank market illiquidity and the credit facilities of the Czech National Bank are relatively weak, supporting the conclusion that the banks face liquidity shocks of non-persistent character.

  14. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    Science.gov (United States)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2009-01-01

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included.

  15. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Pereira, Francisco; Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo (Spain)], E-mail: bendicho@uvigo.es

    2009-01-15

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included.

  16. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  17. Structural properties of effective potential model by liquid state theories

    Institute of Scientific and Technical Information of China (English)

    Xiang Yuan-Tao; Andrej Jamnik; Yang Kai-Wei

    2010-01-01

    This paper investigates the structural properties of a model fluid dictated by an effective inter-particle oscillatory potential by grand canonical ensemble Monte Carlo (GCEMC) simulation and classical liquid state theories. The chosen oscillatory potential incorporates basic interaction terms used in modeling of various complex fluids which is composed of mesoscopic particles dispersed in a solvent bath, the studied structural properties include radial distribution function in bulk and inhomogeneous density distribution profile due to influence of several external fields. The GCEMC results are employed to test the validity of two recently proposed theoretical approaches in the field of atomic fluids. One is an Ornstein-Zernike integral equation theory approach; the other is a third order + second order perturbation density functional theory. Satisfactory agreement between the GCEMC simulation and the pure theories fully indicates the ready adaptability of the atomic fluid theories to effective model potentials in complex fluids, and classifies the proposed theoretical approaches as convenient tools for the investigation of complex fluids under the single component macro-fluid approximation.

  18. State waste discharge permit application, 200-E chemical drain field

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.

  19. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  20. POTENTIAL APPLICATIONS OF IONIC LIQUIDS IN WOOD RELATED INDUSTRIES

    Directory of Open Access Journals (Sweden)

    Shaoqin Han

    2009-05-01

    Full Text Available The use of ionic liquids (ILs has provided a new platform for efficient utilization of wood. In this paper, applications of ILs in wood-related industries are reviewed. First, the dissolution of wood in ILs and its application are described. Then the ILs used for wood preservation and improvement of wood anti-electrostatic and fire-proof properties are illustrated. Finally, “green” wood processing with ILs is discussed. Although some basic studies of ILs, such as their economical syntheses and toxicology are eagerly needed and some engineering problems still exist, research for application of ILs in wood-related industries has made great progress in recent years.

  1. Liquid Exfoliation of Layered Transition Metal Dichalcogenides for Biological Applications.

    Science.gov (United States)

    Nguyen, Emily P; Daeneke, Torben; Zhuiykov, Serge; Kalantar-Zadeh, Kourosh

    2016-06-02

    Known to possess distinctive properties that differ greatly from their bulk form, layered two-dimensional materials have been extensively studied and incorporated into many versatile applications ranging from optoelectronics to sensors. For biomedical research, two-dimensional transition metal dichalcogenides (2D TMDs) have garnered much interest as they have been shown to exhibit relatively low toxicity, high stability in aqueous environments, and the ability to adhere to biological materials such as proteins. These materials are promising candidates, demonstrating potential applications in biosensing, cell imaging, diagnostics, and therapeutics. Preparation and exfoliation of 2D TMDs play an important part in these various applications as their properties are heavily dependent on the number of layers and lateral size. Described in this article are protocols for the liquid exfoliation of 2D TMDs from their bulk materials. Additional protocols are also provided for functionalizing or modifying the surface of the exfoliated 2D TMDs. © 2016 by John Wiley & Sons, Inc.

  2. A new equation of state for better liquid density prediction of natural gas systems

    Science.gov (United States)

    Nwankwo, Princess C.

    Equations of state formulations, modifications and applications have remained active research areas since the success of van der Waal's equation in 1873. The need for better reservoir fluid modeling and characterization is of great importance to petroleum engineers who deal with thermodynamic related properties of petroleum fluids at every stage of the petroleum "life span" from its drilling, to production through the wellbore, to transportation, metering and storage. Equations of state methods are far less expensive (in terms of material cost and time) than laboratory or experimental forages and the results are interestingly not too far removed from the limits of acceptable accuracy. In most cases, the degree of accuracy obtained, by using various EOS's, though not appreciable, have been acceptable when considering the gain in time. The possibility of obtaining an equation of state which though simple in form and in use, could have the potential of further narrowing the present existing bias between experimentally determined and popular EOS estimated results spurred the interest that resulted in this study. This research study had as its chief objective, to develop a new equation of state that would more efficiently capture the thermodynamic properties of gas condensate fluids, especially the liquid phase density, which is the major weakness of other established and popular cubic equations of state. The set objective was satisfied by a new semi analytical cubic three parameter equation of state, derived by the modification of the attraction term contribution to pressure of the van der Waal EOS without compromising either structural simplicity or accuracy of estimating other vapor liquid equilibria properties. The application of new EOS to single and multi-component light hydrocarbon fluids recorded far lower error values than does the popular two parameter, Peng-Robinson's (PR) and three parameter Patel-Teja's (PT) equations of state. Furthermore, this research

  3. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lowenstein, A.; Slayzak, S.; Kozubal, E.

    2006-07-01

    A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

  4. Applications of the Peng-Robinson Equation of State Using Mathematica

    Science.gov (United States)

    Binous, Housam

    2008-01-01

    A single equation of state (EOS) such as the Peng-Robinson EOS can accurately describe both the liquid and vapor phase. We present several applications of this equation of state including adiabatic flash calculation, determination of the solubility of methanol in natural gas, and the calculation of high-pressure chemical equilibrium. The problems…

  5. Liquid-Gas Phase Transition in Nuclear Equation of State

    CERN Document Server

    Lee, S J

    1997-01-01

    A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.

  6. Rare-gas liquids - Equation of state and reduced-pressure, reduced-bulk-modulus, and reduced-sound-velocity functions

    Science.gov (United States)

    Schlosser, Herbert

    1990-01-01

    This paper is concerned with verification of the applicability of the Vinet et al. (1987) universal equation of state to the liquid phase of the rare-gas elements under pressure. As previously observed in solids and liquids metals, to a good approximation, in the absence of phase transitions, plots of the logarithms of the reduced pressure function, of the reduced sound velocity, and of the reduced bulk modulus, are all linear functions of 1 - X over the entire experimental pressure range. The results obtained on the rare-gas liquids are comparable in accuracy to those obtained in previous work on solids and liquid metals.

  7. Application of hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction techniques in analytical toxicology

    Directory of Open Access Journals (Sweden)

    Vahid Sharifi

    2016-04-01

    Full Text Available The recent developments in hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction are reviewed. Applications of these newly emerging developments in extraction and preconcentration of a vast category of compounds including heavy metals, pesticides, pharmaceuticals and abused drugs in complex matrices (environmental and biological matrices are reviewed and discussed. The new developments in these techniques including the use of solvents lighter than water, ionic liquids and supramolecular solvents are also considered. Applications of these new solvents reduce the use of toxic solvents and eliminate the centrifugation step, which reduces the extraction time.

  8. Nanographite Films for Solid State Electronic Applications

    Directory of Open Access Journals (Sweden)

    Sergey G. Lebedev

    2013-01-01

    Full Text Available The structure and properties of nanographite films useful for applications in solid state devices are described. The possibility to use low conducting state of nanographite film for detecting radiation in the segmented solid state detectors is considered. Other interesting phenomena include the field effect conductivity switching which can be used in contactless current limiters and circuit breakers, the rf-to-dc conversion which can be utilized in microwave and photo detectors, and light emitting subsequent to the conductivity switching with possible application as light sources. The possible underlying gears of the mentioned effects are discussed.

  9. Optical Breakdown in Liquid Suspensions and Its Analytical Applications

    Directory of Open Access Journals (Sweden)

    Tatiana Kovalchuk-Kogan

    2015-01-01

    Full Text Available Micro- and nanoparticles persist in all environmental aquatic systems and their identification and quantification are of considerable importance. Therefore, the application of Laser-induced breakdown to aquatic particles is of interest. Since direct application of this method to water samples is difficult, further understanding of the breakdown is needed. We describe several optical techniques for investigation of laser breakdown in water, including Mach-Zehnder interferometry, shadow, and Schlieren diagnostic. They allow for studying the time dependent structure and physical properties of the breakdown at high temporal and spatial resolutions. Monitoring the formation of microbubbles, their expansion, and the evolution of the associated shockwaves are described. The new understanding is that the plasma column in liquids has a discrete nature, which lasts up to 100 ns. Controlling the generation of nanoparticles in the irradiated liquids is discussed. It is shown that multivariate analysis of laser-induced breakdown spectroscopy allows for differentiation between various groups of suspended particulates.

  10. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  11. State Waste Discharge Permit application, 100-N Sewage Lagoon

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond.

  12. An electrically driven gas-liquid-liquid contactor for bioreactor and other applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, C.; Borole, A.P.; Kaufman, E.N.; DePaoli, D.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1999-05-01

    An electrically driven gas-liquid-liquid bioreactor is described here, in which an aqueous medium containing a biocatalyst is introduced as a discontinuous phase into an organic-continuous liquid phase containing a substrate to be converted by the biocatalyst. A gas discontinuous phase, which may be needed to provide oxygen or a gaseous substrate to the biocatalyst, is also introduced into the bioreactor. In contrast to previous work on electrically driven contactors, it was found that the electroconvection generated by the electric field between parallel-plate electrodes may be employed to increase the volume fraction of the discontinuous gas phase in the bioreactor, providing the means for enhanced mass transfer. The electrically driven bioreactor was utilized for oil desulfurization experiments with Rhodococcus sp. IGTS8 bacteria as the biocatalyst. The organic phase used in the experiments was hexadecane containing dibenzothiophene, a model sulfur compound, that is oxidatively desulfurized to 2-hydroxybiphenyl (2-HBP) by the bacteria in the presence of air or oxygen. The gas volume fraction was increased by 60% by the application of a pulsed electric field, thus providing a means for increased transport of oxygen needed for oxidative desulfurization. The velocity of droplets and bubbles was measured by a phase Doppler velocimeter. The average rising velocity of bubbles was decreased from 13 to less than 3 cm/s and the average horizontal velocity was increased from 0 to 5 cm/s as the field strength was increased from 0 to 4 kV/cm. Desulfurization rates ranged from 1.0 to 5.50 mg of 2-HBP/g of dry cells/h. The desulfurization rate with aeration was doubled under the electric field as compared to the zero-field desulfurization under the same conditions.

  13. Bringing to Light Hidden Elasticity in the Liquid State Using In-Situ Pretransitional Liquid Crystal Swarms.

    Directory of Open Access Journals (Sweden)

    Philipp Kahl

    Full Text Available The present work reveals that at the sub-millimeter length-scale, molecules in the liquid state are not dynamically free but elastically correlated. It is possible to "visualize" these hidden elastic correlations by using the birefringent properties of pretransitional swarms persistent in liquids presenting a weak first order transition. The strategy consists in observing the optical response of the isotropic phase of mesogenic fluids to a weak (low energy mechanical excitation. We show that a synchronized optical response is observable at frequencies as low as 0.01Hz and at temperatures far away from any phase transition (up to at least 15°C above the transition. The observation of a synchronized optical signal at very low frequencies points out a collective response and supports the existence of long-range elastic (solid-like correlations existing at the sub-millimeter length-scale in agreement to weak solid-like responses already identified in various liquids including liquid water. This concept of elastically linked molecules differs deeply with the academic view of molecules moving freely in the liquid state and has profound consequences on the mechanisms governing collective effects as glass formation, gelation and transport, or synchronized processes in physiological media.

  14. Inorganic nanosheet liquid crystals and their applications (Conference Presentation)

    Science.gov (United States)

    Miyamoto, Nobuyoshi

    2016-09-01

    Liquid crystal (LC) phase of inorganic nanosheets is fascinating system in the field of condensed matter physics and for potential applications in many fields. In this lecture, I present my research on the LC nanosheet colloids derived from clay minerals, layered niobates, layered titnates, and layered perovskites. Structural analyses by small angle X-ray scattering and confocal laser scanning microscopy reveals not only meso-scale lamellar or nematic structures in the LC phase but also fractal-like porous structures. In that structure, the nanosheets show translational and rotational Brownian motions as revealed by fast-scanning confocal microscopy. The structure is tunable by many factors such as nanosheet concentration, nanosheet lateral size, salt concentration, solvent, counter cations, and charge density of the nanosheets. Some optimized systems show variable structural colors which will be useful for color materials and sensor devices. Under ac-electric field, the orientation of the nanosheets and LC domain is easily controllable; the electric field response is applicable for fabrication of electro-optic devices and formation of anisotropic composite materials. Among many future applications, inorganic nanosheet/ polymer composites with precisely controllable hierarchical structure are fascinating. We synthesized a cm-scale mono-domain gel of exfoliated LC clay/polymer composite. The gel is printable with a dye and the colored part shows photo-induced anomalous deformation behavior, which will be applicable as chemical actuators.

  15. The Liquid Crystal State Poliamidbenzimidazola Solutions in Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Khanchich Oleg

    2017-01-01

    Full Text Available We studied the temperature and concentration conditions of education and the field of LC – phase of existence in sulfuric acid solutions poliamidbenzimidazola. The polarization–optical methods and the structural features of biphasic and anisotropic areas and built plots the phase diagram of the concentrated solutions poliamidbenzimidazola in H2SO4. It is shown that in certain temperature – concentration of cooling modes can be observed the coexistence of three phases: isotropic crystal and a liquid crystal, which is shown as a characteristic of liquid crystal birefringent domains.

  16. Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications.

    Science.gov (United States)

    Hong, Chitsung; Tang, Tsung-Ta; Hung, Chi-Yu; Pan, Ru-Pin; Fang, Weileun

    2010-07-16

    This paper reports the implementation and integration of a self-assembled nanoporous anodic aluminum oxide (np-AAO) film and liquid crystal (LC) on an ITO-glass substrate for liquid crystal display (LCD) panel applications. An np-AAO layer with a nanopore array acts as the vertical alignment layer to easily and uniformly align the LC molecules. Moreover, the np-AAO nanoalignment layer provides outstanding material properties, such as being inorganic with good transmittance, and colorless on ITO-glass substrates. In this application, an LCD panel, with the LC on the np-AAO nanoalignment layer, is successfully implemented on an ITO-glass substrate, and its performance is demonstrated. The measurements show that the LCD panel, consisting of an ITO-glass substrate and an np-AAO layer, has a transmittance of 60-80%. In addition, the LCD panel switches from a black state to a bright state at 3 V(rms), with a response time of 62.5 ms. In summary, this paper demonstrates the alignment of LC on an np-AAO layer for LCD applications.

  17. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting.

    Science.gov (United States)

    Rosselló, Josep L; Alomar, Miquel L; Morro, Antoni; Oliver, Antoni; Canals, Vincent

    2016-08-01

    Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.

  18. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  19. Two state electron model for geminate recombination of electron-ion pairs in liquid isooctane

    Science.gov (United States)

    Lukin, L. V.; Yakovlev, B. S.

    2011-04-01

    Recombination kinetics of geminate electron-ion pairs is considered in the framework of the two state model for electron transport in liquid hydrocarbons. It is shown that the model well reproduces recent experimental data on the subpicosecond geminate recombination obtained in liquid isooctane. The life time of electrons in a localized state in isooctane is estimated to lie in the range between 0.14 ps and 0.57 ps at room temperature.

  20. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  1. Hydrogen-Bonding Liquids at Mineral Surfaces: From Fundamentals to Applications

    OpenAIRE

    Phan, A. T. V.

    2016-01-01

    Molecular-level understanding of properties of hydrogen-bonding liquids and their mixtures at solid-liquid interfaces plays a significant role in several applications including membrane-based separations, shale gas production, etc. Liquid water and ethanol are common hydrogen-bonding fluids. All-atom equilibrium molecular dynamics simulations were employed to gain insights regarding the structure and dynamics of these hydrogen-bonding liquids on various free-standing solid surfaces. Models fo...

  2. Gallium-Based Room Temperature Liquid Metals and its Application to Single Channel Two-Liquid Hyperelastic Capacitive Strain Sensors

    Science.gov (United States)

    Liu, Shanliangzi

    Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In the first part of the thesis, we described a multiscale study aiming at understanding the fundamental mechanisms governing wetting and adhesion of gallium-based liquid metals. In particular, macroscale dynamic contact angle measurements were coupled with Scanning Electron Microscope (SEM) imaging to relate macroscopic drop adhesion to morphology of the liquid metal-surface interface. In addition, room temperature liquid-metal microfluidic devices are also attractive systems for hyperelastic strain sensing. Currently two types of liquid metal-based strain sensors exist for inplane measurements: single-microchannel resistive and two-microchannel capacitive devices. However, with a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter, limiting the number of sensors that can be embedded into. In the second part of the thesis, firstly, simulations and an experimental setup consisting of two GaInSn filled tubes submerged within a dielectric liquid bath are used to quantify the effects of the cylindrical electrode geometry including diameter, spacing, and meniscus shape as well as dielectric constant of the insulating liquid and the presence of tubing on the overall system's capacitance. Furthermore, a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel is developed. Lastly, capacitance and response of this compact device to strain and operational issues arising from complex hydrodynamics near liquid-liquid and liquid

  3. A non-equilibrium state diagram for liquid/fluid/particle mixtures.

    Science.gov (United States)

    Velankar, Sachin S

    2015-11-21

    The equilibrium structures of ternary oil/water/surfactant systems are often represented within a triangular composition diagram with various regions of the triangle corresponding to different equilibrium states. We transplant this idea to ternary liquid/fluid/particle systems that are far from equilibrium. Liquid/liquid/particle mixtures or liquid/gas/particle mixtures yield a wide diversity of morphologies including Pickering emulsions, bijels, pendular aggregates, spherical agglomerates, capillary suspensions, liquid marbles, powdered liquids, and particle-stabilized foams. This paper argues that such ternary liquid/fluid/particle mixtures can be unified into a non-equilibrium state diagram. What is common among all these systems is that the morphology results from an interplay between the preferential wettability of the particles, capillarity, and viscous forces encountered during mixing. Therefore all such systems share certain universal features, regardless of the details of the particles or fluids used. These features guide the construction of a non-equilibrium state diagram which takes the form of a triangular prism, where each triangular cross-section of the prism corresponds to a different relative affinity of the particles towards the two fluids. We classify the prism into regions in which the various morphologies appear and also emphasize the major difference between systems in which the particles are fully-wetted by one of the fluids vs. partially-wetted by both fluids. We also discuss how the state diagram may change with mixing intensity or with interparticle attractions.

  4. Thermophysical Properties of Manganin (Cu86Mn12Ni2) in the Solid and Liquid State

    Science.gov (United States)

    Schmon, A.; Aziz, K.; Luckabauer, M.; Pottlacher, G.

    2015-07-01

    Manganin is the trademark name of the alloy Cu86Mn12Ni2. Despite its frequent usage in manufacturing processes, literature data are scarce particularly at higher temperatures. This work presents a set of thermophysical data of this alloy in a temperature range above its classic area of application up to the end of its liquid phase. For investigating the alloy, four examination setups were employed. Using differential thermal analysis, solidus and liquidus temperatures were obtained. In the solid phase, the electrical resistivity as a function of temperature was determined by a four-point probe positioned in a furnace. Thermal expansion was measured with a high-resolution two-beam laser dilatometer based on Michelson-interferometry and thereby density was calculated. The liquid state was investigated using a s-ohmic-pulse-heating setup. Wire-shaped specimens were resistively volume heated as part of an electrical discharge circuit. Measured quantities were the current through the specimen, the voltage drop along the specimen, the surface radiance by a pyrometer, and the thermal expansion with an adapted CCD camera system. On the basis of these measurements, temperature-dependent thermophysical properties of enthalpy, isobaric heat capacity, electrical resistivity, and density are obtained. Additionally the thermal conductivity and thermal diffusivity are estimated in the high-temperature range applying the Wiedemann-Franz law.

  5. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  6. Synthesis of electroactive ionic liquids for flow battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  7. Microfluidic liquid chromatography system for proteomic applications and biomarker screening.

    Science.gov (United States)

    Lazar, Iulia M; Trisiripisal, Phichet; Sarvaiya, Hetal A

    2006-08-01

    A microfluidic liquid chromatography (LC) system for proteomic investigations that integrates all the necessary components for stand-alone operation, i.e., pump, valve, separation column, and electrospray interface, is described in this paper. The overall size of the LC device is small enough to enable the integration of two fully functional separation systems on a 3 in. x 1 in. glass microchip. A multichannel architecture that uses electroosmotic pumping principles provides the necessary functionality for eluent propulsion and sample valving. The flow rates generated within these chips are fully consistent with the requirements of nano-LC platforms that are routinely used in proteomic applications. The microfluidic device was evaluated for the analysis of a protein digest obtained from the MCF7 breast cancer cell line. The cytosolic protein extract was processed according to a shotgun protocol, and after tryptic digestion and prefractionation using strong cation exchange chromatography (SCX), selected sample subfractions were analyzed with conventional and microfluidic LC platforms. Using similar experimental conditions, the performance of the microchip LC was comparable to that obtained with benchtop instrumentation, providing an overlap of 75% in proteins that were identified by more than two unique peptides. The microfluidic LC analysis of a protein-rich SCX fraction enabled the confident identification of 77 proteins by using conventional data filtering parameters, of 39 proteins with p screening applications.

  8. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries.

  9. Low-Afterglow, High-Refractive-Index Liquid Scintillators for Fast-Neutron Spectrometry and Imaging Applications

    CERN Document Server

    Lauck, Ronald; Bromberger, Benjamin; Dangendorf, Volker; Goldberg, Mark B; Mor, Ilan; Tittelmeier, Kai; Vartsky, David

    2009-01-01

    For ion and neutron spectrometry and imaging applications at a high intensity pulsed laser facility, fast liquid scintillators with very low afterglow are required. Furthermore, neutron imaging with fiber (or liquid-core) capillary arrays calls for scintillation materials with high refractive index. To this end, we have examined various combinations of established mixtures of fluors and solvents, that were enriched alternatively with nitrogen or oxygen. Dissolved molecular oxygen is known to be a highly effective quenching agent, that efficiently suppresses the population of the triplet states in the fluor, which are primarily responsible for the afterglow. For measuring the glow curves of scintillators, we have employed the time-correlated single photon counting (TCSPC) technique, characterized by high dynamic range of several orders of magnitude in light intensity. In this paper we outline the application for the fast scintillators, briefly present the scintillation mechanism in liquids, describe our specif...

  10. Solid State Marx Modulators for Emerging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, M.A.; /SLAC

    2012-09-14

    Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

  11. Preparation of Ionic Liquid-based Vilsmier Reagent from Novel Multi-purpose Dimethyl Formamide-like Ionic Liquid and Its Application

    Institute of Scientific and Technical Information of China (English)

    Hullio, Ahmed Ali; Mastoi, G. M.

    2012-01-01

    In continuation of research to explore the applied potential of DMF-like ionic liquid, the ionic liquid version of N,N-dimethyliminiumchloride (Vilsmier reagent) has been synthesized from DMF-like ionic liquid and tested effectively for its capacity to achieve more useful organic transformations. The results show that DMF-like ionic liquid is world's first task specific ionic liquid which has catalyzed numerous diverse type of reaction and is multipurpose in its application. Thus a new term for this DMF-like ionic liquid has been coined that is DMF-like "multipurpose" ionic liquid.

  12. Quantum spin liquid ground states of the Heisenberg-Kitaev model on the triangular lattice

    Science.gov (United States)

    Kos, Pavel; Punk, Matthias

    2017-01-01

    We study quantum disordered ground states of the two-dimensional Heisenberg-Kitaev model on the triangular lattice using a Schwinger boson approach. Our aim is to identify and characterize potential gapped quantum spin liquid phases that are stabilized by anisotropic Kitaev interactions. For antiferromagnetic Heisenberg and Kitaev couplings and sufficiently small spin S , we find three different symmetric Z2 spin liquid phases, separated by two continuous quantum phase transitions. Interestingly, the gap of elementary excitations remains finite throughout the transitions. The first spin liquid phase corresponds to the well-known zero-flux state in the Heisenberg limit, which is stable with respect to small Kitaev couplings and develops 120∘ order in the semiclassical limit at large S . In the opposite Kitaev limit, we find a different spin liquid ground state, which is a quantum disordered version of a magnetically ordered state with antiferromagnetic chains, in accordance with results in the classical limit. Finally, at intermediate couplings, we find a spin liquid state with unusual spin correlations. Upon spinon condensation, this state develops Bragg peaks at incommensurate momenta in close analogy to the magnetically ordered Z2 vortex crystal phase, which has been analyzed in recent theoretical works.

  13. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    Science.gov (United States)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  14. Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift

    CERN Document Server

    Ota, Y; Ohba, I; Yoshida, N; Mikami, Shuji; Ohba, Ichiro; Ota, Yukihiro; Yoshida, Noriyuki

    2006-01-01

    Recently, Yu, Brown, and Chuang [Phys. Rev. A {\\bf 71}, 032341 (2005)] investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave an insight into the role of the entanglement in a liquid-state NMR quantum computer. Moreover, they attempted to reveal the role of mixed-state entanglement in quantum computing. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with the chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by the positive partial transposition (PPT) criterion with respect to any bipartition. We examine the effect of the chemical shifts on the boundary between the separability and the nonseparability, and find it is negligible.

  15. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis.

    Science.gov (United States)

    Zhang, Qian; Yang, Feng-Qing; Ge, Liya; Hu, Yuan-Jia; Xia, Zhi-Ning

    2017-01-01

    Hydrophilic interaction liquid chromatography, an alternative liquid chromatography mode, is of particular interest in separating hydrophilic and polar ionic compounds. Compared with traditional liquid chromatography techniques, hydrophilic interaction liquid chromatography offers specific advantages mainly including: (1) relatively green and water-soluble mobile phase composition, which enhances the solubility of hydrophilic and polar ionic compounds; (2) no need for ion-pairing reagents and high content of organic solvent, which benefits mass spectrometry detection; (3) high orthogonality to reverse-phase liquid chromatography, well adapted to two-dimensional liquid chromatography for complicated samples. Therefore, hydrophilic interaction liquid chromatography has been rapidly developed in many areas over the past decades. This review summarizes the recent progress (from 2012 to July 2016) of hydrophilic interaction liquid chromatography in pharmaceutical analysis, with the focus on detecting chemical drugs in various matrices, charactering active compounds of natural products and assessing biotherapeutics through typical structure unit. Moreover, the retention mechanism and behavior of analytes in hydrophilic interaction liquid chromatography as well as some novel hydrophilic interaction liquid chromatography columns used for pharmaceutical analysis are also described.

  16. The History of Liquid Ear Acupuncture and the Current Scientific State of the Art.

    Science.gov (United States)

    Litscher, Daniela; Litscher, Gerhard

    2016-06-01

    This short review article presents a current overview of existing publications and scientific results regarding liquid (ear) acupuncture. The injection of liquids into defined acupuncture points of the ear is not a method commonly used in the Western world. The term liquid acupuncture has different definitions, which makes understanding each definition and differentiating one from the other difficult. General terms like pharmacopuncture, homeosiniatry, and liquid acupuncture, which all describe the method of injecting different kinds of drugs into a defined body acupuncture point, are used. This article presents the history of liquid acupuncture, as well as the current scientific state of the art, from the point of view of two European researchers. Some articles are discussed and a few practical examples are presented.

  17. Theoretical Study of Renewable Ionic Liquids in the Pure State and with Graphene and Carbon Nanotubes.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-17

    The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.

  18. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application

    Science.gov (United States)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.

    2017-01-01

    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in

  19. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    Science.gov (United States)

    Wang, Ye; Tian, Minglei; Bi, Wentao; Row, Kyung Ho

    2009-01-01

    Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC). Ionic liquids demonstrate advantages and potential in chromatographic field. PMID:19582220

  20. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    Directory of Open Access Journals (Sweden)

    Wentao Bi

    2009-06-01

    Full Text Available Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC. Ionic liquids demonstrate advantages and potential in chromatographic field.

  1. The Temperature Dependence of the Two Positronium Bubble States in Liquid SF6

    DEFF Research Database (Denmark)

    Jacobsen, F. M.; Eldrup, Morten Mostgaard; Mogensen, O. E.

    1980-01-01

    Positron lifetime measurements have been performed on liquid SF6 in the temperature range from −45°C to 71°C (Tc = 45.65°C). The positron lifetime spectra were resolved into four lifetime components. In the order of increasing lifetimes the four lifetime components are associated with the decay...... state τ3 was found to be 2–2.5 ns in the main part of the temperature range studied. Apparently, this is the first observation of two different o-Ps states in a liquid. The intensity I4 (I3) increases (decreases) from 16.9% (16%) at −45°C to 47.2% (6.4%) at the critical point while above I3 and I4...... are essentially temperature independent. The large Ps bubble state seems to be similar to the Ps bubble state found in most liquids....

  2. QCD equations of state and the quark-gluon plasma liquid model

    Science.gov (United States)

    Letessier, Jean; Rafelski, Johann

    2003-03-01

    Recent advances in the study of equations of state of thermal lattice quantum chromodynamics obtained at nonzero baryon density allow validation of the quark-gluon plasma (QGP) liquid model equations of state (EOS). We study here the properties of the QGP-EOS near to the phase transformation boundary at finite baryon density and show a close agreement with the lattice results.

  3. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    Directory of Open Access Journals (Sweden)

    Jorge Marcos-Acevedo

    2012-08-01

    Full Text Available In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product ( of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for  measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  4. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications

    Science.gov (United States)

    Wang, B.; Gan, Z. H.

    2013-08-01

    The importance of liquid helium temperature cooling technology in the aerospace field is discussed, and the results indicate that improving the efficiency of liquid helium cooling technologies, especially the liquid helium high frequency pulse tube cryocoolers, is the principal difficulty to be solved. The state of the art and recent developments of liquid helium high frequency pulse tube cryocoolers are summarized. The main scientific challenges for high frequency pulse tube cryocoolers to efficiently reach liquid helium temperatures are outlined, and the research progress addressing those challenges are reviewed. Additionally some possible solutions to the challenges are pointed out and discussed.

  5. Two state electron model for geminate recombination of electron-ion pairs in liquid isooctane

    Energy Technology Data Exchange (ETDEWEB)

    Lukin, L.V., E-mail: lukin@binep.ac.ru [Institute of Energy Problems of Chemical Physics (Branch), Russian Academy of Sciences, Chernogolovka, P.O. Box 56, Moscow oblast 142432 (Russian Federation); Yakovlev, B.S. [Institute of Energy Problems of Chemical Physics (Branch), Russian Academy of Sciences, Chernogolovka, P.O. Box 56, Moscow oblast 142432 (Russian Federation)

    2011-04-28

    Graphical abstract: M + n . h{nu} {yields} mobile electron {yields} trapped electron {yields} free charges. Research highlights: {yields} Electrons produced by ionization of liquid alkanes are trapped near positive ions. {yields} The recombination kinetics was expressed in terms of a trapped electron life time. {yields} Transient absorption after the ionizing pulse was analyzed for liquid isooctane. {yields} The life time of trapped electrons was found. - Abstract: Recombination kinetics of geminate electron-ion pairs is considered in the framework of the two state model for electron transport in liquid hydrocarbons. It is shown that the model well reproduces recent experimental data on the subpicosecond geminate recombination obtained in liquid isooctane. The life time of electrons in a localized state in isooctane is estimated to lie in the range between 0.14 ps and 0.57 ps at room temperature.

  6. New, ionic liquid-based membranes for lithium battery application

    Energy Technology Data Exchange (ETDEWEB)

    Sirisopanaporn, C.; Fernicola, A.; Scrosati, B. [Department of Chemistry, University of Rome La Sapienza, 00185 Rome (Italy)

    2009-01-15

    New types of dimensionally stable, flexible gel-type electrolyte membranes with a relatively wide electrochemical stability, high lithium ion conductivity and other desirable properties have been prepared by immobilizing N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethane)sulfonimide-lithium N,N-bis(trifluoromethane)sulfonimide (Py{sub 24}TFSI-LiTFSI), ionic liquid, IL, solutions in a poly(vinylidene fluoride)-hexafluoropropylene copolymer (PVdF-HFP) matrix. The addition of a discrete amount of ethylene and propylene carbonate (EC-PC), solvent mixture to the membranes resulted in an improvement of the ionic conductivity and in a stabilization of the interface with the lithium electrode. These IL-based gel type membranes can operate without degradation up to a temperature of 110 C where they reach conductivity values of the order of 10{sup -2} S cm{sup -1}. All these properties make these polymer electrolyte membranes of interest for applications as separators in advanced lithium batteries. (author)

  7. Liquid metal cooled reactors for space power applications

    Science.gov (United States)

    Bailey, S.; Vaidyanathan, S.; Van Hoomissen, J.

    1985-01-01

    The technology basis for evaluation of liquid metal cooled space reactors is summarized. Requirements for space nuclear power which are relevant to selection of the reactor subsystem are then reviewed. The attributes of liquid metal cooled reactors are considered in relation to these requirements in the areas of liquid metal properties, neutron spectrum characteristics, and fuel form. Key features of typical reactor designs are illustrated. It is concluded that liquid metal cooled fast spectrum reactors provide a high confidence, flexible option for meeting requirements for SP-100 and beyond.

  8. Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs

    CERN Document Server

    Maksymov, Ivan S

    2016-01-01

    Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.

  9. Optical nanoscopy with excited state saturation at liquid helium temperatures

    Science.gov (United States)

    Yang, B.; Trebbia, J.-B.; Baby, R.; Tamarat, Ph.; Lounis, B.

    2015-10-01

    Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy. Compared with super-localization approaches, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement.

  10. [Review of progress in application visible/near-infrared spectroscopy in liquid food detection].

    Science.gov (United States)

    Lin, Tao; Yu, Hai-Yan; Ying, Yi-Bin

    2008-02-01

    As a rapid, non-destructive new testing technology, Vis/near-infrared spectroscopy is increasingly widely used in agriculture products and food quality evaluation research The United States, Japan and many European countries have made a great deal of progress in the Vis/near-infrared spectroscopy for agriculture products and food quality evaluation. Although our country has got some fruits in this area, in comparison with foreign countries, there is still a lot of work to strengthen. In the present paper, from aspects of alcohol, dairy products, fruit juices and edible oil, the authors reviewed the latest research progress in Vis/ near-infrared spectroscopy in the quality evaluation of liquid food with the emphasis on the recent 5 years, analyzed the advantages of this technique's application to the quality evaluation of liquid foods. Finally, problems existing in the applications were analyzed and solutions to them were proposed. Based on a study of the issue, this article outlined the further study and made a number of recommendations.

  11. Are there Helium-like Protonic States of Individual Water Molecules in Liquid H2O?

    CERN Document Server

    Mueller-Herold, Ulrich

    2015-01-01

    Are there indications that individual H2O molecules in liquid water can loose their bent structure, i.e. that the protons give up their rigid angular correlation and behave largely uncorrelated, similar to electrons in the ground-state of helium? In agreement with the two-state picture of liquid water this would allow for the thermal coexistence of tetraedrically coordinated and spherical water molecules in the liquid. In the Hooke-Calogero model of a confined triatomic of XY2-type it is shown that energetically low-lying zero orbital-momentum states, which are bent if unconfined can change to helium-like shape under increasing confinement strength f. For the respective states this occurs at different values for f. It turns out that at f = 2.79 a bent and a helium-like state can thermally coexist. In order to characterize more precisely 'helium-like' angular correlation a maximum entropy estimate for the marginal correlation of electrons in the helium ground state is given. KEY WORDS: Liquid water, molecular ...

  12. Supported Liquid Membrane Extraction Technology and Its Application in Detection of Meat Security

    Institute of Scientific and Technical Information of China (English)

    LIU Jia; LI Weijin

    2010-01-01

    As a novel technology, supported liquid membrane extraction has gradually become the direction of the research of extraction, for the advantages of using little organic solvents, good selectivity and repeatability. This paper is based on describing the working principle, structure and influencing factors of supported liquid membrane, and research in domestic and foreign literatures which are in the same period, and give a review on the application of supported liquid membrane in meat security determination.

  13. Single fiber optical trapping of a liquid droplet and its application in microresonator

    Science.gov (United States)

    Liu, Zhihai; Chen, Yunhao; Zhao, Li; Zhang, Yu; Wei, Yong; Zhu, Zongda; Yang, Jun; Yuan, Libo

    2016-12-01

    We propose and demonstrate an optical trapping of a liquid droplet and its application based on an annular core microstructured optical fiber. We grind and polish the annular core fiber tip to be a special frustum cone shape to make sure the optical force large enough to trap the liquid droplet non-intrusively. The axial and transverse optical trapping forces are simulated. In addition, we investigate the whispering gallery modes resonance characteristic of the trapped liquid droplet as the example of applications. The whispering gallery modes spectrum is sensitive to the size of the micro liquid droplet. Due to the simple construction and flexible manipulation, the fiber-based optical trapping technology for micro liquid droplets trapping, manipulating, and controlling has great application penitential in many fields, such as physics, biology, and interdisciplinary studies.

  14. State-of-the-art review of liquid loading in gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Barbosa, J.R. Jr. [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). Dept. of Mechanical Engineering

    2013-08-01

    the field; some unloading solutions (e.g. velocity strings) rely on the existing natural energy of the system, while others (e.g. downhole pumps) provide extra energy to bring the water to surface, so reducing the liquid loading problem. As each of the remedial options have their own technical characteristics, their applicability varies depending on the characteristics and the status of the well. Although a number of established techniques are used to alleviate the effects of liquid loading, the industry still lacks reliable predictive models to help select the best remedial option for a particular loading occurrence. In this paper, an up-to-date critical review of current methods to forecast the onset of liquid loading and model the subsequent wellbore performance is presented. The review also includes recent attempts to understand the dynamic interactions between reservoir and wellbore during liquid loading.

  15. Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium

    Science.gov (United States)

    Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K.

    2016-12-01

    We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no

  16. Multiple critical points and liquid-liquid equilibria from the van der Waals like equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor [Thermodynamics Department, Academy of Refrigeration, 65082 Odessa (Ukraine)

    2008-06-18

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema.

  17. Application of Genetic Algorithms for Parameter Estimation in Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Orestes Llanes Santiago

    2011-11-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space. Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems. In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography.

  18. Child-Resistant Packaging for E-Liquid: A Review of US State Legislation.

    Science.gov (United States)

    Frey, Leslie T; Tilburg, William C

    2016-02-01

    A growing number of states have introduced or enacted legislation requiring child-resistant packaging for e-liquid containers; however, these laws involve varying terms, packaging standards, and enforcement provisions, raising concerns about their effectiveness. We evaluated bills against 4 benchmarks: broad product definitions that contemplate future developments in the market, citations to a specific packaging standard, stated penalties for violations, and express grants of authority to a state entity to enforce the packaging requirements. Our findings showed that 3 states meet all 4 benchmarks in their enacted legislation. We encourage states to consider these benchmarks when revising statutes or drafting future legislation.

  19. An application of extreme value theory in estimating liquidity risk

    OpenAIRE

    Sonia Benito Muela; Carmen López Martín; Raquel Arguedas Sanz

    2017-01-01

    The last global financial crisis (2007–2008) has highlighted the weaknesses of value at risk (VaR) as a measure of market risk, as this metric by itself does not take liquidity risk into account. To address this problem, the academic literature has proposed incorporating liquidity risk into estimations of market risk by adding the VaR of the spread to the risk price. The parametric model is the standard approach used to estimate liquidity risk. As this approach does not generate reliable VaR ...

  20. 40 CFR 417.80 - Applicability; description of the manufacture of liquid soaps subcategory.

    Science.gov (United States)

    2010-07-01

    ... manufacture of liquid soaps subcategory. 417.80 Section 417.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.80 Applicability; description of the manufacture...

  1. Applications of nanomaterials in liquid chromatography: opportunities for separation with high efficiency and selectivity.

    Science.gov (United States)

    Zhang, Zhengxiang; Wang, Zhiyong; Liao, Yiping; Liu, Huwei

    2006-08-01

    During recent decades, great efforts have been made to improve the chemical stability, selectivity, and separation efficiency of stationary phases in liquid chromatography. Significant progress has been achieved, especially after the introduction of nanomaterials into separation science. This review covers the applications of nanomaterials playing various roles in liquid chromatography. Future possibilities for developing nanomaterial-based stationary phases are also discussed.

  2. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  3. Liquid crystal light valves for slow light and applications

    Energy Technology Data Exchange (ETDEWEB)

    Residori, S; Bortolozzo, U [INLN, CNRS, University de Nice Sophia-Antipolis, 1361 route des Lucioles, 06560 Valbonne (France); Huignard, J P, E-mail: jean-pierre.huignard@thalesgroup.co [Thales Research and Technology, RD 128 91767, Palaiseau Cedex (France)

    2010-02-01

    The large dispersive properties of wave mixing in liquid crystal light-valves allow obtaining fast and slow light with tunable group velocities. A slow light interferometer is shown by using this interaction.

  4. An application of extreme value theory in estimating liquidity risk

    Directory of Open Access Journals (Sweden)

    Sonia Benito Muela

    2017-09-01

    Full Text Available The last global financial crisis (2007–2008 has highlighted the weaknesses of value at risk (VaR as a measure of market risk, as this metric by itself does not take liquidity risk into account. To address this problem, the academic literature has proposed incorporating liquidity risk into estimations of market risk by adding the VaR of the spread to the risk price. The parametric model is the standard approach used to estimate liquidity risk. As this approach does not generate reliable VaR estimates, we propose estimating liquidity risk using more sophisticated models based on extreme value theory (EVT. We find that the approach based on conditional extreme value theory outperforms the standard approach in terms of accurate VaR estimates and the market risk capital requirements of the Basel Capital Accord.

  5. Water-Aromatic Liquid-Liquid-Vapour Equilibrium Calculation Using a Cubic Equation of State

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    This paper presents an extension of the procedure developed in the case of water-alkane binaries to mixtures of water and benzene or toluene or xylene or ethylbenzene or diethylbenzene.The method used to calculate the equilibria is based on the Peng-Robinson cubic equation of state modified as regards the coefficient α(Tr)and on the use of a binary interaction coefficient kiw specific to binaries containing water.

  6. Solubilities of gases in ionic liquids using a corresponding-states approach to Kirkwood-Buff solution theory

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2011-01-01

    The solubilities of gases in ionic liquids and compressed liquid densities have been successfully described over a wide range of conditions using a reformulated corresponding-states formulation for direct correlation function integrals. In addition, comparisons with experimental data show reliable...... prediction of ionic liquid characteristic properties from simple rules....

  7. Applications of Ionic Liquids in Electrochemical Sensors and Biosensors

    OpenAIRE

    Virendra V. Singh; Anil K. Nigam; Anirudh Batra; Mannan Boopathi; Beer Singh; Rajagopalan Vijayaraghavan

    2012-01-01

    Ionic liquids (ILs) are salt that exist in the liquid phase at and around 298 K and are comprised of a bulky, asymmetric organic cation and the anion usually inorganic ion but some ILs also with organic anion. ILs have attracted much attention as a replacement for traditional organic solvents as they possess many attractive properties. Among these properties, intrinsic ion conductivity, low volatility, high chemical and thermal stability, low combustibility, and wide electrochemical windows a...

  8. Ionic Liquids Development and Challenges in Industrial Application

    OpenAIRE

    Cvjetko Bubalo, M.; Radošević, K.; Radojčić Redovniković, I.; Halambek, J.; Vorkapić-Furač, J.; Gaurina Srček, V.

    2014-01-01

    Establishment of novel, highly productive, and sustainable processes for the production of industrially important compounds is becoming a growing area of research. Due to non-volatility, inflammability, great thermal, chemical and electrochemical stability and also recyclability, ionic liquids are extensively studied as possible green replacement for widely used conventional molecular solvents. Due to the extremely large number of possible chemical structures of ionic liquids, the ability to ...

  9. Life Cycle Assessment of an Ionic LIquid versus Traditional Solvents and Their Applications

    Science.gov (United States)

    Ionic liquids (ILs) have been claimed as "greener" replacements to traditional solvents. HOwever, the environmental impacts of the life cycle phases including the making of ILs, their application, separation, etc., and comparison with alternative methods have not been studied. Su...

  10. Liquid-borne Nanoparticle Characterization and its Application to Nanometer-rated Liquid Filter Evaluation

    Science.gov (United States)

    Ling, Tsz Yan

    Nanoparticles are often found in liquid-borne dispersed phases, in addition to the airborne and surface-borne phases. Characterization techniques for nanoparticles are needed for the environmental, health and safety studies of nanomaterials. The objectives of this thesis are to 1) explore methods for characterizing liquid-borne nanoparticles and 2) apply these methods to study nanoparticle filtration problems. In Chapter 2, calibration results of the Nanoparticle Tracking Analysis (NTA) technique in our lab are reported. The concentration measurements agree well with that estimated by suspension mass concentration within the range of 108-1010 particles/ml. The particles generally have a most probable size of 100-200 nm. The filtration systems of the AWM and EDM processes were found to remove of 70 and 90 % the nanoparticles present, respectively. However, the particle concentration of the filtered water from the AWM was still four times higher than that found in regular tap water. These nanoparticles are mostly agglomerated, according to the microscopy analysis. Since AWM and EDM are widely used, the handling and disposal of used filters collected with nanoparticles, release of nanoparticles to the sewer and potential use of higher performance filters for these processes will deserve further considerations. The development of an aerosolization technique to measure liquid-borne nanoparticles down to 30 nm and its application to filter evaluation is discussed in Chapter 3. This technique involves dispersing nanoparticle suspensions into airborne form with an atomizer or electrospray aerosol generator, and measuring the size and concentration by a differential mobility analyzer coupled to a condensation particle counter. With the electrospray aerosol generator, residue particles can be controlled to be less than 10 nm, allowing particles as small as 30 nm to be clearly distinguished from the size distribution measurements. Comparing to NTA, the aerosolization

  11. [Preparation and applications of a supported liquid-liquid extraction column with a composite diatomite material].

    Science.gov (United States)

    Bao, Jianmin; Ma, Zhishuang; Sun, Ying; Wang, Yongzun; Li, Youxin

    2012-08-01

    A rapid and special supported liquid-liquid extraction (SLE) column was developed with a composite diatomite material. The SLE column was evaluated by high performance liquid chromatography (HPLC) with acidic, neutral and alkaline compounds dissolved in water. Furthermore, some real complex samples were also analyzed by HPLC with the SLE method. The recoveries of benzoic acid (acidic), p-nitroaniline (alkaline) and 4-hydroxy-benzoic methyl ester (neutral) treated by the SLE column were 90.6%, 98.1% and 97.7%. However, the recoveries of the three compounds treated by traditional liquid-liquid extraction (LLE) method were 71.9%, 81.9% and 83.9%. The results showed that the SLE technique had higher recoveries than the traditional LLE method. The spiked recoveries of the complex samples, such as benzoic acid in Sprite and dexamethasone acetate, chlorphenamine maleate, indomethacin in bovine serum, were between 80% and 110% and the relative standard deviations (RSDs) were less than 15%. For biological specimen, the results could be accepted. Meantime, many disadvantages associated with traditional LLE method, such as emulsion formation, didn't occur using SLE column. The SLE column technique is a good sample preparation method with many advantages, such as rapid, simple, robust, easily automated, high recovery and high-throughput, which would be widely used in the future.

  12. Synthesis and applications of novel bis(ammonium) chiral ionic liquids derived from isomannide

    DEFF Research Database (Denmark)

    Kumar, Vineet; Olsen, Carl Erik; Schäffer, Susan J.;

    2007-01-01

    Carbohydrate-based novel bis(ammonium) chiral ionic liquids have been synthesized by following a straightforward protocol using isomannide as the substrate. Their applications in chiral discrimination and optical resolution of racemates have been established.......Carbohydrate-based novel bis(ammonium) chiral ionic liquids have been synthesized by following a straightforward protocol using isomannide as the substrate. Their applications in chiral discrimination and optical resolution of racemates have been established....

  13. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  14. 28 CFR 104.42 - Applicable state law.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Applicable state law. 104.42 Section 104... OF 2001 Amount of Compensation for Eligible Claimants. § 104.42 Applicable state law. The phrase “to the extent recovery for such loss is allowed under applicable state law,” as used in the...

  15. Correlation of the vapor pressure isotope effect with molecular force fields in the liquid state

    Energy Technology Data Exchange (ETDEWEB)

    Pollin, J.S.; Ishida, T.

    1976-07-01

    The present work is concerned with the development and application of a new model for condensed phase interactions with which the vapor pressure isotope effect (vpie) may be related to molecular forces and structure. The model considers the condensed phase as being represented by a cluster of regularly arranged molecules consisting of a central molecule and a variable number of molecules in the first coordination shell. The methods of normal coordinate analysis are used to determine the modes of vibration of the condensed phase cluster from which, in turn, the isotopic reduced partition function can be calculated. Using the medium cluster model, the observed vpie for a series of methane isotopes has been successfully reproduced with better agreement with experiment than has been possible using the simple cell model. We conclude, however, that insofar as the medium cluster model provides a reasonable picture of the liquid state, the vpie is not sufficiently sensitive to molecular orientation to permit an experimental determination of intermolecular configuration in the condensed phase through measurement of isotopic pressure ratios. The virtual independence of vapor pressure isotope effects on molecular orientation at large cluster sizes is a demonstration of the general acceptability of the cell model assumptions for vpie calculations.

  16. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.

    2014-01-01

    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high charg

  17. Liquid Crystal Thermography Measurement Uncertainty Analysis and Its Application to Turbulent Heat Transfer Measurements

    Directory of Open Access Journals (Sweden)

    Yu Rao

    2012-01-01

    Full Text Available Liquid crystal thermography is an advanced nonintrusive measurement technique, which is capable of providing a high-accuracy continuous temperature field measurement, especially for a complex structured heat transfer surface. The first part of the paper presents a comprehensive introduction to the thermochromic liquid crystal material and the related liquid crystal thermography technique. Then, based on the aythors' experiences in using the liquid crystal thermography for the heat transfer measurement, the parameters affecting the measurement uncertainty of the liquid crystal thermography have been discussed in detail through an experimental study. The final part of the paper describes the applications of the steady and transient liquid crystal thermography technique in the study of the turbulent flow heat transfer related to the aeroengine turbine blade cooling.

  18. Multiple chiral topological states in liquid crystals from unstructured light beams

    Energy Technology Data Exchange (ETDEWEB)

    Loussert, Charles; Brasselet, Etienne, E-mail: e.brasselet@loma.u-bordeaux1.fr [Laboratoire Ondes et Matière d' Aquitaine, Univ. Bordeaux, CNRS, UMR 5798, F-33400 Talence (France)

    2014-02-03

    It is shown experimentally that unstructured light beams can generate a wealth of distinct metastable defect structures in thin films of chiral liquid crystals. Various kinds of individual chiral topological states are obtained as well as dimers and trimers, which correspond to the entanglement of several topological unit cells. Self-assembled nested assemblies of several metastable particle-like topological states can also be formed. Finally, we propose and experimentally demonstrate an opto-electrical approach to generate tailor-made architectures.

  19. Optimization and Application of Liquid Chromatography Determination of Dispersive Liquid-liquid Microextraction Purified Astaxanthin in Shrimp Waste

    Institute of Scientific and Technical Information of China (English)

    ZHU Tao; ROW Kyung-ho

    2013-01-01

    A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized,and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shrimp waste.The eluent(methanol) from MISPE was used as the dispersive solvent in subsequent DLLME for further purifying and enriching the analyte prior to high-performance liquid chromatography(HPLC) analysis.The mobile phase was methanol-acetonitrile-water-dichloromethane(85:5:5:5,volume ratio),flow rate was 0.7 mL/min and UV wavelength was 476 nm.Under optimal conditions,good linearity was obtained in a range of 0.2-200.0 μg/mL(r2=0.9998) with a limit of detection(LOD) of 0.08 μg/mL,and the extraction recoveries at three spiked levels ranged from 88.3%-92.5% with a relative standard deviation(RSD) less than 4.3%.Moreover,the mean contents of astaxanthin in the three batches of shrimp waste were 95.9,85.4 and 77.2 μg/g,respectively.This method combining the advantages of MISPE and DLLME results in high selectivity and low cost,which was applied to determining the astaxanthin level in shrimp waste samples.

  20. Application of calorimetry and thermal analysis to determine the liquid range and the environmental toxicity of ionic liquids

    OpenAIRE

    Parajó Vieito, Juan José

    2016-01-01

    This PhD Thesis is focused on the applicability of thermal analysis and calorimetry techniques to determine phase transitions (through Differential Scanning Calorimetry (DSC)), thermal stability (measured by Thermogravimetric Analysis (TGA)) and ecotoxicity (trhough Thermal Activity Monitor (TAM) and seed germination response tests) of ionic liquids (ILs) to be used as lubricants and/or absorbents in heat pumps. The studied compounds are based on different anions (imide, triflate, sulphonate,...

  1. Bio-based ionic liquid crystalline quaternary ammonium salts: properties and applications.

    Science.gov (United States)

    Sasi, Renjith; Rao, Talasila P; Devaki, Sudha J

    2014-03-26

    In the present work, we describe the preparation, properties, and applications of novel ionic liquid crystalline quaternary ammonium salts (QSs) of 3-pentadecylphenol, a bio-based low-cost material derived from cashew nut shell liquid. Amphotropic liquid crystalline phase formation in QSs was characterized using a combination of techniques, such as DSC, PLM, XRD, SEM, and rheology, which revealed the formation of one, two, and three dimensionally ordered mesophases in different length scales. On the basis of these results, a plausible mechanism for the formation of specific modes of packing in various mesophases was proposed. Observation of anisotropic ionic conductivity and electrochemical stability suggests their application as a solid electrolyte.

  2. The novel metallic states of the cuprates: topological Fermi liquids and strange metals

    CERN Document Server

    Sachdev, Subir

    2016-01-01

    This article is based on a talk by S.S. at the Nambu Memorial Symposium at the University of Chicago. We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux-insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the Z2 spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of `topological' Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using Z2-FL* or Z...

  3. Application of Reed-Vibration Mechanical Spectroscopy for Liquids in Studying Liquid Crystallization

    Science.gov (United States)

    Zhou, Heng-Wei; Wang, Li-Na; Zhang, Li-Li; Huang, Yi-Neng

    2013-08-01

    By using the reed-vibration mechanical spectroscopy for liquids (RMS-L), we measured the complex Young's modulus of dimethyl phthalate (DP) during a cooling and heating circulation starting from room temperature at about 2 KHz. The results show that there is no crystallization in the cooling supercooled liquid (CSL) of DP, but a crystallization process in the heating supercooled liquid (HSL) after the reverse glass transition. Based on the measured modulus, crystal volume fraction (v) during the HSL crystallization was calculated. Moreover, the Avrami exponent (n) was obtained according to the JJMA equation and v data. In view of n versus temperature and v, the nucleation dynamics was analyzed, and especially, there has already existed saturate nuclei in DP HSL before the crystallization. Furthermore, the authors inferred that the nuclei are induced by the random frozen stress in the glass, but there is no nucleus in CSL. The above results indicated that RMS-L might provide a new way to measure and analyze the crystallization of liquids.

  4. The study of LED uniform lightguide for liquid crystal display backlight applications

    Science.gov (United States)

    Chien, Chao-Heng; Chen, Zhi-Peng

    2008-08-01

    A conventional backlight unit (BLU) is used to as the light module to present uniform light of liquid crystal display (LCD). In general, cold cathode fluorescent lamp (CCFL) is utilized to be the light source of BLU. The light emitting diode (LED) is now considered well known as a promising device for solid state lighting. It has the advantages of long durability, no mercury substance and good endurance of heavy impact. To satisfy the market demands of the thin-film liquid crystal display (LCD) and the green product, the LED is applied to as the light source to make display thinner, lighter, no Hg containing. In this research, the LED uniform lightguide is demonstrated because it enables the point-like light to distribute propagating-light line pattern successfully. By optimizing the size and the radian of the device, the designed LED uniform lightguide can achieve the output efficiency more than 85%, and its illuminative uniformity is improved about 85%. Thus, the LED uniform lightguide not only can decrease the number of LED to save the space, but also enhance the optical efficiency. In the future, a novel LED uniform module could make displays thinner and lighter for backlight system applications.

  5. Two-dimensional liquid chromatography and its application in traditional Chinese medicine analysis and metabonomic investigation.

    Science.gov (United States)

    Li, Zheng; Chen, Kai; Guo, Meng-zhe; Tang, Dao-quan

    2016-01-01

    Two-dimensional liquid chromatography has become an attractive analytical tool for the separation of complex samples due to its enhanced selectivity, peak capacity, and resolution compared with one-dimensional liquid chromatography. Recently, more attention has been drawn on the application of this separation technique in studies concerning traditional Chinese medicines, metabonomes, proteomes, and other complex mixtures. In this review, we aim to examine the application of two-dimensional liquid chromatography in traditional Chinese medicine analysis and metabonomic investigation. The classification and evaluation indexes were first introduced. Then, various switching methods were summarized when used in an on-line two-dimensional liquid chromatography system. Finally, the applications of this separation technique in traditional Chinese medicine analysis and metabonomic investigation were discussed on the basis of specific studies.

  6. Modern applications of NMR tomography in physical chemistry. The characteristic features of the technique and its applications to studies of liquid-containing objects

    Energy Technology Data Exchange (ETDEWEB)

    Koptyug, Igor V; Sagdeev, Renad Z [International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2002-07-31

    This review concerns the state-of-the-art in the field of NMR tomography. The scope and limitations of the method, its capabilities, and some of the most widely used applications in physical chemistry are discussed. It is demonstrated that the technique is able to provide a vast variety of information about the state of objects under study and on the physicochemical processes occurring in them, which can be gained owing to the specific features of the technique. The review predominantly covers the studies of the structure and properties of various liquid-containing objects. The bibliography includes 232 references.

  7. Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids

    Directory of Open Access Journals (Sweden)

    A. M. Booth

    2010-10-01

    Full Text Available Knudsen Effusion Mass Spectrometry (KEMS has been used to measure for the first time the solid state vapour pressures of a series of aliphatic cyclic dicarboxylic acids with increasing ring size. Additionally the atmospherically important compounds; cis-pinonic acid and levoglucosan were also measured. Differential Scanning Calorimetry (DSC was used to measure melting points, enthalpies and entropies of fusion, which were used to determine sub-cooled liquid vapour pressures for the compounds. The sub-cooled liquid vapour pressure of straight chain, branched and cyclic dicarboxylic acids was compared to a selection of estimation methods.

  8. Modeling p VT Properties and Vapor-Liquid Equilibrium of Ionic Liquids Using Cubic-plus-association Equation of State

    Institute of Scientific and Technical Information of China (English)

    马俊; 李进龙; 范冬福; 彭昌军; 刘洪来; 胡英

    2011-01-01

    Combining Peng-Robinson (PR) equation of state (EoS) with an association model derived from shield-sticky method (SSM) by Liu et al., a new cubic-plus-association (CPA) EoS is proposed to describe the ther-modynamic properties of pure ionic liquids (ILs) and their mixtures. The new molecular parameters for 25 ILs are obtained by fitting the experimental density data over a wide temperature and pressure range, and the overall aver-age deviation is 0.22%. The model parameter b for homologous ILs shows a good linear relationship with their mo-lecular mass, so the number of model parameters is reduced effectively. Using one temperature-independent binary adjustable parameter kij, satisfactory correlations of vapor-liquid equilibria (VLE) for binary mixtures of ILs + non-associating solvents and + associating solvents are obtained with the overall average deviation of vapor pressure 2.91% and 7.01%, respectively. In addition, VLE results for ILs + non-associating mixtures from CPA, lattice-fluid (LF) and square-well chain fluids with variable range (SWCF-VR) EoSs are compared.

  9. Irreversible Magnetization Deep in the Vortex-Liquid State of a 2D Superconductor at High Magnetic Fields

    OpenAIRE

    Maniv, T.; Zhuravlev, V.; Wosnitza, J.; Hagel, J.

    2004-01-01

    The remarkable phenomenon of weak magnetization hysteresis loops, observed recently deep in the vortex-liquid state of a nearly two-dimensional (2D) superconductor at low temperatures, is shown to reflect the existence of an unusual vortex-liquid state, consisting of collectively pinned crystallites of easily sliding vortex chains.

  10. Optimization of liquid crystal structures for real time holography applications.

    Science.gov (United States)

    Sahraoui, B; Anczykowska, A; Bartkiewicz, S; Mysliwiec, J

    2011-11-21

    In this paper we present results of experiments designed to increase our understanding of the photorefractive effect occurring during processes of dynamic hologram generation in Hybrid Photorefractive Liquid Crystal Structures (HPLCS). We also propose equivalent mathematical model which can be used to optimize those structures in order to obtain the highest diffraction efficiency in possibly shortest time.

  11. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    Science.gov (United States)

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-06

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  12. NATO Advanced Study Institute International Advanced Course on The Liquid State and Its Electrical Properties

    CERN Document Server

    Christophorou, L; Luessen, L

    1988-01-01

    As the various disciplines of science advance, they proliferate and tend to become more esoteric. Barriers of specialized terminologies form, which cause scientists to lose contact with their colleagues, and differences in points-of-view emerge which hinder the unification of knowledge among the various disciplines, and even within a given discipline. As a result, the scientist, and especially the student, is in many instances offered fragmented glimpses of subjects that are funda­ mentally synthetic and that should be treated in their own right. Such seems to be the case of the liquid state. Unlike the other states of matter -- gases, solids, and plasmas -- the liquid state has not yet received unified treatment, probably because it has been the least explored and remains the least understood state of matter. Occasionally, events occur which help remove some of the barriers that separate scientists and disciplines alike. Such an event was the ASI on The Liquid State held this past July at the lovely Hotel T...

  13. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  14. Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications.

    Science.gov (United States)

    Dong, Yao-Da; Larson, Ian; Barnes, Timothy J; Prestidge, Clive A; Allen, Stephanie; Chen, Xinyong; Roberts, Clive J; Boyd, Ben J

    2012-09-18

    Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.

  15. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kaushik, E-mail: kaushikpal@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Zhan, Bihong, E-mail: bihong_zhan@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Madhu Mohan, M.L.N. [Liquid Crystal Research Laboratory (LCRL), Bannari Amman Institute of Technology, Sathyamangalam 638 401 (India); Schirhagl, Romana [University Medical Center Groningen, Department of BioMedical Engineering, Ant. Deusinglaan 1, 9713 AV Groningen (Netherlands); Wang, Guoping, E-mail: guopingwang@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China)

    2015-12-01

    constructed and compared. The switching times, the contrast ratio and spontaneous polarization of the nanostructures–HBLC composite film were carried out by systematic investigation. The sample preparation parameters, such as the curing time and curing intensity were optimized. The critical applied voltage to achieve the switching bi-stability of our device is only 4.5 V, which is approximately twice its threshold voltage for Freedericksz transition. This performance puts the hybrid structure at the top level in the state of the art in application oriented research in optics of liquid crystalline composite materials.

  16. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology.

  17. Chiral ionic liquids: a compendium of syntheses and applications (2005-2012).

    Science.gov (United States)

    Payagala, Tharanga; Armstrong, Daniel W

    2012-01-01

    In recent years, the field of chiral ionic liquids (CILs) has undergone exponential growth. As the technology has advanced, new ways of synthesizing stable and structurally diverse ionic liquids have been established. This has led to heretofore unknown applications of CILs as well as in improving efficiency of previously identified applications. In this review article we have compiled a comprehensive database containing structures and physical properties of notable CILs that have been synthesized during the last 6 years. Their applications in the fields of asymmetric organic synthesis, spectroscopy, and chromatography are also illustrated. This is an expansion of our previous review, which covered the literature before 2005. Copyright © 2011 Wiley Periodicals, Inc.

  18. Excited-state proton transfer of fluorescein anion as an ionic liquid component.

    Science.gov (United States)

    Rodrigues, Catarina A B; Graça, Cátia; Maçôas, Ermelinda; Fedorov, Alexander; Afonso, Carlos A M; Martinho, José M G

    2013-11-14

    Fluorescent ionic liquids (FILs) incorporating the fluorescein anion have been prepared by anion exchange of the parent quaternary ammonium chloride (Quat(+)Cl(-)) ionic liquid. By controlling the molar ratio of fluorescein to Quat(+)Cl(-), ionic liquids incorporating different prototropic forms of fluorescein were prepared. The 1:1 molar ratio ionic liquid (FIL1) is essentially composed of monoanionic fluorescein, while dianionic fluorecein is predominant in the FIL with a 1:2 molar ratio (FIL2). The fluorescence excitation spectrum of FIL2 is markedly different from its absorption spectrum. Absorption features the fluorescein dianion, while the excitation spectrum is exclusively due to the monoanion. In FIL1, the absorption and excitation spectra are both characteristic of the monoanion. In both FILs, emission of the dianion is observed upon excitation of the monoanion. This unusual behavior is interpreted in the context of a fast deprotonation of the monoanion in the excited state. The presence of residual water in the ionic liquid is important for the proton transfer process. By lowering the pH of FIL1, the transient proton transfer is inhibited, and the emission of the monoanion could be observed. The FILs have completely different spectroscopic properties from solvated fluorescein in Quat(+)Cl(-), where the prototropic equilibrium is shifted toward the neutral forms.

  19. Methane emissions from process equipment at natural gas production sites in the United States: liquid unloadings.

    Science.gov (United States)

    Allen, David T; Sullivan, David W; Zavala-Araiza, Daniel; Pacsi, Adam P; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Lamb, Brian K; Sawyer, Robert F; Seinfeld, John H

    2015-01-01

    Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21,000-35,000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10,000-50,000 scf/event). For wells with plunger lifts, emissions averaged 1000-10,000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12,000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190-400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings.

  20. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false General specification applicable to cryogenic... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic...

  1. Ionic liquids in separations: applications for pyrolysis oil and emulsion systems

    NARCIS (Netherlands)

    Li, X.

    2017-01-01

    Solvent extraction is one of the main separation techniques and has been developed for a wide range of industrial applications. Ionic liquids (ILs) are often considered as environmentally friendly solvents and have been studied widely in various laboratory applications. Aiming to design effective ex

  2. Ionic liquids in separations: applications for pyrolysis oil and emulsion systems

    NARCIS (Netherlands)

    Li, Xiaohua

    2017-01-01

    Solvent extraction is one of the main separation techniques and has been developed for a wide range of industrial applications. Ionic liquids (ILs) are often considered as environmentally friendly solvents and have been studied widely in various laboratory applications. Aiming to design effective ex

  3. Synthesis of Ag-Au bimetallic film at liquid-liquid interface and its application in vapor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Pasricha, Renu, E-mail: pasrichar@mail.nplindia.ernet.i [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India); Gupta, Shweta [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India); Sastry, M. [Tata Chemical Innovation Center, Anmol Pride, Baner Road, Pune-45 (India); Singh, Nahar; Gupta, Prabhat [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India)

    2010-11-30

    We demonstrate a novel process for preparing densely packed film of silver nanoparticles at the liquid-liquid interface followed by a transmetallation reaction with gold ion to yield a film of bimetallic nanoparticles. Films of assembled silver as well as Ag-Au bimetallic were characterized by UV-vis-spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. I-V measurement shows linear behavior for both the films with ca. five orders of magnitude drop in resistance for the Ag-Au bimetallic film. Temperature dependent I-V measurement revealed a semiconductor to metal transition after transmetallation reaction. The films where checked for their potential application in chemical vapor sensing to ammonia vapors.

  4. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    based on the mass and energy balance of the hydrogen, liquid, and the wall of the compression chamber at each time step and positional node with various compression ratios, to calculate the temperature distribution of the system. The amount of heat extracted from hydrogen, directly at the interface......A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  5. The Applications of Ionic Liquids into Space Lubricants

    Science.gov (United States)

    Okaniwa, Takashi; Hayama, Makoto

    2013-09-01

    Perfluoropolyether (PFPE) and Multiplyalkylated cyclopentane (MAC) are currently the most widely used space lubricating oils. Although PFPE can be used over wide temperature ranges, it has some issues such as the poor solubility of additives making it difficult to improve rust preventive property or friction wear characteristics and unfavourable decomposition behaviour in boundary lubrication [1, 2]. Thus PFPE is being replaced by MAC. On the other hand, MAC withstands operating temperatures of -20oC but has difficulty functioning at -40oC due to an increase in kinematic viscosity. Another issue is that some additives are effective in improving load capacity of MAC but can adversely affect the vacuum property under high vacuum.In this study, ionic liquids were investigated as a possible base oil of next-generation space grease to solve these issues. Table 1 summarizes key properties of typical ionic liquids and currently-used space lubricants.

  6. High Performance Negative Dielectric Anisotropy Liquid Crystals for Display Applications

    Directory of Open Access Journals (Sweden)

    Xiaolong Song

    2013-09-01

    Full Text Available We review recent progress in the development of high birefringence (Δn ≥ 0.12 negative dielectric anisotropy (Δε < 0 liquid crystals (LCs for direct-view and projection displays. For mobile displays, our UCF-N2 (low viscosity, negative Δε, high Δn based homogeneous alignment fringe-field switching (called n-FFS mode exhibits superior performance to p-FFS in transmittance, single gamma curve, cell gap insensitivity, and negligible flexoelectric effect. For projection displays using a vertical alignment liquid-crystal-on-silicon (VA LCOS, our high birefringence UCF-N3 mixture enables a submillisecond gray-to-gray response time, which is essential for color sequential displays without noticeable color breakup. Our low viscosity UCF-N2 also enables multi-domain VA displays to use a thinner cell gap for achieving faster response time.

  7. Application of fast liquid chromatography for antioxidants analysis

    Directory of Open Access Journals (Sweden)

    Agnieszka Drożdżyńska

    2012-03-01

    Full Text Available Background. An intensive development of the Fast Liquid Chromatography (FLC has been recently observed. It makes possible to reduce time analysis and improve resolution as well as sensitivity. The aim of this study was to separate the chosen antioxidants optimization using the FLC method. Material  and methods. The three various procedures for antioxidants analysis were compared. Mobile phases containing aqueous solution of formic acid, acetic acid, acetonitrile, and methanol were tested. Limit of detection (LOD, limit of quantification (LOQ, linearity and repeatability of each procedures were determined. Results. Developed procedure enabled to separate all analytes and allowed to get low LOD levels and good repeatability. This procedure was used for antioxidants analysis in buckwheat and buckwheat products. Conclusion. Fast Liquid Chromatography allows to  reduce time analysis and  obtain good  validation parameters.

  8. Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging

    Science.gov (United States)

    Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, Paola

    2016-04-01

    We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.

  9. Application of ionic liquids in actinide and fission product separations: progress and prospects.

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, D. C.; Young, B. A.; Jensen, M. P.; Rickert, P. G.; Dzielawa, J. A.; Dilger, A. A.; Rausch, D. J.; Dietz, M. L.; Chemistry

    2006-01-01

    Ionic liquids (ILs), particularly those that are liquid at room temperature, have attracted intense interest as alternatives to conventional organic solvents in a host of synthetic, catalytic, and electrochemical applications. Recently, growing attention has been devoted to their use in separations, typically as replacements for the organic diluents employed in traditional liquid-liquid extraction or membrane-based separations of organic solutes or metal ions. Although studies of the extraction of metal ions into various ILs indicate that these solvents frequently provide extraction efficiencies far greater than those obtained with conventional solvents, other work suggests that they suffer from various drawbacks that could limit their utility as extraction solvents. In this chapter, we examine the viability of ionic liquids as the basis for extraction systems for the separation of actinides and fission products from acidic media and consider approaches by which their limitations may be overcome.

  10. Longitudinal Modes along Thin Piezoelectric Waveguides for Liquid Sensing Applications

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2015-06-01

    Full Text Available The propagation of longitudinally polarized acoustic modes along thin piezoelectric plates (BN, ZnO, InN, AlN and GaN is theoretically studied, aiming at the design of high frequency electroacoustic devices suitable for work in liquid environments. The investigation of the acoustic field profile across the plate revealed the presence of longitudinally polarized Lamb modes, travelling at velocities close to that of the longitudinal bulk acoustic wave propagating in the same direction. Such waves are suitable for the implementation of high-frequency, low-loss electroacoustic devices operating in liquid environments. The time-averaged power flow density, the phase velocity and the electroacoustic coupling coefficient K2 dispersion curves were studied, for the first (S0 and four higher order (S1, S2, S3, S4 symmetrical modes for different electrical boundary conditions. Two electroacoustic coupling configurations were investigated, based on interdigitated transducers, with or without a metal floating electrode at the opposite plate surface. Enhanced performances, such as a K2 as high as 8.5% and a phase velocity as high as 16,700 m/s, were demostrated for the ZnO- and BN-based waveguides, as an example. The relative velocity changes, and the inertial and viscous sensitivities of the first symmetric and anti-symmetric mode, S0 and A0, propagating along thin plates bordered by a viscous liquid were derived using the perturbation approach. The present study highlights the feasibility of the piezoelectric waveguides to the development of high-frequency, integrated-circuits compatible electroacoustic devices suitable for working in liquid environment.

  11. Love-Mode MEMS Devices for Sensing Applications in Liquids

    OpenAIRE

    2016-01-01

    Love-wave-based MEMS devices are theoretically investigated in their potential role as a promising technological platform for the development of acoustic-wave-based sensors for liquid environments. Both single- and bi-layered structures have been investigated and the velocity dispersion curves were calculated for different layer thicknesses, crystallographic orientations, material types and electrical boundary conditions. High velocity materials have been investigated too, enabling device min...

  12. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    Science.gov (United States)

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-08-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxyκxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2ṡṡ2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxyκxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxyκxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons.

  13. Fabrication of hybrid nanostructures by liquid plasma for biomedical applications

    Science.gov (United States)

    Ponraj, Sri Balaji; Dai, Xiujuan Jane; Li, Luhua; Chen, Zhiqiang; Surya Narayanan, Jayanth; Kanwar, Jagat; Du Plessis, Johan

    2013-09-01

    Liquid plasma, generated by a nanosecond pulsed generator at atmospheric pressure, was used to treat bamboo-like boron nitride nanotubes (BNNTs). It was observed that the length of the BNNTs was reduced and found more cup like structures called boron nitride nanocups (BNNCs). Interestingly, a new peak appeared at 406.86 eV in the N1s X-ray photoelectron spectrum, which seems to be attributable to the oxidation of nitrogen (N-O) in BNNTs. The C1s spectrum showed that oxygen functional groups were introduced onto the BNNT/BNNC surface. The liquid plasma was also used to assemble gold nanoparticles onto the treated BNNTs/BNNCs. This hybrid nanostructure was fabricated efficiently, compared with normal equilibrium conditions. The pH values and conductivity of all samples were measured. After plasma treatment, the pH values were greatly reduced and conductivity was significantly increased. We propose that the plasma acid, hydrogen peroxide, OH-, H ions and radicals formed in liquid plasma as well as the pulsed electric field contribute to the oxidation of nitrogen, reduced length of the BNNTs(forming BNNCs), surface functionalization, and to the fabrication of hybrid nanostructure. The cytotoxic tests for these hybrid nanostructures is underway. The authors acknowledge Rosey van Driel and Prabhukumar Sellamuthu for assisting with TEM and SEM, and the access of the XPS facility at RMIT University.

  14. Chemical Reactivity and Liquid/Nonliquid States of Secondary Organic Material.

    Science.gov (United States)

    Li, Yong Jie; Liu, Pengfei; Gong, Zhaoheng; Wang, Yan; Bateman, Adam P; Bergoend, Clara; Bertram, Allan K; Martin, Scot T

    2015-11-17

    The reactivity of secondary organic material (SOM) of variable viscosity, ranging from nonliquid to liquid physical states, was studied. The SOM, produced in aerosol form from terpenoid and aromatic precursor species, was reacted with ammonia at variable relative humidity (RH). The ammonium-to-organic mass ratio (MNH4+/MOrg) increased monotonically from reactivity limited by diffusion at low RH to one limited by other factors at higher RH. For the studied size distributions and reaction times, the transition corresponded to a diffusivity above 10-17.5 ± 0.5 m2 s-1. The threshold RH values for the transition were 90% for β-caryophyllene-derived SOM. The transition RH for reactivity differed in all cases from the transition RH of a nonliquid to a liquid state. For instance, for α-pinene-derived SOM the transition for chemical reactivity of 35-45% RH can be compared to the nonliquid to liquid transition of 65-90% RH. These differences imply that chemical transport models of atmospheric chemistry should not use the SOM liquid to nonliquid phase transition as one-to-one surrogates of SOM reactivity.

  15. 10 CFR 455.131 - State ranking of grant applications.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false State ranking of grant applications. 455.131 Section 455... State ranking of grant applications. (a) Except as provided by § 455.92 of this part, all eligible... audit or energy use evaluation pursuant to § 455.20(k). Each State shall develop separate rankings...

  16. 20 CFR 617.16 - Applicable State law.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Applicable State law. 617.16 Section 617.16... law. (a) What law governs. The applicable State law for any individual, for all of the purposes of this part 617, is the State law of the State— (1) In which the individual is entitled to UI (whether...

  17. Development of Multifunctional Ultra-Nonlinear Liquids and Liquid Crystals for Sensor Protection Applications

    Science.gov (United States)

    2008-03-01

    10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Office of Scientific Research AFOSR/NA 875 Randolph Street Suite 325, Room 3112 11. SPONSORIMONITOR’S...optical meta-materials," Invited paper, 12 th Int. Topical Meeting on Optics of Liquid Crystals," Puebla , Mexico, Oct. 1-5, 2007. *21. I. C. Khoo and A...DOD Laboratories and Development Centers (i) Wright Patterson Air Force Base [Tim Bunning, Paul Fleitz, Joy Rogers and Augustine Urbus]: We have

  18. Microwave super-heated boiling of organic liquids: Origin, effect and application

    NARCIS (Netherlands)

    Chemat, F.; Esveld, E.

    2001-01-01

    This paper reports the state of the art of the microwave super-heated boiling phenomenon. When a liquid is heated by microwaves, the temperature increases rapidly to reach a steady temperature while refluxing. It happens that this steady state temperature can be up to 40 K higher than the boiling po

  19. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  20. Wetting by Liquid Metals—Application in Materials Processing: The Contribution of the Grenoble Group

    Directory of Open Access Journals (Sweden)

    Nicolas Eustathopoulos

    2015-03-01

    Full Text Available The wettability of ceramics by liquid metals is discussed from both the fundamental point of view and the point of view of applications. The role of interfacial reactions (simple dissolution of the solid in the liquid or formation of a layer of a new compound is illustrated and analysed. Several results are presented in order to illustrate the role of wettability in materials processing, namely infiltration processing, joining dissimilar materials by brazing and selecting crucibles for crystallising liquid metals and semiconductors. The review includes results obtained during the last 15 years mainly, but not only, by the Grenoble group.

  1. Overview of liquid handling instrumentation for high-throughput screening applications.

    Science.gov (United States)

    Rudnicki, Stewart; Johnston, Sean

    2009-12-01

    Liquid handling in the laboratory has unique challenges specific to the types of research being performed. The devices employed for purposes of performing liquid handling can be broken down into three general categories: bulk reagent dispensers, transfer devices, and plate washers. An overview of these types of liquid handlers, as well as common features and relevance to high-throughput applications, are discussed in this article. Important topics such as sterility, ease of use, cost, and instrument design advantages and disadvantages are also covered. Curr. Protoc. Chem Biol. 1:43-54. © 2009 by John Wiley & Sons, Inc.

  2. EPR Study of Cr5+ and Cu2+ in Some Zeolites Introduced by Solid- and Liquid-State Reactions

    Science.gov (United States)

    Köksal, Fevzi; Ucun, Fatih; Kartal, İbrahim

    1996-04-01

    This study reports on the EPR of Cr5+ and Cu2+ ions, introduced by solid- and liquid-state reactions with the synthetic zeolites 3A, 4A and 5A, and the natural zeolite clinoptilolite. Cr3+ was oxidized to Cr5+ in the samples, the coordination around Cr5+ being square pyramidal. Super-hyperfine (shf) interaction of Cr5+ with 27Al nucleus was observed in both solid-and liquid-state-introduced 5A zeolite, whereas this shf could not be observed for the solid-state introduced 4A zeolite. The liquid-state Cr-introduced 4A zeolite needed a heat treatment at 473 K for ½ h for the appearance of shfs. Furthermore, it has been found that the coordination structure around the Cu2+ is square pyramidal in solid-state introduced samples, whereas it is octahedral in the liquid-state introduced ones.

  3. Numerical formulation of composition segregation at curved solid-liquid interface during steady state solidification process

    Science.gov (United States)

    Wang, Jai-Ching

    1994-01-01

    The lateral solute segregation that results from a curved solid-liquid interface shape during steady state unidirectional solidification of a binary alloy system has been studied both analytically and numerically by Coriell, Bosivert, Rehm, and Sekerka. The system under their study is a two dimensional rectangular system. However, most real growth systems are cylindrical systems. Thus, in a previous study, we have followed Coriell etc. formalism and obtained analytical results for lateral solute segregation for an azimuthal symmetric cylindrical binary melt system during steady state solidification process. The solid-liquid interface shape is expressed as a series combination of Bessel functions. In this study a computer program has been developed to simulate the lateral solute segregation.

  4. Applications of hydrophobins : current state and perspectives

    NARCIS (Netherlands)

    Wösten, Han A B; Scholtmeijer, Karin

    2015-01-01

    Hydrophobins are proteins exclusively produced by filamentous fungi. They self-assemble at hydrophilic-hydrophobic interfaces into an amphipathic film. This protein film renders hydrophobic surfaces of gas bubbles, liquids, or solid materials wettable, while hydrophilic surfaces can be turned hydrop

  5. Deconfinement and quantum liquid crystalline states of dipolar fermions in optical lattices

    OpenAIRE

    2009-01-01

    We describe a simple model of fermions in quasi-one dimension that features interaction induced deconfinement (a phase transition where the effective dimensionality of the system increases as interactions are turned on) and which can be realised using dipolar fermions in an optical lattice. The model provides a relisation of a "soft quantum matter" phase diagram of strongly-correlated fermions, featuring meta-nematic, smectic and crystalline states, in addition to the normal Fermi liquid. In ...

  6. Ground-state energy of the electron liquid in ultrathin wires.

    Science.gov (United States)

    Fogler, Michael M

    2005-02-11

    The ground-state energy and the density correlation function of the electron liquid in a thin one-dimensional wire are computed. The calculation is based on an approximate mapping of the problem with a realistic Coulomb interaction law onto exactly solvable models of mathematical physics. This approach becomes asymptotically exact in the limit of a small wire radius but remains numerically accurate even for modestly thin wires.

  7. Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis.

    Science.gov (United States)

    Oppermann, Sebastian; Stein, Florian; Kragl, Udo

    2011-02-01

    The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.

  8. Higher-dimensional bosonization and its application to Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Hendrik

    2012-06-28

    The bosonization scheme presented in this thesis allows to map models of interacting fermions onto equivalent models describing collective bosonic excitations. For simple systems that do not require plenty computational power and optimized algorithms, the positivity of the weight function in the bosonic frame has been confirmed - in particular also for those configurations in which the fermionic representation shows the minus-sign problem. The numerical tests are absolutely elementary and based on the simplest possible regularization scheme. The second part of this thesis presented an analytical study about the non-analytic corrections to thermodynamic quantities in a two-dimensional Fermi liquid. The perturbation theory developed for the exact formulation is by no means more convenient than the well-established fermionic diagram technique. The effective low-energy theory for studying the anomalous contributions to the Fermi liquid was derived focussing on the relevant soft modes of the interaction only. The final effective model took the form of a field theory for a bosonic superfield Ψ interacting in quadratic, cubic, and quartic terms in the action. This field theory turned out nontrivial and was shown to lead to logarithmic divergencies in both spin and charge channels. By means of a combined scheme of ladder diagram summations and renormalization group equations, the logarithmic terms were summed up in the first-loop order, thus yielding the renormalized effective coupling constants of the theory at low temperatures. The fully renormalized action then allowed to conveniently compute the low-temperature limit behavior of the non-analytic corrections to the Fermi-liquid thermodynamic response functions such as the low temperature non-analytic correction δc to the specific heat. The explicit formula for δc is the sum of two contributions - one due to the spin singlet and one due to the spin triplet superconducting excitations. Depending on the values of the

  9. Room-temperature phosphonium ionic liquids for supercapacitor application

    Science.gov (United States)

    Frackowiak, Elzbieta; Lota, Grzegorz; Pernak, Juliusz

    2005-04-01

    Ionic liquids (ILs) have been used as electrolytes for supercapacitors. Two phosphonium salts such as trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide (IL1) and trihexyl(tetradecyl) phosphonium dicyanamide (IL2) have been selected for this target. To decrease the viscosity of ILs, a small amount of acetonitrile (from 5 to 25 wt %) was added. Supercapacitor based on activated carbon (AC) as electrodes and IL1 with 25 wt % of acetonitrile supplied capacitance values of 100F/g at a high operating voltage of 3.4 V. Such a supercapacitor reached a high energy of ˜40Wh/kg and a good cyclability.

  10. Applications of the Soave-Redlich-Kwong Equations of State Using Mathematic

    Science.gov (United States)

    Sun, Lanyi; Zhai, Cheng; Zhang, Hui

    The application of the Peng-Robinson equations of state (PR EOS) using Matlab and Mathematic has already been demonstrated. In this paper, using Mathematic to solve Soave-Redlich-Kwong (SRK) EOS, as well as the estimation of pure component properties, plotting of vapor-liquid equilibrium (VLE) diagram and calculation of chemical equilibrium, is presented. First the SRK EOS is used to predict several pure-component properties, such as liquid and gas molar volumes for isobutane. The vapor-liquid isobaric diagram is then plotted for a binary mixture composed of n-pentane and n-hexane under the pressures of 2*10^5 and 8*10^5 Pa respectively.

  11. Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state.

    Science.gov (United States)

    Mizuno, H; Yamamoto, R

    2012-04-01

    A steady shear flow can drive supercooled liquids into a non-equilibrium state. Using molecular dynamics simulations under steady shear flow superimposed with oscillatory shear strain for a probe, non-equilibrium mechanical responses are studied for a model supercooled liquid composed of binary soft spheres. We found that even in the strongly sheared situation, the supercooled liquid exhibits surprisingly isotropic responses to oscillating shear strains applied in three different components of the strain tensor. Based on this isotropic feature, we successfully constructed a simple two-mode Maxwell model that can capture the key features of the storage and loss moduli, even for highly non-equilibrium state. Furthermore, we examined the correlation functions of the shear stress fluctuations, which also exhibit isotropic relaxation behaviors in the sheared non-equilibrium situation. In contrast to the isotropic features, the supercooled liquid additionally demonstrates anisotropies in both its responses and its correlations to the shear stress fluctuations. Using the constitutive equation (a two-mode Maxwell model), we demonstrated that the anisotropic responses are caused by the coupling between the oscillating strain and the driving shear flow. Due to these anisotropic responses and fluctuations, the violation of the fluctuation-dissipation theorem (FDT) is distinct for different components. We measured the magnitude of this violation in terms of the effective temperature. It was demonstrated that the effective temperature is notably different between different components, which indicates that a simple scalar mapping, such as the concept of an effective temperature, oversimplifies the true nature of supercooled liquids under shear flow. An understanding of the mechanism of isotropies and anisotropies in the responses and fluctuations will lead to a better appreciation of these violations of the FDT, as well as certain consequent modifications to the concept of an

  12. Perfluorocarbon liquid: its application in vitreoretinal surgery and related ocular inflammation.

    Science.gov (United States)

    Yu, Qi; Liu, Kun; Su, Li; Xia, Xin; Xu, Xun

    2014-01-01

    The application of perfluorocarbon liquids has been well acclaimed in vitreoretinal surgery. Its unique physical properties make it an ideal intraoperative tool to improve the efficiency and safety of surgical procedures in complicated cases. The main functions of perfluorocarbon liquids in vitreoretinal surgery include relocating and fixing the detached retina, displacing the subretinal and subchoroidal to fluid anteriorly, revealing proliferative vitreous retinopathy (PVR) for further maneuvers, protecting the macula from exposure to chemicals with potential toxicity, and assisting the removal of foreign body. The related clinical applications include retinal detachment with severe proliferative vitreoretinopathy, giant tear, diabetic retinopathy (DR), retinopathy of prematurity (ROP), and posterior dislocated crystalline and intraocular lenses. The application of perfluorocarbon liquids has been expended over the past fewer years. Several PFCLs related ocular inflammations have been observed in in vitro studies, animal studies, and clinical follow-up. The complete removal of PFCLs is recommended at the end of the surgery in most cases.

  13. Perfluorocarbon Liquid: Its Application in Vitreoretinal Surgery and Related Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Qi Yu

    2014-01-01

    Full Text Available The application of perfluorocarbon liquids has been well acclaimed in vitreoretinal surgery. Its unique physical properties make it an ideal intraoperative tool to improve the efficiency and safety of surgical procedures in complicated cases. The main functions of perfluorocarbon liquids in vitreoretinal surgery include relocating and fixing the detached retina, displacing the subretinal and subchoroidal to fluid anteriorly, revealing proliferative vitreous retinopathy (PVR for further maneuvers, protecting the macula from exposure to chemicals with potential toxicity, and assisting the removal of foreign body. The related clinical applications include retinal detachment with severe proliferative vitreoretinopathy, giant tear, diabetic retinopathy (DR, retinopathy of prematurity (ROP, and posterior dislocated crystalline and intraocular lenses. The application of perfluorocarbon liquids has been expended over the past fewer years. Several PFCLs related ocular inflammations have been observed in in vitro studies, animal studies, and clinical follow-up. The complete removal of PFCLs is recommended at the end of the surgery in most cases.

  14. Application of dispersive liquid-liquid microextraction for estrogens' quantification by enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Lima, Diana L D; Silva, Carla Patrícia; Schneider, Rudolf J; Otero, Marta; Esteves, Valdemar I

    2014-07-01

    Estrogens, such as 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), are the major responsible for endocrine-disrupting effects observed in aquatic environments due to their high estrogenic potency, even at concentrations ranging from pgL(-1) to ng L(-1). Thus, it is essential to develop analytical methodologies suitable for monitoring their presence in water samples. Dispersive liquid-liquid microextraction (DLLME) was used as a pre-concentration step prior to the quantification of E2 and EE2 by enzyme-linked immunosorbent assay (ELISA). First, an evaluation of the effect of DDLME on the E2 and EE2 ELISA calibration curves was performed. Since the extraction procedure itself had an influence on the ELISA optical density (OD), it became necessary to subject, not only the samples, but also all the standards to the DLLME process. Working ranges were determined, being between 1.2 and 8000 ng L(-1), for E2, and between 0.22 and 1500 ng L(-1), for EE2. The influence of organic matter, both in the extraction and quantification, was evaluated and it was observed that its presence in the solution did not affect considerably the calibration curve. Recovery rates were also determined, ranging from 77% to 106% for ultrapure water and from 104% to 115% for waste water samples, the most complex ones in what concerns matrix effects. Results obtained when applying the proposed method to real water samples can be considered quite satisfying. Moreover, the obtained working ranges encompass values generally reported in literature, confirming the practical use of the method for environmental samples.

  15. Applications of Ionic Liquids in Electrochemical Sensors and Biosensors

    Directory of Open Access Journals (Sweden)

    Virendra V. Singh

    2012-01-01

    Full Text Available Ionic liquids (ILs are salt that exist in the liquid phase at and around 298 K and are comprised of a bulky, asymmetric organic cation and the anion usually inorganic ion but some ILs also with organic anion. ILs have attracted much attention as a replacement for traditional organic solvents as they possess many attractive properties. Among these properties, intrinsic ion conductivity, low volatility, high chemical and thermal stability, low combustibility, and wide electrochemical windows are few. Due to negligible or nonzero volatility of these solvents, they are considered “greener” for the environment as they do not evaporate like volatile organic compounds (VOCs. ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, lubricants, plasticizers, solvent, lithium batteries, solvents to manufacture nanomaterials, extraction, gas absorption agents, and so forth. Besides a brief discussion of the introduction, history, and properties of ILs the major purpose of this review paper is to provide an overview on the advantages of ILs for the synthesis of conducting polymer and nanoparticle when compared to conventional media and also to focus on the electrochemical sensors and biosensors based on IL/composite modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed.

  16. Love-Mode MEMS Devices for Sensing Applications in Liquids

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2016-01-01

    Full Text Available Love-wave-based MEMS devices are theoretically investigated in their potential role as a promising technological platform for the development of acoustic-wave-based sensors for liquid environments. Both single- and bi-layered structures have been investigated and the velocity dispersion curves were calculated for different layer thicknesses, crystallographic orientations, material types and electrical boundary conditions. High velocity materials have been investigated too, enabling device miniaturization, power consumption reduction and integration with the conditioning electronic circuits. The electroacoustic coupling coefficient dispersion curves of the first four Love modes are calculated for four dispersive coupling configurations based on a c-axis tilted ZnO layer on wz-BN substrate. The gravimetric sensitivity of four Love modes travelling at a common velocity of 9318 m/s along different layer thicknesses, and of three Love modes travelling at different velocity along a fixed ZnO layer thickness, are calculated in order to design enhanced-performance sensors. The phase velocity shift and attenuation due to the presence of a viscous liquid contacting the device surface are calculated for different thicknesses of a c-axis inclined ZnO layer onto BN half-space.

  17. Anisotropic Quantum Hall Liquid States with No Translational Invariance in the Lowest Landau Level

    Science.gov (United States)

    Ciftja, Orion

    2016-05-01

    Strongly correlated two-dimensional electron systems in a high perpendicular magnetic field have displayed remarkable new physics leading to the discovery of phenomena such as the integer and the fractional quantum Hall effect, to mention a few. Laughlin's theoretical model and the composite fermion's (CFs) approach provide a good description of the liquid electronic phases in the lowest Landau level (LLL) at relatively large filling factors. Other electronic phases at smaller filling factors of the LLL likely represent electronic Wigner solid states. It is believed that no other phases with intermediate order stabilize at the liquid-solid transition region. The current study deals with filling factor 1/6 in the LLL, a state which is very close to the critical filling factor where the liquid-solid transition takes place. With the assumption that the underlying signs of crystalline order are starting to appear at this transitional regime, we focus our attention and study the properties of a hybrid electronic phase that lacks translational invariance. To describe such a state, we consider a wave function that lies entirely in the LLL but, unlike a typical quantum Hall liquid phase, does not possess translational invariance. Although inspired by Laughlin's approach, the wave function we introduce differs from Laughlin's or CFs wave functions that describe translationally invariant uniform electronic phases. We perform quantum Monte Carlo simulations in a standard disk geometry to gain a better understanding of the properties of this wave function that may be considered as a precursor to the more conventional Wigner crystal phase.

  18. Equation of state of initially liquid carbon monoxide and nitrogen mixture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The modified liquid perturbation variational theory and the improved vdW-1f model were applied to calculating the equation of the state of liquid CO-N2 mixture with the ratio of 1:1, 4:1 and 1:4, respectively, in the shock pressure range of 9-49 GPa. It was shown that the calculated result for CO-N2 mixture with the ratio of 1:1 is well consistent with the earlier experimental data. The thermodynamics equilibrium, chemical equilibrium and phase equilibrium were all considered in detail. It was found that Hugoniot of liquid CO-N2 mixture is moderately softened in the pressure range of 20-30 GPa and 30-49 GPa for different initial proportions, and that the Hugoniot is more softened in the latter pressure range, which means that the structural phase transition occurs near 20 GPa and 30 GPa. Since the shock pro-ductions may absorb a plenty of systematic energy, the shock temperature and pressure decline compared with the case of no chemical reaction. Pressures and temperatures increase gradually with the increase in the mole fraction of nitrogen composition. The results for the 1:1 CO-N2 mixture lie in the middle of two others. Therefore, it was shown that the modified Lorentz-Berthelor rule used in the scheme is effective to study shock-compression properties of liquid CO-N2 mixture under high temperatures and high pressures.

  19. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR

    Science.gov (United States)

    Ardenkjær-Larsen, Jan H.; Fridlund, Björn; Gram, Andreas; Hansson, Georg; Hansson, Lennart; Lerche, Mathilde H.; Servin, Rolf; Thaning, Mikkel; Golman, Klaes

    2003-09-01

    A method for obtaining strongly polarized nuclear spins in solution has been developed. The method uses low temperature, high magnetic field, and dynamic nuclear polarization (DNP) to strongly polarize nuclear spins in the solid state. The solid sample is subsequently dissolved rapidly in a suitable solvent to create a solution of molecules with hyperpolarized nuclear spins. The polarization is performed in a DNP polarizer, consisting of a super-conducting magnet (3.35 T) and a liquid-helium cooled sample space. The sample is irradiated with microwaves at 94 GHz. Subsequent to polarization, the sample is dissolved by an injection system inside the DNP magnet. The dissolution process effectively preserves the nuclear polarization. The resulting hyperpolarized liquid sample can be transferred to a high-resolution NMR spectrometer, where an enhanced NMR signal can be acquired, or it may be used as an agent for in vivo imaging or spectroscopy. In this article we describe the use of the method on aqueous solutions of [13C]urea. Polarizations of 37% for 13C and 7.8% for 15N, respectively, were obtained after the dissolution. These polarizations correspond to an enhancement of 44,400 for 13C and 23,500 for 15N, respectively, compared with thermal equilibrium at 9.4 T and room temperature. The method can be used generally for signal enhancement and reduction of measurement time in liquid-state NMR and opens up for a variety of in vitro and in vivo applications of DNP-enhanced NMR. HR ALIGN=LEFT WIDTH=50% NOSHADE SIZE=1>

  20. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid... requirements applicable to inner tanks for cryogenic liquid tank car tanks. ...

  1. A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy

    CERN Document Server

    Sharf, Y; Somaroo, S S; Havel, T F; Knill, E H; Laflamme, R; Sharf, Yehuda; Cory, David G.; Somaroo, Shyamal S.; Havel, Timothy F.; Knill, Emanuel; Laflamme, Raymond

    2000-01-01

    Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, quantum coding does not alter normal relaxation, but rather converts the state of a ``data'' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on 13C-labeled alanine, using gradient-diffusion methods to implement these idealized decoherence models. Quantum error correcti...

  2. Determining Transition State Geometries in Liquids Using 2D-IR

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

    2007-12-11

    Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

  3. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface......A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...

  4. Heat Analysis of Liquid piston Compressor for Hydrogen Applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2014-01-01

    of hydrogen temperature from adiabatic case is very small, due to large wall resistance and small contact area at the interface. Moreover, the results illustrates that the increasing of the total heat transfer coefficient at the interface and the wall will play a key role in reducing the hydrogen temperature......A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model...... and through the walls, is investigated and compared with the adiabatic case. The amount of heat transfer towards the wall is assessed according to widely used heat transfer models available in the literature.The results show very low sensitivity of the model to different heat transfer correlations. Deviation...

  5. Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications.

    Science.gov (United States)

    Li, Junsheng; Kleintschek, Tanja; Rieder, Annika; Cheng, Yin; Baumbach, Tilo; Obst, Ursula; Schwartz, Thomas; Levkin, Pavel A

    2013-07-24

    Biofilms represent a fundamental problem in environmental biology, water technology, food hygiene as well as in medical and technical systems. Recently introduced slippery liquid-infused porous surface (SLIPS) showed great promise for preventing biofilm formation owing to the low surface energy of such surface in combination with its self-cleaning properties. In this study we demonstrated a novel hydrophobic liquid-infused porous poly(butyl methacrylate-co-ethylene dimethacrylate) surface (slippery BMA-EDMA) with bacteria-resistance in BM2 mineral medium and long-term stability in aqueous environments. We showed that the slippery BMA-EDMA surface prevents biofilm formation of different strains of opportunistic pathogen Pseudomonas aeruginosa for at least up to 7 days in low nutrient medium. Only ∼1.8% of the slippery surface was covered by the environmental P. aeruginosa PA49 strain under investigation. In uncoated glass controls the coverage of surfaces reached ∼55% under the same conditions. However, in high nutrient medium, more relevant to physiological conditions, the biofilm formation on the slippery surface turned out to be highly dependent on the bacterial strain. Although the slippery surface could prevent biofilm formation of most of the P. aeruginosa strains tested (∼1% surface coverage), the multiresistant P. aeruginosa strain isolated from wastewater was able to cover up to 12% of the surface during 7 days of incubation. RAPD-PCR analysis of the used P. aeruginosa strains demonstrated their high genome variability, which might be responsible for their difference in biofilm formation on the slippery BMA-EDMA surface. The results show that although the slippery BMA-EDMA surface has a great potential against biofilm formation, the generality of its bacteria resistant properties is still to be improved.

  6. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    Science.gov (United States)

    Pal, Kaushik; Zhan, Bihong; Madhu Mohan, M. L. N.; Schirhagl, Romana; Wang, Guoping

    2015-12-01

    The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires (diameter ≈ 24 nm; length ≈ 118 nm) and nano-cubes (≈395 nm edge) to nano-sphere (diameter ≈ 585 nm) appeaded. The possibilities of inexpensive, simple solvo-chemical synthesis of nanostructures were considered. In this article, a successful attempt has been made that ZnO nano-structures dispersed on well aligned hydrogen bonded liquid crystals (HBLC) comprising azelaic acid (AC) with p-n-alkyloxy benzoic acid (nBAO) by varying the respective alkyloxy carbon number (n = 5). The dispersion of nanomaterials with HBLC is an effective route to enhance the existing functionalities. A series of these composite materials were analyzed by polarizing optical microscope's electro-optical switching. An interesting feature of AC + nBAO is the inducement of tilted smectic G phase with increasing carbon chain length. Phase diagrams of the above hybrid ZnO nanomaterial influenced LC complex and pure LC were constructed and compared. The switching times, the contrast ratio and spontaneous polarization of the nanostructures-HBLC composite film were carried out by systematic investigation. The sample preparation parameters, such as the curing time and curing intensity were optimized. The critical applied voltage to achieve the switching bi-stability of our device is only 4.5 V, which is approximately twice its threshold voltage for Freedericksz transition. This performance puts the hybrid structure at the top level in the state of the art in application oriented research in optics of liquid crystalline composite materials.

  7. Application of ionic liquids as an electrolyte additive on the electrochemical behavior of lead acid battery

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Behzad; Mallakpour, Shadpour; Taki, Mahmood [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran)

    2009-02-15

    Ionic liquids (ILs) belong to new branch of salts with unique properties which their applications have been increasing in electrochemical systems especially lithium-ion batteries. In the present work, for the first time, the effects of four ionic liquids as an electrolyte additive in battery's electrolyte were studied on the hydrogen and oxygen evolution overpotential and anodic layer formation on lead-antimony-tin grid alloy of lead acid battery. Cyclic and linear sweep voltammetric methods were used for this study in aqueous sulfuric acid solution. The morphology of grid surface after cyclic redox reaction was studied using scanning electron microscopy. The results show that most of added ionic liquids increase hydrogen overpotential and whereas they have no significant effect on oxygen overpotential. Furthermore ionic liquids increase antimony dissolution that might be related to interaction between Sb{sup 3+} and ionic liquids. Crystalline structure of PbSO{sub 4} layer changed with presence of ionic liquids and larger PbSO{sub 4} crystals were formed with some of them. These additives decrease the porosity of PbSO{sub 4} perm selective membrane layer at the surface of electrode. Also cyclic voltammogram on carbon-PbO paste electrode shows that with the presence of ionic liquids, oxidation and reduction peak current intensively increased. (author)

  8. Applications of Liquid Smoke Powder as Flavor and Food Preservative (Case Study : Sponge Cake

    Directory of Open Access Journals (Sweden)

    Maryam Maryam

    2015-04-01

    Full Text Available Liquid smoke is converted into powder will provide ease of mobilization and storage. At this time should be developed as an application of liquid smoke powder as flavor and food preservative. The purpose of this study was to determine the effect of adding liquid smoke powder to the flavor and shelf life of food. Samples of food used is a sponge cake. The method used to observe the shelf life is the ESS (Extended Storage Studies. Observations flavor food with organoleptic test was used to respondents. Addition of liquid smoke powder treatment performed at the level of 0%, 2%, 4% and 6% of the weight of flour. The addition of liquid smoke powder to give effect to flavor foods and can increase shelf life. Liquid smoke contains phenolic compounds which in addition to contributing smoke flavor, also has antioxidant and bactericidal action on food. Optimal conditions of manufacture liquid smoke powder by using a spray dryer is on the treatment concentration of 5% and a inlet temperature of 160 °C. The addition of optimum is at the level of 2% which can increase the shelf life of food to 8 days and the flavor is still received  by respondents.

  9. Design of Macroscopically Ordered Liquid Crystalline Hydrogel Columns Knitted with Nanosilver for Topical Applications.

    Science.gov (United States)

    Lali Raveendran, Reshma; Kumar Sasidharan, Nishanth; Devaki, Sudha J

    2017-04-19

    The design of liquid crystalline hydrogels knitted with silver nanoparticles in macroscopic ordering is becoming a subject of research interest due to their promising multifunctional applications in biomedical and optoelectronic applications. The present work describes the development of liquid crystalline Schiff-based hydrogel decorated with silver nanoparticles and the demonstration of its antifungal applications. Schiff base was prepared from polyglucanaldehyde and chitosan, and the former was prepared by the oxidation of amylose (polyglucopyranose) isolated from abundantly available unutilized jackfruit seed starch. Self-assembled silver columns decorated with macroscopically ordered networks were prepared in a single step of in situ condensation and a reduction/complexation process. The various noncovalent interactions among the -OH, -C═O, and -NH impart rigidity and ordering for the formation of macroscopically ordered liquid crystalline hydrogel and the Ag(I) complexation evidenced from the studies made by FT-IR spectroscopy in combination with rheology and microscopic techniques such as SEM, TEM, AFM, XRD, and PLM. The antifungal studies were screened using species of Candida by disc diffusion method. The MIC and MFC values, in vitro antifungal studies, reactive oxygen species (ROS) production, and propidium iodide (PI) uptake results suggest that the present macroscopically ordered liquid crystalline hydrogel system can be considered an excellent candidate for topical applications. All these results suggest that this design strategy can be exploited for the incorporation of biologically relevant metal nanoparticles for developing unique robust hydrogels for multifunctional applications.

  10. Application of matching liquid on the refractive index measurement of biotissue: A theoretical and experimental study

    Science.gov (United States)

    Wang, Jin; Ye, Qing; Deng, Zhichao; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2014-05-01

    The application of matching liquid on the measurement of the refractive index (RI) of biotissue using total internal reflection (TIR) method is investigated in detail. A theoretical model describing samples with different absorbing and scattering ability is given based on Fresnel formula. The theoretical calculation is verified by experimental results of three simulation samples (transparent plexiglass, white plexiglass and ZB3 glass) and cedar wood oil as the matching liquid. Reflectance curves of porcine tissue samples were recorded and systematically studied using two kinds of matching liquid (cedar wood oil and adipose oil) at the incident of TE and TM wave, respectively. Method for proper selection of matching liquid under different conditions is discussed.

  11. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    Science.gov (United States)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  12. The application of axisymmetric lattice Boltzmann two-phase model on simulations of liquid film dewetting

    Science.gov (United States)

    Wang, Lei; Sun, Jianglong

    2017-08-01

    An axisymmetric two-phase lattice Boltzmann method is applied to simulate the dewetting dynamics of a thin liquid film on a substrate. Initially, a circular dry spot exists in the center of the liquid film. A contact line forms around the dry spot and expands outwards. The liquid films dewetting on smooth and rough substrates are investigated. For a smooth substrate, the effects of the contact angle (θeq), Ohnesorge number (Oh), and viscosity ratio (λμ) are studied. It is observed that the contact line recedes with a constant velocity V and that if θeq > 45°, V has a linear relationship with θeq, which has never been mentioned in previous literatures. For a rough substrate, well-distributed pillars are set up to represent the roughness. There are two states for the liquid film dewetting on a rough substrate: Cassie and Wenzel states. By comparison, it is found that the speed of the liquid film dewetting on the rough substrate of the Cassie state is slightly faster than that on the smooth substrate but much faster than that on the rough substrate of the Wenzel state, i.e., Wenzel state can obviously hold back the movement of the receding contact line. The corresponding mechanism is analyzed. The effect of the geometric factors of the pillars on the dewetting speed is discussed in detail. It is indicated that both the width and the depth of the grooves in roughness can significantly affect the dewetting speed. The results are helpful to design structured substrates for controlling the dewetting process of the liquid film.

  13. Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2017-04-15

    Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety concerns (Federici et al., 2001) . It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance (Ono et al., 2013, 2014) . The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium (LL) divertor (RLLD) concept (Ono et al., 2013) and its variant, the active liquid lithium divertor concept (ARLLD) (Ono et al., 2014) , taking advantage of the enhanced non-coronal Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/s of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤450 °C than the first wall ∼600–700 °C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ∼1 l/s (l/s) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust/impurities are removed by relatively simple filter and cold/hot trap systems. Using a

  14. Topological Influence of Lyotropic Liquid Crystalline Systems on Excited-State Proton Transfer Dynamics.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Hazra, Partha

    2016-03-29

    In the present work, we have investigated the excited-state proton transfer (ESPT) dynamics inside lipid-based reverse hexagonal (HII), gyroid Ia3d, and diamond Pn3m LLC phases. Polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS) techniques have been employed for the characterization of LLC systems. Time-resolved fluorescence results reveal the retarded ESPT dynamics inside liquid crystalline systems compared to bulk water, and it follows the order HII water and it follows the order H2O constant and different channel diameters of these LLC systems. However, the dissociation dynamics is found to be slower than bulk water and it follows the order HII dissociation dynamics in these liquid crystalline systems.

  15. Communication: Probing the existence of partially arrested states in ionic liquids.

    Science.gov (United States)

    Ramírez-González, Pedro E; Sanchéz-Díaz, Luis E; Medina-Noyola, Magdaleno; Wang, Yanting

    2016-11-21

    The recent predictions of the self-consistent generalized Langevin equation theory, describing the existence of unusual partially arrested states in the context of ionic liquids, were probed using all-atom molecular dynamics simulations of a room-temperature ionic liquid. We have found a slower diffusion of the smaller anions compared with the large cations for a wide range of temperatures. The arrest mechanism consists on the formation of a strongly repulsive glass by the anions, stabilized by the long range electrostatic potential. The diffusion of the less repulsive cations occurs through the holes left by the small particles. All of our observations in the simulated system coincide with the theoretical picture.

  16. Communication: Probing the existence of partially arrested states in ionic liquids

    Science.gov (United States)

    Ramírez-González, Pedro E.; Sanchéz-Díaz, Luis E.; Medina-Noyola, Magdaleno; Wang, Yanting

    2016-11-01

    The recent predictions of the self-consistent generalized Langevin equation theory, describing the existence of unusual partially arrested states in the context of ionic liquids, were probed using all-atom molecular dynamics simulations of a room-temperature ionic liquid. We have found a slower diffusion of the smaller anions compared with the large cations for a wide range of temperatures. The arrest mechanism consists on the formation of a strongly repulsive glass by the anions, stabilized by the long range electrostatic potential. The diffusion of the less repulsive cations occurs through the holes left by the small particles. All of our observations in the simulated system coincide with the theoretical picture.

  17. Studies of liquid water by computer simulations. V. Equation of state of fluid water with Carravetta-Clementi potential

    Science.gov (United States)

    Kataoka, Yosuke

    1987-07-01

    The pressure of liquid water at normal density is obtained by molecular dynamics simulations based on four intermolecular potential functions derived from quantum chemical calculations of the water dimer; Matsuoka-Clementi-Yoshimine, Carravetta-Clementi, Clementi-Habitz, Yoon-Morokuma-Davidson. Among them, the Carravetta-Clementi potential gives the most reasonable temperature-dependence of pressure, although the absolute value is large compared with the experimental one. The fluid state is surveyed over a wide range of temperature and density with the Carravetta-Clementi potential. The equation of state of fluid water is determined by a least-square fitting of the calculated energies and pressures at 347 state points. The anomalous properties of liquid water observed experimentally are nonempirically reproduced on a semiquantitative level. The calculated equation of state of liquid water is consistent with the Speedy-Angell conjecture on the limit of stability of the liquid phase.

  18. Superconducting states in strongly correlated systems with nonstandard quasiparticles and real space pairing: an unconventional Fermi-liquid limit

    Directory of Open Access Journals (Sweden)

    J. Spałek

    2010-01-01

    Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.

  19. Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications

    Science.gov (United States)

    Kang, Inyong; Bae, Joongmyeon; Bae, Gyujong

    This paper discusses the reforming of liquid hydrocarbons to produce hydrogen for fuel cell applications, focusing on gasoline and diesel due to their high hydrogen density and well-established infrastructures. Gasoline and diesel are composed of numerous hydrocarbon species including paraffins, olefins, cycloparaffins, and aromatics. We have investigated the reforming characteristics of several representative liquid hydrocarbons. In the case of paraffin reforming, H 2 yield and reforming efficiency were close to thermodynamic equilibrium status (TES), although heavier hydrocarbons required slightly higher temperatures than lighter hydrocarbons. However, the conversion efficiency was much lower for aromatics than paraffins with similar carbon number. We have also investigated the reforming performance of simulated commercial diesel and gasoline using simple synthetic diesel and gasoline compositions. Reforming performances of our formulations were in good agreement with those of commercial fuels. In addition, the reforming of gas to liquid (GTL) resulted in high H 2 yield and reforming efficiency showing promise for possible fuel cell applications.

  20. Air Liquide's pulse tube cryocooler systems for space applications

    Science.gov (United States)

    Trollier, T.; Tanchon, J.; Rey, J. C.; Ravex, A.; Buquet, J.

    2009-05-01

    Thanks to important development efforts completed internally and with the European Space Agency (ESA) funding, Air Liquide Advanced Technology Division (AL/DTA) is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc... The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W maximal compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ESA ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.

  1. Application of the penetration theory for gas - Liquid mass transfer without liquid bulk : Differences with system with a bulk

    NARCIS (Netherlands)

    van Elk, E. P.; Knaap, M. C.; Versteeg, G. F.

    2007-01-01

    Frequently applied micro models for gas-liquid mass transfer all assume the presence of a liquid bulk. However, some systems are characterized by the absence of a liquid bulk, a very thin layer of liquid flows over a solid surface. An example of such a process is absorption in a column equipped with

  2. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase.

  3. Facile synthesis and application of poly(ionic liquid)-bonded silica hybrid materials.

    Science.gov (United States)

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-05-07

    Facile methods were developed to prepare hybrid poly(ionic liquid)-bonded silica for a wide range of applications, particularly in analytical chemistry. The hybrid material obtained was evaluated by comparing its adsorption capacity with other conventional separation materials. In addition, the hybrid material has the potential for industrial scale production.

  4. The reversibility and first-order nature of liquid-liquid transition in a molecular liquid

    Science.gov (United States)

    Kobayashi, Mika; Tanaka, Hajime

    2016-11-01

    Liquid-liquid transition is an intriguing phenomenon in which a liquid transforms into another liquid via the first-order transition. For molecular liquids, however, it always takes place in a supercooled liquid state metastable against crystallization, which has led to a number of serious debates concerning its origin: liquid-liquid transition versus unusual nano-crystal formation. Thus, there have so far been no single example free from such debates, to the best of our knowledge. Here we show experimental evidence that the transition is truly liquid-liquid transition and not nano-crystallization for a molecular liquid, triphenyl phosphite. We kinetically isolate the reverse liquid-liquid transition from glass transition and crystallization with a high heating rate of flash differential scanning calorimetry, and prove the reversibility and first-order nature of liquid-liquid transition. Our finding not only deepens our physical understanding of liquid-liquid transition but may also initiate a phase of its research from both fundamental and applications viewpoints.

  5. Presentation Entanglement states and its application in quantum computation

    Directory of Open Access Journals (Sweden)

    Yadollah Farahmand

    2014-06-01

    Full Text Available In this article we will consider the entanglement states and we will formulate the density matrix and the expectation value of entanglement state to mathematics and also we will explain the applications of entanglement states in superdense coding and sending information ( qubits transfer.

  6. 3-V Solid-State Flexible Supercapacitors with Ionic-Liquid-Based Polymer Gel Electrolyte for AC Line Filtering.

    Science.gov (United States)

    Kang, Yu Jin; Yoo, Yongju; Kim, Woong

    2016-06-08

    State-of-the-art solid-state flexible supercapacitors with sufficiently fast response speed for AC line filtering application suffer from limited energy density. One of the main causes of the low energy density is the low cell voltage (1 V), which is limited by aqueous-solution-based gel electrolytes. In this work, we demonstrate for the first time a 3-V flexible supercapacitor for AC line filtering based on an ionic-liquid-based polymer gel electrolyte and carbon nanotube electrode material. The flexible supercapacitor exhibits an areal energy density that is more than 20 times higher than that of the previously demonstrated 1-V flexible supercapacitor (0.66 vs 0.03 μWh/cm(2)) while maintaining excellent capacitive behavior at 120 Hz. The supercapacitor shows a maximum areal power density of 1.5 W/cm(2) and a time constant of 1 ms. The improvement of the cell voltage while maintaining the fast-response capability greatly improves the potential of supercapacitors for high-frequency applications in wearable and/or portable electronics.

  7. Advances in numerical solutions to integral equations in liquid state theory

    Science.gov (United States)

    Howard, Jesse J.

    Solvent effects play a vital role in the accurate description of the free energy profile for solution phase chemical and structural processes. The inclusion of solvent effects in any meaningful theoretical model however, has proven to be a formidable task. Generally, methods involving Poisson-Boltzmann (PB) theory and molecular dynamic (MD) simulations are used, but they either fail to accurately describe the solvent effects or require an exhaustive computation effort to overcome sampling problems. An alternative to these methods are the integral equations (IEs) of liquid state theory which have become more widely applicable due to recent advancements in the theory of interaction site fluids and the numerical methods to solve the equations. In this work a new numerical method is developed based on a Newton-type scheme coupled with Picard/MDIIS routines. To extend the range of these numerical methods to large-scale data systems, the size of the Jacobian is reduced using basis functions, and the Newton steps are calculated using a GMRes solver. The method is then applied to calculate solutions to the 3D reference interaction site model (RISM) IEs of statistical mechanics, which are derived from first principles, for a solute model of a pair of parallel graphene plates at various separations in pure water. The 3D IEs are then extended to electrostatic models using an exact treatment of the long-range Coulomb interactions for negatively charged walls and DNA duplexes in aqueous electrolyte solutions to calculate the density profiles and solution thermodynamics. It is found that the 3D-IEs provide a qualitative description of the density distributions of the solvent species when compared to MD results, but at a much reduced computational effort in comparison to MD simulations. The thermodynamics of the solvated systems are also qualitatively reproduced by the IE results. The findings of this work show the IEs to be a valuable tool for the study and prediction of

  8. Spinning Liquid Marble and Its Dual Applications as Microcentrifuge and Miniature Localized Viscometer.

    Science.gov (United States)

    Han, Xuemei; Lee, Hiang Kwee; Lim, Wei Chun; Lee, Yih Hong; Phan-Quang, Gia Chuong; Phang, In Yee; Ling, Xing Yi

    2016-09-14

    Liquid marble offers an attractive droplet manipulation approach by isolating microdroplet in a nonstick encapsulating shell formed via the spontaneous coating of hydrophobic particles onto the liquid surface. While liquid marble prepared using magnetic nanoparticles enables precise spatiotemporal actuation of microdroplets, these manipulations are generally limited to simple and linear spatial maneuver of microdroplets. Herein, we demonstrate the unique and three-dimensional spinning of microliter-sized liquid marble (LM) and its subsequent dual applications as (1) the world's smallest centrifuge and (2) a miniature and localized viscometer. Our LM is responsive to an applied rotating magnetic field, with its spinning speed programmable between 0 and 1300 rpm. This spinning generates an unprecedented centrifugal force of >2g in a LM of ∼1 mm radius. Such centrifugal force facilitates an outward and radial hydrodynamic flow in the enclosed microdroplet, enabling LM to serve as a microcentrifuge for the sedimentation of nanoparticles with >85% separation efficiency. Furthermore, we apply spinning LM as an ultrasensitive spin-to-viscosity transducer to quantify the viscosity of the external suspended liquid in the relative viscosity (η/ηwater) range of 1-70 using ≤1 mL liquid sample. Collectively, the ensemble of benefits offered by spinning LM creates enormous opportunities in the development of multifunctional micromagneto-mechanical devices as promising surface-sensitive microsensor, miniature centrifugal pump, and even microreactor with directed heat and mass transfer mechanism.

  9. Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging

    Directory of Open Access Journals (Sweden)

    N. V. Kamanina

    2016-01-01

    Full Text Available Functional nematic liquid crystal structures doped with nano- and bioobjects have been investigated. The self-assembling features and the photorefractive parameters of the structured liquid crystals have been comparatively studied via microscopy and laser techniques. Fullerene, quantum dots, carbon nanotubes, DNA, and erythrocytes have been considered as the effective nano- and biosensitizers of the LC mesophase. The holographic recording technique based on four-wave mixing of the laser beams has been used to investigate the laser-induced change of the refractive index in the nano- and bioobjects-doped liquid crystal cells. The special accent has been given to novel nanostructured relief with vertically aligned carbon nanotubes at the interface: solid substrate-liquid crystal mesophase. It has been shown that this nanostructured relief influences the orienting ability of the liquid crystal molecules with good advantage. As a result, it provokes the orientation of the DNA. The modified functional liquid crystal materials have been proposed as the perspective systems for both the photonics and biology as well as the medical applications.

  10. Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A.; Leppaemaeki, E.; Koponen, P.; Levander, J.; Tapola, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The main purpose of the study was to test the applicability of standard fuel oil methods developed for petroleum-based fuels to pyrolysis liquids. In addition, research on sampling, homogeneity, stability, miscibility and corrosivity was carried out. The standard methods have been tested for several different pyrolysis liquids. Recommendations on sampling, sample size and small modifications of standard methods are presented. In general, most of the methods can be used as such but the accuracy of the analysis can be improved by minor modifications. Fuel oil analyses not suitable for pyrolysis liquids have been identified. Homogeneity of the liquids is the most critical factor in accurate analysis. The presence of air bubbles may disturb in several analyses. Sample preheating and prefiltration should be avoided when possible. The former may cause changes in the composition and structure of the pyrolysis liquid. The latter may remove part of organic material with particles. The size of the sample should be determined on the basis of the homogeneity and the water content of the liquid. The basic analyses of the Technical Research Centre of Finland (VTT) include water, pH, solids, ash, Conradson carbon residue, heating value, CHN, density, viscosity, pourpoint, flash point, and stability. Additional analyses are carried out when needed. (orig.) 53 refs.

  11. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    Directory of Open Access Journals (Sweden)

    Helena Prosen

    2014-05-01

    Full Text Available Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc. published in the last decade. Several innovative liquid-phase microextraction (LPME techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME, hollow fiber-liquid phase microextraction (HF-LPME, dispersive liquid-liquid microextraction (DLLME. Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  12. Shock Hugoniots of molecular liquids and the principle of corresponding states

    Energy Technology Data Exchange (ETDEWEB)

    Chisolm, Eric D [Los Alamos National Laboratory; Crockett, Scott D [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

    2009-01-01

    We observe that the shock velocity-particle velocity Hugoniots for various liquids (e.g. nitrogen, oxygen, carbon dioxide, argon) lie almost on top of one another. Recalling the work of Ross and Ree [J. Chem. Phys. 73, 6146-6152 (1980)], we hypothesize that these materials obey a principle of corresponding states. We use the principle to deduce how the Hugoniots of two corresponding materials should be related, and we compare the results with data and find good agreement. We suggest this as a method for estimating the Hugoniot of a material of the appropriate type in the absence of shock data, and we illustrate with fluorine.

  13. Absolute Equation of State Measurements on Shocked Liquid Deuterium up to 200GPa (2Mbar)

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.; Celliers, P.; Collins, G.; Budil, K.; Holmes, N.; Barbee, T. Jr.; Hammel, B.; Kilkenny, J.; Wallace, R.; Ross, M.; Cauble, R. [Lawrence Livermore Laboratory, Livermore, California 94550 (United States); Ng, A.; Chiu, G. [University of British Columbia, Vancouver, British Columbia (Canada)

    1997-01-01

    We present results of the first measurements of density, shock speed, and particle speed in liquid deuterium compressed by laser-generated shock waves to pressures from 25 to 210Gpa (0.25 to 2.1Mbar). The data show a significant increase in D{sub 2} compressibility above 50Gpa compared to a widely used equation of state model. The data strongly suggest a thermal molecular dissociation transition of the diatomic fluid into a monatomic phase. {copyright} {ital 1997} {ital The American Physical Society}

  14. The optical Tamm states in a photonic-crystal Structure based on the cholesteric liquid crystal

    CERN Document Server

    Vetrov, Stepan Ya; Timofeev, Ivan V

    2015-01-01

    We investigate the localized surface modes in a structure consisting of the cholesteric liquid crystal layer, a phase plate, and a metal layer. These modes are analogous to the optical Tamm states. The anisotropy of transmission of light propagating the forward and backward directions is established. It is demonstrated that the transmission spectrum can be controlled by external fields acting on the cholesteric and by varying the plane of polarization of the incident light. [The text is presented both in English (pp 1-10) and in Russian (pp 11-20)

  15. Electronic liquid crystal state in a strongly underdoped high-temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hinkov, V.; Haug, D.; Lin, C.T.; Keimer, B. [MPI-FKF, Stuttgart (Germany); Fauque, B.; Sidis, Y.; Bourges, P. [LLB, Saclay (France); Ivanov, A. [ILL, Grenoble (France); Bernhard, C. [Univ. of Fribourg (Switzerland)

    2008-07-01

    Liquid crystals are states of matter without static crystalline order that break the rotational symmetry of free space while at least partially preserving its translational symmetry. Highly correlated electronic phases with symmetry properties analogous to those of conventional liquid crystals have been theoretically predicted (Kivelson et al., Nature 393, 550) and recently discovered in the layered bulk transition metal oxide Sr{sub 3}Ru{sub 2}O{sub 7} (Borzi et al., Science 315, 214). In both cases, however, these phases are stable only at milli-Kelvin temperatures and in high magnetic fields, and have thus far only been probed by transport measurements. After briefly summarizing our work on YBCO{sub 6.6} (Hinkov et al., Nature Physics 3, 780), we report the spontaneous onset of a strong one-dimensional, incommensurate modulation of the spin system in the underdoped high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 6.45} upon cooling below 150 K, while muon-spin-relaxation experiments on the same sample demonstrate that static magnetic order is absent down to temperatures of at least 2 K. The symmetry properties of the spin system thus match those of a nematic liquid crystal over a wide temperature range. Soft spin fluctuations are thus a microscopic route towards the formation of electronic nematic phases, which can coexist with high-T{sub c} superconductivity.

  16. The logarithmic relaxation process and the critical temperature of liquids in nano-confined states

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Mole, Richard A.; Yu, Dehong; Chathoth, Suresh M.

    2016-09-01

    The logarithmic relaxation process is the slowest of all relaxation processes and is exhibited by only a few molecular liquids and proteins. Bulk salol, which is a glass-forming liquid, is known to exhibit logarithmic decay of intermediate scattering function for the β-relaxation process. In this article, we report the influence of nanoscale confinements on the logarithmic relaxation process and changes in the microscopic glass-transition temperature of salol in the carbon and silica nanopores. The generalized vibrational density-of-states of the confined salol indicates that the interaction of salol with ordered nanoporous carbon is hydrophilic in nature whereas the interaction with silica surfaces is more hydrophobic. The mode-coupling theory critical temperature derived from the QENS data shows that the dynamic transition occurs at much lower temperature in the carbon pores than in silica pores. The results of this study indicate that, under nano-confinements, liquids that display logarithmic β-relaxation phenomenon undergo a unique glass transition process.

  17. A versatile platform for manipulating photonic spin and orbital states based on liquid crystal microstructures (Conference Presentation)

    Science.gov (United States)

    Lu, Yan-Qing; Hu, Wei; Ming, Yang

    2016-09-01

    Utilizing the spin degree of freedom breaks new ground for designing photonic devices. Seeking out a suitable platform for flexible steering of photonic spin states is a critical task. In this work, we demonstrate a versatile Liquid crystal (LC) based platform for manipulating photonic spin and orbital states. Owing to the photoalignment technique, the local and fine tuning of the LC medium is effectively implemented to form various anisotropic microstructures. The light-matter interaction in the corresponding medium is tailored to control the evolution of photonic spin states. The physical mechanism of such a system is investigated, and the corresponding dynamical equation is obtained. The high flexibility endows the LC-based photonic system with great value to be used for Hamiltonian engineering. As an illustration, the optical analogue of intrinsic spin Hall effect (SHE) in electronic systems is presented. The pseudospins of photons are driven to split by the anisotropic effective magnetic field arising from the inhomogeneous spin-orbit interaction (SOI) in the twisting microstructures. In virtue of the designability of the LC-based platform, the form of the interaction Hamiltonian is regulated to present diverse PSHE phenomena, which is hard to be realized in the solid electronic systems. Some representative samples are prepared for experimental observation, and the results are in good agreement with theoretical predictions. We believe the tunable LC system may shed new light on future photonic quantum applications.

  18. Equation of state of initially liquid carbon monoxide and nitrogen mixture

    Institute of Scientific and Technical Information of China (English)

    YANG JinWen; SUN Dong; SUN Yue; SHI ShangChun

    2008-01-01

    Academy of Engineering Physics,Mianyang 621900,ChinaThe modified liquid perturbation variational theory and the improved vdW-1f model were applied to calculating the equation of the state of liquid CO-N2 mixture with the ratio of 1:1,4:1 and 1:4,respectively,in the shock pressure range of 9-49 Gpa.It was shown that the calculated result for CO-N2 mixture with the ratio of 1:1 is well consistent with the earlier experimental data.The thermodynamics equilibrium,chemical equilibrium and phase equilibrium were all considered in detail.It was found that Hugoniot of liquid CO-N2 mixture is moderately softened in the pressure range of 20-30 Gpa and 30-49 Gpa for different initial proportions,and that the Hugoniot is more softened in the latter pressure range,which means that the structural phase transition occurs near 20 Gpa and 30 Gpa.Since the shock pro-ductions may absorb a plenty of systematic energy,the shock temperature and pressure decline compared with the case of no chemical reaction.Pressures and temperatures increase gradually with the increase in the mole fraction of nitrogen composition.The results for the 1:1 CO-N2 mixture lie in the middle of two others.Therefore,it was shown that the modified Lorentz-Berthelor rule used in the scheme is effective to study shock-compression properties of liquid CO-N2 mixture under high temperatures and high pressures.

  19. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    Science.gov (United States)

    Perosa, Alvise; Guidi, Sandro; Cattelan, Lisa

    2016-01-01

    Summary The use of ionic liquids (ILs) as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic) activation of reactants. PMID:27829898

  20. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    Maurizio Selva

    2016-08-01

    Full Text Available The use of ionic liquids (ILs as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic activation of reactants.

  1. The application of tribology in assessing texture perception of oral liquid medicines.

    Science.gov (United States)

    Batchelor, Hannah; Venables, Rebecca; Marriott, John; Mills, Tom

    2015-02-20

    The palatability of medicines is likely to have a significant impact on patient adherence and consequently, on the safety and efficacy of a medicinal product. Palatability encompasses properties of medicines not limited to taste including swallowability (e.g. size, shape, texture). However, there has been limited work undertaken to measure the texture of medicines and how this may affect palatability and subsequent adherence. Tribology offers an understanding of oral processes and can allow physical properties of materials to be linked to "mouthfeel". This paper describes a preliminary application of tribology to oral liquid medicines and demonstrates that this technique is useful in the development of future oral liquid medicines.

  2. Nuclear spin relaxation in liquids theory, experiments, and applications

    CERN Document Server

    Kowalewski, Jozef

    2006-01-01

    Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find.Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems.Avoiding ove...

  3. Application of Smart Solid State Sensor Technology in Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.

    2008-01-01

    Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.

  4. Molecular dynamics investigation of dynamical heterogeneity and local structure in the supercooled liquid and glass states of Al

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Wang, C. Z.; Mandelev, M.; Ho, K. M.

    2008-05-13

    Molecular dynamics simulations are performed to study the structure and dynamical heterogeneity in the liquid and glass states of Al using a frequently employed embedded atom potential. While the pair correlation function of the glass and liquid states displays only minor differences, the icosahedral short-range order (ISRO) and the dynamics of the two states are very different. The ISRO is much stronger in the glass than in the liquid. It is also found that both the most mobile and the most immobile atoms in the glass state tend to form clusters, and the clusters formed by the immobile atoms are more compact. In order to investigate the local environment of each atom in the liquid and glass states, a local density is defined to characterize the local atomic packing. There is a strong correlation between the local packing density and the mobility of the atoms. These results indicate that dynamical heterogeneity in glasses is directly correlated to the local structure. We also analyze the diffusion mechanisms of atoms in the liquid and glass states. It is found that for the mobile atoms in the glass state, initially they are confined in the cages formed by their nearest neighbors and vibrating. On the time scale of {beta} relaxation, the mobile atoms try to break up the cage confinement and hop into new cages. In the supercooled liquid states, however, atoms continuously diffuse. Furthermore, it is found that on the time scale of {beta} relaxation, some of the mobile atoms in the glass state cooperatively hop, which is facilitated by the stringlike cluster structures. On the longer time scale, it is found that a certain fraction of atoms can simultaneously hop, although they are not nearest neighbors. Further analysis shows that these hopping atoms form big and more compact clusters than the characterized most mobile atoms. The cooperative rearrangement of these big compact clusters might facilitate the simultaneous hopping of atoms in the glass states on the long

  5. Photo-excited states in germanium at liquid-helium temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Culbertson, J.C.

    1982-12-01

    A wide variety of experimental work dealing with the basic properties of photoexcited states in Ge at liquid helium temperatures is presented. The primary emphasis is on the electron-hole liquid (EHL) and the free exciton (FE). The EHL is composed of two interpenetrating Fermi liquids, one of electrons and one of holes, each with its own Fermi level. The FE dealt with here is a mobile, loosely bound state of an electron and a hole. We report the first absolute measurement of the density dependence of the enhancement factor g/sub eh/(0) for the EHL in Ge. This factor g/sub eh/(0) is a measure of the electron-hole spatial correlation function, and provides a valuable and sensitive test for the predictions of various many-body-theory approximations. An EHL droplet - FE gas system confined to a strain induced potential well was used. The measurement approach relied on only a few simple and verifiable assumptions. A byproduct of this work was the measurement as a function of stress of: the electron and hole Fermi levels E/sub F//sup e/ and E/sub F//sup h/, the EHL density n/sub l/, the condensation energy phi of a FE relative to the EHL, and the binding energy of a FE (E/sub x/) relative to free carriers (FC). The decay of a FE-FC system confined to a strain induced potential well is studied. The first direct measurement of the FE diffusivity D/sub x/ is reported. The evolution in time of spatial profiles of FE luminescence were measured. From these FE density profiles, D/sub x/(4.2K) approx. = to 300 cm/sup 2/ s/sup -1/, the surface recombination velocity S approx. = 3000 cm s/sup -1/, and the FE lifetime tau/sub x/ = 27 ..mu..s with surface effects excluded were determined. (WHK)

  6. Transient state study of electric motor heating and phase change solid-liquid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bellettre, J.; Sartre, V.; Lallemand, A. [Centre National de la Recherche Scientifique (CNRS), Centre de Thermique de Lyon, Villeurbanne, 69 (France); Biais, F. [AUXILEC, Chatou, 78 (France)

    1997-01-01

    This study reports on modelling of an autosynchronous electric motor stator, operating at transient state. The developed model, of the modal type, includes around 20 nodes. The simulations showed that hot spots are localized on the winding heads and led to the choice of a solid-liquid phase change cooling system. The comparison between simulation and experiment permitted the identification of unknown parameters. The model gives a good accuracy during steady-state and in the rising temperature phase. The modelling of the phase change cooling is realized by the addition of two nodes. The sensitivity analysis to PCM properties shows that the hot spot temperature decreases with increasing conductivities, inertia and latent heat of melting of the PCM and with decreasing melting temperature. Gallium (metal melting at 30{sup o}C) is the best PCM for the cooling of hot spots and P116 paraffin is the best non-metallic PCM. (author)

  7. Preparation of cluster states with trapped electrons on a liquid helium surface

    Institute of Scientific and Technical Information of China (English)

    Ai Ling-Yan; Shi Yan-Li; Zhang Zhi-Ming

    2011-01-01

    We present a scheme for the preparation of one-dimensional (1D) and two-dimensional (2D) cluster states with electrons trapped on a liquid helium surface and driven by a classical laser beam.The two lowest levels of the vertical motion of the electron act as a two-level system,and the quantized vibration of the electron along one of the parallel directions (the x direction) serves as the bosonic mode.The degrees of freedom of the vertical and parallel motions of the trapped electron can be coupled together by a classical laser field.With the proper frequency of the laser field,the cluster states can be realized.

  8. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation.

    Science.gov (United States)

    Busselez, Rémi; Cerclier, Carole V; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-07

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  9. Entanglement entropy of composite Fermi liquid states on the lattice: In support of the Widom formula

    Science.gov (United States)

    Mishmash, Ryan V.; Motrunich, Olexei I.

    2016-08-01

    Quantum phases characterized by surfaces of gapless excitations are known to violate the otherwise ubiquitous boundary law of entanglement entropy in the form of a multiplicative log correction: S ˜Ld -1logL . Using variational Monte Carlo, we calculate the second Rényi entropy for a model wave function of the ν =1 /2 composite Fermi liquid (CFL) state defined on the two-dimensional triangular lattice. By carefully studying the scaling of the total Rényi entropy and, crucially, its contributions from the modulus and sign of the wave function on various finite-size geometries, we argue that the prefactor of the leading L logL term is equivalent to that in the analogous free fermion wave function. In contrast to the recent results of Shao et al. [Phys. Rev. Lett. 114, 206402 (2015), 10.1103/PhysRevLett.114.206402], we thus conclude that the "Widom formula" holds even in this non-Fermi liquid CFL state. More generally, our results further elucidate—and place on a more quantitative footing—the relationship between nontrivial wave function sign structure and S ˜L logL entanglement scaling in such highly entangled gapless phases.

  10. Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tatay, S.; Gavina, P. [ICMol-UV, Poligono Industrial La Coma s/n, Paterna (Spain); Haque, S.A.; O' Regan, B.C.; Durrant, J.R. [Centre for Electronic Materials and Devices, Chemistry Department, Imperial College, South Kensington, London SW7 2AZ (United Kingdom); Vidal-Ferran, A. [Catalan Institution for Research and Advanced Studies ICREA, Barcelona (Spain); Palomares, E. [Institute of Chemical Research of Catalonia ICIQ, Avgda, Paysos Catalans 16, 43007 Tarragona (Spain); Verhees, W.J.H.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands)

    2007-08-15

    The photovoltaic performance of liquid electrolyte and solid-state dye sensitized solar cells, employing a squarilium methoxy cyanide dye, are evaluated in terms of interfacial electron transfer kinetics. Dye adsorption to the metal oxide film resulted in a mixed population of aggregated and monomeric sensitizer dyes. Emission quenching data, coupled with transient absorption studies, indicate that efficient electron injection was only achieved by the monomeric dyes, with the aggregated dye population having an injection yield an order of magnitude lower. In liquid electrolyte devices, transient absorption studies indicate that photocurrent generation is further limited by slow kinetics of the regeneration of monomeric dye cations by the iodide/iodine redox couple. The regeneration dynamics are observed to be too slow ( 100 {mu}s) to compete effectively with the recombination of injected electrons with dye cations. In contrast, for solid-state devices employing the organic hole conductor spiro-OMeTAD, the regeneration dynamics are fast enough (1{mu}s) to compete effectively with this recombination reaction, resulting in enhanced photocurrent generation.

  11. Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers

    Directory of Open Access Journals (Sweden)

    Takashi Fukuda

    2012-01-01

    Full Text Available Photocontrol of molecular alignment is an exceptionally-intelligent and useful strategy. It enables us to control optical coefficients, peripheral molecular alignments, surface relief structure, and actuation of substances by means of photoirradiation. Azobenzene-containing polymers and functionalized liquid crystalline polymers are well-known photocontrollable materials. In this paper, we introduce recent applications of these materials in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics. The concepts in each application are explained based on the mechanisms of photocontrol. The interesting natures of the photocontrollable materials and the conceptual applications will stimulate novel ideas for future research and development in this field.

  12. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    Science.gov (United States)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  13. Determining the applicability of liquid alloy nitriding in fabrication of Al-AlN particle composites

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2008-08-01

    Full Text Available One of the possible techniques of the fabrication of dispersion-hardened composites is by in situ reaction between the liquid alloy and gas. The study presents the results of the research on nitriding of liquid aluminium alloy containing Mg and Ti as alloying elements under the conditions of high pressure comprised in the range of 150-1000hPa at the temperature of up to 1100oC. It has been stated that under the applied conditions of the synthesis it is possible to obtain the AlN nitride, but it is formed on the liquid alloy surface and as a deposit on the surface of the crucible. Some results of the analysis of the phase constitution obtained in the fabricated products were presented along with the structure of these products.

  14. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles

    Science.gov (United States)

    Sun, Xiaosong; Sakai, Mikio

    2016-12-01

    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  15. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.

    Science.gov (United States)

    Sun, Xiaosong; Sakai, Mikio

    2016-12-01

    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  16. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    Science.gov (United States)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions

  17. A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models

    Science.gov (United States)

    Fugel, Malte; Weiss, Volker C.

    2017-02-01

    Many atomistic potential models have been proposed to reproduce the properties of real water and to capture as many of its anomalies as possible. The large number of different models indicates that this task is by no means an easy one. Some models are reasonably successful for various properties, while others are designed to account for only a very few specific features of water accurately. Among the most popular models are SPC/E, TIP4P, TIP4P/2005, TIP4P/Ice, and TIP5P-E. Here, we report the equilibrium properties of the liquid-vapor coexistence, such as the densities of the liquid phase and the vapor phase, the interfacial tension between them, and the vapor pressure at saturation. From these data, the critical parameters are determined and subsequently used to cast the liquid-vapor coexistence properties into a corresponding-states form following Guggenheim's suggestions. Doing so reveals that the three TIP4P-based models display the same corresponding-states behavior and that the SPC/E model behaves quite similarly. Only the TIP5P-E model shows clear deviations from the corresponding-states properties of the other models. A comparison with data for real water shows that the reduced surface tension is well described, while the reduced coexistence curve is too wide. The models underestimate the critical compressibility factor and overestimate Guggenheim's ratio as well as the reduced boiling temperature (Guldberg's ratio). As demonstrated by the collapse of the data for the TIP4P-based models, these deviations are inherent to the specific model and cannot be corrected by a simple reparametrization. For comparison, the results for two recent polarizable models, HBP and BK3, are shown, and both models are seen to perform well in terms of absolute numbers and in a corresponding-states framework. The kind of analysis applied here can therefore be used as a guideline in the design of more accurate and yet simple multi-purpose models of water.

  18. A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models.

    Science.gov (United States)

    Fugel, Malte; Weiss, Volker C

    2017-02-14

    Many atomistic potential models have been proposed to reproduce the properties of real water and to capture as many of its anomalies as possible. The large number of different models indicates that this task is by no means an easy one. Some models are reasonably successful for various properties, while others are designed to account for only a very few specific features of water accurately. Among the most popular models are SPC/E, TIP4P, TIP4P/2005, TIP4P/Ice, and TIP5P-E. Here, we report the equilibrium properties of the liquid-vapor coexistence, such as the densities of the liquid phase and the vapor phase, the interfacial tension between them, and the vapor pressure at saturation. From these data, the critical parameters are determined and subsequently used to cast the liquid-vapor coexistence properties into a corresponding-states form following Guggenheim's suggestions. Doing so reveals that the three TIP4P-based models display the same corresponding-states behavior and that the SPC/E model behaves quite similarly. Only the TIP5P-E model shows clear deviations from the corresponding-states properties of the other models. A comparison with data for real water shows that the reduced surface tension is well described, while the reduced coexistence curve is too wide. The models underestimate the critical compressibility factor and overestimate Guggenheim's ratio as well as the reduced boiling temperature (Guldberg's ratio). As demonstrated by the collapse of the data for the TIP4P-based models, these deviations are inherent to the specific model and cannot be corrected by a simple reparametrization. For comparison, the results for two recent polarizable models, HBP and BK3, are shown, and both models are seen to perform well in terms of absolute numbers and in a corresponding-states framework. The kind of analysis applied here can therefore be used as a guideline in the design of more accurate and yet simple multi-purpose models of water.

  19. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Dai, Sheng [ORNL; Luo, Huimin [ORNL; Meyer III, Harry M [ORNL

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  20. Modeling vapor-liquid interfaces with the gradient theory in combination with the CPA equation of state

    DEFF Research Database (Denmark)

    Queimada, Antonio; Miqueu, C; Marrucho, IM

    2005-01-01

    With the final purpose of describing the important aqueous + hydrocarbon liquid-liquid interfaces, the gradient theory was combined with the Cubic-Plus-Association equation of state (CPA EOS), taking advantage of the correct representation of interfacial tensions provided by the gradient theory...... and discussed. The good description of equilibrium properties such as vapor pressure and liquid and vapor phase densities is shown in the full range of the vapor-liquid saturation line. For non-associating components, results are compared with those from the Soave-Redlich-Kwong and Peng-Robinson equations...... of state. A correlation for the influence parameter is presented from which surface tensions can be obtained in a broad temperature range with average errors smaller than 1%. (c) 2004 Elsevier B.V. All rights reserved....

  1. Residency Applicants Misinterpret Their United States Medical Licensing Exam Scores

    Science.gov (United States)

    Jones, Roger C.; Desbiens, Norman A.

    2009-01-01

    Proper interpretation of the results of the United States Medical Licensing Exam (USMLE) is important for program directors, residents, and faculty who advise applicants about applying for residency positions. We suspected that applicants often misinterpreted their performance in relationship to others who took the same examination. In 2005, 54…

  2. Synthesis of Pyrrolidinium-type Poly(Ionic Liquid) Membranes for Antibacterial Applications.

    Science.gov (United States)

    Qin, Jing; Guo, Jiangna; Xu, Qiming; Zheng, Zhiqiang; Mao, Hailei; Yan, Feng

    2017-03-08

    Pyrrolidinium-type small molecule ionic liquids (ILs), poly(ionic liquid) (PIL) homopolymers, and their corresponding PIL membranes were synthesized and used for antibacterial applications. The influences of substitutions at the N position of pyrrolidinium cation on the antimicrobial activities against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were studied by minimum inhibitory concentration (MIC). The antibacterial efficiency of both the small molecule ILs and PIL homopolymers increased with the increase of the alkyl chain length of substitutions. Furthermore, PIL homopolymers show relatively lower MIC values, indicating better antimicrobial activities than those of corresponding small molecule ILs. However, the antibacterial properties of the PIL membranes are contrary to corresponding ILs and PIL homopolymers, which reducing with the increase of alkyl chain length. Furthermore, the resultant PIL membranes show excellent hemocompatibility and low cytotoxicity towards human cells, demonstrating clinical feasibility in topical applications.

  3. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  4. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  5. SESAME 96170, a solid-liquid equation of state for CeO2

    Energy Technology Data Exchange (ETDEWEB)

    Chisolm, Eric D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-02

    I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO2. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.

  6. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  7. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Hua, T. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K [Argonne National Lab. (ANL), Argonne, IL (United States); Kromer, M. [TIAX LLC, Lexington, MA (United States); Lasher, S. [TIAX LLC, Lexington, MA (United States); McKenney, K. [TIAX LLC, Lexington, MA (United States); Law, K. [TIAX LLC, Lexington, MA (United States); Sinha, J. [TIAX LLC, Lexington, MA (United States)

    2011-06-21

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

  8. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    Science.gov (United States)

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  9. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    Science.gov (United States)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  10. Reactions of excited-state benzophenone ketyl radical in a room-temperature ionic liquid.

    Science.gov (United States)

    Takahashi, Kenji; Tezuka, Hiroaki; Kitamura, Shingo; Satoh, Toshifumi; Katoh, Ryuzi

    2010-02-28

    The photochemistry of the benzophenone ketyl radical in D(1) excited state, BPH(D(1)), was studied by means of two-color dual-pulse laser flash photolysis (355 and 532 nm) in a room-temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (Bmim-TFSA), and in methanol. Upon excitation with the 532 nm pulse, BPH(D(1)) emitted strong fluorescence. The transient absorption and fluorescence spectra of BPH(D(1)) were measured with nanosecond and sub-nanosecond time resolution, respectively. The observed Stokes shift was 1700 cm(-1) in Bmim-TFSA, and this shift was close to that in acetonitrile. The fluorescence lifetime of BPH(D(1)) was determined to be 5 ns in Bmim-TFSA, and again the value was close to that in acetonitrile. The rate constant of the reaction of BPH(D(1)) with CCl(4) in Bmim-TFSA was determined to be (2.1 +/- 0.4) x 10(9) M(-1) s(-1), which was 10 times the rate constant calculated on the basis of the bulk viscosity of Bmim-TFSA. The results are discussed in terms of the effective microscopic viscosity of the ionic liquid that was recently reported for the cage effect.

  11. Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Kang-Shyang; Andreoli, Enrico; Curran, Seamus A. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Sutto, Thomas E. [Naval Research Labs-DC, Materials Science and Technology Division, Washington, DC 20375 (United States); Ajayan, Pulickel [Department of Materials Engineering, Rice University, Houston, TX 77005 (United States); McGrady, Karen A. [Marine Corps System Command, 50 Tech Parkway, Garrisonville, VA 22463 (United States)

    2010-02-01

    Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1-n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm{sup -1}, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 C, and do not begin to thermally decompose until over 300 C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li{sub x}CoO{sub 2} where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles. (author)

  12. Equilibrium fluctuations of liquid state static properties in a subvolume by molecular dynamics.

    Science.gov (United States)

    Heyes, D M; Dini, D; Smith, E R

    2016-09-14

    System property fluctuations increasingly dominate a physical process as the sampling volume decreases. The purpose of this work is to explore how the fluctuation statistics of various thermodynamic properties depend on the sampling volume, using molecular dynamics (MD) simulations. First an examination of various expressions for calculating the bulk pressure of a bulk liquid is made, which includes a decomposition of the virial expression into two terms, one of which is the Method of Planes (MOP) applied to the faces of the cubic simulation cell. Then an analysis is made of the fluctuations of local density, temperature, pressure, and shear stress as a function of sampling volume (SV). Cubic and spherical shaped SVs were used within a spatially homogeneous LJ liquid at a state point along the melting curve. It is shown that the MD-generated probability distribution functions (PDFs) of all of these properties are to a good approximation Gaussian even for SV containing only a few molecules (∼10), with the variances being inversely proportional to the SV volume, Ω. For small subvolumes the shear stress PDF fits better to a Gaussian than the pressure PDF. A new stochastic sampling technique to implement the volume averaging definition of the pressure tensor is presented, which is employed for cubic, spherical, thin cubic, and spherical shell SV. This method is more efficient for less symmetric SV shapes.

  13. Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state.

    Science.gov (United States)

    Gerasimov, V S; Ershov, A E; Gavrilyuk, A P; Karpov, S V; Ågren, H; Polyutov, S P

    2016-11-14

    Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electron-phonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles.

  14. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  15. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    Science.gov (United States)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2016-11-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  16. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    Science.gov (United States)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2017-01-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  17. High energy gas fracture experiments in liquid-filled boreholes: potential geothermal application

    Energy Technology Data Exchange (ETDEWEB)

    Cuderman, J.F.; Chu, T.Y.; Jung, J.; Jacobson, R.D.

    1986-07-01

    High Energy Gas Fracturing is a tailored pulse fracturing technique which uses propellants to obtain controlled fracture initiation and extension. Borehole pressurization rates can be tailored, by suitable choice of propellants, to produce four or eight fractures radiating from the wellbore. High Energy Gas Fracture (HEGF) research is conducted at DOE's Nevada Test Site (NTS) in a tunnel complex where experiments can be done under realistic in situ stress conditions (1400 psi (9.7 MPa) overburden stress). Pressure measurements are made in the test borehole during all fracturing experiments. Experiments are mined back to provide direct observation of fracturing obtained. The initial objective of HEGF research was to develop multiple fracturing technology for application in gas well stimulation. HEGF research at NTS and in Devonian shale demonstration tests has resulted in a completed technology for multiple fracturing in uncased, liquid-free wellbores. Current resarch is directed toward extending the technique to liquid-filled boreholes for application in geothermal in addition to gas and oil wells. For liquid-free boreholes, multiple fracturing is specified in terms of pressure risetime required for a given borehole diameter. Propellants are mixed to achieve the desired risetime using a semiempirical mixing equation. The same techniques were successfully applied to fracturing in liquid-filled wellbores. However, the addition of liquid in the borehole results in a significantly more complicated fracturing behavior. Hydrodynamic effects are significant. Multiple fractures are initiated but only some propagated. Multiple- and hydraulic-type fracturing and wellbore crushing have been observed in the same experiment. The potential of using HEGB for geothermal well stimulation has been demonstrated through the present experiments. 18 refs., 40 figs., 4 tabs.

  18. Metered Cryospray™: a novel uniform, controlled, and consistent in vivo application of liquid nitrogen cryogenic spray

    Science.gov (United States)

    Mulcahey, Thomas I; Coad, James E; Fan, Wei Li; Grasso, Daniel J; Hanley, Brian M; Hawkes, Heather V; McDermott, Sean A; O’Connor, John P; Sheets, Ellen E; Vadala, Charles J

    2017-01-01

    In this article, a novel cryotherapy approach using a uniform, controlled, and consistent in vivo application of liquid nitrogen (LN2) spray as a Metered Cryospray™ (MCS) process is described. Although MCS may be used for many potential clinical applications, this paper focuses on the development that led to the controlled and consistent delivery of radial LN2 cryogen spray in order to generate a uniform circumferential effect and how the amount of MCS can be adapted to specifically ablate targeted diseases within a patient’s lumen such as an airway or esophagus. PMID:28255257

  19. Liquid Crystal-Reconfigurable Antenna Concepts for Space Applications at Microwave and Millimeter Waves

    Directory of Open Access Journals (Sweden)

    A. Gaebler

    2009-01-01

    Full Text Available Novel approaches of tunable devices for millimeter wave applications based on liquid crystal (LC are presented. In the first part of the paper, a novel concept of a tunable LC phase shifter realized in Low Temperature Cofired Ceramics technology is shown while the second part of the paper deals with a tunable high-gain antenna based on an LC tunable reflectarray. The reflectarray features continuously beam scanning in between ±25∘. Also first investigations on radiation hardness of LCs are carried out, indicating that LCs might be suitable for space applications.

  20. Positronium in a Liquid Phase: Formation, Bubble State and Chemical Reactions

    Directory of Open Access Journals (Sweden)

    Sergey V. Stepanov

    2012-01-01

    Full Text Available The present approach describes the e+ fate since its injection into a liquid until its annihilation. Several stages of the e+ evolution are discussed: (1 energy deposition and track structure of fast positrons: ionization slowing down, number of ion-electron pairs, typical sizes, thermalization, electrostatic interaction between e+ and the constituents of its blob, and effect of local heating; (2 positronium formation in condensed media: the Ore model, quasifree Ps state, intratrack mechanism of Ps formation; (3 fast intratrack diffusion-controlled reactions: Ps oxidation and ortho-paraconversion by radiolytic products, reaction rate constants, and interpretation of the PAL spectra in water at different temperatures; (4 Ps bubble models. Inner structure of positronium (wave function, energy contributions, relationship between the pick-off annihilation rate and the bubble radius.

  1. An Electrochromic Ionic Liquid: Design, Characterization, and Performance in a Solid-State Platform

    Science.gov (United States)

    2012-01-01

    This work describes the synthesis and characteristics of a novel electrochromic ionic liquid (IL) based on a phosphonium core tethered to a viologen moiety. When integrated into a solid-state electrochromic platform, the viologen modified IL behaved as both the electrolyte and the electrochromic material. Platform fabrication was achieved through in situ photo-polymerization and encapsulation of this novel IL within a hybrid sol–gel. Important parameters of the platform performance, including its coloration efficiency, switching kinetics, and optical properties were characterised using UV–vis spectroscopy and cyclic voltammetry in tandem. The electrochromic platform exhibits a coloration efficiency of 10.72 cm2 C–1 and a varied optical output as a function of the incident current. Despite the rather viscous nature of the material, the platform exhibited approximately 2 orders of magnitude faster switching kinetics (221 s to reach 95 % absorbance) when compared to previously reported electrochromic ILs (18 000 s). PMID:23206366

  2. Two-state model for nematic liquid crystals made of bent-core molecules

    Science.gov (United States)

    Madhusudana, N. V.

    2017-08-01

    Nematic (N ) liquid crystals made of bent-core molecules exhibit unusual physical properties such as an intermediate phase between the N and isotropic (I ) phases, a very weak N I transition as inferred from magnetic birefringence measurements in a low field, which is apparently incompatible with a large shift in the N I transition temperature (Tn i) measured under a high field. Using our conformational studies on the aromatic cores, we propose that only conformers which are more straightened than those in the ground state (GS) form clusters with a few layers, which persist even in the isotropic phase, as inferred from x-ray and rheological experiments. We present a Landau-de Gennes theory of the medium, including an orientational coupling between the clusters and the GS molecules, which accounts for all the unusual properties. The intermediate phase to isotropic transition is predicted to exhibit critical behavior at a very low magnetic field of <1 kG .

  3. Early Thermal History of Rhea: The Role of Serpentinization and Liquid State Convection

    Science.gov (United States)

    Czechowski, Leszek; Łosiak, Anna

    2016-12-01

    Early thermal history of Rhea is investigated. The role of the following parameters of the model is investigated: time of beginning of accretion, tini, duration of accretion, tac, viscosity of ice close to the melting point, η0, activation energy in the formula for viscosity, E, thermal conductivity of silicate component, ksil, ammonia content, XNH3, and energy of serpentinization, cserp. We found that tini and tac are crucial for evolution. All other parameters are also important, but no dramatic differences are found for realistic values. The process of differentiation is also investigated. It is found that liquid state convection could delay the differentiation for hundreds of My. The results are confronted with observational data from Cassini spacecraft. It is possible that differentiation is fully completed but the density of formed core is close to the mean density. If this interpretation is correct, then Rhea could have accreted any time before 3-4 My after formation of CAI.

  4. Ion-selective supported liquid membranes placed under steady-state diffusion control.

    Science.gov (United States)

    Tompa, Károly; Birbaum, Karin; Malon, Adam; Vigassy, Tamás; Bakker, Eric; Pretsch, Ernö

    2005-12-01

    Supported liquid membranes are used here to establish steady-state concentration profiles across ion-selective membranes rapidly and reproducibly. This opens up new avenues in the area of nonequilibrium potentiometry, where reproducible accumulation and depletion processes at ion-selective membranes may be used to gain valuable analytical information about the sample. Until today, drifting signals originating from a slowly developing concentration profile across the ion-selective membrane made such approaches impractical in zero current potentiometry. Here, calcium- and silver-selective membranes were placed between two identical aqueous electrolyte solutions, and the open circuit potential was monitored upon changing the composition of one solution. Steady state was reached in approximately 1 min with 25-microm porous polypropylene membranes filled with bis(2-ethylhexyl) sebacate doped with ionophore and lipophilic ion exchanger. Ion transport across the membrane resulted on the basis of nonsymmetric ion-exchange processes at both membrane sides. The steady-state potential was calculated as the sum of the two membrane phase boundary potentials, and good correspondence to experiment was observed. Concentration polarizations in the contacting aqueous phases were confirmed with stirring experiments. It was found that interferences (barium in the case of calcium electrodes and potassium with silver electrodes) induce a larger potential change than expected with the Nicolsky equation because they influence the level of polarization of the primary ion (calcium or silver) that remains potential determining.

  5. 75 FR 28782 - Liquid Crystal Institute, et al., Notice of Consolidated Decision on Applications for Duty-Free...

    Science.gov (United States)

    2010-05-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Liquid Crystal Institute, et al., Notice of Consolidated Decision on..., Washington, D.C. Docket Number: 10-005. Applicant: Liquid Crystal Institute, Kent, OH 44242. Instrument...

  6. Liquid state machine with dendritically enhanced readout for low-power, neuromorphic VLSI implementations.

    Science.gov (United States)

    Roy, Subhrajit; Banerjee, Amitava; Basu, Arindam

    2014-10-01

    In this paper, we describe a new neuro-inspired, hardware-friendly readout stage for the liquid state machine (LSM), a popular model for reservoir computing. Compared to the parallel perceptron architecture trained by the p-delta algorithm, which is the state of the art in terms of performance of readout stages, our readout architecture and learning algorithm can attain better performance with significantly less synaptic resources making it attractive for VLSI implementation. Inspired by the nonlinear properties of dendrites in biological neurons, our readout stage incorporates neurons having multiple dendrites with a lumped nonlinearity (two compartment model). The number of synaptic connections on each branch is significantly lower than the total number of connections from the liquid neurons and the learning algorithm tries to find the best 'combination' of input connections on each branch to reduce the error. Hence, the learning involves network rewiring (NRW) of the readout network similar to structural plasticity observed in its biological counterparts. We show that compared to a single perceptron using analog weights, this architecture for the readout can attain, even by using the same number of binary valued synapses, up to 3.3 times less error for a two-class spike train classification problem and 2.4 times less error for an input rate approximation task. Even with 60 times larger synapses, a group of 60 parallel perceptrons cannot attain the performance of the proposed dendritically enhanced readout. An additional advantage of this method for hardware implementations is that the 'choice' of connectivity can be easily implemented exploiting address event representation (AER) protocols commonly used in current neuromorphic systems where the connection matrix is stored in memory. Also, due to the use of binary synapses, our proposed method is more robust against statistical variations.

  7. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

    Science.gov (United States)

    Mrugalla, Florian; Kast, Stefan M.

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  8. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory.

    Science.gov (United States)

    Mrugalla, Florian; Kast, Stefan M

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  9. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices.

    Science.gov (United States)

    Watanabe, Masayoshi; Thomas, Morgan L; Zhang, Shiguo; Ueno, Kazuhide; Yasuda, Tomohiro; Dokko, Kaoru

    2017-01-13

    Ionic liquids (ILs) are liquids consisting entirely of ions and can be further defined as molten salts having melting points lower than 100 °C. One of the most important research areas for IL utilization is undoubtedly their energy application, especially for energy storage and conversion materials and devices, because there is a continuously increasing demand for clean and sustainable energy. In this article, various application of ILs are reviewed by focusing on their use as electrolyte materials for Li/Na ion batteries, Li-sulfur batteries, Li-oxygen batteries, and nonhumidified fuel cells and as carbon precursors for electrode catalysts of fuel cells and electrode materials for batteries and supercapacitors. Due to their characteristic properties such as nonvolatility, high thermal stability, and high ionic conductivity, ILs appear to meet the rigorous demands/criteria of these various applications. However, for further development, specific applications for which these characteristic properties become unique (i.e., not easily achieved by other materials) must be explored. Thus, through strong demands for research and consideration of ILs unique properties, we will be able to identify indispensable applications for ILs.

  10. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    Science.gov (United States)

    Park, John J.; Buksa, John J.

    1995-09-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment. Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

  11. Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy

    Science.gov (United States)

    Zhou, Shiqi

    2011-12-01

    speed of the CPSE in both the HS and non HS perturbation schemes is certainly faster than that of the HTSE and the HS perturbation scheme. (iii) We illustrate applications of the CPSE TPT in both the HS and non HS perturbation schemes in calculating thermodynamic properties of various coarse-grained potential function models and as input information of other liquid state theories such as a classical density functional theory (DFT), and also discuss, in the framework of classical DFT, the potential of our CPSE scheme in several typical problems of chemical physics interest. (iv) Finally, we consider several topics which are possibly expected to be settled in the immediate future and possible integration with other liquid state theory frameworks aiming to solve problems in complex fluids in both bulk and inhomogeneous states.

  12. Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy

    Directory of Open Access Journals (Sweden)

    Shiqi Zhou

    2011-12-01

    convergence speed of the CPSE in both the HS and non HS perturbation schemes is certainly faster than that of the HTSE and the HS perturbation scheme. (iii We illustrate applications of the CPSE TPT in both the HS and non HS perturbation schemes in calculating thermodynamic properties of various coarse-grained potential function models and as input information of other liquid state theories such as a classical density functional theory (DFT, and also discuss, in the framework of classical DFT, the potential of our CPSE scheme in several typical problems of chemical physics interest. (iv Finally, we consider several topics which are possibly expected to be settled in the immediate future and possible integration with other liquid state theory frameworks aiming to solve problems in complex fluids in both bulk and inhomogeneous states.

  13. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  14. Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid.

    Science.gov (United States)

    Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P S M; Lejay, Pascal; Homes, Christopher C; Hall, Jesse S; Kinross, Alison W; Purdy, Sarah K; Munsie, Tim; Williams, Travis J; Luke, Graeme M; Timusk, Thomas

    2012-11-20

    Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau-Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu(2)Si(2), instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu(2)Si(2). Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized.

  15. The Potential of Liquid Marbles for Biomedical Applications: A Critical Review.

    Science.gov (United States)

    Oliveira, Nuno M; Reis, Rui L; Mano, João F

    2017-08-10

    Liquid marbles (LM) are freestanding droplets covered by micro/nanoparticles with hydrophobic/hydrophilic properties, which can be manipulated as a soft solid. The phenomenon that generates these soft structures is regarded as a different method to generate a superhydrophobic behavior in the liquid/solid interface without modifying the surface. Several applications for the LM have been reported in very different fields, however the developments for biomedical applications are very recent. At first, the LM properties are reviewed, namely shell structure, LM shape, evaporation, floatability and robustness. The different strategies for LM manipulation are also described, which make use of magnetic, electrostatic and gravitational forces, ultraviolet and infrared radiation, and approaches that induce LM self-propulsion. Then, very distinctive applications for LM in the biomedical field are presented, namely for diagnostic assays, cell culture, drug screening and cryopreservation of mammalian cells. Finally, a critical outlook about the unexplored potential of LM for biomedical applications is presented, suggesting possible advances on this emergent scientific area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measurement of Peltier Heat at the Solid/Liquid Interface and Its Application to Crystal Growth I : Theoretical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.H. [Chungju National University, Chungju (Korea); Jang, K.W. [Hanseo University,Seosan (Korea); Lee, D.H. [Yonsei University, Seoul (Korea)

    1999-11-01

    The Peltier heat absorbed or evolved at the solid/liquid interface in the unidirectional solidification process could contribute to the increase of temperature gradient in liquid and growth velocity, and the enhancement of crystal orientation. In this study, in order to measure the Peltier heat generated at the solid/liquid interface as a way of application to crystal growth, the thermoelectric effects were investigated on the temperature changes at the solid-and liquid-phase of the same material and its interface. Through the theoretical consideration, it was possible to separate sole Peltier, Thomson or Joule heat from the temperature changes due to current density, polarity, and temperature gradient. Thomson coefficient of solid- and liquid-phase as well as Peltier coefficient at the solid/liquid interface could be obtained. (author). 10 refs., 3 figs.

  17. Liquid-based cytology test use by office-based physicians: United States, 2006-2007.

    Science.gov (United States)

    Hing, Esther; Saraiya, Mona; Roland, Katherine B

    2011-06-01

    In the United States, liquid-based cytology (LBC) has become a common screening method for cervical cancer. However, the extent of LBC use, and how it varies by patient and practice characteristics, is unknown. This report describes the ordering and provision of Papanicolaou (Pap) tests, with a major focus on the extent to which LBC has supplanted conventional cytology. The type of Pap test is examined for visits made to primary care physicians in 2006-2007 by females aged 15-64. Estimates of Pap test cytology use (both LBC and conventional) are based on combined data from the 2006-2007 National Ambulatory Medical Care Survey (NAMCS), an annual nationally representative survey of visits to nonfederal office-based physicians in the United States, as well as on information reported by sample physicians in Cervical Cancer Screening Supplements fielded as part of NAMCS during the same years. In 2006-2007, LBC was used in approximately 75% of Pap tests for which the type of cytology was known. LBC was less likely to be used for Medicare patients than for privately insured patients, although LBC use did not vary significantly according to the other patient or practice characteristics examined. The high percentage of LBC use by office-based physicians in 2006-2007 confirms the widespread use of this screening method among primary care providers, as has been reported in the literature.

  18. Steady-state molecular dynamics simulation of vapour to liquid nucleation with McDonald's daemon

    CERN Document Server

    Horsch, Martin; Vrabec, Jadran

    2009-01-01

    The most interesting step of condensation is the cluster formation up to the critical size. In a closed system, this is an instationary process, as the vapour is depleted by the emerging liquid phase. This imposes a limitation on direct molecular dynamics (MD) simulation of nucleation by affecting the properties of the vapour to a significant extent so that the nucleation rate varies over simulation time. Grand canonical MD with McDonald's daemon is discussed in the present contribution and applied for sampling both nucleation kinetics and steady-state properties of a supersaturated vapour. The idea behind that approach is to simulate the production of clusters up to a given size for a specified supersaturation. In that way, nucleation is studied by a steady-state simulation. A series of simulations is conducted for the truncated and shifted Lennard-Jones fluid which accurately describes the fluid phase coexistence of noble gases and methane. The classical nucleation theory is found to overestimate the free e...

  19. High effectiveness liquid droplet/gas heat exchanger for space power applications

    Science.gov (United States)

    Bruckner, A. P.; Mattick, A. T.

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (≈ 100-300 μm dia.) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber. The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  20. Arrangement and SERS Applications of Nanoparticle Clusters Using Liquid Crystalline Template.

    Science.gov (United States)

    Kim, Dae Seok; Honglawan, Apiradee; Yang, Shu; Yoon, Dong Ki

    2017-02-16

    Manipulation of nanomaterials such as nanoparticles (NPs) and nanorods (NRs) to make clusters is of significant interest in material science and nanotechnology due to the unusual collective opto-electric properties in such structures that cannot be found in the individual NPs. This work demonstrates an effective way to arrange NP clusters (NPCs) to make the desired arrays based on removable and NP-guidable liquid crystalline template using sublimation and reconstruction phenomenon. The position of the NPCs is precisely controlled by the defect structure of the liquid crystal (LC), namely toric focal conic domains (TFCDs), during thermal annealing to construct the LC and corresponding NPC structures. As a proof of concept, the surface-enhanced Raman scattering (SERS) activity of a fabricated array of gold nanorod (GNR) clusters is measured and shown to have highly sensitive detection characteristics essential for potential sensing applications.

  1. A 24 keV liquid-metal-jet x-ray source for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, D. H.; Takman, P. A. C.; Lundstroem, U.; Burvall, A.; Hertz, H. M. [Biomedical and X-Ray Physics, Department of Applied Physics, Royal Institute of Technology/Albanova, SE-10691 Stockholm (Sweden)

    2011-12-15

    We present a high-brightness 24-keV electron-impact microfocus x-ray source based on continuous operation of a heated liquid-indium/gallium-jet anode. The 30-70 W electron beam is magnetically focused onto the jet, producing a circular 7-13 {mu}m full width half maximum x-ray spot. The measured spectral brightness at the 24.2 keV In K{sub {alpha}} line is 3 x 10{sup 9} photons/(s x mm{sup 2}x mrad{sup 2}x 0.1% BW) at 30 W electron-beam power. The high photon energy compared to existing liquid-metal-jet sources increases the penetration depth and allows imaging of thicker samples. The applicability of the source in the biomedical field is demonstrated by high-resolution imaging of a mammography phantom and a phase-contrast angiography phantom.

  2. Application of zeolitised coal fly ashes to the depuration of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Emilia Otal; Luis F. Vilches; Natalia Moreno; Xavier Querol; Jose Valea; Constantino Fernandez-Pereira [Universidad de Sevilla, Seville (Spain). Dpto. Ingenieria Quimica y Ambiental, E.S. Ingenieros Industriales

    2005-08-01

    In this study, the application of some zeolitised fly ashes and synthetic zeolites to the decontamination of the leachate produced in a municipal solid waste (MSW) treatment plant and to the liquid waste from a pig farm was analyzed. Thus, the reduction of organic matter (BOD and COD), ammonium and total nitrogen, phosphorus and metals contents after a zeolite treatment was evaluated. Several synthetic zeolites were tested: some commercial zeolites and other synthetic zeolites and zeolitised ashes obtained after a coal fly ash alkaline hydrothermal process. Two forms of contact between the zeolitic material and the liquid waste were tested: in a stirred tank and in a column. In addition, other variables determined were the amount of zeolite and the residence time. The results showed that zeolites, especially zeolitised fly ash, clearly produced a strong reduction in the leachate nitrogen and phosphorus content. 14 refs., 1 fig., 9 tabs.

  3. High effectiveness liquid droplet/gas heat exchanger for space power applications

    Science.gov (United States)

    Bruckner, A. P.; Mattick, A. T.

    1983-01-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approximately 100-300 microns in diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber.The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  4. Liquid-solid interaction at nanoscale and its application in vegetal biology

    CERN Document Server

    Gouin, Henri

    2011-01-01

    The water ascent in tall trees is subject to controversy: the vegetal biologists debate on the validity of the cohesion-tension theory which considers strong negative pressures in microtubes of xylem carrying the crude sap. This article aims to point out that liquids are submitted at the walls to intermolecular forces inferring density gradients making heterogeneous liquid layers and therefore disqualifying the Navier-Stokes equations for nanofilms. The crude sap motion takes the disjoining pressure gradient into account and the sap flow dramatically increases such that the watering of nanolayers may be analogous to a microscopic flow. Application to microtubes of xylem avoids the problem of cavitation and enables us to understand why the ascent of sap is possible for very high trees.

  5. Engineering applications of a dynamical state feedback chaotification method

    Science.gov (United States)

    Şahin, Savaş; Güzeliş, Cüneyt

    2012-09-01

    This paper presents two engineering applications of a chaotification method which can be applied to any inputstate linearizable (nonlinear) system including linear controllable ones as special cases. In the used chaotification method, a reference chaotic and linear system can be combined into a special form by a dynamical state feedback increasing the order of the open loop system to have the same chaotic dynamics with the reference chaotic system. Promising dc motor applications of the method are implemented by the proposed dynamical state feedback which is based on matching the closed loop dynamics to the well known Chua and also Lorenz chaotic systems. The first application, which is the chaotified dc motor used for mixing a corn syrup added acid-base mixture, is implemented via a personal computer and a microcontroller based circuit. As a second application, a chaotified dc motor with a taco-generator used in the feedback is realized by using fully analog circuit elements.

  6. Anomalous temperature dependence of liquid state density for Ni50Ti50 alloy investigated under electrostatic levitation state

    Science.gov (United States)

    Zou, P. F.; Wang, H. P.; Yang, S. J.; Hu, L.; Wei, B.

    2017-08-01

    The density of liquid Ni-Ti alloys were measured by electrostatic levitation technique and the maximum reduced undercooling of ΔT/TL reaches 0.23. Quite different from the linear relationship between density and temperature for liquid Ni45Ti55 and Ni55Ti45 alloys, the density of liquid Ni50Ti50 alloy displays a nonlinear dependence on temperature. Interestingly, the density increasing tendency of liquid Ni50Ti50 alloy rises more rapidly with the decrease of temperature, which results from the more severe shrinking of the distance among atoms at lower temperatures. In addition, the thermal expansion coefficient of liquid Ni50Ti50 alloy increases linearly with the decrease of temperature.

  7. Physical properties of lead free solders in liquid and solid state

    Energy Technology Data Exchange (ETDEWEB)

    Mhiaoui, Souad

    2007-04-17

    The European legislation prohibits the use of lead containing solders in Europe. However, lead free solders have a higher melting point (typical 20%) and their mechanical characteristics are worse. Additional problems are aging and adhesion of the solder on the electronic circuits. Thus, research activities must focus on the optimization of the properties of Sn-Ag-Cu based lead free solders chosen by the industry. Two main objectives are treated in this work. In the center of the first one is the study of curious hysteresis effects of metallic cadmium-antimony alloys after thermal cycles by measuring electronic transport phenomena (thermoelectric power and electrical resistivity). The second objective, within the framework of ''cotutelle'' between the universities of Metz and of Chemnitz and supported by COST531, is to study more specifically lead free solders. A welding must well conduct electricity and well conduct and dissipate heat. In Metz, we determined the electrical conductivity, the thermoelectric power and the thermal conductivity of various lead free solders (Sn-Ag-Cu, Sn-Cu, Sn-Ag, Sn-Sb) as well in the liquid as well in the solid state. The results have been compared to classical lead-tin (Pb-Sn) solders. In Chemnitz we measured the surface tension, the interfacial tension and the density of lead free solders. We also measured the viscosity of these solders without and with additives, in particular nickel. These properties were related to the industrial problems of wettability and spreadability. Lastly, we solidified alloys under various conditions. We observed undercooling. We developed a technique of mixture of nanocrystalline powder with lead free solders ''to sow'' the liquid bath in order to obtain ''different'' solids which were examined using optical and electron microscopy. (orig.)

  8. From Spin Glass to Spin Liquid Ground States in Pyrochlore Molybdates

    Science.gov (United States)

    Clark, Lucy

    Magnetic pyrochlores continue to generate intense interest due to the wealth of interesting behaviours that they can display as a result of their highly frustrated nature. Here we will present our study of the molybdate pyrochlore Lu2Mo2O7, which contains non-magnetic Lu3+ and an antiferromagnetic network of corner-sharing tetrahedra of Mo4+ 4d2 S = 1 ions. Magnetic susceptibility data show that Lu2Mo2O7 enters an unconventional spin glass state at Tf ~ 16 K that displays a quadratic dependence of the low temperature magnetic heat capacity, akin to that observed for its well-studied sister compound Y2Mo2O7. This spin glass transition is also clearly marked in our inelastic (CNCS, SNS) and diffuse elastic magnetic (D7, ILL) neutron scattering data. Furthermore, we will show that it is possible to topochemically substitute the oxide, O2-, ions within Lu2Mo2O7 for nitride, N3-, to produce an oxynitride molybdate pyrochlore of composition Lu2Mo2O5N2. Magnetic susceptibility measurements confirm that strong antiferromagnetic correlations persist within the oxynitride, which contains Mo5+ 4d1 S =1/2 ions and is thus a prime candidate to host exotic quantum spin liquid behavior. We will discuss how the enhanced quantum spin fluctuations in Lu2Mo2O5N2 appear to suppress the spin freezing transition observed in its parent oxide and instead support the formation of a gapless spin liquid phase that displays a linear dependence of the low temperature magnetic heat capacity.

  9. Analytical applications of room-temperature ionic liquids: a review of recent efforts.

    Science.gov (United States)

    Pandey, Siddharth

    2006-01-18

    Room-temperature ionic liquids (RTILs) are solvents that may have great potential in chemical analysis. Recent surge in the number of publications/reports/books/monographs clearly indicate an increasing interest of scientific and engineering community toward these exciting and unique solvents. Consequently, a variety of analytical applications of RTILs have started to emerge. This review presents an account of some of the recent reports on RTILs in major subdisciplines of analytical chemistry. Specifically, recent literature representing the applications of RTILs in chromatography, extraction, electroanalytical chemistry, sensing, and spectrometry is reviewed. With a rapid growth in the number of publications on analytical applications of RTILs, it appears that in the near future these neoteric solvents are definitely going to be a permanent feature in analytical chemistry.

  10. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    Science.gov (United States)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  11. A New Open-Source Nuclear Equation of State Framework based on the Liquid-Drop Model with Skyrme Interactions

    Science.gov (United States)

    da Silva Schneider, Andre; Roberts, Luke; Ott, Christian

    2017-01-01

    The equation of state (EOS) of dense matter is an essential ingredient for numerical simulations of many astrophysical phenomena. We implement a modular open-source Fortran 90 code to construct the EOS of hot dense matter for astrophysical applications. For high density matter we use a non-relativistic liquid-drop description of nuclei that includes surface effects in a single nucleus approximation (SNA). The model is based on the work of Lattimer and Swesty and has been generalized to accommodate most Skyrme parametrizations available in the literature. Low density matter is described as an ensemble of nuclei in nuclear statistical equilibrium (NSE). The transition between the SNA and NSE regimes is performed via a continuous function that smoothly blends their Helmholtz free energy. To account for the existence of 2 solar mass neutron stars, we extend the formalism to allow for a stiffening of the EOS at densities above 3 times nuclear saturation density, where the properties of matter are presently poorly constrained. We study how different Skyrme parametrizations affect the EOS, neutron star mass-radius relationships, and the spherically symmetric collapse and post-bounce supernova evolution of massive stars.

  12. State conditions transferability of vapor-liquid equilibria via fluctuation solution theory with correlation function integrals from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.J.; Hansen, Flemming Yssing

    2007-01-01

    The ‘State Conditions Transferability’ category of IFPSC 2006 tests prediction of binary vapor–liquid isotherms for mixtures of ethanol and the refrigerant HFF-227ea (1,1,1,2,3,3,3-heptafluoropropane). We predict these isotherms using fluctuation solution theory (FST). The method is based...

  13. Application of the cubic-plus-association (CPA) equation of state to cross-associating systems

    DEFF Research Database (Denmark)

    Folas, Georgios; Gabrielsen, Jostein; Michelsen, Michael Locht;

    2005-01-01

    The cubic-plus-association (CPA) equation of state (EoS) is applied, using different combining rules, to vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) of alcohol-water systems. It is demonstrated that the Elliott combining rule (ECR) with a common temperature-independent intera......The cubic-plus-association (CPA) equation of state (EoS) is applied, using different combining rules, to vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) of alcohol-water systems. It is demonstrated that the Elliott combining rule (ECR) with a common temperature...... alcohol-water and alcohol-hydrocarbon systems are crucial for the prediction of the partition coefficients of alcohols. Finally, the CPA EoS combined with a model for the solid-complex formation can successfully describe solid-liquid equilibria of glycol/methanol-water systems including the description...

  14. Socio-economic applications of finite state mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-10-06

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments,which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems.

  15. Application of Liquid Flame Spray in single and multicomponent nanoparticle synthesis and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aromaa, M.

    2012-07-01

    Nanosized materials are interesting because of the unique properties that can only be achieved in nanoscale. The Liquid Flame Spray is an aerosol method for nanoparticle synthesis. The nanoparticles are synthesized from liquid precursor material in a high-temperature, hydrogen-oxygen flame. The aerosol processes in the flame determine the particle size and morphology of the end product. The process parameters used in the synthesis have an effect on the final product. The Liquid Flame Spay process has been utilized in several applications. This thesis deals with the synthesis of nanoparticles with the Liquid Flame Spray and tuning the particle properties. The fundamentals of the aerosol synthesis are discussed first and the process parameters and their effect on the nanoparticles that are synthesized are explained. Later on, the understanding of the process parameters is utilized and the multi-component aerosols are synthesized for various applications and even deposited directly on a substrate to form a functional coating. Titanium dioxide is mainly used in all the papers that are included in the thesis. In addition, other ceramic materials, such as, aluminium oxide and zirconium oxide are synthesized. Dopants, such as, silver are introduced into the product in order to create multifunctional properties. At the moment, the Liquid Flame Spray synthesis is performed in an open atmosphere and therefore the nanoparticles that are synthesized are mainly oxides with the exception of noble metals, e.g. gold, silver palladium and platinum. However, the ceramic particles such as titanium dioxide have interesting properties. Already several decades ago, titanium dioxide was discovered to have photoactive properties, meaning that when excited with UV-light, an electron-hole pair is formed in the titanium dioxide. The process leads to the formation of reactive oxygen and OH-groups on the surface of the material. The reactive oxygen is able to degrade organic molecules leaving

  16. Improving Application Launch Performance on Solid State Drives

    Institute of Scientific and Technical Information of China (English)

    Yongsoo Joo; Junhee Ryu; Sangsoo Park; Kang G.Shin

    2012-01-01

    Application launch performance is of great importance to system platform developers and vendors as it greatly affects the degree of users' satisfaction.The single most effective way to improve application launch performance is to replace a hard disk drive (HDD) with a solid state drive (SSD),which has recently become affordable and popular.A natural question is then whether or not to replace the traditional HDD-aware application launchers with a new SSD-aware optimizer.We address this question by analyzing the inefficiency of the HDD-aware application launchers on SSDs and then proposing a new SSD-aware application prefetching scheme,called the Fast Application STarter (FAST).The key idea of FAST is to overlap the computation (CPU) time with the SSD access (I/O) time during an application launch.FAST is composed of a set of user-level components and system debugging tools provided by Linux OS (operating system).Hence,FAST can be easily deployed in any recent Linux versions without kernel recompilation.We implement FAST on a desktop PC with an SSD running Linux 2.6.32 OS and evaluate it by launching a set of widely-used applications,demonstrating an average of 28% reduction of application launch time as compared to PC without a prefetcher.

  17. Quantum state tomography for quadrupole nuclei and its applications on a two-qubit system

    Energy Technology Data Exchange (ETDEWEB)

    Bonk, F.A.; Azevedo, E.R. de; Mantovani, G.L.; Bonagamba, T.J. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica]. E-mail: azevedo@if.sc.usp.br; Sarthour, R.S.; Bulnes, J.D.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: sarthour@cbpf.br; apguima@cbpf.br; ivan@cbpf.br; Freitas, J.C.C. [Espirito Santo Univ., Vitoria (Brazil). Dept. de Fisica

    2004-05-01

    A method for performing quantum state tomography for quadrupole nuclei is presented in this paper. First, it is shown that upon appropriate phase cycling, the NMR intensities of quadrupole nuclei depend only on diagonal elements of the density matrix. Thus, a method for obtaining the density matrix elements, which consists of dragging off-diagonal elements into the main diagonal using fine phase-controlled selective radiofrequency pulses, was derived. The use of the method is exemplified through {sup 23} Na NMR (nuclear spin I = 3/2) in a lyotropic liquid-crystal at room temperature, in three applications: (a) the tomography of pseudo-pure states; (b) the tomography of the quadrupole free evolution of the density matrix, and (c) the unitary state evolution of each qubit in the system over the Bloch sphere upon the application of a Hadamard gate. Further applications in the context of pure NMR and in the context of quantum information processing, as well as generalizations for higher spins, are discussed. (author)

  18. APPLICATIONS OF CERIUM BIS (MONOMYRISTY—LPHOSPHATE)ADSORBENT TO REVERSED PHASE LIQUID CHROMATOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    SuZhengquan; FengHuixia; 等

    1996-01-01

    The tetravalent metal salts of monoalkyl phosphates [M(O3POR)2]are a new kind of stationary phases of Chromatography-homogeneous bonded phases.This paper deals with the application of cerium bis(monomyristylphosphate)as support to reversed phase liquid chromatography.The results show that the best mobil phase is CH3CN:H2O=95:5.The good separation to the mixture containing six aromatic hydrocarbons and the determination of naphthalene in a group samples have been achieved.The regression analysis shows that detect limits,linearities and precision for six aromatic hydrocarbons are good.

  19. State-of-Charge Indication in Portable Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, Paulus P.L.

    2005-01-01

    The known methods of state-of-charge (SoC) indication in portable applications are not accurate enough under all practical conditions. The method presented in this paper aims at designing and testing an SoC indication system capable of predicting the remaining capacity of the battery and the

  20. Effect of liquid municipal biosolid application method on tile and ground water quality.

    Science.gov (United States)

    Lapen, D R; Topp, E; Edwards, M; Sabourin, L; Curnoe, W; Gottschall, N; Bolton, P; Rahman, S; Ball-Coelho, B; Payne, M; Kleywegt, S; McLaughlin, N

    2008-01-01

    This study examined bacteria and nutrient quality in tile drainage and shallow ground water resulting from a fall land application of liquid municipal biosolids (LMB), at field application rates of 93,500 L ha(-1), to silt-clay loam agricultural field plots using two different land application approaches. The land application methods were a one-pass AerWay SSD approach (A), and surface spreading plus subsequent incorporation (SS). For both treatments, it took between 3 and 39 min for LMB to reach tile drains after land application. The A treatment significantly (p Kjeldahl N (TKN), NH(4)-N, Total P (TP), PO(4)-P, E. coli., and Clostridium perfringens. E. coli contamination resulting from application occurred to at least 2.0-m depth in ground water, but was more notable in ground water immediately beneath tile depth (1.2 m). Treatment ground water concentrations of selected nutrients and bacteria for the study period ( approximately 46 d) at 1.2-m depth were significantly higher in the treatment plots, relative to control plots. The TKN and TP ground water concentrations at 1.2-m depth were significantly (p 0.1) treatment differences for the bacteria. For the macroporous field conditions observed, pre-tillage by equipment such as the AerWay SSD, will reduce LMB-induced tile and shallow ground water contamination compared to surface spreading over non-tilled soil, followed by incorporation.

  1. Study of infrared scintillations in gaseous and liquid argon - Part II: light yield and possible applications

    CERN Document Server

    Bondar, A; Dolgov, A; Grebenuk, A; Peleganchuk, S; Shekhtman, V Porosev L; Shemyakina, E; Sokolov, A

    2012-01-01

    We present here a comprehensive study of the light yield of primary and secondary scintillations produced in gaseous and liquid Ar in the near infrared (NIR) and visible region, at cryogenic temperatures. The measurements were performed using Geiger-mode avalanche photodiodes (GAPDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast emission component in gaseous Ar was found to be independent of temperature in the range of 87-160 K; it amounted to 17000+/-3000 photon/MeV in the NIR in the range of 690-1000 nm. In liquid Ar at 87 K, the primary scintillation yield of the fast component was considerably reduced, amounting to 510+/-90 photon/MeV, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar were also observed; their amplification parameter at 160 K was measured to be 13 photons per drifting electron per kV. No proportional scintillations were observed in liquid Ar up to the electric fields of 30 kV/cm. The applications of NIR scintillati...

  2. Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications.

    Science.gov (United States)

    Taha, Mohamed; Almeida, Mafalda R; Silva, Francisca A E; Domingues, Pedro; Ventura, Sónia P M; Coutinho, João A P; Freire, Mara G

    2015-03-16

    Antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative to the most focused mammal antibodies, because they can be obtained in higher titers by less invasive approaches. However, the production cost of high-quality IgY for large-scale applications remains higher than that of other drug therapies due to the lack of efficient purification methods. The search for new purification platforms is thus vital. The solution could be liquid-liquid extraction by using aqueous biphasic systems (ABS). Herein, we report the extraction and attempted purification of IgY from chicken egg yolk by using a new ABS composed of polymers and Good's buffer ionic liquids (GB-ILs). New self-buffering and biocompatible ILs based on the cholinium cation and anions derived from Good's buffers were synthesized and the self-buffering characteristics and toxicity were characterized. Moreover, when these GB-ILs are combined with PPG 400 (poly(propylene) glycol with a molecular weight of 400 g mol(-1)) to form ABS, extraction efficiencies, of the water-soluble fraction of proteins, ranging between 79 and 94% were achieved in a single step. Based on computational investigations, we also demonstrate that the preferential partitioning of IgY for the GB-IL-rich phase is dominated by hydrogen-bonding and van der Waals interactions.

  3. Electrolytic reduction of liquid metal oxides and its application to reconfigurable structured devices.

    Science.gov (United States)

    Wang, Jinqi; Appusamy, Kanagasundar; Guruswamy, Sivaraman; Nahata, Ajay

    2015-03-02

    Structured metallic patterns are routinely used for a wide variety of applications, ranging from electronic circuits to plasmonics and metamaterials. Numerous techniques have been developed for the fabrication of these devices, in which the metal patterns are typically formed using conventional metals. While this approach has proven very successful, it does generally limit the ability to reconfigure the geometry of the overall device. Here, we demonstrate the ability to create artificially structured metallic devices using liquid metals, in which the configuration can be altered via the electrolysis of saline solutions or deionized water. We accomplish this using an elastomeric mold with two different sets of embedded microfluidic channels that are patterned and injected with EGaIn and water, respectively. The electrochemical reaction is then used to etch the thin oxide layer that forms on eutectic gallium indium (EGaIn) in a controlled reproducible manner. Once the oxide layer is dissolved locally, the underlying liquid metal retracts away from the original position to a position where a new stable oxide layer can reform, which is equivalent to erasing a section of the liquid metal. To allow for full reconfigurability, the entire device can be reset by refilling all of the microchannels with EGaIn.

  4. Plasma medicine—current state of research and medical application

    Science.gov (United States)

    Weltmann, K.-D.; von Woedtke, Th

    2017-01-01

    Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.

  5. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  6. Study on hydrogen isotopes permeation in fluidized state of liquid lithium-lead

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, S.; Yoshimura, R.; Okada, M.; Fukada, S.; Edao, Y. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-shi, Fukuoka (Japan)

    2015-03-15

    Lithium-lead (Li-Pb) is one of the most promising candidate materials for the liquid blanket of fusion reactors. Hydrogen transfer under a fluidized condition of Li-Pb is investigated experimentally to design a Li-Pb blanket system. Li-Pb eutectic alloy flows inside a Ni tube in the experimental system, where H{sub 2} permeates into and out of the forced Li-Pb flow. The overall H{sub 2} permeation rate is analyzed using a mass balance model. Hydrogen atoms diffuse in Ni and Li-Pb. The steady-state H{sub 2} permeation rate obtained by this experiment is smaller than the result of the calculation model. A resistance factor is introduced to the present analysis in order to evaluate the influence of other H{sub 2} transfer mechanisms, such as diffusion in Li-Pb and dissolution reaction between Ni and Li-Pb. The contribution of the resistance to the overall H{sub 2} permeation rate becomes large when the flow rate of Li-Pb is low. This is because the boundary layer thickness between Ni and Li-Pb affects the overall H{sub 2} permeation rate. When the flow velocity of Li-Pb increases, the thickness of the boundary layer becomes thin, and the driving force of H{sub 2} permeation through the Ni wall becomes bigger. (authors)

  7. Nutrient Recovery of Starch Processing Waste to Cordyceps militaris: Solid State Cultivation and Submerged Liquid Cultivation.

    Science.gov (United States)

    Lee, Joonyeob; Cho, Kyungjin; Shin, Seung Gu; Bae, Hyokwan; Koo, Taewoan; Han, Gyuseong; Hwang, Seokhwan

    2016-09-01

    This study demonstrated the potential for managing starch processing waste (SPW) by bioconversion to Cordyceps militaris mycelia using solid state cultivation (SSC) and submerged liquid cultivation (SLC). The growth characteristics of C. militaris mycelium were accessed and compared for SSC and SLC systems on SPW under various conditions of initial SPW concentration, pH, and operating temperature. To quantify the mycelial biomass in SLC, original primer sets targeting the 18S rRNA gene of C. militaris were developed. In SSC, a maximum mycelial growth rate (543.1 mm(2)/day) was predicted to occur at 25.6 g SPW/L, pH 5.5, and 23.8 °C. In SLC, a maximum mycelial growth rate (1918.6 mg/L/day) was predicted to occur at 35.5 g SPW/L, pH 5.5, and 22.0 °C. Temperature was suggested as the most significant factor in both systems. The higher optimum substrate concentration observed for SLC than for SSC was likely due to difference in mycelial morphology and mixing effect.

  8. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric Scott [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin`s resonant energy transfer hopping mechanism.

  9. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.S.

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin's resonant energy transfer hopping mechanism.

  10. Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids

    Science.gov (United States)

    Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco

    2014-01-01

    We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the Euler-Lagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrödinger equation for the "pair amplitude" g(r), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow-Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree-Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation-dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density-density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings.

  11. Non-Fermi-liquid and topological states with strong spin-orbit coupling.

    Science.gov (United States)

    Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon

    2013-11-15

    We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically at the zone center. Using modern renormalization group methods, we update and extend Abrikosov's classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable provided time-reversal and cubic symmetries are maintained. We determine the universal power-law exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore, we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly with magnetization σ(xy)∼M0.51.

  12. Extraction of coal with solvents in liquid and supercritical state under nonhydrogenating and hydrogenating conditions

    Science.gov (United States)

    Wilhelm, A.; Hedden, K.

    1982-10-01

    The basic steps of coal extraction to determine the optimum conditions for obtaining a higher coal conversion yield in a technical process of supercritical coal extraction were examined. A fixed bed of coal was slowly heated up in a current of pressurized solvent by a nonisothermal technique. The solvent changes its physical state during extraction from a liquid to a supercritical fluid. The formation rates of extract and gaseous products and their integral yields were measured under different extraction conditions. Various coals and lignites as well as different solvents including H-donor solvents and the effect of the addition of molecular hydrogen to the supercritical phase with and without catalyst were studied. Results are interpreted with an extraction scheme, comprising chemical reactions, phase equilibria and transport processes as single steps of the complex extraction procedure. Using a simplified mathematical model, the formation rates of extract as a function of temperature were quantitatively described with effective kinetic parameters. New process for the hydrogenating supercritical extraction of coal, which produces high coal conversion yields is proposed.

  13. Dielectric relaxation and the conformer equilibrium in the liquid and glassy states of β- D-fructose

    Science.gov (United States)

    Tombari, E.; Cardelli, C.; Salvetti, G.; Johari, G. P.

    2001-01-01

    To investigate the ionic and molecular dynamics in the liquid and glassy states of β- D-fructose, its dielectric relaxation spectra (12 Hz-500 kHz) and dynamic heat capacity (3.33 mHz) have been measured from 5 K above its melting point through the vitrification range, by allowing sufficient time for attainment of the conformer (or chemical) equilibria. Effects of the change in the conformer population on thermal cycling has been further studied. The dielectric behavior of liquid β- D-fructose is characteristically different from that of other molecular liquids in three ways: (i) the contribution to orientation polarization associated with the fast relaxation process, which persists in the glassy state, is relatively high in the liquid state of β- D-fructose; (ii) this contribution decreases with temperature exceptionally rapidly on cooling; and (iii) the difference in the rates of the two process is exceptionally large. The dynamic heat capacity change through the vitrification region is ˜160 J/(mol K), and is spread over ˜20 K range, and the enthalpy relaxation time is ˜50 s at 383 K. Transformation of β-pyranose to other conformers and other conformer transformation equilibria change on thermal cycling with the result that the overall relaxation rate increases at T>315 K and decreases at T<315 K. The relaxation spectrum becomes broader, the dc conductivity increases and the rate of the Johari-Goldstein relaxation whose Arrhenius energy is 42.1 kJ/mol increases.

  14. Advancing the State-of-the-Practice for Liquid Rocket Engine Injector Design

    Science.gov (United States)

    Tucker, P. K.; Kenny, R. J.; Richardson, B. R.; Anderso, W. E.; Austin, B. J.; Schumaker, S. A.; Muss, J. A.

    2015-01-01

    Current shortcomings in both the overall injector design process and its underlying combustion stability assessment methodology are rooted in the use of empirically based or low fidelity representations of complex physical phenomena and geometry details that have first order effects on performance, thermal environments and combustion stability. The result is a design and analysis capability that is often inadequate to reliably arrive at a suitable injector design in an efficient manner. Specifically, combustion instability has been particularly difficult to predict and mitigate. Large hydrocarbon-fueled booster engines have been especially problematic in this regard. Where combustion instability has been a problem, costly and time-consuming redesign efforts have often been an unfortunate consequence. This paper presents an overview of a recently completed effort at NASA Marshall Space Flight Center to advance the state-of-the-practice for liquid rocket engine injector design. Multiple perturbations of a gas-centered swirl coaxial (GCSC) element that burned gaseous oxygen and RP-1 were designed, assessed for combustion stability, and tested. Three designs, one stable, one marginally unstable and one unstable, were used to demonstrate both an enhanced overall injector design process and an improved combustion stability assessment process. High-fidelity results from state-of-the-art computational fluid dynamics CFD simulations were used to substantially augment and improve the injector design methodology. The CFD results were used to inform and guide the overall injector design process. They were also used to upgrade selected empirical or low-dimensional quantities in the ROCket Combustor Interactive Design (ROCCID) stability assessment tool. Hot fire single element injector testing was used to verify both the overall injector designs and the stability assessments. Testing was conducted at the Air Force Research Laboratory and at Purdue University. Companion papers

  15. Liquid-liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model

    Energy Technology Data Exchange (ETDEWEB)

    Schroeer, W; Vale, V R, E-mail: schroer@uni-bremen.d [Institut fuer Anorganische und Physikalische Chemie, Fachbereich Biologie-Chemie, Universitaet Bremen, D-28359 Bremen (Germany)

    2009-10-21

    Phase diagrams of ionic solutions of the ionic liquid C{sub 18}mim{sup +}NTF{sub 2}{sup -} (1-n-octadecyl-3-methyl imidazolium bistrifluormethylsulfonylimide) in decalin, cyclohexane and methylcyclohexane are reported and compared with that of solutions of other imidazolium ionic liquids with the anions NTF{sub 2}{sup -}, Cl{sup -} and BF4{sup -} in arenes, CCl{sub 4}, alcohols and water. The phase diagrams are analysed presuming Ising criticality and taking into account the asymmetry of the phase diagrams. The resulting parameters are compared with simulation results for equal-sized charged hard spheres in a dielectric continuum, the restricted primitive model (RPM) and the primitive model (PM) that allows for ions of different size. In the RPM temperature scale the critical temperatures vary almost linearly with the dielectric permittivity of the solvent. The RPM critical temperatures of the solutions in non-polar solvents are very similar, somewhat below the RPM value. Correlations with the boiling temperatures of the solvents and a dependence on the length of the side chain of the imidazolium cations show that dispersion interactions modify the phase transition, which is mainly determined by Coulomb forces. Critical concentrations, widths of the phase diagrams and the slopes of the diameter are different for the solutions in protic and aprotic solvents. The phase diagrams of the solutions in alcohols and water get a lower critical solution point when represented in RPM variables.

  16. Liquid-liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model.

    Science.gov (United States)

    Schröer, W; Vale, V R

    2009-10-21

    Phase diagrams of ionic solutions of the ionic liquid C(18)mim(+)NTF(2)(-) (1-n-octadecyl-3-methyl imidazolium bistrifluormethylsulfonylimide) in decalin, cyclohexane and methylcyclohexane are reported and compared with that of solutions of other imidazolium ionic liquids with the anions NTF(2)(-), Cl(-) and BF4(-) in arenes, CCl(4), alcohols and water. The phase diagrams are analysed presuming Ising criticality and taking into account the asymmetry of the phase diagrams. The resulting parameters are compared with simulation results for equal-sized charged hard spheres in a dielectric continuum, the restricted primitive model (RPM) and the primitive model (PM) that allows for ions of different size. In the RPM temperature scale the critical temperatures vary almost linearly with the dielectric permittivity of the solvent. The RPM critical temperatures of the solutions in non-polar solvents are very similar, somewhat below the RPM value. Correlations with the boiling temperatures of the solvents and a dependence on the length of the side chain of the imidazolium cations show that dispersion interactions modify the phase transition, which is mainly determined by Coulomb forces. Critical concentrations, widths of the phase diagrams and the slopes of the diameter are different for the solutions in protic and aprotic solvents. The phase diagrams of the solutions in alcohols and water get a lower critical solution point when represented in RPM variables.

  17. Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications.

    Science.gov (United States)

    Mohapatra, Prasanta Kumar

    2017-02-14

    Studies on the extraction of actinide ions from radioactive feeds have great relevance in nuclear fuel cycle activities, mainly in the back end processes focused on reprocessing and waste management. Room temperature ionic liquid (RTIL) based diluents are becoming increasingly popular due to factors such as more efficient extraction vis-à-vis molecular diluents, higher metal loading, higher radiation resistance, etc. The fascinating chemistry of the actinide ions in RTIL based solvent systems due to complex extraction mechanisms makes it a challenging area of research. By the suitable tuning of the cationic and anionic parts of the ionic liquids, their physical properties such as density, dielectric constant and viscosity can be changed which are considered key parameters in metal ion extraction. Aqueous solubility of the RTILs, which can lead to significant loss in the solvent inventory, can be avoided by appending the extractant moieties onto the ionic liquid. While the low vapour pressure and non-flammability of the ionic liquids make them appear as 'green' diluents, their aqueous solubility raises concerns of environmental hazards. The present article gives a summary of studies carried out on actinide ion extraction and presents perspectives of its applications in the nuclear fuel cycle. The article discusses various extractants used for actinide ion extraction and at many places, comparison is made vis-à-vis molecular diluents which includes the nature of the extracted species and the mechanism of extraction. Results of studies on rare earth elements are also included in view of their similarities with the trivalent minor actinides.

  18. The Richard T. Cox Lecture: Liquid State as an Occasional Result of Competing Interactions

    Science.gov (United States)

    Voronel, Alexander

    2006-03-01

    liquids (including mixtures) in the vicinities of the singular points by the universal functions of reduced coordinates [5]. But the very existence of the critical point (and the liquid state itself) is in fact not an universal property of matter [6]. The freezing is depen-dent on a symmetry of packing and on a form of a potential well. It means the lower limit of the liquid state cannot be universal. However, if the freezing is somehow avoided the metastable critical point may be achieved instead [7]. And the universal features of the critical phenomena may be observed there again. Literature: [1] A. Voronel, M. Gitterman, Zh. Exp. Teor. Fiz. 39, 1162 (1960). M.Bagatsky, A.Voronel, V.Gusak., Zh. Exp. Teor. Fiz. 43, 728 (1962). See also a review: A. Voronel ``Thermal measurements and Critical Phenomena in Liquids.'' in PHASE TRANSITIONS AND CRITICAL PHENOMENA, vol. 5B, ed. by C.DOMB & M.S.GREEN, 1976, Academic Press, London, New York, San Francisco. [2] M.J.Buckingham, W.M.Fairbank in 111,60, ``PROGRESS IN LOW TEMPERATURE PHYSICS''(ed. by C.J.Gorter) North-Holland Pub.Co., Amsterdam, 1961. [3] M.E.Fisher,''The Nature of Critical Points'', University of Colorado Press, Boulder, 1965; [4] A.Patashinsky,V.Pokrovsky, Sov.Phys.JETP,23,292,(1966); L.P.Kadanov, Physics, 2,263, (1966) [5] M.E.Fisher, Phys.Rev.,176, 257, (1968); M.A.Anisimov, A.V.Voronel, E.E.Gorodetsky, Zh.Exp.Teor.Fiz.,60,1117, (1971) [6] H.J.Hagen,D.Frenkel,H.Lekkerkerker, Nature, 365, 425, (1993); D.Frenkel, Physica, A 263, 26, (1999). G.Vliegenthardt, H.Lekkerkerker, Physica, A 263, 378, (1999). [7] O.Mishima,H.E.Stanley, Nature, 392, 164, (1998).

  19. Single-photon experiments with liquid crystals for quantum science and quantum engineering applications

    Science.gov (United States)

    Lukishova, Svetlana G.; Liapis, Andreas C.; Bissell, Luke J.; Gehring, George M.; Winkler, Justin M.; Boyd, Robert W.

    2015-03-01

    We present here our results on using liquid crystals in experiments with nonclassical light sources: (1) single-photon sources exhibiting antibunching (separation of all photons in time), which are key components for secure quantum communication systems, and (2) entangled photon source with photons exhibiting quantum interference in a Hong-Ou- Mandel interferometer. In the first part, cholesteric liquid crystal hosts were used to create definite circular polarization of antibunched photons emitted by nanocrystal quantum dots. If the photon has unknown polarization, filtering it through a polarizer to produce the desired polarization for quantum key distribution with bits based on polarization states of photons will reduce by half the efficiency of a quantum cryptography system. In the first part, we also provide our results on observation of a circular polarized microcavity resonance in nanocrystal quantum dot fluorescence in a 1-D chiral photonic bandgap cholesteric liquid crystal microcavity. In the second part of this paper with indistinguishable, time-entangled photons, we demonstrate our experimental results on simulating quantum-mechanical barrier tunnelling phenomena. A Hong-Ou-Mandel dip (quantum interference effect) is shifted when a phase change was introduced on the way of one of entangled photons in pair (one arm of the interferometer) by inserting in this arm an electrically controlled planar-aligned nematic liquid crystal layer between two prisms in the conditions close to a frustrated total internal reflection. By applying different AC-voltages to the planar-aligned nematic layer and changing its refractive index, we can obtain various conditions for incident photon propagation - from total reflection to total transmission. Measuring changes of tunnelling times of photon through this structure with femtosecond resolution permitted us to answer some unresolved questions in quantum-mechanical barrier tunnelling phenomena.

  20. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries.

    Science.gov (United States)

    Porcarelli, Luca; Shaplov, Alexander S; Salsamendi, Maitane; Nair, Jijeesh R; Vygodskii, Yakov S; Mecerreyes, David; Gerbaldi, Claudio

    2016-04-27

    Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition-fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of -61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10(-6) and 1.2 × 10(-5) S cm(-1) at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li(+)/Li), and a lithium-ion transference number close to unity (0.83). Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity (up to 130 mAh g(-1)) at C/15 rate.

  1. Transition Metal Dithiolene Near-IR Dyes and Thier Applications in Liquid Crystal Devices

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, K.L.; Painter, G.; Lotito, K.; Noto, A.G.; Chang, P.

    2006-08-18

    Numerous commercial and military applications exist for guest–host liquid crystal (LC) devices operating in the near- to mid-IR region. Progress in this area has been hindered by the severe lack of near-IR dyes with good solubility in the LC host, low impact on the inherent order of the LC phase, good thermal and chemical stability, and a large absorbance maximum tunable by structural modification over a broad range of the near-IR region. Transition metal complexes based on nickel, palladium, or platinum dithiolene cores show substantial promise in meeting these requirements. In this paper, we overview our past and present activities in the design and synthesis of transition metal dithiolene dyes, show some specific applications examples for these materials as near-IR dyes in LC electro-optical devices, and present our most recent results in the computational modeling of physical and optical properties of this interesting class of organometallic optical materials.

  2. Application of liquid-based preparation to non-gynaecologic exfoliative cytology.

    Science.gov (United States)

    Rossi, E D; Mulè, A; Russo, R M; Pierconti, F; Fadda, G

    2008-12-01

    Thin-layer cytology (TLC) is an automated method for processing cells harvested in a liquid solution and collected onto a single slide. The leftover material can be used for other techniques such as immunocytochemistry, molecular biology and flow cytometry. TLC has been applied with good results in exfoliative cytology of pulmonary, urinary, gastrointestinal and oral districts as well as in the evaluation of serous effusions. The main advantages of TLC over conventional techniques (CS) are: (a) simplification of the sampling technique; (b) decrease in cellular artefacts leading to a lesser amount of inadequate diagnoses; and (c) applicability of additional investigations. The limits of TLC are: (a) changes in the morphologic picture of some lesions; (b) increase of the workload for technical staff; and (c) increased cost. The application of TLC to non-gynaecologic specimens favours many innovative developments and can be regarded as an appropriate substitute for CS.

  3. Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display

    Science.gov (United States)

    Lin, Feng; Tong, Xin; Wang, Yanan; Bao, Jiming; Wang, Zhiming M.

    2015-11-01

    Graphene oxide (GO) liquid crystals (LCs) are macroscopically ordered GO flakes dispersed in water or polar organic solvents. Since the first report in 2011, GO LCs have attracted considerable attention for their basic properties and potential device applications. In this review, we summarize recent developments and present a comprehensive understanding of GO LCs via many aspects ranging from the exfoliation of GO flakes from graphite, to phases and phase transitions under various conditions, the orientational responses of GO under external magnetic and electric fields, and finally Kerr effect and display applications. The emphasis is placed on the unique and basic properties of GO and their ordered assembly. We will also discuss challenges and issues that need to be overcome in order to gain a more fundamental understanding and exploit full device potentials of GO LCs.

  4. Test Gas Generation from Pure Liquids: An Application-Oriented Overview of Methods in a Nutshell

    Directory of Open Access Journals (Sweden)

    Yue Li

    2012-01-01

    Full Text Available The generation of test gas from pure liquids has a wide variety of applications in laboratory and field experiments, for which the quality of the test gas is of significance. Therefore, various methods for test gas generation have been designed. Each method has unique advantages and disadvantages. Thus, a short overview is presented within the scope of this paper. Furthermore, a common bubbler system is presented, which was built to generate test gas from volatile organic compounds for experimental usage in laboratory applications. An analysis is conducted with respect to the generated concentrations at different temperatures and flow rates of the diluting gas. Accuracy and stability of this method are investigated.

  5. Electrochemically-modulated liquid chromatography (EMLC): Column design, retention processes, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, En -Yi [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    This work describes the continued development of a new separation technique, electrochemically-modulated liquid chromatography (EMLC), from column design, retention mechanisms to pharmaceutical applications. The introduction section provides a literature review of the technique as well as a brief overview of the research in each of the chapters. This section is followed by four chapters which investigate the issues of EMLC column design, the retention mechanism of monosubstituted aromatic compounds, and the EMLC-based applications to two important classes of pharmaceutical compounds (i.e., corticosteroids and benzodiazepines). These four sections have been removed to process separately for inclusion on the database. The dissertation concludes with a general summary, a prospectus, and a list of references cited in the General Introduction. 32 refs.

  6. Application of advanced sensors to the liquid phase epitaxy (LPE) growth of MCT

    Science.gov (United States)

    Westphal, Glenn H.; Colombo, Luigi; Anderson, Jeff M.

    1994-07-01

    Liquid phase epitaxy (LPE) of (Hg,Cd)Te (MCT) is the technique of choice for the preparation of the materials used for high performance focal plane arrays. Its successful development requires the development of advanced sensors and process controls. We detail here progress on the application of four sensor technologies to the LPE process for growth of MCT layers from Te rich melts on CdZnTe substrates. These include: (1) electron beam microprobe/wavelength dispersive x-ray analysis (WDX) for the rapid measurement of film composition immediately after growth; (2) an RTD based precision temperature control system that controls the melt temperature to better than +/- 0.005 degree(s)C and the Hg reservoir temperature to better than +/- 0.020 degree(s)C; (3) UV/visible optical absorption spectroscopy for the determination of the Hg partial pressure over the melt; and (4) CCD imaging for the detection of the liquid temperature of the LPE growth solution. The impact of each of the sensors on process yield is discussed. The application of the CCD camera to Hg rich high pressure LPE growth is also briefly mentioned.

  7. Tabular Multiphase Equations of State for Metals and Their Applications

    Science.gov (United States)

    Levashov, Pavel R.; Khishchenko, Konstantin V.

    2007-12-01

    We present a method of interpolation of thermodynamic functions calculated by means of a multiphase equation of state for metals. The method takes into account melting, evaporation and sublimation phase transitions. It can be also applied in metastable regions of phase diagram including those under negative pressures. The method allows one to unambiguously determine the phase state of a given point of phase diagram. Several applications of the tabular multiphase equations of state are considered: simulation of the initial stage of electrical explosion of metal wires, formation of striations, interaction of intense laser pulses with matter etc. Information about phase state in every point of the flux allows us to study phase transition waves, apply different destruction criteria and analyze processes in metastable regions.

  8. The Immucillins: Design, Synthesis and Application of Transition- State Analogues.

    Science.gov (United States)

    Evans, Gary B; Schramm, Vern L; Tyler, Peter C

    2015-01-01

    Transition-state analysis based on kinetic isotope effects and computational chemistry provides electrostatic potential maps to serve as blueprints for the design and chemical synthesis of transition-state analogues. The utility of these molecules is exemplified by potential clinical applications toward leukemia, autoimmune disorders, gout, solid tumors, bacterial quorum sensing and bacterial antibiotics. In some cases, transition-state analogues have chemical features that have allowed them to be repurposed for new indications, including potential antiviral use. Three compounds from this family have entered clinical trials. The transition-state analogues bind to their target proteins with high affinity and specificity. The physical and structural properties of binding teach valuable and often surprising lessons about the nature of tight-binding inhibitors.

  9. Applications of solid-state NMR to membrane proteins.

    Science.gov (United States)

    Ladizhansky, Vladimir

    2017-07-12

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Multi-component vapor-liquid equilibrium model for LES and application to ECN Spray A

    CERN Document Server

    Matheis, Jan

    2016-01-01

    We present and evaluate a detailed multi-species two-phase thermodynamic equilibrium model for large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model can represent the coexistence of supercritical states and multi-component subcritical two-phase states. LES results for the transcritical Spray A of the Engine Combustion Network (ECN) are found to agree very well to available experimental data. We also address well-known numerical challenges of trans- and supercritical fluid mixing and compare a fully conservative formulation to a quasi conservative formulation of the governing equations. Our results prove physical and numerical consistency of both methods on fine grids and demonstrate the effects of energy conservation errors associated with the quasi conservative formulation on typical LES grids.

  11. Experimental study on natural circulation using liquid nitrogen for superconducting applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon Suk [Korea Basic Science Institute, Daejeon(Korea, Republic of)

    2013-09-15

    An experiment to investigate the natural circulation of a cryogen has been performed. The study is motivated mainly by our recent development of cryogenic cooling system for prototype superconducting cyclotron without any circulating pump. In the natural circulation loop system, a cooling channel is attached on the outer surface of the aluminium block and the liquid nitrogen passes through inside of the channel to cool the block indirectly. A cryocooler as a heat sink is located at the top to re-condense cryogenic vapor coming from the aluminium block in which electrical heater is installed as a heat source. The main dimensions are determined using the relevant analysis and the natural circulation loop is successfully fabricated. The temperature distributions in the loop are measured during initial cool-down process and in steady state, from which the modified Grashof numbers are calculated and compared with the existing correlation estimated with one-dimensional analysis for steady state flow.

  12. Development of a new sample preparation method based on liquid-liquid-liquid extraction combined with dispersive liquid-liquid microextraction and its application on unfiltered samples containing high content of solids.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Abbaspour, Maryam

    2017-11-01

    A new sample preparation method based on liquid-liquid-liquid extraction combined with dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection has been reported for the extraction/preconcentration and determination of trace levels of twelve pesticide residues from different samples with high content of solids without filtration. This method consists of a three-phase system including an aqueous phase (sample solution), acetonitrile, and hexane. The extraction mechanism is based on different affinities of the substances from the sample matrices towards each of the involved phase, which provides a high selectivity to the process. In other words, interfering hydrophobic compounds are transferred into hexane and will not be present in the final extract. Furthermore, ionic and polar compounds are retained in the aqueous phase. Therefore, only semi-polar compounds such as the studied pesticides are extracted into acetonitrile. In this method, a homogeneous solution of the aqueous phase and acetonitrile (a water-soluble extraction solvent) forms two clearly separated phases in the presence of sodium sulfate (as a phase separation agent) and simultaneously the analytes are extracted into the fine droplets of the acetonitrile collected on the surface of the aqueous phase. To achieve high enrichment factors, the acetonitrile phase is mixed with 1,2-dibromoethane (as a preconcentration solvent) at µL-level to perform the following dispersive liquid-liquid microextraction procedure. Several parameters that can affect extraction efficiency including kind and volume of extraction solvent, type and concentration of phase separation agent, hexane volume, kind of preconcentration solvent, and ionic strength were studied and optimized. Under the optimal conditions, extraction recoveries were obtained in the range of 53-93% and the calibration curves were linear in wide ranges with correlation coefficients ≥ 0.9983. Intra- (n = 6) and

  13. Application of In-Syringe Dispersive Liquid-Liquid Microextraction and Narrow-Bore Tube Dispersive Liquid-Liquid Microextraction for the Determination of Trace Amounts of BTEX in Water Samples.

    Science.gov (United States)

    Rahmani, Mashaallah; Kaykhaii, Massoud; Ghasemi, Elham; Tahernejad, Mohadeseh

    2015-08-01

    Two new simple and effective methods based on dispersive liquid-liquid microextraction (DLLME) procedure, termed "in-syringe DLLME (IS-DLLME)" and "narrow-bore tube DLLME (NB-DLLME)", were developed and applied for rapid and simultaneous separation and preconcentration of trace amounts of benzene, toluene, ethylbenzene and xylene isomers in water samples followed by gas chromatographic analysis. Different parameters influencing the extraction efficiency of both methods such as type and volume of the extraction solvent and the disperser solvent; pH, temperature and volume of sample solution and ionic strength of samples were investigated and optimized. Under optimal condition, the limits of detection ranged from 1.7 to 2.4 µg L(-1) for IS-DLLME and 1.5 to 2.2 µg L(-1) for NB-DLLME. Precision (as relative standard deviation) of the two techniques was between 2.1 and 4.6% for IS-DLLME and between 1.5 and 4.5% for NB-DLLME. The enrichment factors found to be between 20-29 and 31-73 for IS- and NB-DLLME, respectively. The applicability of the proposed methods was investigated by analyzing real water samples.

  14. Structural biology applications of solid state MAS DNP NMR

    Science.gov (United States)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  15. Facet effects of palladium nanocrystals for oxygen reduction in ionic liquids and for sensing applications

    Science.gov (United States)

    Tang, Yongan; Chi, Xiaowei; Zou, Shouzhong; Zeng, Xiangqun

    2016-03-01

    Palladium nanocrystals enclosed by {100} and {110} crystal facets, were successfully synthesized through an aqueous one-pot synthesis method. A new thermal annealing approach was developed for fabricating these palladium nanocrystals as a working electrode on a gas permeable membrane to study the facet effects of the oxygen reduction process in an ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpy][NTf2]). Results were compared with the same processes at a conventional platinum electrode. Our study shows that the structural difference between the two facets of Pd nanocrystals has little effect on the oxygen reduction process but significantly affects the oxidation process of the superoxide. It is found that the Pd{110}/IL interface can better stabilize superoxide radicals revealed by a more positive oxidation potential compared to that of Pd{100}. In addition, the analytical characteristic of utilizing both palladium nanocrystals as electrodes for oxygen sensing is comparable with a polycrystal platinum oxygen sensor, in which Pd{110} presents the best sensitivity and lowest detection limit. Our results demonstrate the facet-dependence of oxygen reduction in an ionic liquid medium and provide the fundamental information needed to guide the applications of palladium nanocrystals in electrochemical gas sensor and fuel cell research.Palladium nanocrystals enclosed by {100} and {110} crystal facets, were successfully synthesized through an aqueous one-pot synthesis method. A new thermal annealing approach was developed for fabricating these palladium nanocrystals as a working electrode on a gas permeable membrane to study the facet effects of the oxygen reduction process in an ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpy][NTf2]). Results were compared with the same processes at a conventional platinum electrode. Our study shows that the structural difference between the two facets of Pd

  16. Optimization of Zoom Lens with Discrete State of Liquid Lens Elements by Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Cheng-Mu Tsai

    2015-01-01

    Full Text Available This paper is to employ liquid lens elements to design a lens with zoom function by using the genetic algorithm (GA optimization. The liquid lens elements used in the proposal can apply voltage adjustment to generate the electrical field that induces the liquid with electric conductivity to vary the surface curvature between two different kinds of liquids. According to the voltage level, the liquid lens element makes the discrete variation of the curvature and thickness realize the zoom function without moving the lens groups so that the overall length can be reduced. However, it is difficult to design the zoom lens under the discrete variation of the curvature and thickness in the liquid lens elements and the mechanical space that is constantly limited. The GA offers a flexible way for lens optimization. We regarded the spot size as the fitness function to look for the optimum curvatures, thickness, and the corresponding statuses of liquid lens elements for the zoom lens. As a result, the zoom lens with constant space can be realized by running the selection, crossover, and mutation operation in the GA optimization.

  17. Application of dispersive liquid-liquid-solidified floating organic drop microextraction and ETAAS for the preconcentration and determination of indium.

    Science.gov (United States)

    Ashrafzadeh Afshar, Elham; Taher, Mohammad Ali; Fazelirad, Hamid; Naghizadeh, Matin

    2017-03-01

    A new, simple and efficient method, including dispersive liquid-liquid-solidified floating organic drop microextraction and then electrothermal atomic absorption spectrometry, has been developed for the preconcentration and determination of ultratrace amounts of indium. The method was applied to preconcentrate the indium-1-(2-pyridylazo)-2-naphthol complex in 25 μL 1-undecanol. The various factors affecting the extraction efficiency, such as pH, type and volume of extraction solvent, type and volume of disperser solvent, sample volume, ionic strength, and ligand concentration, were investigated and optimized. Under the optimum conditions, an enrichment factor of 62.5, precision of ±4.75%, a detection limit of 55.6 ng L(-1), and for the calibration graph a linear range of 96.0-3360 ng L(-1) were obtained. The method was used for the extraction and determination of indium in water and standard samples with satisfactory results. Graphical Abstract Preconcentration of indium ions via liquid-liquid-solidified floating organic drop microextraction method and determination by ETAAS.

  18. Application of pyrolysis process to remove and recover liquid crystal and films from waste liquid crystal display glass.

    Science.gov (United States)

    Lu, Rixin; Ma, En; Xu, Zhenming

    2012-12-01

    Liquid crystal display (LCD) glass mainly consists of polarizing film, liquid crystal and glass substrate. Removing and recovering the liquid crystal and films from the LCD glass effectively has important significance for recovering the other parts. This study proposed a pyrolysis process to recover the organic parts from LCD glass. Through thermal gravimetric analysis, the pyrolysis temperature of the LCD glass could be chosen at 850 K. The removal rate of organic parts from LCD glass reached 87.87 wt%. Pyrolysis products consisted of 66.82 wt% oils, 21.01 wt% gaseous and 12.13 wt% residues. In addition, the oils contained 46.27 wt% acetic acid and 32.94 wt% triphenyl phosphate. Then, the pyrolysis mechanisms and products sources of the liquid crystal glass have been analyzed based on the information of bonds energy. The pyrolysis mechanism analysis proved that the products mainly consisted of acetic acid, triphenyl phosphate and C, which is consistent to the results of GC-MS analysis. A reasonable way has been put forward to recycle the pyrolysis products: acetic acid and triphenyl phosphate can be collected by distillation, the rest oils and gases can be used as fuel and the remained glass can be used to extract indium and to produce building materials.

  19. Properties and Acceleration Mechanism of Cement Mortar Added with Low Alkaline Liquid State Setting Accelerator

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; WANG Xuebing; LIU Weiqing

    2014-01-01

    Low alkaline liquid state setting accelerator(LSA) for Portland cement was prepared in laboratory from aqueous solution of several inorganic sulfate salts and some organic chemical substances. Properties of cement with addition of LSA relating to its setting time and strength development as well as its resistance to sulfate attack for short and long term exposure were experimentally examined. The experimental results showed that 5%-7%addition of LSA significantly accelerated the initial and final setting of Portland cement in the presence or absence of the blending of mineral admixtures, the initial and final setting time being less than 3 min and 6 min respectively. Meanwhile, the early 1 day curing age compressive strength increased remarkably by 20%, while the late 28th day curing age compressive strength remained almost unchanged as compared with that of the reference accelerator free cement mortar specimen. Furthermore, mortar specimens of cement added with LSA and exposed to 5%Na2SO4 solution showed their excellent resistance to sulfate attack, with their short and long term curing age resistance coefficient to sulfate attack being around 1.04 to 1.17, all larger than 1.0. XRD analysis on hardened cement paste specimens at very early curing ages of several minutes disclosed the existence of more ettringite in specimens added with LSA than that of the reference specimens, meanwhile SEM observation also revealed the existence of well crystallized ettringite at very early hydration stage, suggesting that the accelerated setting of Portland cement can be attributed to the early and rapid formation of ettringite over the whole cement paste matrix due to the introduction of LSA. MIP measurement revealed that hardened cement paste specimens with the addition of LSA presented less medium diameter pores, more proportion of small pores and less proportion of large capillary pores, which is in a very good coincidence with the improvement of strength development of

  20. Mechanical and microstructural behaviour during bonding of alumina to niobium by liquid state diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Lemus R, J.; Ramirez R, M. I.; Verduzco M, J. A.; Zarate M, J., E-mail: jlruiz@umich.mx [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigacion en Metalurgia y Materiales, Francisco Mujica s/n, 58000 Morelia, Michoacan (Mexico)

    2015-10-15

    The objective of this work was to study various aspects of liquid state diffusion bonding of cylindrical samples of Al{sub 2}O{sub 3} and commercially pure niobium (99.7%) by brazing using a 25 μm thick 70/Cu-30/Zn (wt %) alloy as joining element. Initially, sintering of alumina powder was carried out in order to produce a 7 mm diameter samples at 1550 degrees C by 60 minutes. Joining experiments were carried out on Al{sub 2}O{sub 3}/Cu-Zn/Nb/Cu-Zn/Al{sub 2}O{sub 3} sandwich-like combinations at temperature of 920, 950 and 980 degrees C using vary holding times under Ar. The experimental results show a successful joining of Al{sub 2}O{sub 3} to Nb at 950 and 980 degrees C, however not at 920 degrees C. Joining of Al{sub 2}O{sub 3}/Cu-Zn/Nb/Cu-Zn/Al{sub 2}O{sub 3} occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Scanning electron microscopy (Sem) micrographs show the layer formed in the reaction zone. It was observed that the width of the reaction zone increases with bonding temperature and time. Electron probe microanalysis (Epma) revealed that at any particular bonding temperature, Nb travel into the Cu-Zn joining element forming a circular precipitate phase near to the Al{sub 2}O{sub 3} ceramic. Shears test evaluation show results vary from 57 to 127 MPa in samples joined at 980 degrees C and time vary from 10 to 35 minutes, respectively. (Author)

  1. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications

    Science.gov (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda

    2016-01-01

    The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The CO2 removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the advanced space suit portable life support system. This paper describes work carried out to evaluate its potential for use in spacecraft cabin application.

  2. Finite State Tables for general computer programming applications

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, M.

    1988-01-01

    The Finite State Table is a computer programming technique which offers a faster and more compact alternative to traditional logical control structures such as the IF-THEN-ELSE statement. A basic description of this technique is presented. The application example is the creation of plot output from engineering analysis and design models generated by I-DEAS, a commercial software package used for solid modeling, finite element analysis, design and drafting.

  3. 离子液体支撑液膜应用研究进展%Application research progress of ionic liquid supported liquid membrane

    Institute of Scientific and Technical Information of China (English)

    王文治; 杨慧琳; 王瑞康; 刘冉; 许永权; 张娟; 赵地顺

    2016-01-01

    .The application of the ionic liquid supported liquid membrane in the progress of separation and chemical reaction were summarized.

  4. Vapor liquid equilibrium constants through a non-equation of state approach: methane-free aliphatic binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, T.H.; Thodos, G.

    1975-06-01

    Northwestern University developed an alternate method to help predict vapor-liquid equilibrium constants without an equation of state by using the fundamental properties associated with the pure-state components and the critical pressure of the mixture. The method consists of developing correlations to help predict K-constants for other aliphatic binary mixtures not containing methane from vapor-liquid equilibrium measurements available in the literature for the 3 binaries of the system ethane-butane-heptane. This approach was tested for 7 other binaries (ethane/n-hexane, propane/i-butane, propane/i-butane, propane/n-pentane, propane/i-pentane, poprane/n-decane, and propylene/i-butane). The K-values obtained displayed good agreement with experimental measurements, especially in the vicinity of the critical point.

  5. The flexibility of SIMPSON and SIMMOL for numerical simulations in solid-and liquid-state NMR spectroscopy

    CERN Document Server

    Vosegaard, T; Nielsen, N C

    2002-01-01

    Addressing the need for numerical simulations in the design and interpretation of advanced solid- and liquid-state NMR experiments, we present a number of novel features for numerical simulations based on the SIMPSON and SIMMOL open source software packages. Major attention is devoted to the flexibility of these Tcl-interfaced programs for numerical simulation of NMR experiments being complicated by demands for efficient powder averaging, large spin systems, and multiple-pulse rf irradiation. These features are exemplified by fast simulation of second-order quadrupolar powder patterns using crystallite interpolation, analysis of rotary resonance triple-quantum excitation for quadrupolar nuclei, iterative fitting of MQ-MAS spectra by combination of SIMIPSON and MINUIT, simulation of multiple-dimensional PISEMA-type correlation experiments for macroscopically oriented membrane proteins, simulation of Hartman-Hahn polarization transfers in liquid-state NMR, and visualization of the spin evolution under complex c...

  6. Matched elastic constants for a perfect helical planar state and a fast switching time in chiral nematic liquid crystals.

    Science.gov (United States)

    Yu, Meina; Zhou, Xiaochen; Jiang, Jinghua; Yang, Huai; Yang, Deng-Ke

    2016-05-11

    Chiral nematic liquid crystals possess a self-assembled helical structure and exhibit unique selective reflection in visible and infrared light regions. Their optical properties can be electrically tuned. The tuning involves the unwinding and restoring of the helical structure. We carried out an experimental study on the mechanism of the restoration of the helical structure. We constructed chiral nematic liquid crystals with variable elastic constants by doping bent-dimers and studied their impact on the restoration. With matched twist and bend elastic constants, the helical structure can be restored dramatically fast from the field-induced homeotropic state. Furthermore, defects can be eliminated to produce a perfect planar state which exhibits high selective reflection.

  7. Tailoring liquid/solid interfacial energy transfer: fabrication and application of multiscale metallic surfaces with engineered heat transfer and electrolysis properties via femtosecond laser surface processing techniques

    Science.gov (United States)

    Anderson, Troy P.; Wilson, Chris; Zuhlke, Craig A.; Kruse, Corey; Hassebrook, Anton; Somanas, Isra; Ndao, Sidy; Gogos, George; Alexander, Dennis

    2014-03-01

    Femtosecond Laser Surface Processing (FLSP) is a powerful technique for the fabrication of self-organized multiscale surface structures on metals that are critical for advanced control over energy transfer at a liquid/solid interface in applications such as electrolysis. The efficiency of the hydrogen evolution reaction on stainless steel 316 electrodes in a 1 molar potassium hydroxide solution is used to analyze the role of surface geometry to facilitate the phase conversion of the liquid to a gaseous state in the vicinity of the interface. It is found that the efficiency of the electrolysis process is directly related to the separation of micro-scale features on an electrode surface. The enhancement is attributed to the size of the valleys between microstructures controlling the contact between an evolving vapor bubble and the electrode surface. The results suggest an alternative pathway for the tailoring of interfacial energy transfer on structured surfaces separate from traditional benchmarks such as surface area and contact angle.

  8. LIQUID DYES'CHARACTERISTICS IN DYEING WASTE PAPER PULP AND THEIR APPLICATION

    Institute of Scientific and Technical Information of China (English)

    XiaopingWang; gangChen; AiminTang; HongweiZhang

    2004-01-01

    In this paper, some liquid dyes were used to dye the waste paper pulp (OCC pulp and waste cement sack paper pulp), and their dyeing characteristics were analyzed, The liquid dyes include liquid basic yellow, liquid basic blue, liquid basic red, liquid basic orange, liquid basic brown and liquid direct black. We found that, each dye had its own dyeing characteristic while dyeing the waste paper pulp. Generally different types of liquid dyes were combined to dye the waste paper pulp, which the adding process must be noticed. We also observed that a black pigment could be applied together withsaid liquid dyes to dye or adjust the color of the bottom sheet for the fireproof board. We could also achieve the same dyeing result through different combinations of different dyes.

  9. LIQUID DYES'CHARACTERISTICS IN DYEING WASTE PAPER PULP AND THEIR APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Wang; gang Chen; Aimin Tang; Hongwei Zhang

    2004-01-01

    In this paper, some liquid dyes were used to dye the waste paper pulp (OCC pulp and waste cement sack paper pulp), and their dyeing characteristics were analyzed, The liquid dyes include liquid basic yellow, liquid basic blue, liquid basic red, liquid basic orange, liquid basic brown and liquid direct black. We found that, each dye had its own dyeing characteristic while dyeing the waste paper pulp.Generally different types of liquid dyes were combined to dye the waste paper pulp, which the adding process must be noticed. We also observed that a black pigment could be applied together with said liquid dyes to dye or adjust the color of the bottom sheet for the fireproof board. We could also achieve the same dyeing result through different combinations of different dyes.

  10. Liquid fragility--A key to going deep into materials of glassy states

    Institute of Scientific and Technical Information of China (English)

    HU Lina; BIAN Xiufang

    2004-01-01

    "Liquid fragility" is a concept that has been widely used in the investigation on the glass community, though it was presented less than two decades ago. The concept enables the comparison between the glass-forming liquids with different dynamic characters by using a general criterion, in which the temperature scale is reduced by the glass transition temperature. In order to illuminate the significance of the concept in the fields of the glass transition, structural relaxation process and the structure of supercooled liquids, the accomplished progress and the faced challenges are summarized from different aspects such as on the correlation between dynamics and thermodynamic characters of condensed matters, on the energy landscape, on the nonexponential relaxation and on the theoretical model of microstructure and medium-range order. The tendency of investigation in "liquid fragility" is also evaluated.

  11. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijun

    2014-02-19

    Stable isotope analysis has found widespread applications in various disciplines such as archaeology, geochemistry, biology, food authenticity, and forensic science. Coupling chromatography to isotope ratio mass spectrometry for compound-specific isotope analysis (CSIA) is a trend, as it provides several advantages over bulk isotope analysis, e.g., relatively simple sample preparation, the ability to measure individual compounds in a complex mixture in one run, and the reduced sample size required for precise isotope analysis. Gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS) has been well-established for compound-specific isotope analysis of volatile organic compounds within the last two decades. However, an interface combining liquid chromatography with isotope ratio mass spectrometry (LC/IRMS) was not commercially available until 2004. The current design of the interface requires using a carbon-free eluent in chromatographic separation. This requirement limits the application of the most frequently used reversed-phase liquid chromatography in CSIA, because the elution strength of water at room temperature is too low to serve as mobile phase in reversed-phase separations. In order to increase the elution strength of water, we propose using high temperature water for chromatographic elution. The polarity of water decreases with an increase of temperature, yielding increased elution strength in reversed-phase columns. Therefore, high temperature water can be used as eluent instead of organic solvent for combining reversed-phase liquid chromatography with isotope ratio mass spectrometry (RPLC/IRMS). Additionally, temperature gradients can replace organic solvent gradients to increase chromatographic resolution. This is very important for LC/IRMS analysis, as precise isotope analysis requires baseline separation of analytes. In this thesis, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully

  12. Atomistic simulation of solid-liquid coexistence for molecular systems: application to triazole and benzene.

    Science.gov (United States)

    Eike, David M; Maginn, Edward J

    2006-04-28

    A method recently developed to rigorously determine solid-liquid equilibrium using a free-energy-based analysis has been extended to analyze multiatom molecular systems. This method is based on using a pseudosupercritical transformation path to reversibly transform between solid and liquid phases. Integration along this path yields the free energy difference at a single state point, which can then be used to determine the free energy difference as a function of temperature and therefore locate the coexistence temperature at a fixed pressure. The primary extension reported here is the introduction of an external potential field capable of inducing center of mass order along with secondary orientational order for molecules. The method is used to calculate the melting point of 1-H-1,2,4-triazole and benzene. Despite the fact that the triazole model gives accurate bulk densities for the liquid and crystal phases, it is found to do a poor job of reproducing the experimental crystal structure and heat of fusion. Consequently, it yields a melting point that is 100 K lower than the experimental value. On the other hand, the benzene model has been parametrized extensively to match a wide range of properties and yields a melting point that is only 20 K lower than the experimental value. Previous work in which a simple "direct heating" method was used actually found that the melting point of the benzene model was 50 K higher than the experimental value. This demonstrates the importance of using proper free energy methods to compute phase behavior. It also shows that the melting point is a very sensitive measure of force field quality that should be considered in parametrization efforts. The method described here provides a relatively simple approach for computing melting points of molecular systems.

  13. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Dong, Lifeng, E-mail: donglifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Deng, Ying; Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H{sub 2}O{sub 2}, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates.

  14. Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-02-01

    Full Text Available Considering that generally frequency instability problems occur due to abrupt variations in load demand growth and power variations generated by different renewable energy sources (RESs, the application of superconducting magnetic energy storage (SMES may become crucial due to its rapid response features. In this paper, liquid hydrogen with SMES (LIQHYSMES is proposed to play a role in the future energy internet in terms of its combination of the SMES and the liquid hydrogen storage unit, which can help to overcome the capacity limit and high investment cost disadvantages of SMES. The generalized predictive control (GPC algorithm is presented to be appreciatively used to eliminate the frequency deviations of the isolated micro energy grid including the LIQHYSMES and RESs. A benchmark micro energy grid with distributed generators (DGs, electrical vehicle (EV stations, smart loads and a LIQHYSMES unit is modeled in the Matlab/Simulink environment. The simulation results show that the proposed GPC strategy can reschedule the active power output of each component to maintain the stability of the grid. In addition, in order to improve the performance of the SMES, a detailed optimization design of the superconducting coil is conducted, and the optimized SMES unit can offer better technical advantages in damping the frequency fluctuations.

  15. Application of the dissipative particle dynamics method to the instability problem of a liquid thread

    Science.gov (United States)

    Mo, Chao-jie; Qin, Li-zi; Zhao, Fei; Yang, Li-jun

    2016-12-01

    We investigate the application of the dissipative particle dynamics method to the instability problem of a long liquid thread surrounded by another fluid. The dispersion curves obtained from simulations are compared with classic theoretical predictions. The results from standard dissipative particle dynamics (DPD) simulations at first have a tendency of gradually approaching to Tomotika's Stokes flow prediction when the Reynolds number is decreased. But they then abnormally deviate again when the viscosity is very large. The same phenomenon is also confirmed in droplet retraction simulations when also compared with theoretical Stokes flow results. On the other hand, when a hard-core DPD model is used, with the decrease of the Reynolds number the simulation results did finally approach Tomotika's predictions when Re ≈0.1 . A combined presentation of the hard-core DPD results and the standard DPD results, excluding the abnormal ones, demonstrates that they are approximately on a continuum when labeled with Reynolds number. These results suggest that the standard DPD method is a suitable method for investigation of the instability problem of immersed liquid thread in the inertioviscous regime (0.1 DPD fluid, while the hard-core DPD is suitable to overcome this inferiority with standard DPD.

  16. Conventional OTSG development for heavy liquid fuel firing in thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Setchfield, W.P. [Mitchell Engineers Ltd., Glasgow, Scotland (United Kingdom); Roset, J.N. [Total S.A., Paris (France); Schaffer, M. [Total E and P Canada Ltd., Calgary, AB (Canada); O' Connor, D. [MEG Energy Inc., Calgary, AB (Canada); Kense, K. [TIW Western Inc., Calgary, AB (Canada)

    2008-10-15

    The demand for natural gas is expected to increase as a result of future expansion in Canadian extra heavy oil in-situ thermal production, such as steam assisted gravity drainage or SAGD projects. Natural gas is the current predominant fuel utilized for the associated steam generation. Potential natural gas shortages and related price volatility require that operators consider alternative fuels for the projected growth of in-situ thermal production in Alberta. This paper targeted the use of bitumen from upstream sites and derivative residues from upgrading activities as the most convenient alternative fuel sources for thermal operators of established horizontal type gas fired once through steam generators (OTSGs). The paper presented the methodology, the issues associated with bitumen or residue burning and the related technical solutions in developing a multi-fuel OTSG product. The paper provided background information on conventional OTSG design development, conventional OTSG existing deign, and general description of conventional OTSG. The paper also described the configuration of a radiant furnace, convection module, and theories and definitions such as heavy liquid fuels. A description and application of the equipment and processes as well as a presentation of the data and results was then offered. The multi fuel OTSG design is considered to be a practical and workable product capable of firing heavy liquid fuels. However, the design changes have had a significant impact when compared with conventional OTSG boilers. 11 figs.

  17. SYNTHESE D’EXTRACTANTS ACIDES HEXADECYL- ET DECYLAMINOBIMETHYLENEDIPHOSPHONIQUES APPLICATION A L’EXTRACTION LIQUIDE-LIQUIDE DE Ni (II

    Directory of Open Access Journals (Sweden)

    M.A DIDI

    2007-06-01

    Après purification puis caractérisation des produits, nous avons réalisé divers tests d’extraction liquide - liquide de Ni (II en milieu sulfaté. Le temps d’équilibre déterminé par étude cinétique a été fixé à 40 minutes. Les paramètres changeant tels la température ( T = 20°C, 30°C et 50°C, le rapport du nombre de moles (n extractant / n métal (Q =1 à 6 et le rapport des volumes (Vaq / Vorg= 1, 2, 3 et 4 ont permis de maximiser le rendement d’extraction qui est de 46% avec le HABMP et de 44% pour le DADMP et ceci pour des extractions à un seul plateau.

  18. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.

  19. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Annamaria Panniello

    2014-01-01

    Full Text Available Polymeric ionic liquids (PILs are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

  20. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications.

    Science.gov (United States)

    Bisoyi, Hari Krishna; Li, Quan

    2016-12-28

    Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photochromism, liquid crystallinity, and fabrication techniques has enabled some fascinating functional materials which can be driven by ultraviolet, visible, and infrared light irradiation. Nanoscale particles have been incorporated to widen and diversify the scope of the light-driven liquid crystalline materials. The developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc. The challenges and opportunities in this area are discussed at the end of the Review.

  1. Liquid fiducial marker applicability in proton therapy of locally advanced lung cancer

    DEFF Research Database (Denmark)

    Scherman Rydhög, Jonas; Perrin, Rosalind; Jølck, Rasmus Irming

    2017-01-01

    .164 for the LFM. Phantom measurements revealed a maximum relative deviation in dose of 4.8% for the LFM in the spread-out Bragg Peak, compared to 12-67% for the solid markers. Using the experimentally determined RSP, the maximum proton range error introduced by the LFM is about 1. mm. If the marker was displaced......Background and purpose: We investigated the clinical applicability of a novel liquid fiducial marker (LFM) for image-guided pencil beam scanned (PBS) proton therapy (PBSPT) of locally advanced lung cancer (LALC). Materials and methods: The relative proton stopping power (RSP) of the LFM...... was calculated and measured. Dose perturbations of the LFM and three solid markers, in a phantom, were measured. PBSPT treatment planning on computer tomography scans of five patients with LALC with the LFM implanted was performed with 1-3 fields. Results: The RSP was experimentally determined to be 1...

  2. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays

    KAUST Repository

    Fang, Angbo

    2008-12-08

    Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable π -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.

  3. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Liquid crystal on silicon (LCOS) devices and their application to scene projection

    Science.gov (United States)

    Ewing, Teresa; Buck, Joseph; Serati, Steve; Linnenberger, Anna; Masterson, Hugh; Stockley, Jay

    2012-06-01

    Liquid Crystal on Silicon micro-displays are the enabling components on a variety of commercial consumer products including high-definition projection televisions, office projectors, camera view-finders, head-mounted displays and picoprojectors. The use and potential application of LCOS technology in calibrated scene projectors is just beginning to be explored. Calibrated LCOS displays and projectors have been built and demonstrated not only in the visible regime, but also in the SWIR, MWIR and LWIR. However, LCOS devices are not only capable of modulating the intensity of a broadband illumination source, but can also manipulate the polarization and/or phase of a laser source. This opens the possibility of both calibrated polarization displays and holographic projection displays.

  5. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications.

    Science.gov (United States)

    Xu, Fengguo; Zou, Li; Liu, Ying; Zhang, Zunjian; Ong, Choon Nam

    2011-01-01

    The integration of liquid chromatography-mass spectrometry (LC-MS) with derivatization is a relatively new and unique strategy that could add value and could enhance the capabilities of LC-MS-based technologies. The derivatization process could be carried out in various analytical steps, for example, sampling, storage, sample preparation, HPLC separation, and MS detection. This review presents an overview of derivatization-based LC-MS strategy over the past 10 years and covers both the general principles and applications in the fields of pharmaceutical and biomedical analysis, biomarker and metabolomic research, environmental analysis, and food-safety evaluation. The underlying mechanisms and theories for derivative reagent selection are summarized and highlighted to guide future studies.

  6. Stochastic structure determination for conformationally flexible heterogenous molecular clusters: application to ionic liquids.

    Science.gov (United States)

    Addicoat, Matthew A; Fukuoka, Syou; Page, Alister J; Irle, Stephan

    2013-11-15

    We present a novel method that enables accurate and efficient computational determination of conformationally flexible clusters, "Kick(3)" This method uses stochastically generated structures in combination with fast quantum mechanical methods. We demonstrate the power of this method by elucidating the structure of ionic liquid (IL) ([xMIM(+)][NO3(-)])n clusters (x = E, B, D, n = 1-10,15). Dispersion-corrected, third-order self-consistent-charge density-functional tight-binding (DFTB3) is shown to be a computationally efficient, yet reliable approximation to density functional theory for predicting and understanding IL structure and stability. The presented approach, therefore, enables the accurate and efficient screening of ILs with high potential toward practical applications, without recourse to more expensive quantum chemical methods.

  7. Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications.

    Science.gov (United States)

    Sivapragasam, Magaret; Moniruzzaman, Muhammad; Goto, Masahiro

    2016-08-01

    The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications.

  8. Liquid crystal chiroptical polarization rotators for the near-UV region: theory, materials, and device applications

    Science.gov (United States)

    Saulnier, D.; Taylor, B.; Marshall, K. L.; Kessler, T. J.; Jacobs, S. D.

    2013-09-01

    The helical structure of a chiral-nematic liquid crystal (CLC) material produces a number of interesting optical properties, including selective reflection and optical rotatory power. To take advantage of the high optical rotation near the selective reflection peak for applications in the UV, either large concentrations of chiral components or those possessing very large helical twisting powers (HTP's) are necessary. It is difficult to find chiral twisting agents with high HTP that do not degrade the UV transmission. We report what we believe to be the first experimental observation of extraordinarily high optical rotation (LC) layer thickness. Using this model, the optical rotation at λ = 355 nm for the 1% CB 15/ZLI-1646 mixture is determined computationally, with the results in agreement with experimental data obtained by evaluating a series of wedged cells using an areal mapping, Hinds Exicor 450XT Mueller Matrix Polarimeter. This finding now opens a path to novel LC optics for numerous near-UV applications. One such envisioned application for this class of materials would be UV distributed polarization rotators (UV-DPR's) for largeaperture, high-peak-power lasers.

  9. Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications.

    Science.gov (United States)

    Kinik, Fatma Pelin; Uzun, Alper; Keskin, Seda

    2017-07-21

    Metal-organic frameworks (MOFs) have been widely studied for different applications owing to their fascinating properties such as large surface areas, high porosities, tunable pore sizes, and acceptable thermal and chemical stabilities. Ionic liquids (ILs) have been recently incorporated into the pores of MOFs as cavity occupants to change the physicochemical properties and gas affinities of MOFs. Several recent studies have shown that IL/MOF composites show superior performances compared with pristine MOFs in various fields, such as gas storage, adsorption and membrane-based gas separation, catalysis, and ionic conductivity. In this review, we address the recent advances in syntheses of IL/MOF composites and provide a comprehensive overview of their applications. Opportunities and challenges of using IL/MOF composites in many applications are reviewed and the requirements for the utilization of these composite materials in real industrial processes are discussed to define the future directions in this field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications

    Energy Technology Data Exchange (ETDEWEB)

    Montagut, Y. J.; Garcia, J. V.; Jimenez, Y.; Arnau, A. [Grupo de Fenomenos Ondulatorios, Departamento de Ingenieria Electronica, Universitat Politecnica de Valencia (Spain); March, C.; Montoya, A. [Instituto Interuniversitario de Investigacion en Bioingenieria y Tecnologia Orientada al Ser Humano, Universitat Politecnica de Valencia (Spain)

    2011-06-15

    The improvement of sensitivity in quartz crystal microbalance (QCM) applications has been addressed in the last decades by increasing the sensor fundamental frequency, following the increment of the frequency/mass sensitivity with the square of frequency predicted by Sauerbrey. However, this sensitivity improvement has not been completely transferred in terms of resolution. The decrease of frequency stability due to the increase of the phase noise, particularly in oscillators, made impossible to reach the expected resolution. A new concept of sensor characterization at constant frequency has been recently proposed. The validation of the new concept is presented in this work. An immunosensor application for the detection of a low molecular weight contaminant, the insecticide carbaryl, has been chosen for the validation. An, in principle, improved version of a balanced-bridge oscillator is validated for its use in liquids, and applied for the frequency shift characterization of the QCM immunosensor application. The classical frequency shift characterization is compared with the new phase-shift characterization concept and system proposed.

  11. Study of biosorbents application on the treatment of radioactive liquid wastes with americium-241; Estudo da aplicacao de biossorventes no tratamento de rejeitos radioativos liquidos contendo americio-241

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Tania Regina de

    2010-07-01

    The use of nuclear energy for many different purposes has been intensified and highlighted by the benefits that it provides. Medical diagnosis and therapy, agriculture, industry and electricity generation are examples of its application. However, nuclear energy generates radioactive wastes that require suitable treatment ensuring life and environmental safety. Biosorption and bioaccumulation represent an emergent alternative for the treatment of radioactive liquid wastes, providing volume reduction and physical state change. This work aimed to study biosorbents for the treatment of radioactive liquid wastes contaminated with americium-241 in order to reduce the volume and change the physical state from liquid to solid. The biosorbents evaluated were Saccharomyces cerevisiae immobilized in calcium alginate beads, inactivated and free cells of Saccharomyces cerevisiae, calcium alginate beads, Bacillus subtilis, Cupriavidus metallidurans and Ochrobactrum anthropi. The results were quite satisfactory, achieving 100% in some cases. The technique presented in this work may be useful and viable for implementing at the Waste Management Laboratory of IPEN - CNEN/SP in short term, since it is an easy and low cost method. (author)

  12. Development of a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt for preconcentration of trace metals in saline aqueous samples: Application to the determination of Pb and Cd

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Seyed Reza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Shemirani, Farzaneh, E-mail: shemiran@khayam.ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-06-11

    A new ionic liquid-based dispersive liquid-liquid microextraction method was developed for preconcentration and determination of compounds in aqueous samples containing very high salt concentrations. This method can solve the problems associated with the limited application of the conventional IL-based DLLME in these samples. This is believed to arise from dissolving of the ionic liquids in aqueous samples with high salt content. In this method, the robustness of microextraction system against high salt concentration (up to 40%, w/v) is increased by introducing a common ion of the ionic liquid into the sample solution. The proposed method was applied satisfactorily to the preconcentration of lead and cadmium in saline samples. After preconcentration, the settled IL-phase was dissolved in 100 {mu}L ethanol and aspirated into the flame atomic absorption spectrometer (FAAS) using a home-made microsample introduction system. Several variables affecting the microextraction efficiency were investigated and optimized. Under the optimized conditions and preconcentration of only 10 mL of sample, the enhancement factors of 273 and 311 and the detection limits of 0.6 {mu}g L{sup -1} and 0.03 {mu}g L{sup -1} were obtained for lead and cadmium, respectively. Validation of the method was performed by both an analysis of a certified reference material (CRM) and comparison of results with those obtained by ISO standard method.

  13. Steady-state composition of a two-component gas bubble growing in a liquid solution: self-similar approach

    CERN Document Server

    Gor, G Yu

    2009-01-01

    The paper presents an analytical description of the growth of a two-component bubble in a binary liquid-gas solution. We obtain asymptotic self-similar time dependence of the bubble radius and analytical expressions for the non-steady profiles of dissolved gases around the bubble. We show that the necessary condition for the self-similar regime of bubble growth is the constant, steady-state composition of the bubble. The equation for the steady-state composition is obtained. We reveal the dependence of the steady-state composition on the solubility laws of the bubble components. Besides, the universal, independent from the solubility laws, expressions for the steady-state composition are obtained for the case of strong supersaturations, which are typical for the homogeneous nucleation of a bubble.

  14. Hollow fiber-based liquid-liquid-liquid micro-extraction with osmosis: II. Application to quantification of endogenous gibberellins in rice plant.

    Science.gov (United States)

    Wu, Qian; Wu, Dapeng; Duan, Chunfeng; Shen, Zheng; Guan, Yafeng

    2012-11-23

    The phenomenon and benefits of osmosis in hollow fiber-based liquid-liquid-liquid micro-extraction (HF-LLLME) were theoretically discussed in part I of this study. In this work, HF-LLLME with osmosis was coupled with high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-triple quadrupole MS/MS) to analyze eight gibberellins (gibberellin A(1), gibberellin A(3), gibberellin A(4), gibberellin A(7), gibberellin A(8), gibberellin A(9), gibberellin A(19) and gibberellin A(20)) in rice plant samples. According to the theory of HF-LLLME with osmosis, single factor experiments, orthogonal design experiments and mass transfer simulation of extraction process were carried out to select the optimal conditions. Cyclohexanol - n-octanol (1:3, v/v) was selected as organic membrane. Donor phase of 12 mL was adjusted to pH 2 and 20% NaCl (w/v) was added. Acceptor phase with an initial volume of 20 μL was the solution of 0.12 mol L(-1) Na(2)CO(3)-NaHCO(3) buffer (pH 9). Temperature was chosen to be 30 °C and extraction time was selected to be 90 min. Under optimized conditions, this method provided good linearity (r, 0.99552-0.99991) and low limits of detection (0.0016-0.061 ng mL(-1)). Finally, this method was applied to the analysis of endogenous gibberellins from plant extract which was obtained with traditional solvent extraction of rice plant tissues, and the relative recoveries were from 62% to 166%.

  15. 20 CFR 614.8 - The applicable State for an individual.

    Science.gov (United States)

    2010-04-01

    ... section. The applicable State law for the individual shall be the State law of such State. (b) Assignment... State agency which makes the reassignment. (c) Assignment deemed complete. All of an individual's... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false The applicable State for an individual....

  16. Nature of the anomalies in the supercooled liquid state of the mW model of water

    CERN Document Server

    Holten, Vincent; Molinero, Valeria; Anisimov, Mikhail A

    2013-01-01

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this particular model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for fitting the power laws implied by weak crystallization theory is found not to be physically meaningful. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological e...

  17. Photo-Stimulated Electron Detrapping and the Two-State Model for Electron Transport in Nonpolar Liquids

    CERN Document Server

    Shkrob, I A

    2004-01-01

    In common nonpolar liquids, such as saturated hydrocarbons, a dynamic equilibrium between trapped (localized) and quasifree (extended) states has been postulated for the excess electron (the two-state model). Using time-resolved dc conductivity, the effect of 1064 nm laser photoexcitation of trapped electrons on the charge transport has been observed in liquid n-hexane and methylcyclohexane. The light promotes the electron from the trap into the conduction band of the liquid, instantaneously increasing the conductivity by orders of magnitude. From the analysis of the two-pulse, two-color photoconductivity data, the residence time of the electrons in traps has been estimated as ca. 8.4 ps for n-hexane and ca. 13 ps for methylcyclohexane (at 295 K). The rate of detrapping decreases at lower temperature with an activation energy of ca. 200 meV (280-320 K); the lifetime-mobility product for quasifree electrons scales linearly with the temperature. We suggest that the properties of trapped electrons in hydrocarbon...

  18. Numerical Simulation for Natural State of Two-Phase Liquid Dominated Geothermal Reservoir with Steam Cap Underlying Brine Reservoir

    Science.gov (United States)

    Pratama, Heru Berian; Miryani Saptadji, Nenny

    2016-09-01

    Hydrothermal reservoir which liquid-dominated hydrothermal reservoir is a type of geothermal reservoir that most widely used for power plant. The exploitation of mass and heat from the geothermal fluid will decrease the pressure in the reservoir over time. Therefore the pressure drop in the reservoir will have an impact on the formation of boiling zones or boiling will increase. The impacts are an increase in the fraction of steam, dryness, in the reservoir and with good vertical permeability will form a steam cap underlying the brine reservoir. The two- phase liquid dominated reservoir is sensitive to the porosity and difficult to assign average properties of the entire reservoir when there is boiling zone in some area of the reservoir. These paper showed successful development of two-phase liquid dominated geothermal reservoir and discussed the formation of steam cap above brine reservoir through numerical simulation for state natural conditions. The natural state modeling in steam cap shows a match with the conceptual model of the vapor-dominated developed. These paper also proofed the presence of transition zone, boiling zone, between steam cap and brine reservoir.

  19. A New FIR Filter for State Estimation and Its Application

    Institute of Scientific and Technical Information of China (English)

    Pyung-Soo Kim; Myung-Eui Lee

    2007-01-01

    This paper proposes a new FIR (finite impulse response) filter under a least squares criterion using a forgetting factor. The proposed FIR filter does not require information of the noise covariances as well as the initial state, and has some inherent properties such as time-invariance, unbiasedness and deadbeat. The proposed FIR filter is represented in a batch form and then a recursive form as an alternative form. From discussions about the choice of a forgetting factor and a window length, it is shown that they can be considered as useful parameters to make the estimation performance of the proposed FIR filter as good as possible. It is shown that the proposed FIR filter can outperform the existing FIR filter with incorrect noise covariances via computer simulations. Finally, as a useful application, an image sequence stabilization problem is considered. Through this application, the FIR filtering based approach is shown to be superior to the Kalman filtering based approach.

  20. Trilingual aligned corpus – current state and new applications

    Directory of Open Access Journals (Sweden)

    Ludmila Dimitrova

    2014-09-01

    Full Text Available Trilingual aligned corpus – current state and new applications This article describes current state of a trilingual parallel corpus consisted of texts in two Slavic (Bulgarian and Polish and one Baltic language (Lithuanian. The corpus contains original literary texts (fiction, novels, and short stories in one of the three languages with translations to the other two, and texts in other languages translated into Bulgarian, Polish, and Lithuanian. A part of the texts are aligned at the sentence level. The authors propose a semantic annotation of verbs appearing in these aligned texts that will facilitate contrastive studies of natural languages. A theoretical background for the proposed semantic annotation is briefly also discussed.

  1. Tunable solid state laser system for dermatology applications

    Science.gov (United States)

    Azar, Zion; Bank, Alexander; Donskoy, Dmitri M.; Nechitailo, Vladimir S.

    1994-12-01

    The Q-switched Nd:YAG laser is the most recent in a series of pulsed laser systems for plastic surgery. The 532 nm wavelength has been shown to be absorbed by a variety of chromophores. These include tattoo pigments, oxygenated hemoglobin and melanin-containing epidermal cells. A simple multi-line solid state laser module pumped by double-frequency Q- switched YAG laser is presented. This solid state multi-line module enables tuning of the wavelength in the yellow spectral range to 560 nm or to 580 nm for dermatology applications. Conversion efficiency in excess of 70% was achieved at 10 Hz pulse repetition frequency and output energy per pulse of approximately 200 mJ.

  2. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  3. Diode pumped solid-state laser oscillators for spectroscopic applications

    Science.gov (United States)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  4. Liquid metals fire control engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, J.L. (comp.)

    1979-02-01

    This handbook reviews the basic requirements of the use of liquid metals with emphasis on sodium which has the greatest current usage. It delineates the concepts necessary to design facilities both radioactive and nonradioactive for use with liquid metals. It further reviews the state-of-the-art in fire extinguishers and leak detection equipment and comments on their application and sensitivity. It also provides details on some engineering features of value to the designer of liquid metal facilities.

  5. Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Mir Ali [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: farajzade@yahoo.com; Bahram, Morteza [Department of Chemistry, Faculty of Science, Urmia University, Urmia (Iran, Islamic Republic of); Zorita, Saioa [Department of Analytical Chemistry, University of Lund, P.O. Box 124, 221 00 Lund (Sweden); Mehr, Behzad Ghorbani [Department of Chemistry, Faculty of Science, Urmia University, Urmia (Iran, Islamic Republic of)

    2009-01-30

    In this study a homogeneous liquid-liquid extraction based on the Ph-dependent phase-separation process was investigated using a ternary solvent system (water-acetic acid-chloroform) for the preconcentration of Cu{sup 2+} ions. 8-Hydroxy quinoline was used as the chelating agent prior to its extraction. Flame atomic absorption spectrophotometry using acetylene-air flame was used for the quantitation of analyte after preconcentration. The effect of various experimental parameters in extraction step was investigated using two optimization methods, one variable at a time and central composite design. The experimental design was done at five levels of operating parameters. Nearly the same optimized results were obtained using both methods: sample size, 5 mL; volume of NaOH 10 M, 2 mL; chloroform volume, 300 {mu}L; 8-hydroxy quinoline concentration more than 0.01 M and salt amount did not affect the extraction significantly. Under the optimum conditions the calibration graph was linear over the range 10-2000 {mu}g L{sup -1}. The relative standard deviation was 7.6% for six repeated determinations (C = 500 {mu}g L{sup -1}). Furthermore, the limit of detection (S/N = 3) and limit of quantification (S/N = 10) of the method were obtained as 1.74 and 6 {mu}g L{sup -1}, respectively.

  6. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, Johan Leonard Hendrik Pieter

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to conventiona

  7. 500-fold enhancement of in situ 13C liquid state NMR using gyrotron-driven temperature-jump DNP

    Science.gov (United States)

    Yoon, Dongyoung; Soundararajan, Murari; Caspers, Christian; Braunmueller, Falk; Genoud, Jérémy; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-09-01

    A 550-fold increase in the liquid state 13C NMR signal of a 50 μL sample was obtained by first hyperpolarizing the sample at 20 K using a gyrotron (260 GHz), then, switching its frequency in order to apply 100 W for 1.5 s so as to melt the sample, finally, turning off the gyrotron to acquire the 13C NMR signal. The sample stays in its NMR resonator, so the sequence can be repeated with rapid cooling as the entire cryostat stays cold. DNP and thawing of the sample are performed only by the switchable and tunable gyrotron without external devices. Rapid transition from DNP to thawing in one second time scale was necessary especially in order to enhance liquid 1H NMR signal.

  8. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  9. Hypothesis: could the signalling function of membrane microdomains involve a localized transition of lipids from liquid to solid state?

    Directory of Open Access Journals (Sweden)

    Joly Etienne

    2004-01-01

    Full Text Available Abstract Background Over the past decade, it has become apparent that specialised membrane microdomains, commonly called rafts, where lipids like sphingolipids and cholesterol are arranged compactly in a liquid ordered phase are involved in cell signalling. Hypothesis The core of the hypothesis presented here is that resting cells may actively maintain their plasma membrane in liquid phase, corresponding to a metastable thermodynamic state. Following a physiological stimulus such as ligands binding to their membrane receptors, the tendency of membrane components to undergo a localised transition towards a gel state would increase, resulting in initial minute solid structures. These few membrane components having undergone a liquid to solid state transition, would then act as seeds for the specific recruitment of additional membrane components whose properties are compatible with the crystalline growth of these initial docks. Cells could therefore be using the propensity of lipids to assemble selectively to generate stable platforms of particular cellular components either for intra-cellular transport or for signal transduction. Testing the hypothesis could presumably be done via biophysical approaches such as EPR spin labelling, X-ray diffraction or FRET coupled to direct microscopic observation of cells to which very localized stimuli would be delivered. Implications Such a model of selective growth of membrane docks would provide an explanation for the existence of different types of microdomains, and for the fact that, depending on the state of the cells and on the procedures used to isolate them, membrane microdomains can vary greatly in their properties and composition. Ultimately, a thorough understanding of how and why lipid domains are assembled in biological membranes will be essential for many aspects of cell biology and medicine.

  10. Quantum State-Resolved Reactive and Inelastic Scattering at Gas-Liquid and Gas-Solid Interfaces

    Science.gov (United States)

    Grütter, Monika; Nelson, Daniel J.; Nesbitt, David J.

    2012-06-01

    Quantum state-resolved reactive and inelastic scattering at gas-liquid and gas-solid interfaces has become a research field of considerable interest in recent years. The collision and reaction dynamics of internally cold gas beams from liquid or solid surfaces is governed by two main processes, impulsive scattering (IS), where the incident particles scatter in a few-collisions environment from the surface, and trapping-desorption (TD), where full equilibration to the surface temperature (T{TD}≈ T{s}) occurs prior to the particles' return to the gas phase. Impulsive scattering events, on the other hand, result in significant rotational, and to a lesser extent vibrational, excitation of the scattered molecules, which can be well-described by a Boltzmann-distribution at a temperature (T{IS}>>T{s}). The quantum-state resolved detection used here allows the disentanglement of the rotational, vibrational, and translational degrees of freedom of the scattered molecules. The two examples discussed are (i) reactive scattering of monoatomic fluorine from room-temperature ionic liquids (RTILs) and (ii) inelastic scattering of benzene from a heated (˜500 K) gold surface. In the former experiment, rovibrational states of the nascent HF beam are detected using direct infrared absorption spectroscopy, and in the latter, a resonace-enhanced multi-photon-ionization (REMPI) scheme is employed in combination with a velocity-map imaging (VMI) device, which allows the detection of different vibrational states of benzene excited during the scattering process. M. E. Saecker, S. T. Govoni, D. V. Kowalski, M. E. King and G. M. Nathanson Science 252, 1421, 1991. A. M. Zolot, W. W. Harper, B. G. Perkins, P. J. Dagdigian and D. J. Nesbitt J. Chem. Phys 125, 021101, 2006. J. R. Roscioli and D. J. Nesbitt Faraday Disc. 150, 471, 2011.

  11. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    Science.gov (United States)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  12. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases

    Science.gov (United States)

    Sosnovsky, Denis V.; Jeschke, Gunnar; Matysik, Jörg; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-04-01

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals and radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine CIDNP sign

  13. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases.

    Science.gov (United States)

    Sosnovsky, Denis V; Jeschke, Gunnar; Matysik, Jörg; Vieth, Hans-Martin; Ivanov, Konstantin L

    2016-04-14

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals and radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine CIDNP sign

  14. Positron Lifetime Study of the Transition from Glassy to Normal Liquid State for Two Phenyl Ethers

    DEFF Research Database (Denmark)

    Pethrick, R. A.; Jacobsen, F. M.; Mogensen, O. E.

    1980-01-01

    at ≈ 233 K is associated with the glass transition for these liquids. A further change in the temperature dependence of the o-Ps lifetime was observed above 313 K where it becomes once more only weakly temperature dependent. Below the glass transition (Tg) Ps is probably trapped in pre-existing holes...

  15. FTIR Spectra of n-Octanol in Liquid and Solid States

    Directory of Open Access Journals (Sweden)

    A. Vasileva

    2014-01-01

    Full Text Available The investigation of the temperature dependence of FTIR spectrum of n-octanol in the temperature range from −150°C to 50°C is presented. The observed changes in the registered spectra during gradual heating of the sample were analysed. The structure transformation at the phase transition from solid to liquid phase is detected.

  16. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    Science.gov (United States)

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  17. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    Science.gov (United States)

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  18. A first truly all-solid state organic electrochromic device based on polymeric ionic liquids.

    Science.gov (United States)

    Shaplov, Alexander S; Ponkratov, Denis O; Aubert, Pierre-Henri; Lozinskaya, Elena I; Plesse, Cédric; Vidal, Frédéric; Vygodskii, Yakov S

    2014-03-25

    Using polymeric ionic liquids and PEDOT as ion conducting separators and electrodes, respectively, an all-polymer-based organic electrochromic device (ECD) has been constructed. The advantages of such an ECD are: fast switching time (3 s), high coloration efficiency (390 cm(2) C(-1) at 620 nm), optical contrast up to ΔT = 22% and the possibility of working under vacuum.

  19. The Physics Teacher: The Four States of Matter--Solid, Squishy, Liquid and Gas

    Science.gov (United States)

    Clark, Roy W.

    2007-01-01

    The Physics Teacher provides introductory physics education at the high school and university levels and some of its articles are of interest to chemists. One such article points out that several substances used in the kitchen and bathrooms are not simple liquids or solids but are squishy substances, which include mayonnaise, shaving cream,…

  20. 75 FR 80786 - Solicitation of Applications for the Federal-State Marketing Improvement Program (FSMIP)

    Science.gov (United States)

    2010-12-23

    ... program, to allow applicants sufficient time to leverage financing, submit applications, and give AMS time... individual will not be considered. Proposals that address issues of importance at the State, Multi- State or...

  1. Cβ-H stretching vibration as a new probe for conformation of n-propanol in gaseous and liquid states.

    Science.gov (United States)

    Yu, Yuanqin; Wang, Yuxi; Hu, Naiyin; Lin, Ke; Zhou, Xiaoguo; Liu, Shilin

    2016-04-21

    The development of potential probes to identify molecular conformation is essential in organic and biological chemistry. In this work, we investigated a site-specific C-H stretching vibration as a conformational probe for a model compound, 1,1,3,3,3-deuterated n-propanol (CD3CH2CD2OH), using stimulated photoacoustic Raman spectroscopy in the gas phase and conventional spontaneous Raman spectroscopy in the liquid state. Along with quantum chemistry calculations, the experiment shows that the CH2 symmetric stretching mode at the β-carbon position is very sensitive to the conformational structure of n-propanol and can serve as a new probe for all five of its conformers. Compared with the O-H stretching vibration, a well-established conformational sensor for n-propanol, the Cβ-H stretching vibration presented here shows better conformational resolution in the liquid state. Furthermore, using this probe, we investigated the conformational preference of n-propanol in pure liquid and in dilute water solution. It is revealed that in pure liquid, n-propanol molecules prefer the trans-OH conformation, and in dilute water solution, this preference is enhanced, indicating that the water molecules play a role of further stabilizing the trans-OH n-propanol conformers. This leads to conformational evolution that n-propanol molecules with gauche-OH structure are transferred to the trans-OH structure upon diluting with water. These results not only provide important information on structures of n-propanol in different environments, but also demonstrate the potential of the C-H stretching vibration as a new tool for conformational analysis. This is especially important when considering that hydrocarbon chains are structural units in organic and biological molecules.

  2. Warning Statements and Safety Practices among Manufacturers and Distributors of Electronic Cigarette Liquids in the United States.

    Science.gov (United States)

    Fagan, Pebbles; Pokhrel, Pallav; Herzog, Thaddeus A; Guy, Mignonne C; Sakuma, Kari-Lyn K; Trinidad, Dennis R; Cassel, Kevin; Jorgensen, Dorothy; Lynch, Tania; Felicitas-Perkins, Jamie Q; Palafox, Sherilyn; Hamamura, Faith; Maloney, Sarah; Degree, Kaylah; Sterling, Kymberle; Moolchan, Eric; Clanton, Mark S; Eissenberg, Thomas

    2017-05-18

    Prior to the Food and Drug Administration's (FDA) regulation of electronic cigarettes and warning statements related to nicotine addiction, there was no critical examination of manufacturer/distributor voluntary practices that could potentially inform FDA actions aimed to protect consumers. This study examined the content of warning statements and safety characteristics of electronic cigarette liquid bottles using a national sample. Research staff randomly selected four electronic cigarette liquid manufacturers/distributors from four U.S. geographic regions. Staff documented the characteristics of product packaging and content of warning statements on 147 electronic cigarette liquids (0-30 mg/ml of nicotine) purchased online from 16 manufacturers/distributors in April of 2016. Data showed that 97.9% of the electronic cigarette liquid bottles included a warning statement, most of which focused on nicotine exposure rather than health. Only 22.4% of bottles used a warning statement that indicated the product "contained nicotine". Of bottles that advertised a nicotine-based concentration of 12 mg/ml, 26% had a warning statements stated that the product "contains nicotine". None of the statements that indicated that the product "contained nicotine" stated that nicotine was "addictive". All bottles had a safety cap and 12% were in plastic shrink-wrap. Fifty-six percent of the websites had a minimum age requirement barrier that prevented under-aged persons from entering. Most manufacturers/distributors printed a warning statement on electronic cigarette liquid bottles, but avoided warning consumers about the presence and the addictiveness of nicotine. Studies are needed to examine manufacturer/distributor modifications to product packaging and how packaging affects consumer behaviors. These data can inform future FDA requirements related to the packaging and advertising of e-cigarette liquids; regulation related to the content of warning statements, including exposure

  3. Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications.

    Science.gov (United States)

    Subianto, Surya; Mistry, Mayur K; Choudhury, Namita Roy; Dutta, Naba K; Knott, Robert

    2009-06-01

    A new type of supported liquid membrane was made by combining an ionic liquid (IL) with a Nafion membrane reinforced with multifunctional polyhedral oligomeric silsesquioxanes (POSSs) using a layer-by-layer strategy for anhydrous proton-exchange membrane (PEM) application. The POSS was functionalized by direct sulfonation, and the sulfonated POSS (S-POSS) was incorporated into Nafion 117 membranes by the infiltration method. The resultant hybrid membrane shows strong ionic interaction between the Nafion matrix and the multifunctional POSS, resulting in increased glass transition temperature and thermal stability at very low loadings of S-POSS (1%). The presence of S-POSS has also improved the proton conductivity especially at low humidities, where it shows a marked increase due to its confinement in the ionic domains and promotes water uptake by capillary condensation. In order to achieve anhydrous conductivity, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI) was incorporated into these membranes to provide proton conduction in the absence of water. Although the incorporation of an IL shows a plasticizing effect on the Nafion membrane, the S-POSS composite membrane with an IL shows a higher modulus at high temperatures compared to Nafion 117 and a Nafion-IL membrane, with significantly higher proton conductivity (5 mS/cm at 150 degrees C with 20% IL). This shows the ability of the multifunctional POSS and IL to work symbiotically to achieve the desirable proton conductivity and mechanical properties of such membranes by enhancing the ionic interaction within the material.

  4. A Theoretical Study of Love Wave Sensors Based on ZnO–Glass Layered Structures for Application to Liquid Environments

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2016-12-01

    Full Text Available The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface.

  5. A Theoretical Study of Love Wave Sensors Based on ZnO–Glass Layered Structures for Application to Liquid Environments

    Science.gov (United States)

    Caliendo, Cinzia; Hamidullah, Muhammad

    2016-01-01

    The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419

  6. A Theoretical Study of Love Wave Sensors Based on ZnO-Glass Layered Structures for Application to Liquid Environments.

    Science.gov (United States)

    Caliendo, Cinzia; Hamidullah, Muhammad

    2016-12-02

    The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier-Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface.

  7. Liquid lubrication in space

    Science.gov (United States)

    Zaretsky, Erwin V.

    1990-01-01

    The requirement for long-term, reliable operation of aerospace mechanisms has, with a few exceptions, pushed the state of the art in tribology. Space mission life requirements in the early 1960s were generally 6 months to a year. The proposed U.S. space station schedule to be launched in the 1990s must be continuously usable for 10 to 20 years. Liquid lubrication systems are generally used for mission life requirements longer than a year. Although most spacecraft or satellites have reached their required lifetimes without a lubrication-related failure, the application of liquid lubricants in the space environment presents unique challenges. The state of the art of liquid lubrication in space as well as the problems and their solutions are reviewed.

  8. Binding of β-Amyloid (1–42) Peptide to Negatively Charged Phospholipid Membranes in the Liquid-Ordered State: Modeling and Experimental Studies

    OpenAIRE

    Ahyayauch, Hasna; Raab, Michal; Busto, Jon V.; Andraka, Nagore; Arrondo, José-Luis R.; Masserini, Massimo; Tvaroska, Igor; Goñi, Félix M.

    2012-01-01

    To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (Lo) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the Lo state, in the absence of the negatively charged lipids, interaction i...

  9. Diode-pumped all-solid-state lasers and applications

    CERN Document Server

    Parsons-Karavassilis, D

    2002-01-01

    This thesis describes research carried out by the within the Physics Department at Imperial College that was aimed at developing novel all-solid-state laser sources and investigating potential applications of this technology. A description of the development, characterisation and application of a microjoule energy level, diode-pumped all-solid-state Cr:LiSGAF femtosecond oscillator and regenerative amplifier system is presented. The femtosecond oscillator was pumped by two commercially available laser diodes and produced an approx 80 MHz pulse train of variable pulse duration with approx 30 mW average output power and a tuning range of over approx 60 nm. This laser oscillator was used to seed a regenerative amplifier, resulting in adjustable repetition rate (single pulse to 20 kHz) approx 1 mu J picosecond pulses. These pulses were compressed to approx 150 fs using a double-pass twin-grating compressor. The amplifier's performance was investigated with respect to two different laser crystals and different pul...

  10. Prediction of transport properties of dense gases and liquids by the Peng-Robinson (PR) equation of state

    Science.gov (United States)

    Sheng, W.; Chen, G.-J.; Lu, H.-C.

    1989-01-01

    An attempt is made in this work to combine the Enskog theory of transport properties with the simple cubic Peng-Robinson (PR) equation of state. The PR equation of state provides the density dependence of the equilibrium radial distribution function. A slight empirical modification of the Enskog equation is proposed to improve the accuracy of correlation of thermal conductivity and viscosity coefficient for dense gases and liquids. Extensive comparisons with experimental data of pure fluids are made for a wide range of fluid states with temperatures from 90 to 500 K and pressures from 1 to 740 atm. The total average absolute deviations are 2.67% and 2.02% for viscosity and thermal conductivity predictions, respectively. The proposed procedure for predicting viscosity and thermal conductivity is simple and straightforward. It requires only critical parameters and acentric factors for the fluids.

  11. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  12. Turbulence in microfluidics: Cleanroom-free, fast, solventless, and bondless fabrication and application in high throughput liquid-liquid extraction.

    Science.gov (United States)

    de Camargo, Camila L; Shiroma, Letícia S; Giordano, Gabriela F; Gobbi, Angelo L; Vieira, Luis C S; Lima, Renato S

    2016-10-12

    This paper addresses an important breakthrough in the deployment of ultra-high adhesion strength microfluidic technologies to provide turbulence at harsh flow rate conditions. This paper is only, to our knowledge, the second reporting on the generation of high flow rate-assisted turbulence in microchannels. This flow solves a crucial bottleneck in microfluidics: the generation of high throughput homogeneous mixings. We focused on the fabrication of bulky polydimethylsiloxane (PDMS) microchips (without any interfaces) rather than the laborious surface modifications that were employed in the first reporting about turbulence-assisted microfluidics. The fabrication is cleanroom-free, simple, low-cost, fast, solventless, and bondless requiring only a laboratory oven. More specifically, our method relies on the shaping of a nylon scaffold, cure of PDMS with embedded nylon, and removal of this scaffold. The scaffold was obtained by manually wrapping nylon threads. The withdrawing out of the scaffold was completed in few seconds using only a plier. Such microchannels endured flow rates of up to 60.0 mL min(-1) with a strikingly low elastic deformation. The importance in producing turbulence into microscale channels was successfully shown in liquid-liquid extractions. The great energy dissipation rate relative to the turbulence created high throughput and efficient extractions in microfluidics for the first time. The residence time was only 0.01 s at 25.0 mL min(-1) (total flow rate of the immiscible phases). In addition, the partition coefficient determined in a single run was similar to that obtained by the conventional batch shake-flask method that was realized in triplicate.

  13. Injection molding of high precision optics for LED applications made of liquid silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Christian; Röbig, Malte [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstraße 49, 52062 Aachen (Germany)

    2016-03-09

    Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limits due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.

  14. The Theory and Applications of Parametric Excitation and Suppression of Oscillations in Continua: State of the Art

    CERN Document Server

    Kazachkov, Ivan V

    2015-01-01

    The results by development of physical, mathematical and numerical models for parametric excitation and suppression of oscillations on the interfaces separating continuous media, for carrying out computing, physical and natural experiments by revealing the new phenomena and parametric effects, and for their use in improvement the existing and creation the perspective highly efficient technological processes are presented. Scientific novelty of this work consists in development of the theory and applications of parametric excitation and suppression of oscillations on the boundaries of continua on the samples of three tasks classes: flat and radial spreading film flows of viscous incompressible liquids, conductive as well as non-conductive ones; surfaces of phase transition from a liquid state into a solid one; and heterogeneous granular media. The external actions considered are: alternating electromagnetic, vibration, acoustic and thermal fields. Along with linear the non-linear parametric oscillations are in...

  15. Scalar quanta in Fermi liquids: Zero sounds, instabilities, Bose condensation, and a metastable state in dilute nuclear matter

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2016-12-01

    The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter f0 in the particle-hole channel. For f0 > 0 the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For -1 excitations, and for f0 excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter f0(k) > 0. We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for f0 > -1.

  16. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    Science.gov (United States)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  17. A numerical model of initial recombination for high-LET irradiation: Application to liquid-filled ionization chambers

    Science.gov (United States)

    Aguiar, P.; Pardo-Montero, J.

    2016-02-01

    In this paper we present a numerical model of initial recombination in media irradiated with high linear energy transfer (LET) ions, which relies on an amorphous track model of ionization of high LET particles, and diffusion, drift and recombination of ionized charge carriers. The model has fundamental applications for the study of recombination in non-polar liquids, as well as practical ones, like in modelling hadrontherapy dosimetry with ionization chambers. We have used it to study the response of liquid-filled ionization chambers to hadrontherapy beams: dependence of initial recombination on ion species, energy and applied external electric field.

  18. Persistence of Escherichia coli and Salmonella in surface soil following application of liquid hog manure for production of pickling cucumbers.

    Science.gov (United States)

    Côté, Caroline; Quessy, Sylvain

    2005-05-01

    Liquid hog manure is routinely applied to farm land as a crop fertilizer. However, this practice raises food safety concerns, especially when manure is used on fruit and vegetable crops. The objectives of this project were to evaluate the persistence of Escherichia coli and Salmonella in surface soil after application of liquid hog manure to fields where pickling cucumbers were grown and to verify the microbiological quality of harvested cucumbers. Mineral fertilizers were replaced by liquid hog manure at various ratios in the production of pickling cucumbers in a 3-year field study. The experimental design was a randomized complete block comprising four replicates in sandy loam (years 1, 2, and 3) and loamy sand (year 3). Soil samples were taken at a depth of 20 cm every 2 weeks after June application of organic and inorganic fertilizers. Vegetable samples were also taken at harvest time. Liquid hog manure, soil, and vegetable (washed and unwashed) samples were analyzed for the presence of Salmonella and E. coli. An exponential decrease of E. coli populations was observed in surface soil after the application of manure. The estimated average time required to reach undetectable concentrations of E. coli in sandy loam varied from 56 to 70 days, whereas the absence of E. coli was estimated at 77 days in loamy sand. The maximal Salmonella persistence in soil was 54 days. E. coli and Salmonella were not detected in any vegetable samples.

  19. Phase diagram with a region of liquid carbon-diamond metastable states

    Science.gov (United States)

    Basharin, A. Yu.; Dozhdikov, V. S.; Kirillin, A. V.; Turchaninov, M. A.; Fokin, L. R.

    2010-06-01

    Metastable cubic diamond has been found in the structure of solid carbon obtained by quenching of a liquid phase at a pressure (0.012 GPa) much lower than that corresponding to the existence of stable diamond. It is suggested that this metastable diamond is formed as a result of the recalescence of supercooled liquid carbon to the melting point ( T dm) of metastable diamond due to a lower energy barrier for the formation of diamond as compared to that of graphite. A comparison between the calculated Gibbs energies of metastable phases provided an estimate of T dm = 4160 ± 50 K. For the first time, metastable continuations of the curve of diamond melting at pressures of up to 0.012 GPa are constructed on the phase diagrams of carbon (according to various published data) using analytical curves described by a two-parametric Simon equation.

  20. Solid-Liquid Equilibria for Many-component Mixtures Using Cubic-Plus-Association (CPA) equation of state

    DEFF Research Database (Denmark)

    Fettouhi, André; Thomsen, Kaj

    2010-01-01

    In the creation of liquefied natural gas the formation of solids play a substantial role, hence detailed knowledge is needed about solid-liquid equilibria (SLE). In this abstract we shortly summarize the work we have carried out at CERE over the past year with SLE for many-component mixtures using...... the Cubic-Plus-Association (CPA) equation of state. Components used in this work are highly relevant to the oil and gas industry and include light and heavy hydrocarbons, alcohols, water and carbon dioxide....

  1. Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode.

    Science.gov (United States)

    Kawano, Ryuji; Katakabe, Toru; Shimosawa, Hironobu; Nazeeruddin, Md Khaja; Grätzel, Michael; Matsui, Hiroshi; Kitamura, Takayuki; Tanabe, Nobuo; Watanabe, Masayoshi

    2010-02-28

    A polymerized ionic liquid electrolyte and platinum-free counter electrode are employed for solid-state DSSCs. We are able to prepare a thin polymer electrolyte layer on nanocrystalline TiO(2) in order to reduce the cell resistance. In addition, an electron conductive polymer (PEDOT/PSS) or a single-wall carbon nanotube gel is used with the cell as an inexpensive counter electrode instead of platinum. The overall photon-to-current conversion efficiency was 3.7% in this study.

  2. Liquid-liquid extraction of cadmium(II) by TIOACl (tri-iso-octyl ammonium chloride) ionic liquid and its application to a TIOACl impregnated carbon nanotubes system

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil, F. J.; Garcia-Diaz, I.; Lopez, F. A.; Rodriguez, O.

    2015-07-01

    The extraction of cadmium(II) by the ionic liquid (R{sub 3}NH{sup +}Cl{sup -}) (R: tri-iso-octyl) in Exxsol D100 from hydrochloric acid solution has been investigated. The extraction reaction is exothermic. The numerical analysis of metal distribution data suggests the formation of R{sub 3}NH{sup +}CdCl{sup -}{sub 3} - and (R{sub 3}NH{sup +}){sub 2}CdCl{sub 4}{sup 2}- species in the organic phase. The results obtained for cadmium(II) distribution have been implemented in an impregnated multi-walled carbon nanotubes system. The influence of aqueous solution stirring speed (250-2000 min{sup -}1), adsorbent dosage (0.05-0.2 g) and temperature (20 degree centigrade-60 degree centigrade) on cadmium adsorption have been investigated. (Author)

  3. 20 CFR 609.8 - The applicable State for an individual.

    Science.gov (United States)

    2010-04-01

    ... applicable State law for the individual shall be the State law of such State. (b) Assignment of service and...) Assignment deemed complete. All of an individual's Federal civilian service and Federal wages shall be deemed... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false The applicable State for an individual....

  4. Influence of gangue existing states in iron ores on the formation and flow of liquid phase during sintering

    Institute of Scientific and Technical Information of China (English)

    Guo-liang Zhang; Sheng-li Wu; Shao-guo Chen; Bo Su; Zhi-gang Que; Chao-gang Hou

    2014-01-01

    Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scan-ning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction between gangues and sintering mate-rials was unraveled. The results show that, as the SiO2 levels increase in the iron ores, the lowest assimilation temperature (LAT) decreases, whereas the index of fluidity of liquid phase (IFL) increases. Below 1.5wt%, Al2O3 benefits the assimilation reaction, but higher concentra-tions proved detrimental. Larger quartz particles increase the SiO2 levels at the local reaction interface between the iron ore and CaO, thereby reducing the LAT. Quartz-gibbsite is more conductive to assimilation than kaolin. Quartz-gibbsite and kaolin gangues encourage the forma-tion of liquid-phase low-Al2O3-SFCA with high IFL and high-Al2O3-SFCA with low IFL, respectively.

  5. Influence of gangue existing states in iron ores on the formation and flow of liquid phase during sintering

    Science.gov (United States)

    Zhang, Guo-liang; Wu, Sheng-li; Chen, Shao-guo; Su, Bo; Que, Zhi-gang; Hou, Chao-gang

    2014-10-01

    Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scanning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction between gangues and sintering materials was unraveled. The results show that, as the SiO2 levels increase in the iron ores, the lowest assimilation temperature (LAT) decreases, whereas the index of fluidity of liquid phase (IFL) increases. Below 1.5wt%, Al2O3 benefits the assimilation reaction, but higher concentrations proved detrimental. Larger quartz particles increase the SiO2 levels at the local reaction interface between the iron ore and CaO, thereby reducing the LAT. Quartz-gibbsite is more conductive to assimilation than kaolin. Quartz-gibbsite and kaolin gangues encourage the formation of liquid-phase low-Al2O3-SFCA with high IFL and high-Al2O3-SFCA with low IFL, respectively.

  6. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    Energy Technology Data Exchange (ETDEWEB)

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  7. Density of states from mode expansion of the self-dynamic structure factor of a liquid metal

    Science.gov (United States)

    Guarini, E.; Bellissima, S.; Bafile, U.; Farhi, E.; De Francesco, A.; Formisano, F.; Barocchi, F.

    2017-01-01

    We show that by exploiting multi-Lorentzian fits of the self-dynamic structure factor at various wave vectors it is possible to carefully perform the Q →0 extrapolation required to determine the spectrum Z (ω ) of the velocity autocorrelation function of a liquid. The smooth Q dependence of the fit parameters makes their extrapolation to Q =0 a simple procedure from which Z (ω ) becomes computable, with the great advantage of solving the problems related to resolution broadening of either experimental or simulated self-spectra. Determination of a single-particle property like the spectrum of the velocity autocorrelation function turns out to be crucial to understanding the whole dynamics of the liquid. In fact, we demonstrate a clear link between the collective mode frequencies and the shape of the frequency distribution Z (ω ) . In the specific case considered in this work, i.e., liquid Au, analysis of Z (ω ) revealed the presence, along with propagating sound waves, of lower frequency modes that were not observed before by means of dynamic structure factor measurements. By exploiting ab initio simulations for this liquid metal we could also calculate the transverse current-current correlation spectra and clearly identify the transverse nature of the above mentioned less energetic modes. Evidence of propagating transverse excitations has actually been reported in various works in the recent literature. However, in some cases, like the present one, these modes are difficult to detect in density fluctuation spectra. We show here that the analysis of the single-particle dynamics is able to unveil their presence in a very effective way. The properties here shown to characterize Z (ω ) , and the information in it contained therefore allow us to identify it with the density of states (DoS) of the liquid. We demonstrate that only nonhydrodynamic modes contribute to the DoS, thus establishing its purely microscopic origin. Finally, as a by-product of this work, we

  8. Extension of the BMCSL equation of state for hard spheres to the metastable disordered region: Application to the SAFT approach.

    Science.gov (United States)

    Paricaud, P

    2015-07-28

    A simple modification of the Boublík-Mansoori-Carnahan-Starling-Leland equation of state is proposed for an application to the metastable disordered region. The new model has a positive pole at the jamming limit and can accurately describe the molecular simulation data of pure hard in the stable fluid region and along the metastable branch. The new model has also been applied to binary mixtures hard spheres, and an excellent description of the fluid and metastable branches can be obtained by adjusting the jamming packing fraction. The new model for hard sphere mixtures can be used as the repulsive term of equations of state for real fluids. In this case, the modified equations of state give very similar predictions of thermodynamic properties as the original models, and one can remove the multiple liquid density roots observed for some versions of the Statistical Associating Fluid Theory (SAFT) at low temperature without any modification of the dispersion term.

  9. Extension of the BMCSL equation of state for hard spheres to the metastable disordered region: Application to the SAFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Paricaud, P. [Unité de Chimie et Procédés, ENSTA-ParisTech, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau cedex (France)

    2015-07-28

    A simple modification of the Boublík-Mansoori-Carnahan-Starling-Leland equation of state is proposed for an application to the metastable disordered region. The new model has a positive pole at the jamming limit and can accurately describe the molecular simulation data of pure hard in the stable fluid region and along the metastable branch. The new model has also been applied to binary mixtures hard spheres, and an excellent description of the fluid and metastable branches can be obtained by adjusting the jamming packing fraction. The new model for hard sphere mixtures can be used as the repulsive term of equations of state for real fluids. In this case, the modified equations of state give very similar predictions of thermodynamic properties as the original models, and one can remove the multiple liquid density roots observed for some versions of the Statistical Associating Fluid Theory (SAFT) at low temperature without any modification of the dispersion term.

  10. All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte

    Science.gov (United States)

    Pandey, G. P.; Rastogi, A. C.; Westgate, Charles R.

    2014-01-01

    All-solid-state thin supercapacitors have been fabricated using current pulse polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) over carbon fiber paper and ionic liquid based gel polymer electrolyte. The PEDOT-coated carbon paper electrodes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) which confirm the porous morphology of PEDOT at the nanoscale and a high degree of ClO4- dopant ion conjugation. The performance characteristics of the supercapacitor cells have been evaluated by ac impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge techniques. The PEDOT electrode shows specific capacitance of ∼154.5 F g-1, which correspond to the cell area-normalized capacitance of 85 mF cm-2. The maximum specific energy and specific power of the solid-state supercapacitor cell, calculated from charge-discharge characteristics, are 6.5 Wh kg-1 and 11.3 kW kg-1, respectively. The solid-state supercapacitor shows good cycle durability and time stability. The thin, lightweight, gel electrolyte based supercapacitor shows considerable potential for low-cost, high-performance energy storage applications.

  11. Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes

    Directory of Open Access Journals (Sweden)

    Massimiliano Cimenti

    2009-06-01

    Full Text Available Solid oxide fuel cells (SOFC have the advantage of being able to operate with fuels other than hydrogen. In particular, liquid fuels are especially attractive for powering portable applications such as small power generators or auxiliary power units, in which case the direct utilization of the fuel would be convenient. Although liquid fuels are easier to handle and transport than hydrogen, their direct use in SOFC can lead to anode deactivation due to carbon formation, especially on traditional nickel/yttria stabilized zirconia (Ni/YSZ anodes. Significant advances have been made in anodic materials that are resistant to carbon formation but often these materials are less electrochemically active than Ni/YSZ. In this review the challenges of using liquid fuels directly in SOFC, in terms of gas-phase and catalytic reactions within the anode chamber, will be discussed and the alternative anode materials so far investigated will be compared.

  12. Application of Ionic Liquids in the Microwave-Assisted Extraction of Proanthocyanidins from Larix gmelini Bark

    OpenAIRE

    Yuangang Zu; Chunjian Zhao; Lin Zhang,; Fengjian Yang; Xiaowei Sun; Lei Yang

    2012-01-01

    Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, ...

  13. Integrated Pressure-Fed Liquid Oxygen / Methane Propulsion Systems - Morpheus Experience, MARE, and Future Applications

    Science.gov (United States)

    Hurlbert, Eric; Morehead, Robert; Melcher, John C.; Atwell, Matt

    2016-01-01

    An integrated liquid oxygen (LOx) and methane propulsion system where common propellants are fed to the reaction control system and main engines offers advantages in performance, simplicity, reliability, and reusability. LOx/Methane provides new capabilities to use propellants that are manufactured on the Mars surface for ascent return and to integrate with power and life support systems. The clean burning, non-toxic, high vapor pressure propellants provide significant advantages for reliable ignition in a space vacuum, and for reliable safing or purging of a space-based vehicle. The NASA Advanced Exploration Systems (AES) Morpheus lander demonstrated many of these key attributes as it completed over 65 tests including 15 flights through 2014. Morpheus is a prototype of LOx/Methane propellant lander vehicle with a fully integrated propulsion system. The Morpheus lander flight demonstrations led to the proposal to use LOx/Methane for a Discovery class mission, named Moon Aging Regolith Experiment (MARE) to land an in-situ science payload for Southwest Research Institute on the Lunar surface. Lox/Methane is extensible to human spacecraft for many transportation elements of a Mars architecture. This paper discusses LOx/Methane propulsion systems in regards to trade studies, the Morpheus project experience, the MARE NAVIS (NASA Autonomous Vehicle for In-situ Science) lander, and future possible applications. The paper also discusses technology research and development needs for Lox/Methane propulsion systems.

  14. APPLICATION OF LIQUID-BASED CYTOLOGY TO FINE-NEEDLE ASPIRATION BIOPSIES OF THE THYROID GLAND

    Directory of Open Access Journals (Sweden)

    Guido eFadda

    2012-05-01

    Full Text Available FNAB (fine-needle aspiration biopsy is regarded as an important tool for diagnosing thyroid lesions because of its simplicity, safety and cost-effectiveness. Its role in correctly characterizing the group of indeterminate lesions or follicular-patterned neoplasms (FN might be more decisive. LBC (Liquid-based cytology is a technique based on the use of a semi-automated device that has gained popularity as a method of collecting and processing both gynecologic and non-gynecologic cytologic specimens. It achieves a diagnostic sensitivity as accurate as conventional preparations especially for its excellent cell preservation and for the lack of background which decrease the amount of inadequate diagnoses. Moreover, the cellular material which has been stored in the preservative solution could be effectively used for the application of immunocytochemical and molecular techniques used especially for the Follicular proliferations . In many cases the cytologic features are similar in both methods but the colloid film and the lymphocytic component are more easily evaluated on direct smears whereas nuclear details and colloid globules are better evaluated in LBC slides. The LBC processed biopsies represent a valid alternative to conventional cytology. The possibility of applying special techniques enhance the efficacy of the cytological diagnosis of thyroid lesions.

  15. Application of liquid-based cytology to fine-needle aspiration biopsies of the thyroid gland.

    Science.gov (United States)

    Rossi, Esther Diana; Zannoni, Gian Franco; Moncelsi, Stefania; Stigliano, Egidio; Santeusanio, Giuseppe; Lombardi, Celestino Pio; Pontecorvi, Alfredo; Fadda, Guido

    2012-01-01

    Fine-needle aspiration biopsy is regarded as an important tool for diagnosing thyroid lesions because of its simplicity, safety, and cost-effectiveness. Its role in correctly characterizing the group of indeterminate lesions or follicular-patterned neoplasms (FN) might be more decisive. Liquid-based cytology (LBC) is a technique based on the use of a semi-automated device that has gained popularity as a method of collecting and processing both gynecologic and non-gynecologic cytologic specimens. It achieves a diagnostic sensitivity as accurate as conventional preparations especially for its excellent cell preservation and for the lack of background which decrease the amount of inadequate diagnoses. Moreover, the cellular material which has been stored in the preservative solution could be effectively used for the application of immunocytochemical and molecular techniques especially for the Follicular proliferations. In many cases the cytologic features are similar in both methods but the colloid film and the lymphocytic component are more easily evaluated on direct smears whereas nuclear details and colloid globules are better evaluated in LBC slides. The LBC-processed biopsies represent a valid alternative to conventional cytology. The possibility of applying special techniques enhance the efficacy of the cytological diagnosis of thyroid lesions.

  16. Applicability of a liquid membrane in enrichment and determination of nickel traces from natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Lledo, F.C.; Diaz-Lopez, I.C. [University of Havana, Department of Analytical Chemistry, Faculty of Chemistry, Havana (Cuba); Galindo-Riano, Maria D.; Garcia-Vargas, M.; Granado-Castro, M.D. [University of Cadiz, Department of Analytical Chemistry, Faculty of Sciences, Cadiz (Spain)

    2007-09-15

    In this work, a bulk liquid membrane method has been applied for Ni enrichment and separation from natural waters. The carrier-mediated transport was accomplished by pyridine-2-acetaldehyde benzoylhydrazone dissolved in toluene as a complexing agent. The preconcentration was achieved through pH control of source and receiving solutions via a counterflow of protons. The main variables were optimized by using a modified simplex technique. High transport efficiencies (101.2 {+-} 1.8-99.7 {+-} 4.2%) were provided by the carrier for nickel ions in a receiving phase of 0.31 mol L{sup -1} nitric acid after 9-13 h depending on sample salinity. The precision of the method was 2.05% (without a saline matrix) and 4.04% (with 40 g L{sup -1} NaCl) at the 95% confidence level and the detection limit of the blank was 0.015 {mu}g L{sup -1} Ni for detection by atomic absorption spectroscopy. The applicability of the method was tested on certified reference and real water samples with successful results, even for saline samples. The relative errors were -0.60% for certified reference materials and ranged from -0.39 to 2.90% and from 0.3 to 11.05% for real samples, obtained by comparison of inductively coupled plasma mass spectrometry and adsorptive cathodic stripping voltammetry measurements, respectively. (orig.)

  17. Ionic Liquid-assisted Synthesis of Polyaniline/Gold Nanocomposite and Its Biocatalytic Application

    Directory of Open Access Journals (Sweden)

    Liu Jingquan

    2008-01-01

    Full Text Available Abstract In this report, a novel chemical synthesis of polyaniline/gold nanocomposite is explored using ionic liquid (IL 1-Butyl-3-methylimidazolium hexafluorophosphate. The direct chemical synthesis of polyaniline/gold nanocomposite was initiated via the spontaneous oxidation of aniline by AuCl4 −in IL. A nearly uniform dispersion of polyaniline/Au particles with a diameter of 450 ± 80 nm was produced by this method, which indicates that this method is more suitable for controlling particle dimensions. It was also found that the electrical conductivity of the polyaniline/gold nanocomposite was more than 100 times higher than that of the pure polyaniline nanoparticles. The polyaniline/gold nanocomposite displays superior function in the biocatalytic activation of microperoxidase-11 because of the high surface area of the assembly and the enhanced charge transport properties of the composite material. We also report the possible application of polyaniline/gold nanocomposite as a H2O2biosensor.

  18. Homogeneous Modification of Sugarcane Bagasse by Graft Copolymerization in Ionic Liquid for Oil Absorption Application

    Directory of Open Access Journals (Sweden)

    Ming-Jie Chen

    2016-01-01

    Full Text Available Sugarcane bagasse, lignocellulosic residue from the sugar industry, is an abundant and renewable bioresource on the earth. The application of ionic liquids in sugarcane bagasse biorefinery is gaining increasing interest. The homogeneous modification of sugarcane bagasse by free radical initiated graft copolymerization of acrylate monomers using 1-allyl-3-methylimidazolium chloride as solvent was performed. A variety of sugarcane bagasse graft copolymers with different weight percent gain were prepared via adjusting the monomer dosage. FT-IR studies confirmed the success in attaching the poly(acrylate side chains onto sugarcane bagasse. Oil absorbency studies suggested that the sugarcane bagasse graft copolymers were potential biobased materials for effective treatment of ester-based oils. SEM studies showed that the sugarcane bagasse graft copolymers displayed a dense morphology structure. Thermogravimetric analysis demonstrated that the thermal stability of sugarcane bagasse decreased after the homogeneous modification by the graft copolymerization. The present study provides an alternative strategy to convert sugarcane bagasse into a value-added functional biobased material.

  19. Graphene-Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application.

    Science.gov (United States)

    Lin, Yong; Dong, Xuchu; Liu, Shuqi; Chen, Song; Wei, Yong; Liu, Lan

    2016-09-14

    One of the critical issues for the fabrication of desirable sensing materials has focused on the construction of an effective continuous network with a low percolation threshold. Herein, graphene-based elastomer composites with a segregated nanostructured graphene network were prepared by a novel and effective ice-templating strategy. The segregated graphene network bestowed on the natural rubber (NR) composites an ultralow electrical percolation threshold (0.4 vol %), 8-fold lower than that of the NR/graphene composites with homogeneous dispersion morphology (3.6 vol %). The resulting composites containing 0.63 vol % graphene exhibited high liquid sensing responsivity (6700), low response time (114 s), and good reproducibility. The unique segregated structure also provides this graphene-based elastomer (containing 0.42 vol % graphene) with exceptionally high stretchability, sensitivity (gauge factor ≈ 139), and good reproducibility (∼400 cycles) of up to 60% strain under cyclic tests. The fascinating performances highlight the potential applications of graphene-elastomer composites with an effective segregated network as multifunctional sensing materials.

  20. High-performance liquid chromatography of unmodified rosin and its applications in contact dermatology.

    Science.gov (United States)

    Sadhra, S; Gray, C N; Foulds, I S

    1997-10-24

    Rosin is a well recognised skin sensitiser and is also amongst the most common causes of occupational asthma. Due to its complex chemical composition, it is difficult to isolate its many components and this has hindered progress in the identification of the specific respiratory and contact allergens it contains. This paper reports the application of high-performance liquid chromatography and other analytical techniques to the isolation and identification of contact allergens in complex mixtures such as rosin. HPLC methods were developed in order to isolate as many rosin components as possible and these were then patch tested on rosin sensitive individuals. The structure of the most dermatologically active component was then determined using mass spectrometry, nuclear magnetic resonance and infrared techniques. An HPLC method has also been developed which will enable the identification of rosin in commercial products, providing a valuable tool for determining the cause of rosin contact allergy. Furthermore, mass spectral data for the common abieitic-type resin acids are compiled which were used to confirm the identification of the HPLC resin acid peaks and have not been reported previously.