WorldWideScience

Sample records for liquid nitrogen vapour

  1. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    Science.gov (United States)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  2. Liquid-vapour surface sensors for liquid nitrogen and hydrogen

    Science.gov (United States)

    Siegwarth, J. D.; Voth, R. O.; Snyder, S. M.

    1992-01-01

    The present paper identifies devices to serve as liquid-vapor detectors in zero gravity. The testing in LH2 was done in a sealed glass Dewar system to eliminate any chance of mixing H2 and air. Most of the tests were performed with the leads to the sensor horizontal. Some results of rapid cycle testing of LVDG in LH2 are presented. Findings of rapid-cycle testing of LVDG in LH2 are discussed. The sensor crossed the liquid surface when the position sensor registered 1.9 V, which occurred at about 0.4075 s. The delay time was about 1.5 ms. From the estimated slope of the position sensor curve at 1.9 V, the velocity of the sensor through the liquid surface is over 3 m/s. Results of tests of optical sensors are presented as well.

  3. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  4. Cryopreservation of human sperm: efficacy and use of a new nitrogen-free controlled rate freezer versus liquid nitrogen vapour freezing.

    Science.gov (United States)

    Creemers, E; Nijs, M; Vanheusden, E; Ombelet, W

    2011-12-01

    Preservation of spermatozoa is an important aspect of assisted reproductive medicine. The aim of this study was to investigate the efficacy and use of a recently developed liquid nitrogen and cryogen-free controlled rate freezer and this compared with the classical liquid nitrogen vapour freezing method for the cryopreservation of human spermatozoa. Ten patients entering the IVF programme donated semen samples for the study. Samples were analysed according to the World Health Organization guidelines. No significant difference in total sperm motility after freeze-thawing between the new technique and classical technique was demonstrated. The advantage of the new freezing technique is that it uses no liquid nitrogen during the freezing process, hence being safer to use and clean room compatible. Investment costs are higher for the apparatus but running costs are only 1% in comparison with classical liquid nitrogen freezing. In conclusion, post-thaw motility of samples frozen with the classical liquid nitrogen vapour technique was comparable with samples frozen with the new nitrogen-free freezing technique. This latter technique can thus be a very useful asset to the sperm cryopreservation laboratory. © 2011 Blackwell Verlag GmbH.

  5. Study of vapour phase dynamics with nitrogen boiling in the field of centrifugal forces

    International Nuclear Information System (INIS)

    Levchenko, N.M.; Kolod'ko, I.M.

    1987-01-01

    The vapour phase dynamics during film boiling of liquid nitrogen on horizontal wire in the field of centrifugal forces has been studied experimentally in a wide range of overloads(1 ≤ η ≤ 375) and heat fluxes (q kp2 ≤ q ≤ 4q kpi ). The available data confirmed and the theoretical relationships suggested make it possible to calculate the hydrodynamic film boiling parameters (wave length, bubble departure diameter and frequency) for other liquids

  6. Study of vapour phase dynamics with nitrogen boiling in the field of centrifugal forces

    Energy Technology Data Exchange (ETDEWEB)

    Levchenko, N M; Kolod' ko, I M

    1987-07-01

    The vapour phase dynamics during film boiling of liquid nitrogen on horizontal wire in the field of centrifugal forces has been studied experimentally in a wide range of overloads(1 less than or equal to eta less than or equal to 375) and heat fluxes (q/sub kp2/ less than or equal to q less than or equal to 4q/sub kpi/). The available data confirmed and the theoretical relationships suggested make it possible to calculate the hydrodynamic film boiling parameters (wave length, bubble departure diameter and frequency) for other liquids.

  7. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  8. Liquid level control system for vapour generator

    International Nuclear Information System (INIS)

    Singh, G.

    1984-01-01

    A system for regulating the liquid level in a vapor generator, in which the incoming flow of feed liquid is regulated in response to the difference between the measured liquid level and a reference level, the difference between the exiting vapor mass flow rate and the incoming liquid mass flow rate, and a function of the measured incoming liquid temperature. The temperature function produces a gain value, which increases in response to decreasing incoming liquid temperature. The purpose of the temperature function is to stabilize the level control under transient conditions (e.g. sudden lose of load). (author)

  9. Vapour pressure isotope effects in liquid hydrogen chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.N.C.; Calado, J.C.G. (Instituto Superior Tecnico, Lisbon (Portugal)); Jancso, Gabor (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics)

    1992-08-10

    The difference between the vapour pressures of HCl and DCl has been measured over the temperature range 170-203 K by a differential manometric technique in a precision cryostat. In this range the vapour pressure of HCl is higher than that of DCl by 3.2% at 170 K, decreasing to 0.9% at 200 K. The reduced partition function ratios f[sub l]/f[sub g] derived from the vapour pressure data can be described by the equation ln(f[sub l]/f[sub g]) = (3914.57[+-]10)/T[sup 2] - (17.730[+-]0.055)/T. The experimentally observed H-D vapour pressure isotope effect, together with the values on the [sup 35]Cl-[sup 37]Cl isotope effect available in the literature, is interpreted in the light of the statistical theory of isotope effects in condensed systems by using spectroscopic data of the vapour and liquid phases. The results indicate that the rotation in liquid hydrogen chloride is hindered. Temperature-dependent force constants for the hindered translational and rotational motions were invoked in order to obtain better agreement between the model calculation and experiment. (author).

  10. Vapour-liquid equilibria of the hard core Yukawa fluid

    NARCIS (Netherlands)

    Smit, B.; Frenkel, D.

    1991-01-01

    Techniques which extend the range of applicability of the Gibbs ensemble technique for particles which interact with a hard core potential are described. The power of the new technique is demonstrated in a numerical study of the vapour-liquid coexistence curve of the hard core Yukawa fluid.

  11. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  12. Research on boiling liquid expanding vapour explosions

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.; Steward, F.R.; Venart, J.E.S.

    A boiling liquid expanding vapor explosion (BLEVE) is due to rapid boiling and expansion, with no ignition or chemical reaction involved. Research is being conducted to examine such questions as under what conditions tanks and their contents undergo BLEVE, what are the characteristics of tanks affected by BLEVE, and what alterations in tank design can be made to minimize the likelihood of BLEVEs. Experiments have been done with both propane and freon, using commercially available one-liter propane cylinders. Outdoor tests were conducted and designed to have the tank fail at a particular set of internal conditions. High speed photography was used to record the explosion, and computerized monitoring equipment to record temperature and pressure data. Tests were run to attempt to determine the relationship between temperature and BLEVEs, and to test the possibility that the occurrence of a BLEVE depends on the amount of vapor that could be produced when the tank was ruptured. Discussion is made of the role of pressure waves and rarefaction waves in the explosion. It is concluded that the superheat temperature limit, theorized as the minimum temperature below which no BLEVE can occur, cannot be used to predict BLEVEs. It has been shown that BLEVEs can occur below this temperature. There appears to be a relationship between liquid temperature, liquid volume, and the energy required to drive the BLEVE. Fireballs may occur after a BLEVE of flammable material, but are not part of the tank destruction. Rupture location (vapor vs liquid space) appears to have no effect on whether a container will undergo a BLEVE. 7 refs., 7 figs., 1 tab.

  13. The response of liquid-filled pipes to vapour collapse

    International Nuclear Information System (INIS)

    Tijsseling, A.S.; Fan, D.

    1991-01-01

    The collapse of vapour cavities in liquid is usually accompanied with almost instantaneous pressure rises. These pressure rises impose severe loads on liquid-conveying pipes whenever the cavities become sufficiently large. Due to the impact nature of loadings, movement of the pipe walls can be expected. Tests are performed in a water-filled closed pipe suspended by thin steel wires. Vaporous cavities are induced in the liquid by hitting the pipe axially by a steel rod. The volume of the cavities can be varied by changing the initial pressure of the water. The developing and collapsing of cavities in the liquid is inferred from pressure measurements. Strain gauges and a laser Doppler vibrometer are used to record the response of the pipe to these pressures. The test results are compared with predictions from a numerical model. The model describes 1) axial stress wave propagations in the pipe and 2) water hammer and cavitation phenomena in the liquid. Pipe and liquid interact via 1) the radial expansion and contraction of the pipe wall and 2) the closed ends of the pipe, where large vapour cavities may develop. (author)

  14. Vapour phase motion in cryogenic systems containing superheated and subcooled liquids

    Science.gov (United States)

    Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.

    The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.

  15. Consistent vapour-liquid equilibrium data containing lipids

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    Consistent physical and thermodynamic properties of pure components and their mixtures are important for process design, simulation, and optimization as well as design of chemical based products. In the case of lipids, it was observed a lack of experimental data for pure compounds and also...... for their mixtures in open literature, what makes necessary the development of reliable predictive models based on limited data. To contribute to the missing data, measurements of isobaric vapour-liquid equilibrium (VLE) data of three binary mixtures at two different pressures were performed at State University...

  16. Contribution to the liquid-vapour equilibrium of potassium and sodium mixtures

    International Nuclear Information System (INIS)

    Schreinlechner, I.; Schwarz, N.

    1975-10-01

    In this paper the phase diagram of the binary system potassium-sodium in the liquid-vapour range was calculated for different pressures and temperatures, assuming the two metals acting as ideal solution. The assumption was verified by experimental results. It is thus possible to calculate the separation factor for the rectification of potassium and to estimate the content of sodium in the vapour phase during experiments with vapourized potassium from the data of the vapour pressures of the pure metals. (author)

  17. Improved grand canonical sampling of vapour-liquid transitions.

    Science.gov (United States)

    Wilding, Nigel B

    2016-10-19

    Simulation within the grand canonical ensemble is the method of choice for accurate studies of first order vapour-liquid phase transitions in model fluids. Such simulations typically employ sampling that is biased with respect to the overall number density in order to overcome the free energy barrier associated with mixed phase states. However, at low temperature and for large system size, this approach suffers a drastic slowing down in sampling efficiency. The culprits are geometrically induced transitions (stemming from the periodic boundary conditions) which involve changes in droplet shape from sphere to cylinder and cylinder to slab. Since the overall number density does not discriminate sufficiently between these shapes, it fails as an order parameter for biasing through the transitions. Here we report two approaches to ameliorating these difficulties. The first introduces a droplet shape based order parameter that generates a transition path from vapour to slab states for which spherical and cylindrical droplets are suppressed. The second simply biases with respect to the number density in a tetragonal subvolume of the system. Compared to the standard approach, both methods offer improved sampling, allowing estimates of coexistence parameters and vapor-liquid surface tension for larger system sizes and lower temperatures.

  18. Swivel Joint For Liquid Nitrogen

    Science.gov (United States)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  19. Initiation of a boiling liquid expanding vapour explosion

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.; Chan, C.K.; Steward, F.R.; Tennankore, K.N.; Venart, J.E.S.

    1991-06-01

    Boiling liquid expanding vapour explosions (BLEVEs) occur when a pressure liquefied gas tank is burst and the fluid is ejected to the atmosphere. As the liquid is exposed to a lower pressure it boils violently, causing an explosion which destroys the container. One litre tanks were filled with propane or R12, heated, and caused to rupture at specific test conditions to determine the parameters required for a BLEVE. Results showed that the energy stored in the liquid under pressure relative to the liquid at atmospheric conditions was a quantity which can be used to predict a BLEVE for the particular apparatus and conditions used. The possible importance of the development of a shock wave within the container during a BLEVE was noted. A shock tube was used to study the shock waves generated during a BLEVE. Temperature, liquid volume, rupture location, rupture area, and the fluid involved were varied. The pressure was measured vs time for periods immediately after the rupture. Photographs of the formation of pressure waves were obtained using spark Schlieren photography and showed that the BLEVE phenomenon is definitely a shock-related event. Pressure information was also gathered during BLEVEs of one litre cylinders, and this information is compared to that from the shock tube. Shock tube data showed that transverse waves formed from the initial pressure wave could be amplified. 37 refs., 54 figs., 11 tabs.

  20. Initiation of a boiling liquid expanding vapour explosion

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.

    1990-01-01

    Boiling liquid expanding vapour explosions (BLEVEs) occur when a pressure liquefied gas tank is burst and the fluid is ejected to the atmosphere. As the liquid is exposed to a lower pressure it boils violently, causing an explosion which destroys the container. One litre tanks were filled with propane or R12, heated, and caused to rupture at specific test conditions to determine the parameters required for a BLEVE. Results showed that the energy stored in the liquid under pressure relative to the liquid at atmospheric conditions was a quantity which can be used to predict a BLEVE for the particular apparatus and conditions used. The possible importance of the development of a shock wave within the container during a BLEVE was noted. A shock tube was used to study the shock waves generated during a BLEVE. Temperature, liquid volume, rupture location, rupture area, and the fluid involved were varied. The pressure was measured vs time for periods immediately after the rupture. Photographs of the formation of pressure waves were obtained using spark Schlieren photography. Similarities to waves measured during detonations in ducts were noted. Pressure information was also gathered during BLEVEs of one litre cylinders, and this data is compared to that from the shock tube. Shock tube data showed that transverse waves formed from the initial pressure wave could be amplified. 37 refs., 54 figs., 11 tabs.

  1. (Vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone)

    International Nuclear Information System (INIS)

    Jiang Hui; Li Haoran; Wang Congmin; Tan Taijun; Han Shijun

    2003-01-01

    The isothermal and isobaric (vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone) measured with an inclined ebulliometer are presented. The experimental results are analysed using the UNIQUAC equation with the temperature-dependent binary parameters with satisfactory results. Isobaric (vapour + liquid) equilibria data for these systems at p=99.99 kPa are compared with the literature data. Experimental vapour pressure of 2,2-dimethoxypropane are also included

  2. Heat transfer in vapour-liquid flow of carbon dioxide

    International Nuclear Information System (INIS)

    Yagov, V.V.

    2009-01-01

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO 2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO 2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO 2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  3. Automatic liquid nitrogen feeding device

    International Nuclear Information System (INIS)

    Gillardeau, J.; Bona, F.; Dejachy, G.

    1963-01-01

    An automatic liquid nitrogen feeding device has been developed (and used) in the framework of corrosion tests realized with constantly renewed uranium hexafluoride. The issue was to feed liquid nitrogen to a large capacity metallic trap in order to condensate uranium hexafluoride at the exit of the corrosion chambers. After having studied various available devices, a feeding device has been specifically designed to be robust, secure and autonomous, as well as ensuring a high liquid nitrogen flowrate and a highly elevated feeding frequency. The device, made of standard material, has been used during 4000 hours without any problem [fr

  4. A static analytical apparatus for vapour pressures and (vapour + liquid) phase equilibrium measurements with an internal stirrer and view windows

    International Nuclear Information System (INIS)

    Guo, Hao; Gong, Maoqiong; Dong, Xueqiang; Wu, Jianfeng

    2014-01-01

    Highlights: • A new static analytical apparatus for vapour pressures and VLE data was designed. • The {R600a + R245fa} system was selected as a verification system. • Correlation of VLE data was made using PRvdWs and PRHVNRTL model. • Good agreement can be found with the literature data. - Abstract: A new static analytical apparatus for reliable vapour pressures and (vapour + liquid) equilibrium data of small-scale cell (≈150 mL) with internal stirrer and view windows was designed. In this work, the compositions of the phases were analyzed by a gas chromatograph connected on-line with TCD detectors. The operating pressure ranges from (0 to 3000) kPa, and the operating temperature range from (293 to 400) K. Phase equilibrium data for previously reported systems were first measured to test the credibility of the newly developed apparatus. The test included vapour pressure of 1,1,1,3,3-pentafluoropropane (R245fa) and isobutane (R600a), VLE of the (R600a + R245fa) system from T = (293.150 to 343.880) K. The measured VLE data are regressed with thermodynamic models using Peng–Robinson EoS with two different models, viz. the van der Waals mixing rule, and the Huron–Vidal mixing rule utilising the non-random two-liquid activity coefficient model. Thermodynamic consistency testing is also performed for the newly measured experimental data

  5. Influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bresme, Fernando [Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom); Gonzalez-Melchor, Minerva [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340 Mexico D.F. (Mexico); Alejandre, Jose [Departamento de QuImica, Universidad Autonoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340 Mexico D.F. (Mexico)

    2005-11-16

    The influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces is investigated using molecular dynamics simulations of the soft primitive model. Ion size asymmetry results in charge separation at the liquid-vapour interface and therefore in a local violation of the electroneutrality condition. For moderate size asymmetries the electrostatic potential at the interface can reach values of the order of 0.1 V. Size asymmetry plays a very important role in determining ion adsorption at the liquid-vapour interface of ionic mixtures. The interfacial adsorption of the bigger component results in an increase of the electrostatic potential, and a reduction of the interfacial surface tension. Our results show that ionic mixtures provide a very efficient way to tune the electrostatics and surface properties of ionic liquid-vapour interfaces.

  6. Influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces

    International Nuclear Information System (INIS)

    Bresme, Fernando; Gonzalez-Melchor, Minerva; Alejandre, Jose

    2005-01-01

    The influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces is investigated using molecular dynamics simulations of the soft primitive model. Ion size asymmetry results in charge separation at the liquid-vapour interface and therefore in a local violation of the electroneutrality condition. For moderate size asymmetries the electrostatic potential at the interface can reach values of the order of 0.1 V. Size asymmetry plays a very important role in determining ion adsorption at the liquid-vapour interface of ionic mixtures. The interfacial adsorption of the bigger component results in an increase of the electrostatic potential, and a reduction of the interfacial surface tension. Our results show that ionic mixtures provide a very efficient way to tune the electrostatics and surface properties of ionic liquid-vapour interfaces

  7. Thermodynamic properties of the liquid Hg-Tl alloys determined from vapour pressure measurements

    Directory of Open Access Journals (Sweden)

    Gierlotka W.

    2002-01-01

    Full Text Available The partial vapour pressure of mercury over liquid Hg-Tl liquid solutions were determined in the temperature range from 450 to 700 K by direct vapour pressure measurements carried out with the quartz gauge. From the measured ln pHg vs. T relationships activities of mercury were determined. Using Redlich-Kister formulas logarithms of the activity coefficients were described with the following equations: From which all thermodynamic functions in the solutions can be derived.

  8. (Vapour + liquid) equilibria of ternary systems with ionic liquids using headspace gas chromatography

    International Nuclear Information System (INIS)

    Mokhtarani, Babak; Gmehling, Juergen

    2010-01-01

    (Vapour + liquid) equilibrium (VLE) data for the ternary systems (hexane + benzene), (hexane + cyclohexane), (benzene + cyclohexane), and (ethanol + water) with an ionic liquid as entrainer for extractive distillation were measured by headspace gas chromatography. As ionic liquids, 1-hexyl-3-methyl-imidazolium bis (trifluoromethyl-sulfonyl) imide [HMIM][BTI], 1-octyl-3-methyl-imidazolium bis (trifluoromethyl-sulfonyl) imide [OMIM][BTI], 1-octyl-3-methyl-imidazolium trifluoro-methanesulfonate [OMIM][OTF], and 1-butyl-3-methyl-imidazolium trifluoro-methanesulfonate [BMIM][OTF] were used. The experimental data show that the ionic liquids investigated have a great influence on the separation factors of the systems (hexane + benzene), (hexane + cyclohexane), and (benzene + cyclohexane). The experimental data were compared with the predicted results using mod. UNIFAC (Do). The predicted results are in good agreement with the experimental data.

  9. (Vapour + liquid) equilibria of ternary systems with ionic liquids using headspace gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarani, Babak [Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran (Iran, Islamic Republic of); Gmehling, Juergen, E-mail: gmehling@tech.chem.uni-oldenburg.d [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany)

    2010-08-15

    (Vapour + liquid) equilibrium (VLE) data for the ternary systems (hexane + benzene), (hexane + cyclohexane), (benzene + cyclohexane), and (ethanol + water) with an ionic liquid as entrainer for extractive distillation were measured by headspace gas chromatography. As ionic liquids, 1-hexyl-3-methyl-imidazolium bis (trifluoromethyl-sulfonyl) imide [HMIM][BTI], 1-octyl-3-methyl-imidazolium bis (trifluoromethyl-sulfonyl) imide [OMIM][BTI], 1-octyl-3-methyl-imidazolium trifluoro-methanesulfonate [OMIM][OTF], and 1-butyl-3-methyl-imidazolium trifluoro-methanesulfonate [BMIM][OTF] were used. The experimental data show that the ionic liquids investigated have a great influence on the separation factors of the systems (hexane + benzene), (hexane + cyclohexane), and (benzene + cyclohexane). The experimental data were compared with the predicted results using mod. UNIFAC (Do). The predicted results are in good agreement with the experimental data.

  10. The Joys of Liquid Nitrogen.

    Science.gov (United States)

    Nolan, William T.; Gish, Thaddeus J.

    1996-01-01

    Presents 6 short experiments with liquid nitrogen that 12- and 13-year-old students can safely perform under close supervision. Helps the students in learning a number of basic chemical principles while spurring their curiosity and showing them how much fun chemistry can be. (JRH)

  11. Measurement and modeling of high-pressure (vapour + liquid) equilibria of (CO2 + alcohol) binary systems

    International Nuclear Information System (INIS)

    Gutierrez, Jorge E.; Bejarano, Arturo; Fuente, Juan C. de la

    2010-01-01

    An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at 2 + 1-propanol), (CO 2 + 2-methyl-1-propanol), (CO 2 + 3-methyl-1-butanol), and (CO 2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO 2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.

  12. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  13. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    Science.gov (United States)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  14. Hydrogen and carbon vapour pressure isotope effects in liquid fluoroform studied by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Takao; Mitome, Ryota; Yanase, Satoshi [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2017-06-01

    H/D and {sup 12}C/{sup 13}C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF{sub 3}) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF{sub 3} monomer and CHF{sub 3} molecules surrounded by other CHF{sub 3} molecules in every direction in CHF{sub 3} clusters were used as model molecules of vapour and liquid CHF{sub 3}. Although experimental results in which the vapour pressure of liquid {sup 12}CHF{sub 3} is higher than that of liquid {sup 12}CDF{sub 3} and the vapour pressure of liquid {sup 13}CHF{sub 3} is higher than that of liquid {sup 12}CHF{sub 3} between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the {sup 12}C/{sup 13}C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and {sup 12}C/{sup 13}C VPIEs.

  15. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  16. Compressibility and specific heats of heavier condensed rare gases near the liquid-vapour critical point

    International Nuclear Information System (INIS)

    March, N.H.

    2003-08-01

    Sarkisov (J. Chem. Phys. 119, 373, 2003) has recently discussed the structural behaviour of a simple fluid near the liquid-vapour critical point. His work, already compared with computer simulation studies, is here brought into direct contact for the heavier condensed rare gases Ar, Kr and Xe with (a) experiment and (b) earlier theoretical investigations. Directions for future studies then emerge. (author)

  17. Multiscale network model for simulating liquid water and water vapour transfer properties of porous materials

    NARCIS (Netherlands)

    Carmeliet, J.; Descamps, F.; Houvenaghel, G.

    1999-01-01

    A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is

  18. Range-energy relations and stopping powers of organic liquids and vapours for alpha particles

    International Nuclear Information System (INIS)

    Akhavan-Rezayat, A.; Palmer, R.B.J.

    1980-01-01

    Experimental range-energy relations are presented for alpha particles in methyl alcohol, propyl alcohol, dichloromethane, chloroform and carbon tetrachloride in both the liquid and vapour phases. Stopping power values for these materials and for oxygen gas over the energy range 1.0-8.0 MeV are also given. From these results stopping powers have been derived for the -CH 2 -group and for -Cl occurring in chemical combination in the liquid and vapour phases. The molecular stopping power in the vapour phase is shown to exceed that in the liquid phase by 2-6% below 2 MeV, reducing to negligible differences at about 5 MeV for the materials directly investigated and for the -Cl atom. No significant phase effect is observed for the -CH 2 -group, but it is noted that the uncertainties in the values of the derived stopping powers are much greater in this case. Comparison of the experimental molecular stopping powers with values calculated from elemental values using the Bragg additivity rule shows agreement for vapours but not for liquids. (author)

  19. Liquid nitrogen ingestion followed by gastric perforation.

    Science.gov (United States)

    Berrizbeitia, Luis D; Calello, Diane P; Dhir, Nisha; O'Reilly, Colin; Marcus, Steven

    2010-01-01

    Ingestion of liquid nitrogen is rare but carries catastrophic complications related to barotrauma to the gastrointestinal tract. We describe a case of ingestion of liquid nitrogen followed by gastric perforation and respiratory insufficiency and discuss the mechanism of injury and management of this condition. Liquid nitrogen is widely available and is frequently used in classroom settings, in gastronomy, and for recreational purposes. Given the potentially lethal complications of ingestion, regulation of its use, acquisition, and storage may be appropriate.

  20. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells

    Science.gov (United States)

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity. PMID:27351725

  1. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells.

    Science.gov (United States)

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

  2. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Raphaela Putzhammer

    Full Text Available The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

  3. Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

    OpenAIRE

    Wenjing Ding; Weiwei Shan; Zijuan; Wang; Chao He

    2017-01-01

    Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The ...

  4. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells

    OpenAIRE

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; F?rste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothe...

  5. Measurement and correlation of vapour pressures of pyridine and thiophene with [EMIM][SCN] ionic liquid

    International Nuclear Information System (INIS)

    Khelassi-Sefaoui, Asma; Mutelet, Fabrice; Mokbel, Ilham; Jose, Jacques; Negadi, Latifa

    2014-01-01

    Highlights: • VLE of (pyridine + [EMIM][SCN]), or (thiophene + [EMIM][SCN]) binary mixtures were measured. • The investigated temperatures are 273 K to 363 K. • The PC-SAFT equation of state has been used to correlate the vapour pressures of the binary systems. - Abstract: In this work (vapour + liquid) equilibrium (VLE) measurements were performed on binary systems of the ionic liquid 1-ethyl-3-methylimidazolium thiocynate [EMIM][SCN] with thiophene or pyridine at pressures close to the atmospheric pressure using a static device at temperatures between 273 K and 363 K. Experimental data were correlated by the PC-SAFT EoS. The binary interaction parameters k ij were optimised on experimental VLE data. The results obtained for the two binary mixtures studied in this paper indicate that the PC-SAFT EoS can be used to represent systems containing ionic liquids

  6. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    Science.gov (United States)

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  7. The Use of VMD Data/Model to Test Different Thermodynamic Models for Vapour-Liquid Equilibrium

    DEFF Research Database (Denmark)

    Abildskov, Jens; Azquierdo-Gil, M.A.; Jonsson, Gunnar Eigil

    2004-01-01

    Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport take...... place in vapour phase). The vapour pressure difference is obtained in VMD processes by applying a vacuum on one side of the membrane. The membrane acts as a mere support for the liquid-vapour equilibrium. The evaporation of the liquid stream takes place on the feed side of the membrane...... values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface. (C) 2004 Elsevier B.V. All rights reserved....

  8. Isobaric (vapour + liquid) equilibrium for N-methyl-2-pyrrolidone with branched alcohols

    International Nuclear Information System (INIS)

    Gnanakumari, P.; Venkatesu, P.; Hsieh, C.-T.; Rao, M.V. Prabhakara; Lee, M.-J.; Lin, Ho-mu

    2009-01-01

    The (vapour + liquid) equilibrium (VLE) and boiling temperature measurements have been determined at 95.3 kPa as a function of composition for the binary liquid mixtures of N-methyl-2-pyrrolidone (NMP) with branched alcohols using a Swietoslawski-ebulliometer. The branched alcohols include 2-propanol, 2-butanol, 2-methyl-l- propanol, 2-methyl-2-propanol, and 3-methyl-l-butanol. The experimental temperature-composition (T-x) results were used to estimate Wilson parameters and then used to calculate the equilibrium vapour compositions and the excess Gibbs free energy at T = 298.15 K. The experimental temperature-composition (T, x) results were correlated with the Wilson, the NRTL and the UNIQUAC models. The experimental results are interpreted in terms of intermolecular interactions between constituent molecules

  9. Development of liquid nitrogen Centrifugal Pump

    International Nuclear Information System (INIS)

    Abe, M; Sagiyama, R; Tsuchiya, H; Takayama, T; Torii, Y; Nakamura, M; Hoshino, Y; Odashima, Y

    2009-01-01

    Usually liquid nitrogen (LN 2 ) transfer from a container to a laboratory equipment takes place by applying pressure to the container to push out liquid or pouring liquid into the cryostat directly by lifting the container. In order to overcome inconvenience of pressuring or lifting containers, we have been developing the Liquid Nitrogen Centrifugal Pump of a small electric turbine pump. Significant advantages that both reducing time to fill LN 2 and controlling the flow rate of liquid into the cryostat are obtained by introducing this pump. We have achieved the lift of about 800mm with the vessel's opening diameter of 28mm.

  10. Determination of Meteorite Porosity Using Liquid Nitrogen

    Science.gov (United States)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  11. The Bevatron liquid nitrogen circulation system

    International Nuclear Information System (INIS)

    Hunt, D.; Stover, G.

    1987-03-01

    A nitrogen liquefier and computer controlled valving system have been added to the Bevatron cryoliner vacuum system to cut operating costs by reducing liquid nitrogen consumption. The computer and interface electronic systems, which control the temperatures of twenty-eight liquid nitrogen circuits, have been chosen and designed to operate in the Bevatron's pulsating magnetic field. The nitrogen exhaust is routed back to a liquefier, of about five kilowatt capacity, liquefied, and rerouted through the cooling circuits. A description of the system and operating results are presented

  12. Automatic Transmission Of Liquid Nitrogen

    Directory of Open Access Journals (Sweden)

    Sumedh Mhatre

    2015-08-01

    Full Text Available Liquid Nitrogen is one of the major substance used as a chiller in industry such as Ice cream factory Milk Diary Storage of blood sample Blood Bank etc. It helps to maintain the required product at a lower temperature for preservation purpose. We cannot fully utilise the LN2 so practically if we are using 3.75 litre LN2 for a single day then around 12 of LN2 450 ml is wasted due to vaporisation. A pressure relief valve is provided to create a pressure difference. If there is no pressure difference between the cylinder carrying LN2 and its surrounding it will results in damage of container as well as wastage of LN2.Transmission of LN2 from TA55 to BA3 is carried manually .So care must be taken for the transmission of LN2 in order to avoid its wastage. With the help of this project concept the transmission of LN2 will be carried automatically so as to reduce the wastage of LN2 in case of manual operation.

  13. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography.

    Science.gov (United States)

    Haftka, Joris J H; Parsons, John R; Govers, Harrie A J

    2006-11-24

    A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).

  14. 3D imaging of vapour and liquid inclusions from the Mole Granite, Australia, using helical fluorescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cauzid, J. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France)], E-mail: jean.cauzid@esrf.fr; Philippot, P. [Geobiosphere Actuelle et Primitive, Institut de Physique du Globe de Paris, CNRS and Universite Denis Diderot, Case 89, 4 place Jussieu, 75252 Paris Cedex 05 (France); Bleuet, P. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France); Simionovici, A. [Laboratoire de Geophysique Interne et Tectonophysique, BP 53, 38041 Grenoble Cedex 9 (France); Somogyi, A. [Synchrotron Soleil, DiffAbs beamline, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Golosio, B. [Instituto di Matematica e Fisica, Universita di Sassari, 2 via Vienna, 07100 Sassari (Italy)

    2007-08-15

    World class Cu resources are concentrated in porphyry and epithermal ore deposits. Their formation remains partially understood, however, due to a lack of constraints on the partitioning properties of trace elements in general, and Cu in particular, between vapour and liquid phases evolved from boiling fluids at depth in the Earth's crust. Immiscible liquid and vapour fluid inclusions coexisting in a single quartz grain have been imaged in three dimensions by X-ray Fluorescence Computed Tomography (XFCT). Elemental spatial distributions confirm that Cu, and to a lesser extent As, partition into the vapour phase, whereas Mn, Fe, Zn, Br, Rb, Sr and Pb concentrate in the liquid inclusion. High resolution mapping of the vapour inclusions revealed that Cu is heterogeneously distributed at the scale of a single inclusion and is mostly concentrated as tiny daughter crystals.

  15. 3D imaging of vapour and liquid inclusions from the Mole Granite, Australia, using helical fluorescence tomography

    Science.gov (United States)

    Cauzid, J.; Philippot, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.; Golosio, B.

    2007-08-01

    World class Cu resources are concentrated in porphyry and epithermal ore deposits. Their formation remains partially understood, however, due to a lack of constraints on the partitioning properties of trace elements in general, and Cu in particular, between vapour and liquid phases evolved from boiling fluids at depth in the Earth's crust. Immiscible liquid and vapour fluid inclusions coexisting in a single quartz grain have been imaged in three dimensions by X-ray Fluorescence Computed Tomography (XFCT). Elemental spatial distributions confirm that Cu, and to a lesser extent As, partition into the vapour phase, whereas Mn, Fe, Zn, Br, Rb, Sr and Pb concentrate in the liquid inclusion. High resolution mapping of the vapour inclusions revealed that Cu is heterogeneously distributed at the scale of a single inclusion and is mostly concentrated as tiny daughter crystals.

  16. Specific cooling capacity of liquid nitrogen

    Science.gov (United States)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  17. The speed of sound in a gas–vapour bubbly liquid

    Science.gov (United States)

    Prosperetti, Andrea

    2015-01-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  18. The speed of sound in a gas-vapour bubbly liquid.

    Science.gov (United States)

    Prosperetti, Andrea

    2015-10-06

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model.

  19. Waves reflected by solid wall and wave interaction in vapour bubbly liquids

    International Nuclear Information System (INIS)

    Duong, N.H.; Nguyen, V.T.

    2004-01-01

    The vapour bubbly liquids are met in many natural and industrial processes, including in energy equipment. In the nuclear power plants this kind of medium appears in reactor cores (PWR, BWR and etc.), in turbine generators and in heat transfer loops. Due to some circumstances (for example, a hit caused by detonations or strong collisions) the pressure waves can appear in the bubbly liquid medium contained in those facilities. These waves propagate in the mixtures and interact with themselves and with structures. It is important that what will occur during mentioned above processes. The knowledge of this kind processes will be useful for analysing the different sorts of the processes occurred in the energy facilities where the vapor bubbly liquids are used as working or heat transfer medium, like nuclear power plants, and also useful in finding the measures for prevention of unfavourable phenomena (for example, during wave interactions maybe appear too high pressures, which could lead into damages of facilities and etc.) and safety operating the equipment. From the physical point of view, the waves in this kind of medium are interesting that owing to non-linear, dispersion and dissipation effects the wave patterns in them may be diverse and easy altered. In the paper the investigation results of the waves reflected by solid wall or structure of the moderate intensity shock waves, and the behaviour of pressure in the process of wave interaction in some mixtures of liquid with vapour bubbles (of radium ∼1 mm) are presented. (author)

  20. Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on vapour liquid equilibria of ethanol aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chong [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Ma Xiaoyan [College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Lu Yingzhou [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Li Chunxi, E-mail: Licx@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-03-15

    Vapour pressures were measured using a quasi-static ebulliometer for the binary mixture of (water + ethanol) containing one of three protonic ionic liquids (PIL), namely, mono-, di- or tri-ethanolammonium tetrafluoroborate, over the temperature range of (318.24 to 356.58) K at fixed PIL content of 0.30 in mass fraction. The vapour pressure data of the PIL-containing ternary systems were correlated using the NRTL equation with an overall root mean square deviation (RMSD) of 0.0092. The regressed NRTL parameters were used to predict the isobaric vapour liquid equilibria (VLE) for ternary systems (water + ethanol + PIL) at varying mass fraction of PIL and atmospheric pressure (101.3 kPa). It is shown that the effect of PILs on the VLE of the (water + ethanol) mixture follows the order: [HTEA][BF{sub 4}] > [HDEA][BF{sub 4}] > [HMEA][BF{sub 4}]. In addition, the relative volatilities of ethanol to water for pseudo-binary systems (water + ethanol + PIL) were calculated. The results indicate that the PILs studied can enhance the relative volatility of ethanol to water and even break the azeotropic behaviour of ethanol aqueous solution when PIL content is increased to a specified content.

  1. Using Peltier cells to study solid-liquid-vapour transitions and supercooling

    International Nuclear Information System (INIS)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat

  2. Vapour pressures and osmotic coefficients of binary mixtures containing alcohol and pyrrolidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Calvar, N.; Domínguez, Á.; Macedo, E.A.

    2013-01-01

    Highlights: • Osmotic coefficients of alcohols with pyrrolidinium ILs are determined. • Experimental data were correlated with extended Pitzer model of Archer and MNRTL. • Mean molal activity coefficients and excess Gibbs free energies were calculated. • The results have been interpreted in terms of interactions. -- Abstract: The osmotic and activity coefficients and vapour pressures of mixtures containing primary (1-propanol, 1-butanol and 1-pentanol) and secondary (2-propanol and 2-butanol) alcohols with pyrrolidinium-based ionic liquids (1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide, C 4 MpyrNTf 2 , and 1-butyl-1-methyl pyrrolidinium trifluoromethanesulfonate, C 4 MpyrTFO) have been experimentally determined at T = 323.15 K. For the experimental measurements, the vapour pressure osmometry technique has been used. The results on the influence of the structure of the alcohol and of the anion of the ionic liquid on the determined properties have been discussed and compared with literature data. For the correlation of the osmotic coefficients obtained, the Extended Pitzer model of Archer and the Modified Non-Random Two Liquids model were applied. The mean molal activity coefficients and the excess Gibbs energy for the studied mixtures were calculated from the parameters obtained in the correlation

  3. Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol

    International Nuclear Information System (INIS)

    Li Xuemei; Shen Chong; Li Chunxi

    2012-01-01

    Highlights ► Vapour pressures for six ternary systems containing an IL were measured. ► Components studied were water, ethanol, methanol, and alkanolammonium formates. ► The isobaric VLE were predicted using the fitted binary NRTL parameters. ► The ILs studied can generate a promising salt effect on VLE of azeotrope. ► [HMEA][HCOO] might be used as a potential entrainer in extractive distillation. - Abstract: Vapour pressures were measured using a quasi-static ebulliometer for the pseudo-binary mixtures of (water + ethanol), (water + methanol), and (methanol + ethanol) containing an alkanolammonium-based ionic liquid (IL), namely, mono-ethanolammonium formate ([HMEA][HCOO]) and di-ethanolammonium formate ([HDEA][HCOO]), respectively, with fixed IL mass fraction of 0.30 and over the temperature ranges of (292.12 to 371.13) K. The vapour pressures of the IL-containing ternary systems were favourably correlated using the NRTL model with an overall average absolute relative deviation (AARD) of 0.0082. Further, the salt effects of [HMEA][HCOO] and [HDEA][HCOO] on isobaric vapour liquid equilibria (VLE) of azeotrope and close boiling mixture, especially for the mixtures of (water + ethanol) and (methanol + ethanol), were investigated and compared with other ILs in terms of the x′–y phase diagrams predicted with the binary NRTL parameters. It is demonstrated that the relative volatilities of ethanol to water and ethanol to methanol are enhanced, and [HMEA][HCOO] might be used as a promising entrainer for the efficient separation of ethanol aqueous solution by special rectification.

  4. Liquid nitrogen cryotherapy of superior limbic keratoconjunctivitis.

    Science.gov (United States)

    Fraunfelder, Frederick W

    2009-02-01

    To evaluate the effects of liquid nitrogen cryotherapy on superior limbic keratoconjunctivitis (SLK). Interventional case series. In this clinical practice case series, the effects of liquid nitrogen cryotherapy on SLK were observed. Liquid nitrogen cryotherapy was performed using a Brymill E tip spray (0.013-inch aperture) with a double freeze-thaw technique. All subjects were outpatients who had local anesthesia with a single drop of topical proparacaine. The main outcome measure was the resolution of the disease process after treatment. Four female patients (average age, 64 +/- 13 years) and seven eyes with SLK were treated with liquid nitrogen cryotherapy. Resolution of signs and symptoms occurred within two weeks. Disease recurred in two patients and three of seven eyes, although repeat cryotherapy eradicated SLK in all cases. The repeat cryotherapy was performed at three months postoperatively. There were no adverse ocular events. Liquid nitrogen cryotherapy appears to be an effective alternative treatment for SLK as all subjects studied achieved long-term cures. Repeat cryotherapy may be necessary in some instances and may be performed three months after the first treatment.

  5. An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model

    Directory of Open Access Journals (Sweden)

    Davies Mark W

    2006-02-01

    Full Text Available Abstract Background The loss of perfluorocarbon (PFC vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates. Methods The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77 and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. Results From 14.2 mL (47% to 27.3 mL (91% of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p -1 (ANOVA with Bonferroni's multiple comparison test, p -1, respectively. Conclusion Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation.

  6. Liquid nitrogen dewar for protein crystal growth

    Science.gov (United States)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  7. Statistical nature of cluster emission in nuclear liquid-vapour phase coexistence

    International Nuclear Information System (INIS)

    Ma, Y G; Han, D D; Shen, W Q; Cai, X Z; Chen, J G; He, Z J; Long, J L; Ma, G L; Wang, K; Wei, Y B; Yu, L P; Zhang, H Y; Zhong, C; Zhou, X F; Zhu, Z Y

    2004-01-01

    The emission of nuclear clusters is investigated within the framework of the isospin-dependent lattice gas model and the classical molecular dynamics model. It is found that the emission of an individual cluster which is heavier than proton is almost Poissonian except near the transition temperature at which the system is leaving the liquid-vapour phase coexistence and thermal scaling is observed by the linear Arrhenius plots which are made from the average multiplicity of each cluster versus the inverse of temperature in the liquid-vapour phase coexistence. The slopes of the Arrhenius plots, i.e. the 'emission barriers', are extracted as a function of the mass or charge number and fitted by the formula embodied with the contributions of the surface energy and Coulomb interaction. Good agreements are obtained in comparison with the data for low-energy conditional barriers. In addition, the possible influences of the source size, Coulomb interaction and 'freeze-out' density and related physical implications are discussed

  8. Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones

    International Nuclear Information System (INIS)

    Radhamma, M.; Venkatesu, P.; Rao, M.V. Prabhakara; Prasad, D.H.L.

    2007-01-01

    Excess enthalpies (H E ), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The H E values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (G E ). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties

  9. Modification of Peng Robinson EOS for modelling (vapour + liquid) equilibria with electrolyte solutions

    International Nuclear Information System (INIS)

    Baseri, Hadi; Lotfollahi, Mohammad Nader

    2011-01-01

    Highlights: → Extended PR-EOS was presented for VLE of H 2 O/Salt/CO 2 systems at high pressure. → The proposed EPR-EOS is based upon contributions to the Helmholtz energy. → Born, Margules, and Debye-Huckel or mean spherical approximation terms were used. → Two different mixing rules Panagiotopoulos and Reid and Kwak and Mansoori (KM) were used. → A combination of KM mixing rule with DH term results more accurate VLE results. - Abstract: A modification of the extended Peng-Robinson equation of state (PR-EOS) is presented to describe the (vapour + liquid) equilibria of systems containing water and salts. The modification employs three additional terms including a Born term, a Margules term and two terms separately used for estimation of the long-range electrostatic interactions (the Debye-Huckel (DH) or the mean spherical approximation (MSA) terms). Effects of two mixing rules, first, the Panagiotopoulos and Reid mixing rule (PR) and, second, the Kwak and Mansoori mixing rule (KM), on the final values of VLE calculations are also investigated. The results show that the KM mixing rule is more appropriate than the PR mixing rule. The proposed equation of state is used to calculate the (vapour + liquid) equilibrium (VLE) of the systems containing (water + sodium sulphate + carbon dioxide) and (water + sodium chloride + carbon dioxide) at high pressure. The comparison of calculated results with the experimental data shows that a combination of KM mixing rule with the DH term results a more accurate VLE values.

  10. The liquid-vapour interface of chain molecules investigated using a density functional approach

    International Nuclear Information System (INIS)

    Bryk, P; Bucior, K; Sokolowski, S; Zukocinski, G

    2004-01-01

    A microscopic density functional theory is used to investigate the liquid-vapour interface of fluids composed of short linear chains. We analyse the structure of the interface and evaluate the dependence of the surface tension and of the interfacial width on the temperature. The difference in chain length leads to differences in the thermodynamic properties of the fluids. The liquid-phase parts of the interfacial profiles of shorter chains exhibit oscillations at low temperatures. These oscillations vanish for longer chains. The surface tension and the interfacial width at a given temperature are found to increase with the chain length. Both the surface tension and the interfacial width scale as power laws upon approaching the critical point with critical exponents characteristic of mean-field-type theories and with prefactors depending on the chain length only

  11. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  12. Ceramic packages for liquid-nitrogen operation

    International Nuclear Information System (INIS)

    Tong, H.M.; Yeh, H.L.; Goldblatt, R.D.

    1989-01-01

    To evaluate their compatibility for use in a liquid-nitrogen computer, metallized ceramic packages with test chips joined using IBM controlled-collapse solder (Pb-Sn) technology have been cycled between 30 0 C and liquid-nitrogen temperature. Room-temperature electrical resistance measurements were made at regular intervals of cycles to determine whether solder failure accompanied by a significant resistance increase had occurred. For the failed solder joints characterized by the highest thermal shear strain amplitude of 3.3 percent, the authors were able to estimate the number of liquid-nitrogen cycles needed to produce the corresponding failure rate using a room-temperature solder lifetime model. Cross-sectional examination of the failed solder joints using scanning electron microscopy and energy dispersive X-ray analysis indicated solder cracking occurring at the solder-ceramic interface. Chip pull tests on cycled packages yielded strengths far exceeding the minimal requirement. Mechanisms involving the formation of intermetallics were proposed to account for the observed solder fracture modes after liquid-nitrogen cycling and after chip pull. Furthermore, scanning electron microscopic examination of pulled chips in cycled packages showed no apparent sign of cracking in quartz and polyimide for chip insulation

  13. Liquid-Nitrogen Test for Blocked Tubes

    Science.gov (United States)

    Wagner, W. R.

    1984-01-01

    Nondestructive test identifies obstructed tube in array of parallel tubes. Trickle of liquid nitrogen allowed to flow through tube array until array accumulates substantial formation of frost from moisture in air. Flow stopped and warm air introduced into inlet manifold to heat tubes in array. Tubes still frosted after others defrosted identified as obstructed tubes. Applications include inspection of flow systems having parallel legs.

  14. Measurement and modeling of high-pressure (vapour + liquid) equilibria of (CO{sub 2} + alcohol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Jorge E.; Bejarano, Arturo [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2010-05-15

    An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at <5%. Complementary isothermal (vapour + liquid) equilibria results are reported for the (CO{sub 2} + 1-propanol), (CO{sub 2} + 2-methyl-1-propanol), (CO{sub 2} + 3-methyl-1-butanol), and (CO{sub 2} + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO{sub 2} + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.

  15. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    Science.gov (United States)

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  16. Sudden contact of a hot liquid with a volatile coolant: instability of the created vapour film

    International Nuclear Information System (INIS)

    Pion, Agnes

    1983-01-01

    As the sudden contact of a hot body with a coolant which may evaporate, results, after some delay, in an explosive evaporation, this research thesis proposes an interpretation based on the study of the destabilization of the vapour film which forms at the surface of the hot body. The author reports the modelling of the evolution of the average thickness of the film before the explosion. The possible chemical reactions at the surface of the hot body are taken into account. A base flow is obtained which allows the calculation of the evolution of Rayleigh-Taylor instabilities which may occur at the gas-coolant interface. This study is applied to the interaction between liquid sodium and water [fr

  17. Liquid Nitrogen Zero Boiloff Testing

    Science.gov (United States)

    Plachta, David; Feller, Jeffrey; Johnson, Wesley; Robinson, Craig

    2017-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASAs future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryo-shroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryo-cooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  18. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    Science.gov (United States)

    Richardson, M. I.

    2002-12-01

    southern caps. Similar climate-models of the water cycle also do not need much exchangeable adsorbed water in order to explain the observed vapour distributions. The possibility of liquid water is tantalizing, but difficult to definitively judge. On scales greater than a meter or so, Mars is most definitely well away from the water triple point--although the surface pressure can exceed 6.1 mbars, the partial pressure of water vapor (to which the triple point refers) is at best orders of magnitude lower. Several careful studies have shown, however, that locally transient (meta-stable) liquid is possible, if the net heating of ice deposits is high enough. This process is aided if the total surface pressure exceeds 6.1mbar (this prevents boiling, or the explosive loss of vapour into the atmosphere) or if the liquid is covered by a thin ice shell, and is only possible if surface temperatures exceed 273K (for pure water, or the appropriate eutectic for brines) and if ice is present. The former challenge is much easier to meet than the latter. The melt scenario requires that ice deposited in winter must be protected from sublimation as surface temperatures increase in spring, but then exposed to the peak of solar heating in summer. Available spacecraft observations of seasonal water will be discussed with the aid of GCM model simulations, and examined in the context of water distributions and phases.

  19. Correlation of Helium Solubility in Liquid Nitrogen

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  20. Ice plugging of pipes using liquid nitrogen

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1987-03-01

    This report presents a study on the ice plugging of pipe using liquid nitrogen, and is based on a literature review and on discussions with individuals who use the technique. Emphasis is placed on ferritic alloys, primarily carbon steels, in pipe sized up to 60 cm in diameter and on austenitic stainless steels in pipe sizes up to 30 cm in diameter. This technique is frequently used for leak testing in nuclear facilities

  1. Foil bearing performance in liquid nitrogen and liquid oxygen

    Science.gov (United States)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  2. Modelling (vapour + liquid) and (vapour + liquid + liquid) equilibria of {water (H2O) + methanol (MeOH) + dimethyl ether (DME) + carbon dioxide (CO2)} quaternary system using the Peng-Robinson EoS with Wong-Sandler mixing rule

    International Nuclear Information System (INIS)

    Ye Kongmeng; Freund, Hannsjoerg; Sundmacher, Kai

    2011-01-01

    Highlights: → Phase behaviour modelling of H 2 O-MeOH-DME under pressurized CO 2 (anti-solvent) using PRWS. → PRWS-UNIFAC-PSRK has better performance than PRWS-UNIFAC-Lby in general. → Reliable to extend the VLE and VLLE phase behaviour from binary to multicomponent systems. → Successful prediction of the VLE and VLLE of binary, ternary, and quaternary systems. → Potential to apply the model for designing new DME separation process. - Abstract: The (vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) binary data from literature were correlated using the Peng-Robinson (PR) equation of state (EoS) with the Wong-Sandler mixing rule (WS). Two group contribution activity models were used in the PRWS: UNIFAC-PSRK and UNIFAC-Lby. The systems were successfully extrapolated from the binary systems to ternary and quaternary systems. Results indicate that the PRWS-UNIFAC-PSRK generally displays a better performance than the PRWS-UNIFAC-Lby.

  3. The precise measurement of the (vapour + liquid) equilibrium properties for (CO2 + isobutane) binary mixtures

    International Nuclear Information System (INIS)

    Nagata, Y.; Mizutani, K.; Miyamoto, H.

    2011-01-01

    Recently, it has been suggested that natural working fluids, such as CO 2 , hydrocarbons, and their mixtures, could provide a long-term alternative to fluorocarbon refrigerants. (Vapour + liquid) equilibrium (VLE) data for these fluids are essential for the development of equations of state, and for industrial process such as separation and refinement. However, there are large inconsistencies among the available literature data for (CO 2 + isobutane) binary mixtures, and therefore provision of reliable and new measurements with expanded uncertainties is required. In this study, we determined precise VLE data using a new re-circulating type apparatus, which was mainly designed by Akico Co., Japan. An equilibrium cell with an inner volume of about 380 cm 3 and two optical windows was used to observe the phase behaviour. The cell had re-circulating loops and expansion loops that were immersed in a thermostatted liquid bath and air bath, respectively. After establishment of a steady state in these loops, the compositions of the samples were measured by a gas chromatograph (GL Science, GC-3200). The VLE data were measured for CO 2 /propane and CO 2 /isobutane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were compared with the available literature data and with values predicted by thermodynamic property models.

  4. Solvent Vapour Detection with Cholesteric Liquid Crystals—Optical and Mass-Sensitive Evaluation of the Sensor Mechanism

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2010-05-01

    Full Text Available Cholesteric liquid crystals (CLCs are used as sensitive coatings for the detection of organic solvent vapours for both polar and non-polar substances. The incorporation of different analyte vapours in the CLC layers disturbs the pitch length which changes the optical properties, i.e., shifting the absorption band. The engulfing of CLCs around non-polar solvent vapours such as tetrahedrofuran (THF, chloroform and tetrachloroethylene is favoured in comparison to polar ones, i.e., methanol and ethanol. Increasing solvent vapour concentrations shift the absorbance maximumto smaller wavelengths, e.g., as observed for THF. Additionally, CLCs have been coated on acoustic devices such as the quartz crystal microbalance (QCM to measure the frequency shift of analyte samples at similar concentration levels. The mass effect for tetrachloroethylene was about six times higher than chloroform. Thus, optical response can be correlated with intercalation in accordance to mass detection. The mechanical stability was gained by combining CLCs with imprinted polymers. Therefore, pre-concentration of solvent vapours was performed leading to an additional selectivity.

  5. Isobaric vapour-liquid-liquid equilibrium and vapour-liquid equilibrium for the system water + ethanol + iso-octane at 101.3 kPa

    OpenAIRE

    Ruiz Beviá, Francisco; Gomis Yagües, Vicente; Asensi Steegmann, Juan Carlos; Font Escamilla, Alicia

    2002-01-01

    Poster enviado a Equifase 2002, VI Iberoamerican Conference on Phase Equilibria for Process Design, Foz de Iguazú (Brazil), October 12th to 16th, 2002. Many studies have been carried out in the heterogeneous azeotropic distillation field either by experiment or by simulation. The development of all these studies requires the use of sets of isobaric vapour–liquid–liquid equilibrium (VLLE) data. However, the number of ternary systems with experimental VLLE data is very limited, since it is d...

  6. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    International Nuclear Information System (INIS)

    Lladosa, Estela; Monton, Juan B.; Burguet, MaCruz; Torre, Javier de la

    2008-01-01

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model

  7. Liquid nitrogen fire extinguishing system test report

    International Nuclear Information System (INIS)

    Beidelman, J.A.

    1972-01-01

    The objective of this test series was to demonstrate the feasibility of using liquid nitrogen as a fire-extinguishing agent for certain types of metal fires. It was intended to provide data and experience appropriate to the design of a second series which will test the applicability of this technique to plutonium fires and which will develop more detailed operating information and permit more precise measurement of test parameters-oxygen depletion rates and equilibrium concentrations, temperature effects, and nitrogen pressures, flow rates, spray methods and patterns, etc. The test series was directed specifically toward extinguishment of metal fires occurring in well-confined areas and was not intended to be representative of any larger classification. Fires of several types were tested, e.g., magnesium, mixed magnesium and zirconium, sodium and cerium

  8. Sorption Properties of Aerogel in Liquid Nitrogen

    Science.gov (United States)

    Johnson, Wesley L.

    2006-01-01

    Aerogel products are now available as insulation materials of the future. The Cryogenics Test Laboratory at the NASA Kennedy Space Center is developing aerogel-based thermal insulation systems for space launch applications. Aerogel beads (Cabot Nanogel ) and aerogel blankets (Aspen Aerogels Spaceloft ) have outstanding ambient pressure thermal performance that makes them useful for applications where sealing is not possible. Aerogel beads are open-celled silicone dioxide and have tiny pores that run throughout the body of the bead. It has also recently been discovered that aerogel beads can be used as a filtering device for aqueous compounds at room temperature. With their hydrophobic covering, the beads absorb any non-polar substance and they can be chemically altered to absorb hot gases. The combination of the absorption and cryogenic insulating properties of aerogel beads have never been studied together. For future cryogenic insulation applications, it is crucial to know how the beads react while immersed in cryogenic liquids, most notably liquid nitrogen. Aerogel beads in loose-fill situation and aerogel blankets with composite fiber structure have been tested for absorption properties. Depending on the type of aerogel used and the preparation, preliminary results show the material can absorb up to seven times its own weight of liquid nitrogen, corresponding to a volumetric ratio of 0.70 (unit volume nitrogen per unit volume aerogel). These tests allow for an estimate on how much insulation is needed in certain situations. The theory behind the different processes of sorption is necessary for a better understanding of the preparation of the beads before they are used in an insulation system.

  9. Liquid Nitrogen Removal of Critical Aerospace Materials

    Science.gov (United States)

    Noah, Donald E.; Merrick, Jason; Hayes, Paul W.

    2005-01-01

    Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly

  10. Liquid-vapour phase behaviour of a polydisperse Lennard-Jones fluid

    International Nuclear Information System (INIS)

    Wilding, Nigel B; Sollich, Peter

    2005-01-01

    We describe a simulation study of the liquid-vapour phase behaviour of a model polydisperse fluid. Particle interactions are given by a Lennard-Jones potential in which polydispersity features both in the particle sizes and the amplitude of their interactions. We address the computational problem of accurately locating the cloud curve for such a system using Monte Carlo simulations within the grand canonical ensemble. The strongly nonlinear variation of the fractional volumes of the phases across the coexistence region precludes naive extrapolation to determine the cloud point density. Instead we propose an improved estimator for the cloud point location and use scaling arguments to predicts its finite-size behaviour. Excellent agreement is found with the simulation results. Application of the method reveals that the measured cloud curve is highly sensitive to the presence of large particles, even when they are extremely rare. This finding is expected to have implications for the reproducibility of experimentally measured phase diagrams in colloids and polymers

  11. A fresh look at the thermodynamic consistency of vapour-liquid equilibria data

    International Nuclear Information System (INIS)

    Wisniak, Jaime; Ortega, Juan; Fernández, Luis

    2017-01-01

    Highlights: • The thermodynamic consistency tests commonly used to evaluate VLE data are presented and discussed. • Advantages/disadvantages for each one of test are listed using actual examples. • All manuscripts should include information about VLE variables and test results. • In any case, the Herington test should not be used for VLE data evaluation. • Simultaneous application of several tests is recommended. - Abstract: Design of a separation unit requires real information about the phase equilibrium of the system being handled. Accurate equilibrium data allows the best design from a thermodynamic viewpoint and contributes to a better knowledge about the behaviour of fluids and their mixtures. The principles behind the concept of thermodynamic consistency are presented and discussed. The present state of the art shows that no definite test is available for insuring the quality of the measured values. The main available procedures for testing the consistency of vapour-liquid equilibrium (VLE) data at constant temperature or pressure are reviewed and analysed and recommendations provided for their proper use, for the presentation of VLE results, and also some possible means for determining their quality. Suitable examples are provided about the adequate use of the available tests and about their misuse.

  12. Selective-area vapour-liquid-solid growth of InP nanowires

    International Nuclear Information System (INIS)

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J

    2009-01-01

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO 2 mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO 2 mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  13. Selective-area vapour-liquid-solid growth of InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J, E-mail: dan.dalacu@nrc-cnrc.gc.c [Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6 (Canada)

    2009-09-30

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO{sub 2} mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO{sub 2} mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  14. Vapour-liquid equilibrium properties for two- and three-dimensional Lennard-Jones fluids from equations of state

    International Nuclear Information System (INIS)

    Mulero, A.; Cuadros, F; Faundez, C.A.

    1999-01-01

    Vapour-liquid equilibrium properties for both three- and two-dimensional Lennard-Jones fluids were obtained using simple cubic-in-density equations of state proposed by the authors. Results were compared with those obtained by other workers from computer simulations and also with results given by other more complex semi-theoretical or semi-empirical equations of state. In the three-dimensional case good agreement is found for all properties and all temperatures. In the two-dimensional case only the coexistence densities were compared, producing good agreement for low temperatures only. The present work is the first to give numerical data for the vapour-liquid equilibrium properties of Lennard-Jones fluids calculated from equations of state. Copyright (1999) CSIRO Australia

  15. Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Schäfer, J.; Fricke, K.; Mika, Filip; Pokorná, Zuzana; Zajíčková, L.; Foest, R.

    2017-01-01

    Roč. 630, MAY 30 (2017), s. 71-78 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : plasma jet * liquid assisted plasma enhanced chemical * vapour deposition * silicon oxide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Coating and films Impact factor: 1.879, year: 2016

  16. (Vapour + liquid) equilibria of the {1,1-difluoroethane (HFC-152a) + n-butane (HC-600)} system

    International Nuclear Information System (INIS)

    Im, Jihoon; Lee, Gangwon; Lee, Yong-Jin; Kim, Hwayong

    2007-01-01

    Binary (vapour + liquid) equilibrium data were obtained for the {1,1-difluoroethane (HFC-152a) + n-butane (HC-600)} system at temperatures from 313.15 K to 363.15 K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by Peng-Robinson equation of state using the Wong-Sandler mixing rules. This system shows positive azeotropic phase behaviour

  17. Excitation of cavitation bubbles in low-temperature liquid nitrogen

    Science.gov (United States)

    Sasaki, Koichi; Harada, Shingo

    2017-06-01

    We excited a cavitation bubble by irradiating a Nd:YAG laser pulse onto a titanium target that was installed in liquid nitrogen at a temperature below the boiling point. To our knowledge, this is the first experiment in which a cavitation bubble has been successfully excited in liquid nitrogen. We compared the cavitation bubble in liquid nitrogen with that in water on the basis of an equation reported by Florschuetz and Chao [J. Heat Transfer 87, 209 (1965)].

  18. Removing Spilled Oil With Liquid Nitrogen

    Science.gov (United States)

    Snow, Daniel B.

    1991-01-01

    Technique proposed to reduce more quickly, contain, clean up, and remove petroleum products and such other pollutants as raw sewage and chemicals without damage to humans, animals, plants, or the environment. Unique and primary aspect of new technique is use of cryogenic fluid to solidify spill so it can be carried away in solid chunks. Liquid nitrogen (LN2), with boiling point at -320 degrees F (-196 degrees C), offers probably best tradeoff among extreme cold, cost, availability, and lack of impact on environment among various cryogenic fluids available. Other applications include extinguishing fires at such locations as oil derricks or platforms and at tank farms containing such petroleum products as gasoline, diesel fuel, and kerosene.

  19. The automatic liquid nitrogen filling system for GDA detectors

    Indian Academy of Sciences (India)

    . Abstract. An indigenously developed automatic liquid nitrogen (LN2) filling system has been installed in gamma detector array (GDA) facility at Nuclear Science Centre. Electro-pneumatic valves are used for filling the liquid nitrogen into the ...

  20. Mount makes liquid nitrogen-cooled gamma ray detector portable

    Science.gov (United States)

    Fessler, T. E.

    1966-01-01

    Liquid nitrogen-cooled gamma ray detector system is made portable by attaching the detector to a fixture which provides a good thermal conductive path between the detector and the liquid nitrogen in a dewar flask and a low heat leak path between the detector and the external environment.

  1. Cryopreserving turkey semen in straws and nitrogen vapour using DMSO or DMA: effects of cryoprotectant concentration, freezing rate and thawing rate on post-thaw semen quality.

    Science.gov (United States)

    Iaffaldano, N; Di Iorio, M; Miranda, M; Zaniboni, L; Manchisi, A; Cerolini, S

    2016-04-01

    1. This study was designed to identify a suitable protocol for freezing turkey semen in straws exposed to nitrogen vapour by examining the effects of dimethylacetamide (DMA) or dimethylsulfoxide (DMSO) as cryoprotectant (CPA), CPA concentration, freezing rate and thawing rate on in vitro post-thaw semen quality. 2. Pooled semen samples were diluted 1:1 (v:v) with a freezing extender composed of Tselutin diluent containing DMA or DMSO to give final concentrations of 8% or 18% DMA and 4% or 10% DMSO. The semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen (LN2) surface (1, 5 and 10 cm) for 10 min. Semen samples were thawed at 4°C for 5 min or at 50°C for 10 s. After thawing, sperm motility, viability and osmotic tolerance were determined. 3. Cryosurvival of turkey sperm was affected by DMSO concentration. Freezing rate affected the motility of sperm cryopreserved using both CPAs, while thawing rates showed an effect on the motility of sperm cryopreserved using DMA and on the viability of sperm cryopreserved using DMSO. Significant interactions between freezing rate × thawing rate on sperm viability in the DMA protocol were found. 4. The most effective freezing protocol was the use of 18% DMA or 10% DMSO with freezing 10 cm above the LN2 surface and a thawing temperature of 50°C. An efficient protocol for turkey semen would improve prospects for sperm cryobanks and the commercial use of frozen turkey semen.

  2. Isobaric (vapour + liquid) equilibria for the (1-pentanol + propionic acid) binary mixture at (53.3 and 91.3) kPa

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Memarzadeh, M.R.

    2010-01-01

    Isobaric (vapour + liquid) equilibrium measurements have been reported for the binary mixture of (1-pentanol + propionic acid) at (53.3 and 91.3) kPa. Liquid phase activity coefficients were calculated from the equilibrium data. The thermodynamic consistency of the experimental results was checked using the area test and direct test methods. According to these criteria, the measured (vapour + liquid) equilibrium results were found to be consistent thermodynamically. The obtained results showed a maximum boiling temperature azeotrope at both pressures studied. The measured equilibrium results were satisfactorily correlated by the models of Wilson, UNIQUAC, and NRTL activity coefficients. The results obtained indicate that the performance of the NRTL model is superior to the Wilson and UNIQUAC models for correlating the measured isobaric (vapour + liquid) equilibrium data.

  3. Liquid nitrogen cryotherapy for surface eye disease (an AOS thesis).

    Science.gov (United States)

    Fraunfelder, Frederick Web

    2008-01-01

    To evaluate the effects of new treatments with liquid nitrogen cryotherapy on some external eye conditions. In this retrospective case study, 6 separate series from a single tertiary care referral center practice are described. Liquid nitrogen cryotherapy was used to treat conjunctival amyloidosis, primary pterygia, recurrent pterygia, advancing wavelike epitheliopathy (AWLE), superior limbic keratoconjunctivitis (SLK), and palpebral vernal keratoconjunctivitis (VKC). The main outcome measure was the resolution of the disease process after treatment. Four patients with primary localized conjunctival amyloidosis were treated with liquid nitrogen cryotherapy. Two of them had recurrence of the amyloidosis, which cleared with subsequent treatment. Eighteen patients with primary pterygia had excision and cryotherapy with 1 recurrence. Of 6 subjects who presented with recurrent pterygia, 4 had a second recurrence after excision and cryotherapy. In 5 patients with AWLE, the condition resolved within 2 weeks without recurrence or the need for subsequent cryotherapy. Four patients with SLK were treated with liquid nitrogen cryotherapy. Disease recurred in 2 patients and 3 of 7 eyes, although subsequent cryotherapy eradicated SLK in all cases. Two patients and 3 eyelids with palpebral VKC were treated with liquid nitrogen cryotherapy. VKC recurred in all cases. Liquid nitrogen cryotherapy to the surface of the eye is effective in treating AWLE, and SLK. Excision followed by cryotherapy is successful in treating conjunctival amyloidosis and primary pterygia Liquid nitrogen cryotherapy is unsuccessful in the treatment of recurrent pterygia and VKC.

  4. Thermal degradation of the vapours of organic nitrogen compounds in the presence of the air

    International Nuclear Information System (INIS)

    Brault, A.; Chevalier, G.; Kerfanto, M.; Loyer, H.

    1983-04-01

    Following a quick survey of the literature on the products originated during the thermal degradation of some organic nitrogen compounds, the experimental results obtained by applying a technique previously used for other organic compounds are presented. The compounds investigated include: methyl and ethylamines at the origin of the bad smells of many gaseous wastes, trilaurylamine and tetraethylenediamine sometimes used in nuclear facilities. Attention is brought on the emission of noxious products during thermal degradation in the presence of the air, at various temperatures, viz. either usual combustion gases such as carbon monoxide, or nitro-derivatives such as hydrogen cyanide present whatever the compound investigated when temperatures are below 850 0 C [fr

  5. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Isothermal (vapour + liquid) equilibrium data for binary systems of (n-hexane + CO2 or CHF3)

    International Nuclear Information System (INIS)

    Williams-Wynn, Mark D.; Naidoo, Paramespri; Ramjugernath, Deresh

    2016-01-01

    Highlights: • (Static-analytic + static-synthetic) phase equilibrium measurements. • Binary VLE data for (CO 2 + n-hexane) and (trifluoromethane + n-hexane). • Thermodynamic models were fitted to the experimental data. • Liquid–liquid immiscibility occurred with (trifluoromethane + n-hexane) system. - Abstract: The (vapour + liquid) equilibrium (VLE) was measured for the (carbon dioxide + n-hexane) binary system at temperatures between T = (303.1 and 323.1) K. In addition, VLE and (vapour + liquid + liquid) equilibria (VLLE) were determined for the (trifluoromethane + n-hexane) binary system at temperatures between T = (272.9 and 313.3) K and pressures in the range of P = (1.0 to 5.7) MPa. Measurements were undertaken in a static-analytic apparatus, with verification of experimental values undertaken using a static-synthetic equilibrium cell to measure bubble point pressures at several compositions. The phase equilibrium results were modelled with the Peng–Robinson equation of state with the Mathias–Copeman alpha function, coupled with the Wong–Sandler mixing rules. Regression of the data was performed with the NRTL and the UNIQUAC activity coefficient models with the Wong–Sandler mixing rules, and the performance of the models was compared. Critical loci for both systems were estimated, using the calculation procedures of Ungerer et al. and Heidemann and Khalil. For the (trifluoromethane + n-hexane) system, liquid–liquid immiscibility was experienced at the lowest temperature measured (T = 272.9 K). At higher temperatures, no immiscibility was visible during the measurements; however, the models continued to predict a miscibility gap.

  7. Effect of sugars on liquid-vapour partition of volatile compounds in ready-to-drink coffee beverages.

    Science.gov (United States)

    Piccone, P; Lonzarich, V; Navarini, L; Fusella, G; Pittia, P

    2012-09-01

    The effect of sugars (sucrose, lactose, glucose, fructose, 10%w/v) on the liquid-vapour partition of selected volatile compounds of coffee beverages has been investigated in espresso coffee and ready-to-drink (RTD) canned coffee prepared and obtained by using the same Arabica roasted coffee beans blend. Aroma composition of coffee beverages has been preliminary investigated by headspace-gas chromatography (HS-GC) and solid phase microextraction-HS-GC-mass spectrometry to characterize the volatile pattern of the systems and to evaluate the effects of sugars on the aroma release/retention. Then, the liquid-vapour partition coefficient (k) of 4 selected key aroma compounds (diacetyl, 2,3-pentanedione, ethylpyrazine, hexanal) was determined in water, sugars solutions as well as RTD coffee brews added with the same sugars (10%w/v). Sugars added in coffee beverages affected the release of the volatiles and thus its aroma profile with differences due to the type of added sugar and coffee brew type. The k values of the selected volatile compounds resulted different depending on the model system composition (water, coffee brew) and sugar type added. In particular, melanoidins as well as other non-volatile components (lipids, acids, carbohydrates) in the RTD coffee brews could be implied in the change of k of the volatile compounds in respect to that observed in water. The effects of the sugar type on the release/retention of the four key coffee aroma compounds were partly explained in terms of 'salting out' especially for the more polar volatile compounds and in the sucrose-added model systems. The change of chemical and physico-chemical properties of the water and brews induced by the sugars as well as the occurrence of interactions between volatile compounds and non-volatile components may be implied in the reduction of the vapour partition of the aroma compounds. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Control of nitrogen concentration in liquid lithium by hot trapping

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    Nitrogen concentration in liquid lithium was controlled by the method of hot trapping. V-Ti alloy and chromium were used as nitrogen gettering materials. Chromium is known to form ternary nitride with lithium. Gettering experiments were conducted at 823 K for 0.8-2.2 Ms. Under high nitrogen concentration in liquid lithium, above 10 -2 mass%, nitrogen gettering effect of chromium was found to be larger than that of V-10at.% Ti alloy. Nitrogen gettering by chromium at 823 K reached a limit at about 6.5x10 -3 mass% of nitrogen concentration in liquid lithium. Instability of ternary nitride of chromium and lithium below this nitrogen concentration in liquid lithium was considered to be the reason for this limit. The composition of the ternary nitride that was formed in this study was considered to be Li 6 Cr(III) 3 N 5 . In addition, immersion experiments of yttrium with V-10at.% Ti alloy were performed. It was found that nitriding of yttrium in liquid lithium is controlled by nitrogen gettering effect of V-10at.% Ti alloy

  9. Explosion hazard in liquid nitrogen cooled fusion systems

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1988-01-01

    The explosion hazard associated with the use of liquid nitrogen in a radiation environment in fusion facilities has been investigated. The principal product of irradiating liquid nitrogen is thought to be ozone, resulting from the action of radiation on oxygen impurity. Ozone is a very unstable material, and explosions may occur as it rapidly decomposes to oxygen. Occurrences of this problem in irradiated liquid nitrogen systems are reviewed. An empirical expression, from early experiments, for the yield of ozone in liquid nitrogen-oxygen mixtures exposed to gamma radiation is employed to assess the degree of ozone explosion hazard expected at fusion facilities. The problem is investigated for the Compact Ignition Tokamak (CIT) as a particular example. 16 refs., 5 figs., 1 tab

  10. Electronic circuit provides automatic level control for liquid nitrogen traps

    Science.gov (United States)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  11. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Malik Anushree

    2010-11-01

    Full Text Available Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM/Atomic force microscopy (AFM and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita and eucalyptus (Eucalyptus globulus essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l was significantly higher than that in the vapour phase (32.7 mg/l and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%; α-citral or geranial (36.2% and β-citral or neral (26.5%, monoterpene hydrocarbons (7.9% and sesquiterpene hydrocarbons (3.8%. Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious

  12. (Vapour + liquid) equilibria for the binary mixtures (1-propanol + dibromomethane, or + bromochloromethane, or + 1,2-dichloroethane or + 1-bromo-2-chloroethane) at T = 313.15 K

    International Nuclear Information System (INIS)

    Gil-Hernandez, V.; Garcia-Gimenez, P.; Otin, S.; Artal, M.; Velasco, I.

    2005-01-01

    Isothermal (vapour + liquid) equilibria (VLE) at 313.15 K have been measured for liquid 1-propanol + dibromomethane, or + bromochloromethane or + 1,2-dichloroethane or + 1-bromo-2-chloroethane mixtures. The VLE data were reduced using the Redlich-Kister equation taking into consideration the vapour phase imperfection in terms of the 2nd molar virial coefficients. The excess molar Gibbs free energies of all the studied mixtures are positive and ranging from 794 J·mol -1 for (1-propanol + bromochloromethane) and 1052 J·mol -1 for (1-propanol + 1-bromo-2-chloroethane), at x = 0.5. The experimental results are compared with modified UNIFAC predictions

  13. Complete equation of state for shocked liquid nitrogen: Analytical developments

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2016-01-01

    The thermodynamic response of liquid nitrogen has been studied extensively, in part, due to the long-standing interest in the high pressure and high temperature dissociation of shocked molecular nitrogen. Previous equation of state (EOS) developments regarding shocked liquid nitrogen have focused mainly on the use of intermolecular pair potentials in atomistic calculations. Here, we present EOS developments for liquid nitrogen, incorporating analytical models, for use in continuum calculations of the shock compression response. The analytical models, together with available Hugoniot data, were used to extrapolate a low pressure reference EOS for molecular nitrogen [Span, et al., J. Phys. Chem. Ref. Data 29, 1361 (2000)] to high pressures and high temperatures. Using the EOS presented here, the calculated pressures and temperatures for single shock, double shock, and multiple shock compression of liquid nitrogen provide a good match to the measured results over a broad range of P-T space. Our calculations provide the first comparison of EOS developments with recently-measured P-T states under multiple shock compression. The present EOS developments are general and are expected to be useful for other liquids that have low pressure reference EOS information available.

  14. Vitrification and levitation of a liquid droplet on liquid nitrogen

    OpenAIRE

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitroge...

  15. Liquid to gas leak ratios with liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1985-01-01

    To predict the leak rates of liquid helium and liquid nitrogen containers at operating conditions we need to know how small leaks (10 -8 to 10 -5 atm-cm 3 air/s), measured at standard conditions, behave when flooded with these cryogens. Two small leaks were measured at ambient conditions (approx.750 Torr and 295 K), at the normal boiling points of LN 2 and LHe, and at elevated pressures above the liquids. The ratios of the leak rates of the liquids at ambient pressure to the gases (G) at ambient pressure and room temperature were: GN 2 (1), LN 2 (18), GHe(1), and LHe(172). The leak rate ratio of LN 2 at elevated pressure was linear with pressure. The leak rate ratio of LHe at elevated pressure was also linear with pressure

  16. Liquid to gas leak ratios with liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1985-01-01

    To predict the leak rates of liquid helium and liquid nitrogen containers at operating conditions we need to know how small leaks (10 -8 to 10 -5 atm-cm 3 air/s), measured at standard conditions, behave when flooded with these cryogens. Two small leaks were measured at ambient conditions (about 750 Torr and 295 K), at the normal boiling points of LN 2 and LHe, and at elevated pressures above the liquids. The ratios of the leak rates of the liquids at ambient pressure to the gases at ambient pressure and room temperature are presented. The leak rate ratio of LN 2 at elevated pressure was linear with pressure. The leak rate ratio of LHe at elevated pressure was also linear with pressure

  17. Experimental study of nitrogen oxide absorption by a liquid nitrogen tetroxide flow

    International Nuclear Information System (INIS)

    Verzhinskaya, A.B.; Saskovets, V.V.; Borovik, T.F.

    1984-01-01

    The system of N 2 O 4 based coolant regeneration needs productive and efficient absorbers, providing effective production of nitrogen oxide, decreasing upon NPP operation at the expense of radiation-thermal decomposition. The experimental istallation flowsheet for studying the nitrogen oxide absorbtion by liquid nitrogen tetroxide is given. The experiments have been carried out in removable test sections, looked like helical tubes with internal steam-and-liquid mixture flow and external water cooling. Six test sections with variable geometry factors have been manufactured. The plotted results of the experiments are given as dependences of extraction level and mass transfer volumetric coefficients on the geometry factor, pressure and Froude number

  18. Isothermal Vapour-Liquid Equilibria in the Ternary System tert-Butyl Methyl Ether + tert-Butanol + 2,2,4-Trimethylpentane and the Three Binary Subsystems

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Wichterle, Ivan

    2001-01-01

    Roč. 180, 1-2 (2001), s. 235-245 ISSN 0378-3812 R&D Projects: GA ČR GA104/99/0136 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapourůliquid equilibrium * experimental data * molar excess volume Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.217, year: 2001

  19. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    International Nuclear Information System (INIS)

    Taurino, A; Signore, M A

    2015-01-01

    In this work, the concurrent growth of InSe and In 2 O 3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In 2 O 3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained. (paper)

  20. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    Science.gov (United States)

    Taurino, A.; Signore, M. A.

    2015-06-01

    In this work, the concurrent growth of InSe and In2O3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In2O3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained.

  1. Design Optimization of Liquid Nitrogen Based IQF Tunnel

    Science.gov (United States)

    Datye, A. B.; Narayankhedkar, K. G.; Sharma, G. K.

    2006-04-01

    A design methodology for an Individual Quick Freezing (IQF) tunnel using liquid nitrogen is developed and the design based on this methodology is validated using the data of commercial tunnels. The design takes care of heat gains due to the conveyor belt which is exposed to atmosphere at the infeed and outfeed ends. The design also considers the heat gains through the insulation as well as due to circulating fans located within the tunnel. For minimum liquid nitrogen consumption, the ratio of the length of the belt, L (from infeed to out feed) to the width of the belt, W can be considered as a parameter. The comparison of predicted and reported liquid nitrogen (experimental data) consumption shows good agreement and is within 10 %.

  2. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    Science.gov (United States)

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-04-08

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  3. Observation and modeling of 222Rn daughters in liquid nitrogen

    International Nuclear Information System (INIS)

    Frodyma, N.; Pelczar, K.; Wójcik, M.

    2014-01-01

    The results of alpha spectrometric measurements of the activity of 222 Rn daughters dissolved in liquefied nitrogen are presented. A direct detection method of ionized alpha-emitters from the 222 Rn decay chain ( 214 Po and 218 Po) in a cryogenic liquid in the presence of an external electric field is shown. Properties of the radioactive ions are derived from a proposed model of ion production and transport in the cryogenic liquid. Ionic life-time of the ions was found to be on the order of 10 s in liquid nitrogen (4.0 purity class). The presence of positive and negative ions was observed. - Highlights: • A direct detection method of the alpha-emitters in a cryogenic liquid is shown. • We examine electrostatic drifting of the radioactive ions in liquid nitrogen. • The ions belong to the Radon-222 decay chain; Radon-222 is dissolved in the liquid. • The model of the ions production and behaviour in the liquid is proposed. • The ion production significantly depends on the nuclear decay type (alpha or beta)

  4. Behaviour of uranium dioxide in liquid nitrogen tetraoxide

    International Nuclear Information System (INIS)

    Kobets, L.V.; Klavsut', G.N.; Dolgov, V.M.

    1983-01-01

    Interaction kinetics of uranium dioxide with liquid nitrogen tetroxide at 25-150 deg C has been studied. It is shown that in the temperature range studied NO[UO 2 (NO 3 ) 3 ] is the final product of the reaction. With the increase of specific surface of uranium dioxide and with the temperature increase the degree of oxide transformation increases. Uranium dioxide-liquid N 2 O 4 interaction proceeds in the diffusion region. Seeming activation energies and rate constants of the mentioned processes are calculated. Effect of nitrogen trioxide additions on transformation kinetics is considered

  5. Liquid and vapour water transfer through whey protein/lipid emulsion films.

    Science.gov (United States)

    Kokoszka, Sabina; Debeaufort, Frederic; Lenart, Andrzej; Voilley, Andree

    2010-08-15

    Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. Films were cast from heated (80 degrees C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg(-1) of water) containing glycerol (50 g kg(-1) of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5-fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (T(max)). Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright (c) 2010 Society of Chemical Industry.

  6. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  7. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2018-06-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  8. Vapour pressures and vapour-liquid equilibria of propyl acetate and isobutyl acetate with ethanol or 2-propanol at 0.15 MPa. Binary systems

    Directory of Open Access Journals (Sweden)

    Susial Pedro

    2012-01-01

    Full Text Available Vapour pressures of propyl acetate, isobutyl acetate and 2-propanol from 0.004 to 1.6 MPa absolute pressure and VLE data for the binary systems propyl acetate+ethanol, propyl acetate+2-propanol, isobutyl acetate+ethanol and isobutyl acetate+2-propanol at 0.15 MPa have been determined. The experimental VLE data were verified with the test of van Ness and the Fredenslund criterion. The propyl acetate+ethanol or +2-propanol binary systems have an azeotropic point at 0.15 MPa. The different versions of the UNIFAC and ASOG group contribution models were applied.

  9. Electrical conductivity measurements in shock compressed liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Mitchell, A.C.; Nellis, W.J.

    1985-06-01

    The electrical conductivity of shock compressed liquid nitrogen was measured in the pressure range 20 to 50 GPa using a two-stage light-gas gun. The conductivities covered a range 4 x 10 -2 to 1 x 10 2 ohm -1 cm -1 . The data are discussed in terms of a liquid semiconductor model below the onset of the dissociative phase transition at 30 GPa. 15 refs., 1 fig

  10. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2016-08-01

    Full Text Available We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  11. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders

    2016-01-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water....... The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic...... investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3....

  12. Effectiveness of liquid organic-nitrogen fertilizer in enhancing ...

    African Journals Online (AJOL)

    The ever increasing price of nitrogenous (N) fertilizers coupled with the deleterious effects of imbalanced N fertilizers on the environment necessitates the enhancement of N use efficiency of plants. The objectives of this study were to: (1) Evaluate the uptake of selected nutrients due to application of liquid organic-N ...

  13. Effect of liquid nitrogen storage time on the survival and ...

    African Journals Online (AJOL)

    Investigations were undertaken on the effect of liquid nitrogen (LN) storage time on survival and regeneration of somatic embryos of cocoa (Theobroma cacao l.). Somatic embryos from different cocoa genotypes (AMAZ 3-2, AMAZ 10-1, AMAZ 12, SIAL 93, and IMC 14) at 15.45% moisture content were cryopreserved in LN ...

  14. Isolating silkworm genomic DNA without liquid nitrogen suitable for ...

    African Journals Online (AJOL)

    Genomic DNA was isolated from posterior silk gland of silkworms, Antheraea assama. Absolute alcohol was used as tissue fixing solution instead of grinding in liquid nitrogen, which yielded high molecular weight DNA (>40 kb). Samples yielded similar amount of DNA when fixed in absolute alcohol (400 μmg/g of silk gland ...

  15. The investigation of rf-squids at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, V N; Vasiliev, B V [Joint Inst. for Nuclear Research, Dubna (USSR)

    1989-12-01

    One- and two-hole YBCO ceramic rf-squids operating at liquid nitrogen temperatures have been developed. The main squid parameters: self-inductance, white noise level and magnetic flux resolution were measured. The directly measured external field sensitivity for one-hole squid was at the level of 100 fT/{radical}Hz. (orig.).

  16. Liquid Nitrogen Dewar Loading at KSC for STS-71 Flight

    Science.gov (United States)

    1995-01-01

    Liquid nitrogen dewar loading at Kennedy Space Center for STS-71 flight with Stan Koszelak (right), University of California at Riverside, adn Tamara Chinareva (left), Russian Spacecraft Coporation-Energia. The picture shows Koszelak removing the insert from the transportation dewar.

  17. A high Tc superconducting liquid nitrogen level sensor

    International Nuclear Information System (INIS)

    Jin, J. X.; Liu, H. K.; Dou, S. X.; Grantham, C.; Beer, J.

    1996-01-01

    Full text: The dramatic resistance change in the superconducting-normal transition temperature range enables a high T c superconductor to be considered for designing a liquid nitrogen level sensor. A (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire is selected and tested as a continuous liquid nitrogen level sensor to investigate the possibility for this application. The (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire has approximately 110 K critical temperature, with more flexible and stable properties compared with bulk shape ceramic high T c superconductors. The voltage drops across the sensor are tested with different immersion lengths in liquid nitrogen. The accuracy of the HTS sensor is analysed with its dR/dT in the superconducting-normal transition range. The voltage signal is sensitive to liquid nitrogen level change, and this signal can be optimized by controlling the transport current. The problems of the Ag clad superconductor are that the Ag sheath thermal conductivity is very high, and the sensor normal resistance is low. These are the main disadvantages for using such a wire as a continuous level sensor. However, a satisfactory accuracy can be achieved by control of the transport current. A different configuration of the wire sensor is also designed to avoid this thermal influence

  18. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  19. Polystyrene cryostat facilitates testing tensile specimens under liquid nitrogen

    Science.gov (United States)

    Shogan, R. P.; Skalka, R. J.

    1967-01-01

    Lightweight cryostat made of expanded polystyrene reduces eccentricity in a tensile system being tested under liquid nitrogen. The cryostat is attached directly to the tensile system by a special seal, reducing misalignment effects due to cryostat weight, and facilitates viewing and loading of the specimens.

  20. The Effect of Liquid Nitrogen on Bone Graft Survival.

    Science.gov (United States)

    Sirinoglu, Hakan; Çilingir, Özlem Tuğçe; Çelebiler, Ozhan; Ercan, Feriha; Numanoglu, Ayhan

    2015-08-01

    Liquid nitrogen is used in medicine for cancer treatment and tissue preservation; however, bone viability after its application is controversial. This study aims to evaluate both the tissue viability and the clinical and histopathologic findings following liquid nitrogen application with different thawing techniques in rats. Mandibular bone grafts were taken from 45 Wistar rats and freezed in liquid nitrogen for 20 minutes. In the rapid-thawing technique (Rapid Thawing-1, Rapid Thawing-2), the grafts were held for 20 minutes in room temperature; in the slow-thawing technique (Slow Thawing-1, Slow Thawing-2), 20 minutes in -20°C, 20 minutes in +4°C, and 20 minutes in room temperature, respectively. In Rapid Thawing-2 and Slow Thawing-2 groups, autografts were implanted to their origin for 3 weeks and bone staining with India ink was performed and samples taken for histologic examination. The amount of cells and blood vessels and the density of bone canaliculi were significantly reduced in Rapid Thawing-1 and Slow Thawing-1 groups comparing to the Control group. However, the reduction rate was more significant in the Slow Thawing-1 group. Histomorphometric evaluation of the healing autografts after 3 weeks revealed that the decreased amounts of canaliculi were not changed in Slow Thawing-2 group. The study results demonstrated that bone tissue survives after liquid nitrogen treatment regardless of the performed thawing technique; however, slow thawing causes more tissue damage and metabolism impairment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Liquid nitrogen cryotherapy for conjunctival lymphangiectasia: a case series.

    Science.gov (United States)

    Fraunfelder, Frederick W

    2009-12-01

    To report a case series of conjunctival lymphangiectasia treated with liquid nitrogen cryotherapy. A 1.5-mm Brymill cryoprobe was applied in a double freeze-thaw method after an incisional biopsy of a portion of the conjunctiva in patients with conjunctival lymphangiectasia. Freeze times were 1 to 2 seconds with thawing of 5 to 10 seconds between treatments. Patients were reexamined at 1 day, 2 weeks, 3 months, 6 months, and yearly following cryotherapy. Five eyes of 4 patients (3 male and 1 female) with biopsy-proven conjunctival lymphangiectasia underwent liquid nitrogen cryotherapy. The average patient age was 53 years. Ocular examination revealed large lymphatic vessels that were translucent and without conjunctival injection. Subjective symptoms included epiphora, ocular irritation, eye redness, and occasional blurred vision. After treatment with liquid nitrogen cryotherapy, the patients' symptoms and signs resolved within 2 weeks. Lymphangiectasia recurred twice in one patient, at 1 and 3 years postoperatively. In another patient, lymphangiectasia recurred at 6 months. The average time to recurrence in these 3 eyes was 18 months. Average length of follow-up was 24.5 months for all subjects. Liquid nitrogen cryotherapy may be an effective surgical alternative in the treatment of conjunctival lymphangiectasia. Cryotherapy may need to be repeated in some instances.

  2. Raman Spectroscopic Study of the Vapour Phase of 1-Methylimidazolium Ethanoate, a Protic Ionic Liquid

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Canongia Lopes, Jose N.; Ferreira, Rui

    2010-01-01

    The gas phase over the ionic liquid 1-methylimidazolium ethanoate, [Hmim][O2CCH3], was studied by means of Raman spectroscopy. Raman spectra are presented, the species in the gas phase are identified, and their bands are assigned. The results are interpreted using ab initio quantum mechanical...

  3. Thermodynamic and Gasdynamic Aspects of a Boiling Liquid Expanding Vapour Explosion

    NARCIS (Netherlands)

    Xie, M.

    2013-01-01

    The risk of explosion due to rupture of a tank filled with pressurized liquefied gas (PLG) is one of the risks to be considered in the context of studies on tunnel safety. When a vessel containing liquid well above its boiling point at normal atmospheric pressure fails catastrophically a Boiling

  4. Liquid nitrogen - water interaction experiments for fusion reactor accident scenarios

    International Nuclear Information System (INIS)

    Duckworth, R.; Murphy, J.; Pfotenhauer, J.; Corradini, M.

    2001-01-01

    With the implementation of superconducting magnets in fusion reactors, the possibility exists for the interaction between water and cryogenic systems. The interaction between liquid nitrogen and water was investigated experimentally and numerically. The rate of pressurization and peak pressure were found to be driven thermodynamically by the expansion of the water and the boil-off of the liquid nitrogen and did not have a vapor explosion nature. Since the peak pressure was small in comparison to previous work with stratified geometries, the role of the geometry of the interacting fluids has been shown to be significant. Comparisons of the peak pressure and the rate of pressurization with respect to the ratio of the liquid nitrogen mass to water mass reveal no functional dependence as was observed in the liquid helium-water experiments. A simple thermodynamic model provides a fairly good description of the pressure rise data. From the data, the model will allow one to extract the interaction area of the water. As with previous liquid helium-water interaction experiments, more extensive investigation of the mass ratio and interaction geometry is needed to define boundaries between explosive and non-explosive conditions. (authors)

  5. Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid.

    Science.gov (United States)

    Yu, Xue-Li; Xu, Ya-Kun; Wu, Hua; Guo, Xian-Fei; Li, Xiao-Xia; Han, Wen-Xia; Li, Ying-Hua

    2016-04-01

    The objectives of this study were to compare the effectiveness of liquid helium (LHe) and liquid nitrogen (LN2) as cryogenic liquid for vitrification of bovine immature oocytes with open-pulled straw (OPS) system and determine the optimal cryoprotectant concentration of LHe vitrification. Cumulus oocyte complexes were divided into three groups, namely, untreated group (control), LN2 vitrified with OPS group, and LHe vitrified with OPS group. Oocyte survival was assessed by morphology, nuclear maturation, and developmental capability. Results indicated that the rates of normal morphology, maturation, cleavage, and blastocyst (89.3%, 52.8%, 42.7%, and 10.1%, respectively) in the LHe-vitrified group were all higher than those (79.3%, 43.4%, 34.1%, and 4.7%) in the LN2-vitrified group (P 0.05). The maturation rate of the EDS35 group (65.0%) was higher than those of the EDS30 (51.3%), EDS40 (50.1%), EDS45 (52.1%), and EDS50 groups (36.9%; P liquid for vitrification of bovine immature oocytes, and it is more efficient than LN2-vitrified oocytes in terms of blastocyst production. EDS35 was the optimal cryoprotectant agent combination for LHe vitrification in this study. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Development of a program BFQ/VER1 to simulate vapour pull through and liquid entrainment under stratified flow condition

    International Nuclear Information System (INIS)

    Majumdar, P.; Mukhopadyay, D.; Lele, H.G.; Gupta, S.K.

    2000-08-01

    Whether in process industries or nuclear industries, we come across lot of horizontal components, where two-phase or two-component fluids exist in normal or abnormal working conditions. Situations which lead to separation of the phases sees vapour pull through or liquid entrainment phenomena occurring when fluid discharges from horizontal components to the off - take branches. In order to capture the phenomena and applying it to the Indian PHWR during LOCA, a program 'BFQ' has been developed using various models for different fluids and conditions. These models have been validated with various experimental data available in the literature. Smoglie's model has been found to comply with most of the experiments even though it has been developed for air-water system. A modification of the model also been successfully used for feeders located at 45 deg. The result has been well validated with Hassan (1997) experiment for the same configuration. For a typical case of LOCA, RELAP4/MOD6, a widely used Homogenous model for simulating systems, is found to over predict the off-take flow quality from Header under stratified flow condition. (author)

  7. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    International Nuclear Information System (INIS)

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-01-01

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the Unreal TM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures

  8. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    Science.gov (United States)

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-12-01

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.

  9. Liquid nitrogen cooling for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Fleming, R.B.; Martin, G.D.; Lyon, R.E.

    1989-01-01

    The Compact Ignition Tokamak (CIT), which is currently being designed, will have toroidal and poloidal magnetic field coils pre-cooled by liquid nitrogen to a temperature near 80 degree K prior to each plasma pulse. The purpose is to gain the advantage of lower copper resistivity at reduced temperature. To maintain this temperature, the field coils, vacuum vessel, and surrounding structure will be enclosed within a cryostat. During a full-power D-T pulse, nuclear and resistive heating will impart a heat load of 11.0 GJ to the coils, which will raise the temperature of certain areas of the coils to near room temperature. The cryogenic system will supply 60,000 kg (19,500 gallons) of liquid nitrogen to remove this heat within a 60-minute cool-down period between pulses. A primary design consideration is that the nitrogen gas within the cryostat during a pulse will be activated by neutrons, producing nitrogen-13, which has a half-life of 10 minutes. This gas cannot be released into the environment without a sufficient decay period. The coolant nitrogen will therefore be contained within a closed (primary) circuit, and will be condensed in a heat exchanger. Liquid nitrogen from the supply dewars will be evaporated on the other side of the exchanger (the secondary side), and released to the atmosphere via a roof vent. Other operating modes (standby operation and initial cool-down from room temperature) are described in the paper. A safety analysis indicates that the cryogenic system will meet all applicable environmental requirements. 1 ref., 1 fig., 1 tab

  10. Generalized method for calculation and prediction of vapour-liquid equilibria at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drahos, J; Wichterle, I; Hala, E

    1978-02-01

    Following the approaches of K.C. Chao and J.D. Seader (see Gas Abstr. 18,24 (1962) Jan.) and B.I. Lee, J.H. Erbar, and W.C. Edmister (see Gas Abst. 29, 73-0331), the Czechoslovak Academy of Sciences developed a generalized method for prediction of vapor-liquid equilibria in hydrocarbon mixtures containing some nonhydrocarbon gases at high pressures. The method proposed is based on three equations: (1) a generalized equation of state for vapor-phase calculations; (2) a generalized expression for the pure-liquid fugacity coefficient; and (3) an activity coefficient expression based on a surface modification of the regular solution model. The equations used contain only one partially generalized binary parameter, which was evaluated from experimental K-value data. Researchers tested the proposed method by computing K-values and pressures in binary and multicomponent systems consisting of 13 hydrocarbons and 3 nonhydrocarbon gases. The results show that the method is applicable over a wide range of conditions with a degree of accuracy comparable with that of more complicated methods.

  11. Experimental study of nitrogen oxide absorption by a liquid nitrogen tetroxide flow

    Energy Technology Data Exchange (ETDEWEB)

    Verzhinskaya, A B; Saskovets, V V; Borovik, T F

    1984-01-01

    The system of N/sub 2/O/sub 4/ based coolant regeneration needs productive and efficient absorbers, providing effective production of nitrogen oxide, decreasing upon NPP operation at the expense of radiation-thermal decomposition. The experimental istallation flowsheet for studying the nitrogen oxide absorbtion by liquid nitrogen tetroxide is given. The experiments have been carried out in removable test sections, looked like helical tubes with internal steam-and-liquid mixture flow and external water cooling. Six test sections with variable geometry factors have been manufactured. The plotted results of the experiments are given as dependences of extraction level and mass transfer volumetric coefficients on the geometry factor, pressure and Froude number.

  12. A new model and extension of Wong-Sandler mixing rule for prediction of (vapour + liquid) equilibrium of polymer solutions using EOS/GE

    International Nuclear Information System (INIS)

    Haghtalab, Ali; Espanani, Reza

    2004-01-01

    The cubic equation of state (CEOS) is a powerful method for calculation of (vapour + liquid) equilibrium (VLE) in polymer solutions. Using CEOS for both the vapour and liquid phases allows one to calculate the non-ideality of polymer solutions based on a single EOS approach. However, the traditional mixing rules are not appropriate to extend the CEOS to non-ideal mixtures such as polymer solutions. Several authors have applied the EOS/G E approach to predict (vapour + liquid) equilibria in polymer solutions, however, incorporating an appropriate excess Gibbs free energy for the new mixing rule is a major step. In this research, the NRTL-NRF model was extended in terms of volume fraction of polymer and solvent (instead of mole fraction), then equilibrium calculations were carried out using PRSV EOS and Wong-Sandler mixing rules. Using the adjustable parameters as a function of solution temperature, the NRTL-NRF model can be used as a predictive model. In comparison with NRTL model, the results of the new NRTL-NRF model show better accuracy

  13. Corrosion of ferrous alloys in nitrogen contaminated liquid lithium

    International Nuclear Information System (INIS)

    Olson, D.L.; Bradley, W.L.

    1976-01-01

    Liquid lithium penetration of 304L stainless steel and Armco iron grain boundaries has been studied. The penetration kinetics for the 304L stainless steel was found to be diffusion controlled. The measured temperature dependent delay time has been associated with the initial formation of the corrosion product at the grain boundary. Nitrogen in the stainless steel or the liquid lithium has been found to accelerate the rate of attack without changing the apparent activation energy. Grain boundary grooving of Armco iron in liquid lithium indicates that the controlling mass transport is also through a corrosion product present as a surface film. Stresses as small as 12 MPa have been found to give rise to a fifty-fold increase in the rate of penetration of Armco iron by liquid lithium

  14. Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane or tetrachloroethene) at nine temperatures

    International Nuclear Information System (INIS)

    Garriga, R.; Perez, P.; Gracia, M.

    2006-01-01

    Vapour pressures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane, or tetrachloroethene) at nine temperatures between T = 283.15 K and T = 323.15 K were measured by a static method. The reduction of the vapour pressures data to obtain activity coefficients and excess molar Gibbs energies was carried out by fitting the vapour pressure data to the Redlich-Kister polynomial according to Barker's method. Excess molar volumes were also measured at T 298.15 K. A comparative analysis about the thermodynamic behaviour of both systems is performed, in terms of hydrogen bonding and electron-donor-acceptor interactions, as well as the resonance effect in tetrachloroethene

  15. Removal of nitrogen compounds from Brazilian petroleum samples by oxidation followed by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, L.; Pergher, S.B.C. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Quimica], E-mail: pergher@uricer.edu.br; Oliveira, J.V. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Engenharia dos Alimentos; Souza, W.F. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2009-10-15

    This work reports liquid-liquid extraction of nitrogen compounds from oxidized and non-oxidized Brazilian petroleum samples. The experiments were accomplished in a laboratory-scale liquid-liquid apparatus in the temperature range of 303 K-323 K, using methanol, n-methyl-2-pyrrolidone (NMP) and N,Ndimethylformamide (DMF), and their mixtures as extraction solvents, employing solvent to sample volume ratios of 1:2, 1:1 and 2:1, exploring up to three separation stages. Results show that an increase in temperature, solvent to oil ratio, and number of equilibrium stages greatly improves the nitrogen removal from the oxidized sample (from 2600 to 200 ppm). The employed oxidation scheme is thus demonstrated to be an essential and efficient step of sample preparation for the selective liquid-liquid removal of nitrogen compounds. It is shown that the use of mixtures of DMF and NMP as well their use as co-solvents with methanol did not prove to be useful for selective nitrogen extraction since great oil losses were observed in the final process. (author)

  16. Polymerization, shock cooling and ionization of liquid nitrogen

    International Nuclear Information System (INIS)

    Ross, M; Rogers, F

    2005-01-01

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10 6 GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T ∼ 3.5 10 5 K) and at 400 Mbar (T ∼ 2.3 10 6 K) from K shell ionization. Near a pressure of 10 6 GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit

  17. Liquid Nitrogen (Oxygen Simulent) Thermodynamic Venting System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low gravity space environments, one must consider the effects of thermal stratification on excessive tank pressure that will occur due to environmental heat leakage. During low gravity operations, a Thermodynamic Venting System (TVS) concept is expected to maintain tank pressure without propellant resettling. The TVS consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted by the pump and passing it though the J-T valve, then through the heat exchanger, the bulk liquid and ullage are cooled, resulting in lower tank pressure. A series of TVS tests were conducted at the Marshall Space Flight Center using liquid nitrogen as a liquid oxygen simulant. The tests were performed at fill levels of 90%, 50%, and 25% with gaseous nitrogen and helium pressurants, and with a tank pressure control band of 7 kPa. A transient one-dimensional model of the TVS is used to analyze the data. The code is comprised of four models for the heat exchanger, the spray manifold and injector tubes, the recirculation pump, and the tank. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature are compared with data. Details of predictions and comparisons with test data regarding pressure rise and collapse rates will be presented in the final paper.

  18. Polymerization, shock cooling and ionization of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Rogers, F

    2005-07-21

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10{sup 6} GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T {approx} 3.5 10{sup 5} K) and at 400 Mbar (T {approx} 2.3 10{sup 6} K) from K shell ionization. Near a pressure of 10{sup 6} GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit.

  19. Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube

    Science.gov (United States)

    Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok

    2015-01-01

    This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.

  20. A lethal cocktail: gastric perforation following liquid nitrogen ingestion.

    Science.gov (United States)

    Pollard, James Scott; Simpson, Joanne Elizabeth; Bukhari, Moatasiem Idris

    2013-01-07

    We report a case of gastric perforation in an 18-year-old girl as a result of ingesting an alcoholic drink containing liquid nitrogen. The drink was purchased in licensed premises. The extent of the injury necessitated total gastrectomy with Roux-en Y reconstruction. We review the literature, discuss the mechanism of injury and consider the implications for medical services. The authors believe this case is of educational interest to professionals working in emergency medicine, general surgery and public health fields. It raises awareness of a rare injury, but one that may be more commonly encountered because of developing social trends. It informs surgeons confronted with this type of injury that trauma to the gastrointestinal tract can be extensive and preoperative contact with oesophago-gastric colleagues is advisable. Public health bodies must be aware of, and monitor, the use of liquid nitrogen in this way and consider regulation to prevent further injuries.

  1. Liquid nitrogen enhancement of alpha particle tracks in a polycarbonate detector

    International Nuclear Information System (INIS)

    Pilione, L.J.

    1977-01-01

    Makrofol-E polycarbonate detectors were exposed to 1 to 3 MeV alpha particles and subsequently immersed in liquid nitrogen for various periods of time. The influence of the liquid nitrogen on the track recording properties of the detector has been found by measuring the track densities and diameters. Track densities increase with immersion time with a maximum gain of approximately 9% after 1200 min in liquid nitrogen. Track enhancement decreases with waiting time between the end of alpha particle exposure and the beginning of liquid nitrogen immersion. Track diameters decrease with time after passage of the particles and this process is accelerated by immersion in liquid nitrogen. (author)

  2. A liquid nitrogen cooled polyethylene moderator for the Harwell Linac

    International Nuclear Information System (INIS)

    Boland, B.C.; Hey, P.D.; Houzego, P.J.; Mack, B.; Mildner, D.F.R.; Sinclair, R.N.

    1978-09-01

    A 40 mm thick polyethylene block has been maintained at a temperature close to 80 K by using a liquid nitrogen cryostat, and used to moderate neutrons from pulsed source. The assembly has been tested with a dummy heat load of 400W. The cryostat and cooling system was installed on the Harwell 45 MeV electron linac, and enabled the production of sharper pulses in the thermal neutron energy range. The design, safety considerations and performance are described. (author)

  3. Acoustic velocity investigation and density calculation in liquid nitrogen tetroxide

    International Nuclear Information System (INIS)

    Belyaeva, O.V.; Nikolaev, V.A.; Timofeev, B.D.

    1979-01-01

    Acoustic velocity in liquid nitrogen tetroxide was investigated on an ultrasonic interferometer, which represents a tube with the 30x2.5 mm diameter, at the ends of which ultrasonic sensors are located. The sensors and the interferometer tube are fabricated of the Kh18N9T stainless steel. The calibration tests were carried out on twice-distilled water at the pressure from 1 to 80 bar in the operational range of temperatures from 283 to 360 K. The relative mean square error in experimental data on the acoustic velocity in liquid nitrogen tetroxide is 0.17%. The experimental data are described by the interpolation polynom in the investigated range of state parameters. On the basis of experimental data on the density of liquid nitrogen tetroxide near the saturation line and the experimental values of acoustic velocity, an interpolation equation is suggested to calculate the substance density under investigation in the range of 290-360 K from pressures corresponding to the saturation line, to 300 bar

  4. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Bejarano, Arturo; López, Pablo I.; Valle, José M. del; Fuente, Juan C. de la

    2015-01-01

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO 2 + water. • Data includes (CO 2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼10 4 ) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO 2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO 2 + (E)-2-hexenal + water) and (CO 2 + hexanal + water), at fixed liquid phase composition (600 mg · kg −1 ), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO 2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO 2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼10 4 ) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  5. Vapour pressure measurements over liquid UO{sub 2} and (U,Pu)O{sub 2} by laser surface heating up to 5000 K

    Energy Technology Data Exchange (ETDEWEB)

    Babelot, J F; Brumme, G D [Institut fuer Angewandte Physik, TH Darmstadt (Germany); Kinsman, P R; Ohse, R W [Commission of the European Communities, European Institute for Transuranium Elements, EURATOM (Germany)

    1977-07-01

    Nuclear reactor technology requires the vapour pressure of fast breeder reactor fuels up to 6000 K in order to estimate the energy release In hypothetical fast reactor core meltdown accident. Both theoretical and experimental efforts are needed to provide the required data. In principle PVT data can be estimated by appropriate theoretical models, extrapolating measured data, or by purely thermodynamic calculations based on the extrapolation of reliable low temperature thermodynamic data. Direct measurements require the development of new experimental techniques for the extreme temperature range of interest in nuclear technology. The various theoretical approaches are characterized by the application of models which were conceived for simple molecular liquids and by the extrapolation of low temperature vapour pressure data over several thousand degrees, leading to a range In predicted critical point temperatures from 6000 K to almost 10000 K.

  6. Liquid Nitrogen (Oxygen Simulant) Thermodynamic Vent System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low-gravity (space) environments, one must consider the effects of thermal stratification on tank pressure that will occur due to environmental heat leaks. During low-gravity operations, a Thermodynamic Vent System (TVS) concept is expected to maintain tank pressure without propellant resettling. A series of TVS tests was conducted at NASA Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a liquid oxygen (LO2) simulant. The tests were performed at tank til1 levels of 90%, 50%, and 25%, and with a specified tank pressure control band. A transient one-dimensional TVS performance program is used to analyze and correlate the test data for all three fill levels. Predictions and comparisons of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  7. Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain); Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva (Spain); Mendiboure, B. [Laboratoire des Fluides Complexes et leurs Réservoirs, UMR5150, Université de Pau et des Pays de l’Adour, B. P. 1155, Pau Cedex 64014 (France); Moreno-Ventas Bravo, A. I. [Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva (Spain); Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain)

    2014-11-14

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r{sub c} = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r{sub c} = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial

  8. Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited

    International Nuclear Information System (INIS)

    Martínez-Ruiz, F. J.; Blas, F. J.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.

    2014-01-01

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r c = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r c = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness

  9. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  10. Production of liquid nitrogen using liquefied natural gas as sole refrigerant

    International Nuclear Information System (INIS)

    Agrawal, R.; Ayres, C.L.

    1992-01-01

    This patent describes a process for the liquefaction of a nitrogen stream produced by a cryogenic air separation unit having at least one distillation column. It comprises compressing the nitrogen stream to a pressure of at least 350 psi in a multi-stage compressor wherein interstage cooling is provided by heat exchange against vaporizing liquefied natural gas; condensing the compressed nitrogen stream by heat exchange against vaporizing liquefied natural gas; reducing the pressure of the condensed, compressed nitrogen stream thereby producing a two phase nitrogen stream; phase separating the two phase nitrogen stream into a liquid nitrogen stream and a nitrogen vapor stream; and warming the nitrogen vapor stream to recover refrigeration

  11. The solubility of carbon in low-nitrogen liquid lithium

    International Nuclear Information System (INIS)

    Yonco, R.M.; Homa, M.I.

    1986-01-01

    The solubility of carbon in liquid lithium containing 0 C and compared with the solubility in lithium containing proportional 2600 wppm nitrogen in that same temperature range. A direct sampling method was employed in which filtered samples of the saturated solution were taken at randomly selected temperatures. The entire sample was analyzed for carbon by the acetylene evolution method. The analytical method was examined critically and it was found that (1) all of the carbon in solution, including carbon introduced as lithium cyanamide is detected and (2) ethylene and ethane must also be measured and included with the acetylene to get complete recovery of the carbon content of the sample. The solubility of carbon in low-nitrogen lithium can be expressed by the equations ln S=6.731-8617T -1 and log Ssup(*)=7.459-3740T -1 , where S is the mole percent Li 2 C 2 and Ssup(*) is in weight parts per million carbon. The presence of proportional 2600 wppm nitrogen does not affect the solubility of carbon in lithium at temperatures above proportional 350 0 C, but at lower temperatures it increased the solubility by as much as an order of magnitude compared to the solubility in low-nitrogen lithium. (orig.)

  12. Assessment, measurement and correlation of (vapour + liquid) equilibrium of (carbon dioxide + butyl, isobutyl, and amyl formate) systems

    International Nuclear Information System (INIS)

    Shen, Yanshu; Zheng, Danxing; Li, Xinru; Li, Yun

    2013-01-01

    Highlights: • Selected three formates that have relative perfect absorption performance for CO 2 . • Measured the VLE data of CO 2 + butyl, isobutyl, and amyl formates systems. • Correlated the VLE data by using PR EOS with two mixing rules and SRK EOS with one mixing rule. • Concluded amyl formate has potential research value as CO 2 physical absorbent. -- Abstract: In this work, three formates (butyl, isobutyl, and amyl formate) were considered as relative perfect CO 2 absorption performance based on the excess Gibbs function as the thermodynamics criterion. An online static-analytical method was used to measure the (vapour + liquid) equilibrium (VLE) data for the CO 2 + butyl, isobutyl, and amyl formates under the pressure of (0.2 to 6) MPa and the temperatures at a range from (283.15 to 343.15) K. Then the VLE data were correlated by Peng–Robinson (PR) equation of state (EOS) with classic mixing rule, PR EOS with Wong–Sandler (WS) mixing rule and Soave–Redlich–Kwong (SRK) EOS with classic mixing rule. It is shown that SRK EOS is comparatively appropriate for CO 2 + butyl formate binary system. Both PR EOS with classic mixing rule and SRK EOS can be used to correlate the binary systems of CO 2 + isobutyl, amyl formate. It is found that the solubility order of three formates for CO 2 from high to low is arranged as CO 2 + amyl formate > CO 2 + butyl formate > CO 2 + isobutyl formate, showing the system of CO 2 + amyl formate has the best absorption performance. By comparison, it indicates that formates have a greater solubility for CO 2 than acetates on the condition of the same temperature and pressure. In addition, the thermophysical properties, mole absorption and mass absorptive amount of several industrial absorbents were assessed and the absorption performance of amyl formate for CO 2 is better than other physical absorbents. Thus, the study concluded that amyl formate has potential research value as physical absorbent for CO 2 capture

  13. Medium scale fire tests of propane tanks to study the boiling liquid expanding vapour explosion (BLEVE) and transient two-phase jet release

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhifei

    1994-07-01

    A series of medium scale fire tests were conducted to study boiling liquid expanding vapour explosions (BLEVE) and transient jet releases resulting from thermally induced propane tank ruptures. The tests were conducted using commercial propane contained in automotive propane tanks with a capacity of ca 400 liters. The tanks were brought to failure using a combination of torch and pool fire impingement. Instrumentation was included to measure internal pressure, liquid, vapour and wall temperature distribution, tank and lading mass, external blast overpressure, and fireball thermal radiation. Video and still cameras were used to record the fireball and jet fire shapes and dimensions. Two different kinds of BLEVE failure were observed. For very weak tanks the BLEVE was a single step process where the rupture propagated rapidly along the length of the tank. The duration of these events was measured in milliseconds and it is suggested that the process is driven by the vapour space energy. The other type of BLEVE was a two step process where a crack would start in a weakened area, arrest in a stronger part of the tank, and then start again to end in catastrophic failure. Initial failure and jet type release results in violent boiling and pressure recovery in the tank, leading to restart of the crack and catastrophic failure. Time duration is measured in seconds, and is driven by energy stored in the liquid. A computer model was developed to simulate the transient jet release resulting from finite tank failures, and can predict transient mass flow, tank pressure decay, visible flame length and jet fire thermal radiation. 253 refs., 132 figs., 29 tabs.

  14. Liquid nitrogen cooling considerations of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Dabiri, A.E.

    1986-01-01

    An analytical procedure was developed to estimate the cooldown time between pulses of the Compact Ignition Tokamak (CIT) utilizing liquid nitrogen. Fairly good agreement was obtained between the analysis results and those measured in the early fusion experimental devices. The cooldown time between pulses in the CIT is controlled by the energy disposition in the inner leg of the TF coil. A cooldown time of less than one hour is feasible for the CIT if fins are used in the cooling channels. An R and D experimental program is proposed to determine the actual cooldown time between pulses since this would be considered an issue in the conceptual design of the CIT

  15. Measurement of partial discharge inception characteristics in sub-cooled liquid nitrogen

    International Nuclear Information System (INIS)

    Koo, J.Y.; Lee, S.H.; Shin, W.J.; Khan, Umer A.; Oh, S.H.; Seong, J.K.; Lee, B.W.

    2011-01-01

    We measured partial discharge and partial discharge initiation voltage of subcooled liquid nitrogen. Various kinds of test samples have been prepared. Sub-cooled temperature in liquid nitrogen were changed. The number of PD pluses were decreased when 68 K liquid nitrogen was used. Sub-cooled liquid nitrogen has positive effects to suppress PD activities. Partial discharge (PD) measurement is one of the effective diagnostic techniques to predict abnormal high voltage dielectric insulation conditions of the electric equipments. PD diagnostic techniques were also could be utilized to evaluate the conditions of cryogenic dielectric insulation media of high temperature superconducting electric equipment in liquid nitrogen. Generally, liquid nitrogen at 77 K is used as cryogenic and dielectric media for high temperature superconducting devices for high voltage electric power systems. But due to generation of bubbles during quench conditions which cause harmful effect on the properties of liquid nitrogen insulation, sub-cooled nitrogen under 77 K was also employed to suppress bubble formation. In this work, investigation of PD characteristics of sub-cooled liquid nitrogen was conducted in order to clarify the relation between PD inception and the temperature of liquid nitrogen. It was observed that measured PDIV (PD inception voltage) shows little differences according to the sub-cooled temperature of liquid nitrogen, but the magnitude and total numbers of PD has been slightly decreased according the decrease of cooled temperature of liquid nitrogen. From experimental results, it was deduced that the sub-cooled liquid nitrogen from 68 K to 77 K, could be applicable without any considerations of the variation of PDIV.

  16. Experimental study of the vapour-liquid equilibria of HI-I-2-H2O ternary mixtures, Part 2: Experimental results at high temperature and pressure

    International Nuclear Information System (INIS)

    Larousse, B.; Lovera, P.; Borgard, J.M.; Roehrich, G.; Mokrani, N.; Maillault, C.; Doizi, D.; Dauvois, V.; Roujou, J.L.; Lorin, V.; Fauvet, P.; Carles, P.; Hartmann, J.M.

    2009-01-01

    In order to assess the choice of the sulphur-iodine thermochemical cycle for massive hydrogen production, a precise knowledge of the concentrations of the gaseous species (HI, I 2 , and H 2 O) in thermodynamic equilibrium with the liquid phase of the HI-I 2 -H 2 O ternary mixture is required, in a wide range of concentrations and for temperatures and pressures up to 300 degrees C and 50 bar. In the companion paper (Part 1) the experimental device was described, which enables the measurement of the total pressure and concentrations of the vapour phase (and thus the knowledge of the partial pressures of the different gaseous species) for the HI-I 2 -H 2 O mixture in the 20-140 degrees C range and up to 2 bar. This (Part 2) article describes the experimental device which enables similar measurements but now in the process domain. The results concerning concentrations in the vapour phase for the HI-I 2 -H 2 O initial mixture (with a global composition) in the 120-270 degrees C temperature range and up to 30 bar are presented. As previously, optical online diagnostics are used, based on recordings of infrared transmission spectra for HI and H 2 O and on UV/visible spectrometry for I 2 . The concentrations measured in the vapour phase are the first to describe the vapour composition under thermophysical conditions close to those of the distillation column. The experimental results are compared with a thermodynamic model and will help us to scale up and optimize the reactive distillation column we promote for the HI section of the sulphur-iodine cycle. (authors)

  17. Use of the SSF equations in the Kojima-Moon-Ochi thermodynamic consistency test of isothermal vapour-liquid equilibrium data

    Directory of Open Access Journals (Sweden)

    SLOBODAN P. SERBANOVIC

    2000-12-01

    Full Text Available The Kojima-Moon-Ochi (KMO thermodynamic consistency test of vapour–liquid equilibrium (VLE measurements for 32 isothermal data sets of binary systems of various complexity was applied using two fitting equations: the Redlich-Kister equation and the Sum of Symmetrical Functions. It was shown that the enhanced reliability of the fitting of the experimental data can change the conclusions drawn on their thermodynamic consistency in those cases of VLE data sets that are estimated to be near the border of consistency.

  18. Automatic dispensing of liquid nitrogen in submilliliter doses

    Science.gov (United States)

    Milner, C. J.

    1984-10-01

    Well-controlled doses of 0.2 to 0.5 ml of liquid nitrogen are delivered, on electrical signal (not more than once per 5 s), as fills of a miniature bucket raised by an automatic hoist. The bucket is lifted, brimming, from the storage flask and then moved sideways until over the receiver. At this point, a steel ball, which has been resting in and sealing a drain hole in the bucket, is lifted from its seat by a magnet fixed alongside the (now descending) bucket. Design features are outlined: some alternative designs, valving liquid through a short drain tube fixed in the storage flask, are briefly reviewed. In tests the device delivered 74 g (approx. 260 doses) during 63 min, the loss by evaporation meanwhile being 11 g from the bucket, implying a transfer efficiency of 87%. An indirect measure indicated the dose sizes as 354±10 μl approximately.

  19. Isothermal vapour-liquid equilibrium data for the binary systems of (CHF3 or C2F6) and n-heptane

    International Nuclear Information System (INIS)

    Williams-Wynn, Mark D.; Naidoo, Paramespri; Ramjugernath, Deresh

    2016-01-01

    Highlights: • Isothermal static-analytic and static-synthetic phase equilibrium measurements. • Binary VLE data for (CHF3 or C 2 F 6 ) + n-heptane. • Thermodynamic models were fitted to the experimental data. • Critical locus estimation for the systems. - Abstract: Isothermal vapour-liquid equilibrium (VLE) values for two binary systems; trifluoromethane and n-heptane at temperatures between T = (272.9 and 313.2) K, and hexafluoroethane and n-heptane at temperatures between T = (293.0 and 313.2) K were measured with a static-analytic apparatus. Bubble pressures at temperatures between T = (293.0 and 313.2) K, at several compositions, were also measured with a variable-volume static-synthetic apparatus. Vapour-liquid-liquid equilibrium (VLLE) was found to occur for certain isotherms for both of the systems. The PR EOS, with the Mathias-Copeman (MC) alpha function, combined with either the classical mixing rule or the Wong-Sandler (WS) mixing rule was used to correlate the experimental results. Either the NRTL or the UNIQUAC activity coefficient model was used within the WS mixing rule. The indirect extended scaling laws of Ungerer et al. were used to extrapolate critical loci from the experimental coexistence data, and the calculation procedure of Heidemann and Khalil was employed to calculate the mixture critical locus curves at temperatures close to the refrigerant critical temperatures. At lower temperatures on the mixture critical curve, gas-liquid critical points occurred, whereas, at higher temperatures, the critical points occurred along a liquid-liquid locus curve. The two systems were categorised according to the van Konynenburg and Scott classification.

  20. Isothermal VapourůLiquid Equilibria and Excess Molar Volumes in the Binary Ethanol + Methyl Propanoate or Methyl Butanoate Systems

    Czech Academy of Sciences Publication Activity Database

    Constantinescu, D.; Wichterle, Ivan

    2002-01-01

    Roč. 203, 1-2 (2002), s. 71-82 ISSN 0378-3812 R&D Projects: GA AV ČR IAA4072102 Keywords : vapour pressure * azeotropy * experiment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.011, year: 2002

  1. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    Science.gov (United States)

    Johnson, W. L.; Cook, C. R.

    2014-01-01

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  2. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W. L. [Cryogenics Test Laboratory, NASA Kennedy Space Center, Kennedy Space Center, FL, 32899 (United States); Cook, C. R. [Dept. Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611 (United States)

    2014-01-29

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  3. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    International Nuclear Information System (INIS)

    Johnson, W. L.; Cook, C. R.

    2014-01-01

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection

  4. Trial manufacture of liquid nitrogen cooling High Temperature Superconductivity Motor

    International Nuclear Information System (INIS)

    Sugimoto, H; Nishikawa, T; Tsuda, T; Hondou, Y; Akita, Y; Takeda, T; Okazaki, T; Ohashi, S; Yoshida, Y

    2006-01-01

    We present a new high temperature superconductivity (HTS) synchronous motor using the liquid nitrogen as the refrigerant in this paper. This motor is designed to be used as the propulsion motor in ship. Because we use the liquid nitrogen as the refrigerant, it is possible to simplify the cooling equipments in the motor. And in our design, we apply the axial flux type of motor to simplify the cryostat of the HTS wires used to make the field coils. Here, the fields using the bismuth HTS wire for the HTS coils are fixed. Moreover, the cores used in the fields are separated from cryostat, and the armature applies the core-less structure. According to various the electromagnetic field analysis results, the new motor was designed and produced. The diameter of the motor is 650mm, and the width of the motor is 360mm. The motor's rated output is 8.8kW at 100rpm, while the overload output is 44kW, and the maximum efficiency is 97.7%. Also, in order to further miniaturize the motor, other magnetic field analysis have been done when the high-current-density type HTS wire was used and the permendur was used instead of magnetic steel plates. In this case, the motor's rated output is 12kW, and the overload output is 60kW

  5. Contamination of liquid oxygen by pressurized gaseous nitrogen

    Science.gov (United States)

    Zuckerwar, Allan J.; King, Tracy K.; Ngo, Kim Chi

    1989-01-01

    The penetration of pressurized gaseous nitrogen (GN2) into liquid oxygen (LOX) was investigated experimentally in the 7-inch High Temperature Tunnel, the pilot tunnel for the 8-foot High Temperature Tunnel (8'HTT) at Langley Research Center. A preliminary test using a nuclear monitor revealed the extent of the liquid nitrogen (LN2) build-up at the LOX interface as a function of GN2 pressure. Then an adaptation of the differential flash vaporization technique was used to determine the binary diffusivity of the LOX-LN2 system at a temperature of 90.2 K. The measured value D equals 0.000086 sq cm/s + or - 25 percent together with two prior measurements at lower temperatures revealed an excellent fit to the Arrhenius equation, yielding a pre-exponential factor D sub 0 equals 0.0452 sq cm/s and an activation enthalpy H equals 1.08 kcal/mol. At a pressure of 1700 psi and holding time of 15 min, the penetration of LN2 into LOX (to a 1 percent contamination level) was found to be 0.9 cm, indicating but minimal impact upon 8'HTT operations.

  6. High Energy Cutting and Stripping Utilizing Liquid Nitrogen

    Science.gov (United States)

    Hume, Howard; Noah, Donald E.; Hayes, Paul W.

    2005-01-01

    The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over

  7. Isothermal (vapour + liquid) equilibrium for binary mixtures of polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, or 2-propanol

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2011-01-01

    Highlights: → An autoclave apparatus was used for binary (vapour + liquid) equilibrium data measurement. → The studied systems are polyethylene glycol mono-4-nonylphenyl ether with alcohols. → The saturated pressure data were fitted accurately to the Antoine equation. → The NRTL model correlated well the phase equilibrium data. → The solvent activities have been calculated. - Abstract: Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.

  8. (Vapour + liquid) equilibria for binary and ternary mixtures of 2-propanol, tetrahydropyran, and 2,2,4-trimethylpentane at P = 101.3 kPa

    International Nuclear Information System (INIS)

    Lin, Dun-Yi; Tu, Chein-Hsiun

    2012-01-01

    Highlights: ► We report the VLE data at P = 101.3 kPa involving a cyclic ether. ► The activity coefficients of mixtures were obtained from modified Raoult’s law. ► The VLE data were correlated by four liquid activity coefficient models. ► The ternary VLE data were predicted from binary parameters of the four models. - Abstract: (Vapour + liquid) equilibrium (VLE) at P = 101.3 kPa have been determined for a ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane), and (tetrahydropyran + 2,2,4-trimethylpentane). Analysis of VLE data reveals that two binary systems (2-propanol + tetrahydropyran) and (2-propanol + 2,2,4-trimethylpentane) have a minimum boiling azeotrope. No azeotrope was found for the ternary system. The activity coefficients of liquid mixtures were obtained from the modified Raoult’s law and were used to calculate the reduced excess molar Gibbs free energy (g E /RT). Thermodynamic consistency tests were performed for all VLE data using the Van Ness direct test for the binary systems and the test of McDermott–Ellis as modified by Wisniak and Tamir for the ternary system. The VLE data of the binary mixtures were correlated using the three-suffix Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The models with their best-fitted interaction parameters of the binary systems were used to predict the ternary (vapour + liquid) equilibrium.

  9. Properties of concrete mixed with sand frozen by liquid nitrogen

    International Nuclear Information System (INIS)

    Negami, Yoshiaki; Kurita, Morio; Kuwahara, Takashi; Goto, Sadao.

    1990-01-01

    This paper presents a new precooling method which reduces the temperature of mixed concrete by mixing it with sand frozen by liquid nitrogen. The authors tried to clarify the properties of both the frozen sand and the concrete mixed with the frozen sand. The results of a series of experimental studies indicate that the temperature of mixed concrete can be reduced about 25degC, which is a larger reduction quantity than that achieved by conventional precooling methods; and that this method contributes to improvement of the consistency and the compressive strength of the concrete. Furthermore, the advantageous effect of this precooling method is confirmed from the results of laboratory tests using massive concrete members. (author)

  10. Pool boiling from rotating and stationary spheres in liquid nitrogen

    Science.gov (United States)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  11. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  12. Heat and mass transfer of liquid nitrogen in coal porous media

    Science.gov (United States)

    Lang, Lu; Chengyun, Xin; Xinyu, Liu

    2018-04-01

    Liquid nitrogen has been working as an important medium in fire extinguishing and prevention, due to its efficiency in oxygen exclusion and heat removal. Such a technique is especially crucial for coal industry in China. We built a tunnel model with a temperature monitor system (with 36 thermocouples installed) to experimentally study heat and mass transfer of liquid nitrogen in non-homogeneous coal porous media (CPM), and expected to optimize parameters of liquid nitrogen injection in engineering applications. Results indicate that injection location and amount of liquid nitrogen, together with air leakage, significantly affect temperature distribution in CPM, and non-equilibrium heat inside and outside of coal particles. The injection position of liquid nitrogen determines locations of the lowest CPM temperature and liquid nitrogen residual. In the deeper coal bed, coal particles take longer time to reach thermal equilibrium between their surface and inside. Air leakage accelerates temperature increase at the bottom of the coal bed, which is a major reason leading to fire prevention inefficiency. Measurement fluctuation of CPM temperature may be caused by incomplete contact of coal particles with liquid nitrogen flowing in the coal bed. Moreover, the secondary temperature drop (STD) happens and grows with the more injection of liquid nitrogen, and the STD phenomenon is explained through temperature distributions at different locations.

  13. Advantages of liquid nitrogen freezing of Penaeus monodon over conventional plate freezing

    OpenAIRE

    Chakrabarti, R.; Chaudhury, D.R.

    1987-01-01

    Liquid nitrogen frozen products are biochemically and organoleptically superior to conventional plate frozen products but beneficial effect of liquid nitrogen freezing over conventional plate freezing can exist only up to 59 days at a commercial storage temperature of -18°C.

  14. Effect of liquid nitrogen storage on seed germination of 51 tree species

    Science.gov (United States)

    Jill R. Barbour; Bernard R. Parresol

    2003-01-01

    Two liquid nitrogen storage experiments were performed on 51 tree species. In experiment 1, seeds of 9western tree species were placed in a liquid nitrogen tank for 3 time periods: 24 hours, 4 weeks, and 222 days. A corresponding control sample accompanied each treatment. For three species,Calocedrus decurrens, Pinus jefferyi, and ...

  15. Homogeneous nucleation in liquid nitrogen at negative pressures

    Energy Technology Data Exchange (ETDEWEB)

    Baidakov, V. G., E-mail: baidakov@itp.uran.ru; Vinogradov, V. E.; Pavlov, P. A. [Russian Academy of Sciences, Institute of Thermal Physics, Ural Branch (Russian Federation)

    2016-10-15

    The kinetics of spontaneous cavitation in liquid nitrogen at positive and negative pressures has been studied in a tension wave formed by a compression pulse reflected from the liquid–vapor interface on a thin platinum wire heated by a current pulse. The limiting tensile stresses (Δp = p{sub s}–p, where p{sub s} is the saturation pressure), the corresponding bubble nucleation frequencies J (10{sup 20}–10{sup 22} s{sup –1} m{sup –3}), and temperature induced nucleation frequency growth rate G{sub T} = dlnJ/dT have been experimentally determined. At T = 90 K, the limiting tensile stress was Δp = 8.3 MPa, which was 4.9 MPa lower than the value corresponding to the boundary of thermodynamic stability of the liquid phase (spinodal). The measurement results were compared to classical (homogeneous) nucleation theory (CNT) with and without neglect of the dependence of the surface tension of critical bubbles on their dimensions. In the latter case, the properties of new phase nuclei were described in terms of the Van der Waals theory of capillarity. The experimental data agree well with the CNT theory when it takes into account the “size effect.”.

  16. Vapour liquid equilibria of monocaprylin plus palmitic acid or methyl stearate at P = (1.20 and 2.50) kPa by using DSC technique

    International Nuclear Information System (INIS)

    Cunico, Larissa P.; Damaceno, Daniela S.; Matricarde Falleiro, Rafael M.; Sarup, Bent; Abildskov, Jens; Ceriani, Roberta; Gani, Rafiqul

    2015-01-01

    Highlights: • Novel VLE data for binary mixtures involving a partial acylglycerol (monocaprylin). • Use of a promising technique for measuring VLE/vapour pressure data (DSC technique). • The consistency of experimental data is analysed by a proposed methodology. • Regressed parameters are given for excess Gibbs thermodynamic models. • New regressed parameters are presented for UNIFAC to account for nonidealities. - Abstract: The Differential Scanning Calorimetry (DSC) technique is used for measuring isobaric (vapour + liquid) equilibria for two binary mixtures: {monocaprylin + palmitic acid (system 1) or methyl stearate (system 2)} at two different pressures P = (1.20 and 2.50) kPa. The obtained PTx data are correlated by Wilson, NRTL and UNIQUAC models. The original UNIFAC group contribution method is also considered and new binary interaction parameters for the main groups CH 2 , CCOO, OH and COOH are regressed, to account for the non-idealities found in these lipid systems. Established thermodynamic consistency tests are applied and attest the quality of the measured data. In terms of relevance of the selected components, system 1 can be found in the purification and deodorization steps during the production of edible oils, while, system 2 can be found in the purification steps of biodiesel. It should be noted that no such data could be found in the open literature, not only for the specific components selected but also for the combination of the classes of components considered; that is, acylglycerol plus fatty acid or fatty ester.

  17. Range-energy relations and stopping power of water, water vapour and tissue equivalent liquid for α particles over the energy range 0.5 to 8 MeV

    International Nuclear Information System (INIS)

    Palmer, R.B.J.; Akhavan-Rezayat, Ahmad

    1978-01-01

    Experimental range-energy relations are presented for alpha particles in water, water vapour and tissue equivalent liquid at energies up to 8 MeV. From these relations differential stopping powers are derived at 0.25 MeV energy intervals. Consideration is given to sources of error in the range-energy measurements and to the uncertainties that these will introduce into the stopping power values. The ratio of the differential stopping power of muscle equivalent liquid to that of water over the energy range 0.5 to 7.5 MeV is discussed in relation to the specific gravity and chemical composition of the muscle equivalent liquid. Theoretical molecular stopping power calculations based upon the Bethe formula are also presented for water. The effect of phase upon the stopping power of water is discussed. The molecular stopping power of water vapour is shown to be significantly higher than that of water for energies below 1.25 MeV and above 2.5 MeV, the ratio of the two stopping powers rising to 1.39 at 0.5 MeV and to 1.13 at 7.0 MeV. Stopping power measurements for other liquids and vapours are compared with the results for water and water vapour and some are observed to have stopping power ratios in the vapour and liquid phases which vary with energy in a similar way to water. It is suggested that there may be several factors contributing to the increased stopping power of liquids. The need for further experimental results on a wider range of liquids is stressed

  18. Analysis of the VLE data in “Measurement and correlations of density, viscosity, and vapour-liquid equilibrium for fluoro alcohols”

    International Nuclear Information System (INIS)

    Wisniak, Jaime; Ortega, Juan; Fernández, Luis

    2017-01-01

    Highlights: • A critical analysis on the published data in JCT 102 (2016) 155–163, is carried out. • Different consistency tests are applied to the data used in this work for their thermodynamic evaluation. • It concludes by questioning the quality of the published data. - Abstract: The vapour-liquid equilibrium results reported by Zhang et al. [1] for the binary systems {methanol (1) + 2,2,3,3,4,4,5,5-octafluoro-1-pentanol (2)} and {2,2,3,3-tetrafluoro-1-propanol (1) + 2,2,3,3,4,4,5,5-octafluoro-1-pentanol (2)} have been analysed using the data evaluation methodology published recently [2] and found to be unreliable.

  19. Density, viscosity, isothermal (vapour + liquid) equilibrium, excess molar volume, viscosity deviation, and their correlations for chloroform + methyl isobutyl ketone binary system

    International Nuclear Information System (INIS)

    Clara, Rene A.; Gomez Marigliano, Ana C.; Solimo, Horacio N.

    2007-01-01

    Density and viscosity measurements for pure chloroform and methyl isobutyl ketone at T = (283.15, 293.15, 303.15, and 313.15) K as well as for the binary system {x 1 chloroform + (1 - x 1 ) methyl isobutyl ketone} at the same temperatures were made over the whole concentration range. The experimental results were fitted to empirical equations, which permit the calculation of these properties over the whole concentration and temperature ranges studied. Data of the binary mixture were further used to calculate the excess molar volume and viscosity deviation. The (vapour + liquid) equilibrium (VLE) at T = 303.15 K for this binary system was also measured in order to calculate the activity coefficients and the excess molar Gibbs energy. This binary system shows no azeotrope and negative deviations from ideal behaviour. The excess or deviation properties were fitted to the Redlich-Kister polynomial relation to obtain their coefficients and standard deviations

  20. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes

    DEFF Research Database (Denmark)

    Iliuta, Maria C.; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    to aqueous salt systems containing non-electrolytes in order to demonstrate its ability in representing solid-liquid-vapour (SLV) equilibrium and thermal property data for these strongly non-ideal systems. The model requires only pure component and binary temperature-dependent interaction parameters....... The calculations are based on an extensive database consisting of salt solubility data in pure and mixed solvents, VLE data for solvent mixtures and mixed solvent-electrolyte systems and thermal properties for mixed solvent solutions. Application of the model to the methanol-water system in the presence of several...... ions (Na+, K+, NH4+, Cl-, NO3-, SO42-, CO2- and HCO3-) shows that the Extended UNIQUAC model is able to give an accurate description of VLE and SLE in ternary add quaternary mixtures, using the name set of binary interaction parameters. The capability of the model to predict accurately the phase...

  1. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  2. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  3. Vapour pressure of trideuterioammonia

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Lopes, J.N.C.; Rebelo, L.P.N. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural)

    1992-09-01

    The H-to-D vapour-pressure isotope effect in liquid ammonia has been measured at 62 temperatures between 228 K and 260 K. The vapour pressures, corrected to 100 per cent nuclidic purity, have been fitted to the equation: T ln r = A+B/T+CT, where r is the vapour-pressure ratio p(NH[sub 3])/p(ND[sub 3]). The fit yielded the parameters: A = -8.22508 K, B = 12338.2 K[sup 2], and C = -0.05544. Comparisons with the results of other authors were made in order to clarify some discrepancies found in the literature. Our values are in accord with the previous results of King et al. and an extrapolation of the fitted equation down to the triple-point temperature gave good agreement with the published results. The fitted equation was used in conjunction with the Clapeyron equation to calculate the difference in the molar enthalpies of vaporization between NH[sub 3] and ND[sub 3]. At T = 230 K that difference is -846 J.mol[sup -1] decreasing to -747 J.mol[sup -1] at 260 K. (author).

  4. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    Science.gov (United States)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  6. Renewable energy carriers: Hydrogen or liquid air/nitrogen?

    International Nuclear Information System (INIS)

    Li Yongliang; Chen Haisheng; Zhang Xinjing; Tan Chunqing; Ding Yulong

    2010-01-01

    The world's energy demand is met mainly by the fossil fuels today. The use of such fuels, however, causes serious environmental issues, including global warming, ozone layer depletion and acid rains. A sustainable solution to the issues is to replace the fossil fuels with renewable ones. Implementing such a solution, however, requires overcoming a number of technological barriers including low energy density, intermittent supply and mobility of the renewable energy sources. A potential approach to overcoming these barriers is to use an appropriate energy carrier, which can store, transport and distribute energy. The work to be reported in this paper aims to assess and compare a chemical energy carrier, hydrogen, with a physical energy carrier, liquid air/nitrogen, and discuss potential applications of the physical carrier. The ocean energy is used as an example of the renewable energy sources in the work. The assessment and comparison are carried out in terms of the overall efficiency, including production, storage/transportation and energy extraction. The environmental impact, waste heat recovery and safety issues are also considered. It is found that the physical energy carrier may be a better alternative to the chemical energy carrier under some circumstances, particularly when there are waste heat sources.

  7. Design Tool for Liquid-Nitrogen Gaps in Superconducting Apparatus

    International Nuclear Information System (INIS)

    Pace, Marshall O.; Sauers, Isidor; James, David Randy; Tuncer, Enis; Polyzos, Georgios

    2011-01-01

    For designers of high temperature superconducting equipment with liquid nitrogen as a dielectric, an expedient universal curve is sought that provides breakdown strength for a specified class of electrode shapes, with any practical sizes of electrodes and gap; thus the universal curve fills in missing experimental data. Universal breakdown strength curves at pressures of or slightly above 100 kPa, are being developed for AC, DC or impulse stress for the class with sphere-sphere, plane-plane and sphere-plane gaps, with three independent parameters: the size of each electrode and gap. A user can normalize his parameters and find the corresponding breakdown strength, even though no data were available for his exact dimensions. For AC and DC stresses the geometrical effects of stressed area/volume are incorporated from most published AC and DC experimental data of the last 50 years, by plotting breakdown field versus new geometrical quantities, such that all data fall approximately on or near one normalized universal curve. This avoids the usual difficult task of calculating stressed area and volume effects on the breakdown values for the graph ordinate. For impulse stress a more traditional plot suffices to produce a universal curve. This suggests that area/volume effects might not be so important with impulse stress. If the method proves reliable, it may be possible to determine design parameters for a broad range of geometries, help unify seemingly disparate breakdown data in the literature, and provide easily used, practical guidance for designers.

  8. Connection for transfer of Liquid Nitrogen from High Voltage to ground potential

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Hansen, Finn; Willén, Dag

    2001-01-01

    In order to operate a superconducting cable conductor it must be kept at a cryogenic temperature (e.g. using liquid nitrogen). The superconducting cable conductor is at high voltage and the cooling equipment is kept at ground potential. This requires a thermally insulating connection that is also...... properties and withstand towards high-pressure liquid nitrogen. The length per joint is approximately 900 mm, including a Johnstoncoupling. The joints are tested in a closed liquid nitrogen circuit, with a pressure of up to 10 bars. The rated voltage of the cable system is 36 kV (phase-phase)....

  9. An automatic device for refilling liquid nitrogen traps at constant time intervals; Dispositif automatique assurant le remplissage de pieces en azote liquide a intervales de temps constant

    Energy Technology Data Exchange (ETDEWEB)

    Bourguillot, R; Lohez, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    We have been led to study the design of an automatic device for the filling of liquid nitrogen traps at constant time intervals in connection with the maintenance of a type MS 5 mass spectrometer; in the tube of this apparatus it is necessary to maintain a vacuum of about 10{sup -7} mm of mercury. The replenishing is done every four hours. The presence in the vacuum section of an electron multiplier has led us to provide a safety-device making it impossible for mercury vapour to come into contact with either the copper tube or the multiplier in the event of an incident leading to the warming up of the traps. In case of a breakdown, the vacuum section is therefore brought up to atmospheric pressure by the introduction of nitrogen. (author) [French] Nous avons ete conduits pour la maintenance d'un spectrometre de masse type MS 5, dans le tube duquel il faut entretenir un vide de quelques 10{sup -7} mm de mercure, a etudier un systeme de remplissage automatique a intervalle de temps fixe des pieges en azote liquide. Ce remplissage se fait toutes les quatre heures. La presence dans l'enceinte sous vide, d'un multiplicateur d'electrons, nous a amenes a prevoir un systeme de securite evitant de mettre le tube en cuivre et le multiplicateur en contact avec la vapeur de mercure en cas d'incident amenant le rechauffage des pieges. En cas de panne, l'enceinte sous vide est donc ramenee a la pression atmospherique par une introduction d'azote. (auteur)

  10. Liquid absorbent solutions for separating nitrogen from natural gas

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  11. The investigation on the vapour liquid phase equilibrium of (ammonia + 1,1,1,2-tetrafluoroethane) system over the temperatures ranging from (243.150 to 283.150) K

    International Nuclear Information System (INIS)

    Zhao, Yanxing; Dong, Xueqiang; Zhong, Quan; Gong, Maoqiong; Shen, Jun

    2017-01-01

    Highlights: • The vapour liquid equilibrium for ammonia + 1,1,1,2-tetrafluoroethane system was studied. • Measurements were based on vapour phase single recirculation method. • A positive azeotropic behaviour was exhibited at the experimental temperature range. - Abstract: To blend ammonia with some hydrofluorocarbons may give these mixed refrigerants lower flammability and global warming potential. In this paper, the isothermal vapour liquid equilibrium (VLE) of (ammonia + 1,1,1,2-tetrafluoroethane) system at temperatures ranging from (243.150 to 283.150) K are presented. Two models were employed to regress the experimental VLE results, namely the Peng–Robinson (PR) equation of state with the simple van der waals (VDW) mixing rule; the Peng–Robinson equation of state combined non-random two-liquid (NRTL) activity coefficient model with the modified Huron-Vidal one-order (MHV1) mixing rule. The maximum average absolute relative deviation of pressure (AARDp) and average absolute deviation of the vapour phase mole fraction (AADy) for PR-VDW are 0.56% and 0.010, respectively, while the maximum AARDp and AADy for PR-MHV1-NRTL are 0.27% and 0.014, respectively. Positive azeotropic behaviour was exhibited at each temperature investigated.

  12. The reaction between barium and nitrogen in liquid sodium: resistivity studies

    International Nuclear Information System (INIS)

    Addison, C.C.; Creffield, G.K.; Hubberstey, P.; Pulham, R.J.

    1976-01-01

    The reaction of nitrogen with solutions of barium (between 0.34 and 6.89 mol % Ba) in liquid sodium at 573 K has been followed by changes in the electrical resistivity of the liquid. The capillary method has been employed, continuous sampling during reaction being achieved by electromagnetic pumping. The initial solution of nitrogen in the metal, followed by precipitation of barium and nitrogen from sodium as the nitride Ba 2 N, are reflected in the resistivity changes. The solubility of nitrogen in the alloy is a linear function of the barium concentration: S(mol % N) = x/4 (0 <= x <= 6.89 mol % Ba). This and the decrease in resistivity which invariably occurs during the solution process, provides additional information on the nature of solvation of nitrogen in solution in the liquid metal. (author)

  13. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Gholamireza, Afsaneh

    2011-01-01

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg -1 di-ammonium hydrogen citrate {(NH 4 ) 2 HCit} and those of (NH 4 ) 2 HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH 4 ) 2 HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH 4 ) 2 HCit}, {alanine + (NH 4 ) 2 HCit}, and {serine + (NH 4 ) 2 HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  14. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rahsadeghi@yahoo.co [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Gholamireza, Afsaneh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg{sup -1} di-ammonium hydrogen citrate {l_brace}(NH{sub 4}){sub 2}HCit{r_brace} and those of (NH{sub 4}){sub 2}HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH{sub 4}){sub 2}HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {l_brace}glycine + (NH{sub 4}){sub 2}HCit{r_brace}, {l_brace}alanine + (NH{sub 4}){sub 2}HCit{r_brace}, and {l_brace}serine + (NH{sub 4}){sub 2}HCit{r_brace} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  15. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-12-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7 × 10−7cm−1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype

  16. 14 MeV INAA nitrogen determination in coal conversion liquids

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Khalil, S.R.

    1980-01-01

    Fast neutron activation analysis has been used for the direct determination of nitrogen in coal conversion liqui-ds. In our previous work on coals, solid standards such as N-1-napthylacetamide, NBS SRM 912 urea and NBS SRM 148 nicotinic acid were used for nitrogen determinations. In this work, a set of organic liquids was selected and evaluated for use as nitrogen standards in the analysis of coal-derived liquids. The use of the liquid standards minimizes problems associated with maintaining uniform irradation and counting geometries and self absorption differences related to varying matrix densities. The standard liquids were selected using criteria of high boiling point, well-defined stoichiometry, high-purity, non-hygroscopic nature and simple C-H-N elemental compositions. Excellent agreement between the 14 MeV INAA data and calculated stoichiometric values has been demonstrated for liquids with nitrogen contents from 1.89 to 39.95%. The liquid standards have been used to determine nitrogen in a set of typical coal conversion liquids and several international standards. (author)

  17. Control of the nitrogen concentration in liquid lithium by the hot trap method

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    The nitrogen concentration in liquid lithium was controlled by the hot-trap method. Titanium, vanadium and a V-Ti alloy were used as nitrogen gettering materials. Gettering experiments were conducted at 673, 773 and 823 K for 0.4-2.8 Ms. After immersion, the nitrogen concentration increased in titanium and V-Ti were tested at 823 K. Especially the nitrogen gettering effect by the V-10at.%Ti alloy was found to be large. Nitrogen was considered to exist mainly as solid solution in the V-10at.%Ti alloy. The decrease of the nitrogen concentration in liquid lithium by the V-Ti gettering was also confirmed

  18. DETERMINATION OF HEAT TRANSFER COEFFICIENTS FOR FRENCH PLASTIC SEMEN STRAW SUSPENDED IN STATIC NITROGEN VAPOR OVER LIQUID NITROGEN.

    Science.gov (United States)

    Santo, M V; Sansinena, M; Chirife, J; Zaritzky, N

    2015-01-01

    The use of mathematical models describing heat transfer during the freezing process is useful for the improvement of cryopreservation protocols. A widespread practice for cryopreservation of spermatozoa of domestic animal species consists of suspending plastic straws in nitrogen vapor before plunging into liquid nitrogen. Knowledge of surface heat transfer coefficient (h) is mandatory for computational modelling; however, h values for nitrogen vapor are not available. In the present study, surface heat transfer coefficients for plastic French straws immersed in nitrogen vapor over liquid nitrogen was determined; vertical and horizontal positions were considered. Heat transfer coefficients were determined from the measurement of time-temperature curves and from numerical solution of heat transfer partial differential equation under transient conditions using finite elements. The h values experimentally obtained for horizontal and vertically placed straws were compared to those calculated using correlations based on the Nusselt number for natural convection. For horizontal straws the average obtained value was h=12.5 ± 1.2 W m(2) K and in the case of vertical straws h=16 ± 2.48 W m(2) K. The numerical simulation validated against experimental measurements, combined with accurate h values provides a reliable tool for the prediction of freezing curves of semen-filled straws immersed in nitrogen vapor. The present study contributes to the understanding of the cryopreservation techniques for sperm freezing based on engineering concepts, improving the cooling protocols and the manipulation of the straws.

  19. New displacement sensor for a hybrid magnetic bearing in liquid nitrogen

    International Nuclear Information System (INIS)

    Komori, M.; Kobayashi, H.; Shiraishi, C.

    1999-01-01

    This paper describes a newly developed displacement sensor. The displacement sensor is used for a hybrid magnetic bearing in liquid nitrogen. The principle of the displacement sensor is based on a differential transformer. The sensor is found to be useful in liquid nitrogen at 77 K (-196 C). Moreover, the sensor is applied to a hybrid magnetic bearing. The displacement sensor is found to be useful and promising

  20. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  1. Chemical equilibrium calculations for the high pressure and temperature dissociation of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.; Ree, F.H.

    1987-07-01

    Calculations are reported for the equation-of-state properties of shock-compressed liquid nitrogen. The statistical mechanical, chemical equilibrium calculations, which allow for the simultaneous presence of both the diatomic and monatomic forms of nitrogen, show good agreement with recent dynamic experiments.

  2. Chemical equilibrium calculations for the high pressure and temperature dissociation of liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Ree, F.H.

    1987-07-01

    Calculations are reported for the equation-of-state properties of shock-compressed liquid nitrogen. The statistical mechanical, chemical equilibrium calculations, which allow for the simultaneous presence of both the diatomic and monatomic forms of nitrogen, show good agreement with recent dynamic experiments

  3. Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the (solid + liquid) equilibrium and the (vapour + liquid) equilibrium. The modified UNIFAC (Do) model characterization

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lachwa, Joanna

    2005-01-01

    The (solid + liquid) equilibrium (SLE) of eight binary systems containing N-methyl-2-pyrrolidinone (NMP) with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) were carried out by using a dynamic method from T = 200 K to the melting point of the NMP. The isothermal (vapour + liquid) equilibrium data (VLE) have been measured for three binary mixtures of NMP with 2-propanone, 3-pentanone and 2-hexanone at pressure range from p = 0 kPa to p = 115 kPa. Data were obtained at the temperature T = 333.15 K for the first system and at T = 373.15 K for the second two systems. The experimental results of SLE have been correlated using the binary parameters Wilson, UNIQUAC ASM and two modified NRTL equations. The root-mean-square deviations of the solubility temperatures for all the calculated values vary from (0.32 K to 0.68 K) and depend on the particular equation used. The data of VLE were correlated with one to three parameters in the Redlich-Kister expansion. Binary mixtures of NMP with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) have been investigated in the framework of the modified UNIFAC (Do) model. The reported new interaction parameters for NMP-group (c-CONCH 3 ) and carbonyl group ( C=O) let the model consistently described a set of thermodynamic properties, including (solid + liquid) equilibrium (vapour + liquid) equilibrium, excess Gibbs energy and molar excess enthalpies of mixing. Our experimental and literature data of binary mixtures containing NMP and ketones were compared with the results of prediction with the modified UNIFAC (Do) model

  4. The formation of nitrogeneous compounds in the γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane

    International Nuclear Information System (INIS)

    Horigome, Keiichi; Hirokami, Shun-ichi; Sato, Shin

    1978-01-01

    The γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane have been reinvestigated. A complete survey of nitrogen-containing products has been attempted. The nitrogeneous compounds observed were ammonia (0.7) and hydrogen azide (0.02) in the case of hydrogen, ammonia (0.3), hydrogen cyanide (0.1), methyl azide (0.01), and a polymer in the case of methane, and ammonia (0.3), hydrogen cyanide (0.05), acetonitrile (0.04), ethyl azide (0.01), and a polymer in the case of ethane. The values in parentheses are the G-values obtained at optimum conditions. The hydrolysis of the polymer obtained with methane gave formaldehyde in amounts which correspond to the fact that the G-value of the nitrogen atoms which were converted into the polymer is about 1.0. In order to explain these results, possible reaction mechanisms are discussed. (auth.)

  5. (Vapour + liquid) equilibria, volumetric and compressibility behaviour of binary and ternary aqueous solutions of 1-hexyl-3-methylimidazolium chloride, methyl potassium malonate, and ethyl potassium malonate

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Mahdavi, Adibeh

    2012-01-01

    Highlights: ► VLE and volumetry of binary and ternary [C 6 mim][Cl], MPM and EPM aqueous solutions. ► Constant a w lines show small negative deviation from the linear isopiestic relation. ► Solute–water interactions follow the order: EPM > MPM > [C 6 mim][Cl]. ► MPM and EPM have a very weak salting-out effect on [C 6 mim][Cl] aqueous solutions. - Abstract: (Vapour + liquid) equilibrium data (water activity, vapour pressure, osmotic coefficient, and activity coefficient) of binary aqueous solutions of 1-hexyl-3-methylimidazolium chloride ([C 6 mim][Cl]), methyl potassium malonate, and ethyl potassium malonate and ternary {[C 6 mim][Cl] + methyl potassium malonate} and {[C 6 mim][Cl] + ethyl potassium malonate} aqueous solutions were obtained through the isopiestic method at T = 298.15 K. These results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solutions at molality about 0.4 mol · kg −1 . The constant water activity lines of all the ternary systems investigated show small negative deviations from the linear isopiestic relation (Zdanovskii–Stokes–Robinson rule) derived using the semi-ideal hydration model. The density and speed of sound measurements were carried out on solutions of methyl potassium malonate and ethyl potassium malonate in water and of [C 6 mim][Cl] in aqueous solutions of 0.25 mol · kg −1 methyl potassium malonate and ethyl potassium malonate at T = (288.15 to 308.15) K at atmospheric pressure. From the experimental density and speed of sound data, the values of the apparent molar volume, apparent molar isentropic compressibility and excess molar volume were evaluated and from which the infinite dilution apparent molar volume and infinite dilution apparent molar isentropic compressibility were calculated at each temperature. Although, there are no clear differences between the values of the apparent molar volume of [C 6 mim][Cl] in pure water and in methyl potassium malonate or ethyl

  6. Calorimetry by immersion into liquid nitrogen and liquid argon: a better way to determine the internal surface area of micropores.

    Science.gov (United States)

    Navarrete, Ricardo; Llewellyn, Philip; Rouquerol, Françoise; Denoyel, Renaud; Rouquerol, Jean

    2004-09-15

    The aim of this work is to assess the internal surface area of a set of samples (either carbons or oxides, either porous or nonporous, either microporous or mesoporous) by microcalorimetry via immersion into liquid nitrogen or argon. We have made use of an isothermal, heat-flux microcalorimeter, initially designed and built in our laboratory for the sake of gas adsorption experiments at 77 or 87 K. It seems that immersion calorimetry into liquid nitrogen and argon makes it possible to go one step further in the determination of the internal surface area of micropores.

  7. Kinetics and mechanisms of interactions of nitrogen and carbon monoxide with liquid niobium

    International Nuclear Information System (INIS)

    Park, H.G.

    1990-01-01

    The kinetics and mechanisms of interactions of N 2 and CO with liquid niobium were investigated in the temperature range of 2,700 to 3,000 K in samples levitated in N 2 /Ar and CO/Ar streams. The nitrogen absorption and desorption processes were found to be second-order with respect to nitrogen concentration, indicating that the rate controlling step is either the adsorption of nitrogen molecules on the liquid surface or dissociation of absorbed nitrogen molecules into adsorbed atoms. The carbon and oxygen dissolution in liquid niobium from CO gas is an exothermic process and the solubilities of carbon and oxygen (C Ce , C Oe in at%) are related to the temperature and the partial pressure of CO. The reaction CO → [C] + [O] along with the evaporation of niobium oxide takes place during C and O dissolution, whereas C and O desorption occurs via CO evolution only

  8. Specific interface area in a thin layer system of two immiscible liquids with vapour generation at the contact interface

    Science.gov (United States)

    Pimenova, Anastasiya V.; Gazdaliev, Ilias M.; Goldobin, Denis S.

    2017-06-01

    For well-stirred multiphase fluid systems the mean interface area per unit volume, or “specific interface area” SV, is a significant characteristic of the system state. In particular, it is important for the dynamics of systems of immiscible liquids experiencing interfacial boiling. We estimate the value of parameter SV as a function of the heat influx {\\dot{Q}}V to the system or the average system overheat above the interfacial boiling point. The derived results can be reformulated for the case of an endothermic chemical reaction between two liquid reagents with the gaseous form of one of the reaction products. The final results are restricted to the case of thin layers, where the potential gravitational energy of bubbles leaving the contact interface is small compared to their surface tension energy.

  9. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  10. Liquid Nitrogen (-196°C effect under pollen of some cultured or ornamental species

    Directory of Open Access Journals (Sweden)

    Sabina GLIGOR

    2006-05-01

    Full Text Available The criopreservation involve the stock of the vegetal material at low temperatures (-196°C in liquid nitrogen, in thermal conditions in which the division of cells and metabolic processes slow down, thus that the samplings may be conserved for long periods without suffering any genetic modifications. This stock technique is applied till present only on 80 vegetal species, keeping their seeds and vitrocultures preponderantly; researches were made regarding the maintenance of pollen in liquid nitrogen.The mature pollen, able to resist a higher degree of desiccation, may be conserved at low temperatures, without criopreservation. It was made researches on criopreservation of rise, maize, wheat, roses, sun flower and soy pollen. Our study purpose was to follow the impact of liquid nitrogen (-196°C about on viability of some cultured and ornamental species. The designed time of criopreservation it was 30 minutes and 7 days, using the TTC (tripheniltetrazole chloride method which allows testing the viability of vegetal material based on dehydrogenase activity.It was observed at Petunia hybrida species, that the pollen viability was low - in relevance with the witness represented from the pollen which was not resigned to the nitrogen liquid treatment - between percentage limits of 3.5-8%, in the case when the vegetal material was submersed 30 minutes in liquid nitrogen and 7.5-14.5% 7 days at (-196°C. The submersing of Nicotiana alata var. grandiflora species at 7 days, determined a low viability with 11.53%. The following two studied species Cucurbita and Hosta were proved to be the most resistant at submersing and maintenance in liquid nitrogen. The most affected pollen was Campsis radicans species. At Datura stramonium species was observed 2.59% a low viability of pollen, after 30 minutes of liquid nitrogen treatment, was 19.56%, after 7 days of submersing, the most pollen granules losing completely their viability.

  11. Vitrification of human pronuclear oocytes by direct plunging into cooling agent: Non sterile liquid nitrogen vs. sterile liquid air.

    Science.gov (United States)

    Isachenko, Vladimir; Todorov, Plamen; Seisenbayeva, Akerke; Toishibekov, Yerzhan; Isachenko, Evgenia; Rahimi, Gohar; Mallmann, Peter; Foth, Dolores; Merzenich, Markus

    2018-02-01

    In fact, a full sterilization of commercially-produced liquid nitrogen contaminated with different pathogens is not possible. The aim of this study was to compare the viability of human pronuclear oocytes subjected to cooling by direct submerging of open carrier in liquid nitrogen versus submerging in clean liquid air (aseptic system). One- and three-pronuclei stage embryos (n = 444) were cryopreserved by direct plunging into liquid nitrogen (vitrified) in ethylene glycol (15%), dimethylsulphoxide (15%) and 0.2M sucrose. Oocytes were exposed in 20, 33, 50 and 100% vitrification solution for 2, 1 and 1 min, and 30-50 s, respectively at room temperature. Then first part of oocytes (n = 225) were directly plunged into liquid nitrogen, and second part of oocytes (n = 219) into liquid air. Oocytes were thawed rapidly at a speed of 20,000 °C/min and then subsequently were placed into a graded series of sucrose solutions (0.5, 0.25, 0.12 and 0.06M) at 2.5 min intervals and cultured in vitro for 3 days. In both groups, the rate of high-quality embryos (Grade 6A: 6 blastomeres, no fragmentation; Grade 8A: 8 blastomeres, no fragmentation; Grade 8A compacting: 8 blastomeres, beginning of compacting) was noted. The rates of high-quality embryos developed from one-pronuclear oocytes vitrified by cooling in liquid nitrogen and liquid air were: 39.4% ± 0.6 and 38.7% ± 0.8, respectively (P > 0.1). These rates for three-pronuclear oocytes were: 45.8 ± 0.8% and 52.0 ± 0.7%, respectively (P liquid air (aseptic system) is a good alternative for using of not sterile liquid nitrogen. Copyright © 2017. Published by Elsevier Inc.

  12. (Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa

    International Nuclear Information System (INIS)

    Qian, Guo-fei; Liu, Wen; Wang, Li-tao; Wang, Dao-cai; Song, Hang

    2013-01-01

    Highlights: • We adopted a new extractive solvent “ethylene glycol” to separate the mixture. • We measured the VLE data of binary system n-propanol + ethylene glycol. • We reinforce the VLE data of binary system acetonitrile + ethylene glycol. • We predicted the VLE data for the ternary system successfully. -- Abstract: Experimental isobaric (Vapour + liquid) equilibrium (VLE) data at 101.3 kPa were determined for three binary systems, viz. {acetonitrile (1) + n-propanol (2)}, {acetonitrile (1) + ethylene glycol (3)} and {n-propanol (2) + ethylene glycol (3)} and for one ternary system {acetonitrile (1) + n-propanol (2) + ethylene glycol (3)}. The measurements were performed using an improved Rose equilibrium still. The VLE data of the binary systems passed thermodynamic consistency tests and were correlated by Wilson and NRTL models. Good results were achieved. The phase behaviour of the ternary system was predicted directly by the parameters of two models obtained from the experimental binary results. The results showed an excellent agreement with experimental values

  13. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-07-01

    Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

  14. Vapour Permeation and Sorption in Fluoropolymer Gel Membrane Based on Ionic Liquid 1-Ethyl-3-Methylimidazolium bis(trifluoromethylsulfonyl)Imide

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Vopička, O.; Vejražka, Jiří; Vychodilová, Hana; Sedláková, Zuzana; Friess, K.; Izák, Pavel

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1739-1746 ISSN 0366-6352 R&D Projects: GA ČR GAP106/10/1194; GA TA ČR TE01020080; GA MŠk(CZ) LD14094; GA MŠk(CZ) LD13018 Grant - others:GA ČR(CZ) GA13-32829P Institutional support: RVO:67985858 Keywords : ionic liquid membrane * hydrocarbon removal * volatile organic compound removal Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  15. Growth dynamics of SiGe nanowires by the Vapour Liquid Solid method and its impact on SiGe/Si axial heterojunction abruptness.

    Science.gov (United States)

    Pura, Jose Luis; Periwal, Priyanka; Baron, Thierry; Jimenez, Juan

    2018-06-05

    The Vapour Liquid Solid (VLS) method is by far the most extended procedure for bottom-up nanowire growth. This method also allows for the manufacture of nanowire axial heterojunctions in a straightforward way. To do this, during the growth process the precursor gases are switched on/off to obtain the desired change in the nanowire composition. Using this technique axially heterostructured nanowires can be grown, which are crucial for the fabrication of electronic and optoelectronic devices. SiGe/Si nanowires are compatible with Complementary Metal Oxide Semiconductor (CMOS) technology, this improves their versatility and the possibility of integration with the current electronic technologies. Abrupt heterointerfaces are fundamental for the development and correct operation of electronic and optoelectronic devices. Unfortunately, VLS growth of SiGe/Si heterojunctions does not provide abrupt transitions because of the high solubility of group IV semiconductors in Au, with the corresponding reservoir effect that precludes the growth of sharp interfaces. In this work, we studied the growth dynamics of SiGe/Si heterojunctions based on already developed models for VLS growth. A composition map of the Si-Ge-Au liquid alloy is proposed to better understand the impact of the growing conditions on the nanowire growth process and the heterojunction formation. The solution of our model provides heterojunction profiles in good agreement with experimental measurements. Finally, the in-depth study of the composition map provides a practical approach to reduce drastically the heterojunction abruptness by reducing the Si and Ge concentrations in the catalyst droplet. This converges with previous approaches that use catalysts aiming to reduce the solubility of the atomic species. This analysis opens new paths to reduce the heterojunction abruptness using Au catalysts, but the model can be naturally extended to other catalysts and semiconductors. © 2018 IOP Publishing Ltd.

  16. Control of nitrogen concentration in liquid lithium by iron-titanium alloy

    International Nuclear Information System (INIS)

    Hirakane, Shinji; Yoneoka, Toshiaki; Tanaka, Satoru

    2006-01-01

    Reducing the nitrogen concentration in liquid lithium is one of the most important steps in creating a liquid lithium blanket system. In this study, in order to verify the nitrogen gettering performance of Fe-Ti alloy, the variation in the nitrogen concentration in liquid lithium, into which Fe-10 at.% Ti or Fe-5 at.% Ti getter was immersed, was examined. The results confirmed a gettering performance of Fe-Ti alloy comparable to that of V-Ti alloy, although the effects were not durable in either the Fe-Ti or the V-Ti alloy. After the immersion test, the existing states of nitrogen absorbed in the gettering material were analyzed by means of XRD, XMA and XPS. TiN and some nitrogen dissolved in α-Fe without forming TiN were observed. It was indicated that nitrogen gettering is prevented not only by the surface nitrides, but also by the internal diffusion barriers originating from the absorbed nitrogen

  17. An explanation for why it is difficult to form slush nitrogen from liquid nitrogen used previously for this purpose.

    Science.gov (United States)

    Baker, Michael J; Denton, Travis T; Herr, Charles

    2013-02-01

    Slush nitrogen (SN) is used to avoid the Leidenfrost effect, which is problematic when using liquid nitrogen (LN). Slush nitrogen's usefulness has been demonstrated by its requirement for the successful cryopreservation of insect embryos. To convert LN to SN, typically, the pressure above a Dewar of LN is reduced, using a vacuum pump in a sealed system until conversion occurs. It has been observed that LN from a fresh tank will readily produce SN; however, repeated use of the same LN results in the inability to form SN in subsequent trials. The current experiments were designed to identify the cause of this phenomenon. The hypothesis is that gaseous oxygen from the surrounding, ambient air condenses and mixes with the LN to form a mixture with a lower freezing point and; therefore, prevents the formation of SN. The hypothesis was tested and found to be true. Copyright © 2012. Published by Elsevier Inc.

  18. Cellulitis Secondary to Liquid Nitrogen Cryotherapy: Case Report and Literature Review.

    Science.gov (United States)

    Huang, Christina M; Lu, Emily Y; Kirchhof, Mark G

    Liquid nitrogen cryotherapy is a commonly used technique to treat a wide variety of dermatologic conditions including actinic keratoses, non-melanoma skin cancers, verrucae, and seborrheic keratoses. The risks associated with liquid nitrogen cryotherapy are important to know and discuss with patients prior to treatment. We report a case of cellulitis secondary to liquid nitrogen cryotherapy for actinic keratosis. We sought to review the literature for an estimate of secondary infection rates following cryotherapy treatment. We searched Pubmed using the terms cryotherapy and infection or cellulitis. We then looked at articles classified as clinical trials where cryotherapy was used to treat skin conditions. We then selected clinical trials that listed cellulitis or infection as an adverse event. There were no case reports, case series, or review articles detailing the risk of infection from liquid nitrogen cryotherapy. We found 8 articles classified as clinical trials on Pubmed that did list infection as an adverse event. The risk of infection from these studies varied from approximately 2% to 30%. There was a great degree of heterogeneity in treatment sites, length of treatment, and treatment targets. While it is difficult to determine the true incidence of infection from liquid nitrogen cryotherapy, clinicians should endeavor to inform patients of this potential risk.

  19. Needling versus liquid nitrogen cryotherapy for the treatment of pedal warts a randomized controlled pilot study.

    Science.gov (United States)

    Cunningham, Daniel J; Brimage, Jessica T; Naraghi, Reza N; Bower, Virginia M

    2014-07-01

    We hypothesized that needling of a pedal wart creates local inflammation and a subsequent cell-mediated immune response (CMIR) against human papillomavirus. The primary objective of this study was to investigate whether needling to induce a CMIR against human papillomavirus is an effective treatment for pedal warts compared with liquid nitrogen cryotherapy. A secondary objective was to investigate whether the CMIR induced by needling is effective against satellite pedal warts. Eligible patients with pedal warts were randomly allocated to receive either needling or liquid nitrogen cryotherapy. Only the primary pedal wart was treated during the study. Follow-up was 12 weeks, with outcome assessments made independently under blinded circumstances. Of 37 patients enrolled in the study, 18 were allocated to receive needling and 19 to receive liquid nitrogen cryotherapy. Regression of the primary pedal wart occurred in 64.7% of the needling group (11 of 17) and in 6.2% of the liquid nitrogen cryotherapy group (1 of 16) (P =  .001). No significant relationship was found between needling of the primary pedal wart and regression of satellite pedal warts (P = .615) or complete pedal wart regression (P = .175). There was no significant difference in pain, satisfaction, or cosmesis between the two groups. The regression rate of the primary pedal wart was significantly higher in the needling group compared with the liquid nitrogen cryotherapy group.

  20. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    Science.gov (United States)

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  1. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  2. Reaction between barium and nitrogen in liquid sodium

    International Nuclear Information System (INIS)

    Addison, C.C.; Pulham, R.J.; Trevillion, E.A.

    1975-01-01

    Nitrogen in increasing amounts has been added to separate solutions of barium in sodium of constant composition (ca.4.40 mol % Ba) at 300 0 C. After rendering each mixture homogenous using an electromagnetic pump, filtration, and nitrogen analysis, all the N 2 added has been found in solution up to a solution composition approximating to Ba 4 N (i.e. 1.1 mol % N) beyond which the quantity of dissolved N 2 decreases progressively due to precipitation of the nitride Ba 2 N. The solubilization is interpreted in terms of strong preferential solvation of the nitride ion by barium cations. (author)

  3. Orbital storage and supply of subcritical liquid nitrogen

    Science.gov (United States)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  4. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    Science.gov (United States)

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  5. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin

    2016-01-01

    -freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC...... concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax...... component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties...

  6. Enucleation and liquid nitrogen cryotherapy in the treatment of keratocystic odontogenic tumors: a case series.

    Science.gov (United States)

    Tonietto, Leonardo; Borges, Hedelson Odenir Iecher; Martins, Carlos Alberto Medeiros; Silva, Daniela Nascimento; Sant'Ana Filho, Manoel

    2011-06-01

    This study describes the technique of lesion enucleation without capsule disruption combined with liquid nitrogen cryotherapy in the surgical treatment of keratocystic odontogenic tumors (KOTs). Eight patients (9 KOTs) were included in the study. After enucleation, liquid nitrogen was applied twice for 1 minute, with 5-minute intervals between applications. The patients were followed up for 3 to 9 years. There were no recurrences during the follow-up of 9 KOTs for up to 9 years. Only 1 patient had temporary reversible loss of lip sensation after treatment. There were no pathologic fractures. In all cases bone height at the surgical site was restored, and no patients needed bone reconstruction for post-treatment rehabilitation. This study confirmed the efficiency of KOT treatment enucleation without fragmentation combined with liquid nitrogen cryotherapy at the surgical site. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Does Parmelina tiliacea lichen photosystem II survive at liquid nitrogen temperatures?

    Science.gov (United States)

    Oukarroum, Abdallah; El Gharous, Mohamed; Strasser, Reto J

    2017-02-01

    Parmelina tiliacea lichens kept in the wet and dry state were stored in liquid nitrogen for 1 week and the subsequent recovery of their photosynthetic apparatus was followed. The chlorophyll a fluorescence rise and the maximum quantum yield of primary photochemistry φ Po (F V /F M ) were analysed for this purpose. Storage of wet thalli for 1 week in liquid nitrogen led to an impairment of photosystem II and probably the photosynthetic apparatus as a whole, from which the thalli did not recover over time. Thalli exposed in the dry state thalli were far less affected by the treatment and recovered well. These results indicate that the thalli are extremely tolerant to liquid nitrogen temperatures only in the dry state. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  9. Viability of Bacillus popilliae after Lyophilization of Liquid Nitrogen Frozen Cells1

    Science.gov (United States)

    Lingg, A. J.; Mcmahon, K. J.; Herzmann, Cheryl

    1967-01-01

    The per cent viability of Bacillus popilliae after lyophilization of liquid nitrogen frozen cells was determined. Lyophilization of 9- to 12-hr cells which had been suspended in 5% sodium glutamate plus 0.5% gum tragacanth, frozen in liquid nitrogen vapor, and dried 4 to 5 hr with the ampoules exposed to room temperature resulted in survival of 64.6% of the original cells. After storage of these lyophilized preparations for 6 months at room temperature, 10.5% of the original cells were still viable. PMID:6031431

  10. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  11. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, KAIST, Daejeon (Korea, Republic of); Jung, Young Suk [Launcher Systems Development Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid.

  12. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

    International Nuclear Information System (INIS)

    Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon; Jung, Young Suk

    2014-01-01

    Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid

  13. Denitration of medium level liquid radioactive wastes by catalytic destruction of nitrogen oxides

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.

    1984-01-01

    The catalytic abatement by means of NH 3 of the NOsub(x) produced in the radwaste conditioning has been studied. With reference to the gas produced in a bituminization plant, the thermodynamics and the chemistry of the NOsub(x) catalytic reduction to nitrogen and H 2 O have been evaluated. The following operational parameters have been experimentally studied: the catalyst bed temperature; the gas residence time; the vapour concentration; the NOsub(x) concentration; the gas velocity; the catalyst grain size distribution; the catalyst time-life. Abatement yields of the order of 99,5% have been obtained following experimental conditions must be selected. In the case of a bituminization plant, a NOsub(x) catalytic reactor, if installed between the evaporator denitrator and the condenser, could reduce to less than 1/100 the volume of the NaNO 3 secondary wastes produced by the gas scrubbing

  14. Simulation methods of rocket fuel refrigerating with liquid nitrogen and intermediate heat carrier

    Directory of Open Access Journals (Sweden)

    O. E. Denisov

    2014-01-01

    Full Text Available Temperature preparation of liquid propellant components (LPC before fueling the tanks of rocket and space technology is the one of the operations performed by ground technological complexes on cosmodromes. Refrigeration of high-boiling LPC is needed to increase its density and to create cold reserve for compensation of heat flows existing during fueling and prelaunch operations of space rockets.The method and results of simulation of LPC refrigeration in the recuperative heat exchangers with heat carrier which is refrigerated by-turn with liquid nitrogen sparging. The refrigerating system consists of two tanks (for the chilled coolant and LPC, LPC and heat carrier circulation loops with heat exchanger and system of heat carrier refrigeration in its tank with bubbler. Application of intermediate heat carrier between LPC and liquid nitrogen allows to avoid LPC crystallization on cold surfaces of the heat exchanger.Simulation of such systems performance is necessary to determine its basic design and functional parameters ensuring effective refrigerating of liquid propellant components, time and the amount of liquid nitrogen spent on refrigeration operation. Creating a simulator is quite complicated because of the need to take into consideration many different heat exchange processes occurring in the system. Also, to determine the influence of various parameters on occurring processes it is necessary to take into consideration the dependence of all heat exchange parameters on each other: heat emission coefficients, heat transfer coefficients, heat flow amounts, etc.The paper offers an overview of 10 references to foreign and Russian publications on separate issues and processes occurring in liquids refrigerating, including LPC refrigeration with liquid nitrogen. Concluded the need to define the LPC refrigerating conditions to minimize cost of liquid nitrogen. The experimental data presented in these publications is conformed with the application of

  15. Liquid nitrogen-cooled diamond-wire concrete cutting. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Liquid nitrogen-cooled diamond-wire concrete cutting can be used to cut through thick concrete walls, floors, and structures without using water to cool the cutting wire. The diamond wire is cooled with liquid nitrogen in a 0.9-m (3-ft) long by 7.6-cm (3-in.) diameter pipe housing. The nitrogen evaporates, so no contaminated liquid waste is generated. Other than the use of liquid nitrogen, the system is a conventional diamond-wire saw assembly with remote hydraulic controls. Setup of the hydraulic-powered drive wheel and the diamond wire for cutting requires a relatively short period of time using people with minimal training. Concrete dust generated during the cutting is considerable and requires control. The production rate of this improved technology is 0.78 m 2 /hr (8.4 ft 2 /hr). The production rates of traditional (baseline) water-cooled diamond-wire cutting and circular saw cutting technologies are 1.11 m 2 /hr (12 ft 2 /hr), and 0.45 m 2 /hr (4.8 ft 2 /hr), respectively. The liquid nitrogen-cooled system costs 189% more than conventional diamond-wire cutting if contaminated liquid wastes collection, treatment, and disposal are not accounted for with the baseline. The new technology was 310% more costly than a conventional diamond circular saw, under the conditions of this demonstration (no wastewater control). For cutting a 0.9-m x 3.7-m (3-ft x 12-ft) wall, the improved technology costs $17,000, while baseline diamond-wire cutting would cost $9,000 and baseline circular-saw cutting would cost $5,500. The improved system may cost less than the baseline technologies or may be comparable in cost if wastewater control is included

  16. Liquid nitrogen-cooled diamond-wire concrete cutting. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Liquid nitrogen-cooled diamond-wire concrete cutting can be used to cut through thick concrete walls, floors, and structures without using water to cool the cutting wire. The diamond wire is cooled with liquid nitrogen in a 0.9-m (3-ft) long by 7.6-cm (3-in.) diameter pipe housing. The nitrogen evaporates, so no contaminated liquid waste is generated. Other than the use of liquid nitrogen, the system is a conventional diamond-wire saw assembly with remote hydraulic controls. Setup of the hydraulic-powered drive wheel and the diamond wire for cutting requires a relatively short period of time using people with minimal training. Concrete dust generated during the cutting is considerable and requires control. The production rate of this improved technology is 0.78 m{sup 2}/hr (8.4 ft{sup 2}/hr). The production rates of traditional (baseline) water-cooled diamond-wire cutting and circular saw cutting technologies are 1.11 m{sup 2}/hr (12 ft{sup 2}/hr), and 0.45 m{sup 2}/hr (4.8 ft{sup 2}/hr), respectively. The liquid nitrogen-cooled system costs 189% more than conventional diamond-wire cutting if contaminated liquid wastes collection, treatment, and disposal are not accounted for with the baseline. The new technology was 310% more costly than a conventional diamond circular saw, under the conditions of this demonstration (no wastewater control). For cutting a 0.9-m x 3.7-m (3-ft x 12-ft) wall, the improved technology costs $17,000, while baseline diamond-wire cutting would cost $9,000 and baseline circular-saw cutting would cost $5,500. The improved system may cost less than the baseline technologies or may be comparable in cost if wastewater control is included.

  17. DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen

    Science.gov (United States)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2018-06-01

    Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.

  18. Use of liquid nitrogen and albendazole in successfully treating cutaneous larva migrans

    International Nuclear Information System (INIS)

    Kapadia, N.; Farooqui, M.; Borhany, T.

    2013-01-01

    Objective: To determine the efficacy of combination treatment of Albendazole along with liquid nitrogen in cutaneous larva migrans. Study Design: Quasi-experimental study. Place and Duration of Study: Abbasi Shaheed Hospital and The Aga Khan Hospital, Karachi, from December 2008 to December 2010. Methodology: Eighteen cases of cutaneous larva migrans were collected and divided into two groups. Group-A was administered oral Albendazole 400 mg once per day along with topical steroid and oral cetrizine 10 mg once at night for 7 days. Group-B also received oral Albendazole 400 mg once per day along with cetrizine 10 mg once at night but they also received single application of liquid nitrogen to freeze the larva. Results: It was found that in Group-A only 2 out of 9 (22%) showed improvement whereas 78% had to be given liquid nitrogen cryotherapy 3 - 7 days after Albendazole to prevent migration of larva. In Group-B, the improvement was 100% and all 9 patients were successfully treated. Conclusion: Use of liquid nitrogen along with oral anti-helminths is very effective in treating cutaneous larva migrans than Albendazole alone. (author)

  19. Microbial contamination of embryos and semen during long term banking in liquid nitrogen.

    Science.gov (United States)

    Bielanski, A; Bergeron, H; Lau, P C K; Devenish, J

    2003-04-01

    We report on microbial contamination of embryos and semen cryopreserved in sealed plastic straws and stored for 6-35 years in liquid nitrogen. There were 32 bacterial and 1 fungal species identified from randomly drawn liquid nitrogen, frozen semen, and embryos samples stored in 8 commercial and 8 research facility liquid nitrogen (LN) tanks. The identified bacteria represented commensal or environmental microorganisms and some, such as Escherichia coli, were potential or opportunistic pathogens for humans and animals. Stenotrophomonas maltophilia was the most common contaminant identified from the samples and was further shown to significantly suppress fertilization and embryonic development in vitro. Analysis of the strains by pulsed field gel electrophoresis revealed restriction patterns with no relatedness indicating that there was no apparent cross-contamination of S. maltophilia strains between the germplasm and liquid nitrogen samples. In addition, no transmission of bovine viral diarrhea virus (BVDV) and bovine herpesvirus-1 (BHV-1) from infected semen and embryos straws to clean germplasm stored in the same LN tanks or LN was detected.

  20. Non liquid nitrogen-based-method for isolation of DNA from ...

    African Journals Online (AJOL)

    A simple, efficient, reliable and cost-effective method for isolation of total genomic DNA from fungi, suitable for polymerase chain reaction (PCR) amplification and other molecular applications was described. The main advantages of the method are: (1) does not require the use of liquid nitrogen for preparation of fungi DNA; ...

  1. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    International Nuclear Information System (INIS)

    Naidu, M C A; Nolakha, Dinesh; Saharkar, B S; Kavani, K M; Patel, D R

    2012-01-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of 'Open loop, auto reversing liquid nitrogen based thermal system'. System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  2. Preservation of Meloidogyne hapla and M. chitwoodi in liquid nitrogen: Differences in response between populations

    NARCIS (Netherlands)

    Beek, van der J.G.; Veldhuis, W.B.J.; ZijIstra, C.; Silfhout, van C.H.

    1996-01-01

    A procedure for long-term preservation of gennplasm of Meloidogyne hapla and M. chitwoodi in liquid nitrogen is described, including a pretrearrnenr with 10% ethanediol for 2 h at room temperature and 40 % ethanecliol for 45 min on ice. Survival rates ranged from 45 to 98 % with an average of 75 %.

  3. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-01-01

    Highlights: • A novel method based on a sequence of AC pulses is presented. • Liquid nitrogen temperature is used as criterion to judge whether the sample has recovered. • Recovery time of some tape doesn't increase with the amplitude of fault current. • This phenomenon is caused by boiling heat transfer process of liquid nitrogen. • This phenomenon can be used in optimizing both the limiting rate and reclosing system. - Abstract: The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  4. Use of liquid nitrogen and albendazole in successfully treating cutaneous larva migrans.

    Science.gov (United States)

    Kapadia, Naseema; Borhany, Tasneem; Farooqui, Maria

    2013-05-01

    To determine the efficacy of combination treatment of Albendazole along with liquid nitrogen in cutaneous larva migrans. Quasi-experimental study. Abbasi Shaheed Hospital and The Aga Khan Hospital, Karachi, from December 2008 to December 2010. Eighteen cases of cutaneous larva migrans were collected and divided into two groups. Group-A was administered oral Albendazole 400 mg once per day along with topical steroid and oral cetrizine 10 mg once at night for 7 days. Group-B also received oral Albendazole 400 mg once per day along with cetrizine 10 mg once at night but they also received single application of liquid nitrogen to freeze the larva. It was found that in Group-A only 2 out of 9 (22%) showed improvement whereas 78% had to be given liquid nitrogen cryotherapy 3 - 7 days after Albendazole to prevent migration of larva. In Group-B, the improvement was 100% and all 9 patients were successfully treated. Use of liquid nitrogen along with oral anti-helminths is very effective in treating cutaneous larva migrans than Albendazole alone.

  5. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model.

    Science.gov (United States)

    Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha

    2014-01-01

    Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.

  6. Dissolved nitrogen in liquid lithium - a problem in fusion reactor chemistry

    International Nuclear Information System (INIS)

    Hubberstey, P.

    1984-01-01

    When dissolved in liquid lithium, nitrogen adopts the role filled by oxygen in liquid sodium systems, reacting readily with stainless steel containment materials to form Li 9 CrN 5 as a surface product; extended reaction leads to pronounced corrosion and embrittlement problems. It also interacts with both carbon and silicon impurities forming Li 2 NCN and Li 5 SiN 3 , respectively; it is inert, however, to oxygen impurity. Although dissolved nitrogen reacts with neither the tritium generated in the breeding process nor the lead added to act as a neutron multiplier, its presence may seriously influence tritium recovery processes since it reacts with and hence may poison the majority of the transition metals (Y,Ti,Zr) presently being considered as tritium getter materials. Its reactivity with these metals forms the basis of the hot trapping technique used to remove dissolved nitrogen from liquid lithium systems; cold trapping is ineffective because of its large solubility even at temperatures just above the melting point of pure lithium (453.6K). Whenever possible, the chemistry of nitrogen dissolved in liquid lithium is rationalised using the thermodynamic concepts and its significance to fusion reactor technology stressed. (author)

  7. Nitrogen Fertilizer Replacement Value of Concentrated Liquid Fraction of Separated Pig Slurry Applied to Grassland

    NARCIS (Netherlands)

    Middelkoop, Van J.C.; Holshof, G.

    2017-01-01

    Seven grassland experiments on sandy and clay soils were performed during a period of 4 years to estimate the nitrogen (N) fertilizer replacement value (NFRV) of concentrated liquid fractions of separated pig slurry (mineral concentrate: MC). The risk of nitrate leaching when applying MC was

  8. Cryopreservation of citrus seed via dehydration followed by immersion in liquid nitrogen

    Science.gov (United States)

    An important method for plant germplasm conservation is offered by a biotechnology-based approach of cryopreservation. Cryopreservation refers to the storage of plant material at ultralow temperatures in liquid nitrogen. A procedure for cryopreservation of polyembryonic seeds was improved for select...

  9. Installation of the liquid nitrogen tank for the external cryogenics system

    CERN Multimedia

    2001-01-01

    The picture shows the installation of the 50000l liquid nitrogen tank in its first position next to the SHL annex of the SX5 building. The tank will be moved to its final position after the completion of the surface tests.

  10. Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges.

    NARCIS (Netherlands)

    Rulkens, W.H.; Klapwijk, A.; Willers, H.C.

    1998-01-01

    Agricultural liquid livestock wastes are an important potential source of valuable nitrogen-containing compounds such as ammonia and proteins. Large volumetric quantities of these wastes are produced in areas with a high livestock production density. Much technological research has been carried out

  11. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    Science.gov (United States)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  12. Post-thaw sperm characteristics following long-term storage of boar semen in liquid nitrogen.

    Science.gov (United States)

    Fraser, L; Strzeżek, J; Kordan, W

    2014-06-30

    This study investigated the effect of long-term liquid nitrogen storage of semen from individual boars on post-thaw sperm characteristics. Ejaculates, collected from five Polish large white (PLW) and five Polish landrace (PLR) boars, were frozen using a standard cryopreservation protocol. Post-thaw analysis was performed within a week (Period 1) and 42-48 months (Period 2) of semen storage in liquid nitrogen. Post-thaw sperm assessments included total motility, mitochondrial function (JC-1/PI assay), plasma membrane integrity (SYBR-14/PI assay), osmotic resistance test (ORT), lipid peroxidation (LPO) status and DNA fragmentation, analysed by the neutral Comet assay. Individual boar variability within breed and cryostorage periods had significant effects on the analysed parameters of frozen-thawed spermatozoa. Prolonged semen storage in liquid nitrogen (Period 2) induced a marked reduction in post-thaw sperm motility, mitochondrial function and plasma membrane integrity in most of the boars. Post-thaw semen of eight boars exhibited a marked decrease in osmotic resistance of the sperm acrosomal membrane, whereas a significant increase in the sperm cryo-susceptibility to induced LPO and DNA fragmentation was observed only in three boars after long-term semen storage. Additionally, frozen-thawed spermatozoa of PLR boars exhibited significantly lower osmotic resistance of the acrosomal membrane than PLW boars following prolonged semen storage in liquid nitrogen. The results of this study provide evidence of ageing processes in frozen-thawed boar spermatozoa following prolonged cryostorage. It seems that, even though cryopreservation allows long-term semen storage in liquid nitrogen, spermatozoa from individual boars are more susceptible to cryo-induced damage. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Experimental investigation on No-Vent Fill (NVF) process using liquid Nitrogen

    International Nuclear Information System (INIS)

    Kim, Young Cheol; Seo, Man Su; Yoo, Dong Gyu; Jeong, Sang Kwon

    2014-01-01

    For a long-term space mission, filling process of cryogenic liquid propellant is operated on a space vehicle in space. A vent process during transfer and filling of cryogenic propellant is needed to maintain the fuel tank pressure at a safe level due to its volatile characteristic. It is possible that both liquid and vapor phases of the cryogenic propellant are released simultaneously to outer space when the vent process occurs under low gravity environment. As a result, the existing filling process with venting not only accompanies wasting liquid propellant, but also consumes extra fuel to compensate for the unexpected momentum originated from the vent process. No-Vent Fill (NVF) method, a filling procedure without a venting process of cryogenic liquid propellant, is an attractive technology to perform a long-term space mission. In this paper, the preliminary experimental results of the NVF process are described. The experimental set-up consists of a 9-liter cryogenic liquid receiver tank and a supply tank. Liquid nitrogen (LN2) is used to simulate the behavior of cryogenic propellant. The whole situation in the receiver tank during NVF is monitored. The major experimental parameter in the experiment is the mass flow rate of the liquid nitrogen. The experimental results demonstrate that as the mass flow rate is increased, NVF process is conducted successfully. The quality and the inlet temperature of the injected LN2 are affected by the mass flow rate. These parameters determine success of NVF.

  14. Nitrogen tetroxide vapor scrubber using a recirculating liquid

    Science.gov (United States)

    Reisert, T. D.

    1978-01-01

    Scrubbers required to reduce N2O4 contamination of nitrogen vent gas streams to a safe level to preclude health hazard to personnel and to preclude adverse environmental effects were developed. The scrubber principle involved is to absorb and neutralize the N2O4 component in a closed circuit circulating water/chemical solution in a vertical counter-flow, packed-tower configuration. The operational and performance test requirements for the scrubbers consist of demonstrating that the exit gas contamination level from the scrubbers does not exceed 150 ppm oxidizer under any flow conditions up to 400 scfm with inlet concentrations of up to 100,000 ppm oxidizer. Several problems were encountered during the performance testing that led to a series of investigations and supplementary testing. It was finally necessary to change the scrubber liquors in oxidizer scrubber to successfully achieve performance requirements. The scrubbers, the test configuration, and the various tests performed are described.

  15. Measurement of the neutron and gamma-ray spectra originating from a 14-MeV neutron source in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Broecker, B.; Clausen, K.; Schneider-Kuehnle, P.; Weinert, M.

    1975-01-01

    An experiment to measure the radiation transport originating from a 14-MeV neutron source in liquid nitrogen and liquid air is presented. Neutron and gamma-ray spectra were measured with a proton-recoil NE 213 scintillator and with four spherical proportional counters in a tank filled with liquid nitrogen or liquid air. The neutron spectra cover the energy range of 20 keV to 18 MeV. The source-detector separation varies in the liquid medium between 60 and 240 cm. The experimental setup is briefly described and the errors are estimated. (2 tables, 9 figures) (auth)

  16. Effect of carbon and silicon on nitrogen solubility in liquid chromium and iron-chromium alloys

    International Nuclear Information System (INIS)

    Khyakkinen, V.I.; Bezobrazov, S.V.

    1986-01-01

    The study is aimed at specifying the role of carbon and silicon in high-chromium melts nitridation processes. It is shown that in high-chromium melts of the Cr-Fe-C system the nitrogen solubility is reduced with the growth of carbon content and in the chromium concentration range of 70-100% at 1873 K and P N 2 =0.1 MPa it is described by the lg[%N] Cr-Fe-C =lg[%N] cr-fe -0.098[%C] equation. While decreasing the temperature the nitrogen solubility in alloys is increased. Silicon essentially decreases the nitrogen solubility in liquid chromium. For the 0-10% silicon concentration range the relation between the equilibrium content of nitrogen and silicon at 1873 K and P N 2 =0.1 MPa is described by the straight line equation [%N] Cr-Si =6.1-0.338 [%Si

  17. Liquid nitrogen enhancement of partially annealed fission tracks in glass

    International Nuclear Information System (INIS)

    Pilione, L.J.; Gold, D.P.

    1976-01-01

    It is known that the number density of fission tracks in solids is reduced if the sample is heated before chemical etching, and the effect of annealing must be allowed for before an age can be assigned to the sample. The extent of annealing can be determined by measuring the reduction of track parameters (diameter and/or length) and comparison with unannealed tracks. Correct ages can be obtained by careful calibration studies of track density reduction against track diameter or length reduction at different annealing temperatures and times. For crystallised minerals, however, the resulting correction techniques are not generally valid. In the experimental work described glass samples were partially annealed and then immersed in liquid N 2 for various periods, and it was shown that the properties of the glass and the track parameters could be altered so as to observe tracks that would normally be erased by annealing. The results of track density measurements against liquid N 2 immersion times are shown graphically. A gain of about 40% was achieved after 760 hours immersion time. The size of the tracks was not noticeably affected by the immersion. It was thought that thermal shock might be the cause of the track enhancement, but it was found that repeated immersion for about 2 hours did not lead to an increase in track density. Other studies suggest that the mechanism that erases the tracks through annealing may be partially reversed when the temperature of the sample is significantly lowered for a sufficient length of time. Further work is under way to find whether or not the process of enhancement is a reversal of the annealing process. Similar enhancement effects using liquid N 2 have been observed for d-particle tracks in polycarbonate detectors. (U.K.)

  18. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    Science.gov (United States)

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  19. Thermodynamic analysis and evaluation of the nitrogen solubility in liquid Nb and Fe-Nb alloys

    International Nuclear Information System (INIS)

    Qiu Caian

    1994-01-01

    Experimental information on the nitrogen solubility in liquid Nb and Fe-Nb alloys has been critically analysed and then utilized to evaluate the thermodynamic properties of the Nb-N and Fe-Nb-N liquid phases on the basis of thermodynamic models of Gibbs energy. A thermodynamic description of the Fe-Nb-N liquid phase was obtained, which has been used to calculate the N solubility in comparison with experimental results. The effect of an addition of Nb on the temperature dependence of the N solubility in liquid Fe has been examined by comparing with the effect of the Cr and V additions. It has been shown that the N solubility in liquid Nb and Fe-Nb alloys under various conditions is well described by the present calculation. (orig.)

  20. Phase diagrams of (vapour + liquid) equilibrium for binary mixtures of α,α,α-trifluorotoluene with ethanol, or benzene, or chloroform at pressure 101.4 kPa

    International Nuclear Information System (INIS)

    Atik, Zadjia

    2008-01-01

    (Vapour + liquid) equilibrium (VLE) of binary mixtures of (ethanol + α,α,α-trifluorotoluene), (benzene + α,α,α-trifluorotoluene), and (chloroform + α,α,α-trifluorotoluene) have been investigated at the pressure 101.4 kPa using the dynamic-ebulliometry method over the whole composition range. The correlated VLE phase diagrams were adequately described by means of NRTL and UNIQUAC thermodynamic models. Fair attractive energies in the first two systems are capable to yield azeotropes, while moderate repulsive energies in the later system make it zeotrope

  1. Automatic filling of liquid nitrogen traps auxiliary safety devices of a pumping unit

    International Nuclear Information System (INIS)

    Chatel, S.

    1969-01-01

    The liquid nitrogen traps in our laboratories are generally filled at fixed time intervals, the supply being cut when the liquid flowing through the overflow pipe acts on a lever to which is fixed a small cup fitted with a hole which allows the water of condensation to escape. This system is reliable. After a certain time however, the escape hole blocks up, water accumulates and the lever arm no longer works properly. Furthermore the duration of any cuts in the current, is added to the fixed time intervals, and in this case there can be a lack of liquid nitrogen for several hours after the current has been restored. The device described here avoids these problems. A stainless steel tube containing a copper wire passes into the trap and is immersed in the nitrogen which boils at its tip. A mercury manometer with concentric reservoirs, or an oil manometer, acting on two micro switches through a floater, records the pressure corresponding to the difference in level and controls the filling operation. If there is a lack of nitrogen, a valve can be closed by means of a falling weight, or a diffusion pump can be cut off; one time switch and at least two relays are required. One single relay can be used to control, the supply of several similar traps placed in series [fr

  2. NaK-nitrogen liquid metal MHD converter tests at 30 kw

    Science.gov (United States)

    Cerini, D. J.

    1974-01-01

    The feasibility of electrical power generation with an ambient temperature liquid-metal MHD separator cycle is demonstrated by tests in which a NaK-nitrogen LM-MHD converter was operated at nozzle inlet pressures ranging from 100 to 165 N/sq cm, NaK flow rates from 46 to 72 kg/sec, and nitrogen flow rates from 2.4 to 3.8 kg/sec. The generator was operated as an eight-phase linear induction generator, with two of the eight phases providing magnetic field compensation to minimized electrical end losses at the generator channel inlet and exit.

  3. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa

    2000-01-01

    High temperature superconducting power cables may be cooled by a forced flow of sub-cooled liquid nitrogen. One way to do this is to circulate the liquid nitrogen (LN2) by means of a mechanical pump through the core of the cable and through a sub-cooler.Besides the cooling station, the cryogenics...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  4. Cryosurgical treatment of warts: dimethyl ether and propane versus liquid nitrogen - case report and review of the literature.

    Science.gov (United States)

    Nguyen, Nicholas V; Burkhart, Craig G

    2011-10-01

    For years, dermatologists have relied on cryotherapy with liquid nitrogen as a safe and effective treatment for warts. More recently, several over-the-counter (OTC) wart-freezing therapies have become available. Manufacturers have substituted liquid nitrogen with dimethyl ether and propane (DMEP), and marketed these new preparations to be safe and effective alternatives to in-office cryotherapy with liquid nitrogen. However, data from in vitro studies and comparative studies in humans refute manufacturers' claims that these products reproduce in-office cryotherapy.

  5. Use of liquid chromatography for measuring atmospheric sulfur dioxide and nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E

    1973-02-01

    A literature search to ascertain the applicability of liquid chromatography to the analysis of atmospheric sulfur dioxide and various oxides of nitrogen is reported. Simple or enriched samples can be analyzed. Plastic bags are recommended for preparation of simple samples; and a table of 18 plastic materials, their manufacturers, and pollutants to which they are inert is provided. Enriched samples can be prepared in chromatographic columns by adsorption methods. Tables are provided listing carriers, stationary phase materials, temperatures, carrier liquids (helium or nitrogen), column dimensions, and other data recommended for chromatographic tests of SO/sub 2/ and NOx. Because of its reactivity and tendency to polymerize, sulfur trioxide should be reduced to SO/sub 2/ prior to analysis.

  6. (Vapour + liquid) equilibrium data for the {1,1-difluoroethane (R152a) + 1,1,1,3,3-pentafluoropropane (R245fa)} system at temperatures from (323.150 to 353.150) K

    International Nuclear Information System (INIS)

    Yang, Lixiang; Gong, Maoqiong; Guo, Hao; Dong, Xueqiang; Wu, Jianfeng

    2015-01-01

    Highlights: • VLE data for (R152a + R245fa) system were measured at temperatures. • The experiments were based on the static-analytic method. • VLE data were correlated using PR–vdWs and PR–HV–NRTL models. - Abstract: In this paper, (vapour + liquid) equilibrium (VLE) for the {1,1-difluoroethane (R152a) + 1,1,1,3,3-pentafluoropropane (R245fa)} system was determined by a static-analytical method at T = (323.150 to 353.150) K. Values of the VLE were correlated by the Peng–Robison equation of state (PR EoS) using two different models, the van der Waals (vdWs) mixing rule and the Huron–Vidal (HV) mixing rule involving the non-random two-liquid (NRTL) activity coefficient model. The correlated results show good agreement with the experimental values. For the two models, the maximum average absolute deviations of the vapour phase mole fraction are 0.0034 and 0.0035, respectively.

  7. Determination and modelling of osmotic coefficients and vapour pressures of binary systems 1- and 2-propanol with CnMimNTf2 ionic liquids (n = 2, 3, and 4) at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gomez, Elena; Dominguez, Angeles; Macedo, Eugenia A.

    2011-01-01

    Highlights: → Osmotic coefficients of 1- and 2-propanol with C n MimNTf 2 (n = 2, 3, and 4) are determined. → Experimental data were correlated with extended Pitzer model of Archer and MNRTL. → Mean molal activity coefficients and excess Gibbs free energies were calculated. → Effect of the anion is studied comparing these results with literature. - Abstract: The osmotic and activity coefficients and vapour pressures of binary mixtures containing 1-propanol, or 2-propanol and imidazolium-based ionic liquids with bis(trifluoromethylsulfonyl)imide as anion (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C 2 MimNTf 2 , 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, C 3 MimNTf 2 , and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C 4 MimNTf 2 ) were determined at T = 323.15 K using the vapour pressure osmometry technique. The experimental osmotic coefficients were correlated using the extended Pitzer model modified by Archer and the MNRTL model, obtaining standard deviations lower than 0.033 and 0.064, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the mixtures studied were calculated from the parameters of the extended Pitzer model modified by Archer. Besides the effect of the alkyl-chain of the cation, the effect of the anion can be assessed comparing the experimental results with those previously obtained for imidazolium ionic liquids with sulphate anions.

  8. Two-Dimensional Metrology with Flatbed Scanners at Room and Liquid Nitrogen Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A. [CIEMAT. Madrid (Spain)

    2000-07-01

    We study the capability of the commercial flatbed scanner as a measuring instrument of two-coordinate sample both at room and liquid nitrogen temperatures. We describes simple procedure to calibrate the scanner, and the most adequate standard configuration to carry out the measurements. To illustrate the procedure, we measure the relative positions of the conductors in a cross-section of a superconducting magnet of CERN. (Author) 8 refs.

  9. Two-Dimensional Metrology with Flatbed Scanners at Room and Liquid Nitrogen Temperatures

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2000-01-01

    We study the capability of the commercial flatbed scanner as a measuring instrument of two-coordinate sample both at room and liquid nitrogen temperatures. We describes simple procedure to calibrate the scanner, and the most adequate standard configuration to carry out the measurements. To illustrate the procedure, we measure the relative positions of the conductors in a cross-section of a superconducting magnet of CERN. (Author) 8 refs

  10. A liquid-nitrogen monitor for lithium-drifted germanium detectors

    International Nuclear Information System (INIS)

    Andeweg, A.H.

    1977-11-01

    An instrument has been developed that makes use of a load cell to monitor the liquid nitrogen in the Dewar flask of a lithium-drifted germaniun detector. The contents are recorded on a chart recorder, and an alarm is sounded when the previously set content has been reached. A signal switches off the high-voltage power supply 30 minutes after the alarm is triggered. The calibration of the load-cell monitor is described in an appendix [af

  11. Comparison between mechanical freezer and conventional freezing using liquid nitrogen in normozoospermia.

    Science.gov (United States)

    Rahana, A R; Ng, S P; Leong, C F; Rahimah, M D

    2011-10-01

    This study evaluated the effect of human semen cryopreservation using an ultra-low temperature technique with a mechanical freezer at -85°C as an alternative method to the conventional liquid nitrogen technique at -196°C. This was a prospective experimental study conducted in the Medically Assisted Conception unit, Department of Obstetrics and Gynaecology, National University Hospital, Malaysia from January 1, 2006 to April 30, 2007. All normozoospermic semen samples were included in the study. The concentration, motility and percentage of intact DNA of each semen sample were assessed before and after freezing and thawing on Days 7 and 30 post freezing. Sperm cryopreservation at -85°C was comparable to the conventional liquid nitrogen technique for a period of up to 30 days in a normozoospermic sample. There was no statistical difference in concentration (Day 7 p-value is 0.1, Day 30 p-value is 0.2), motility (Day 7 p-value is 0.9, Day 30 p-value is 0.5) and proportion of intact DNA (Day 7 p-value is 0.1, Day 30 p-value is 0.2) between the ultra-low temperature technique and conventional liquid nitrogen cryopreservation at Days 7 and 30 post thawing. This study clearly demonstrates that short-term storage of sperm at -85°C could be a viable alternative to conventional liquid nitrogen cryopreservation at -196°C due to their comparable post-thaw results.

  12. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen.

    Science.gov (United States)

    Kostál, Vladimír; Zahradnícková, Helena; Šimek, Petr

    2011-08-09

    The larva of the drosophilid fly, Chymomyza costata, is probably the most complex metazoan organism that can survive submergence in liquid nitrogen (-196 °C) in a fully hydrated state. We examined the associations between the physiological and biochemical parameters of differently acclimated larvae and their freeze tolerance. Entering diapause is an essential and sufficient prerequisite for attaining high levels of survival in liquid nitrogen (23% survival to adult stage), although cold acclimation further improves this capacity (62% survival). Profiling of 61 different metabolites identified proline as a prominent compound whose concentration increased from 20 to 147 mM during diapause transition and subsequent cold acclimation. This study provides direct evidence for the essential role of proline in high freeze tolerance. We increased the levels of proline in the larval tissues by feeding larvae proline-augmented diets and found that this simple treatment dramatically improved their freeze tolerance. Cell and tissue survival following exposure to liquid nitrogen was evident in proline-fed nondiapause larvae, and survival to adult stage increased from 0% to 36% in proline-fed diapause-destined larvae. A significant statistical correlation was found between the whole-body concentration of proline, either natural or artificial, and survival to the adult stage in liquid nitrogen for diapause larvae. Differential scanning calorimetry analysis suggested that high proline levels, in combination with a relatively low content of osmotically active water and freeze dehydration, increased the propensity of the remaining unfrozen water to undergo a glass-like transition (vitrification) and thus facilitated the prevention of cryoinjury.

  13. Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chiali-Baba Ahmed, Nouria [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, Post Office Box 119, Tlemcen 13000 (Algeria); Negadi, Latifa, E-mail: latifanegadi@yahoo.fr [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, Post Office Box 119, Tlemcen 13000 (Algeria); Mokbel, Ilham [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5280, Universite Claude Bernard - Lyon I, 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France); Kaci, Ahmed Ait [Laboratoire de Thermodynamique et Modelisation Moleculaire, Universite des Sciences et de la Technologie Houari Boumediene, Post Office Box 32, El Alia 16111, Bab Ezzouar (Algeria); Jose, Jacques [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5280, Universite Claude Bernard - Lyon I, 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France)

    2012-01-15

    Highlights: > Vapour pressures of sec-butylamine or cyclohexylamine and their aqueous solutions. > The investigated temperatures are 273 K and 363 K. > The (cyclohexylamine + water) mixture shows positive azeotropic behaviour. > The (sec-butylamine + water) or (cyclohexylamine + water) exhibit positive G{sup E}. - Abstract: The vapour pressures of (sec-butylamine + water), (cyclohexylamine + water) binary mixtures, and of pure sec-butylamine and cyclohexylamine components were measured by means of two static devices at temperatures between 293 (or 273) K and 363 K. The data were correlated with the Antoine equation. From these data, excess Gibbs functions (G{sup E}) were calculated for several constant temperatures and fitted to a fourth-order Redlich-Kister equation using the Barker's method. The (cyclohexylamine + water) system shows positive azeotropic behaviour for all investigated temperatures. The two binary mixtures exhibit positive deviations in G{sup E} for all investigated temperatures over the whole composition range.

  14. Surface Quality Improvement of AA6060 Aluminum Extruded Components through Liquid Nitrogen Mold Cooling

    Directory of Open Access Journals (Sweden)

    Andrea Francesco Ciuffini

    2018-06-01

    Full Text Available 6xxx aluminum alloys are suitable for the realization of both structural applications and architectural decorative elements, thanks to the combination of high corrosion resistance and good surface finish. In areas where the aesthetic aspects are fundamental, further improvements in surface quality are significant. The cooling of the extrusion mold via internal liquid nitrogen fluxes is emerging as an important innovation in aluminum extrusion. Nowadays, this innovation is providing a large-scale solution to obtain high quality surface finishes in extruded aluminum semi-finished products. These results are also coupled to a significant increase in productivity. The aim of the work is to compare the surface quality of both cooled liquid nitrogen molds and classically extruded products. In this work, adhesion phenomena, occurring during the extrusion between the mold and the flowing material, have been detected as the main causes of the presence of surface defects. The analysis also highlighted a strong increase in the surface quality whenever the extrusion mold was cooled with liquid nitrogen fluxes. This improvement has further been confirmed by an analysis performed on the finished products, after painting and chromium plating. This work on the AA6060 alloy has moreover proceeded to roughness measurements and metallographic analyses, to investigate the eventual occurrence of other possible benefits stemming from this new extrusion mold cooling technology.

  15. A model of freezing foods with liquid nitrogen using special functions

    Science.gov (United States)

    Rodríguez Vega, Martín.

    2014-05-01

    A food freezing model is analyzed analytically. The model is based on the heat diffusion equation in the case of cylindrical shaped food frozen by liquid nitrogen; and assuming that the thermal conductivity of the cylindrical food is radially modulated. The model is solved using the Laplace transform method, the Bromwich theorem, and the residue theorem. The temperature profile in the cylindrical food is presented as an infinite series of special functions. All the required computations are performed with computer algebra software, specifically Maple. Using the numeric values of the thermal and geometric parameters for the cylindrical food, as well as the thermal parameters of the liquid nitrogen freezing system, the temporal evolution of the temperature in different regions in the interior of the cylindrical food is presented both analytically and graphically. The duration of the liquid nitrogen freezing process to achieve the specified effect on the cylindrical food is computed. The analytical results are expected to be of importance in food engineering and cooking engineering. As a future research line, the formulation and solution of freezing models with thermal memory is proposed.

  16. Proposal for the award of three contracts for the supply and delivery of liquid nitrogen

    CERN Document Server

    2001-01-01

    This document concerns the award of three contracts for the supply and delivery of liquid nitrogen. A call for tenders (IT-3016/LHC) was sent on 21 September 2001 to 24 firms in eight Member States. By the closing date, CERN had received tenders from four firms in one Member State. For the reasons explained in this document, the Finance Committee is invited to agree to the negotiation of the following three contracts: - a contract with PRAXAIR (FR), the lowest bidder, for the supply of up to 20 000 metric tons of liquid nitrogen over a period of three years for an amount not exceeding 2 486 000 Swiss francs, not subject to revision. - a contract with MESSER FRANCE (FR), the second lowest bidder, for the supply of up to 15 000 metric tons of liquid nitrogen over a period of three years for an amount not exceeding 1 292 542 euros (1 905 000 Swiss francs), not subject to revision. The rate of exchange which has been used is that stipulated in the tender. - a contract with AIR PRODUCTS (FR), the third lowest bidd...

  17. Effect of liquid nitrogen flow rate on solidification of stagnant water in a horizontal tube

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    1995-01-01

    Five experiments are conducted to study the effect of liquid nitrogen flow rate on the solidification of stagnant water inside a horizontal stainless steel tube of inner diameter 19.6 cm and 12 mm thick. This tube simulates the down-comer of the nuclear reactor ET-R R-1. The apparatus design is mentioned more detail description. The results show that for the first experiment where the liquid nitrogen flow rate is 30 1/hr, the progress of solidification of water has stopped at a diameter of 12 cm. By increasing the flow rate from 30 1/hr to 40,50 and 60 1/hr, the time of freezing the water inside the tube is decreased from 86 to 67 and 60 minutes respectively. By increasing the liquid nitrogen flow rate to 70 1/hr, there is no much effect on the time of frozen. In all experiments, where the solidification is happened, the ice block formed inside the tube is subjected to a pressure of 3 at mg least, and is succeed to withstand this pressure without any leak. 7 figs

  18. Base profile design for high-performance operation of bipolar transistors at liquid-nitrogen temperature

    International Nuclear Information System (INIS)

    Stork, J.M.C.; Harame, D.L.; Meyerson, B.S.; Nguyen, T.N.

    1989-01-01

    The base profile requirements of Si bipolar junction transistors (BJT's) high-performance operation at liquid-nitrogen temperature are examined. Measurements of thin epitaxial-base polysilicon-emitter n-p-n transistors with increasing base doping show the effects of bandgap narrowing, mobility changes, and carrier freezeout. At room temperature the collector current at low injection is proportional to the integrated base charge, independent of the impurity distribution. At temperatures below 150 Κ, however, minority injection is dominated by the peak base doping because of the greater effectiveness of bandgap narrowing. When the peak doping in the base approaches 10 19 cm -3 , the bandgap difference between emitter and base is sufficiently small that the current gain no longer monotonically decreases with lower temperature but instead shows a maximum as low as 180 Κ. The device design window appears limited at the low-current end by increased base-emitter leakage due to tunneling and by resistance control at the high-current end. Using the measured dc characteristics, circuit delay calculations are made to estimate the performance of an ECL ring oscillator at room and liquid-nitrogen temperatures. It is shown that if the base doping can be raised to 10 19 cm -3 while keeping the base thickness constant, the minimum delay at liquid nitrogen can approach the delay of optimized devices at room temperature

  19. Liquid nitrogen cryotherapy for lip mucous membrane venous malformation in infants.

    Science.gov (United States)

    Zhang, Da-Ming; Wang, You-Yuan; Lin, Zhao-Yu; Yang, Zhao-Hui; Chen, Wei-Liang

    2015-03-01

    Lip mucous membrane venous malformations are common benign lesions in infants. This clinical study evaluates the efficacy and safety of liquid nitrogen cryotherapy used to treat this condition. A total of 84 pediatric patients undergoing liquid nitrogen cryotherapy for venous malformations involving the lips were reviewed, with 45 males and 39 females treated. The overall median age at mucous membrane venous malformation diagnosis was 5.6 months (range 2-18 months). The venous malformations involved the vermilion of the lower lip in 44 cases, the vermilion of the upper lip in 31 cases, and both vermilions in 9 cases. No complications due to anesthesia occurred. After a follow-up period of 2-38 months (mean 25 months), 65 lesions (77.4 %) were completely involuted, 14 lesions (16.7 %) were mostly involuted, and 5 lesions (5.9 %) were partially involuted; no lesions showed a minor amount of involution. Liquid nitrogen cryotherapy is an effective, simple, and safe management tool for mucous membrane venous malformations of the lip in infants.

  20. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  1. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  2. A mathematical model of vapour film destabilisation

    International Nuclear Information System (INIS)

    Knowles, J.B.

    1985-04-01

    In a hypothetical reactor accident, destabilisation of an intervening vapour film between the molten fuel and liquid coolant by a weak shock wave (trigger), is considered likely to initiate the molten fuel-coolant interaction. The one-dimensional model presented here is part of a larger programme of fundamental research aimed at improved reactor safety. (U.K.)

  3. Theoretical and experimental investigation of the thermodynamic and kinetic nitrogen absorption by liquid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grigorenko, G.M.; Pomarin, Yu.M.; Orlovsky, V.Yu. [Natsional' na Akademyiya Nauk Ukrayini, Kiev (Ukraine). E.O. Paton Inst. of Electrical Welding

    1999-07-01

    The work was performed within the framework of the Ukrainian-French program of cooperation in the field of metal of high inclusion and was dedicated to joint fundamental investigation of thermodynamics and kinetics of nitrogen absorption by the Ni-20%Cr liquid alloy. The comparative investigations of kinetic absorption of nitrogen from the gas phase were performed by the method of levitation melting within the temperature range of 1600-1800 C in the atmosphere of pure nitrogen. Using the method of mathematical statistics and experimental Cp values at the different temperatures, the temperature dependence of the equilibrium constant of nitrogen solution reaction in the Ni-20%Cr alloy was obtained (lgK{sub N}=1284/T-1.94). Theoretical and graphical analysis of the experimental data allowed to make the conclusion that the absorption nitrogen process is controlled by the general kinetic equation of the first degree. Using of the aforementioned results the mass transfer factors were calculated with the different temperature and were obtained their mathematical description ({beta}{sub N}{sup Ni-Cr}=-454/T+0.285). (orig.)

  4. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  5. Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen

    Science.gov (United States)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2005-01-01

    To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.

  6. Experimental, Numerical, and Analytical Slosh Dynamics of Water and Liquid Nitrogen in a Spherical Tank

    Science.gov (United States)

    Storey, Jedediah Morse

    2016-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.

  7. Analytical solution and numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe

    Science.gov (United States)

    Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi

    2018-05-01

    Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.

  8. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  9. Discrete vapour cavity model with improved timing of opening and collapse of cavities

    NARCIS (Netherlands)

    Bergant, A.; Tijsseling, A.S.; Vítkovský, J.P.; Simpson, A.R.; Lambert, M.F.

    2007-01-01

    Transient vaporous cavitation occurs in hydraulic piping systems when the liquid pressure falls to the vapour pressure. Cavitation may occur as a localized vapour cavity (large void fraction) or as distributed vaporous cavitation (small void fraction). The discrete vapour cavity model (DVCM) with

  10. Liquid-liquid extraction from molten alkaline nitrates by using nitrogenous and organophosphorus derivatives

    International Nuclear Information System (INIS)

    Vittori, Olivier

    1971-01-01

    This research thesis reports the use of a system made of the LiNO 3 -KNO 3 eutectic at 160 deg. C and poly-phenyls in order to study the behaviour of phosphine and arsine oxides as extracting agents in a liquid-liquid process. In a first part, the author presents the studied system, its physical characteristics and its preparation, and the various analytical methods which have used. He discusses existing computation methods adapted to the separation of molten salts and organic phase, and proposes a specific method. Then, he reports the study of the behaviour of a phosphine oxide with Cobalt II and Nickel II, and discusses its application to the separation of this pair, Co II and Ni II. He highlights the different possibilities of three agents which are derivatives of phosphine and arsine in their ability to extract rare earths. A study of separation of rare earths is then addressed. The author reports the application of extraction equilibriums to the study of equilibriums in environments of molten salts with the Co II - chloride ions system. The author finally addresses the synergic phenomenon that pairs of neutral complexing agents of neighbouring structure or different donor central atom may display in liquid-liquid extraction

  11. A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: three washes with sterile liquid nitrogen (SLN2).

    Science.gov (United States)

    Parmegiani, Lodovico; Accorsi, Antonio; Bernardi, Silvia; Arnone, Alessandra; Cognigni, Graciela Estela; Filicori, Marco

    2012-10-01

    To report a washing procedure, to be performed as frozen specimens are taken out of cryobanks, to minimize the risk of hypothetical culture contamination during thawing. Basic research. Private assisted reproduction center. Two batches of liquid nitrogen (LN(2)) were experimentally contaminated, one with bacteria (Pseudomonas aeruginosa, Escherichia coli, Stenotrophomonas maltophilia) and the other with fungi (Aspergillus niger). Two hundred thirty-two of the most common human gamete/embryo vitrification carriers (Cryotop, Cryoleaf, Cryopette) were immersed in the contaminated LN(2) (117 in the bacteria and 25 in the fungi-contaminated LN(2)). The carriers were tested microbiologically, one group without washing (control) and the other after three subsequent washings in certified ultraviolet sterile liquid nitrogen (SLN(2)). The carriers were randomly allocated to the "three-wash procedure" (three-wash group, 142 carriers) or "no-wash" (control group, 90 carriers) using a specific software tool. Assessment of microorganism growth. In the no-wash control group, 78.6% of the carriers were contaminated by the bacteria and 100% by the fungi. No carriers were found to be contaminated, either by bacteria or fungi, after the three-wash procedure. The three-wash procedure with SLN(2) produced an efficient decontamination of carriers in extreme experimental conditions. For this reason, this procedure could be routinely performed in IVF laboratories for safe thawing of human specimens that are cryostored in nonhermetical cryocontainers, particularly in the case of open or single-straw closed vitrification systems. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Global numerical solutions of growth and departure of a vapour bubble at a horizontal superheated wall in a pure liquid and a binary mixture

    International Nuclear Information System (INIS)

    Zijl, W.; Ramakers, F.J.M.; Stralen, S.J.D. van

    1979-01-01

    The growth and buoyancy induced departure of vapour bubbles at a horizontal superheated wall has been studied by global numerical methods. Integral forms of the heat transport equation have been solved by use of series expansions, obtained by the theory of fractional derivatives. The global orthogonal collocation method has been applied for the potential flow around the bubble. In this way a set of only eight or ten ordinary differential equations has to be integrated by computer. The results, following from prescribed initial temperature distributions, are in quantitative agreement with experimental data, obtained in water and aqueous binary mixtures, boiling at subatmospheric pressure. (author)

  13. An investigation of an uninterruptible power supply (UPS) based on supercapacitor and liquid nitrogen hybridization system

    International Nuclear Information System (INIS)

    Zhang, Xinjing; Xue, Haobai; Xu, Yujie; Chen, Haisheng; Tan, Chunqing

    2014-01-01

    Highlights: • A hybrid UPS based on supercapacitor and liquid nitrogen engine is proposed. • The dynamic modelling of the hybrid UPS system is conducted. • The dynamic working performance is obtained and analysed based on the simulation. • The hybrid UPS enjoys environmental benignity, long life and easy maintenance. • It is a highly possible solution to replace conventional UPS systems. - Abstract: An uninterruptible power supply (UPS) system based on supercapacitor and liquid nitrogen (LN 2 ) hybridization is first introduced in this paper. Of the newly designed UPS, the supercapacitor reacts instantaneously once the main supply fails, and it also starts the LN 2 power system to produce continuing electricity for the customer. This hybrid UPS system is of environment cleanness, long life time, easy maintenaince, etc. A 10 kW model is analyzed in this study. A two-stage nitrogen expander is designed with the rated speed of 900 rpm as the long time power generation device of the LN 2 cycle. The UPS starting process calculation is carried out. The results reveal that commercial supercapacitors could fulfill this request. This UPS could be a competent choice for the UPS application. Further discussion indicates the LN 2 power system could be used widely from UPS to low carbon vehicles

  14. Conidiation of Penicillium camemberti in submerged liquid cultures is dependent on the nitrogen source.

    Science.gov (United States)

    Boualem, Khadidja; Labrie, Steve; Gervais, Patrick; Waché, Yves; Cavin, Jean-François

    2016-02-01

    To study the ability of a commercial Penicillium camemberti strain, used for Camembert type cheese ripening, to produce conidia during growth in liquid culture (LC), in media containing different sources of nitrogen as, industrially, conidia are produced by growth at the surface of a solid state culture because conidiation in stirred submerged aerobic LC is not known. In complex media containing peptic digest of meat, hyphae ends did not differentiate into phialides and conidia. Contrarily, in a synthetic media containing KNO3 as sole nitrogen source, hyphae ends differentiated into phialides producing 0.5 × 10(7) conidia/ml. Conidia produced in LC were 25 % less hydrophobic than conidia produced in solid culture, and this correlates with a seven-times-lower expression of the gene rodA encoding hydrophobin RodA in the mycelium grown in LC. Conidiation of P. camembertii is stimulated in iquid medium containing KNO3 as sole source of nitrogen and therefore opens up opportunities for using liquid medium in commercial productions.

  15. Isothermal phase (vapour + liquid) equilibrium data for binary mixtures of propene (R1270) with either 1,1,2,3,3,3-hexafluoro-1-propene (R1216) or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane in the temperature range of (279 to 318) K

    International Nuclear Information System (INIS)

    Subramoney, Shalendra Clinton; Nelson, Wayne Michael; Courtial, Xavier; Naidoo, Paramespri; Coquelet, Christophe; Richon, Dominique; Ramjugernath, Deresh

    2015-01-01

    Highlights: • Phase equilibrium data for propene and hexafluoropropylene. • Phase equilibrium data for propene and hexafluoropropylene oxide. • Systems exhibit pressure-maximum azeotropes. • Data well correlated by Peng–Robinson equation of state with the Wong–Sandler mixing rule. - Abstract: Isothermal (vapour + liquid) equilibrium data (P–x–y) are presented for the 1-propene 1,1,2,3,3,3-hexafluoro-1-propene and the 1-propene + 2,2,3-trifluoro-3-(trifluoromethyl)oxirane binary systems. Both binary systems were studied at five temperatures, ranging from (279.36 to 318.09) K, at pressures up to 2 MPa. The experimental (vapour + liquid) equilibrium data were measured using an apparatus based on the “(static + analytic)” method incorporating a single movable Rapid On-Line Sampler-Injector to sample the liquid and vapour phases at equilibrium. The expanded uncertainties are approximated on average as T = 0.07 K, 0.008 MPa, and 0.007 and 0.009 for the temperature, pressure, and the liquid and vapour mole fractions, respectively. A homogenous maximum-pressure azeotrope was observed for both binary systems at all temperatures studied. The experimental data were correlated with the Peng–Robinson equation of state using the Mathias–Copeman alpha function, paired with the Wong–Sandler mixing rule and the Non-Random Two Liquid activity coefficient model. The model provided satisfactory representation of the phase equilibrium data measured

  16. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    Science.gov (United States)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  17. CooLN2Car: An Experimental Car Which Uses Liquid Nitrogen as Its Fuel

    Science.gov (United States)

    Parker, M. E.; Plummer, M. C.; Ordonez, C. A.

    1997-10-01

    A ``cryogenic" heat engine which operates using the atmosphere as a heat source and a cryogenic medium as a heat sink has been incorporated as the power system for an automobile. A 1973 Volkswagen Beetle has been converted and uses liquid nitrogen as its ``fuel." A Dewar was mounted in the car and provides nitrogen under pressure to two heat exchangers connected in parallel which use atmospheric heat to heat the nitrogen. The heat exchangers deliver compressed nitrogen gas to a vane-type pneumatic motor mounted in place of the original gasoline engine. Pressure in the tank is maintained internally at 1.2 MPa and is reduced to 0.7 MPa before the motor by a pressure regulator. A throttle, composed of a butterfly valve, is mounted between the regulator and the motor and is connected to the driver's accelerator peddle. The vehicle has good acceleration, a maximum range of 15 miles, and a maximum speed of 25 mph. A demonstration with the vehicle is planned.

  18. Application of the Open Cycle Stirling Engine Driven with Liquid Nitrogen for the Non-Polluting Automobiles

    Directory of Open Access Journals (Sweden)

    M.B. Kravchenko

    2017-10-01

    Full Text Available Progress on advancing technology of using liquid nitrogen for the non-polluting automobiles is reported. It is shown that the low exergy efficiency of the known engines fueled with liquid nitrogen has discredited the very idea of a cryomobile. The design of the open-cycle cryogenic Stirling engine is proposed. This engine allows extracting up to 57% of the exergy accumulated in liquid nitrogen. The method used to calculate of such open-cycle Stirling engine is described and the calculation results and discussion are presented. It is shown that 200 liters of liquid nitrogen is sufficient for 180 km range of cryomobile at speed of 55 km/h, while a full charge of the 300-kilogram battery of Nissan LEAF electric vehicle is sufficient for a range of 160 km. Use of liquid nitrogen or liquid air as an energy vector in a transport will not require scarce materials, and, in comparison with using of lithium-ion batteries or hydrogen, this will require less capital investment.

  19. Liquid nitrogen spray cryotherapy in Barrett's esophagus with high-grade dysplasia: long-term results.

    Science.gov (United States)

    Gosain, Sonia; Mercer, Kim; Twaddell, William S; Uradomo, Lance; Greenwald, Bruce D

    2013-08-01

    Liquid nitrogen endoscopic spray cryotherapy can safely and effectively eradicate high-grade dysplasia in Barrett's esophagus (BE-HGD). Long-term data on treatment success and safety are lacking. To assess the long-term safety and efficacy of spray cryotherapy in patients with BE-HGD. Single-center, retrospective study. Tertiary-care referral center. A total of 32 patients with BE-HGD of any length. Patients were treated with liquid nitrogen spray cryotherapy every 8 weeks until complete eradication of HGD (CE-HGD) and intestinal metaplasia (CE-IM) was found by endoscopic biopsy. Surveillance endoscopy with biopsies was performed for at least 2 years. CE-HGD, CE-IM, durability of response, disease progression, and adverse events. CE-HGD was 100% (32/32), and CE-IM was 84% (27/32) at 2-year follow-up. At last follow-up (range 24-57 months), CE-HGD was 31/32 (97%), and CE-IM was 26/32 (81%). Recurrent HGD was found in 6 (18%), with CE-HGD in 5 after repeat treatment. One patient progressed to adenocarcinoma, downgraded to HGD after repeat cryotherapy. BE segment length ≥3 cm was associated with a higher recurrence of IM (P = .004; odds ratio 22.6) but not HGD. No serious adverse events occurred. Stricture was seen in 3 patients (9%), all successfully dilated. Retrospective study design, small sample size. In patients with BE-HGD, liquid nitrogen spray cryotherapy has an acceptable safety profile and success rate for eliminating HGD and IM and is associated with a low rate of recurrence or progression to cancer with long-term follow-up. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  20. Feasibility of refreezing human spermatozoa through the technique of liquid nitrogen vapor

    Directory of Open Access Journals (Sweden)

    Sidney Verza Jr

    2004-12-01

    Full Text Available OBJECTIVE: To assess the feasibility of refreezing human semen using the technique of liquid nitrogen vapor with static phases. MATERIALS AND METHODS: Twenty samples from 16 subjects who required disposal of their cryopreserved semen were thawed, corresponding to 6 cancer patients and 10 participants in the assisted reproduction (AR program. Samples were refrozen using the technique of liquid nitrogen vapor with static phases, identical to the one used for the initial freezing, and thawed again after 72 hours. We assessed the concentration of motile spermatozoa, total and progressive percent motility and spermatic vitality, according to criteria of the World Health Organization (WHO, as well as spermatic morphology according to the strict Kruger criterion, after the first and after the second thawing. RESULTS: We observed a significant decrease in all the parameters evaluated between the first and the second thawing. Median values for the concentration of motile spermatozoa decreased from 2.0x10(6/mL to 0.1x10(6/mL (p < 0.01; total percent motility from 42% to 22.5% (p < 0.01; progressive percent motility from 34% to 9.5% (p < 0.01; vitality from 45% to 20% (p < 0.01; and morphology from 5% to 5% (p = 0.03. There was no significant difference in the spermatic parameters between the cancer and assisted reproduction groups, both after the first and after the second thawing. We observed that in 100% of cases there was retrieval of motile spermatozoa after the second thawing. CONCLUSIONS: Refreezing of human semen by the technique of liquid nitrogen vapor allows the retrieval of viable spermatozoa after thawing.

  1. Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

    International Nuclear Information System (INIS)

    Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi

    2014-01-01

    A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Ergun’s equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks

  2. Experimentation of netlike hydro gel nitrogen containing polymer sorbents for biological liquids purification

    International Nuclear Information System (INIS)

    Karieva, Z.M.; Karimova, N. Kh.

    2003-01-01

    The high efficiency of hydrogels synthesized earlier in comparison with Pharmacopoeia sorbents are interesting to study comprehensively for the number of the toxins of biological liquids. Taking into considerations the high electoral sorption ability of ethynilpiperidol polymers to the hydro phobic interaction it may be suggested that they have a high detoxication ability. The detoxication characteristics of studied polymers have advantages over the known sorbents. Experiences with animals showed that in identical conditions of experiment in application of netlike polymers the survival grew 90%. Synthesis and investigations of netlike hydrogels polymer materials on nitrogen containing monomers of ethynil piperidol were given in the work. (author)

  3. (Vapour + liquid) equilibrium data for the azeotropic {1,1-difluoroethane (R152a) + 1,1,2,2-Tetrafluoroethane (R134)} system at various temperatures from (258.150 to 288.150) K

    International Nuclear Information System (INIS)

    Guo, Hao; Gong, Maoqiong; Dong, Xueqiang; Wu, Jianfeng

    2012-01-01

    Highlights: ► VLE data for the {R152a + R134} system were measured. ► The experiment is based on the static–analytic method. ► The VLE data were correlated using the PR–HV–NRTL model. ► A negative azeotropic behaviour was found. - Abstract: (Vapour + liquid) equilibrium (VLE) data for the {1,1-difluoroethane (R152a) + 1,1,2,2-Tetrafluoroethane (R134)} system were measured at T = (258.150 to 288.150) K. The experiment is based on a static–analytic method. Experimental data were correlated with the Peng–Robinson equation of state (PR EoS) and the Huron–Vidal (HV) mixing rule involving the NRTL activity coefficient model. The results show good agreement with experimental results for the binary system at each temperature. It was found that the system has a negative azeotropic behaviour within the temperature range measured here.

  4. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  5. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev; Patankar, Neelesh A.; Marston, Jeremy; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-01-01

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  6. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  7. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.

    Science.gov (United States)

    Santos, M Victoria; Sansinena, M; Chirife, J; Zaritzky, N

    2014-12-01

    The knowledge of the thermodynamic process during the cooling of reproductive biological systems is important to assess and optimize the cryopreservation procedures. The time-temperature curve of a sample immersed in liquid nitrogen enables the calculation of cooling rates and helps to determine whether it is vitrified or undergoes phase change transition. When dealing with cryogenic liquids, the temperature difference between the solid and the sample is high enough to cause boiling of the liquid, and the sample can undergo different regimes such as film and/or nucleate pool boiling. In the present work, the surface heat transfer coefficients (h) for plastic French straws plunged in liquid nitrogen were determined using the measurement of time-temperature curves. When straws filled with ice were used the cooling curve showed an abrupt slope change which was attributed to the transition of film into nucleate pool boiling regime. The h value that fitted each stage of the cooling process was calculated using a numerical finite element program that solves the heat transfer partial differential equation under transient conditions. In the cooling process corresponding to film boiling regime, the h that best fitted experimental results was h=148.12±5.4 W/m(2) K and for nucleate-boiling h=1355±51 W/m(2) K. These values were further validated by predicting the time-temperature curve for French straws filled with a biological fluid system (bovine semen-extender) which undergoes freezing. Good agreement was obtained between the experimental and predicted temperature profiles, further confirming the accuracy of the h values previously determined for the ice-filled straw. These coefficients were corroborated using literature correlations. The determination of the boiling regimes that govern the cooling process when plunging straws in liquid nitrogen constitutes an important issue when trying to optimize cryopreservation procedures. Furthermore, this information can lead to

  8. Isothermal Vapour-Liquid Equilibrium in the Binary tert-Butanol or 2,2,4-Trimethylpentane + 1-tert-Butoxy-2-Propanol, and in the Ternary tert-Butanol + 2,2,4-Trimethylpentane + 1-tert-Butoxy-2-Propanol Systems

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Wichterle, Ivan

    2001-01-01

    Roč. 189, 1-2 (2001), s. 111-118 ISSN 0378-3812 R&D Projects: GA ČR GA104/99/0136 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour-liquid equilibrium * experimental data * molar excess volume Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.217, year: 2001

  9. Experimental investigation of passive thermodynamic vent system (TVS) with liquid nitrogen

    Science.gov (United States)

    Bae, Junhyuk; Yoo, Junghyun; Jin, Lingxue; Jeong, Sangkwon

    2018-01-01

    Thermodynamic vent system (TVS) is an attractive technology to maintain an allowable pressure level of a cryogenic propellant storage in a spacecraft under micro-gravity condition. There are two types of TVS; active or passive. In this paper, the passive TVS which does not utilize a cryogenic liquid circulation pump is experimentally investigated with liquid nitrogen and numerically analyzed by thermodynamic and heat transfer model. A cylindrical copper tank, which is 198 mm in inner diameter and 216 mm in height, is utilized to suppress a thermal-stratification effect of inside cryogenic fluid. A coil heat exchanger, which is 3 m in length and 6.35 mm in outer diameter, and a fixed size orifice of which diameter is 0.4 mm are fabricated to remove heat from the stored fluid to the vented flow. Each vent process is initiated at 140 kPa and ended at 120 kPa with liquid nitrogen fill levels which are 30%, 50% and 70%, respectively. In the numerical model, the fluid in the tank is assumed to be homogeneous saturated liquid-vapor. Mass and energy balance equations with heat transfer conditions suggested in this research are considered to calculate the transient pressure variation in the tank and the amount of heat transfer across the heat exchanger. We achieve the average heat rejection rate of more than 9 W by TVS and conclude that the passive TVS operates satisfactorily. In addition, the prediction model is verified by experimental results. Although the model has limitation in providing accurate results, it can surely predict the tendency of pressure and temperature changes in the tank. Furthermore, the model can suggest how we can improve the heat exchanger design to enhance an overall efficiency of passive TVS. Moreover, the performance of passive TVS is compared with other cryogenic vent systems (direct vent system and active TVS) by suggested performance indicator.

  10. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

    International Nuclear Information System (INIS)

    Jones, B J P; Chiu, C S; Conrad, J M; Ignarra, C M; Katori, T; Toups, M

    2013-01-01

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume of liquid argon and monitor the light yield from an alpha source. The source is placed at different distances from a cryogenic photomultiplier tube assembly. By comparing the light yield from each position we extract the absorption cross section of nitrogen. We find that nitrogen absorbs argon scintillation light with strength of (1.51±0.15) × 10 −4 cm −1 ppm −1 , corresponding to an absorption cross section of (4.99±0.51) × 10 −21 cm 2 molecule −1 . We obtain the relationship between absorption length and nitrogen concentration over the 0 to 50 ppm range and discuss the implications for the design and data analysis of future large liquid argon time projection chamber (LArTPC) detectors. Our results indicate that for a current-generation LArTPC, where a concentration of 2 parts per million of nitrogen is expected, the attenuation length due to nitrogen will be 30±3 meters

  11. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.

    Science.gov (United States)

    Wang, S G; Mei, Y; Long, K; Zhang, Z D

    2009-09-17

    The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  12. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K

    Directory of Open Access Journals (Sweden)

    Mei Y

    2009-01-01

    Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  13. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

    Science.gov (United States)

    Wu, Dong; Shen, Jun; Zhou, Meng-bing; Cheng, Liang; Sang, Jia-xing

    2017-10-01

    A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.

  14. Changes in morphology of long bone marrow tissue of rats submitted to cryotherapy with liquid nitrogen.

    Science.gov (United States)

    Costa, Fábio Wildson Gurgel; Pessoa, Rosana Maria Andrade; Nogueira, Carlos Bruno Pinheiro; Pereira, Karuza Maria Alves; Brito, Gerly Anne de Castro; Soares, Eduardo Costa Studart

    2012-02-01

    To study the main effects of local use of liquid nitrogen on bone marrow tissue in rats. The femoral diaphyses of 42 Wistar rats were exposed to three local and sequential applications of liquid nitrogen for one or two minutes, intercalated with periods of five minutes of passive thawing. The animals were sacrificed after one, two, four and 12 weeks and the specimens obtained were analyzed histomorphologically. In the second experimental week of one-minute protocol, histological degree of inflammation obtained a mean score of one (mild), ranging from 0 (absent or scarce) and two (moderate) (Kruskal-Wallis test p=0.01). In the second experimental week of two-minute protocol, degree of inflammation to the medullar tissue obtained an average score of two (Kruskal-Wallis test p=0.01). The degree of inflammation of the bone marrow tissue was higher in protocol of three applications of two minutes compared to protocol of three applications of one minute.

  15. Soft X-ray and cathodoluminescence measurement, optimisation and analysis at liquid nitrogen temperatures

    Science.gov (United States)

    MacRae, C. M.; Wilson, N. C.; Torpy, A.; Delle Piane, C.

    2018-01-01

    Advances in field emission gun electron microprobes have led to significant gains in the beam power density and when analysis at high resolution is required then low voltages are often selected. The resulting beam power can lead to damage and this can be minimised by cooling the sample down to cryogenic temperatures allowing sub-micrometre imaging using a variety of spectrometers. Recent advances in soft X-ray emission spectrometers (SXES) offer a spectral tool to measure both chemistry and bonding and when combined with spectral cathodoluminescence the complementary techniques enable new knowledge to be gained from both mineral and materials. Magnesium and aluminium metals have been examined at both room and liquid nitrogen temperatures by SXES and the L-emission Fermi-edge has been observed to sharpen at the lower temperatures directly confirming thermal broadening of the X-ray spectra. Gains in emission intensity and resolution have been observed in cathodoluminescence for liquid nitrogen cooled quartz grains compared to ambient temperature quartz. This has enabled subtle growth features at quartz to quartz-cement boundaries to be imaged for the first time.

  16. Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Yusuf Kaynak

    2018-05-01

    Full Text Available This experimental study focuses on various cooling strategies and lubrication-assisted cooling strategies to improve machining performance in the turning process of AISI 4140 steel. Liquid nitrogen (LN2 and carbon dioxide (CO2 were used as cryogenic coolants, and their performances were compared with respect to progression of tool wear. Minimum quantity lubrication (MQL was also used with carbon dioxide. Progression of wear, including flank and nose, are the main outputs examined during experimental study. This study illustrates that carbon dioxide-assisted cryogenic machining alone and with minimum quantity lubrication does not contribute to decreasing the progression of wear within selected cutting conditions. This study also showed that carbon dioxide-assisted cryogenic machining helps to increase chip breakability. Liquid nitrogen-assisted cryogenic machining results in a reduction of tool wear, including flank and nose wear, in the machining process of AISI 4140 steel material. It was also observed that in the machining process of this material at a cutting speed of 80 m/min, built-up edges occurred in both cryogenic cooling conditions. Additionally, chip flow damage occurs in particularly dry machining.

  17. Liquid nitrogen vapor is comparable to liquid nitrogen for storage of cryopreserved human sperm: evidence from the characteristics of post-thaw human sperm.

    Science.gov (United States)

    Hu, Jingmei; Zhao, Shidou; Xu, Chengyan; Zhang, Lin; Lu, Shaoming; Cui, Linlin; Ma, Jinlong; Chen, Zi-Jiang

    2015-11-01

    To compare the differences in the characteristics of post-thaw human sperm after storage in either liquid nitrogen (LN2; -196 °C) or LN2 vapor (-167 °C). Experimental study. University hospital. Thirty healthy volunteers who agreed to donate their normal semen samples for infertility or research were included in the study. Semen samples (n = 30) were divided into eight aliquots and frozen. Four aliquots of each human semen sample were stored in LN2 (-196 °C), and the other four aliquots were stored in LN2 vapor (-167 °C). After 1, 3, 6, or 12 months, samples were thawed and analyzed. The motility was evaluated by the manual counting method. The viability was estimated by eosin staining. The morphology was analyzed by Diff-Quik staining. The sperm DNA integrity was determined with acridine orange fluorescent staining, and acrosin activity was assayed by the modified Kennedy method. The characteristics of post-thaw human sperm, including motility, viability, morphology, DNA integrity, and acrosin activity, showed no significant difference between LN2 and LN2 vapor storage for the different time periods. LN2 vapor was comparable to LN2 in post-thaw sperm characteristics, suggesting that LN2 vapor may be substituted for LN2 for the long-term storage of human sperm. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Tolerability and effectiveness of liquid nitrogen spray cryotherapy with very short freeze times in the treatment of xanthelasma palpebrarum.

    Science.gov (United States)

    Labandeira, Javier; Vázquez-Osorio, Igor; Figueroa-Silva, Olalla; Pereiro, Manuel; Toribio, Jaime

    2015-01-01

    Xanthelasma are cholesterol-filled, soft, yellow plaques that usually appear on the medial aspects of the eyelids bilaterally. They are always benign lesions so therapy is usually undertaken only for cosmetic reasons. Surgical excision, chemical peeling with tricholoroacetic acid, and laser ablation are commonly used treatments. Liquid nitrogen cryotherapy is a potentially effective but rarely used treatment due to the risk of intense eyelid swelling. We report on our experience with four of our patients, and propose an explanation for the effectiveness of gentle liquid nitrogen spray cryotherapy in xanthelasma. We consider that gentle liquid nitrogen cryotherapy should be used in the treatment of xanthelasma due to the ease of application and low risk of adverse effects. © 2015 Wiley Periodicals, Inc.

  19. Storage of Euschistus heros Eggs (Fabricius) (Hemiptera: Pentatomidae) in Liquid Nitrogen for Parasitization by Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    Favetti, B M; Butnariu, A R; Doetzer, A K

    2014-06-01

    Records in the literature with regard to the influence of freezing of pentatomid eggs on parasitism by microhymenopterans are scarce. In this research, we compared the storage of Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) eggs in liquid nitrogen for different periods with the objective of optimizing the multiplication of Telenomus podisi Ashmead (Hymenoptera: Platygastridae) in the laboratory. Fresh eggs of E. heros were exposed (S3, S6) or not (NS3, NS6) to UV light for 30 min and stored in 1.5-mL plastic vials in liquid nitrogen either for 3 (S3, NS3) or 6 months (S6, NS6), and egg suitability to parasitoid development was compared to control eggs exposed (SC) or not (NSC) to UV treatment. Global data analysis showed that E. heros eggs stored in liquid nitrogen with or without UV treatment, for 3 or 6 months, were suitable for T. podisi parasitization.

  20. Calculation of neutron and gamma-ray energy spectra in liquid air and liquid nitrogen due to 14-MeV neutron and californium-252 sources

    International Nuclear Information System (INIS)

    Straker, E.A.; Gritzner, M.L.; Harris, L. Jr.

    1978-01-01

    Calculations of neutron and gamma-ray fluences from 14-MeV neutron and 252 Cf sources in liquid air and liquid nitrogen have been performed. These calculations were made specifically for comparison with experimental data measured at Stohl, Federal Republic of Germany. The discrete-ordinates method was utilized with neutron and gamma-ray cross sections from ENDF/B-IV. One-dimensional calculational models were developed for the sources and tank. Limited comparisons are made with experimental data

  1. Thermodynamic analysis of chromium solubility data in liquid lithium containing nitrogen: Comparison between experimental data and computer simulation

    International Nuclear Information System (INIS)

    Krasin, Valery P.; Soyustova, Svetlana I.

    2015-01-01

    The mathematical formalism for description of solute interactions in dilute solution of chromium and nitrogen in liquid lithium have been applied for calculating of the temperature dependence of the solubility of chromium in liquid lithium with the various nitrogen contents. It is shown that the derived equations are useful to provide understanding of a relationship between thermodynamic properties and local ordering in the Li–Cr–N melt. Comparison between theory and data reported in the literature for solubility of chromium in nitrogen-contaminated liquid lithium, was allowed to explain the reasons of the deviation of the experimental semi-logarithmic plot of chromium content in liquid lithium as a function of the reciprocal temperature from a straight line. - Highlights: • The activity coefficient of chromium in ternary melt can be obtained by means of integrating the Gibbs–Duhem equation. • In lithium with the high nitrogen content, the dependence of a logarithm of chromium solubility as a function of the reciprocal temperature has essentially nonlinear character. • At temperatures below a certain threshold, the process of dissolution of chromium in lithium will be controlled by the equilibrium concentration of nitrogen required for the formation of ternary nitride Li_9CrN_5at a given temperature.

  2. Gamma irradiation of hydrocarbon-liquid nitrogen systems and the synthesis of ammonia

    International Nuclear Information System (INIS)

    Fleming, H.L.

    1982-01-01

    The 60 Co-gamma radiolysis of hydrocarbons (HC)-liquid N 2 mixtures at 77 0 K and 1.8 atm of pressure was investigated. Batch irradiation studies of methane, ethane, and ethylene and semibatch studies of methane were made in the presence and absence of transition metal oxide catalysts. In noncatalyzed systems, the effects of varying the radiation dose, total dose, solute feed rate and concentration and liquid N 2 volume were investigated. NH 3 was found to be the major N-containing product in the alkane solute system. N 2 and HC radical addition was found to be the predominate initial reaction for nitrogeneous product formation. Results of scavenger studies indicate that excited N 2 played a lesser role in precursor formation. All product yields were found to be dependent upon the H-containing species availability in the liquid N 2 solution. Production rates were limited by HC solubility. The use of the transition metal oxide supported catalyst greatly increased product formation in all systems. Product yields were found to be dependent upon the available catalyst surface area, metal loading, and reduction techniques for each metal examined. As evidenced by the radiation lag time studies, the stability of the N 2 precursors on the catalyst surface was believed to be a significant factor in reaction enhancement. Energy transfer from the catalyst to the absorbates was examined and could not be ruled out

  3. Performance of miniature electromagnetic pump at liquid nitrogen temperature; Kogata deji ponpu no ekitai chiso ondo ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Herai, T. [Railway Technical Research Inst., Tokyo (Japan)

    1999-11-10

    Though it cools the radiant heat shield board of superconducting magnet for levitation system railway by the liquid nitrogen, the piping on the shield board must be made to circulate the refrigerant in order to maintain the large area, which covers superconducting coil at the uniform temperature. Though as a circulating pump, it had developed thermal pumps using the heater and systems using natural circulation, etc. until now, it examined circulation performance of liquid nitrogen using the electromagnetic pump that here, it was small, and that to do the operation is sure. (NEDO)

  4. Modelling of vapour explosion in stratified geometrie

    International Nuclear Information System (INIS)

    Picchi, St.

    1999-01-01

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  5. Liquid nitrogen or phenolization for giant cell tumor of bone?: a comparative cohort study of various standard treatments at two tertiary referral centers.

    Science.gov (United States)

    van der Heijden, Lizz; van der Geest, Ingrid C M; Schreuder, H W Bart; van de Sande, Michiel A J; Dijkstra, P D Sander

    2014-03-05

    The rate of recurrence of giant cell tumor of bone is decreased by use of adjuvant treatments such as phenol, liquid nitrogen, or polymethylmethacrylate (PMMA) during curettage. We assessed recurrence and complication rates and functional outcome after curettage with use of phenol and PMMA, liquid nitrogen and PMMA, and liquid nitrogen and bone grafts. We retrospectively compared the relative effectiveness of treatment of giant cell tumors of bone at two tertiary centers with a regional function from 1990 to 2010. The 132 (of 201) patients who met the inclusion criteria had a mean age of thirty-three years (range, eleven to sixty-nine years). Treatment assignment depended purely on the center, with primary treatment consisting of curettage with use of phenol and PMMA (n = 82) at one center and with use of either liquid nitrogen and PMMA (n = 26) or liquid nitrogen and bone grafts (n = 24) at the other center. Recurrence and complication rates were determined, and functional outcome was assessed on the basis of the Musculoskeletal Tumor Society (MSTS) score. The mean duration of follow-up was eight years (range, two to twenty-two years). Recurrence rates were comparable among the groups (28% for phenol and PMMA, 31% for liquid nitrogen and PMMA, and 38% for liquid nitrogen and bone grafts; p = 0.52). Soft-tissue extension increased the recurrence risk (hazard ratio [HR] = 2.1, 95% confidence interval [CI] = 1.1 to 4.0, p = 0.024). The complication rate was 33% after use of liquid nitrogen and bone grafts, 27% after liquid nitrogen and PMMA, and 11% after phenol and PMMA (p = 0.019); complications included osteoarthritis, infection, postoperative fracture, nonunion, transient nerve palsy, and PMMA leakage. The complication risk was increased by the presence of a pathologic fracture (HR = 4.1, 95% CI = 1.7 to 9.5, p = 0.001) and use of liquid nitrogen (HR = 3.9, 95% CI = 1.5 to 10, p = 0.006 for liquid nitrogen and bone grafts; HR = 3.1, 95% CI = 1.1 to 8.6, p = 0

  6. Determination of desipramine in biological samples using liquid-liquid-liquid microextraction combined with in-syringe derivatization, gas chromatography, and nitrogen/phosphorus detection.

    Science.gov (United States)

    Saraji, Mohammad; Mehrafza, Narges; Bidgoli, Ali Akbar Hajialiakbari; Jafari, Mohammad Taghi

    2012-10-01

    A method was established for the determination of desipramine in biological samples using liquid-liquid-liquid microextraction followed by in-syringe derivatization and gas chromatography-nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n-Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2-20 μg/L (r(2) = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  8. Mathematical prediction of freezing times of bovine semen in straws placed in static vapor over liquid nitrogen.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-02-01

    A widespread practice in cryopreservation is to freeze spermatozoa by suspending the straws in stagnant nitrogen vapor over liquid nitrogen (N(2)V/LN(2)) for variable periods of time before plunging into liquid nitrogen (-196°C) for indefinite storage. A mathematical heat transfer model was developed to predict freezing times (phase change was considered) required for bull semen and extender packaged in 0.5ml plastic straws and suspended in static liquid nitrogen vapor. Thermophysical properties (i.e. thermal conductivity, specific heat, density, initial freezing temperature) of bovine semen and extender as a function of temperature were determined considering the water change of phase. The non-stationary heat transfer partial differential equations with variable properties (nonlinear mathematical problem) were numerically solved considering in series thermal resistances (semen suspension-straw) and the temperature profiles were obtained for both semen suspension and plastic straw. It was observed both the external heat transfer coefficient in stagnant nitrogen vapor and its temperature (controlled by the distance from the surface of liquid nitrogen to the straw) affected freezing times. The accuracy of the model to estimate freezing times of the straws was further confirmed by comparing with experimental literature data. Results of this study will be useful to select "safe" holding times of bull semen in plastic straws placed N(2)V/LN(2) to ensure that complete freezing of the sample has occurred in the nitrogen vapor and avoid cryodamage when plunging in LN(2). Freezing times predicted by the numerical model can be applied to optimize freezing protocols of bull semen in straws. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.

    1980-01-01

    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  10. Process configuration of Liquid-nitrogen Energy Storage System (LESS) for maximum turnaround efficiency

    Science.gov (United States)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2017-12-01

    Diverse power generation sector requires energy storage due to penetration of variable renewable energy sources and use of CO2 capture plants with fossil fuel based power plants. Cryogenic energy storage being large-scale, decoupled system with capability of producing large power in the range of MWs is one of the options. The drawback of these systems is low turnaround efficiencies due to liquefaction processes being highly energy intensive. In this paper, the scopes of improving the turnaround efficiency of such a plant based on liquid Nitrogen were identified and some of them were addressed. A method using multiple stages of reheat and expansion was proposed for improved turnaround efficiency from 22% to 47% using four such stages in the cycle. The novelty here is the application of reheating in a cryogenic system and utilization of waste heat for that purpose. Based on the study, process conditions for a laboratory-scale setup were determined and presented here.

  11. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching.

    Science.gov (United States)

    Grim, R Gary; Kerkar, Prasad B; Sloan, E Dendy; Koh, Carolyn A; Sum, Amadeu K

    2012-06-21

    In this study the rapid growth of sII H(2) hydrate within 20 min of post formation quenching towards liquid nitrogen (LN(2)) temperature is presented. Initially at 72 MPa and 258 K, hydrate samples would cool to the conditions of ~60 MPa and ~90 K after quenching. Although within the stability region for H(2) hydrate, new hydrate growth only occurred under LN(2) quenching of the samples when preformed hydrate "seeds" of THF + H(2) were in the presence of unconverted ice. The characterization of hydrate seeds and the post-quenched samples was performed with confocal Raman spectroscopy. These results suggest that quenching to LN(2) temperature, a common preservation technique for ex situ hydrate analysis, can lead to rapid unintended hydrate growth. Specifically, guest such as H(2) that may otherwise need sufficiently long induction periods to nucleate, may still experience rapid growth through an increased kinetic effect from a preformed hydrate template.

  12. Mechanical characterization of selected adhesives and bulk materials at liquid nitrogen and room temperatures

    International Nuclear Information System (INIS)

    Fitzpatrick, C.M.; Stoddart, W.C.T.

    1977-01-01

    This paper presents the results of a series of mechanical tests on selected adhesives and bulk materials. The materials tested are of general interest to designers of magnets for cryogenic service and include several epoxies, a varnish, a B-stage glass cloth, insulation papers, and commercially available fiber-reinforced composites. These tests were performed at room temperature (293 K) and at liquid nitrogen temperature (77 K). The tests include both simple tension tests and lap shear tests with various adherends. The parameters critical to tensile or bond strength were varied as part of the test program. The procedures used to manufacture and test these specimens and the results of the tests are reported in this paper

  13. Device for the crystallographic study of substances maintained at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Pluchery, M.; Debrenne, P.

    1961-01-01

    When a substance to be studied has been submitted to a processing at low temperature, and that no heating can be tolerated between this processing and the X-ray investigation, conventional low temperature devices are difficult to use. Diffraction lines are recorded, as well as Bragg angles between 55 and 88 deg. The authors present a device that allows a sample permanently immersed in liquid nitrogen to be studied, either through its lower part, or as a whole. They describe the operation principle, how a sample is set into place, how measurements are performed. They comment technical characteristics and performance. This device has been used to measure parameters of graphite irradiated at high temperature [fr

  14. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-09-01

    Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A visual study of radial inward choked flow of liquid nitrogen.

    Science.gov (United States)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  16. Air conditioning and power generation for residential applications using liquid nitrogen

    International Nuclear Information System (INIS)

    Ahmad, Abdalqader; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Using liquid nitrogen to provide power and air conditioning for domestic applications. • The proposed system leads to save energy and reduce the peak electricity demands. • Compared with conventional AC saving up to 36% was achieved at the current LN2 price. • The widespread of this technology leads to lower LN2 price and saving up to 81%. • The last configuration was the efficient system with overall thermal efficiency 74%. - Abstract: Current air conditioning (AC) systems consume a significant amount of energy, particularly during peak times where most electricity suppliers face difficulties to meet the users’ demands, and the global demands for AC systems have increased rapidly over the last few decades leading to significant power consumption and carbon dioxide emissions. This paper presents a new technique that uses liquid nitrogen (LN2) produced from renewable energy sources, or surplus electricity at off peak times, to provide cooling and power for domestic houses. Thermodynamic analyses of various cryogenic cycles have been carried out to achieve the most effective configuration that produces the maximum power output with minimum LN2 flow rate, to meet the required cooling of a 170 m"2 dwelling in Libya. A comparison with a conventional AC system was also made. Results showed that at the current LN2 prices, using LN2 to provide cooling and power demands of residential buildings is feasible and saves up to 36% compared to conventional air conditioning systems with an overall thermal efficiency of 74%. However, as the LN2 price decreases to around 1.3 pence per kg, the proposed technology will have significant advantages compared to conventional AC systems with savings of up to 81%.

  17. Knee joint preservation surgery in osteosarcoma using tumour-bearing bone treated with liquid nitrogen.

    Science.gov (United States)

    Higuchi, Takashi; Yamamoto, Norio; Nishida, Hideji; Hayashi, Katsuhiro; Takeuchi, Akihiko; Kimura, Hiroaki; Miwa, Shinji; Inatani, Hiroyuki; Shimozaki, Shingo; Kato, Takashi; Aoki, Yu; Abe, Kensaku; Taniguchi, Yuta; Tsuchiya, Hiroyuki

    2017-10-01

    To preserve the joint structure in order to maintain good limb function in patients with osteosarcoma, we perform epiphyseal or metaphyseal osteotomy and reconstruction using frozen autografts that contain a tumour treated with liquid nitrogen. There are two methods of using liquid nitrogen-treated autografts: the free-freezing method and the pedicle-freezing method. The purpose of this study was to evaluate the results of intentional joint-preserving reconstruction using the free-freezing method and the pedicle-freezing method in patients with osteosarcoma. Between 2006 and 2014, we performed joint-preserving surgery (12 with the free-freezing method and six with the pedicle freezing method) to treat 18 cases of osteosarcoma (12 distal femurs and six proximal tibias) in patients who had achieved a good response to neoadjuvant chemotherapy. Among the 18 patients (nine boys and nine girls) who had a mean age of 11.6 years, 13 remained continuously disease-free, three showed no evidence of disease, one was alive with the disease, and one died from the disease. Functional outcomes were assessed as excellent in 15 patients and poor in three, with a mean follow-up period of 46.1 months. The mean Musculoskeletal Tumour Society (MSTS) score was 90.2%. Except for one patient who underwent amputation, all patients could bend their knee through >90° flexion, and nine achieved full ROM. All but two patients could walk without aid, and 11 were able to run normally throughout the follow-up period. No intraoperative complications were observed, such as surrounding soft-tissue damage, neurovascular injury, or recurrence from frozen bone. Joint-preserving reconstruction using frozen autografts yielded excellent function in patients with osteosarcoma.

  18. Feasibility of liquid nitrogen cryotherapy after failed radiofrequency ablation for Barrett's esophagus.

    Science.gov (United States)

    Trindade, Arvind J; Inamdar, Sumant; Kothari, Shivangi; Berkowitz, Joshua; McKinley, Matthew; Kaul, Vivek

    2017-09-01

    Radiofrequency ablation (RFA) for dysplastic Barrett's esophagus (BE) is highly effective. RFA failures are infrequent but can be a challenging cohort to manage. There are limited data on the feasibility of liquid nitrogen cryospray ablation for complete eradication of dysplasia (CE-D) and/or intestinal metaplasia (CE-IM) after RFA has failed to achieve CE-IM in patients with dysplastic BE. This is a retrospective review from two medical centers of prospectively maintained databases looking at patients that underwent liquid nitrogen cryospray ablation for refractory intestinal metaplasia post failed RFA. Eighteen patients were identified that met inclusion criteria. Eleven patients had persistent dysplasia and IM following RFA and seven had persistent non-dysplastic IM. More than 80% of patients were male with long-segment BE (median length 8 cm). Seventy two percent of patients with dysplasia achieved CE-D after cryotherapy. Fifty percent (9/18) of all RFA failures achieved CE-IM with cryotherapy. In comparison, RFA has a CE-IM of 78% in a less challenging treatment naïve cohort from a large-scale meta-analysis of 3802 patients. No adverse events occurred in our cohort. Cryospray ablation is feasible and safe for achieving CE-D and CE-IM after RFA failure. The CE-D rates are high with cryotherapy in this population. CE-IM with cryotherapy is acceptable in this difficult-to-treat cohort when compared to CE-IM rates with RFA in dysplastic BE treatment naïve patients (50% vs 78%). © 2017 Japan Gastroenterological Endoscopy Society.

  19. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Yang, Hyung Suk

    2016-12-01

    A new concept of cryogenic cooling system is proposed and investigated for application to long-length HTS cables. One of major obstacles to the cable length of 1 km or longer is the difficulty in circulating liquid nitrogen (LN) along the cables, since the temperature rise and pressure drop of LN flow could be excessively large. This study attempts a breakthrough by integrating the refrigerator with the LN circulation loop in order to eliminate the cryogenic LN pumps, and generate a large LN flow with the power of compressors at ambient temperature. A variety of thermodynamic structures are investigated on standard and modified Claude cycles, where nitrogen is used as refrigerant and the LN circulation loop is included as part of the closed cycle. Four proposed cycles are fully analyzed and optimized with a process simulator (Aspen HYSYS) to evaluate the FOM (figure of merit) and examine the feasibility. The modified dual-pressure cycle cooled with expander stream is recommended for long HTS cables.

  20. [Simultaneous determination of four common nonprotein nitrogen substances in urine by high performance liquid chromatography].

    Science.gov (United States)

    Ma, Yuhua; Huang, Dongqun; Zhang, Rui; Xu, Shiru; Feng, Shun

    2013-11-01

    A high performance liquid chromatographic (HPLC) method was proposed to simultaneously determine four common nonprotein nitrogen substances, including creatine (Cr), creatinine (Cn), uric acid (Ua) and pseudouridine (Pu) in urine. After proteins being removed by acetone precipitation method, freeze drying and redissolving, the urine samples were analyzed by HPLC. Chromatographic separation was performed on a Waters RP18 Column (150 mm x 4.60 mm, 3.5 microm) in gradient elution mode using 10.0 mmol/L KH2PO4 solution (pH 4.78) and acetonitrile as mobile phases at a flow rate of 0.8 mL/min. The samples were detected at 220 nm. Rapid separation was achieved within 7 min. Under the optimized conditions, good linearities of four common nonprotein nitrogen substances were obtained in the range of 0.1-250 mg/L. The detection limits were 9.31 (Cr), 26.19 (Cn), 4.70 (Ua), an 6.30 (Pu) microg/L and the recoveries were in the range of 81%-111% with the relative standar deviations of 0.23%-2.78% (n = 3). The results demonstrate that this method is simple, rapid and accurate with good reproducibility, and can provide early diagnosis and preliminary judgment for type 2 diabetes mellitus (T2DM) patients with renal damage.

  1. Liquid nitrogen for the treatment of actinic keratosis: a longitudinal assessment.

    Science.gov (United States)

    Ianhez, Mayra; Miot, Hélio Amante; Bagatin, Edileia

    2014-08-01

    Cryosurgery with liquid nitrogen is one of the most used treatments for actinic keratosis. We aimed to study the effectiveness of two consecutive sessions of cryosurgery for actinic keratosis and investigate factors associated with its therapeutic success. Hence, we conducted a longitudinal study including 92 patients of both sexes, aged 50-75 years with 5-50 actinic keratosis on the face and forearms, who underwent cryosurgery and treatment with sunscreen SPF 30, at baseline and after 120 days. The lesions were counted in duplicate by the same examiner before the start of treatment and after 120 (N=92) and 300 days (N=33), represented by their medians and quartiles and compared using the generalized linear mixed effects model (negative binomial). Treatment behavior was investigated in relation to sex, age, education, skin type, smoking, sun exposure at work and the use of aspirin, anti-inflammatory and angiotensin-converting enzyme inhibitors. There was a significant reduction in the actinic keratosis count on the face and forearms (pliquid nitrogen reduced the actinic keratosis count. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Straightforward single-calibrant quantification of seized designer drugs by liquid chromatography-chemiluminescence nitrogen detection.

    Science.gov (United States)

    Rasanen, Ilpo; Kyber, Marianne; Szilvay, Ilmari; Rintatalo, Janne; Ojanperä, Ilkka

    2014-04-01

    Sixty-one different psychoactive substances were quantified by liquid chromatography-chemiluminescence nitrogen detection (LC-CLND) in 177 samples, using a single secondary standard (caffeine), in a trial concerning the quantitative purity assessment of drug-related material seized by the police in 2011-2012 and customs in 2011-2013 in Finland. The substances found were predominantly substituted phenethylamines, cathinones, tryptamines and synthetic cannabinoids, which were identified by appropriate methods prior to submitting the samples for quantification by LC-CLND. The equimolarity and expanded uncertainty of measurement by LC-CLND were on average 95% and 13%, respectively, based on 16 different substances. The median (mean) purity of stimulant/hallucinogenic drug samples seized at the border was 92.9% (87.6%) and in the street 82.0% (64.5%). The corresponding figures for powdery synthetic cannabinoid samples seized at the border and in the street were 99.0% (96.8%) and 90.0% (92.2%), respectively. There was generally only one active drug to be quantified in each sample. Seized herbal samples contained 0.15-9.2% of between one and three components. LC-CLND was found to be suitable for quantification of the nitrogen-containing drugs encountered in the study, showing sufficient N-equimolarity for both stimulant/hallucinogenic drugs and synthetic cannabinoids. The technique possesses great potential as a standard technique in forensic laboratories. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Isothermal Vapour-Liquid Equilibria in the Binary and Ternary Systems Composed of 2,2,4-Trimethylpentane, 2-Methyl-1-Propanol, and 4-Methyl-2-Pentanone

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Pavlíček, Jan; Wichterle, Ivan

    2011-01-01

    Roč. 307, č. 1 (2011), s. 66-71 ISSN 0378-3812 R&D Projects: GA ČR GA104/07/0444 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor-liquid equilibrium * experimental data * prediction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  4. Isothermal Vapour-Liquid Equilibria in the Binary and Ternary Systems Composed of 2-Propanol, 3-Methyl-2-Butanone and 2,2,4-Trimethylpentane.

    Czech Academy of Sciences Publication Activity Database

    Psutka, Štěpán; Wichterle, Ivan

    2008-01-01

    Roč. 264, 1-2 (2008) , s. 55-61 ISSN 0378-3812 R&D Projects: GA ČR(CZ) GA104/07/0444 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapour–liquid equilibrium * experimental data * prediction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.699, year: 2008

  5. First 10 kg of naked Germanium detectors in liquid nitrogen installed in the GENIUS-Test-Facility

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Chkvorets, O.; Krivosheina, I.V.; Strecker, H.; Tomei, C.

    2003-01-01

    The first four naked high-purity Germanium detectors were installed successfully in liquid nitrogen in the GENIUS-Test-Facility in the GRAN SASSO Underground Laboratory on May 5, 2003. This is the first time ever that this novel technique aiming at extreme background reduction in search for rare decays is going to be tested underground. First operational parameters are presented

  6. Effect of geographical location, year and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen

    Science.gov (United States)

    Woody plant crop germplasm is often grown in different geographical locations with various climatic conditions. One of the methods of a secure back-up of tree crop is storing winter buds in liquid nitrogen. It was thought that dormant buds from colder climates would have a higher post storage surviv...

  7. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    Science.gov (United States)

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  8. TEMPORARY STORAGE OF BOVINE SEMEN CRYOPRESERVED IN LIQUID NITROGEN ON DRY ICE AND REFREEZING OF FROZEN-THAWED SEMEN.

    Science.gov (United States)

    Abdussamad, A M; Gauly, M; Holtz, W

    2015-01-01

    Two experiments were conducted. The purpose of Experiment 1 was to investigate whether viability of bovine semen stored in liquid nitrogen (-196°C) will be adversely affected by temporary exposure to dry ice (-79°C). It was convincingly shown that post thaw-motility was not affected, regardless whether semen was thawed immediately or after being returned to liquid nitrogen. Shipping or temporary storage on dry ice, thus, is a viable option. In Experiment 2, refreezing of frozen-thawed semen was attempted. The proportion of motile spermatozoa was reduced by a factor of ten to between 6.0 % and 7.4 %, regardless whether thawing occurred directly after removal from liquid nitrogen or after an interim period on dry ice. When semen was refrozen on dry ice before being returned to liquid nitrogen, motility rates were significantly improved (13.0 % to 17.0 %, P<0.05). In both experiments sperm cells that remained motile displayed vigorous forward movement and normal morphological appearance.

  9. Test of Topmetal-II{sup −} in liquid nitrogen for cryogenic temperature TPCs

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Shuguang; Fan, Yan; An, Mangmang; Chen, Chufeng; Huang, Guangming; Liu, Jun; Pei, Hua; Sun, Xiangming, E-mail: xmsun@phy.ccnu.edu.cn; Yang, Ping; Wang, Dong; Xiao, Le; Wang, Zhen; Wang, Kai; Zhou, Wei

    2016-09-11

    Topmetal-II{sup −} is a highly pixelated direct charge sensor that contains a 72×72 pixel array of 83 μm pitch size. The key feature of Topmetal-II{sup −} is that it can directly collect charges via metal nodes of each pixel to form two-dimensional images of charge cloud distributions. Topmetal-II{sup −} was proved to measure charged particles without amplification at room temperature. To measure its performance at cryogenic temperature, a Topmetal-II{sup −} sensor is embedded into a liquid nitrogen dewar. The results presented in this paper show that Topmetal-II{sup −} can also operate well at this low temperature with a noise (ENC) of 12 e{sup −} lower than that at room temperature (13 e{sup −}). From the noise perspective, Topmetal-II{sup −} is a promising candidate for the next generation readout of liquid argon and xenon time projection chamber (TPC) used in experiments searching for neutrinoless double beta decay and dark matter.

  10. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.

    Science.gov (United States)

    Tong, Juan; Chen, Yinguang

    2009-07-01

    In previous publications we reported that by controlling the pH at 10.0 the accumulation of short-chain fatty acids (SCFA) during waste activated sludge (WAS) fermentation was remarkably improved [Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025-2029], but significant ammonium nitrogen (NH(4)-N) and soluble ortho-phosphorus (SOP) were released [Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689]. This paper investigated the simultaneous recovery of NH(4)-N and SOP from WAS alkaline fermentation liquid and the application of the fermentation liquid as an additional carbon source for municipal wastewater biological nitrogen and phosphorus removal. The central composite design (CCD) of the response surface methodology (RSM) was employed to optimize and model the simultaneous NH(4)-N and SOP recovery from WAS alkaline fermentation liquid. Under the optimum conditions, the predicted and experimental recovery efficiency was respectively 73.4 and 75.7% with NH(4)-N, and 82.0 and 83.2% with SOP, which suggested that the developed models described the experiments well. After NH(4)-N and SOP recovery, the alkaline fermentation liquid was added to municipal wastewater, and the influence of volume ratio of fermentation liquid to municipal wastewater (FL/MW) on biological nitrogen and phosphorus removal was investigated. The addition of fermentation liquid didn't significantly affect nitrification. Both SOP and total nitrogen (TN) removal were increased with fermentation liquid, but there was no significant increase at FL/MW greater than 1/35. Compared to the blank test, the removal efficiency of SOP and TN at FL/MW=1/35 was improved from 44.0 to 92.9%, and 63.3 to 83.2%, respectively. The enhancement of phosphorus and nitrogen

  11. Use of highly pressurized liquid nitrogen technology for concrete scabbling application at SICN nuclear facility - 59282

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Vaudey, Claire-Emilie; Damerval, Frederique; Varet, Thierry; Toulemonde, Valerie; Richard, Frederic; Anderson, Gary

    2012-01-01

    The decommissioning process is a quite long and complicated stage who may take few years or decades to be achieved. Generally, this process involves the implementation of a large number of technologies dedicated to cutting and decontamination operations. Based on this finding, the Clean- Up Business Unit of AREVA with Air Liquide decided to start the development of a new technology based on the use of liquid nitrogen (-140 deg. C / 3500 bar). The NitroJet R process is a quite interesting and promising technology. It can be used, as we described in this document, for concrete scabbling operations but also for decontamination and cutting applications. The Clean-Up Business Unit, with its partner Air Liquide, realized a complete study of this technology including several tests and optimizations to be able to handle it in a nuclear environment. Thus, we did: - increase of the reliability of the machine, - nuclearization of the system (including the development of efficient shroud system and efficient HP pipes insulation); - development of a dedicated bearer for automatic configuration; - optimization of parameters for D and D applications. As we already mentioned, NitroJet R technology showed promising perspectives as: - economic: increase of rate processing, decrease in site monitoring costs, - environmental: use of an inert gas, no secondary waste generation, non use of chemical, dry process, - social: less strenuous work, decrease of operator dosimetry compatible with ALARA principle The future for the NitroJet R technology will be its implementation in a real high level activity environment. This process will be used in spring 2012 in AREVA nuclear reprocessing facility of La Hague (France) to accomplish concrete scabbling applications. This test will be the last of a long development period before industrial exploitation. (authors)

  12. A Comparative Study of Liquid Nitrogen Cryotherapy as Monotherapy versus in Combination with Podophyllin in the Treatment of Condyloma Acuminata.

    Science.gov (United States)

    Sharma, Nidhi; Sharma, Sanjeev; Singhal, Chetna

    2017-03-01

    Condyloma Acuminata (CA) is a common viral sexually transmitted disease. Although various treatment modalities are available for treating CA, but none of them can achieve 100% response rate. In a search for better response rate and less recurrence rate, the combination of cytotoxic agent Podophyllin with ablative liquid nitrogen cryotherapy was evaluated over cryotherapy alone. To evaluate the synergistic effect of Podophyllin as a chemotherapeutic adjunct to an ablative therapy of liquid nitrogen cryotherapy versus liquid nitrogen cryotherapy alone in the treatment of CA. Sixty patients with multiple CA were randomly assigned to two groups in the study. Thirty patients in group A received double freeze thaw cycle of 25 seconds of liquid nitrogen cryotherapy. Thirty patients in Group B were subjected to liquid nitrogen cryotherapy in a similar manner followed by application of not more than 0.5 ml of 25% Podophyllin solution. All patients were followed up at 1, 4, 8, 12 and 24 weeks after the treatment to monitor the response to therapy and evaluation for any recurrence. When the number of unresponsive lesions were more than 30% of original lesions at 4 weeks follow-up, then the whole procedure was repeated again. The complete response rate and the recurrence rate in the Group B in our study were comparable to Group A as the difference was statistically insignificant. But the differentiating point was that the similar results were obtained in Group B with an average1.2 sessions per patient in comparison to an average of 1.67 sessions per patient in Group A. Cryotherapy represents a simple, safe and effective regimen for the treatment of multiple CA which in combination with Podophyllin is even more effective as a single session procedure; thereby shortening the treatment regimen.

  13. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  14. Nitrogen-doped carbon capsules via poly(ionic liquid)-based layer-by-layer assembly.

    Science.gov (United States)

    Zhao, Qiang; Fellinger, Tim-Patrick; Antonietti, Markus; Yuan, Jiayin

    2012-07-13

    Layer-by-layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen-doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3-cyanomethyl-1-vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen-doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as-synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m(2) g(-1). Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Characterization of nano-powder grown ultra-thin film p-CuO/n-Si hetero-junctions by employing vapour-liquid-solid method for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, Jenifar; Das, Anindita [Centre for Research in Nanoscience and Nanotechnology (CRNN), Kolkata 700098 (India); Das, Avishek [Department of Electronic Science, University of Calcutta, Kolkata 700009 (India); Saha, Nayan Ranjan [Department of Polymer Science and Technology, University of Calcutta, Kolkata 700009 (India); Karmakar, Anupam [Department of Electronic Science, University of Calcutta, Kolkata 700009 (India); Chattopadhyay, Sanatan, E-mail: scelc@caluniv.ac.in [Department of Electronic Science, University of Calcutta, Kolkata 700009 (India)

    2016-08-01

    In this work, the CuO nano-powder has been synthesized by employing chemical bath deposition technique for its subsequent use to grow ultrathin film (20 nm) of p-CuO on n-Si substrate for the fabrication of p-CuO/n-Si hetero-junction diodes. The thin CuO film has been grown by employing vapour-liquid-solid method. The crystalline structure and chemical phase of the film are characterized by employing field-emission scanning electron microscopy and X-ray diffraction studies. Chemical stoichiometry of the film has been confirmed by using energy dispersive X-ray spectroscopy. The potential for photovoltaic applications of such films is investigated by measuring the junction current-voltage characteristics and by extracting the relevant parameters such as open circuit photo-generated voltage, short circuit current density, fill-factor and energy conversion efficiency. - Highlights: • Synthesis of CuO nano-powder by CBD method • Growth of ultra-thin film of CuO by employing VLS method for the first time • Physical and electrical characterization of such films for photovoltaic applications • Estimation of energy conversion efficiency of the p-CuO/n-Si p-n junction solar cell.

  16. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN2) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN2 cooling with centrifugal pumps, requiring 200,000 liters of LN2 to cool-down and consuming 180,000 liters per day of LN2 in steady operation. The LN2 system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 70,000 liters to cool-down and less than 90,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  17. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA s Space Environment Simulation Laboratory s (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC s request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  18. Principle of a liquid nitrogen irradiation device and its realization for use in a swimming-pool type reactor

    International Nuclear Information System (INIS)

    Bochirol, L.; Doulat, J.; Weil, L.

    1961-01-01

    The problem of pile irradiation of samples immersed in liquid nitrogen has been solved with total elimination of explosion hazards and high reliability (no moving parts). The principle of the device is that of a double bath: one of high purity nitrogen cools the samples at the level of the core; a second of commercial nitrogen is located above the first one, outside the high radiation field, and works as a continuous condenser for the pure nitrogen, the flow-back of which is provided simply by gravity. The apparatus described in detail here has been designed for a swimming-pool pile. It was so designed as to provide absolute protection against radiations and to allow the irradiated samples to be easily removed in the cold condition. This apparatus has been in operation for several months. In a fast flux greater than 10 13 neutrons/cm 2 .s and a γ-flux of the order of 10 8 roentgens/h, the consumption of liquid nitrogen is of the order of 100 liters a day. (author) [fr

  19. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  20. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    International Nuclear Information System (INIS)

    Cruz, P; Shoemake, E D; Adam, P; Leachman, J

    2015-01-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength. (paper)

  1. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint Petersburg 196641 (Russian Federation)

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  2. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    International Nuclear Information System (INIS)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-01

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented

  3. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  4. Angiogenic effects of cryosurgery with liquid nitrogen on the normal skin of rats, through morphometric study.

    Science.gov (United States)

    Pimentel, Camila Bianco; Moraes, Aparecida Machado de; Cintra, Maria Letícia

    2014-01-01

    Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).

  5. Liquid nitrogen pretreatment of eucalyptus sawdust and rice hull for enhanced enzymatic saccharification.

    Science.gov (United States)

    Castoldi, Rafael; Correa, Vanesa G; de Morais, Gutierrez Rodrigues; de Souza, Cristina G M; Bracht, Adelar; Peralta, Rosely A; Peralta-Muniz Moreira, Regina F; Peralta, Rosane M

    2017-01-01

    In this work, liquid nitrogen was used for the first time in the pretreatment of plant biomasses for purposes of enzymatic saccharification. After treatment (cryocrushing), the initial rates of the enzymatic hydrolysis of eucalyptus sawdust and rice hull were increased more than ten-fold. Cryocrushing did not modify significantly the contents of cellulose, hemicellulose and lignin in both eucalyptus sawdust and rice hulls. However, substantial disorganization of the lignocellulosic materials in consequence of the pretreatment could be observed by electron microscopy. Cryocrushing was highly efficient in improving the saccharification of the holocellulose component of the plant biomasses (from 4.3% to 54.1% for eucalyptus sawdust and from 3.9% to 40.6% for rice hull). It is important to emphasize that it consists in a simple operation with low requirements of water and chemicals, no corrosion, no release of products such as soluble phenolics, furfural and hydroxymethylfurfural and no waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    Science.gov (United States)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  7. Two-phase flow instability in a liquid nitrogen heat exchanger, 2

    International Nuclear Information System (INIS)

    Kondoh, Tetsuya; Fukuda, Kenji; Hasegawa, Shu; Yamada, Hidetomo; Ryu, Hiroyuki.

    1988-01-01

    Experimental and analytical investigations are conducted on flow instability in a vertically installed liquid nitrogen shell and tube type heat exchanger. The experiments are carried out by making use of water steam as a secondary fluid and it is observed that flow instability occurs in the range of small inlet flow rate. Mode analysis of the flow instability oscillation reveals that there exists a fundamental mode and its higher harmonics up to the fourth. As the period of the fundamental mode is nearly equal to the transit time for a fluid particle to travel through the heated tube, it is suggested that this flow instability is of the density wave type. It is shown that the amount of exchanged heat, as well as the pressure drop, decrease when unstable flow oscillation occurs. An analysis of the static heat transfer and pressure drop characteristics can simulate the experimental results in the stable region. Linear stability analysis is also carried out to yield the stability map as well as the period of flow oscillation, which proved to agree with the experimental data qualitatively. (author)

  8. Arcing time analysis of liquid nitrogen with respect to electrode materials

    Science.gov (United States)

    Junaid, Muhammad; Yang, Kun; Ge, Hanming; Wang, Jianhua

    2018-03-01

    Unlike sulphur hexafluoride (SF6), liquid nitrogen (LN2) is cost effective, environment friendly and cryogenic dielectric. It has astounding insulating properties with the potential to decrease power loss in switchgear applications due to its remarkably low temperatures. The basic research is however a necessity to observe the performance of LN2 subjected to high luminance arcs. So far, there are no findings that refer to the arcing time inside the LN2 environment. The objective of this work was to investigate the arcing times in LN2 and compare the results with open air conditions using different electrode materials. Experiments were conducted on different DC voltages and their arcing times were measured. Three different kinds of electrode materials, namely: pure copper (Cu), stainless used steel (SUS) and aluminium alloy (Al 6061) were tested under 1 atmospheric pressure. The results revealed that LN2 extinguishes arc in almost half the amount of time required by the open air insulation. With Al 6061 has the shortest arcing time, whilst Cu, the second best choice and SUS places last in the evaluation. It was encapsulated from the findings that LN2 is a better choice than air insulation in terms of arc quenching and a better alternative to SF6 when environment is the priority.

  9. Utilization of urea/molasses liquid feed as a major source of nitrogen and energy for lactating cows

    International Nuclear Information System (INIS)

    Ranjhan, S.K.; Krishna Mohan, D.V.G.; Pathak, N.N.

    1976-01-01

    Experiments were conducted in which urea/molasses liquid feed along with a limited amount of intact protein and cereal forage was fed to lactating cows, and compared with another group receiving conventional concentrate and roughage-based rations. Voluntary consumption of liquid feed by cows was satisfactory. There was no significant difference in the milk yield between the two groups. The higher consumption of metabolizable energy and digestible crude protein by experimental cows from liquid feed was not reflected in their milk yields or body weights. Various other parameters such as digestibilities of nutrients, efficiency of energy and nitrogen utilization for milk production and N-balance have been presented in cows fed urea/molasses liquid diets and conventional diets. (author)

  10. Removal of Basic Nitrogen Compounds from Fuel Oil with [Hnmp]H2PO4 Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2017-04-01

    Full Text Available Ionic liquid (IL N-methyl pyrrolidone dihydrogen phosphate ([Hnmp]H2PO4 was synthesized and its structure was characterized with FT-IR spectroscopy and 1H NMR. The denitrogenation performance of the ionic liquid was investigated using Fushun shale diesel oil that included 0.52 w% basic nitrogen as feedstock. Experiment results showed that under the operating conditions with temperature of 30 °C, 1:7 (w/w IL: oil, reaction time of 20 min, and settling time of 2 h, the ionic liquid exhibited good denitrogenation performance achieving 86.27 % basic N-extraction efficiency and the yield of refined diesel oil can reach more than 90 %. In addition, the basic N-removal efficiency can still reach 54 % during four recycles of the ionic liquid.

  11. Mandibular Reconstruction by Using a Liquid Nitrogen-Treated Autograft in a Dog with an Oral Tumor.

    Science.gov (United States)

    Okamura, Yasuhiko; Heishima, Kazuki; Motegi, Tomoki; Sasaki, Jun; Goryo, Masanobu; Nishida, Hideji; Tsuchiya, Hiroyuki; Katayama, Masaaki; Uzuka, Yuji

    A 10 yr old intact female German shepherd dog presented with a large peripheral odontogenic fibroma and malignant melanoma on her lower jaw. The tumor was resected with a unilateral subtotal rostral hemimandibulectomy. After the mandible was removed, it was devitalized intraoperatively by freezing it in liquid nitrogen. It was subsequently reimplanted. New bone tissue formed in the gap between the frozen bone and the host bone. The regenerated bone contained osteocytes, osteoblasts, and blood vessels. The cosmetic appearance of the dog was preserved. The dog had normal mastication. The malignant melanoma recurred rostral of the left canine tooth at 159 days after the reconstruction surgery. A subtotal hemimandibulectomy was consequently performed. This is the first reported case of mandibular reconstruction using a liquid nitrogen-treated autograft in a dog with oral tumors.

  12. Isobaric (vapour + liquid) equilibria of binary systems containing butyl acetate for the separation of methoxy aromatic compounds (anisole and guaiacol) from biomass fast pyrolysis oil

    International Nuclear Information System (INIS)

    Li, Hao; Xia, Shuqian; Wu, Meng; Ma, Peisheng

    2015-01-01

    Highlights: • The two binary systems related to pyrolysis oil have been reported. • The VLE data were correlated well by the activity coefficient models. • The UNIFAC (Do) model was applied to predict the experimental VLE data. • The interaction parameter (ACOCH 3 –CH 3 COO) was obtained and proved to be reliable. • The obtained interaction parameters by NRTL model were used in the separation process design for the ternary mixture. - Abstract: Developing value-added chemicals from pyrolysis oil has been gaining increasing attention. Thus effective separation and purification of the pyrolysis oil are important and the phase equilibrium data are essential for the design and simulation of the processes. In this study, isobaric vapour–liquid equilibrium (VLE) for the two binary mixtures (butyl acetate + anisole) and (butyl acetate + guaiacol) have been determined at 101.33 kPa, a knowledge of which is essential for the separation of methoxy aromatic compounds (anisole and guaiacol) from biomass fast pyrolysis oil using butyl acetate as a solvent. All the experimental values were confirmed to be thermodynamically consistent using the van Ness method. The NRTL, UNIQUAC, and Wilson activity coefficient models were applied to regress the experimental values. The calculated results agreed well with the measured values. Furthermore, the results were calculated by the UNIFAC (Do) method (modified UNIFAC model) in which aromatic methoxyl is treated as a group (ACOCH 3 ). The new interaction parameter (ACOCH 3 –CH 3 COO) was obtained and proved to be reliable. Based on the preceding results, a feasible separation process for the ternary mixture (butyl acetate + anisole + guaiacol) has been designed to obtain the required products

  13. A planar, solid-state amperometric sensor for nitrogen dioxide, employing an ionic liquid electrolyte contained in a polymeric matrix

    Czech Academy of Sciences Publication Activity Database

    Nádherná, M.; Opekar, F.; Reiter, Jakub; Stulík, K.

    2012-01-01

    Roč. 161, č. 1 (2012), s. 811-817 ISSN 0925-4005 R&D Projects: GA MŠk LC523; GA AV ČR KJB200320901 Institutional research plan: CEZ:AV0Z40320502 Keywords : Amperometry * Gas sensor * Solid-state sensor * Planar sensor * Ionic liquid * Solid polymer electrolyte * Gold minigrid electrode * Nitrogen dioxide Subject RIV: CG - Electrochemistry Impact factor: 3.535, year: 2012

  14. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    Science.gov (United States)

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  15. Feasibility analysis of gas turbine inlet air cooling by means of liquid nitrogen evaporation for IGCC power augmentation

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Vaccari, Anna; Venturini, Mauro

    2015-01-01

    Integrated Gasification Combined Cycles (IGCC) are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as the oxidant, an Air Separation Unit (ASU) is also part of the plant. In this paper, a system for power augmentation in IGCC is evaluated. The system is based on gas turbine inlet air cooling by means of liquid nitrogen spray. In fact, nitrogen is a product of the ASU, but is not always exploited. In the proposed plant, the nitrogen is first liquefied to be used for inlet air cooling or stored for later use. This system is not characterized by the limits of water evaporative cooling systems (the lower temperature is limited by air saturation) and refrigeration cooling (the effectiveness is limited by the pressure drop in the heat exchanger). A thermodynamic model of the system is built by using a commercial code for energy conversion system simulation. A sensitivity analysis on the main parameters is presented. Finally the model is used to study the capabilities of the system by imposing the real temperature profiles of different sites for a whole year and by comparing to traditional inlet air cooling strategies. - Highlights: • Gas turbine inlet air cooling by means of liquid nitrogen spray. • Humidity condensation may form a fog which provides further power augmentation. • High peak and off peak electric energy price ratios make the system profitable

  16. Modelling of vapour explosion in a stratified geometry

    International Nuclear Information System (INIS)

    Brayer, Claude

    1994-01-01

    A vapour explosion is the explosive vaporisation of a volatile liquid in contact with another hotter liquid. Such a violent vaporisation requires an intimate mixing and a fine fragmentation of both liquids. Based on a synthesis of published experimental results, the author of this research thesis reports the development of a new physical model which describes the explosion. In this model, the explosion propagation is due to the propagation of the pressure wave associated with this this explosion, all along the vapour film which initially separates both liquids. The author takes the presence of water in the liquid initially located over the film into account. This presence of vapour explains experimental propagation rates. Another consequence, when the pressure wave passes, is an acceleration of liquids at different rates below and above the film. The author considers that a mixture layer then forms from the point of disappearance of the film, between both liquids, and that fragmentation is due to the turbulence in this mixture layer. This fragmentation model is then introduced into an Euler thermodynamic, three-dimensional and multi-constituents code of calculation, MC3D, to study the influence of fragmentation on thermal exchanges between the various constituents on the volatile liquid vaporisation [fr

  17. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    Science.gov (United States)

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  18. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    Science.gov (United States)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  19. Histomorphometric assessment of bone necrosis produced by two cryosurgery protocols using liquid nitrogen: an experimental study on rat femurs.

    Science.gov (United States)

    Costa, Fábio Wildson Gurgel; Brito, Gerly Anne de Castro; Pessoa, Rosana Maria Andrade; Studart-Soares, Eduardo Costa

    2011-01-01

    The aim of this study was to evaluate the effects of liquid nitrogen cryosurgery on the femoral diaphysis of rats. The femoral diaphyses of 42 Wistar rats were exposed to three local and sequential applications of liquid nitrogen for 1 or 2 min, intercalated with periods of 5 min of passive thawing. The animals were sacrificed after 1, 2, 4 and 12 weeks and the specimens obtained were processed and analyzed histomorphometrically. The depth and extent of peak bone necrosis were 124.509 µm and 2087.094 µm for the 1-min protocol, respectively, and 436.424 µm and 12046.426 µm for the 2-min protocol. Peak necrosis was observed in the second experimental week with both cryotherapy protocols. The present results indicate that the 2-min protocol produced more marked bone necrosis than the 1-min protocol. Although our results cannot be entirely extrapolated to clinical practice, they contribute to the understanding of the behavior of bone tissue submitted to different cycles of liquid nitrogen freezing and may serve as a basis for new studies.

  20. The potential of Mythimna sequax Franclemont eggs for the production of Trichogramma spp. after cryopreservation in liquid nitrogen

    Directory of Open Access Journals (Sweden)

    Magda Fernanda Paixão

    Full Text Available ABSTRACT The cryopreservation of noctuid eggs in liquid nitrogen has proved be a promising tool in the mass production of Trichogramma, however studies into this technique have only just begun. This study evaluated the response of different densities of the female of Trichogramma pretiosum Riley to the parasitism of Mythimna sequax eggs stored and not stored in liquid nitrogen, and the performance of females reared only in cryopreserved eggs. The study evaluated the influence of the number of T. pretiosum females (4, 8 and 12 released to parasitise 40 M. sequax eggs, stored and not stored for 15 days in liquid nitrogen, as well as the performance of T. pretiosum females reared in eggs stored for three generations and females reared in non-stored eggs. Parasitism by T. pretiosum in stored eggs was 84%, twice the value obtained in previous studies. The emergence of parasitoids was greater than 95% in both experiments. The performance of females raised in stored eggs did not differ from that of females raised in non-stored eggs. The data show that the technique of cryopreservation of M. sequax eggs may be a viable alternative in the mass production of T. pretiosum.

  1. Clinical results of primary malignant musculoskeletal tumor treated by wide resection and recycling autograft reconstruction using liquid nitrogen.

    Science.gov (United States)

    Paholpak, Permsak; Sirichativapee, Winai; Wisanuyotin, Taweechok; Kosuwon, Weerachai; Jeeravipoolvarn, Polasak

    2015-06-01

    To evaluate the clinical results of primary malignant musculoskeletal tumors treated with wide resection and recycling autograft reconstruction using liquid nitrogen. We reviewed 12 patients who had a primary malignant bone and soft tissue tumor treated by wide resection and recycling autograft reconstruction using liquid nitrogen between March 2006 and March 2013. The results were judged by recurrence, functional status and complications. Functional status was assessed according to the Musculoskeletal Tumor Society Score (MSTSS). Clinical failure was defined as need for reoperation in order to change the type of reconstruction or to amputate, and the presence of local recurrence. The most common tumor was osteosarcoma (eight cases) followed by Ewing's sarcoma (two cases). The tibia was the most frequently involved skeletal site (six cases) followed by the femur (three cases). The median follow-up period was 32 months. In 12 patients, 7 were still alive without recurrence. There were 3 clinical failures: 1 local recurrence and 2 graft complications at 28, 51 and 20 months after reconstruction, respectively. The main complication was infection (three cases). All osteotomy sites were radiographic unions, and the union time was 8.2 ± 2.7 months. The mean ± SD MSTSS score was 79% ± 11%; excellent functional results were achieved in seven patients. Recycling autograft reconstruction using liquid nitrogen had favorable clinical outcomes in terms of functional status and local recurrence. This reconstruction method, therefore, represents a reasonable alternative for limb salvage surgery. © 2014 Wiley Publishing Asia Pty Ltd.

  2. The influence of cavitation on the flow characteristics of liquid nitrogen through spray nozzles: A CFD study

    Science.gov (United States)

    Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu

    2017-09-01

    Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.

  3. Continuous monitoring of the composition of liquid Pb-17Li eutectic using electrical resistivity methods

    International Nuclear Information System (INIS)

    Hubberstey, P.; Sample, T.; Barker, M.G.

    1991-01-01

    The composition of liquid Pb-17Li alloys has been continously determined, using an electrical resistivity monitor, during their interaction with nitrogen, oxygen, hydrogen and water vapour. The operation of the monitor depends on the fact that the resistivity of liquid Pb-Li alloys is dependent on their composition. Accurate resistivity-composition isotherms have been derived from resistivity-temperature data for 15 Pb-Li alloys (0 Li -8 Ω m (mol% Li) -1 at 725 K) is such that a change of 0.05 mol% Li in the alloy composition can be measured. The addition of oxygen and water vapour resulted in a decrease in the resistivity of the liquid alloy. Neither nitrogen nor hydrogen had any effect. The observed changes were shown to be consistent with Li 2 O formation. (orig.)

  4. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    International Nuclear Information System (INIS)

    Hamilton, D.C.

    1986-01-01

    Measurements are reported for the electrical conductivity of liquid nitrogen (N 2 ), oxygen (O 2 ) and benzene (C 6 H 6 ), and Hugoniot equation of state of liquid 1-butene (C 4 H 8 ) under shock compressed conditions. The conductivity data span 7 x 10 -4 to 7 x 10 1 Ω -1 cm -1 over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs

  5. Automatic filling of liquid nitrogen traps auxiliary safety devices of a pumping unit; Alimentation automatique des pieges a azote liquide securites annexes d'un groupe de pompage

    Energy Technology Data Exchange (ETDEWEB)

    Chatel, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The liquid nitrogen traps in our laboratories are generally filled at fixed time intervals, the supply being cut when the liquid flowing through the overflow pipe acts on a lever to which is fixed a small cup fitted with a hole which allows the water of condensation to escape. This system is reliable. After a certain time however, the escape hole blocks up, water accumulates and the lever arm no longer works properly. Furthermore the duration of any cuts in the current, is added to the fixed time intervals, and in this case there can be a lack of liquid nitrogen for several hours after the current has been restored. The device described here avoids these problems. A stainless steel tube containing a copper wire passes into the trap and is immersed in the nitrogen which boils at its tip. A mercury manometer with concentric reservoirs, or an oil manometer, acting on two micro switches through a floater, records the pressure corresponding to the difference in level and controls the filling operation. If there is a lack of nitrogen, a valve can be closed by means of a falling weight, or a diffusion pump can be cut off; one time switch and at least two relays are required. One single relay can be used to control, the supply of several similar traps placed in series. [French] Dans nos laboratoires, les pieges a azote liquide sont generalement remplis a intervalles fixes jusqu'a ce que le trop-plein d'azote actionne une bascule dont le recipient presente un petit trou par ou s'en va l'eau de condensation. Ce systeme est sur. A la longue, pourtant, le trou d'ecoulement se bouche, l'eau s'accumule et la bascule cesse de fonctionner. De plus, la duree des pannes de courant s'ajoute aux 'intervalles fixes' de sorte que l'azote peut manquer plusieurs heures apres le retour du courant. Le dispositif suivant evite ces ennuis. Un tube d'acier inoxydable contenant un fil de cuivre penetre dans le piege et plonge dans l'azote qui bout a son extremite. Un manometre a mercure a cuves

  6. Liquid methane gelled with methanol and water reduces rate of nitrogen absorption

    Science.gov (United States)

    Vanderwall, E. M.

    1972-01-01

    Dilution of gelant vapor with inert carrier gas accomplishes gelation. Mixture is injected through heated tube and orifice into liquid methane for immediate condensation within bulk of liquid. Direct dispersion of particles in liquid avoids condensation on walls of vessel and eliminates additional mixing.

  7. The Application of Liquid Nitrogen Spray Cryotherapy in Treatment of Bronchial Stenosis.

    Science.gov (United States)

    Janke, Kelly J; Abbas, Abbas El-Sayed; Ambur, Vishnu; Yu, Daohai

    Spray cryotherapy (SCT), the application of liquid nitrogen in a noncontact form, has been demonstrated to have efficacy in treating various types of pathologic lesions of the airway when used as an adjunct with bronchoscopy. The purpose of the study was to evaluate the results of the use of bronchoscopic SCT on the airway in a single institution. We performed a retrospective review of data collected on all patients who underwent SCT to re-establish or improve airway patency in an 11-month period. Patients were classified based on the nature of their disease into benign or malignant. Demographic data, change in luminal patency, and clinical outcomes were recorded. The percent of stenosis was divided into grades according to the following classification: 1, ≤25%; 2, 26% to 50%; 3, 51% to 75%; and 4, ≥76%. We defined successful completion of treatment as obtaining a final patency of grade 1. Twenty-two patients met inclusion criteria, with 45.5% (10 patients) having benign stenosis and 54.5% (12 patients) malignant. At initial bronchoscopic evaluation, the median grade of stenosis was 4 for malignant disease and 3.5 for benign disease. The median final posttreatment grade of stenosis was 2 for malignant disease and 1 for benign. The median improvement in grade of stenosis after treatment was 2 for both malignant and benign causes (Wilcoxon test, P = 0.92). Final patency of grade 1 was achieved in 42% of malignant stenosis and 80% of benign. Overall, 86.4% of patients had an improvement in grade of stenosis after treatment. The rate of morbidity was 4.5% (1/22) of all patients. The median change in grade after treatment was 2 grades of improvement for both the benign and malignant groups. These results provide evidence that the use of SCT is equally efficacious for both types of stenosis with an expectation of overall improvement in luminal patency, offering a safe and effective method of achieving airway patency in a minimally invasive fashion. This study

  8. Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

    International Nuclear Information System (INIS)

    Tomita, M; Suzuki, K; Fukumoto, Y; Ishihara, A; Akasaka, T; Kobayashi, Y; Maeda, A; Takayasu, M

    2015-01-01

    A 2 m length Twisted Stacked-Tape Cable (TSTC) conductor which was fabricated by 32-YBCO-tapes (4 mm width) with a 200 mm twist pitch was investigated at various temperatures near 77 K in subcooled- and pressurized-liquid nitrogen. The critical current of the TSTC cable which was 1.45 kA at 77 K measured from 64 K to 85 K by controlling the equilibrium vapor pressure of nitrogen bath and were varied from 3.65 kA at 64 K to 0.42 kA at 85 K. The temperature dependence of cables’ critical current agrees with that of the 4 mm width YBCO tape. These results are encouraging for applications of a compact Twisted Stacked-Tape Cable application in railway systems. (paper)

  9. Physicochemical processes in embryonic plant tissue during the transition to the state of cold anabiosis and storage at liquid nitrogen temperature

    Science.gov (United States)

    Khodko, A. T.; Lysak, Yu. S.

    2017-10-01

    Critical opalescence phenomenon was observed in the cytoplasm of garlic embryonic tissue—meristem—upon cooling in liquid nitrogen vapor, indicating liquid-liquid phase transition in the system. It was established that cells of the meristem tissue survive the cooling-thawing cycle. We suggest that the transition of meristem tissue to the state of anabiosis is mainly due to a drastic slowing of the diffusion in the cytoplasm caused by the passage of the solution through the critical point, followed by the formation of a dispersed system—a highly concentrated emulsion—as a result of a liquid-liquid phase transition. This macrophase separation is characteristic of polymer-solvent systems. We established the regime of cooling down to liquid nitrogen temperature and subsequent thawing in the cryopreservation cycle for the biological object under study, which ensures the preservation of tissue viability.

  10. Control of methanol vapours in a biotrickling filter: performance analysis and experimental determination of partition coefficient.

    Science.gov (United States)

    Avalos Ramirez, Antonio; Peter Jones, J; Heitz, Michéle

    2009-02-01

    Methanol vapours were treated in a biotrickling filter (BTF) packed with inert polypropylene spheres. The effects of the nitrogen concentration in the nutrient solution, the empty bed residence time (EBRT) and the methanol inlet concentration, on the BTF performance, were all examined. The elimination capacity (EC), the biomass and the carbon dioxide production rates were all increased with the rising of the nitrogen concentration and the EBRT. The EC also rose with increasing methanol inlet load (IL) when the methanol inlet concentration and the EBRT were varied, from 0.3 to 37.0 g m(-3), and from 20 to 65 s, respectively. The BTF reached its maximum EC level of 2160 g m(-3) h(-1) when it was operated at an IL level of 3700 g m(-3) h(-1). The input methanol was removed through two mechanisms: biodegradation and absorption in the liquid phase. The partition coefficient for the methanol in the BTF was determined at five EBRTs and along the packed bed. It generally followed the Henry model, having an average value of 2.64 x 10(-4)[mol L(-1)](gas)/[mol L(-1)](liquid).

  11. First 10 kg of naked germanium detectors installed in liquid nitrogen in GENIUS Test-Facility in GRAN-SASSO

    Energy Technology Data Exchange (ETDEWEB)

    Klapdor-Kleingrothaus, H.V. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2004-07-01

    The GENIUS Test Facility has come into operation in Gran Sasso on May 5, 2003 with its first ten kg of naked Ge detectors in liquid nitrogen. This is the first time that this novel technique for extreme background reduction in search for rare decays is applied under the background conditions of an underground laboratory. GENIUS-TF has the potential to check the DAMA evidence for cold dark matter by modulation, and possibly, to improve the accuracy of the recently observed first signal for neutrinoless double beta decay. (orig.)

  12. First 10 kg of naked germanium detectors installed in liquid nitrogen in GENIUS Test-Facility in GRAN-SASSO

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2004-01-01

    The GENIUS Test Facility has come into operation in Gran Sasso on May 5, 2003 with its first ten kg of naked Ge detectors in liquid nitrogen. This is the first time that this novel technique for extreme background reduction in search for rare decays is applied under the background conditions of an underground laboratory. GENIUS-TF has the potential to check the DAMA evidence for cold dark matter by modulation, and possibly, to improve the accuracy of the recently observed first signal for neutrinoless double beta decay. (orig.)

  13. A Simple Method to Measure the Thermal contraction Percentage of a Solid Between Room and Liquid Nitrogen Temperatures

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2000-01-01

    We described how to build a simple device for measuring, with a reasonable good accuracy, the thermal contraction of a flat sample between room and liquid nitrogen temperatures. The contraction percentage of the sample is determined by the dimensional comparison of two images taken through the bottom of a transparent quartz tray. Instead of a photo or video camera, a high-resolution flatbed scanner is utilized to avoid the correction of perspectives. The so-called Grueneisen approximation are applied to evaluate the contraction percentages for intermediate temperatures. (Author) 28 refs

  14. Lap shear strength of selected adhesives (epoxy, varnish, B-stage glass cloth) in liquid nitrogen and at room temperature

    International Nuclear Information System (INIS)

    Froelich, K.J.; Fitzpatrick, C.M.

    1976-12-01

    The adhesives included several epoxy resins, a varnish, and a B-stage glass cloth (a partially cured resin in a fiberglass cloth matrix). Several parameters critical to bond strength were varied: adhesive and adherend differences, surface preparation, coupling agents, glass cloth, epoxy thickness, fillers, and bonding pressure and temperature. The highest lap shear strengths were obtained with the B-shear glass cloth at both liquid nitrogen and room temperatures with values of approximately 20 MPa (3000 psi) and approximately 25.5 MPa (3700 psi) respectively

  15. Photo- and electro-luminescence of rare earth doped ZnO electroluminors at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Bhushan, S.; Kaza, B.R.; Pandey, A.N.

    1981-01-01

    Photo (PL) and electroluminescent (EL) spectra of some rare earth (La, Gd, Er or Dy) doped ZnO electroluminors have been investigated at liquid nitrogen temperature (LNT) and compared with their corresponding results at room temperature (RT). In addition to three bands observed at RT, one more band on the higher wavelength side appears in EL spectra. Spectral shift with the exciting intensity at LNT supports the donor-acceptor (DA) model in which the rare earths form the donor levels. From the temperature dependent studies of PL and EL brightness, the EL phenomenon is found to be more susceptible to traps. (author)

  16. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Science.gov (United States)

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  17. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R [Institute for Plasma Research, Bhat, Gandhinagar - 382 428, Gujarat (India)], E-mail: firose@ipr.res.in

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN{sub 2} panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN{sub 2} panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN{sub 2} panels during sniffer test and pressure drop test using helium gas.

  18. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    International Nuclear Information System (INIS)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R

    2008-01-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN 2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN 2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN 2 panels during sniffer test and pressure drop test using helium gas

  19. Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapor above the surface of the liquid nitrogen.

    Science.gov (United States)

    Madeddu, M; Mosca, F; Abdel Sayed, A; Zaniboni, L; Mangiagalli, M G; Colombo, E; Cerolini, S

    2016-08-01

    The aim of the present trial was to study the effect of different freezing rates on the survival of cryopreserved rooster semen packaged in straws. Slow and fast freezing rates were obtained keeping straws at different distances in the vapor above the surface of the nitrogen during freezing. Adult Lohmann roosters (n=27) were used. Two experiments were conducted. In Experiment 1, semen was packaged in straws and frozen comparing the distances of 1, 3 and 5cm in nitrogen vapor above the surface of the liquid nitrogen. In Experiment 2, the distances of 3, 7 and 10cm above the surfaces of the liquid nitrogen were compared. Sperm viability, motility and progressive motility and the kinetic variables were assessed in fresh and cryopreserved semen samples. The recovery rates after freezing/thawing were also calculated. In Experiment 1, there were no significant differences among treatments for all semen quality variables. In Experiment 2, the percentage of viable (46%) and motile (22%) sperm in cryopreserved semen was greater when semen was placed 3cm compared with 7 and 10cm in the vapor above the surface of the liquid nitrogen. The recovery rate of progressive motile sperm after thawing was also greater when semen was stored 3cm in the vapor above the surface of the liquid nitrogen. More rapid freezing rates are required to improve the survival of rooster sperm after cryopreservation and a range of distances from 1 to 5cm in nitrogen vapor above the surface of the liquid nitrogen is recommended for optimal sperm viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Survival and death of seeds during liquid nitrogen storage: a case study on seeds with short lifespans.

    Science.gov (United States)

    Ballesteros, D; Pence, V C

    The low temperature of liquid nitrogen is assumed to stop ageing and preserve viability indefinitely, however there are few validating data sets. The use of seeds to test these assumptions is important because other cryopreserved systems lack quantitative measures of viability to allow comparisons among timed points. To evaluate survival of a collection of seeds with short lifespans stored 12-20 years in liquid nitrogen. Seeds from 11 species (26 accessions) were removed from cryostorage and evaluated for germination and normal growth. Germination of Plantago cordata and Betula spp. seeds did not decrease significantly during cryostorage. However, Populus deltoides and most Salix spp. accessions showed a significant decrease in germination, with further loss observed when P. deltoides seedlings were followed to the young plant stage. Seeds of initial low quality showed greater deterioration during cryostorage. Cryostorage maintained viability of Salix and Populus seeds longer than other temperatures. However, ageing was not completely stopped and seed longevity was shorter than that predicted for many other species. A high initial seed quality is important in order to obtain the maximum benefit of cryostorage.

  2. IMPACT OF LIQUID NITROGEN EXPOSURE ON SELECTED BIOCHEMICAL AND STRUCTURAL PARAMETERS OF HYDRATED Phaseolus vulgaris L. SEEDS.

    Science.gov (United States)

    Cejas, Inaudis; Rivas, Maribel; Nápoles, Lelurlys; Marrero, Pedro; Yabor, Lourdes; Aragón, Carlos; Pérez, Aurora; Engelmann, Florent; Martínez-Montero, Marcos Edel; Lorenzo, José Carlos

    2015-01-01

    It is well known that cryopreserving seeds with high water content is detrimental to survival, but biochemical and structural parameters of cryostored hydrated common bean seeds have not been published. The objective of this work was to study the effect of liquid nitrogen exposure on selected biochemical and structural parameters of hydrated Phaseolus vulgaris seeds. We cryopreserved seeds at various moisture contents and evaluated: germination; electrolyte leakage; fresh seed weight; levels of chlorophyll pigments, malondialdehyde, other aldehydes, phenolics and proteins; thickness of cotyledon epidermis, parenchyma, and starch storage parenchyma; and radicle and plumule lengths. Germination was totally inhibited when seeds were immersed in water for 50 min (moisture content of 38%, FW basis) before cryopreservation. The combined effects of seed water imbibition and cryostorage decreased phenolics (free, cell wall-linked, total), chlorophyll a and protein content. By contrast, electrolyte leakage and levels of chlorophyll b and other aldehydes increased as a result of the combination of these two experimental factors. These were the most significant effects observed during exposure of humid seed to liquid nitrogen. Further studies are still required to clarify the molecular events taking place in plant cells during cryostorage.

  3. Identification of multiply charged proteins and amino acid clusters by liquid nitrogen assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen

    2012-08-15

    The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. DETERMINATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT AT THE OUTER SURFACE OF A CRYOVIAL BEING PLUNGED INTO LIQUID NITROGEN.

    Science.gov (United States)

    Wang, T; Zhao, G; Tang, H Y; Jiang, Z D

    2015-01-01

    Cell survival upon cryopreservation is affected by the cooling rate. However, it is difficult to model the heat transfer process or to predict the cooling curve of a cryoprotective agent (CPA) solution due to the uncertainty of its convective heat transfer coefficient (h). To measure the h and to better understand the heat transfer process of cryovials filled with CPA solution being plunged in liquid nitrogen. The temperatures at three locations of the CPA solution in a cryovial were measured. Different h values were selected after the cooling process was modeled as natural convection heat transfer, the film boiling and the nucleate boiling, respectively. And the temperatures of the selected points are simulated based on the selected h values. h was determined when the simulated temperature best fitted the experimental temperature. When the experimental results were best fitted, according to natural convection heat transfer model, h(1) = 120 W/(m(2)·K) while due to film boiling and nucleate boiling regimes h(f) = 5 W/(m(2)·K) followed by h(n) = 245 W/(m(2)·K). These values were verified by the differential cooling rates at the three locations of a cryovial. The heat transfer process during cooling in liquid nitrogen is better modeled as film boiling followed by nucleate boiling.

  5. Low cyclic fatigue behavior of 32 % Mn nonmagnetic steel and the effects of C and N in liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Shibata, Koji; Fujita, Toshio

    1987-01-01

    The effects of testing temperature, C, and N on the low cyclic deformation behavior of 32 % Mn non-magnetic steels have been investigated in ambient air, liquid nitrogen, and liquid helium. It was observed that several problems exsisted in fatigue tests in liquid helium due to special phenomena occurred at very low temperatures. The steel containing 0.3 % N, which showed large fatigue softening at room temperature, increased the trend toward the softening at low temperatures. The steel containing 0.14 % C and 0.13 % N also increased the tendency of softening with the temperature decrease, while it was not so large at room temperature. Dislocation configuration in steels showing the softening tended to be mainly planne at very low temperatures same as at room temperature. The steel with a very low content of C and N, the 0.3 % C steel, and the 0.12 % N steel did not show the softening at low temperatures, but showed only fatigue hardening. The hardening of the former two steels increased remarkably as the temperature decreased. This phenomenon was attributable to ε martensite induced by the cyclic deformation. The fatigue softening behavior observed at low temperatures could qualitatively be explained with the hypothesis that the softening occurred through the breakdown of solid solution strengthening due to IS complexes during the cyclic deformation. (author)

  6. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors

    Science.gov (United States)

    Chen, Aibing; Li, Yunqian; Liu, Lei; Yu, Yifeng; Xia, Kechan; Wang, Yuying; Li, Shuhui

    2017-01-01

    We have demonstrated a facile and controllable synthesis of monodispersed nitrogen-doped hollow mesoporous carbon spheres (N-HMCSs) using resorcinol/formaldehyde resin as a carbon precursor, tetraethyl orthosilicate as a structure-assistant agent, ionic liquids (ILs) as soft template, partial carbon sources, and nitrogen sources. The sizes and the architectures including hollow and yolk-shell of resultant carbon spheres can be efficiently controlled through the adjustment of the content of ILs. Alkyl chain length of the ILs also has an important effect on the formation of N-HMCSs. With proper alkyl chain length and content of ILs, the resultant N-HMCSs show monodispersed hollow spheres with high surface areas (up to 1158 m2 g-1), large pore volumes (up to 1.70 cm3 g-1), and uniform mesopore size (5.0 nm). Combining the hollow mesoporous structure, high porosity, large surface area, and nitrogen functionality, the as-synthesized N-HMCSs have good supercapacitor performance with good capacitance (up to 159 F g-1) and favorable capacitance retention (88% capacitive retention after 5000 cycles).

  7. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.

    Science.gov (United States)

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu; Li, Rui; Jia, Jiqiang

    2013-01-01

    A circulating fluidized bed reactor was used for pyrolyzing sewage sludge with a high ash content to produce liquids rich in heterocyclic nitrogenated compounds. GC/MS and FTIR analyses showed that heterocyclic nitrogenated compounds and hydrocarbons made up 38.5-61.21% and 2.24-17.48% of the pyrolysis liquids, respectively. A fluidized gas velocity of 1.13 m/s, a sludge feed rate of 10.78 kg/h and a particle size of 1-2mm promoted heterocyclic nitrogenated compound production. Utilizing heterocyclic nitrogenated compounds as chemical feedstock could be a way for offsetting the cost of sewage sludge treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A case of death of the driver due to environmental asphyxia by liquid nitrogen leakage in the cabin of the car during a road accident

    Science.gov (United States)

    Raczkowska, Zuzanna; Samojłowicz, Dorota

    2013-01-01

    Nitrogen causes environmental asphyxia by displacing oxygen in the air leading to death. The study presents a case of a death of a driver death who was transporting flasks with liquid nitrogen that depressurized during an accident. The mechanism and cause of death were determined based on the result of the autopsy and histopathologic examination. The authors emphasize the relevance of accident scene inspection during establishing the cause of death in similar cases.

  9. Vapour Pressure of Diethyl Phthalate

    Czech Academy of Sciences Publication Activity Database

    Roháč, V.; Růžička, K.; Růžička, V.; Zaitsau, D. H.; Kabo, G. J.; Diky, V.; Aim, Karel

    2004-01-01

    Roč. 36, č. 11 (2004), s. 929-937 ISSN 0021-9614 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour pressure * diethyl phthalate * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.144, year: 2004

  10. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures

    Science.gov (United States)

    Harish Kruthiventi, S. S.; Venkatarathnam, G.

    2017-10-01

    Capillary tube expansion devices are used extensively in small closed cycle J-T refrigerators operating with refrigerant mixtures due to its low cost and the absence of any moving parts. It is possible for J-T refrigerators operating with mixtures that the velocity of refrigerant mixture at capillary tube outlet reaches a value where it equals the speed of sound at certain conditions. The variation of the speed of sound of nitrogen-hydrocarbon mixtures used in J-T refrigerators has been studied in two phase (vapour-liquid) and three-phase (Vapour-liquid-liquid) region as a function of temperature and pressure in this work. Also the conditions under which choking occurs in practical J-T refrigerators is investigated.

  11. Isothermal (vapour + liquid) equilibrium for the binary {l_brace}1,1,2,2-tetrafluoroethane (R134) + propane (R290){r_brace} and {l_brace}1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2010-09-15

    (Vapour + liquid) equilibrium (VLE) data for the binary systems of {l_brace}1,1,2,2-tetrafluoroethane (R134) + propane (R290){r_brace} and {l_brace}1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a){r_brace} were measured with a recirculation method at the temperatures ranging from (263.15 to 278.15) K and (268.15 to 288.15) K, respectively. All of the data were correlated by the Peng-Robinson (PR) equation of state (EoS) with the Huron-Vidal (HV) mixing rules utilizing the non-random two-liquid (NRTL) activity coefficient model. Good agreement can be found between the experimental data and the correlated results. Azeotropic behaviour can be found at the measured temperature ranges for these two mixtures.

  12. Density profile of nitrogen in cylindrical pores of MCM-41

    Science.gov (United States)

    Soper, Alan K.; Bowron, Daniel T.

    2017-09-01

    A straightforward approach using radiation scattering (X-ray or neutron) combined with atomistic modelling is used to accurately assess the pore dimensions in the porous silica, MCM-41. The method is used to calculate the density profile of nitrogen absorbed in this material at a variety of fractional pressures, p/p0, where p0 is the saturated vapour pressure, up to p/p0 = 0.36 at T = 87 K in the present instance. At this pressure two distinct layers of liquid nitrogen occur on the silica surface, with a relatively sharp gas-liquid interface. It is suggested surface tension effects at this interface strongly influence the growth of further layers.

  13. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.

    1986-10-08

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  14. Outcome of bone recycling using liquid nitrogen as bone reconstruction procedure in malignant and recurrent benign aggressive bone tumour of distal tibia: A report of four cases.

    Science.gov (United States)

    Gede, Eka Wiratnaya I; Ida Ayu, Arrisna Artha; Setiawan I Gn, Yudhi; Aryana Ign, Wien; I Ketut, Suyasa; I Ketut, Siki Kawiyana; Putu, Astawa

    2017-01-01

    Amputation still considered as primary choice of malignancy treatment in distal tibia. Bone recycling with liquid nitrogen for reconstruction following resection of malignant bone tumours offers many advantages. We presented four patients with osteosarcoma, Ewing sarcoma, adamantinoma and recurrent giant cell tumour over distal tibia. All of the patients underwent wide excision and bone recycling using liquid nitrogen as bone reconstruction. The mean functional Musculoskeletal Tumor Society (MSTS) score was 75% with no infection and local recurrent. The reconstruction provides good local control and functional outcome.

  15. Claims in vapour device (e-cigarette) regulation: A Narrative Policy Framework analysis.

    Science.gov (United States)

    O'Leary, Renée; Borland, Ron; Stockwell, Tim; MacDonald, Marjorie

    2017-06-01

    The electronic cigarette or e-cigarette (vapour device) is a consumer product undergoing rapid growth, and governments have been adopting regulations on the sale of the devices and their nicotine liquids. Competing claims about vapour devices have ignited a contentious debate in the public health community. What claims have been taken up in the state arena, and how have they possibly influenced regulatory outcomes? This study utilized Narrative Policy Framework to analyze the claims made about vapour devices in legislation recommendation reports from Queensland Australia, Canada, and the European Union, and the 2016 deeming rule legislation from the United States, and examined the claims and the regulatory outcomes in these jurisdictions. The vast majority of claims in the policy documents represented vapour devices as a threat: an unsafe product harming the health of vapour device users, a gateway product promoting youth tobacco uptake, and a quasi-tobacco product impeding tobacco control. The opportunity for vapour devices to promote cessation or reduce exposure to toxins was very rarely presented, and these positive claims were not discussed at all in two of the four documents studied. The dominant claims of vapour devices as a public health threat have supported regulations that have limited their potential as a harm reduction strategy. Future policy debates should evaluate the opportunities for vapour devices to decrease the health and social burdens of the tobacco epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of nitrogen on corrosion of stainless steels in a liquid sodium environment

    International Nuclear Information System (INIS)

    Suzuki, Tadashi; Mutoh, Isao

    1990-01-01

    The corrosion of ferritic stainless steels using sodium at 650degC in a maximum isothermal region contained in a non-isothermal sodium loop constructed of a Type 316 stainless steel has been examined. Also, previous results on corrosion of austenitic stainless steels in sodium at 700degC in the same loop have been reproduced. The selective dissolution and absorption of nickel, the selective dissolution of chromium, and the resultant increase in iron in the surface of stainless steels in the loop mainly determine the corrosion loss of the stainless steel specimens. The austenitic steels hardly decarburize, but denitride. The ferritic steels decarburize and denitride and the denitriding is more remarkable than the decarburizing. The vanadium and niobium, carbide and nitride formers, in the ferritic steels inhibit the decarburizing to some extent, but barely inhibit the denitriding. The nitrogen in the steels rapidly diffuses to the grain boundaries, and rapidly dissolves into sodium, which will lower surface energy of the steels to enhance the dissolution of other elements. The dissolved N in sodium would then be transported to the free surface of the sodium adjacent to the argon cover gas of sodium and easily be released into the cover gas. This mechanism would cause the rapid dissolution of nitrogen into sodium and the enhancement of the corrosion rate of the steels containing nitrogen. (orig.)

  17. Effect of ionic liquids, 1-butyl-3-methyl imidazolium bromide and 1-hexyl-3-methyl imidazolium bromide on the vapourLiquid equilibria of the aqueous D-fructose solutions at 298.15 K and atmospheric pressure using isopiestic method

    International Nuclear Information System (INIS)

    Zafarani-Moattar, Mohammed Taghi; Shekaari, Hemayat; Mazaher Haji Agha, Elnaz

    2017-01-01

    Highlights: • VLE data for aqueous fructose + [BMIm]Br or [HMIm]Br systems were measured. • Performances of different local composition models were tested in fitting VLE data. • Molal activity coefficients were calculated. • The results were discussed on basis of water, IL and sugar interactions. - Abstract: In this study, water activity measurements have been carried out by the isopiestic method for the systems (D-fructose + 1-butyl-3-methyl imidazolium bromide + H 2 O) and (D-fructose + 1-hexyl-3-methyl imidazolium bromide + H 2 O) at 298.15 K and atmospheric pressure. Vapour pressures and osmotic coefficients of the solutions have been determined from the experimental measured water activity results. The experimental water activity values were satisfactorily correlated with segment-based local composition models of the Wilson, NRTL, modified NRTL, NRF-NRTL and UNIQUAC. Then, using the parameters obtained from these models, the unsymmetrical molal activity coefficients of the D-fructose and ionic liquids in the binary and D-fructose in ternary aqueous solutions have been calculated. Furthermore, the activity coefficients of D-fructose in binary and ternary solutions were used to calculate the Gibbs energy of transfer for D-fructose from water to aqueous ionic liquid solutions. An application of McMillan-Mayer theory of solutions through virial expansion of transfer Gibbs energy was made to get pair and triplet interaction parameters and salting constant values. From the sign and magnitude of these parameters and salting constants and also from the magnitude of activity coefficients some information about solute-solute and solute-solvent interactions are obtained.

  18. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of killer impurities on laser-excited barium-doped ZnS phosphors at liquid nitrogen temperature

    Science.gov (United States)

    Kumar, Sunil; Verma, N. K.; Bhatti, H. S.

    Zinc sulphide phosphors doped with Ba, as well as killer impurities of Fe, Co and Ni, having variable concentrations, were synthesized; and using an ultraviolet laser as the excitation source, decay-curve analyses were done. Various strong emissions in these phosphors were detected and the corresponding excited-state life times were measured at liquid nitrogen temperature. Studies were carried out to see the effect of killer impurities on the phosphorescence excited-state life times. Excited-state life times were found to decrease appreciably (microsecond to nanosecond) with the addition of quenchers. These studies are quite useful and find applications in areas such as optical memories, sensors, luminescent screens, laser-beam detection and alignment, color displays, printing, etc.

  20. Histopathological analysis of the therapeutic response to cryotherapy with liquid nitrogen in patients with multiple actinic keratosis.

    Science.gov (United States)

    Oliveira, Marina Câmara de; Trevisan, Flávia; Pinto, Clovis Antônio Lopes; Xavier, Célia Antônia; Pinto, Jaqueline Campoi Calvo Lopes

    2015-01-01

    Actinic keratoses are premalignant lesions of the skin caused by excessive sun exposure. Lesions may become mainly squamous cell carcinoma. Cryotherapy with liquid nitrogen is one of the main treatments. In order to evaluate the response of actinic keratosis to cryotherapy by histopathology, two lesions were selected in each of 14 patients with multiple actinic keratoses. In one lesion a biopsy was performed and in the other lesion a biopsy was performed after cryotherapy. Subsequently, both biopsies were compared histologically. Of the thirteen patients who completed the study, the best results were obtained in lesions undergoing cryotherapy concerning the atypia of keratinocytes, epithelial thickness and corneal layer and lymphocytic infiltrate. Despite the small number of patients, it was concluded that, if performed correctly, cryotherapy has high efficacy in the treatment of actinic keratoses.

  1. [In vitro activity of human bone marrow cells after cryopreservation in liquid nitrogen for 21 - 25 years].

    Science.gov (United States)

    Huang, You-Zhang; Shen, Jian-Liang; Gong, Li-Zhong; Zheng, Pei-Hao; Liu, Yi; Yin, Wen-Jie; Cen, Jian; Wang, Ning; Zhao, De-Feng

    2010-02-01

    The aim of this study was to investigate the best method to preserve human bone marrow cells and the effectiveness of long term cryopreservation at -80 degrees C. The human bone marrow cells in 20 samples were firstly frozen by a programmed freezer or -80 degrees C refrigerator, and then were preserved in liquid nitrogen with DMSO-AuP (10% dimethylsulfonamide, 10% autologous plasma) or DMSO-HES-HuA (5% dimethylsulfonamide, 6% hydroxyethyl starch, 4% human serum albumin) as cryoprotectant for 21 to 25 years. They were thawed in 38 degrees C. The cell sample frozen in -80 degrees C refrigerator was frozen at a low frozen speed of 1 degrees C/min which was the same as the programmed freezer before -30 degrees C. Before detection the bone marrow cells were taken from liquid nitrogen and were thawed in 38 degrees C, then the suspension of bone marrow cells was prepared for detection. The cell morphology and recovery rate of erythrocytes, nucleocytes and platelets; the recovery rate of hematopoietic stem progenitors cells, as well as mesenchymal stem cells were determined. The results showed that the protective effectiveness of DMSO-HES-HuA was better than DMSO-AuP. The mature erythrocytes were destroyed lightly [(3.5 +/- 1.5)% versus (12.6 +/- 4.8)%], the hemolysis rate was lower [(3.3 +/- 1.6)% versus (23.1 +/- 5.1)%]. Osmotic fragility of erythrocytes in the former was not changed, but was dropped in the latter. The recovery rates of red cell, platelet, granulocyte-macrophage colony forming units and long term culture-initiating cells were higher in the former than that in the latter [(96.1 +/- 1.8)%, (70.0 +/- 9.5)%, (49.2 +/- 10.9)%, (54.2 +/- 13.8)% versus (76.3 +/- 5.6)%, (52.7 +/- 8.1)%, (43.5 +/- 12.3)%, (47.2 +/- 13.6)% respectively]. With each kind of cryoprotectant or frozen method, the frozen MSC could keep the original growth properties. With the same cryoprotectant and different frozen method, the cryopreservative effectiveness was not different. The

  2. The cryoablation of lung tissue using liquid nitrogen in gel and in the ex vivo pig lung.

    Science.gov (United States)

    Nomori, Hiroaki; Yamazaki, Ikuo; Kondo, Toshiya; Kanno, Masaya

    2017-02-01

    To examine the efficiency of cryoablation using liquid nitrogen in lung tissue, we measured the size and temperature distribution of the frozen area (iceball) in gel and in the ex vivo pig lungs. Cryoprobes with diameters of 2.4 and 3.4 mm (2.4D and 3.4D, respectively) were used. Three temperature sensors were positioned at the surface of the cryoprobe and at distances of 0.5 and 1.5 cm from the cryoprobe. The ex vivo pig lungs were perfused with 37 °C saline and inflated using ventilator to simulate in vivo lung conditions. In gel, the 2.4D and 3.4D probes made iceballs of 3.9 ± 0.1 and 4.8 ± 0.3 cm in diameter, respectively, and the temperature at 1.5 cm from those probes reached -32 ± 8 and -53 ± 5 °C, respectively. In the pig lung, the 2.4D and 3.4D probes made iceballs of 5.2 ± 0.1 and 5.5 ± 0.4 cm in diameter, respectively, and the temperature at 1.5 cm from these probes reached -49 ± 5 and -58 ± 3 °C, respectively. Liquid nitrogen cryoablation using both 2.4D and 3.4D probes made iceballs that were of sufficient size, and effective temperatures were reached in both gel and the ex vivo pig lung.

  3. Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips.

    Science.gov (United States)

    Gross, Briana L; Henk, Adam D; Bonnart, Remi; Volk, Gayle M

    2017-03-01

    Transcripts related to abiotic stress, oxidation, and wounding were differentially expressed in Arabidopsis shoot tips in response to cryoprotectant and liquid nitrogen treatment. Cryopreservation methods have been implemented in genebanks as a strategy to back-up plant genetic resource collections that are vegetatively propagated. Cryopreservation is frequently performed using vitrification methods, whereby shoot tips are treated with cryoprotectant solutions, such as Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3); these solutions remove and/or replace freezable water within the meristem cells. We used the model system Arabidopsis thaliana to identify suites of transcripts that are up- or downregulated in response to PVS2 and PVS3 treatment and liquid nitrogen (LN) exposure. Our results suggest that there are many changes in transcript expression in shoot tips as a result of cryoprotection and that these changes exceed the number detected as a result of LN exposure. In total, 180 transcripts showed significant changes in expression level unique to treatment with either the cryoprotectant or cryopreservation followed by recovery. Of these 180 transcripts, 67 were related to stress, defense, wounding, lipid, carbohydrate, abscisic acid, oxidation, temperature (cold/heat), or osmoregulation. The responses of five transcripts were confirmed using qPCR methods. The transcripts responding to PVS2 + LN suggest an oxidative response to this treatment, whereas the PVS3 + LN treatment invoked a more general metabolic response. This work shows that the choice of cryoprotectant can have a major influence on the patterns of transcript expression, presumably due to the level and extent of stress experienced by the shoot tip. As a result, there may be divergent responses of study systems to PVS2 and PVS3 treatments.

  4. Hydrophobic recovery of repeatedly plasma-treated silicone rubber .2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen

    NARCIS (Netherlands)

    Everaert, EP; VanderMei, HC; Busscher, HJ

    1996-01-01

    Surfaces of medical grade silicone rubber (Q7-4750, Dow Coming) were modified by repeated (six times) RF plasma treatments using various discharge gases: oxygen, argon, carbon dioxide, and ammonia. The treated samples were stored for a period of 3 months in ambient air, water, or liquid nitrogen.

  5. Liquid nitrogen or phenolization for giant cell tumor of bone?: a comparative cohort study of various standard treatments at two tertiary referral centers

    NARCIS (Netherlands)

    Heijden, L. van der; Geest, I.C.M. van der; Schreuder, H.W.B.; Sande, M.A.B. van der; Dijkstra, P.D.

    2014-01-01

    BACKGROUND: The rate of recurrence of giant cell tumor of bone is decreased by use of adjuvant treatments such as phenol, liquid nitrogen, or polymethylmethacrylate (PMMA) during curettage. We assessed recurrence and complication rates and functional outcome after curettage with use of phenol and

  6. Liquid nitrogen enhancement of partially annealed fission tracks in glass; and reply

    International Nuclear Information System (INIS)

    Wagner, G.A.; Carpenter, B.S.; Pilione, L.J.; Gold, D.P.

    1977-01-01

    Pilione and Gold (Nature 262: 773 (1976)) stated that it was possible to reveal partially annealed fission tracks in glass by immersion in liquid N 2 , and that it was possible to increase the total number of etchable tracks by increasing the immersion time. The present authors attempted to duplicate the work of the former authors using the same glass. They found no significant change in the number of etchable tracks after immersion in liquid N 2 , and they concluded that the latter has no effect on annealed tracks in glass. Any observed enhancement of partially annealed tracks is probably a surface effect and has no effect on the interior matrix of the glass. A reply by Pilione and Gold is appended. (U.K.)

  7. Use of liquid nitrogen during storage in a cell and tissue bank: contamination risk and effect on the detectability of potential viral contaminants.

    Science.gov (United States)

    Mirabet, Vicente; Alvarez, Manuel; Solves, Pilar; Ocete, Dolores; Gimeno, Concepción

    2012-04-01

    Cryopreservation is widely used for banking cells and tissues intended for transplantation. Liquid nitrogen provides a very stable ultra-low temperature environment. Thus, it is used for longterm storage. Unlike the exhaustive microbiological monitoring of the environmental conditions during tissue processing, storage is not usually considered as a critical point of potential contamination risk in professional standards for cell and tissue banking. We have analysed the presence of microbial agents inside our nitrogen tanks. We have mainly detected environmental and water-borne bacteria and fungi. In addition, we have studied the effect of liquid nitrogen exposure on virus detectability. Only differences for hepatitis C virus RNA were observed. Measures for contamination risk reduction during storage must be mandatory in cell and tissue banking. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Nitrogen injection in stagnant liquid metal. Eulerian-Eulerian and VOF calculations by fluent

    International Nuclear Information System (INIS)

    Pena, A.; Esteban, G.A.

    2004-01-01

    High power spallation sources are devices that can be very useful in different fields, as medicine, material science, and also in the Accelerator Driven Systems (ADS). This devices use Heavy Liquid Metals (HLM) as the spallation target. Furthermore, HLM are thought to be the coolant of those big energy sources produced by the process. Fast breeder reactors, advanced nuclear reactors, as well as the future designs of fusion reactors, also consider HLM as targets or coolants. Gas injection in liquid metal flows allows the enhancement of this coolant circulation. The difference in densities between the gas and the liquid metal is a big challenge for the multiphase models implemented in the Computational Fluid Dynamics (CFD) codes. Also the changing shape of the bubbles involves extra difficulties in the calculations. A N 2 flow in stagnant Lead-Bismuth eutectic (Pb-Bi), experiment available at Forschungszentrum Rossendorf e.V (FZR) in Germany, was used in one of the work-packages of the ASCHLIM project (EU contract number FIKW-CT-2001-80121). In this paper, calculations made by the UPV/EHU (University of the Basque Country) show measuring data compared with numerical results using the CFD (Computational Fluid Dynamics) code FLUENT and two multiphase models: the Eulerian-Eulerian and the Volume of Fluid (VOF). The interpretation of the experimental resulting velocities was difficult, because some parameters were not known, bubble trajectory and bubble shape, for example, as direct optical methods cannot be used, like it is done with water experiments. (author)

  9. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)]. E-mail: fgarcias@imp.mx; Eliosa-Jimenez, Gaudencio [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Silva-Oliver, Guadalupe [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Godinez-Silva, Armando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)

    2007-06-15

    In this work, new (vapor + liquid) equilibrium data for the (N{sub 2} + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N{sub 2} + n-heptane) system.

  10. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Fernando; Eliosa-Jimenez, Gaudencio; Silva-Oliver, Guadalupe; Godinez-Silva, Armando

    2007-01-01

    In this work, new (vapor + liquid) equilibrium data for the (N 2 + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N 2 + n-heptane) system

  11. Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen

    Science.gov (United States)

    Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey

    2017-02-01

    Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.

  12. Experimental study on heat transfer with condensation of vapors of pure nitrogen tetroxide with nitrogen oxide additions on a bundle of horizontal tubes

    International Nuclear Information System (INIS)

    Batishcheva, T.M.; Derov, B.T.; Kolykhan, L.I.; Pulyaev, V.F.

    1977-01-01

    The results of an experimental investigation of heat transfer during condensation of pure N 2 O 4 vapours and with NO admixtures on the outside surface of a bundle of horizontal tubes are considered. The tests with pure N 2 O 4 have been performed at pressures between 0.3-1.0 MPa in the range of thermal loads 22-121 kW/m 2 , temperature heads of 5-33 grades with complete condensation and evaporation. The content of admixtures boiling at high temperatures do not exceed 0.8%. A concentration of noncondensing nitrogen oxide in a gas phase have changed in the range of 3-27%. It is shown, that a concentration of noncondensible NO doesn't result in a considerable decrease of the heat transfer intensity as well as in the case of condensation of vapour-liquid mixtures. The generalized criterion relations are presented

  13. LC-MS/MS analysis of uncommon paracetamol metabolites derived through in vitro polymerization and nitration reactions in liquid nitrogen.

    Science.gov (United States)

    Trettin, Arne; Jordan, Jens; Tsikas, Dimitrios

    2014-09-01

    Paracetamol (acetaminophen, APAP) is a commonly used analgesic drug. Known paracetamol metabolites include the glucuronide, sulfate and mercapturate. N-Acetyl-benzoquinonimine (NAPQI) is considered the toxic intermediate metabolite of paracetamol. In vitro and in vivo studies indicate that paracetamol is also metabolized to additional poorly characterized metabolites. For example, metabolomic studies in urine samples of APAP-treated mice revealed metabolites such as APAP-sulfate-APAP and APAP-S-S-APAP in addition to the classical phase II metabolites. Here, we report on the development and application of LC-MS and LC-MS/MS approaches to study reactions of unlabelled and (2)H-labelled APAP with unlabelled and (15)N-labelled nitrite in aqueous phosphate buffers (pH 7.4) upon their immersion into liquid nitrogen (-196°C). In mechanistic studies, these reactions were also studied in aqueous buffer prepared in (18)O-labelled water. LC-MS and LC-MS/MS analyses were performed on a reverse-phase material (C18) using gradient elution (2mM ammonium acetate/acetonitrile), in positive and negative electrospray mode. We identified a series of APAP metabolites including di-, tri- and tetra-APAP, mono- and di-nitro-APAP and nitric ester of di-APAP. Our study indicates that nitrite induces oxidation, i.e., polymerization and nitration of APAP, when buffered APAP/nitrite solutions are immersed into liquid nitrogen. These reactions are specific for nitrite with respect to nitrate and do not proceed via intermediate formation of NAPQI. Potassium ions and physiological saline but not thiols inhibit nitrite- and shock-freeze-induced reactions of paracetamol. The underlying mechanism likely involves in situ formation of NO2 radicals from nitrite secondary to profound pH reduction (down to pH 1) and disproportionation. Polymeric paracetamol species can be analyzed as pentafluorobenzyl derivatives by LC-MS but not by GC-MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    Science.gov (United States)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  15. Investigation of transient chill down phenomena in tubes using liquid nitrogen

    Science.gov (United States)

    Shukla, A. K.; Sridharan, Arunkumar; Atrey, M. D.

    2017-12-01

    Chill down of cryogenic transfer lines is a crucial part of cryogenic propulsion as chill down ensures transfer of single phase fluid to the storage tanks of cryogenic engines. It also ensures single phase liquid flow at the start of the engine. Chill down time depends on several parameters such as length of the pipe, pipe diameter, orientation, mass flux etc. To understand the effect of these parameters, experiments are carried out in a set up designed and fabricated at Indian Institute of Technology Bombay using tubes of two different diameters. Experiments are conducted at different inlet pressures and mass flow rate values to understand their effect. Two different pipe sizes are taken to study the effect of variation in diameter on chill down time and quantity of cryogen required. Different orientations are taken to understand their effect on the chill down time, heat transfer coefficient and critical heat flux for the same inlet pressure and mass flux. Pipe inner wall temperature, heat transfer coefficient for different boiling regimes and critical heat flux are calculated based on measured outer surface temperature history for each case. A one dimensional energy conservation equation is solved for transient chill down process considering constant mass flux and inlet pressure to predict the chill down time. Temperature variation during chill down obtained from the numerical simulations are compared with the measured temperature history.

  16. Research on Flow Pattern of Nitrogen Tetroxide Liquid in the Different Bend Radii Pipes

    Directory of Open Access Journals (Sweden)

    Hao Pengfei

    2016-01-01

    Full Text Available N2O4 is a common rocket fuel propellants, it has the characteristics of low boiling point and a large viscosity , the friction between viscosity fluids and pipeline dramatic leads to a huge sticky heat, therefore, the vaporization phenomenon often occurs in the pipeline, particularly in bending of the viscous heat. For this reason, the research of the different bending radii vaporized fluid conditions for optimizing the piping and precise the filling flow is significant. In this paper, the MIXTURE mixed flow model is used to achieve the numerical simulation the pipelines filling of the three different bending radii, it still have not solved the mass transfer problem between the different phases. Therefore, the custom functions are needed to define the mass transfer problems from the liquid phase to the vapor phase. Though the contrast among the volume phase cloud of six different elbow models , we have the following conclusions: 1 In the entire pipeline transportation, the distribution vaporization rate from the inlet pipe to the outlet pipe follows the distribution of the first increasing and then decreasing, the gas rates of the elbow area is highest; 2Analyzing the sticky heat for different bend radii, we have the conclusion that the lowest bending vaporization the of the optimal radius is 0.45m. The above conclusions are drawn in good agreement with the actual law, can effectively guide the engineering practice, have important significance for the future design for the optimization of the fuel pipeline transportation.

  17. Thermodynamic models for vapor-liquid equilibria of nitrogen + oxygen + carbon dioxide at low temperatures

    Science.gov (United States)

    Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans

    2009-02-01

    For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.

  18. Thermal Performance of Low Layer Density Multilayer Insu1ation Using Liquid Nitrogen

    Science.gov (United States)

    Johnson, Wesley L.; Fesmire, James E.

    2011-01-01

    In order to support long duration cryogenic propellant storage, the Cryogenic Fluid Management (CFM) Project of the Exploration Technology Development Program (ETDP) is investigating the long duration storage propertie$ of liquid methane on the lunar surface. The Methane Lunar Surface Thermal Control (MLSTC) testing is using a tank of the approximate dimensions of the Altair ascent tanks inside of a vacuum chamber to simulate the environment in low earth orbit and on the lunar surface. The thermal performance testing of multilayer insulation (MLI) coupons that are fabricated identically to the tank applied insulation is necessary to understand the performance of the blankets and to be able to predict the performance of the insulation prior to testing. This coupon testing was completed in Cryostat-100 at the Cryogenics Test Laboratory. The results showed the properties of the insulation as a function of layer density, number of layers, and warm boundary temperature. These results aid in the understanding of the performance parameters o fMLI and help to complete the body of literature on the topic.

  19. Development and test of an axial flux type PM synchronous motor with liquid nitrogen cooled HTS armature windings

    International Nuclear Information System (INIS)

    Sugimoto, H; Morishita, T; Tsuda, T; Takeda, T; Togawa, H; Oota, T; Ohmatsu, K; Yoshida, S

    2008-01-01

    We developed an axial gap permanent magnet type superconducting synchronous motor cooled by liquid nitrogen (LN 2 ). The motor includes 8 poles and 6 armature windings. The armature windings are made from BSCCO wire operated at the temperature level between 66K∼70K. The design of the rated output is 400kW at 250rpm. Because HTS wires produce AC loss, there are few motors developed with a superconducting armature winding. In a large capacity motor, HTS windings need to be connected in parallel way. However, the parallel connection causes different current flowing to each HTS winding. To solve this problem, we connected a current distributor to the motor. As a result, not only the current difference can be suppressed, but also the current of each winding can be adjusted freely. The low frequency and less flux penetrating HTS wire because of current distributor contribute to low AC loss. This motor is an axial gap rotating-field one, the cooling parts are fixed. This directly leads to simple cooling system. The motor is also brushless. This paper presents the structure, the analysis of the motor and the tests

  20. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    Science.gov (United States)

    2011-01-01

    Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls. PMID:22088094

  1. Processing Adipose-Rich Mohs Samples: A Comparative Study of Effectiveness of Pretreatment With Liquid Nitrogen Versus Flash Freezing Spray.

    Science.gov (United States)

    Reserva, Jeave; Kozel, Zachary; Krol, Cindy; Speiser, Jodi; Adams, William; Tung, Rebecca

    2017-11-01

    Processing of adipose-rich Mohs micrographic surgery (MMS) specimens poses challenges that may preclude complete margin evaluation. In this setting, the value of additional freezing methods using various cooling agents has not been previously investigated. The aim of this study is to compare the frozen section quality of high-adipose Mohs specimens processed without additional cooling treatments versus those pretreated with 1,1,1,2-tetrafluoroethane (TFE) or liquid nitrogen (LN2). A set of 3 sections were each taken from 24 adipose-rich Mohs micrographic surgery specimens. A section from each set was subjected to either no additional cooling treatment (control), two 10-second pulse sprays of 1,1,1,2-tetrafluoroethane, or three 2-second pulse sprays of LN2. After staining, 2 blinded raters evaluated slide quality based on the presence or absence of the following features: margin completeness, nuclear clearing, epidermal or adipose folding, holes, or venetian blind-like artifacts. Pretreatment of the sample with LN2 produced a significantly (P < 0.001) greater number of high-quality slides (19/24) compared to pretreatment with 1,1,1,2-tetrafluoroethane (1/24) and no additional treatment (0/24). The adjunctive use of LN2 spray before tissue embedding circumvents the challenges of processing "thick" (high-adipose) specimens and facilitates the production of high-quality frozen section slides during Mohs micrographic surgery.

  2. Efficacy of liquid nitrogen cryotherapy for Barrett's esophagus after endoscopic resection of intramucosal cancer: A multicenter study.

    Science.gov (United States)

    Trindade, Arvind J; Pleskow, Douglas K; Sengupta, Neil; Kothari, Shivangi; Inamdar, Sumant; Berkowitz, Joshua; Kaul, Vivek

    2018-02-01

    Liquid nitrogen cryotherapy (LNC) allows increased depth of ablation compared with radiofrequency ablation in Barrett's esophagus (BE). Expert centers may use LNC over radiofrequency ablation to ablate Barrett's esophagus after endoscopic resection of intramucosal cancer (IMCA). The aim of our study was to (1) evaluate the safety and efficacy of LNC ablation in patients with BE and IMCA and (2) to evaluate the progression to invasive disease despite therapy. This was a multicenter, retrospective study of consecutive patients with BE who received LNC following endoscopic mucosal resection (EMR) of IMCA. The outcomes evaluated were complete eradication of dysplasia and intestinal metaplasia and development of invasive cancer during follow up. The follow-up period was at least 1 year from initial LNC. Twenty-seven patients were identified. The median Prague score was C3M5 (range C0M1-C14M14). After EMR+LNC, the median Prague score was C0M1 (range C0M0-C9M10); 22/27 patients (82%) achieved complete eradication of dysplasia after cryotherapy, and 19/27 patients (70%) achieved complete eradication of intestinal metaplasia. One out of 27 patients (4%) developed invasive cancer (disease beyond IMCA) over the study period. Cryotherapy is an effective endoscopic tool for eradication of BE dysplasia after EMR for IMCA. Development of invasive cancer is low for this high-risk group. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  3. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen.

    Science.gov (United States)

    Givens, Robert M; Mesner, Larry D; Hamlin, Joyce L; Buck, Michael J; Huberman, Joel A

    2011-11-16

    Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.

  4. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    Directory of Open Access Journals (Sweden)

    Givens Robert M

    2011-11-01

    Full Text Available Abstract Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.

  5. Efficient operation of the liquid nitrogen supply station for the cryogenic equipment of the pilot plant for tritium and deuterium separation

    International Nuclear Information System (INIS)

    Gherghinescu, Sorin; Popescu, Gheorghe

    2009-01-01

    Full text: At liquid nitrogen temperature the materials lose their elastic properties and become brittle. Protecting the personnel working with liquid nitrogen becomes difficult and to avoid accidents special equipment is used as helmets, gloves, goggles, special footwear, etc. The liquid nitrogen can destroy insulation of electrical cables, and so short circuits and electrocution can occur. Objects made of carbon steel (like pipes, props, containers, pillars, metal roofs, etc) when cooled by a sufficient amount of cryogenic liquid can break down to minimal mechanical stresses. Exceedingly dangerous is liquid nitrogen entered and retained into carbon steel ducts carrying pressured gas (even et low pressure values), since their cooling at extremely low temperatures can provoke their explosion. Resulting pieces and fragments are dangerous for both personnel and equipment around. The gas components of atmosphere (oxygen, nitrogen, argon) have critical parameters which allow liquefaction only at high pressure. For this reason they are called 'permanent gases'. Consequently, transformed in cryogenic liquids in closed precincts these gases will get totally vaporised when the precincts are not properly thermally isolated. The resulting raised pressure can lead to precinct destruction. For instance such event happens when an amount of liquid nitrogen is isolated into an external pipe between two closed taps while a relief valve is not in place. In such conditions isolation of liquid nitrogen ducts is absolutely necessary. This report reviews various solutions for obtaining an efficient isolation. All thermal isolations aim at reducing the heat transfer. In cryogenics the heat transfer from environment to the fluid in liquid phase is an important factor affecting the efficiency and yield of the liquefaction system. Choosing the type of isolation depends essentially on the specific application. The factors which must be considered are the cooling power, weight, the

  6. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  7. Oxygen reduction reaction properties of nitrogen-incorporated nanographenes synthesized using in-liquid plasma from mixture of ethanol and iron phthalocyanine

    Science.gov (United States)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographenes were synthesized using in-liquid plasma from a mixture of iron phthalocyanine and ethanol. In a previous study, micrometer-scale flakes with nitrogen incorporation were obtained. A nonprecious metal catalytic activity was observed with 3.13 electrons in an oxygen reduction reaction under an acidic solute condition. Large-surface-area, high-graphene-crystallinity, and iron-carbon-bonding sites were found owing to a high catalytic activity in Fe-N/nanographene.

  8. Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling.

    Science.gov (United States)

    Zhang, Yi; Zhou, Minghua; Hao, Xiaolong; Lei, Lecheng

    2007-03-01

    The effect of gas bubbling on the removal efficiency of 4-chlorophenol (4-CP) in aqueous solution has been investigated using a novel pulsed high voltage gas-liquid hybrid discharge reactor, which generates gas-phase discharge above the water surface simultaneously with the spark discharge directly in the liquid. The time for 100% of 4-CP degradation in the case of oxygen bubbling (7 min) was much shorter than that in the case of nitrogen bubbling (25 min) as plenty of hydrogen peroxide and ozone formed in oxygen atmosphere enhanced the removal efficiency of 4-CP. Except for the main similar intermediates (4-chlorocatechol, hydroquinone and 1,4-benzoquinone) produced in the both cases of oxygen and nitrogen bubbling, special intermediates (5-chloro-3-nitropyrocatechol, 4-chloro-2-nitrophenol, nitrate and nitrite ions) were produced in nitrogen atmosphere. The reaction pathway of 4-CP in the case of oxygen bubbling was oxygen/ozone attack on the radical hydroxylated derivatives of 4-CP. However, in the case of nitrogen bubbling, hydroxylation was the main reaction pathway with effect of N atom on degradation of 4-CP.

  9. Oligomerization of ethylene catalysed by nickel complexes associated with nitrogen ligands in ionic liquids; Oligomerisation de l'ethylene catalysee par des complexes du nickel associes a des ligands azotes dans les liquides ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Lecocq, V.

    2003-09-01

    We report here the use of a new class of catalytic systems based on a nickel active center associated with nitrogen ligands, such as di-imines, or imino-pyridines, for the oligomerization of ethylene in a biphasic medium using ionic liquids as the catalyst solvent. The nickel catalyst is immobilized in the ionic liquid phase in which the olefinic reaction products are poorly miscible. This biphasic system makes possible an easy separation and recycle of the catalyst. Numerous di-imine and imino-pyridine ligands with different steric and electronic properties have been synthesized and their corresponding nickel complexes isolated and characterized. Different ionic liquids, based on chloro-aluminates or non-chloro-aluminates anions, have also been prepared and characterized. The effect of the nature of the ligand, the ionic liquid, the nickel precursor and its mode of activation have been studied and correlated with the selectivity and activity of the transformation of ethylene. (author)

  10. Measurement of the energy spectrum with proportional counters with spherical cathodes between 20 keV and 2.5 MeV with the propagation of 14 MeV neutrons in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Schneider-Kuehnle, P.

    1974-01-01

    This work deals with the measurement of the energy spectrum of a 14 MeV neutron source in liquid nitrogen and liquid air in the energy region of 20 keV to 2.5 MeV as a function of the distance from the source. The measured results together with those of a scintispectrometer which measures the energies between 2.5 MeV and 14 MeV, are to serve as experimentally-supported input data for shielding calculations and are to enable the checking of transport theoretical calculations. (orig./LH) [de

  11. Quantification of nitrogen in the liquid fraction and in vitro assessment of lysine bioavailability in the solid fraction of soybean meal hydrolysates.

    Science.gov (United States)

    Luján-Rhenals, D; Morawicki, R; Shi, Z; Ricke, S C

    2018-01-02

    Soybean meal (SBM) is a product generated from the manufacture of soybean oil and has the potential for use as a source of fermentable sugars for ethanol production or as a protein source for animal feeds. Knowing the levels of nitrogen available from ammonium is a necessary element of the ethanolic fermentation process while identifying the levels of essential amino acids such as lysine is important in determining usage as a feed source. As such the purpose of this study was to quantify total nitrogen and ammonium in the liquid fraction of hydrolyzed SBM and to evaluate total and bioavailable lysine in the solid fraction of the hydrolyzed SBM. The effects of acid concentration, cellulase and β-glucosidase on total and ammonium nitrogen were studied with analysis indicating that higher acid concentrations increased nitrogen compounds with ammonium concentrations ranging from 0.20 to 1.24 g L -1 while enzymatic treatments did not significantly increase nitrogen levels. Total and bioavailable lysine was quantified by use of an auxotrophic gfpmut3 E.coli whole-cell bioassay organism incapable of lysine biosynthesis. Acid and enzymatic treatments were applied with lysine bioavailability increasing from a base of 82% for untreated SBM to up to 97%. Our results demonstrated that SBM has the potential to serve in ethanolic fermentation and as an optimal source essential amino acid lysine.

  12. Fundamental studies on the switching in liquid nitrogen environment using vacuum switches for application in future high-temperature superconducting medium-voltage power grids

    International Nuclear Information System (INIS)

    Golde, Karsten

    2016-01-01

    By means of superconducting equipment it is possible to reduce the transmission losses in distribution networks while increasing the transmission capacity. As a result even saving a superimposed voltage level would be possible, which can put higher investment costs compared to conventional equipment into perspective. For operation of superconducting systems it is necessary to integrate all equipment in the cooling circuit. This also includes switchgears. Due to cooling with liquid nitrogen, however, only vacuum switching technology comes into question. Thus, the suitability of vacuum switches is investigated in this work. For this purpose the mechanics of the interrupters is considered first. Material investigations and switching experiments at ambient temperature and in liquid nitrogen supply information on potential issues. For this purpose, a special pneumatic construction is designed, which allows tens of thousands of switching cycles. Furthermore, the electrical resistance of the interrupters is considered. Since the contact system consists almost exclusively of copper, a remaining residual resistance and appropriate thermal losses must be considered. Since they have to be cooled back, an appropriate evaluation is given taking environmental parameters into account. The dielectric strength of vacuum interrupters is considered both at ambient temperature as well as directly in liquid nitrogen. For this purpose different contact distances are set at different interrupter types. A distinction is made between internal and external dielectric strength. Conditioning and deconditioning effects are minimized by an appropriate choice of the test circuit. The current chopping and resulting overvoltages are considered to be one of the few drawbacks of vacuum switching technology. Using a practical test circuit the height of chopping current is determined and compared for different temperatures. Due to strong scattering the evaluation is done using statistical methods. At

  13. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years.

    Science.gov (United States)

    Sigurnjak, I; Vaneeckhaute, C; Michels, E; Ryckaert, B; Ghekiere, G; Tack, F M G; Meers, E

    2017-12-01

    Following changes over recent years in fertilizer legislative framework throughout Europe, phosphorus (P) is taking over the role of being the limiting factor in fertilizer application rate of animal manure. This results in less placement area for spreading animal manure. As a consequence, more expensive and energy demanding synthetic fertilizers are required to meet crop nutrient requirements despite existing manure surpluses. Anaerobic digestion followed by mechanical separation of raw digestate, results in liquid fraction (LF) of digestate, a product poor in P but rich in nitrogen (N) and potassium (K). A 3-year field experiment was conducted to evaluate the impact of using the LF of digestate as a (partial) substitute for synthetic N fertilizer. Two different fertilization strategies, the LF of digestate in combination with respectively animal manure and digestate, were compared to the conventional fertilization regime of raw animal manure with synthetic fertilizers. Results from the 3-year trial indicate that the LF of digestate may substitute synthetic N fertilizers without crop yield losses. Through fertilizer use efficiency assessment it was observed that under-fertilization of soils with a high P status could reduce P availability and consequently the potential for P leaching. Under conditions of lower K application, more sodium was taken up by the crop. In arid regions, this effect might reduce the potential risk of salt accumulation that is associated with organic fertilizer application. Finally, economic and ecological benefits were found to be higher when LF of digestate was used as a synthetic N substitute. Future perspectives indicate that nutrient variability in bio-based fertilizers will be one of the greatest challenges to address in the future utilization of these products. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Development of a liquid fermentation system and encystment for a nitrogen-fixing bacterium strain having biofertilizer potential].

    Science.gov (United States)

    Camelo-Rusinque, Mauricio; Moreno-Galván, Andrés; Romero-Perdomo, Felipe; Bonilla-Buitrago, Ruth

    The indiscriminate use of chemical fertilizers has contributed to the deterioration of the biological, physical and chemical properties of the soil, resulting in the loss of its productive capacity. For this reason, the use of biofertilizers has emerged as a technological alternative. The objective of this research was to develop a suitable liquid fermentation system and encystment for the multiplication of Azotobacter chroococcum AC1 strain, a bacterium employed in a biofertilizer formulation produced at present by CARPOICA, Colombia. Sequential statistical designs were used to determine the conditions in the fermentation system. The interaction between agitation, aeration and pH was evaluated on the viable biomass (CFU/ml) of AC1. In addition, the encystment ability of the strain was evaluated using two encystment agents and the potential plant growth-promoting rhizobacteria (PGPR) activity was assessed by different techniques, such as nitrogen fixation by ARA, phosphate solubilization by the phospho-molybdenum-blue reaction and indolic compound production by colorimetric reaction using the Salkowski reagent. Results showed significant effects (p<0.05) on the viable biomass in the three conditions (pH, aeration and agitation) tested individually, in one dual interaction and one tripartite interaction, were demonstrated to have a positive effect on the response variable aeration and agitation. The addition of the two encystment agents evaluated, AE01 and AE02, demonstrated the ability of AC1 to form cysts under stress conditions. Likewise, fermentation and encystment conditions did not affect the biological activities tested. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol

    Directory of Open Access Journals (Sweden)

    M. H. Barley

    2010-01-01

    Full Text Available A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.

  16. Heat-flux enhancement by vapour-bubble nucleation in Rayleigh-Bénard turbulence

    NARCIS (Netherlands)

    Narezo Guzman, Daniela; Xie, Yanbo; Chen, S.; Fernandez Rivas, David; Sun, Chao; Lohse, Detlef; Ahlers, Günter

    2016-01-01

    We report on the enhancement of turbulent convective heat transport due to vapour-bubble nucleation at the bottom plate of a cylindrical Rayleigh–Bénard sample (aspect ratio 1.00, diameter 8.8 cm) filled with liquid. Microcavities acted as nucleation sites, allowing for well-controlled bubble

  17. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    Science.gov (United States)

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  18. Vapour pressures and enthalpies of vapourization of a series of the linear aliphatic nitriles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Koutek, Bohumir; Doubsky, Jan

    2005-01-01

    Vapour pressures and the molar enthalpies of vapourization ΔlgHm-bar of the linear aliphatic nitriles C 7 -C 17 have been determined by the transpiration method. Kovat's indices of these compounds were measured by capillary gas-chromatography. A linear correlation of enthalpies of vapourization ΔlgHm-bar at T=298.15 K of the nitriles studied with the Kovats indices has been found

  19. Catalytic upgrading nitrogen-riched wood syngas to liquid hydrocarbon mixture over Fe-Pd/ZSM-5 catalyst

    Science.gov (United States)

    Qiangu Yan; Fei Yu; Zhiyong Cai; Jilei Zhang

    2012-01-01

    Biomass like wood chips, switchgrass and other plant residues are first converted to syngas through gasification process using air, oxygen or steam. A downdraft gasifier is performed for syngas production in Mississippi State. The syngas from the gasifier contains up to 49% (vol) N2. High-level nitrogen-containing (nitrogen can be up to 60%)...

  20. Vapour trap development and operational experience

    International Nuclear Information System (INIS)

    Jansing, W.; Kirchner, G.; Menck, J.

    1977-01-01

    Sodium aerosols have the unpleasant characteristic that they deposit at places with low temperature level. This effect can be utilized when sodium aerosols are to be trapped at places which are determined beforehand. Thus vapour traps were developed which can filter sodium vapour from the cover gas. By this means the necessity was eliminated to heat all gas lines and gas systems with trace heaters just as all sodium lines are heated. It was of special interest for the INTERATOM to develop vapour traps which must not be changed or cleaned after a certain limited operating period. The vapour traps were supposed to enable maintenance free operation, i.e. they were to operate 'self cleaning'

  1. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  2. Highly Selective Separation of Carbon Dioxide from Nitrogen and Methane by Nitrile/Glycol-Difunctionalized Ionic Liquids in Supported Ionic Liquid Membranes (SILMs)

    OpenAIRE

    Hojniak, Sandra D.; Silverwood, Ian P.; Laeeq Khan, Asim; Vankelecom, Ivo F.J.; Dehaen, Wim; Kazarian, Sergei G.; Binnemans, Koen

    2014-01-01

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, t...

  3. Principle of a liquid nitrogen irradiation device and its realization for use in a swimming-pool type reactor; Principe d'un dispositif d'irradiation a azote liquide et sa realisation pour utilisation dans une pile piscine

    Energy Technology Data Exchange (ETDEWEB)

    Bochirol, L; Doulat, J; Weil, L [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires

    1961-07-01

    The problem of pile irradiation of samples immersed in liquid nitrogen has been solved with total elimination of explosion hazards and high reliability (no moving parts). The principle of the device is that of a double bath: one of high purity nitrogen cools the samples at the level of the core; a second of commercial nitrogen is located above the first one, outside the high radiation field, and works as a continuous condenser for the pure nitrogen, the flow-back of which is provided simply by gravity. The apparatus described in detail here has been designed for a swimming-pool pile. It was so designed as to provide absolute protection against radiations and to allow the irradiated samples to be easily removed in the cold condition. This apparatus has been in operation for several months. In a fast flux greater than 10{sup 13} neutrons/cm{sup 2}.s and a {gamma}-flux of the order of 10{sup 8} roentgens/h, the consumption of liquid nitrogen is of the order of 100 liters a day. (author) [French] On a resolu le probleme de l'irradiation en pile d'echantillons immerges dans l'azote liquide en construisant un appareil d'un fonctionnement sur (aucune partie n'est mobile) qui elimine completement les dangers d'explosion. Le principe de l'appareil est celui d'un double bain: l'un, d'azote pur, refroidit les echantillons au niveau du coeur du reacteur; l'autre, d'azote commercial, est situe au-dessus du premier, hors du champ de rayonnement intense, et sert de condenseur continu pour l'azote pur. Ce dernier ainsi reliquefie regagne son bain par simple gravite. L'appareil decrit en detail ici, est concu pour une pile piscine. Il a ete etudie de facon a ne creer aucune fuite de rayonnement et a permettre la recuperation aisee des echantillons irradies sans rechauffage de ceux-ci. Cet appareil est en fonctionnement depuis plusieurs mois. Dans un flux rapide superieur a 10{sup 13} neutrons/cm{sup 2}.s et un flux {gamma} de l'ordre de 10{sup 8} roentgens/h, la consommation d

  4. Evaluation of the dependence of heat transfer coefficient on the particle diameter of a metal porous medium in a heat removal system using liquid nitrogen

    International Nuclear Information System (INIS)

    Sasaki, Shunsuke; Ito, Satoshi; Hashizume, Hidetoshi

    2015-01-01

    Cryogenic cooling system using a bronze-particle-sintered porous medium has been studied for a re mountable high-temperature superconducting magnet. This study evaluates boiling curve of subcooled liquid nitrogen as flowing in a bronze porous medium as a function of the particle diameter of the medium. We obtained Departure from Nuclear Boiling (Dnb) point from the boiling curve and discussed growth of nitrogen vapor bubble inferred from measured pressure drop. The pressure drop decreased significantly at wall superheat before reaching the DNB point whereas that slightly decreased after reaching the DNB point compared to the smallest wall superheat. This result could consider DNB rises with an increase in the particle diameter because larger particle makes vapor to move easily from the heated pore region. The influence of the particle diameter on the heat transfer performance is larger than that of coolant's degree of subcooling. (author)

  5. Storage of Pentatomid Eggs in Liquid Nitrogen and Dormancy of Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead (Hymenoptera: Platygastridae) Adults as a Method of Mass Production.

    Science.gov (United States)

    Doetzer, A K; Foerster, L A

    2013-10-01

    The eggs of pentatomid species were evaluated to parasitism by Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead after storage in liquid nitrogen. Adults which emerged from stored eggs were kept at 18°C for 120 and 180 days to investigate whether adult dormancy could be associated with host egg storage in liquid nitrogen as a method of mass production of these egg parasitoids. Eggs of Nezara viridula (L.) and Acrosternum pengue (Rolston) were successfully parasitized by T. basalis, as well as Piezodorus guildinii (Westwood) and Dichelops furcatus (F.) by T. podisi. The eggs of Edessa meditabunda (F.) were not parasitized by T. basalis. The emergence of T. podisi from eggs of Euschistus heros (F.) and Podisus nigrispinus (Dallas) stored for 6 months was lower than the control. Females of T. basalis and T. podisi that emerged from stored eggs were kept in dormancy at 18°C. Longevity of T. basalis was influenced by the storage time and sex, but not by the interaction of sex and storage time. For T. podisi, longevity was influenced by the storage time, sex, and by the interaction of sex and storage time. For T. basalis, storage in liquid nitrogen did not affect the fecundity of quiescent females, while the number of parasitized eggs by T. podisi decreased after storage. By the joint use of these techniques, it is possible to optimize mass production of T. basalis so that its life cycle can be monitored and synchronized with the life cycle and availability of hosts.

  6. Long term storage in liquid nitrogen leads to only minor phenotypic and gene expression changes in the mammary carcinoma model cell line BT474.

    Science.gov (United States)

    Fazekas, Judit; Grunt, Thomas W; Jensen-Jarolim, Erika; Singer, Josef

    2017-05-23

    Cancer cell lines are indispensible surrogate models in cancer research, as they can be used off-the-shelf, expanded to the desired extent, easily modified and exchanged between research groups for affirmation, reproduction or follow-up experiments.As malignant cells are prone to genomic instability, phenotypical changes may occur after certain passages in culture. Thus, cell lines have to be regularly authenticated to ensure data quality. In between experiments these cell lines are often stored in liquid nitrogen for extended time periods.Although freezing of cells is a necessary evil, little research is performed on how long-term storage affects cancer cell lines. Therefore, this study investigated the effects of a 28-year long liquid nitrogen storage period on BT474 cells with regard to phenotypical changes, differences in cell-surface receptor expression as well as cytokine and gene expressional variations. Two batches of BT474 cells, one frozen in 1986, the other directly purchased from ATCC were investigated by light microscopy, cell growth analysis, flow cytometry and cytokine as well as whole-transcriptome expression profiling. The cell lines were morphologically indifferent and showed similar growth rates and similar cell-surface receptor expression. Transcriptome analysis revealed significant differences in only 26 of 40,716 investigated RefSeq transcripts with 4 of them being up-regulated and 22 down-regulated. This study demonstrates that even after very long periods of storage in liquid nitrogen, cancer cell lines display only minimal changes in their gene expression profiles. However, also such minor changes should be carefully assessed before continuation of experiments, especially if phenotypic alterations can be additionally observed.

  7. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    Science.gov (United States)

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  8. Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Scharff, A.M.; Egsgaard, H.; Hansen, P.E.

    2003-01-01

    Nitrogen (N) fixation and assimilation in pea (Pisum sativum) root nodules were studied by in vivo N-15 nuclear magnetic resonance (NMR) by exposing detached nodules to N-15, via a perfusion medium, while recording a time course of spectra. In vivo P-31 NMR spectroscopy was used to monitor...... the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and N-15 labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by N-15 NMR...... labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn N-15 amino signal was absent in in vivo N-15 NMR spectra, which could be because...

  9. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  10. Superconducting materials at temperature higher than liquid nitrogen of the YBaCuO type. Materiaux supraconducteurs jusqu'a des temperatures superieures a celles de l'azote liquide, appartenant au systeme Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R; Gegnier, P; Truchot, P

    1990-02-09

    The invention concerns new superconducting materials with the formula Zr{sub x} Hf{sub y} Ti{sub z} Y{sub 1-x-y-z} Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} where 0liquid nitrogen and can be used as wire, solid parts, thin or thick layers.

  11. Resistance probe for liquid hydrogen

    International Nuclear Information System (INIS)

    Beauval, J.J.

    1959-01-01

    A simple device for determining the level of a liquid in equilibrium with its vapour is described. It makes use of the variation in heat exchange between a filament heated by a current and the atmosphere, on passing from the liquid to the gas. This apparatus is used to measure liquid hydrogen levels in liquefying dewar vessels. (author) [fr

  12. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  13. A sensitive and efficient method for trace analysis of some phenolic compounds using simultaneous derivatization and air-assisted liquid-liquid microextraction from human urine and plasma samples followed by gas chromatography-nitrogen phosphorous detection.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar

    2015-12-01

    In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.

  14. THE LIQUID NITROGEN SYSTEM FOR CHAMBER A; A CHANGE FROM ORIGINAL FORCED FLOW DESIGN TO A NATURAL FLOW (THERMO SIPHON) SYSTEM

    International Nuclear Information System (INIS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Creel, J.; Arenius, D.; Garcia, S.

    2010-01-01

    NASA at the Johnson Space Center (JSC) in Houston is presently working toward modifying the original forced flow liquid nitrogen cooling system for the thermal shield in the space simulation chamber-A in Building 32 to work as a natural flow (thermo siphon) system. Chamber A is 19.8 m (65 ft) in diameter and 35.66 m (117 ft) high. The LN 2 shroud environment within the chamber is approximately 17.4 m (57 ft) in diameter and 28 m (92 ft) high. The new thermo siphon system will improve the reliability, stability of the system. Also it will reduce the operating temperature and the liquid nitrogen use to operate the system. This paper will present the requirements for the various operating modes. System level thermodynamic comparisons of the existing system to the various options studied and the final option selected will be outlined. A thermal and hydraulic analysis to validate the selected option for the conversion of the current forced flow to natural flow design will be discussed. The proposed modifications to existing system to convert to natural circulation (thermo siphon) system and the design features to help improve the operations, and maintenance of the system will be presented.

  15. Numerical study of the underexpanded nitrogen jets submerged into liquid sodium in the frame of Sodium-cooled Fast Reactor (SFRs)

    International Nuclear Information System (INIS)

    Chen, F.; Allou, A.; Parisse, J.D.

    2017-01-01

    The study of the consequences of a gas leakage in the secondary/ tertiary heat exchangers is one of the essential points in the safety analysis of Sodium-cooled Fast nuclear Reactors (SFRs). This work is in the frame of the technology of the Compact plates Sodium-Gas heat Exchangers (ECSG) which is an alternative to conventional steam Rankine cycles. The overpressure of the tertiary nitrogen loop causes the formation of underexpanded gas jets submerged in the liquid sodium. In order to establish a safety evaluation, it would be an asset to be able to estimate the leakage. The gas leak detection by the acoustic method based on the bubbles field has been proposed. It requires then a delicate knowledge of the bubble field. This work contributes to development a numerical tool and its validation to model the transport and the production of bubbles in the downstream of underexpanded gas jets. The code CANOP modeling bi-phasic compressible flow is investigated under the actual condition of the underexpanded nitrogen jets submerged in the liquid sodium in an ECSG channel. Expensive computational cost is limited by using an Adaptive Mesh Refinement. (author)

  16. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  17. Preparation of a liquid nitrogen target for measurement of γ-ray in the 14N(n,γ)15N reaction as an intensity standard in energy region up to 11 MeV

    International Nuclear Information System (INIS)

    Hirano, M.; Obayashi, H.; Sakane, H.; Shibata, M.; Kawade, K.; Taniguchi, A.

    2001-01-01

    For determination of relative γ-ray intensities up to 11 MeV in the 14 N(n,γ) 15 N reaction, we have developed a liquid nitrogen (N 2 ) target which contain no hydrogen (H) to improve the accuracy of γ-ray intensities. The ratio of the relative uncertainties for the liquid nitrogen to that for the melamine (C 3 H 6 N 6 ) widely used was improved by a factor of 2 above 2.2 MeV and a factor of 3 - 6 below 2.2 MeV. It has been shown that the liquid nitrogen target is useful for reduction of the 2.2 MeV γ-ray from the 1 H(n,γ) 2 H reaction and improvement of statistics. (author)

  18. Effects of solid-liquid separation on recovering residual methane and nitrogen from digested dairy cow manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Rintala, J.A.

    2008-01-01

    The feasibility of optimizing methane and nitrogen recovery of samples obtained from farm biogas digester (35 degrees C) and post-storage tank (where digested material is stored for 9-12 months) was studied by separating the materials into different fractions using 2, 1, 0.5 and 0.25 mm sieves...

  19. Wipe selection for the analysis of surface materials containing chemical warfare agent nitrogen mustard degradation products by ultra-high pressure liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Willison, Stuart A

    2012-12-28

    Degradation products arising from nitrogen mustard chemical warfare agent were deposited on common urban surfaces and determined via surface wiping, wipe extraction, and liquid chromatography–tandem mass spectrometry detection. Wipes investigated included cotton gauze, glass fiber filter, non-woven polyester fiber and filter paper, and surfaces included several porous (vinyl tile, painted drywall, wood) and mostly non-porous (laminate, galvanized steel, glass) surfaces. Wipe extracts were analyzed by ultra-high pressure liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) and compared with high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) results. An evaluation of both techniques suggests UPLC–MS/MS provides a quick and sensitive analysis of targeted degradation products in addition to being nearly four times faster than a single HPLC run, allowing for greater throughput during a wide-spread release concerning large-scale contamination and subsequent remediation events. Based on the overall performance of all tested wipes, filter paper wipes were selected over other wipes because they did not contain interferences or native species (TEA and DEA) associated with the target analytes, resulting in high percent recoveries and low background levels during sample analysis. Other wipes, including cotton gauze, would require a pre-cleaning step due to the presence of large quantities of native species or interferences of the targeted analytes. Percent recoveries obtained from a laminate surface were 47–99% for all nitrogen mustard degradation products. The resulting detection limits achieved from wipes were 0.2 ng/cm(2) for triethanolamine (TEA), 0.03 ng/cm(2) for N-ethyldiethanolamine (EDEA), 0.1 ng/cm(2) for N-methyldiethanolamine (MDEA), and 0.1 ng/cm(2) for diethanolamine (DEA).

  20. Experimental study of nitrogen oxides in the IRT-M reactor

    International Nuclear Information System (INIS)

    Brazovskij, I.I.; Doroshevich, V.N.; Gvozdev, A.A.; Nesterenko, V.B.; Trubnikov, V.P.

    1982-01-01

    A critical review of different approaches to the radiolysis study of nitrogen oxide under mixed radiation conditions of a nuclear reactor was presented. Loop reactor piant opereted following gas-liquid cycle. It was shown in the process of long experiment in the operating conditions that irreversible radiation-thermal decomposition of the coolant increases little with temperature and pressure and radioactivity of the coolant and thermophysical equipment was moderate. Numerous kinetic experiments were conducted on the ampoule plant wherein all coolant existed in the zone of ionizing radiation effect. Initial pressure in the ampoule plant was set in the range of 0.1-16 MPa, depending on conditions of the experiment, and temperature 200-500 deg C. Dosimetry of the ampoule was carried out by the radiolysis of nitrogen monoxide. The analysis of the radiolysis products was conducted utilizing gas chromatography method, coolant vapours were removed in the process of low-temperature condensation under - 70 deg C